
Public

SMART CONTRACT AUDIT REPORT

for

OLYMPUSDAO

Prepared By: Shuxiao Wang

PeckShield
April 9, 2021

1/23 PeckShield Audit Report #: 2021-028

sxwang@peckshield.com

Public

Document Properties

Client OlympusDAO
Title Smart Contract Audit Report
Target OlympusDAO
Version 1.0
Author Xuxian Jiang
Auditors Huaguo Shi, Xuxian Jiang
Reviewed by Shuxiao Wang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 9, 2021 Xuxian Jiang Final Release
1.0-rc April 3, 2021 Xuxian Jiang Release Candidate #1
0.3 April 1, 2021 Xuxian Jiang Additional Findings #2
0.2 March 28, 2021 Xuxian Jiang Additional Findings #1
0.1 March 25, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/23 PeckShield Audit Report #: 2021-028

Public

Contents

1 Introduction 4
1.1 About OlympusDAO . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Caller Authentication Of sOlympusERC20::rebase() 11
3.2 Potential Rebasing Perturbation . 12
3.3 Simplified Logic In BondingCalculator::_principleValuation() 13
3.4 Proper Initialization Enforcement In sOlympus::setStakingContract() 15
3.5 Improved Decimal Conversion in depositReserves() 16
3.6 Trust Issue of Admin Keys . 17
3.7 Redundant Code Removal . 18

4 Conclusion 21

References 22

3/23 PeckShield Audit Report #: 2021-028

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
OlympusDAO protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About OlympusDAO

Olympus is an algorithmic currency protocol based on the OHM token. It introduces unique economic
and game-theoretic dynamics into the market through asset-backing and protocol owned value. It
is a value-backed, self-stabilizing, and decentralized stablecoin with unique collateral backing and
algorithmic incentive mechanism. Different from existing stablecoin solutions, it is proposed as
a non-pegged stablecoin by exploring a radical opportunity to achieve stability while eliminating
dependence on fiat currencies.

The basic information of the OlympusDAO protocol is as follows:

Table 1.1: Basic Information of The OlympusDAO Protocol

Item Description
Issuer OlympusDAO

Website https://olympusdao.eth.link/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report April 9, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in

4/23 PeckShield Audit Report #: 2021-028

Public

this audit.

• https://github.com/OlympusDAO/olympus.git (cdd4afe)

1.2 About PeckShield

PeckShield Inc. [13] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [12]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

5/23 PeckShield Audit Report #: 2021-028

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/23 PeckShield Audit Report #: 2021-028

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [11], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/23 PeckShield Audit Report #: 2021-028

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/23 PeckShield Audit Report #: 2021-028

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the OlympusDAO implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 2

Informational 2

Undetermined 1

Total 7

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/23 PeckShield Audit Report #: 2021-028

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 2 low-severity vulnerabilities, 2 informational recommendations, and 1 issue with
undetermined severity.

Table 2.1: Key OlympusDAO Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Caller Authentication Of sOlym-

pusERC20::rebase()
Security Features Fixed

PVE-002 Undetermined Potential Rebasing Perturbation Time And State Confirmed
PVE-003 Informational Simplified Logic In BondingCalculator::_-

principleValuation()
Coding Practices Fixed

PVE-004 Medium Proper Initialization Enforcement In sOlym-
pus::setStakingContract()

Security Features Fixed

PVE-005 Low Improved Decimal Conversion in depositRe-
serves()

Business Logic Fixed

PVE-006 Medium Trust Issue of Admin Keys Security Features Confirmed
PVE-007 Informational Redundant Code Removal Coding Practices Confirmed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/23 PeckShield Audit Report #: 2021-028

Public

3 | Detailed Results

3.1 Improved Caller Authentication Of
sOlympusERC20::rebase()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: sOlympusERC20

• Category: Security Features [7]

• CWE subcategory: CWE-282 [2]

Description

In the Olympus protocol, one core component is the Staking contract that allows participants to stake
OHM tokens and get sOHM in return. The sOHM token is a rebasing, ERC20-compliant one that evenly
distributes profits to staking users. While examining the rebasing logic, we notice an authentication
issue that needs to be resolved.

To elaborate, we show below the rebase() implementation. This function follows a similar imple-
mentation from AmpleForth 1 with internal Gon-based representation. However, we notice this function
is protected with a onlyMonetaryPolicy() modifier. This modifier has the requirement of require(msg
.sender == monetaryPolicy), which in essence restricts the caller to be from monetaryPolicy.

1063 f unc t i on r e b a s e (uint256 o l y P r o f i t) pub l i c on l yMone ta r yPo l i c y () r e tu rn s (uint256) {
1064 uint256 _rebase ;

1066 i f (o l y P r o f i t == 0) {
1067 emit LogRebase (block . timestamp , _to ta lSupp l y) ;
1068 re tu rn _tota lSupp l y ;
1069 }

1071 i f (c i r c u l a t i n g S u p p l y () > 0) {
1072 _rebase = o l y P r o f i t . mul (_to ta lSupp l y) . d i v (c i r c u l a t i n g S u p p l y ()) ;
1073 }

1The AmpleForth protocol can be accessed at https://www.ampleforth.org/

11/23 PeckShield Audit Report #: 2021-028

Public

1075 e l s e {
1076 _rebase = o l y P r o f i t ;
1077 }

1079 _tota lSupp l y = _tota lSupp l y . add (_rebase) ;

1082 i f (_to ta lSupp l y > MAX_SUPPLY) {
1083 _tota lSupp l y = MAX_SUPPLY;
1084 }

1086 _gonsPerFragment = TOTAL_GONS. d i v (_to ta lSupp l y) ;

1088 emit LogRebase (block . timestamp , _to ta lSupp l y) ;
1089 re tu rn _tota lSupp l y ;
1090 }

Listing 3.1: sOlympusERC20::rebase()

Meanwhile, our analysis shows that the only possible caller of rebase() is the Staking contract
(line 723). With that, there is a need to adjust the modifier to be onlyStakingContract. Certainly, a
possible solution will require the Staking contract to be the same as monetaryPolicy.

Recommendation Properly authenticating the caller of rebase to be stakingContract, not
monetaryPolicy. Or consider the merge of stakingContract and monetaryPolicy as the same entity.

Status This issue has been fixed for v2.

3.2 Potential Rebasing Perturbation

• ID: PVE-002

• Severity: Undetermined

• Likelihood: -

• Impact: -

• Target: OlympusStaking

• Category: Time and State [10]

• CWE subcategory: CWE-663 [5]

Description

As mentioned earlier, the Olympus protocol implements a unique expansion and contraction mechanism
in order to be a stablecoin. In the following, we examine the rebasing mechanism implemented in
the protocol.

To elaborate, we show below the _distributeOHMProfits() routine that triggers sOHM-rebasing so
that the accumulated profits can be evenly distributed to circulating sOHM. Note that the rebasing

12/23 PeckShield Audit Report #: 2021-028

Public

operation will not be triggered until the current block height reaches the specified nextEpochBlock

number.
720 // triggers rebase to distribute accumulated profits to circulating sOHM
721 f unc t i on _di s t r i bu teOHMPro f i t s () i n t e r n a l {
722 i f (nextEpochBlock <= block . number) {
723 IOHMandsOHM(sOHM) . r e ba s e (ohmToDistr ibuteNextEpoch) ;
724 uint256 _ohmBalance = IOHMandsOHM(ohm) . ba lanceOf (address (t h i s)) ;
725 uint256 _sohmSupply = IOHMandsOHM(sOHM) . c i r c u l a t i n g S u p p l y () ;
726 ohmToDist r ibuteNextEpoch = _ohmBalance . sub (_sohmSupply) ;
727 nextEpochBlock = nextEpochBlock . add (epochLength InB lock s) ;
728 }
729 }

Listing 3.2: OlympusStaking::_distributeOHMProfits()

With that, it is possible that right before nextEpochBlock is reached, a user may choose to stake
(or unstake) to increase (decrease) the circulating supply of sOHM. Either way, the current rebasing
operation as well as the ohmToDistributeNextEpoch amount may be influenced.

Note that this is a common sandwich-based arbitrage behavior plaguing current AMM-based DEX
solutions. Specifically, a large trade may be sandwiched by a preceding sell to reduce the market
price, and a tailgating buy-back of the same amount plus the trade amount. Such sandwiching
behavior unfortunately causes a loss and brings a smaller return as expected to the trading user. We
need to acknowledge that this is largely inherent to current blockchain infrastructure and there is
still a need to continue the search efforts for an effective defense.

Recommendation Develop an effective mitigation to the above sandwich arbitrage behavior
to better protect the rebasing operation in Olympus.

Status The issue has been confirmed.

3.3 Simplified Logic In
BondingCalculator::_principleValuation()

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: BondingCalculator

• Category: Coding Practices [8]

• CWE subcategory: CWE-1099 [1]

Description

Besides staking, the Olympus protocol provides the bond mechanism as the secondary strategy to
provide a more conservative and reliable return. Specifically, this mechanism quotes the bonder with

13/23 PeckShield Audit Report #: 2021-028

Public

terms for a trade at a future date and the actual bond amount depends on a bonding curve. There
are two main factors, BCV and vesting term. The first factor allows to scale the rate at which bond
premiums increase. A higher BCV means a lower discount for bonders and less inflation. A lower
BCV means a higher capacity for bonders and less protocol profit. The vesting term determines how
long it takes for bonds to become redeemable. A longer term means lower inflation and lower bond
demand.

While analyzing the bonding curve, we observe an optimization in the internal helper _principleValuation
(). This helper is used to determine the LP share values according to a conservative formula. In
the actual calculation at line 628, the ending scaling factor of div(1e10).mul(10) can be simplified as
div(1e9).

621 // Values LP share based on formula
622 // returns principleValuation = 2sqrt(constant product) * (% ownership of total LP)
623 // uint k_ = constant product of liquidity pool
624 // uint amountDeposited_ = amount of LP token
625 // uint totalSupplyOfTokenDeposited = total amount of LP
626 f unc t i on _p r i n c i p l eV a l u a t i o n (u in t k_, u in t amountDeposited_ , u in t

to ta lSupp lyOfTokenDepos i t ed_) i n t e r n a l pure re tu rn s (u in t p r i n c i p l eV a l u a t i o n_
) {

627 // *** When deposit amount is small does not pick up principle valuation *** \\
628 p r i n c i p l eV a l u a t i o n_ = k_. s q r r t () . mul (2) . mul (F i x edPo i n t . f r a c t i o n (

amountDeposited_ , tota lSupp lyOfTokenDepos i t ed_) . decode112with18 () . d i v (1 e10
) . mul (10)) ;

629 }

Listing 3.3: BondingCalculator :: _principleValuation ()

Recommendation Simplify the scaling operation on the helper routine to calculate the principle
valuation.

Status This issue has been fixed for v2.

14/23 PeckShield Audit Report #: 2021-028

Public

3.4 Proper Initialization Enforcement In
sOlympus::setStakingContract()

• ID: PVE-004

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: sOlympus

• Category: Security Features [7]

• CWE subcategory: CWE-282 [2]

Description

As mentioned in Section 3.1, one core component of Olympus is the Staking contract that allows
participants to stake OHM tokens and get sOHM in return. While examining the sOHM token contract, we
notice a privileged operation setStakingContract() that is designed to initialize the stakingContract

address and its internal Gon balance.
To elaborate, we show below the setStakingContract() implementation from the sOHM token con-

tract, i.e., sOlympus. While it indeed properly sets up the stakingContract address and initializes the
Gon balance, this initialization operation should only occur once. Otherwise, the sOHM supply may go
awry, resulting in protocol-wide instability.

1051 f unc t i on s e t S t a k i n gCon t r a c t (address newStak ingContract_) ex te rna l onlyOwner () {
1052 s t a k i n gCon t r a c t = newStak ingContract_ ;
1053 _gonBalances [s t a k i n gCon t r a c t] = TOTAL_GONS;
1054 }

Listing 3.4: sOlympus::setStakingContract()

Recommendation Ensure the setStakingContract() can only be initialized once.

Status This issue has been fixed for v2.

15/23 PeckShield Audit Report #: 2021-028

Public

3.5 Improved Decimal Conversion in depositReserves()

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Vault

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [6]

Description

The Olympus protocol has a treasury contract, i.e., Vault, that allows for taking reserve tokens (e.g.,
DAI) and minting managed tokens (e.g., OHM). The treasury contact can also take the principle tokens
(e..g, OHM-DAI SLP) and mint the managed tokens according to the bonding curve-based principle
evaluation. In the following, we examine the conversions from reserve tokens to managed tokens.

The conversion logic is implemented in the depositReserves() routine. To elaborate, we show
below its code. It comes to our attention that the conversion logic is coded as amount_.div(10 **

IERC20(getManagedToken).decimals()). Note that the given amount is denominated at the reserve
token DAI and the minted amount is in the unit of managed token (OHM). With that, the proper calcu-
lation of the converted amount should be the following: amount_.mul(10 ** IERC20(getManagedToken)

.decimals()).div(10**IERC20(getReserveToken).decimals()).

448 f unc t i on d e p o s i t R e s e r v e s (u in t amount_) ex te rna l r e tu rn s (bool) {
449 r equ i r e (i s R e s e r v eD e p o s i t o r [msg . sender] == true , "Not allowed to deposit") ;
450 IERC20 (getRese rveToken) . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , amount_) ;
451 IERC20Mintable (getManagedToken) . mint (msg . sender , amount_ . d i v (10 ∗∗ IERC20 (

getManagedToken) . d e c ima l s ())) ;
452 re tu rn t rue ;
453 }

Listing 3.5: Vault :: isReserveDepositor ()

Fortunately, the managed token OHM has the decimal of 9 and the reserve token DAI has the decimal
of 18. As a result, it still results in the same converted (absolute) amount. However, the revised
conversion logic is generic in accommodating other token setups, especially when the managed token
does not have 9 as its decimal.

Recommendation Revise the isReserveDepositor() logic by following the correct decimal
conversion.

Status This issue has been fixed for v2.

16/23 PeckShield Audit Report #: 2021-028

Public

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: OlympusERC20

• Category: Security Features [7]

• CWE subcategory: CWE-287 [3]

Description

In the OlympusDAO protocol, there is a privileged owner account plays a critical role in governing
the treasury contract (Vault) and regulating the OHM token contract. In the following, we show
representative privileged operations in the Olympus protocol.

378 f unc t i on setDAOWallet (address newDAOWallet_) ex te rna l onlyOwner () r e tu rn s (bool) {
379 daoWal l e t = newDAOWallet_ ;
380 re tu rn t rue ;
381 }

383 f unc t i on s e t S t a k i n gCon t r a c t (address newStak ingContract_) ex te rna l onlyOwner ()
r e tu rn s (bool) {

384 s t a k i n gCon t r a c t = newStak ingContract_ ;
385 re tu rn t rue ;
386 }

388 f unc t i on se tLPRewardsCont ract (address newLPRewardsContract_) ex te rna l onlyOwner ()
r e tu rn s (bool) {

389 LPRewardsContract = newLPRewardsContract_ ;
390 re tu rn t rue ;
391 }

393 f unc t i on s e t LPP r o f i t S h a r e (u in t newDAOProfitShare_) ex te rna l onlyOwner () r e tu rn s (
bool) {

394 LPPro f i t Sha r e = newDAOProfitShare_ ;
395 re tu rn t rue ;
396 }

Listing 3.6: Example Privileged Operations in Vault

f unc t i on s e tVau l t (address vaul t_) ex te rna l onlyOwner () r e tu rn s (bool) {
vault = vault ;

re tu rn t rue ;
}

f unc t i on mint (address account_ , uint256 amount_) ex te rna l on l yVau l t () {
mint (account , amount_) ;

17/23 PeckShield Audit Report #: 2021-028

Public

}

Listing 3.7: Example Privileged Operations in OlympusERC20Token

We emphasize that the privilege assignment with various factory contracts is necessary and
required for proper protocol operations. However, it is worrisome if the owner is not governed by a
DAO-like structure.

We point out that a compromised owner account would allow the attacker to change current
vault to mint arbitrary number of OHM or change other settings (e.g., stakingContract) to steal funds
of currently staking users, which directly undermines the integrity of the Olympus protocol.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed. It is in place with the purpose as being a helper function
to facilitate reward distribution. Note this functionality has been offloaded to a separate contract.
And all of these have been removed for v2.

3.7 Redundant Code Removal

• ID: PVE-007

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: OlympusERC20, Vault

• Category: Coding Practices [8]

• CWE subcategory: CWE-563 [4]

Description

OlympusDAO makes good use of a number of reference contracts, such as ERC20, SafeERC20, SafeMath,
and Ownable, to facilitate its code implementation and organization. For example, the Vault smart
contract has so far imported at least five reference contracts. However, we observe the inclusion of
certain unused code or the presence of unnecessary redundancies that can be safely removed.

For example, if we examine the isReserveToken state variable, it is designed to determine whether
a given token is a reserve token. However, apparently, the current version does not make use of this
state variable.

1245 cont ract TWAPOracleUpdater i s ERC20Permit , VaultOwned {
1246
1247 us ing Enumerab leSet f o r Enumerab leSet . Addre s sSe t ;
1248

18/23 PeckShield Audit Report #: 2021-028

Public

1249 event TWAPOracleChanged (address indexed previousTWAPOracle , address indexed
newTWAPOracle) ;

1250 event TWAPEpochChanged (u in t previousTWAPEpochPeriod , u in t newTWAPEpochPeriod) ;
1251 event TWAPSourceAdded (address indexed newTWAPSource) ;
1252 event TWAPSourceRemoved (address indexed removedTWAPSource) ;
1253
1254 Enumerab leSet . Addre s sSe t p r i v a t e _dexPoolsTWAPSources ;
1255
1256 ITWAPOracle pub l i c twapOrac le ;
1257
1258 u in t pub l i c twapEpochPer iod ;
1259
1260 cons t ruc to r (
1261 s t r i n g memory name_ ,
1262 s t r i n g memory symbol_ ,
1263 u int8 dec imals_
1264) ERC20(name_ , symbol_ , dec imals_) {
1265 }
1266
1267 f unc t i on changeTWAPOracle (address newTWAPOracle_) ex te rna l onlyOwner () {
1268 emit TWAPOracleChanged (address (twapOrac le) , newTWAPOracle_) ;
1269 twapOrac le = ITWAPOracle (newTWAPOracle_) ;
1270 }
1271
1272 f unc t i on changeTWAPEpochPeriod (u in t newTWAPEpochPeriod_) ex te rna l onlyOwner () {
1273 r equ i r e (newTWAPEpochPeriod_ > 0 , "TWAPOracleUpdater: TWAP Epoch period must be

greater than 0.") ;
1274 emit TWAPEpochChanged (twapEpochPer iod , newTWAPEpochPeriod_) ;
1275 twapEpochPer iod = newTWAPEpochPeriod_ ;
1276 }
1277
1278 f unc t i on addTWAPSource (address newTWAPSourceDexPool_) ex te rna l onlyOwner () {
1279 r equ i r e (_dexPoolsTWAPSources . add (newTWAPSourceDexPool_) , "OlympusERC20TOken: TWAP

Source already stored.") ;
1280 emit TWAPSourceAdded (newTWAPSourceDexPool_) ;
1281 }
1282
1283 f unc t i on removeTWAPSource (address twapSourceToRemove_) ex te rna l onlyOwner () {
1284 r equ i r e (_dexPoolsTWAPSources . remove (twapSourceToRemove_) , "OlympusERC20TOken:

TWAP source not present.") ;
1285 emit TWAPSourceRemoved (twapSourceToRemove_) ;
1286 }
1287
1288 f unc t i on _uodateTWAPOracle (address dexPoolToUpdateFrom_ , u in t

twapEpochPeriodToUpdate_) i n t e r n a l {
1289 i f (_dexPoolsTWAPSources . c o n t a i n s (dexPoolToUpdateFrom_)) {
1290 twapOrac le . updateTWAP(dexPoolToUpdateFrom_ , twapEpochPeriodToUpdate_) ;
1291 }
1292 }
1293
1294 f unc t i on _befo reTokenTrans fe r (address from_ , address to_ , uint256 amount_) i n t e r n a l

o v e r r i d e v i r t u a l {

19/23 PeckShield Audit Report #: 2021-028

Public

1295 i f (_dexPoolsTWAPSources . c o n t a i n s (from_)) {
1296 _uodateTWAPOracle (from_ , twapEpochPer iod) ;
1297 } e l s e {
1298 i f (_dexPoolsTWAPSources . c o n t a i n s (to_)) {
1299 _uodateTWAPOracle (to_ , twapEpochPer iod) ;
1300 }
1301 }
1302 }
1303 }

Listing 3.8: The TWAPOracleUpdater Contract

Moreover, the current implementation includes a contract TWAPOracleUpdater that is supposed to
be inherited by the OHM token contract. However, this TWAPOracleUpdater contract is currently not
used and thus can be safely removed.

Recommendation Consider the removal of the redundant code with a simplified, consistent
implementation.

Status The issue has been confirmed. The team has integrated TWAP code, which will be
utilized in future versions.

20/23 PeckShield Audit Report #: 2021-028

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of Olympus, which utilizes the protocol
owned value to enable price consistency and scarcity within an infinite supply system. During the
audit, we notice that the current implementation still remains to be completed, though the overall
code base is well organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

21/23 PeckShield Audit Report #: 2021-028

Public

References

[1] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[2] MITRE. CWE-282: Improper Ownership Management. https://cwe.mitre.org/data/definitions/

282.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[5] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[6] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[7] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

22/23 PeckShield Audit Report #: 2021-028

https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[11] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[12] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[13] PeckShield. PeckShield Inc. https://www.peckshield.com.

23/23 PeckShield Audit Report #: 2021-028

https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About OlympusDAO
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Caller Authentication Of sOlympusERC20::rebase()
	Potential Rebasing Perturbation
	Simplified Logic In BondingCalculator::_principleValuation()
	Proper Initialization Enforcement In sOlympus::setStakingContract()
	Improved Decimal Conversion in depositReserves()
	Trust Issue of Admin Keys
	Redundant Code Removal

	Conclusion
	References

