
4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 1/9

OlympusDAO Single Sided Liquidity Vault
System (SSLV) Audit

Introduction & Scope

This audit looks into Pull Request 103 as seen here

(https://github.com/OlympusDAO/bophades/pull/103/files). This includes the following contracts:

 LQREG.v1.sol (https://github.com/OlympusDAO/bophades/pull/103/files#diff-

5b92f893d14c85ef44073dd716b1dcfd32cb794762219a99711ed507fd087bdb)

 OlympusLiquidityRegistry.sol (https://github.com/OlympusDAO/bophades/pull/103/files#diff-

5e7445bb67500e7f1fd097919a7e0603c675db0229ddad3fc581b8749e658fbf)

 SingleSidedLiquidityVault.sol (https://github.com/OlympusDAO/bophades/pull/103/files#diff-

e0e208e2b4d221c3bd3cb086cb9766f5eaba0574bae0548eb776b763e96c2b03)

 StethLiquidityVault.sol (https://github.com/OlympusDAO/bophades/pull/103/files#diff-

af78df6669860e2f7153d75337038924a5a1ff115ed548adb39a75dd74876aaf)

This audit was conducted by kebabsec (https://twitter.com/kebabsec) members sai

(https://twitter.com/sigh242), FlameHorizon (https://twitter.com/FlameHorizon1) and okkothejawa

(https://twitter.com/okkothejawa).

As SSLV can affect the overall OHM supply, its design itself may have unexpected

consequences for the economics of OHM ecosystem. As the authors of this report

lack the expertise and proper information to audit the economic design of the

system, this audit should not be treated as a design audit.

Executive Summary

Table of Contents

Findings

�. [MED] Wrong decimal value for stETH/USD price feed in

 StethLiquidityVault.sol

�. [LOW] safeTransferFrom and safeTransfer not present

�. [HIGH] Faulty math in _canDeposit leads to Denial of Service

�. [MED] deposit does not conform to checks-effects-interactions pattern

�. [MED] Truncations and unsafe casts in the rewards logic can lead to weird states

such as infinite rewards

https://github.com/OlympusDAO/bophades/pull/103/files
https://github.com/OlympusDAO/bophades/pull/103/files#diff-5b92f893d14c85ef44073dd716b1dcfd32cb794762219a99711ed507fd087bdb
https://github.com/OlympusDAO/bophades/pull/103/files#diff-5e7445bb67500e7f1fd097919a7e0603c675db0229ddad3fc581b8749e658fbf
https://github.com/OlympusDAO/bophades/pull/103/files#diff-e0e208e2b4d221c3bd3cb086cb9766f5eaba0574bae0548eb776b763e96c2b03
https://github.com/OlympusDAO/bophades/pull/103/files#diff-af78df6669860e2f7153d75337038924a5a1ff115ed548adb39a75dd74876aaf
https://twitter.com/kebabsec
https://twitter.com/sigh242
https://twitter.com/FlameHorizon1
https://twitter.com/okkothejawa

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 2/9

�. [LOW] Add sanity check when setting variables THRESHOLD and FEE, specially

THRESHOLD since it breaks _isPoolSafe

�. [INFO] No emergency protections present

�. [LOW] Event not emitted due to dead code in withdraw

�. [INFO] Insufficient test coverage

��. [INFO] Claim reward functions does not return value

��. [INFO] _accumulateInternalRewards does not make state changes and can be

set to view

��. [MED] Possible reentrancy in claimRewards

��. [INFO] Tokens rewarding is not accounted for tokens less or more than 18

decimals

��. [LOW] withdraw insufficient amount input checking

��. [HIGH] Vault receiving reward tokens outside _accumulateExternalRewards from
AURA pool canʼt be accounted and claimed

Findings:

1. [MED] Wrong decimal value for stETH/USD price feed in
 StethLiquidityVault.sol

In StethLiquidityVault.sol , line 215
(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/StethLiquidityVault.sol#L215), a comment affirms that the oracle price feed for

stETH/USD reports a price in 18 decimals, after double checking it, we noticed this

was not accurate, and that the price was in fact being reported in 8 decimals.

Incorrectly assuming the decimal count of a feed would complicate the calculations to

come after contained in the same function, more specifically the math for the return

value in line 223

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/StethLiquidityVault.sol#L233).

Recommendation: Change the calculations to take into account that stETH/USD price

feed reports in 8 decimals.

2. [LOW] safeTransferFrom and safeTransfer not present

As pairToken and rewardToken tokens might not be standard ERC20 tokens that

revert on failure (they may return false and silently pass as opposed to more common

way of reverting) or they may not return a boolean like USDT, consider utilizing a

 SafeERC20 (https://github.com/OpenZeppelin/openzeppelin-

https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/StethLiquidityVault.sol#L215
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/StethLiquidityVault.sol#L233
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 3/9

contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol) library for token transfers

throughout the contract to account for non ERC20 compliant tokens.

Recommendation: Use safeTransfer and safeTransferFrom instead of transfer
and transferFrom while handling tokens other than OHM , especially in the abstract
contract as the tokens are not known beforehand. See these related

(https://github.com/code-423n4/2021-08-notional-findings/issues/68) C4 issues

(https://github.com/code-423n4/2022-01-trader-joe-findings/issues/12).

3. [HIGH] Faulty math in _canDeposit leads to Denial of Service

Due to faulty math, the sanity check _canDeposit
(https://github.com/OlympusDAO/bophades/blob/ss-liq-

vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L317) checks if ohmMinted -
ohmBurned + amount_ > LIMIT in both branches as the variable activeOhm evaluates
to ohmMinted - ohmBurned in each of the branches. As Solidity >0.8 reverts when a

 uint is evaluated as negative, the states in which ohmBurned > ohmMinted results in
 _canDeposit reverting. As the function deposit is the only path that can increase
the variable ohmMinted and as deposit utilizes _canDeposit sanity check, once the
contract gets into a state in which ohmBurned > ohmMinted which can occur naturally
due to price fluctations in the Balancer pool, no further deposits are possible after that

point, resulting in denial of service. As the only way to resume operations in such

scenario is upgrading/replacing the contract, see issue 8 [INFORMATIONAL] No

emergency protections present.

Recommendation: Fix the faulty math.

4. [MED] deposit does not conform to checks-effects-interactions
pattern

As can be seen here (https://github.com/OlympusDAO/bophades/blob/ss-liq-

vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L166), state changes happen after

 transfer and transferFrom calls to pairToken in deposit . This is against the safe
pattern of checks-effects-interactions, and it can lead to reentrancy attacks utilizing a

 pairToken with callback capabilities (e.g an ERC777 or a modified ERC20). Even

though the nonReentrant modifier is used in both external functions of the contract,

this modifier can only prevent reentrancy attacks caused by calling these functions

mid-function, yet the attacker can manipulate the state by either tampering with the

liquidity pool or dumping OHM directly into the contract in the callback.
A) Tampering with the liquidity pool

The attacker can bypass the check _isPoolSafe by having an initially safe LP

pool state to pass _isPoolSafe , and then proceeding to manipulate the pool

price in the callback from pairToken.transferFrom call before _deposit ,
resulting in a deposit to an unsafe pool. The current Balancer implementation is

not likely to be susceptible to this as all external state-changing functions of

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/code-423n4/2021-08-notional-findings/issues/68
https://github.com/code-423n4/2022-01-trader-joe-findings/issues/12
https://github.com/OlympusDAO/bophades/blob/ss-liq-vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L317
https://github.com/OlympusDAO/bophades/blob/ss-liq-vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L166

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 4/9

Balancer has the nonReentrant modifier, meaning that any price manipulation

during the transaction would lock the Balancer vault, resulting in revert in the

 _deposit call. Yet, further implementations utilizing different liquidity pool

designs might be susceptible to bypassing of _isPoolSafe , if the underlying
liquidity pools donʼt implement a mutex in the necessary places.

B) Dumping OHM directly into contract during execution

As the variable ohmMinted is increased by the difference in the OHM balance
before and after the transferFrom calls, the attacker can utilize the callback to
directly send OHM into the contract to inflate unusedOhm , causing ohmMinted to
increase less than what is supposed to. This path can be utilized to force issue 3

by inflating the difference between ohmBurned and ohmMinted . Other than
causing denial of service by issue 3 and tampering with the variables ohmMinted
or pairTokenDeposits , no direct exploitation possibility for this path was found in

the audit.

Recommendation: Refactor deposit so that it conforms to CEI pattern.

5. [MED] Truncations and unsafe casts in the rewards logic can lead to
weird states such as infinite rewards

PoC Foundry test can be found here.

(https://gist.github.com/okkothejawa/09204b0c16a82644da9a42aa8a9dbd40)

As a MasterChef variation, the rewards logic of SSLV includes potential truncations

(division results in 0 in Solidity if numerator is smaller than denominator as Solidity

does not support floats) and unsafe casts (casting a int to an uint is dangerous as
underflow/overflow in casting is not patched after Solidity >0.8).

While our research didnʼt yield a path that is directly exploitable, we found a

interesting enough weird state that is accessible through a valid path in which a first

depositor deposits a large amount of pairToken so that totalLP starts large,
resulting in a small accumulatedRewardsPerShare . Then a second depositor makes a

deposit of usual 1e18 , and proceeds to withdraw only 1 . As rewards are calculated
as in the snippet below in internalRewardsForToken , once userRewardDebts[user_]
[rewardToken.token] is larger than int256((lpPositions[user_] *
accumulatedRewardsPerShare) / 1e18) the outermost int value becomes negative,
underflowing uint and resulting in infinite rewards value. This behavior happens as

the withdrawn amount truncates when its subtracted from the userRewardDebts in
 _withdrawUpdateRewardState (https://github.com/OlympusDAO/bophades/blob/ss-liq-

vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L499) due to both withdrawn LP

amount and rewards per share being small and their product is smaller than 1e18 ,
which leads to userRewardDebts staying the same while

 int256((lpPositions[user_] * accumulatedRewardsPerShare) / 1e18) is
decreased.

https://gist.github.com/okkothejawa/09204b0c16a82644da9a42aa8a9dbd40
https://github.com/OlympusDAO/bophades/blob/ss-liq-vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L499

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 5/9

uint256(int256((lpPositions[user_] * accumulatedRewardsPerShare) / 1e18) - user

Even though the above scenario highlights the problems associated with truncations

and unsafe casts, it is not practically exploitable as the contract wouldnʼt have an

infinite amount of rewards and the fee calculation would overflow and revert. We

extensively studied the contract to see if an arbitrary negative number can be reached

through the means explained above, yet we couldnʼt find such a path. Yet, this does

not mean such a path does not exist, and thus usage of potential truncations and

unsafe casts should be minimized in order to prevent potential rewards drainage

paths.

Recommendation: Minimize truncations and unsafe casts.

6. [LOW] Add sanity check when setting variables THRESHOLD and FEE,
specially THRESHOLD since it breaks _isPoolSafe

The function setThreshold should be bound within the parameters to stay compliant

with the comment above, specially since it cannot be bigger than PRECISION , which is
hardcoded to the value of 1000, and accidentally adding another zero accidentally

when using this function would break _isPoolSafe and revert and all the functions

that depend on this check to function.

Recommendation: Implement sanity checks in potentially contract breaking setters.

7. [INFO] No emergency protections present

This module does not have emergency protections present, and in case of a critical

event there should be a way to prevent withdraws and other sensitive functions.

There is also no way to initialize the contract with a pre-set mapping of LP positions,

thus upgrading the contract with a new one as a response to a critical event is tricky.

An emergency migration function can be designed as the following:

�. Withdraw LP tokens from Aura.

�. Transfer LP tokens to the new implementation.

�. Initialize the new contract with the old state mappings.

�. Deposit the LP tokens into Aura again.

�. Resume operation as usual.

Recommendation: Consider implementing permissioned emergency migration and

pause/unpause functions.

8. [LOW] Event not emitted due to dead code in withdraw

In line 228

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L228

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 6/9

s/lending/abstracts/SingleSidedLiquidityVault.sol#L228) of SingleSidedLiquidityVault.sol
there is a return statement that prevents the posterior event in line 230

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L230) to not be emitted.

Recommendation: Swap the return line with the line firing the event.

9. [INFO] Insufficient test coverage

Upon inspection, the contractʼs test unit doesnʼt simulate the correct functionality of

production, and has the following issues:

The withdraw testing only applies a condition of warping time, but has no test of a

condition without passing time.

No fuzzing of deposit and withdraw amount inputs, leading to problems.

Mock contracts do not provide the correct functionality compared to mainnet

deployment environment and canʼt be verified:

 MockAuraRewardPool and BalancerMockVault mock by naive token minting. This
can not provide sufficient verification of Vaultʼs external function calls.

Recommendation: Extend the test coverage and improve the accuracy of mocks.

10. [INFO] Claim reward functions does not return value
(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies

/lending/abstracts/SingleSidedLiquidityVault.sol#L527-L551)

The functions _claimInternalRewards and _claimExternalRewards are declared to

return uint256, but does not return anything.

Recommendation: Function should return claimed tokens amount or be declared

without return.

11. [INFO] _accumulateInternalRewards does not make state
changes and can be set to view (https://github.com/OlympusDAO/bophades/blob/ss-liq-

vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L385)

Recommendation: Set function to be view .

12. [MED] Possible reentrancy in claimRewards

The claim function makes several external calls, presented for external token

accumulation in _accumulateExternalRewards

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/StethLiquidityVault.sol#L171-L195):

https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L228
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L230
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L527-L551
https://github.com/OlympusDAO/bophades/blob/ss-liq-vault/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L385
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/StethLiquidityVault.sol#L171-L195

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 7/9

 auraPool.rewardsPool.getReward(address(this), true);

While withdraw function is protected against reentrancy that allows claiming

rewards, claimRewards can be claimed.

Recommendation: Function claimRewards should have nonReentrant to ensure
reentrancy safety.

13. [INFO] Tokens rewarding is not accounted for tokens less or more
than 18 decimals

The vault will miscalculate reward token amount if the tokenʼs decimal is not 18. The

calculation occurs in following functions: _updateInternalRewardState

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L407), _updateExternalRewardState

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L415), _depositUpdateRewardDebts

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L453), _withdrawUpdateRewardState

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L484), internalRewardsForToken and
 externalRewardsForToken

Recommendation: Make sure all reward tokens have 18 decimals, or extend the logic

to support decimals other than 18.

14. [LOW] withdraw insufficient amount input checking
(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies

/lending/abstracts/SingleSidedLiquidityVault.sol#L202)

The function doesnʼt fully ensure the correctness of passed inputs:

A user is able to call withdraw with zero amount in lpAmount_ and
 minTokenAmounts_ .

 withdraw makes external calls to Balancer and Aura, checks current token balance

and makes update states to reward tokens. Which shouldnʼt occur.

Recommendation: Add sanity checks for lpAmount_ and minTokenAmounts_ .

182

https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L407
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L415
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L453
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L484
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L202

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 8/9

15. [HIGH] Vault receiving reward tokens outside
 _accumulateExternalRewards from AURA pool canʼt be accounted
and claimed
(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies

/lending/StethLiquidityVault.sol#L171-L195)

The accumulation is done by checking currentʼs balance before and after pool call

rewarded upon updating reward state when depositing

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L430) and withdrawing

(https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policie

s/lending/abstracts/SingleSidedLiquidityVault.sol#L490).

According to the Auraʼs contract BaseRewardPool implementation, getReward can be
called by anyone, passing the vaultʼs address:

 function getReward(address _account, bool _claimExtras) public updateReward
 uint256 reward = earned(_account);
 if (reward > 0) {
 rewards[_account] = 0;
 rewardToken.safeTransfer(_account, reward);
 IDeposit(operator).rewardClaimed(pid, _account, reward);
 emit RewardPaid(_account, reward);
 }

 //also get rewards from linked rewards
 if(_claimExtras){
 for(uint i=0; i < extraRewards.length; i++){
 IRewards(extraRewards[i]).getReward(_account);
 }
 }
 return true;
 }

Assuming this is the correct pool, getReward() call can be triggered by anyone which

will result in rewards will be transferred to the vault without getting recorded as it

wonʼt be accounted as a balance change in the function

 _accumulateExternalRewards .

The vault also does not have a general token sweep function, and the only way to

transfer the rewards out are through reading the recorded

 accumulatedExternalRewards values, thus the rewards will be stuck in the contract.

This path can be used as a griefing attack, as it results in monetary loss for both the

users of SSLV and the protocol in the form of potential fees.

Recommendation: Change accumulation logic so that it covers rewards accumulation

happening outside of _accumulateExternalRewards .

https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/StethLiquidityVault.sol#L171-L195
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L430
https://github.com/OlympusDAO/bophades/blob/0b57e988377afa84b52727de0f718b9e265e7bb1/src/policies/lending/abstracts/SingleSidedLiquidityVault.sol#L490

4/24/23, 9:39 PM OlympusDAO Single Sided Liquidity Vault System (SSLV) Audit - HackMD

https://hackmd.io/@12og4u7y8i/HJVAPMlno 9/9

