Olympus V2 Protocol Audit

Enclosed is the V2 Audit from Omniscia. A URL for an HTML version is also listed below.

Source Code:

https://github.com/OlympusDAQO/olympus-contracts/tree/182cfdb29f781c418819fc699c71760ec1d
ca7e3

URL for Audit Content:

https://omniscia.io/olympus-dao-protocol-v2/

Important Notes:

All findings in this Audit have been alleviated either via code changes or commentary within this
audit. There are two Major findings that are listed as not addressed; however, in both cases the
Olympus Engineering team deployed alleviations in the final, live contracts.

= Omniscia Olympus DAO Audit

Protocol V Security Audit

We were tasked with performing a second round audit on the version 2 implementation of the
Olympus DAO protocol composed of a complex system architecture involving a triple token
system, an LP-based bond system, and utility contracts for incentivizing the use of all three

token types.

Over the course of the audit, we were able to pinpoint potentially harmful arbitrage
opportunities that can arise in the conversion between the three tokens as well as a potential
under-pricing flaw in the bond creation mechanism that if exploited could cause a bond to be

priced at a very low value and thus cause a significant evaluation of an otherwise small deposit.

In addition to logical flaws, we identified several optimizations that can be applied to the
codebase that we urge the Olympus DAO team to consider. Overall, the codebase appears to
be at an unpolished state and can be significantly improved in terms of styling, consistency, and
documentation. For the former, we advise a linting plugin to be enforced on the codebase to

greatly increase its readability.

Another important point that should be raised about the codebase is the over-reliance on good
faith of the various authorized operators in the protocol. As an example, the terms of a bond are
not validated and permit arbitrary values for all terms whilst they are only set by the guardian of
the protocol. As we have expressed in some of the exhibits, we advise the Olympus DAO team
to attempt to further decentralize the operation of the protocol by introducing new sanitization

checks restricting the authorative actions of the privileged roles of the system.

Files in Scope Repository Commit(s)
61f3d44487,

Address.sol (ADD) olympus-contracts S? 21fe403ed?,
182cfdb29f

61f3d44487,

BondTeller.sol (BTR) olympus-contracts S? 21fe403ed?,

182cfdb29f

Files in Scope

BondDepository.sol (BDY)

Counters.sol (COU)

ERC20.sol (ERC)

ERC20Permit.sol (ERP)

EnumerableSet.sol (EST)

FullMath.sol (FMH)

FixedPoint.sol (FPT)

Guardable.sol (GUA)

Governable.sol (GOV)

GovernorAlpha.sol (GAA)

GovernorOHMegaDelegate.sol (GOH)

Repository

olympus-contracts {J

olympus-contracts {7

olympus-contracts §;

olympus-contracts §;

olympus-contracts {J

olympus-contracts §;

olympus-contracts §;

olympus-contracts §;

olympus-contracts {J

olympus-contracts {7

olympus-contracts §;

Commit(s)

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed?7,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

Files in Scope

GovernorOHMegaDelegator.sol (GOM)

GovernorOHMegalnterfaces.sol (GOI)

ManagerOwnable.sol (MOE)

Ownable.sol (OWN)

OlympusERC20.sol (OER)

OlympusTokenMigrator.sol (OTM)

Staking.sol (STA)

SafeMath.sol (SMH)

SafeERC20.sol (SER)

StakingDistributor.sol (SDR)

StandardBondingCalculator.sol (SBC)

Repository

olympus-contracts {7

olympus-contracts §;

olympus-contracts §;

olympus-contracts {7

olympus-contracts {7

olympus-contracts §;

olympus-contracts §;

olympus-contracts §;

olympus-contracts {7

olympus-contracts §;

olympus-contracts §;

Commit(s)

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed7,
182cfdb29f

61f3d44487,
21fe403ed?7,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

61f3d44487,
21fe403ed?,
182cfdb29f

Files in Scope Repository Commit(s)

61f3d44487,

Timelock.sol (TIM) olympus-contracts S? 21fe403ed?7,
182cfdb29f

61f3d44487,

Treasury.sol (TRE) olympus-contracts S? 21fe403ed?,
182cfdb29f

61f3d44487,

VaultOwned.sol (VOD) olympus-contracts S? 21fe403ed?,
182cfdb29f

61f3d44487,

gOHM.sol (OHM) olympus-contracts S? 21fe403ed7,
182cfdb29f

61f3d44487,

sOlympusERC20.sol (OEC) olympus-contracts S? 21fe403ed?,
182cfdb29f

During the audit, we filtered and validated a total of 10 findings utilizing static analysis tools
as well as identified a total of 73 findings during the manual review of the codebase. We
strongly recommend that any minor severity or higher findings are dealt with promptly prior to

the project's launch as they introduce potential misbehaviours of the system as well as exploits.

The list below covers each segment of the audit in depth and links to the respective chapter of

the report:

M compilation
& Static Analysis

® Manual Review
Code Style

NEXT
>

Compilation

= Omniscia Olympus DAO Audit

Compilation

The project utilizes as its development pipeline tool, containing an array of tests and

scripts coded in TypeScript.

To compile the project, the command needs to be issued via the CLI tool to

hordnat]

npx hardhat compile

The tool automatically selects between Solidity versions (J¥3) (T and (FEREE
based on the version specified within the file as well as the

statement of the contract being currently compiled.

The project contains discrepancies with regards to the Solidity version used, however, they are

located in external dependencies of the project and as such can be safely ignored.

The Olympus DAO team has locked the statements to [(J§). the same version utilized

for our static analysis as well as optimizational review of the codebase.

During compilation with the pipeline, no errors were identified that relate to the syntax

or bytecode size of the contracts.

PREV
Introduction

NEXT
Static Analysis

>

= Omniscia Olympus DAO Audit

Static Analysis

The execution of our static analysis toolkit identified 420 potential issues within the codebase

of which 407 were ruled out to be false positives or negligible findings.

The remaining 13 issues were validated and grouped and formalized into the 10 exhibits that

follow:

ID Severity
BTR-01S Major
BTR-02S Informational
SDR-01S Informational
SDR-02S Informational
TRE-01S Minor
TRE-02S Informational
VOD-01S Minor
VOD-02S Informational
OEC-01S Informational
OEC-02S Informational

PREV

Compilation

Addressed

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Title

Inexistent Initialization of Member
Improper Inheritence

Improper Inheritence

Undocumented Value Literal

Improper Usage of EIP-20 Transfer

Literal Equality of Variables
Inexistent Validation of Address Argument
Inexistent Emission of Event

lllegible Numeric Literal

Improper Inheritence

NEXT

= Omniscia Olympus DAO Audit

BondTeller Static Analysis Findings

ON THIS PAGE

BTR-01S: Inexistent Initialization of Member

BTR-02S: Improper Inheritence

BTR-01S: Inexistent Initialization of Member

Type Severity Location
Logical Fault Major ® BondTeller.sol:L57
Description:

The member of the contract is never initialized.

Example:

contracts/BondTeller.so

SOL

address public policy;

constructor (

address _depository,

address _staking,

address _treasury,
address _OHM,

address _sOHM,
address gOHM

require(_depository != address(0));

depository = depository;

require(_staking != address(0));

staking = IStaking(_staking);

require(_treasury != address(0));
treasury = ITreasury(_treasury);
require(OHM != address(0));

OHM = IERC20(_OHM);

require(_ sOHM != address(0));

SOHM = IERC20(_sOHM);

require(gOHM != address(0));

gOHM = IgOHM(_ gOHM);

IERC20(_OHM) .approve(_staking, 1le27);

Recommendation:

We advise it to be initialized to ensure the function can be invoked.

Alleviation:

The member has now been removed from the contract, thereby nullifying this exhibit.

View Fix on GitHub

BTR-02S: Improper Inheritence

Type Severity Location
Code Style Informational @ BondTeller.sol:L12
Description:

The contract complies with the interface of the codebase yet does not
inherit it.

Example:

contracts/BondTeller.so

SOL

contract BondTeller {

Recommendation:

We advise the contract to properly inherit it ensuring consistency and maintainability across the

codebase.

Alleviation:

The contract now properly inherits the interface.

View Fix on GitHub

PREV
Code Style

<

NEXT
StakingDistributor.sol (SDR-S)

= Omniscia Olympus DAO Audit

StakingDistributor Static Analysis
Findings

ON THIS PAGE

SDR-01S: Improper Inheritence

SDR-02S: Undocumented Value Literal

SDR-01S: Improper Inheritence

Type Severity Location
Code Style Informational @ StakingDistributor.sol:L12
Description:

The contract complies with the interface of the codebase yet does

not inherit it.
@ Example:

contracts/StakingDistributor.sol

SOL

contract Distributor is Governable, Guardable {

Recommendation:

We advise the contract to properly inherit it ensuring consistency and maintainability across the

codebase.

Alleviation:

The contract now properly inherits the Intertace.

View Fix on GitHub

SDR-02S: Undocumented Value Literal

Type Severity Location
Code Style Informational ® StakingDistributor.sol:L107
Description:

The value literal BRI is meant to be used as the rate divisor for a particular reward

distribution, however, it is undocumented and unclearly depicted.

Example:

contracts/StakingDistributor.sol

SOL

return OHM.totalSupply().mul(_ rate).div(1000000);

Recommendation:

We advise the special underscore () separator to be applied to it (i.e. would become
EEENL)) and we advise the value to be set to a contract-level as it will be useful

for other exhibits and general logic checks of the codebase.

Alleviation:

The numeric literal was relocated to a contract-level declaration thereby alleviating

this exhibit.
< PREV
BondTeller.sol (BTR-S)
NEXT N

Treasury.sol (TRE-S)

= Omniscia Olympus DAO Audit

Treasury Static Analysis Findings

ON THIS PAGE

TRE-01S: Improper Usage of EIP-20 Transfer

TRE-02S: Literal Equality of bool Variables

TRE-01S: Improper Usage of EIP-20 Transfer

Type Severity Location
Standard Conformity Minor e Treasury.sol:L160
Description:

The EIP-20 standard denotes that callers MUST NOT assume that is never returned in
invocations and should be able to gracefully handle the returned of the

function invocation.

Example:

contracts/Treasury.sol

SOL

IERC20(_token).transfer(msg.sender, amount);

Recommendation:

As certain tokens are not compliant with the standard, we advise the usage of a wrapper library
such as of OpenZeppelin that opportunistically evaluates the yielded if it

exists.

Alleviation:

The linked EIP-20 call is now properly wrapped in its [J¥39-prefixed equivalent by

OpenZeppelin's library.
View Fix on GitHub

TRE-02S: Literal Equality of Variables

Type Severity Location

Code Style Informational ® Treasury.sol:L128

Description:

The linked statement performs a direct comparison between a variable and a literal.

Example:

contracts/Treasury.sol

SOL Copy

require (permissions [STATUS.RESERVESPENDER] [msg.sender] == true, "Not approved

Recommendation:

We advise the variable to be utilized directly either in its normal or negated (f§) form,
depending on the literal it was being compared to.

Alleviation:

The variable is now utilized directly in the check.

View Fix on GitHub

PREV
StakingDistributor.sol (SDR-S)

<

NEXT
VaultOwned.sol (VOD-S)

= Omniscia Olympus DAO Audit

VaultOwned Static Analysis Findings

ON THIS PAGE

VOD-01S: Inexistent Validation of Address Argument

VOD-02S: Inexistent Emission of Event

VOD-01S: Inexistent Validation of Address Argument

Type Severity Location
Input Sanitization Minor e VaultOwned.sol:L10-L14
Description:

The linked function contains an argument that is not properly sanitized against the

zero-address.

@ Example:

contracts/types/VaultOwned.sol
SOL Copy

function setVault(address vault) external onlyOwner() returns (bool) {

_vault = vault ;

return true;

Recommendation:

We advise it to be sanitized so to avoid potential misconfigurations of the contract.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

View Fix on GitHub

VOD-02S: Inexistent Emission of Event

Type Severity Location
Input Sanitization Informational ® VaultOwned.sol:L10-L14
Description:

The linked function adjusts a sensitive contract variable without emitting a corresponding

event §

Example:

contracts/types/VaultOwned.sol
SOL Copy

function setVault(address vault) external onlyOwner() returns (bool) {

_vault = vault ;

return true;

Recommendation:

We advise an to be coded for the action and emitted whenever it is executed to ensure

off-chain observers of the contracts can properly sync their data points.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

View Fix on GitHub

PREV
Treasury.sol (TRE-S)

<

NEXT

sOlympusERC20.sol (OEC-S)

= Omniscia Olympus DAO Audit

sOlympusERC20 Static Analysis Findings

ON THIS PAGE

OEC-01S: lllegible Numeric Literal

OEC-02S: Improper Inheritence

OEC-01S: lllegible Numeric Literal

Type Severity Location
Code Style Informational @ sOlympusERC20.sol:L55
Description:

The linked variable contains a numeric literal with too many digits and no separator.

Example:

contracts/sOlympusERC20.sol

SOL

uint256 private constant INITIAL FRAGMENTS SUPPLY = 5000000 * 10**9;

Recommendation:

We advise the special numeric separator (!) to be used to discern per thousand units (i.e.
becomes (Y. increasing the legibility of the codebase.

Alleviation:

The underscore (g) numeric separator was properly introduced to the linked variable.

View Fix on GitHub

OEC-02S: Improper Inheritence

Type Severity Location
Code Style Informational e sOlympusERC20.sol:L12
Description:

The contract complies with the interface of the codebase yet does not inherit
it.

Example:

contracts/sOlympusERC20.sol

SOL

contract sOlympus is ERC20Permit {

Recommendation:

We advise the contract to properly inherit it ensuring consistency and maintainability across the

codebase.

Alleviation:

The now properly inherits the interface.

View Fix on GitHub

PREV
VaultOwned.sol (VOD-S)

<

NEXT
BondDepository.sol (BDY-M)

Manual Review

= Omniscia Olympus DAO Audit

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential

malfunctions and vulnerabilities in the version 2 iteration of the Olympus DAO protocol.

As the project at hand implements a complex system architecture of a three token system and a
bond pricing mechanism, intricate care was put into ensuring that the flow of funds within the
system conforms to the specifications and restrictions laid forth within the protocol's

specification.

We validated that all state transitions of the system occur within sane criteria and that all
rudimentary formulas within the system execute as expected. We pinpointed certain
misconceptions within the system which could have had severe ramifications to its overall
operation when exploited under the right circumstances, however, they were conveyed ahead of

time to the Olympus DAO team to be promptly remediated.

Additionally, the system was investigated for any other commonly present attack vectors such
as re-entrancy attacks, mathematical truncations, logical flaws and ERC [EIP standard
inconsistencies. The documentation of the project was satisfactory to a certain extent, however,
we strongly recommend the documentation of the project to be expanded at certain complex

points such as the mathematical operations surrounding the pricing of debt ratios utilizing the

undocumented Yl INML eR.08:] LNCtioN.

A total of 73 findings were identified over the course of the manual review of which 39
findings concerned the behaviour and security of the system. The non-security related

findings, such as optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title
BDY-01M Major No Improper Bond Price Assumption

BDY-02M Medium No Inexistent Validation of Terms

= Omniscia Olympus DAO Audit

BondDepository Manual Review Findings

ON THIS PAGE

BDY-01M: Improper Bond Price Assumption
BDY-02M: Inexistent Validation of Terms

BDY-03M: Inexplicable Optional Value of Decay

BDY-01M: Improper Bond Price Assumption

Type Severity Location
Logical Fault Major ® BondDepository.sol:L328-L341
Description:

The adjusts the on-chain minimum price of a bond to [§if the price of the bond is
exceeded, however, the variable relies on the total supply of OHM which is fully

manipulateable and thus can cause the price of a bond to increase above the minimum

temporarily by taking advantage of the EETNNIN 0 . totalSupply)
Example:

contracts/BondDepository.so

SOL

function bondPrice(uint256 BID) internal returns (uint256 price) {

Bond memory info = bonds[BID];
price = info.terms.controlVariable.mul (debtRatio(BID)).add(1000000000) .di

if (price < info.terms.minimumPrice) {

price = info.terms.minimumPrice;
} else if (info.terms.minimumPrice != 0) {

bonds[BID].terms.minimumPrice = 0;

function bondPriceInUSD(uint256 BID) public view returns (uint256 price) {
Bond memory bond = bonds[_ BID];
if (address(bond.calculator) != address(0)) {
price = bondPrice(BID).mul(bond.calculator.markdown(address (bond.princi
} else {
price = bondPrice(BID).mul(l0**IERC20Metadata(address(bond.principal)).

function debtRatio(uint256 BID) public view returns (uint256 debtRatio) {
debtRatio = FixedPoint.fraction(currentDebt(BID).mul(le9), OHM.totalSuppl

Recommendation:

We advise the function to not adjust the minimum price as it can lead to the pricing of a bond

becoming less-than-minimum under the right circumstances.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

BDY-02M: Inexistent Validation of Terms

Type Severity Location
Input Sanitization Medium e BondDepository.sol:L97-L129
Description:

All arguments of the function are not sanitized and as such can be arbitrarily set to
values that may be illogical or result in exploits, such as a that is beyond the
of the bond and other similar issues.

Example:

contracts/BondDepository.so

SOL

function setTerms (
uint256 _id,
uint256 controlVariable,
bool fixedTerm,
uint256 vestingTerm,

uint256 _expiration,

uint256 _conclusion,

uint256 minimumPrice,

uint256 maxPayout,

uint256 _initialDebt
external onlyGuardian {
require(!bonds[_ id].termsSet, "Already set");

Terms memory terms = Terms({controlVariable: controlVariable, fixedTerm:

bonds[_ id].terms = terms;

bonds[_ id].totalDebt = initialDebt;

bonds[_ id].termsSet = true;

Recommendation:

We strongly recommend some form of input sanitization to be enforced on the bond terms as in

the current state the guardian has significant control over the protocol's normal operation.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

BDY-03M: Inexplicable Optional Value of Decay

Type Severity Location
Logical Fault Medium e BondDepository.sol:L390-L402
Description:

The function relies on the variable of the struct which is meant

to be an optional variable based on the documentation of the struct.

Example:

contracts/BondDepository.sol

SOL

function debtDecay(uint256 BID) public view returns (uint256 decay) {
Bond memory bond = bonds[BID];
uint256 blocksSincelast = block.number.sub(bond.lastDecay);

decay = bond.totalDebt.mul(blocksSincelLast).div(bond.terms.vestingTerm);

if (decay_ > bond.totalDebt) ({
decay = bond.totalDebt;

Recommendation:

We advise its purpose to be better defined in the struct declaration as bonds without a fixed

term are possible, causing decay to misbehave.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

thA ~AAdA in AlaAA

LT LUUC 111 piavce.

PREV
sOlympusERC20.sol (OEC-S)

NEXT
BondTeller.sol (BTR-M)

= Omniscia Olympus DAO Audit

BondTeller Manual Review Findings

ON THIS PAGE

BTR-01M: Confusion of Value Denominations
BTR-02M: Artificial Inflation Mechanism
BTR-03M: Inexistent Redemption of FEO Fees

BTR-04M: Inexistent Validation of Non-Zero Redemption

BTR-01M: Confusion of Value Denominations

Type Severity Location
Logical Fault Major ® BondTeller.sol:L232-L245
Description:

The function assumes the value to be a timestamp yet it

represents a block.

Example:

contracts/BondTeller.so

SOL

function percentVestedFor(address bonder, uint256 _index) public view retur

Bond memory bond = bonderInfo[bonder][index];

uint256 timeSince = block.timestamp.sub(bond.created);

uint256 term = bond.vested.sub(bond.created);

percentVested = timeSince.mul(le9).div(term);

Recommendation:

We strongly recommend the function to be adjusted as it should be inoperable in its current
state.

Alleviation:

After discussion with the Olympus DAO team, both units are meant to represent a timestamp

and as such this exhibit can be considered null.

View Fix on GitHub

BTR-02M: Artificial Inflation Mechanism

Type Severity Location
Logical Fault Medium @ BondTeller.sol:L104, L110
Description:

The function is meant to award bond creators with a that is added to the
original payout of a bond, however, this action introduces a secondary level of inflation that can
also be redirected to the user themselves and could result in a significant issue if is
close to the minimum payout as users are incentivized to break their bonds into multiple smaller

ones and set the as themselves.

Example:

contracts/BondTeller.so

SOL

function newBond(
address bonder,
address principal,
uint256 _principalPaid,
uint256 payout,
uint256 _expires,

address feo

) external onlyDepository returns (uint256 index) {

treasury.mint(address(this), payout.add(feReward));

OHM.approve (address(staking), payout);

staking.stake(_ payout, address(this), true, true);

FERs[feo] = FERs[_ feo].add(feReward);

index = bonderInfo[bonder].length;

bonderInfo[bonder].push(Bond({principal: principal, principalPaid: pri

Recommendation:

We strongly recommend this aspect of the protocol to be revised. Some potential solutions
would be to retain an address of whitelisted front end operators that rewards can be re-directed

to and having the be based on a percentage rather than a static value.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply a remediation for it as

they consider the current mechanism sufficiently secure.

BTR-03M: Inexistent Redemption of FEO Fees

Type Severity Location
Logical Fault Minor e BondTeller.sol:L110
Description:

The front-end operator (FEO) fees are stored within the contract and are minted, however, there

is no way to claim them by the FEOs.

Example:

contracts/BondTeller.so

SOL

function newBond(
address bonder,
address principal,
uint256 principalPaid,
uint256 payout,
uint256 _expires,

address feo

) external onlyDepository returns (uint256 index) {

treasury.mint (address(this), payout.add(feReward));

OHM. approve (address(staking), _payout);

staking.stake(payout, address(this), true, true);

FERs[feo] = FERs[_ feo].add(feReward);

index = bonderInfo[bonder].length;

bonderInfo[bonder].push(Bond({principal: principal, principalPaid: pri

Recommendation:

We advise some form of pull-pattern to be applied where FEOs are able to invoke a function to

retrieve all fees they have accumulated.

Alleviation:

A fee redemption mechanism was introduced in the codebase in the form of the

function that transfers the necessary OHM outward to the user.

View Fix on GitHub

BTR-04M: Inexistent Validation of Non-Zero Redemption

Type Severity Location

Input Sanitization Minor @ BondTeller.sol:L148

Description:

The function should validate that a non-zero redemption is being performed.

Example:

contracts/BondTeller.so

SOL

function redeem(address bonder, uint256[] memory _indexes) public returns (
uint256 dues;
for (uint256 i = 0; i < indexes.length; it++) ({

Bond memory info = bonderInfo[bonder][indexes[i]];

if (pendingFor(_bonder, indexes[i]) != 0) {

bonderInfo[bonder][indexes[i]].redeemed = block.timestamp;

dues = dues.add(info.payout);

dues = gOHM.balanceFrom(dues);

emit Redeemed(bonder, dues);
pay(_bonder, dues);

return dues;

Recommendation:

We advise this to be done so by ensuring that is non-zero beyond conversion.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

PREV
BondDepository.sol (BDY-M)

<

NEXT
ERC20.sol (ERC-M)

= Omniscia Olympus DAO Audit

ERC20 Manual Review Findings

ON THIS PAGE

ERC-01M: Non-Standard Mint Implementation

ERC-01M: Non-Standard Mint Implementation

Type Severity Location

Standard Conformity Minor @ ERC20.s0l:L95-L101

Description:

The function of the implementation invokes the hook and
the event with the argument being the EREr It Ed) an adaptation that will

cause off-chain explorers to misbehave.

Example:

contracts/types/ERC20.sol

SOL

function mint(address account , uint256 ammount) internal virtual ({

require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer (address(this), account , ammount);
_totalSupply = _totalSupply.add(ammount);

_balances[account] = balances[account].add(ammount);

emit Transfer(address(this), account , ammount);

Recommendation:

We advise both instances to be replaced by the canonical to enable proper

interfacing of block explorers.
Alleviation:

The hook and event instances now properly use the zero address instead of the self address to

indicate the origin of the "transfer" operation, thereby alleviating this exhibit.

View Fix on GitHub

PREV
BondTeller.sol (BTR-M)

NEXT
ERC20Permit.sol (ERP-M)

= Omniscia Olympus DAO Audit

ERC20Permit Manual Review Findings

ON THIS PAGE

ERP-01M: Insecure Elliptic Curve Recovery Mechanism

ERP-02M: Cross-Chain Signature Replay Attack Susceptibility

ERP-01M: Insecure Elliptic Curve Recovery Mechanism

Type Severity Location
Language Specific Medium @ ERC20Permit.sol:L55
Description:

The function is a low-level cryptographic function that should be utilized after
appropriate sanitizations have been enforced on its arguments, namely on the a and B4 values.
This is due to the inherent trait of the curve to be symmetrical on the x-axis and thus permitting

signatures to be replayed with the same [§ value (f§) but a different f§§ value ([§).

Example:

contracts/types/ERC20Permit.sol

SOL

function permit (

address owner,
address spender,
uint256 amount,
uint256 deadline,

bytes32 r,
bytes32 s
) public virtual override {

require(block.timestamp <= deadline, "Permit: expired deadline");

bytes32 hashStruct =

keccak256 (abi.encode (PERMIT TYPEHASH, owner, spender, amount, _nonces

bytes32 hash = keccak256(abi.encodePacked(uintl6(0x1901), DOMAIN SEPARA

address signer = ecrecover(_hash, v, r, s);

require(signer != address(0) && signer == owner, "ZeroSwapPermit: Invalid

_nonces[owner].increment();

__approve (owner, spender, amount);

Recommendation:

We advise them to be sanitized by ensuring that {§is equal to either {§j or {1 ((IEREEED)
and to ensure that a is existent in the lower half order of the elliptic curve (

IR R T Y v11 3 S WISl) by ensuring it is less than
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A1 MANESI(CIg=1alelc

implementation of those checks can be observed in the ECDSA library of OpenZeppelin and the

rationale behind those restrictions exists within Appendix F of the Yellow Paper.

Alleviation:

The code was adjusted to instead utilize the library from OpenZeppelin directly that
imposes the necessary sanitizations on the [§§ and {§ arguments of the function.

View Fix on GitHub

ERP-02M: Cross-Chain Signature Replay Attack Susceptibility

Type Severity Location
Language Specific Minor e ERC20Permit.sol:L19-L33
Description:

The used in conjunction with the EIP-712 standard is calculated once
during the of the contract. As this calculation involves the execution context's
EREEPER), blockchain forks will allow signatures to be replayed across chains as the is

consequently not validated.

Example:

contracts/types/ERC20Permit.sol
SOL
constructor() {
uint256 chainlID;

assembly {
chainID := chainid()

DOMAIN SEPARATOR = keccak256 (abi.encode(

keccak256("EIP712Domain(string name,string version,uint256 chainId,ad
keccak256 (bytes(name())),

keccak256 (bytes("1")),

chainID,

address(this)

Recommendation:

We advise a caching mechanism to be imposed here instead whereby the is
stored to an contract-level variable and is utilized only when the cached

(also stored in an variable) matches the current execution context's (EEtaRy. A
reference implementation of this paradigm can be observed at the EiESaam syl IT)!

implementation of OpenZeppelin.

Alleviation:

The code took inspiration from the implementation of OpenZeppelin and

now uses a caching system that dynamically calculates the separator as needed depending on

the evaluation of the current (lEReEay, thereby alleviating this exhibit.

PREV
ERC20.sol (ERC-M)

NEXT
FixedPoint.sol (FPT-M)

= Omniscia Olympus DAO Audit

FixedPoint Manual Review Findings

ON THIS PAGE

FPT-01M: Potentially Invalid Implementation

FPT-01M: Potentially Invalid Implementation
Type Severity Location

Logical Fault Major ® FixedPoint.sol:L110-L113

Description:
The EITLIRTARaE] function is non-standard, utilizes a value literal and cannot be validated

as to its purpose.

@ Example:

contracts/libraries/FixedPoint.sol
SOL Copy

function decodell2withl8(ugll2x112 memory self) internal pure returns (uint)

return uint(self. x) / 5192296858534827;

Recommendation:

We advise it to be extensively documented as in its current state it is ambiguous. This finding

will be adjusted accordingly when the code segment has been properly documented.

Alleviation:

The Olympus DAO team has not provided a response for this exhibit yet.

PREV
ERC20Permit.sol (ERP-M)

NEXT
Governable.sol (GOV-M)

= Omniscia Olympus DAO Audit

Governable Manual Review Findings

ON THIS PAGE

GOV-01M: Improper Governor Renouncation
GOV-02M: Incorrect Event Emitted

GOV-03M: Potentially Restrictive Functionality

GOV-01M: Improper Governor Renouncation

Type Severity Location
Logical Fault Medium @ Governable.sol:L31-L34
Description:

The function deletes the current in place, however, the
remains especially so when the [EBROS T aTg fUnction is invoked once as it

does not delete the previous entry. This would permit governorship to be re-instated even after

it has been renounced on a particular contract.

Example:

contracts/types/Governable.sol

SOL

function renounceGovernor() public virtual override onlyGovernor() {

emit GovernorPushed(governor, address(0));

_governor = address(0);

Recommendation:

We strongly recommend the to also be deleted when is

invoked to prevent improper state transitions.

Alleviation:

The new governor is properly deleted when governorship is renounced.

View Fix on GitHub

GOV-02M: Incorrect Event Emitted

Type Severity Location
Logical Fault Minor e Governable.sol:L33
Description:

The function emits the event when the one in place is

renounced, however, it should the event instead.
Example:

contracts/types/Governable.sol

SOL

constructor () {
_governor = msg.sender;

emit GovernorPulled(address(0), governor);

function governor() public view override returns (address) {

return _governor;

modifier onlyGovernor() {
require(_governor == msg.sender, "Governable: caller is not the governo

.
4

function renounceGovernor() public virtual override onlyGovernor() {
emit GovernorPushed(governor, address(0));

_governor = address(0);

function pushGovernor(address newGovernor) public virtual override onlyGo

require(newGovernor != address(0), "Governable: new governor is the ze

newGovernor = newGovernor;

function pullGovernor() public virtual override {

require(msg.sender == newGovernor, "Governable: must be new governor t

emit GovernorPulled(_governor, _newGovernor);

_governor = _newGovernor;

Recommendation:

We advise it to do so as the latter is utilized in functions like and the

constructorf

Alleviation:

The [FEEETIETIENE cvent is now properly emitted within the function.

View Fix on GitHub

GOV-03M: Potentially Restrictive Functionality

Type Severity Location
Logical Fault Minor e Governable.sol:L38
Description:

The function validates that the being set is not the zero address,

however, in doing so it will prevent a pending governor to be overwritten with a zero entry.

Example:

contracts/types/Governable.sol
SOL Copy

function pushGovernor(address newGovernor) public virtual override onlyGo

require(newGovernor != address(0), "Governable: new governor is the ze

emit GovernorPushed(_governor, newGovernor);

newGovernor = newGovernor;

Recommendation:

We advise this check to either be omitted entirely or only be evaluated when is
itself equal to the zero-address as otherwise, an incorrectly set will not be able
to be deleted.

Alleviation:

The restrictive check is now omitted from the codebase.

View Fix on GitHub

PREV
FixedPoint.sol (FPT-M)

<

NEXT
GovernorAlpha.sol (GAA-M)

= Omniscia Olympus DAO Audit

GovernorAlpha Manual Review Findings

ON THIS PAGE

GAA-01M: Improper Percentage Documented

GAA-01M: Improper Percentage Documented
Type Severity Location

Logical Fault Informational ® GovernorAlpha.sol:L14

Description:

The is meant to showcase the percentage of voting power
required to make a proposal, however, it is incorrectly documented as 1.00% when in reality it is

10% when the divisor of the function is taken into account.
Example:

contracts/governance/GovernorAlpha.sol

SOL

function proposalThresholdPercent() public pure returns (uint) { return 10000

Recommendation:

We advise the documentation or value itself to be properly remediated depending on the

canonical value of the proposal threshold.

Alleviation:

The value was corrected to the 1.00% indicated by its corresponding comments.

View Fix on GitHub

PREV
Governable.sol (GOV-M)

<

NEXT
Guardable.sol (GUA-M)

= Omniscia Olympus DAO Audit

Guardable Manual Review Findings

ON THIS PAGE

GUA-01TM: Improper Guardian Renouncation
GUA-02M: Incorrect Event Emitted

GUA-03M: Potentially Restrictive Functionality

GUA-01M: Improper Guardian Renouncation

Type Severity Location
Logical Fault Medium @ Guardable.sol:L31-L34
Description:

The function deletes the current in place, however, the
remains especially so when the sRBReERSEELY function is invoked once as it

does not delete the previous entry. This would permit guardianship to be re-instated even after

it has been renounced on a particular contract.

Example:

contracts/types/Guardable.sol

SOL

function renounceGuardian() public virtual override onlyGuardian() {

emit GuardianPushed(guardian, address(0));

_guardian = address(0);

Recommendation:

We strongly recommend the to also be deleted when is

invoked to prevent improper state transitions.

Alleviation:

The new guardian is properly deleted when guardianship is renounced.

View Fix on GitHub

GUA-02M: Incorrect Event Emitted

Type Severity Location
Logical Fault Minor @ Guardable.sol:L32
Description:

The function emits the [IEPSERINISNNE] cvent when the one in place is

renounced, however, it should the event instead.
Example:

contracts/types/Guardable.sol

SOL

constructor () {
_guardian = msg.sender;

emit GuardianPulled(address(0), _guardian);

function guardian() public view override returns (address) {

return guardian;

modifier onlyGuardian() {
require(_guardian == msg.sender, "Guardable: caller is not the guard

.
4

function renounceGuardian() public virtual override onlyGuardian() {
emit GuardianPushed(_guardian, address(0));

_guardian = address(0);

function pushGuardian(address newGuardian_) public virtual override on

require(newGuardian != address(0), "Guardable: new guardian is the

emit GuardianPushed(_guardian, newGuardian);

function pullGuardian() public virtual override {

require(msg.sender == newGuardian, "Guardable: must be new guardia

emit GuardianPulled(_guardian, newGuardian);

_guardian = newGuardian;

Recommendation:

We advise it to do so as the latter is utilized in functions like and the

constructorf

Alleviation:

The [N EIET NN event is now properly emitted within the function.

View Fix on GitHub

GUA-03M: Potentially Restrictive Functionality

Type Severity Location
Logical Fault Minor e Guardable.sol:L37
Description:

The function validates that the being set is not the zero address,

however, in doing so it will prevent a pending guardian to be overwritten with a zero entry.

Example:

contracts/types/Guardable.sol
SOL Copy

function pushGuardian(address newGuardian) public virtual override onlyGua
require(newGuardian != address(0), "Guardable: new guardian is the zero

emit GuardianPushed(_guardian, newGuardian);

_newGuardian = newGuardian ;

Recommendation:

We advise this check to either be omitted entirely or only be evaluated when is
itself equal to the zero-address as otherwise, an incorrectly set will not be able
to be deleted.

Alleviation:

The restrictive check is now omitted from the codebase.

View Fix on GitHub

PREV
GovernorAlpha.sol (GAA-M)

<

NEXT
OlympusTokenMigrator.sol (OTM-M)

= Omniscia Olympus DAO Audit

OlympusTokenMigrator Manual Review
Findings

ON THIS PAGE

OTM-01M: Improper Integration w/ Uniswap V2
OTM-02M: Improper Evaluation of Token Balance
OTM-03M: Ungraceful Mint Handling

OTM-04M: Potential of Repeat Invocation

OTM-01M: Improper Integration w/ Uniswap V2
Type Severity Location

Logical Fault Major ® OlympusTokenMigrator.sol:L266-L274, L281-L290

Description:

The way the migration of the token works can cause the migration to either completely halt or
cause the liquidity position to significantly diminish in value should the governor address be a

contract that can be actuated from anyone, such as a forked from Compound.

Example:

contracts/migration/OlympusTokenMigrator.sol

SOL

function migrateLP(

address pair,

bool sushi,

address token

) external onlyGovernor {
uint256 oldLPAmount = IERC20(pair).balanceOf (address(oldTreasury));

oldTreasury.manage(pair, oldLPAmount);

IUniswapV2Router router = sushiRouter;
if (!sushi) {

router = uniRouter;

IERC20(pair) .approve(address(router), oldLPAmount);
(uint256 amountA, uint256 amountB) = router.removeLiquidity(
token,
address (0ldOHM) ,
oldLPAmount,
0,
0,
address(this),
1000000000000

)i
newTreasury.mint (address(this), amountB);

IERC20 (token) .approve(address (router), amountd);

newOHM. approve (address (router), amountB);

router.addLiquidity (
token,
address (newOHM) ,
amountaA,
amountB,
amountA,
amountB,
address (newTreasury),
100000000000

Recommendation:

We strongly recommend the migration procedure to be revised. In the current state, it specifies

the expected output amounts as a which can cause an arbitreur to significantly skew the pair,

diminish the LP position one-sidedly (i.e. towards OHM) and cause the liquidity removal to be in

the native token only. This can cause the protocol to crash due to the artificial inflation of
OHM's price which can be performed with the help of flash loans if for example the governor is
a implementation relying on a to actuate it. Additionally, the liquidity
provision is also performed incorrectly as it specifies the amounts that should at minimum be
set within the pair to be equal to the amounts provided. This case is only true when the pair has
not been created before. Should units circulate in the market before this point, it would
be possible for someone to race the transaction, create the pair with miniscule amounts and
thus cause the migration to be impossible. As a last note, the current can

and should be passed in as the expiry argument instead of the literal which is
meaningless.

Alleviation:

Minimum arguments were properly added to the function and the numeric literal
was substituted for the current (IR IR thereby alleviating this exhibit in full.

View Fix on GitHub

OTM-02M: Improper Evaluation of Token Balance

Type Severity Location
Logical Fault Medium e OlympusTokenMigrator.sol:L364
Description:

The function is utilizing the yielded by the
implementation yet is comparing it with the ORI o1 dTreasury

Example:

contracts/migration/OlympusTokenMigrator.sol

SOL

function migrateToken(address token, bool deposit) internal {

uint256 balance = IERC20(token).balanceOf (address(oldTreasury));

uint256 excessReserves = oldTreasury.excessReserves();

uint256 tokenValue = newTreasury.tokenValue(token, balance);

if (tokenValue > excessReserves) {
tokenValue = excessReserves;

balance = excessReserves * 10**9;

oldTreasury.manage (token, balance);

if (deposit) {
IERC20 (token) .safeApprove (address (newITreasury), balance);
newTreasury.deposit(balance, token, tokenValue);

} else {

IERC20 (token) .transfer (address(newTreasury), balance);

Recommendation:

We strongly recommend the implementation of the legacy treasury to be utilized

instead as it is currently incorrectly evaluating the maximum value that can be retrieved from

Gaiassuey)

Alleviation:

The code now properly uttilizes the legacy function to properly identify how many

View Fix on GitHub

funds can be managed from the legacy treasury.

OTM-03M: Ungraceful Mint Handling

Type Severity Location
Logical Fault Medium e OlympusTokenMigrator.sol:L217, L219
Description:

The contract contains logic blocks that indicate the possibility of being minted beyond
migration is realistic and simply prohibits swaps for it, however, a mint event and corresponding

transfer to the migrator contract is unaccounted for and can cause to be inoperable.

Example:

contracts/migration/OlympusTokenMigrator.sol

SOL

function defund(address reserve) external onlyGovernor {
require (ohmMigrated && timelockEnd < block.number && timelockEnd != 0);
o0ldwsOHM.unwrap (oldwsOHM.balanceOf (address(this)));
uint256 amountToUnstake = oldsOHM.balanceOf (address(this));
01ldsOHM. approve (address (oldStaking), amountToUnstake);
oldStaking.unstake (amountToUnstake, false);
uint256 balance = oldOHM.balanceOf (address(this));

oldSupply = oldSupply.sub(balance);

uint256 amountToWithdraw = balance.mul(1le9);

0l1dOHM. approve (address (oldTreasury), amountToWithdraw);

oldTreasury.withdraw(amountToWithdraw, reserve);

IERC20 (reserve).safeTransfer (address (newTreasury), IERC20(reserve).baland

emit Defunded(balance);

Recommendation:

We strongly recommend the code to gracefully handle such an event by containing an block
that nullifies if the exceeds it.
Alleviation:

The code now properly handles an instance of the exceeding the (SRS o0y in

accordance to our recommendation.

View Fix on GitHub

OTM-04M: Potential of Repeat Invocation

Type Severity Location
Logical Fault Minor @ OlympusTokenMigrator.sol:L229-L234
Description:

The function can be invoked multiple times.
Example:

contracts/migration/OlympusTokenMigrator.sol

SOL

function startTimelock() external onlyGovernor {

timelockEnd = block.number.add(timelockLength);

emit TimelockStarted(block.number, timelockEnd);

Recommendation:

It should only be invoke-able once and as such should introduce a check that ensures

is equal to §J at the beginning.

Alleviation:

The check we recommended was properly added to the codebase.

View Fix on GitHub
>

PREV
Guardable.sol (GUA-M)

<

NEXT
Nuwinahla eal INMA/NI_AN

WWWIIANIG.OVI ‘v vy I‘_IVI’

= Omniscia Olympus DAO Audit

Ownable Manual Review Findings

ON THIS PAGE

OWN-01M: Improper Ownership Renouncation
OWN-02M: Incorrect Events Emitted

OWN-03M: Potentially Restrictive Functionality

OWN-01M: Improper Ownership Renouncation

Type Severity Location
Logical Fault Medium @ Ownable.sol:L31-L34
Description:

The function deletes the current in place, however, the
remains especially so when the (R IR RG] function is invoked once as it does
not delete the previous entry. This would permit ownership to be re-instated even after it has

been renounced on a particular contract.

Example:

contracts/types/Ownable.sol

SOL

function renounceManagement() public virtual override onlyOwner() {

emit OwnershipPushed(owner, address(0));

_owner = address(0);

Recommendation:

We strongly recommend the to also be deleted when is

invoked to prevent improper state transitions.

Alleviation:

The new owner is properly deleted when ownership is renounced.

View Fix on GitHub

OWN-02M: Incorrect Events Emitted

Type Severity Location
Logical Fault Minor e Ownable.sol:L16
Description:

The and function of the contract incorrectly emit
el OwnershipPushed [EENSNSCEINIRGEY OwvnershipPulled [N

Example:

contracts/types/Ownable.sol
SOL Copy
event OwnershipPushed(address indexed previousOwner, address indexed newOwne

event OwnershipPulled(address indexed previousOwner, address indexed newOwne

constructor () {
_owner = msg.sender;

emit OwnershipPushed(address(0), owner);

function owner() public view override returns (address) {

return _owner;

modifier onlyOwner() {

require(_owner == msg.sender, "Ownable: caller is not the owner");

.
14

function renounceManagement() public virtual override onlyOwner() {
emit OwnershipPushed(_owner, address(0));

_owner = address(0);

function pushManagement(address newOwner) public virtual override onlyOwne

emit OwnershipPushed(_owner, newOwner);

newOwner = newOwner;

function pullManagement() public virtual override {

require(msg.sender == newOwner, "Ownable: must be new owner to pull");

emit OwnershipPulled(_owner, newOwner);

_owner = newOwner;

Recommendation:

We advise the latter to be utilized as it is the canonical one when an entry is written in

pullManagement §

Alleviation:

The [T EEEE) cvent is now properly emitted within the function.

View Fix on GitHub

OWN-03M: Potentially Restrictive Functionality

Type Severity Location
Logical Fault Minor e Ownable.sol:L34
Description:

The function validates that the being set is not the zero address,
however, in doing so it will prevent a pending owner to be overwritten with a zero entry.

Example:

contracts/types/Ownable.sol

SOL

function pushManagement(address newOwner) public virtual override onlyOwne

require(newOwner != address(0), "Ownable: new owner is the zero address
emit OwnershipPushed(_owner, newOwner);

newOwner = newOwner;

Recommendation:

We advise this check to either be omitted entirely or only be evaluated when is itself
equal to the zero-address as otherwise, an incorrectly set will not be able to be
deleted.

Alleviation:

The restrictive check is now omitted from the codebase.

View Fix on GitHub

PREV
OlympusTokenMigrator.sol (OTM-M)

<

NEXT
StakingDistributor.sol (SDR-M)

= Omniscia Olympus DAO Audit

StakingDistributor Manual Review
Findings

ON THIS PAGE

SDR-01M: Improper Accumulation of Rewards
SDR-02M: Ungraceful Handling of High Adjustment Rates
SDR-03M: Inexistent Validation of Entry Validity

SDR-04M: Inexistent Validation of Reward Rate

SDR-01M: Improper Accumulation of Rewards

Type Severity Location
Logical Fault Medium @ StakingDistributor.sol:L110-L123
Description:

The pPYSeacrssigera function does not properly accumulate rewards if multiple ones are

specified for a particular recipient.

Example:

contracts/StakingDistributor.sol

SOL

function nextRewardFor (address recipient) public view returns (uint256) {

uint256 reward;

if (info[i].recipient == recipient) {

reward = nextRewardAt(info[i].rate);

}

return reward;

Recommendation:

We advise the function to properly sum the results of invocations to ensure it
operates as intended.

Alleviation:

Rewards are now properly accumulated in the entry.

View Fix on GitHub

SDR-02M: Ungraceful Handling of High Adjustment Rates

Type Severity Location
Mathematical Operations Medium e StakingDistributor.sol:L90
Description:

The is meant to represent a step-by-step reduction or increase of the reward
rate for a particular recipient, however, there can be a case where the is
smaller than the step which would render the operation impossible and thus cause the

full hook to fail.

Example:

contracts/StakingDistributor.sol
SOL

} else {

info[index].rate = info[index].rate.sub(adjustment.rate);

if (info[index].rate <= adjustment.target) {

adjustments[_ index].rate

Recommendation:

We advise the reduction of a particular rate to be gracefully handled whereby if the reduction is

greater than the current rate the rate should be set to zero.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

SDR-03M: Inexistent Validation of Entry Validity

Type Severity Location
Input Sanitization Minor @ StakingDistributor.sol:L142-1L147, L156-L169
Description:

The and functions do not actually validate whether there is

an existing entry in the they are operating in, leading to adjustments for inexistent

entries [future ones or removal of inexistent entries.

Example:

contracts/StakingDistributor.sol

SOL

function removeRecipient(uint256 index, address recipient) external ({

require(msg.sender == governor() || msg.sender == guardian(), "Caller is

require(_recipient == info[index].recipient);
info[index].recipient = address(0);

info[_index].rate = 0;

function setAdjustment (
uint256 _index,
bool add,

uint256 _target
) external {

require(msg.sender == governor() || msg.sender == guardian(), "Caller is

if (msg.sender == guardian()) {

require(_rate <= info[index].rate.mul(25).div(1000), "Limiter: canno

adjustments[_ index] = Adjust({add: add, rate: rate, target: target});

Recommendation:

We advise both functions to properly validate that an entry exists by evaluating its

recipient§

Alleviation:

Both functions now properly validate the existance of an entry by ensuring that the

info[index].recipient [IEItleISI@ENlelabrL=I(eN
View Fix on GitHub

SDR-04M: Inexistent Validation of Reward Rate

Type Severity Location
Input Sanitization Minor @ StakingDistributor.sol:L134
Description:

The function does not validate that the set does not exceed the
maximum achievable which is L]

Example:

contracts/StakingDistributor.sol

SOL

function addRecipient(address recipient, uint256 rewardRate) external only

require(_ recipient != address(0));

info.push(Info({recipient: recipient, rate: rewardRate}));

Recommendation:

We advise such validation to be imposed to prevent arbitrarily high reward rates.

Alleviation:

The function now properly validate that the set is at most equivalent to the newly

REERI] - - cpenominator
View Fix on GitHub

< PREV

Ownable.sol (OWN-M)
NEXT

StandardBondingCalculator.sol (SBC-M)

= Omniscia Olympus DAO Audit

StandardBondingCalculator Manual
Review Findings

ON THIS PAGE

SBC-01M: Inexistent Validation of Pair Tokens

SBC-02M: Incorrect Usage of SafeMath Library

SBC-01M: Inexistent Validation of Pair Tokens

Type Severity Location
Logical Fault Major ® StandardBondingCalculator.sol:L50-L60
Description:

The function incorrectly assumes that if the of a pair is not the address,
will be so which may not be the case.

Example:

contracts/StandardBondingCalculator.sol

SOL Copy

function markdown(address pair) external view override returns (uint) {

(uint reserveO, uint reservel,) = IUniswapV2Pair(_pair).getReserves()

uint reserve;

if (IUniswapV2Pair(pair).tokenO() == address(OHM)) {
reserve = reservel;

} else {
reserve reservel;

}
return reserve.mul(2 * (10 ** IERC20Metadata(address(OHM)).decimals())

Recommendation:

We advise a check to be introduced in the chain of the clause that mandates

to be the address.

Alleviation:

A check was introduced in the case that mandates to be equivalent to

thereby alleviating this exhibit.

SBC-02M: Incorrect Usage of Library

Type Severity Location

Language Specific Minor @ StandardBondingCalculator.sol:L5, L21

Description:

The BRIt e M AR R alb] statement is ineffectual as all operations that will

be performed on the data type will indirectly cast the value to a and yield the
result which if casted to a can still overflow.

Example:

contracts/StandardBondingCalculator.sol

SOL

using SafeMath for uintl12;

Recommendation:

We advise either the library implementation to be expanded to support the
data type or the statement to be omitted should it be considered unnecessary in the
codebase and replaced by casts to variables that are used in these

calculations.

Alleviation:

The ineffectual statement was omitted from the codebase.

PREV
StakingDistributor.sol (SDR-M)

<

NEXT

[I —— Y L] L Y Y

View Fix on GitHub
>

Ireasury.sol {1 KE-M)

= Omniscia Olympus DAO Audit

Treasury Manual Review Findings

ON THIS PAGE

TRE-01M: Insecure Management of Reserve & Liquidity Tokens
TRE-02M: Weak Debt Position Validation

TRE-03M: Improperly Valid Case

TRE-04M: Inexistent Validation of Token Status

TRE-05M: Potentially Unsafe Primitive Evaluation

TRE-01M: Insecure Management of Reserve & Liquidity
Tokens

Type Severity Location

Logical Fault Major ® Treasury.sol:L242, L244, 1246, L248, L270, L333

Description:

The arrays of reserve and liquidity tokens are improperly maintained which can cause

huge discrepancies to the [ITEEE A o] measured in the function. As an

example, duplicate entries within a single array can cause a particular reserve to be calculated
twice whereas an asset being a reserve and liquidity token at the same time will also cause an

incorrect duplicate measurement of its balance value.

Example:

contracts/Treasury.sol

SOL

function enable(
STATUS _status,
address _address,
address _calculator

) external onlyOwner {

require(onChainGoverned, "OCG Not Enabled: Use queueTimelock");

if (_status == STATUS.SOHM) {

SOHM = IERC20(_address);
} else {
registry[status].push(_address);

permissions|[_ status][address] = true;

if (_status == STATUS.LIQUIDITYTOKEN) {

bondCalculator[address] = calculator;

}

emit Permissioned(_ address, _status, true);

Recommendation:

We advise all actions modifying those arrays to properly check for duplicates by preventing re-

setting the same permission for an address to (qag-

Alleviation:

Both adjustment code blocks were updated to properly evaluate whether duplicate

entries exist as well as to delete any previously set state in case the same token is being set

View Fix on GitHub

between a liquidity and reserve token and vice versa.

TRE-02M: Weak Debt Position Validation

Type Severity Location
Logical Fault Major @ Treasury.sol:L140-L163
Description:

The function mandates that the caller has a sufficient balance of to create the
debt position, however, is a freely transferrable asset that should only be used as a data

point when it cannot be transferred.

Example:

contracts/Treasury.sol

SOL

function incurDebt(uint256 amount, address token) external override ({

require (permissions[STATUS.DEBTOR][msg.sender], "Not approved");

require(permissions[STATUS.RESERVETOKEN][token], "Not accepted");

uint256 value = tokenValue(_token, amount);

require(value != 0);

uint256 availableDebt = sOHM.balanceOf (msg.sender).sub(debtorBalance[msg.

require(value <= availableDebt, "Exceeds debt limit");

debtorBalance[msg.sender] = debtorBalance[msg.sender].add(value);

totalDebt = totalDebt.add(value);

totalReserves = totalReserves.sub(value);

IERC20(_token).transfer(msg.sender, amount);

Recommendation:

We advise the to either be held in custody or for some other similar mechanism to be put

in place as the current debt mechanism is circumventable.

Alleviation:

The debt management system has now been built-in the implementation which in turn

prevents transfers that would reduce the holder's balance below the required debt threshold.

View Fix on GitHub

TRE-03M: Improperly Valid Case

Type Severity Location
Mathematical Operations Medium @ Treasury.sol:L150, L380-L386
Description:

The function should not yield a value of f§J under any circumstances as it will result
in no-ops when utilized in mathematical operations and can cause the system to misbehave in

case i.e. a token has more decimals than OHM is utilized in the evaluation that is not a

LIQUIDITYTOKEN

Example:

contracts/Treasury.sol

SOL

function tokenValue(address _token, uint256 _amount) public view override re

value = amount.mul(l0**IERC20Metadata(address(OHM)).decimals()).div(10%

if (permissions[STATUS.LIQUIDITYTOKEN][token]) {

value = IBondingCalculator(bondCalculator|[_ token]).valuation(_token,

Recommendation:

We strongly recommend the first linked check to be relocated to the

function itself as no zero evaluations should be considered "valid".

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

TRE-04M: Inexistent Validation of Token Status

Type Severity Location
Logical Fault Medium @ Treasury.sol:L208-L210
Description:

The function does not properly validate the permission status of the input
which can improperly manipulate the i.e. with no-op function implementations.

Example:

contracts/Treasury.sol

SOL

function manage(address _token, uint256 _amount) external override {

if (permissions[STATUS.LIQUIDITYTOKEN][token]) {
require(permissions[STATUS.LIQUIDITYMANAGER] [msg.sender], "Not appro
} else {
require (permissions [STATUS.RESERVEMANAGER] [msg.sender], "Not approved

uint256 value tokenValue(_token, _amount);

require(value <= excessReserves(), "Insufficient reserves");

totalReserves totalReserves.sub(value);

IERC20(_token).safeTransfer (msg.sender, amount);

emit ReservesManaged(_ token, amount);

Rarnmmaoandatinn:

INWUWWVIITITIIWVIITUUWIWVIT.

We advise the branch of the first clause in to impose a check ensuring
that the permission of the S NEEEE] R SERVETOKEN |

Alleviation:

The value is now adjusted solely when the input falls under either the
liquidity or reserve token category, thereby alleviating this exhibit.

View Fix on GitHub

TRE-O5M: Potentially Unsafe Primitive Evaluation

Type Severity Location
Standard Conformity Minor e Treasury.sol:L380-L386
Description:

The evaluation of a particular token's value when the token is not a ffelsamrtinareyeny S

performed by a simple decimal-based conversion.

Example:

contracts/Treasury.sol

SOL

function tokenValue(address _token, uint256 _amount) public view override re

value = amount.mul(1l0**IERC20Metadata(address(OHM)).decimals()).div(10%

if (permissions[STATUS.LIQUIDITYTOKEN][token]) {

value = IBondingCalculator(bondCalculator|[_ token]).valuation(_token,

Recommendation:

Apart from considering these tokens equal in value, it also directly relies on the presence of the
operator on the token which at times may not be available as it is an OPTIONAL

member of the EIP-20 standard. We advise this particular trait to be considered carefully in the
overall system as checks can be imposed at the inclusion level to prevent non-compliant tokens

from being added.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

PREV
StandardBondingCalculator.sol (SBC-M)

NEXT
VaultOwned.sol (VOD-M)

= Omniscia Olympus DAO Audit

VaultOwned Manual Review Findings

ON THIS PAGE

VOD-01M: Centralized Sensitive Functionality

VOD-01M: Centralized Sensitive Functionality

Type Severity Location

Logical Fault Medium @ VaultOwned.sol:L10-L14

Description:

The (IRALEIRg function sets the current in place for [RERaLIRg modifier enforcement,
however, it can be invoked an arbitrary number of times, can override the current in

place and does not contain an keyword meaning that it is meant to be invoked by

EOAs or similar actors.

Example:

contracts/types/VaultOwned.sol
SOL Copy

function setVault(address vault) external onlyOwner() returns (bool) {

vault = vault ;

return true;

Recommendation:

We advise it to potentially disallow over-writing the in place once it has been set once

as otherwise, it can become a single point of failure for the system. Additionally, we advise the

returned to be omitted given that it is always and is a non-standard function.

Alleviation:

The Olympus DAO team considered this exhibit but decided to retain the current behaviour of

the code in place.

PREV
Treasury.sol (TRE-M)

<

NEXT
gOHM.sol (OHM-M)

= Omniscia Olympus DAO Audit

gOHM Manual Review Findings

ON THIS PAGE

OHM-01M: Improper State Control of Migration

OHM-01M: Improper State Control of Migration
Type Severity Location

Logical Fault Medium @ gOHM.sol:L120-L134

Description:

The function, as its documentation states, should only be invoke-able once during the
contract migration, however, the logical checks it enforces allow it to be invoked and thus set

very sensitive contract variables an arbitrary number of times.

Example:

contracts/governance/gOHM.sol

SOL

function migrate(address staking, address sOHM) external override onlyAppra

require(_staking != approved);

require(_staking != address(0));

approved = staking;

require(sOHM != address(0));

SOHM = IsOHM(_SOHM);

Recommendation:

We strongly recommend the function to ensure that has not been previously set as

otherwise, there is no protection preventing re-setting those variables.

Alleviation:

A dedicated flag has been introduced to the codebase and is being used as a flag to

indicate whether has been invoked before thereby preventing its re-execution and

View Fix on GitHub

alleviating this exhibit.

PREV
VaultOwned.sol (VOD-M)

NEXT
sOlympusERC20.sol (OEC-M)

= Omniscia Olympus DAO Audit

sOlympusERC20 Manual Review Findings

ON THIS PAGE

OEC-01M: Potentially Incorrect Extrapolation of Rebase

OEC-01M: Potentially Incorrect Extrapolation of Rebase

Type Severity Location

Logical Fault Medium @ sOlympusERC20.sol:L122

Description:

The function will extrapolate the should a non-zero amount of
be returned as the calculation performed multiplies the profit by the

and divides it by the (IR ppitaa R I A, the latter of which is guaranteed to

be greater than the former thus causing the to be increased.

Example:

contracts/sOlympusERC20.sol

SOL

function rebase(uint256 profit , uint epoch) public onlyStakingContract()

uint256 rebaseAmount;

uint256 circulatingSupply = circulatingSupply():;

if (profit == 0) {

emit LogSuppl epoch block.timestamp totalSuppl

emit LogRebase(epoch , 0, index());
return _totalSupply;
} else if (circulatingSupply > 0){

rebaseAmount profit .mul(_totalSupply).div(circulatingSupply)

} else {

rebaseAmount profit ;

_totalSupply = totalSupply.add(rebaseAmount);

if (_totalSupply > MAX SUPPLY) {
_totalSupply = MAX SUPPLY;

_gonsPerFragment = TOTAL GONS.div(_totalSupply);
_storeRebase(circulatingSupply , profit , epoch);

return _totalSupply;

Recommendation:

We advise this trait to be carefully assessed and if desired to be properly documented as it can
cause disproportionate profits to be calculated.

Alleviation:

The Olympus DAO team considered this exhibit, identified it as desired behaviour but opted not

to apply any remediation for it.

PREV
gOHM.sol (OHM-M)

NEXT
BondDepository.sol (BDY-C)

.
4

ID

BDY-03M

BTR-01M

BTR-02M

BTR-03M

BTR-04M

ERC-01M

ERP-0TM

ERP-02M

FPT-01M

GOV-01M

GOV-02M

GOV-03M

GAA-01M

GUA-01M

GUA-02M

GUA-03M

OTM-01M

OTM-02M

NTAA_N2A\A

Severity

Medium

Major

Medium

Minor

Minor

Minor

Medium

Minor

Major

Medium

Minor

Minor

Informational

Medium

Minor

Minor

Major

Medium

NMAAiiim

Addressed

No

Yes

No

Yes

No

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

VAae

Title

Inexplicable Optional Value of Decay

Confusion of Value Denominations

Artificial Inflation Mechanism

Inexistent Redemption of FEO Fees

Inexistent Validation of Non-Zero Redemption

Non-Standard Mint Implementation

Insecure Elliptic Curve Recovery Mechanism

Cross-Chain Signature Replay Attack
Susceptibility

Potentially Invalid Implementation

Improper Governor Renouncation

Incorrect Event Emitted

Potentially Restrictive Functionality

Improper Percentage Documented

Improper Guardian Renouncation

Incorrect Event Emitted

Potentially Restrictive Functionality

Improper Integration w/ Uniswap V2

Improper Evaluation of Token Balance

I lnAaranafiil NMint LIanAlinA

W I1IVITUDIVI Iviculiullii 1TO vliyiracciul viiic rialiuiinly

ID Severity Addressed Title
OTM-04M Minor Yes Potential of Repeat Invocation
OWN-01M Medium Yes Improper Ownership Renouncation
OWN-02M Minor Yes Incorrect Events Emitted
OWN-03M Minor Yes Potentially Restrictive Functionality
SDR-01M Medium Yes Improper Accumulation of Rewards
SDR-02M Medium No Ungraceful Handling of High Adjustment
Rates
SDR-03M Minor Yes Inexistent Validation of Entry Validity
SDR-04M Minor Yes Inexistent Validation of Reward Rate
SBC-01M Major Yes Inexistent Validation of Pair Tokens
SBC-02M Minor Yes Incorrect Usage of Library
TRE-01M Maijor Yes I_Poskeecnusre Management of Reserve & Liquidity
TRE-02M Major Yes Weak Debt Position Validation
TRE-O3M Medium No Improperly Valid Case
TRE-04M Medium Yes Inexistent Validation of Token Status
TRE-O5M Minor No Potentially Unsafe Primitive Evaluation
VOD-01M Medium No Centralized Sensitive Functionality
OHM-01M Medium Yes Improper State Control of Migration

OEC-01M Medium No Potentially Incorrect Extrapolation of Rebase

PREV
Static Analysis

NEXT
Code Style

= Omniscia Olympus DAO Audit

Code Style

During the manual portion of the audit, we identified 34 optimizations that can be applied to

the codebase that will decrease the gas-cost associated with the execution of a particular

function and generally ensure that the project complies with the latest best practices and

standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code

should make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID

BDY-01C

BDY-02C

BDY-03C

BDY-04C

BTR-01C

ERC-01C

ERP-01C

ERP-02C

ERP-03C

FMH-01C

GOV-01C

Severity

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Addressed

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Title

Improper Error Messages

Inexistent Error Messages

Potentially Misleading USD Evaluation

Redundant Explicit Zero-Value Assignment

Inexistent Variable Visibility Specifiers

Variable Mutability Specifier

Improper Error Name

Redundant Visibility Specifiers

Suboptimal Code Style

Outdated Implementation

Inexistent Deletion of Pending Governor

= Omniscia Olympus DAO Audit

BondDepository Code Style Findings

ON THIS PAGE

BDY-01C: Improper Error Messages
BDY-02C: Inexistent Error Messages
BDY-03C: Potentially Misleading USD Evaluation

BDY-04C: Redundant Explicit Zero-Value Assignment

BDY-01C: Improper Error Messages

Type Severity Location
Code Style Informational ® BondDepository.sol:L187, L191
Description:

The linked error messages state that the bond has concluded, however, the same error will arise
if the is simply exceeded rather than i and would otherwise succeed with a ¥y /

less than the limit.

Example:

contracts/BondDepository.so

SOL
if (info.capacityIsPayout) {
require(info.capacity >= payout, "Bond concluded");

info.capacity = info.capacity.sub(payout);

else {

require(info.capacity >= amount, "Bond concluded");

info.capacity = info.capacity.sub(_ amount);

Recommendation:

We advise the error message to be more descriptive to aid users in adjusting the variables

correctly to ensure their action succeeds.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

BDY-02C: Inexistent Error Messages

Type Severity Location
Code Style Informational e BondDepository.sol:L68, L70, L144, L145
Description:

The linked checks contain no descriptive error messages.

Example:

contracts/BondDepository.so

SOL

constructor (address OHM, address _treasury) {
require(OHM != address(0));
OHM = IERC20(_OHM);

require(_treasury != address(0));

treasury = ITreasury(_treasury);

Recommendation:

We advise them to be set so to aid in the debugging of the application and to also enable more

accurate validation of the condition purposes.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

BDY-03C: Potentially Misleading USD Evaluation

Type Severity Location
Code Style Informational @ BondDepository.sol:L343-L355
Description:

The on-chain USD evaluation of a bond is solely used for events, however, it appears to be
incorrect as its comments indicate that a DAI value is calculated whereas the principal's paired

assets are simply used with no relation to the actual DAI token.

Example:

contracts/BondDepository.so

SOL

function bondPriceInUSD(uint256 BID) public view returns (uint256 price) {
Bond memory bond = bonds[_ BID];
if (address(bond.calculator) != address(0)) {

price = bondPrice(_ BID).mul(bond.calculator.markdown(address (bond.princi
} else {
price = bondPrice(BID).mul(l0**IERC20Metadata(address(bond.principal)).

Recommendation:

We advise either the code or the comments surrounding it to be revised to better illustrate the

function's purpose.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

BDY-04C: Redundant Explicit Zero-Value Assignment

Type Severity Location
Gas Optimization Informational ® BondDepository.sol:L89
Description:

The function redundantly assigns the pointer to an uninitialized
entry

Example:

contracts/BondDepository.sol

SOL

function addBond(
address principal,
address _calculator,
uint256 capacity,
bool capacityIsPayout
external onlyGuardian returns (uint256 id) {

Terms memory terms = Terms({controlVariable: 0, fixedTerm: false, vestingTe

bonds[IDs.length] = Bond({principal: IERC20(_principal), calculator: IBondi

__ = IDs.length;
IDs.push(_principal);

Recommendation:

We advise the assignment to be omitted and the pointer to be used in the next statement

directly as it points to an uninitialized struct when declared.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

PREV
sOlympusERC20.sol (OEC-M)

NEXT
BondTeller.sol (BTR-C)

= Omniscia Olympus DAO Audit

BondTeller Code Style Findings

ON THIS PAGE

BTR-01C: Inexistent Variable Visibility Specifiers

BTR-01C: Inexistent Variable Visibility Specifiers

Type Severity Location

Code Style Informational e BondTeller.sol:L44-L49

Description:

The linked variables have no visibility specifier explicitly set.

Example:

contracts/BondTeller.so

SOL

address depository;

IStaking immutable staking;

ITreasury immutable treasury;
IERC20 immutable OHM;

IERC20 immutable sOHM;
IgOHM immutable gOHM;

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current compiler behaviour is to assign a specifier automatically.

Alleviation:

All variables were set to thereby alleviating this exhibit.

View Fix on GitHub

PREV
BondDepository.sol (BDY-C)

NEXT
ERC20.sol (ERC-C)

= Omniscia Olympus DAO Audit

ERC20 Code Style Findings

ON THIS PAGE

ERC-01C: Variable Mutability Specifier

ERC-01C: Variable Mutability Specifier

Type Severity Location

Gas Optimization Informational @ ERC20.s0l:L26, L31

Description:
As the token implementation is used internally, the member is only set once
during the of the contract.

Example:

contracts/types/ERC20.sol
SOL

uint8 internal decimals;

constructor (string memory name , string memory symbol , uint8 decimals) {

_hame = name ;
_symbol = symbol ;

decimals = decimals;

Recommendation:

We advise it to be set as greatly opimizing its read access gas cost.

Alleviation:

The member was properly set as [lanay-

View Fix on GitHub

PREV
BondTeller.sol (BTR-C)

NEXT
ERC20Permit.sol (ERP-C)

= Omniscia Olympus DAO Audit

ERC20Permit Code Style Findings

ON THIS PAGE

ERP-01C: Improper Error Name
ERP-02C: Redundant Visibility Specifiers
ERP-03C: Suboptimal Code Style

ERP-01C: Improper Error Name

Type Severity Location
Code Style Informational e ERC20Permit.sol:L56
Description:

The error name references another contract that does not exist in the codebase.

Example:

contracts/types/ERC20Permit.sol

SOL Copy

require(signer != address(0) && signer == owner, "ZeroSwapPermit: Invalid sig

Recommendation:

We advise the error to be renamed.

Alleviation:

The error message has been corrected to utilize the contract's name instead.

View Fix on GitHub

ERP-02C: Redundant Visibility Specifiers

Type Severity Location
Gas Optimization Informational ® ERC20Permit.sol:L15, L17
Description:

The linked variables are meant to be internally available variables.

Example:

contracts/types/ERC20Permit.sol

SOL Copy

bytes32 public constant PERMIT TYPEHASH = 0x6e7ledael2blb97£4d1£60370fef10105

bytes32 public DOMAIN SEPARATOR;

Recommendation:

We advise them to be set as or to reduce the codebase bloat and bytecode

size of the contract.

Alleviation:

Visibility specifiers were adjusted for both variables to ensure they are no longer exposed

View Fix on GitHub

publicly.

ERP-03C: Suboptimal Code Style

Type Severity Location
Code Style Informational ® ERC20Permit.sol:L14, L15
Description:

The variable has the hash declared as its assignment and the [IIRPE

instruction as its comment.

Example:

contracts/types/ERC20Permit.sol

SOL Copy

bytes32 public constant PERMIT TYPEHASH = 0x6e7ledael2blb97f£4d1£f60370fef10105

Recommendation:

We advise these to be reversed as the one-way association of is not guaranteed
from a hash to its value but rather from a value to its hash. Additionally, validation of the values
would have less implications as the instruction is guaranteed to be performed
properly. To note, assigning a to a instruction's result does not affect gas

cost as the value is pre-calculated by the compiler.

Alleviation:

The typehash is now properly assigned to the evaluation of a instruction and is set

as to benefit from the gas optimization of evaluating the expression once.

View Fix on GitHub

PREV
FRC20 . anl (FRC-C)

<

NEXT
FullMath.sol (FMH-C)

= Omniscia Olympus DAO Audit

FullMath Code Style Findings

ON THIS PAGE

FMH-01C: Outdated Implementation

FMH-01C: Outdated Implementation

Type Severity Location

Gas Optimization Informational ® FullMath.sol:L33-L44

Description:

The contract is a copy of the homonymous Uniswap V2 library and implements an
outdated version of the function which does not contain the optimization of (YERY as

present in the Uniswap V2 equivalent.

Example:

contracts/libraries/FullMath.sol
SOL

function mulDiv(
uint256 x,
uint256 vy,
uint256 d

) internal pure returns (uint256) {
(uint256 1, uint256 h) = fullMul(x, y);
uint256 mm = mulmod(x, y, d);
if (mm > 1) h -= 1;

1 -= mm;

require(h < d, 'FullMath::mulDiv: overflow');

return fullDiv(l, h, d);

Recommendation:

We advise the optimization to be applied to reduce the gas cost involved with the library.

Alleviation:

The optimization of Uniswap V2 was properly integrated into the codebase.

View Fix on GitHub

PREV
ERC20Permit.sol (ERP-C)

NEXT
Governable.sol (GOV-C)

= Omniscia Olympus DAO Audit

Governable Code Style Findings

ON THIS PAGE

GOV-01C: Inexistent Deletion of Pending Governor

GOV-01C: Inexistent Deletion of Pending Governor

Type Severity Location

Gas Optimization Informational ® Governable.sol:L43-L47

Description:

The entry should be deleted when it is consumed by the

function.

Example:

contracts/types/Governable.sol
SOL

function pullGovernor() public virtual override {

require(msg.sender == newGovernor, "Governable:

emit GovernorPulled(_governor, newGovernor);

_governor = newGOVernor;

Recommendation:

We advise it to be deleted so to ensure a consistent contract state.

Alleviation:

Copy

must be new governor tg

The new governor Is now properly deleted when the JRilkdagssiea 'unction concludes.

View Fix on GitHub

PREV
FullMath.sol (FMH-C)

NEXT
Guardable.sol (GUA-C)

= Omniscia Olympus DAO Audit

Guardable Code Style Findings

ON THIS PAGE

GUA-01C: Inexistent Deletion of Pending Guardian

GUA-01C: Inexistent Deletion of Pending Guardian

Type Severity Location

Gas Optimization Informational ® Guardable.sol:L42-L46

Description:

The entry should be deleted when it is consumed by the

function.

Example:

contracts/types/Guardable.sol
SOL

function pullGuardian() public virtual override {

require(msg.sender == newGuardian, "Guardable:

emit GuardianPulled(guardian, newGuardian);

_guardian = newGuardian;

Recommendation:

We advise it to be deleted so to ensure a consistent contract state.

Alleviation:

Copy

must be new guardian to

The new guardian I1s now properly deleted when the [SREBRtE Sk function concludes.

View Fix on GitHub

PREV
Governable.sol (GOV-C)

<

NEXT
ManagerOwnable.sol (MOE-C)

= Omniscia Olympus DAO Audit

ManagerOwnable Code Style Findings

ON THIS PAGE

MOE-01C: Redundant Implementation

MOE-01C: Redundant Implementation

Type Severity Location

Code Style Informational e ManagerOwnable.sol:L7-L10

Description:

The [Ny contract is redundant as it declares a new labelled
that is exactly the same as the modifier, inclusive of the error

messages.

Example:

contracts/types/ManagerOwnable.sol
SOL

import "./Ownable.sol";

contract ManagerOwnable is Ownable {

modifier onlyManager() {

require(_owner == msg.sender, "Ownable: caller is not the owner"

Recommendation:

)i

We advise the implementation to be omitted from the codebase entirely.
Alleviation:

The contract is no longer part of the codebase rendering this exhibit null.

View Fix on GitHub

PREV
Guardable.sol (GUA-C)

NEXT
OlympusERC20.sol (OER-C)

= Omniscia Olympus DAO Audit

OlympusERC20 Code Style Findings

ON THIS PAGE

OER-01C: Incorrect Function Visibility

OER-01C: Incorrect Function Visibility

Type Severity Location
Code Style Informational e OlympusERC20.sol:L34
Description:

The function is incorrectly available externally by its modifier.

Example:

contracts/OlympusERC20.sol

SOL

function burnFrom(address account , uint256 amount) public virtual {

_burnFrom(account , amount);

function burnFrom(address account , uint256 amount) public virtual {
uint256 decreasedAllowance =
allowance(account , msg.sender).sub(
amount ,

"ERC20: burn amount exceeds allowance"

):

_approve (account , msg.sender, decreasedAllowance);

_burn(account , amount);

Recommendation:

We advise it to be set to to properly illustrate its purpose and avoid potential
circumventions of the function in the future.

Alleviation:

The visibility specifier of the function was adjusted according to our

View Fix on GitHub

recommendation.

PREV
ManagerOwnable.sol (MOE-C)

<

NEXT
OlympusTokenMigrator.sol (OTM-C)

= Omniscia Olympus DAO Audit

OlympusTokenMigrator Code Style
Findings

ON THIS PAGE

OTM-01C: Inexistent Error Messages
OTM-02C: Multiple Top-Level Declarations

OTM-03C: Redundant & Confusing Comparisons

OTM-01C: Inexistent Error Messages
Type Severity Location

OlympusTokenMigrator.sol:L99, L101, L103, L105, L107,

Code Style Informational ® 409" 111 1210, L238, L239, L328 L330, L332

Description:

The linked checks have no explicit error messages defined.

Example:

contracts/migration/OlympusTokenMigrator.sol

SOL

function defund(address reserve) external onlyGovernor {

require (ohmMigrated && timelockEnd < block.number && timelockEnd != 0);

0ldwsOHM.unwrap(oldwsOHM.balanceOf (address(this)));

uint256 amountToUnstake = oldsOHM.balanceOf (address(this));
0ldsOHM. approve (address (oldStaking), amountToUnstake);

oldStaking.unstake (amountToUnstake, false);

oldSupply = oldSupply.sub(balance);

uint256 amountToWithdraw = balance.mul(1le9);
01dOHM. approve (address (oldTreasury), amountToWithdraw);

oldTreasury.withdraw(amountToWithdraw, reserve);

IERC20 (reserve).safeTransfer (address (newTreasury), IERC20(reserve).balanc

emit Defunded(balance);

Recommendation:

We advise them to be set so to aid in the validation of the conditionals as well as in debugging

the application.

Alleviation:

Error messages were included to all checks across the contract.

View Fix on GitHub

OTM-02C: Multiple Top-Level Declarations

Type Severity Location
Code Style Informational ® OlympusTokenMigrator.sol:L17-L44, L46-L50
Description:

The linked implementations should be relocated to dedicated files to not pollute the

top-level of the contract file.

Example:

contracts/migration/OlympusTokenMigrator.sol
SOL

interface IUniswapV2Router {
function addLiquidity(

address tokenA,
address tokenB,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,

uint256 deadline

external

returns (
uint256 amountA,
uint256 amountB,

uint256 liquidity

function removeLiquidity(
address tokenA,

address tokenB,

uint256 liquidity,

uint256 amountAMin,

uint256 amountBMin

address to,
uint256 deadline

) external returns (uint256 amountA, uint256 amountB);

interface IStakingV1l {

function unstake(uint256 _amount, bool trigger) external;

function index() external view returns (uint256);

contract OlympusTokenMigrator is OlympusAccessControlled {

Recommendation:

We advise them to be relocated to the sub-folder, potentially under an
second-level subfolder, to ensure that the code structure of the system is maintainable.

Alleviation:

All required interfaces were split to their dedicated files and are now properly imported to the

View Fix on GitHub

codebase.

OTM-03C: Redundant & Confusing Comparisons

Type Severity Location
Gas Optimization Informational ® OlympusTokenMigrator.sol:L137, L182
Description:

The structure within and evaluate all states of the redundantly

which can also cause ambiguous behaviour if the compiler does not enforce the value range of

the enum due to a compiler issue given that it is internally represented by a [{iRay-

Example:

contracts/migration/OlympusTokenMigrator.sol
SOL

enum TYPE {
UNSTAKED,
STAKED,
WRAPPED

function migrate(
uint256 _amount,
TYPE from,
TYPE _to
) external {
uint256 sAmount = _amount;
uint256 wAmount 01dwsOHM. sOHMTowOHM (_amount) ;

if (_from == TYPE.UNSTAKED) {
oldOHM.safeTransferFrom(msg.sender, address(this), _amount);

} else if (_from == TYPE.STAKED) {

oldsOHM.safeTransferFrom(msg.sender, address(this), _amount);
} else if (_from == TYPE.WRAPPED) ({

oldwsOHM.safeTransferFrom(msg.sender, address(this), _amount);

wAmount = _amount;

if (ohmMigrated) {

require(oldSupply >= oldOHM.totalSupply(), "OHMvl minted");

_send(wAmount, to);
} else {
gOHM.mint (msg.sender, wAmount);

Recommendation:

We advise the last branch to be converted to an branch to ensure transfer of
funds is performed at all times from the user to the contract and vice versa for the migration to

OCcur.

Alleviation:

The optimization was only applied to the first linked segment thereby partially
alleviating this exhibit.

PREV
OlympusERC20.sol (OER-C)

NEXT
Ownable.sol (OWN-C)

= Omniscia Olympus DAO Audit

Ownable Code Style Findings

ON THIS PAGE

OWN-01C: Inexistent Deletion of Pending Owner

OWN-01C: Inexistent Deletion of Pending Owner

Type Severity Location

Gas Optimization Informational ® Ownable.sol:L39-L43

Description:

The entry should be deleted when it is consumed by the function.

Example:

contracts/types/Ownable.sol
SOL Copy

function pullManagement() public virtual override {

require(msg.sender == newOwner, "Ownable: must be new owner to pull");

emit OwnershipPulled(_owner, _newOwner);

_owner = newOwner;

Recommendation:

We advise it to be deleted so to ensure a consistent contract state.

Alleviation:

The new owner is now properly deleted when the JSEaRREEtr=Sed function concludes.

View Fix on GitHub

PREV
OlympusTokenMigrator.sol (OTM-C)

<

NEXT
SafeMath.sol (SMH-C)

= Omniscia Olympus DAO Audit

SafeMath Code Style Findings

ON THIS PAGE

SMH-01C: Inefficient Implementation

SMH-01C: Inefficient Implementation

Type Severity Location

Gas Optimization Informational ® SafeMath.sol:L115-L127

Description:

The implementation does not efficiently calculate the root of the provided argument as it

wraps operations unnecessarily (i.e. divisions with non-zero value literals).

Example:

contracts/libraries/SafeMath.sol

SOL

function sqgrrt(uint256 a) internal pure returns (uint c) {

if (a > 3) {
c = a;
uint b = add(div(a, 2), 1);
while (b < ¢) {
c = b;
b = div(add(div(a, b), b), 2);
}
} else if (a !'= 0) {

c =1;

Recommendation:

We advise a more efficient square root algorithm to be implemented instead, such as the

optimized Babylonian method by Uniswap.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

PREV
Ownable.sol (OWN-C)

NEXT
StakingDistributor.sol (SDR-C)

= Omniscia Olympus DAO Audit

StakingDistributor Code Style Findings

ON THIS PAGE

SDR-01C: Inexistent Error Messages

SDR-02C: Inexistent Variable Visibility Specifiers

SDR-01C: Inexistent Error Messages
Type Severity Location

Code Style Informational ® StakingDistributor.sol:L48, L50, L52, L133, L144

Description:

The linked checks contain no descriptive error messages.

Example:

contracts/StakingDistributor.sol
SOL

constructor (
address _treasury,
address _ohm,

address _staking

require(_treasury != address(0));

treasury = ITreasury(_treasury);

require(_ohm != address(0));
OHM = IERC20(_ohm);

require(_staking != address(0));

staking = _staking;

Recommendation:

We advise them to be set so to aid in the debugging of the application and to also enable more

accurate validation of the condition purposes.

Alleviation:

Error messages were introduced in all linked checks.

View Fix on GitHub

SDR-02C: Inexistent Variable Visibility Specifiers

Type Severity Location
Code Style Informational @ StakingDistributor.sol:L21, L22, L23
Description:

The linked variables have no visibility specifier explicitly set.

Example:

contracts/StakingDistributor.sol
SOL

IERC20 immutable OHM;

ITreasury immutable treasury;

address immutable staking;

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current compiler behaviour is to assign a specifier automatically.

Alleviation:

Proper visibility specifiers were set for all linked variables.

View Fix on GitHub

PREV
SafeMath.sol (SMH-C)

<

NEXT
StandardBondingCalculator.sol (SBC-C)

= Omniscia Olympus DAO Audit

StandardBondingCalculator Code Style
Findings

ON THIS PAGE

SBC-01C: Inexistent Error Message

SBC-02C: Inexistent Variable Visibility Specifier

SBC-01C: Inexistent Error Message

Type Severity Location
Code Style Informational ® StandardBondingCalculator.sol:L26
Description:

The linked check contains no descriptive error message.

Example:

contracts/StandardBondingCalculator.sol

SOL

require(OHM != address(0));

Recommendation:

We advise one to be set so to aid in the debugging of the application and to also enable more

accurate validation of the condition's purpose.

Alleviation:

Error messages were introduced in all linked checks.

View Fix on GitHub

SBC-02C: Inexistent Variable Visibility Specifier

Type Severity Location
Code Style Informational ® StandardBondingCalculator.sol:L23
Description:

The linked variable has no visibility specifier explicitly set.

Example:

contracts/StandardBondingCalculator.sol

SOL

IERC20 immutable OHM;

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current compiler behaviour is to assign a specifier automatically.

Alleviation:

The visibility specifier was properly introduced to the linked variable.

View Fix on GitHub

PREV
StakingDistributor.sol (SDR-C)

<

NEXT
Timelock.sol (TIM-C)

= Omniscia Olympus DAO Audit

Timelock Code Style Findings

ON THIS PAGE

TIM-01C: Redundant Implementation

TIM-01C: Redundant Implementation
Type Severity Location

Language Specific Informational ® Timelock.sol:L53-L64

Description:

The implementation present within the in-file declared function is redundant
and overly convoluted by wrapping each statement with its equivalent, which at times

is unnecessary such as when dividing with non-zero value literals.

Example:

contracts/governance/Timelock.sol

SOL

function sqrrt(uint256 a) internal pure returns (uint c) {

if (a > 3) {
c = a;
uint b = add(div(a, 2), 1);
while (b < c) {
c = b;
b div(add(div(a, b), b), 2);

(a !'=10) {

Recommendation:

We advise the implementation to be entirely omitted to also ensure that source code match

analysis detects the contract as being an identical copy of Compound's
implementation.

Alleviation:

The function was safely omitted from the codebase.

View Fix on GitHub

PREV
StandardBondingCalculator.sol (SBC-C)

NEXT
Treasury.sol (TRE-C)

= Omniscia Olympus DAO Audit

Treasury Code Style Findings

ON THIS PAGE

TRE-01C: Improper Failure Enforcement
TRE-02C: Improper Permitted Execution Flow
TRE-03C: Inexistent Error Messages

TRE-04C: Inexistent Variable Visibility Specifier

TRE-01C: Improper Failure Enforcement

Type Severity Location
Code Style Informational ® Treasury.sol:L106
Description:

The check linked performs a guaranteed-to-fail check (ElfEmggy) to illustrate the error

message that accompanies it.

Example:

contracts/Treasury.sol

SOL

require(l == 0, "neither reserve nor liquidity token");

Recommendation:

We advise a to be used directly instead that accepts the error message directly.

Alleviation:

The B ~hocl wace crihetitiited far 2 A ~hoclk ac recammended

[N w VIIVUIN VVUD JUNMNULILULLU TV U w VIITVUIN UD T UVl TV T C U,

View Fix on GitHub

TRE-02C: Improper Permitted Execution Flow

Type Severity Location
Code Style Informational e Treasury.sol:L353-L362
Description:

The FS R el CER el Ereter] (UNction should not be invoke-able if the F el R el g st

status has already been set.

Example:

contracts/Treasury.sol

SOL

function enableOnChainGovernance() external onlyOwner {

if (onChainGovernanceTimelock != 0 && onChainGovernanceTimelock <= block.

onChainGoverned = true;
} else {

onChainGovernanceTimelock = block.number.add(blocksNeededForQueue.mu

Recommendation:

We advise this to be enforced by introducing a check that prevents this scenario at

the top of the function.

Alleviation:

The function now properly validates that has not been set already.

View Fix on GitHub

TRE-03C: Inexistent Error Messages

Type Severity Location
Code Style Informational ® Treasury.sol:L81, L150, L305, L321
Description:

The linked checks contain no descriptive error messages.

Example:

contracts/Treasury.sol

SOL

constructor(address OHM, uint256 timelock) {

require(OHM != address(0));
OHM = IOHMERC20(_OHM);

blocksNeededForQueue = timelock;

Recommendation:

We advise them to be set so to aid in the debugging of the application and to also enable more

accurate validation of the condition purposes.

Alleviation:

Error messages were introduced in all linked checks.

View Fix on GitHub

TRE-04C: Inexistent Variable Visibility Specifier

Type Severity Location
Code Style Informational e Treasury.sol:L60
Description:

The linked variable has no visibility specifier explicitly set.

Example:

contracts/Treasury.sol

SOL

IOHMERC20 immutable OHM;

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current compiler behaviour is to assign a specifier automatically.

Alleviation:

The visibility specifier was explicitly set to the linked variable.

View Fix on GitHub

PREV
Timelock.sol (TIM-C)

<

NEXT
gOHM.sol (OHM-C)

= Omniscia Olympus DAO Audit

gOHM Code Style Findings

ON THIS PAGE

OHM-01C: Inexistent Error Messages

OHM-01C: Inexistent Error Messages
Type Severity Location

Code Style Informational ® gOHM.sol:L59, L127, L129, L132

Description:

The linked checks contain no descriptive error messages.

Example:

contracts/governance/gOHM.sol

SOL

constructor (address migrator) {

require(_migrator != address(0));

approved = migrator;

Recommendation:

We advise them to be set so to aid in the debugging of the application and to also enable more

accurate validation of the condition purposes.

Alleviation:

Error messages were introduced in all linked checks.

View Fix on GitHub

PREV
Treasury.sol (TRE-C)

<

NEXT
sOlympusERC20.sol (OEC-C)

= Omniscia Olympus DAO Audit

sOlympusERC20 Code Style Findings

ON THIS PAGE

OEC-01C: Deprecated Representation Style
OEC-02C: Inefficient Code Structure

OEC-03C: Inexistent Error Messages

OEC-04C: Inexistent Variable Visibility Specifiers

OEC-05C: Redundant Event Argument

OEC-01C: Deprecated Representation Style

Type Severity Location
Code Style Informational ® sOlympusERC20.sol:L54
Description:

The maximum of representation in use ([EEEREEIILd) has been deprecated in favor of
the special operator.

Example:

contracts/sOlympusERC20.sol

SOL

uint256 private constant MAX UINT256 = ~uint256(0);

Recommendation:

We advise the operator to be used to instead assign the maximum ([a IR e -

Alleviation:

The representation of the maximum was adjusted according to our recommendation.

View Fix on GitHub

OEC-02C: Inefficient Code Structure

Type Severity Location

Gas Ootimization Informational e SOIYMPUSERC20.s0l:L174, L175, L185, L186, L191,
P 1192, L198-L203, L210-L213

Description:
All style functions can internally use the function.
Example:

contracts/sOlympusERC20.sol
SOL Copy

function approve(address spender, uint256 value) public override returns (b
_allowedValue[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);

return true;

function increaseAllowance(address spender, uint256 addedValue) public ove
_allowedValue[msg.sender][spender] = allowedValue[msg.sender][spe
emit Approval(msg.sender, spender, allowedValue[msg.sender][spender

return true;

function decreaseAllowance(address spender, uint256 subtractedValue) public
uint256 oldvalue = allowedValue|[msg.sender][spender];
if (subtractedvalue >= oldvValue) {
_allowedValue[msg.sender][spender] 0;
} else {

_allowedValue[msg.sender][spender] oldvalue.sub(subtractedval

}

emit Approval(msg.sender, spender, allowedValue[msg.sender][spender

return true;

function approve(address owner, address spender, uint256 value) internal a

_allowedValue[owner][spender] = value;

emit Approval(owner, spender, value);

Recommendation:
We advise them to do so to signficantly reduce the bytecode size of the contract.
Alleviation:

The code was refactored to properly utilize in all instances possible.

View Fix on GitHub

OEC-03C: Inexistent Error Messages

Type Severity Location

Code Style Informational ® sOlympusERC20.s0l:L80, L81, L86, L87,L88, L94, L96

Description:

The linked checks contain no descriptive error messages.

Example:

contracts/sOlympusERC20.sol

SOL

function setIndex(uint INDEX) external {
require(msg.sender == initializer);
require(INDEX == 0);
INDEX = gonsForBalance(_INDEX);

function setgOHM(address gOHM) external {
require(msg.sender == initializer);
require(address(gOHM) == address(0));
require(gOHM != address(0));
gOHM = IgOHM(_gOHM);

function initialize(address stakingContract) external {

require(msg.sender == initializer);
require(stakingContract != address(0));
stakingContract = stakingContract ;

_gonBalances|[stakingContract] = TOTAL GONS;

emit Transfer(address(0x0), stakingContract, totalSupply);
emit LogStakingContractUpdated(stakingContract);

initializer = address(0);

Recommendation:

We advise them to be set so to aid in the debugging of the application and to also enable more
accurate validation of the conditions.

Alleviation:

Error messages were introduced in all linked checks.

View Fix on GitHub

OEC-04C: Inexistent Variable Visibility Specifiers

Type Severity Location
Code Style Informational e sOlympusERC20.sol:L45, L47
Description:

The linked variables have no visibility specifier explicitly set.

Example:

contracts/sOlympusERC20.sol

SOL

address initializer;

uint INDEX;

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current compiler behaviour is to assign a specifier automatically.

Alleviation:

The Olympus DAO team considered this exhibit but opted not to apply any remediation for it.

OEC-05C: Redundant Event Argument

Type Severity Location
Code Style Informational e sOlympusERC20.so0l:L20, L118, L159
Description:

The current that a event emits is already attached to each event
emittance by the blockchain itself.

Example:

contracts/sOlympusERC20.sol

SOL Copy

event LogSupply(uint256 indexed epoch, uint256 timestamp, uint256 totalSuppl

Recommendation:

We advise the member to be omitted from the event as it is redundant.

Alleviation:

The redundant event argument was safely omitted from the codebase.

View Fix on GitHub

PREV
gOHM.sol (OHM-C)

<

NEXT
Finding Types

ID

GUA-01C

MOE-01C

OER-01C

OTM-01C

OTM-02C

OTM-03C

OWN-01C

SMH-01C

SDR-01C

SDR-02C

SBC-01C

SBC-02C

TIM-01C

TRE-01C

TRE-02C

TRE-03C

TRE-04C

OHM-01C

OEC-01C

Severity

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Addressed

Yes

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Title

Inexistent Deletion of Pending Guardian

Redundant Implementation

Incorrect Function Visibility

Inexistent Error Messages

Multiple Top-Level Declarations

Redundant & Confusing Comparisons

Inexistent Deletion of Pending Owner

Inefficient Implementation

Inexistent Error Messages

Inexistent Variable Visibility Specifiers

Inexistent Error Message

Inexistent Variable Visibility Specifier

Redundant Implementation

Improper Failure Enforcement

Improper Permitted Execution Flow

Inexistent Error Messages

Inexistent Variable Visibility Specifier

Inexistent Error Messages

Deprecated Representation Style

ID

OEC-02C

OEC-03C

OEC-04C

OEC-05C

PREV

Severity

Informational

Informational

Informational

Informational

Manual Review

Addressed

Yes

Yes

No

Yes

Title

Inefficient Code Structure

Inexistent Error Messages

Inexistent Variable Visibility Specifiers

Redundant Event Argument

NEXT
BondTeller.sol (BTR-S)

= Omniscia Olympus DAO Audit

Finding Types

ON THIS PAGE

External Call Validation
Input Sanitization
Indeterminate Code
Language Specific

Code Style

Gas Optimization
Standard Conformity
Mathematical Operations

Logical Fault

A description of each finding type included in the report can be found below and is linked by
each respective finding. A full list of finding types Omniscia has defined will be viewable at the

central audit methodology we will publish soon.

External Call Validation

Many contracts that interact with DeFi contain a set of complex external call executions that
need to happen in a particular sequence and whose execution is usually taken for granted
whereby it is not always the case. External calls should always be validated, either in the form of
checks imposed at the contract-level or via more intricate mechanisms such as

invoking an external getter-variable and ensuring that it has been properly updated.

Input Sanitization

As there are no inherent guarantees to the inputs a function accepts, a set of guards should

always be in place to sanitize the values passed in to a particular function.

Indeterminate Code

These types of issues arise when a linked code segment may not behave as expected, either
due to mistyped code, convoluted blocks, overlapping functions / variable names and other

ambiguous statements.

Language Specific

Language specific issues arise from certain peculiarities that the Solidity language boasts that
discerns it from other conventional programming languages. For example, the EVM is a 256-bit
machine meaning that operations on less-than-256-bit types are more costly for the EVM in
terms of gas costs, meaning that loops utilizing a variable because their limit will never

exceed the 8-bit range actually cost more than redundantly using a variable.

Code Style

An official Solidity style guide exists that is constantly under development and is adjusted on
each new Solidity release, designating how the overall look and feel of a codebase should be. In
these types of findings, we identify whether a project conforms to a particular naming
convention and whether that convention is consistent within the codebase and legible. In case
of inconsistencies, we point them out under this category. Additionally, variable shadowing falls
under this category as well which is identified when a local-level variable contains the same
name as a contract-level variable that is present in the inheritance chain of the local execution

level's context.

Gas Optimization

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas cost
involved with interacting with it to various degrees. These types of findings are completely

optional and are pointed out for the benefit of the project's developers.

Standard Conformity

These types of findings relate to incompatibility between a particular standard's implementation
and the project's implementation, oftentimes causing significant issues in the usability of the

contracts.

Mathematical Operations

In Solidity, math generally behaves differently than other programming languages due to the
constraints of the EVM. A prime example of this difference is the truncation of values during a
division which in turn leads to loss of precision and can cause systems to behave incorrectly

when dealing with percentages and proportion calculations.

Logical Fault

This category is a bit broad and is meant to cover implementations that contain flaws in the way

they are implemented, either due to unimplemented functionality, unaccounted-for edge cases

or similar extraordinary scenarios.

PREV

<
sOlympusERC20.sol (OEC-C)

NEXT
Source Code

