

CHALLENGE 2019

Instance segmentation track

Participation and winning requirements

- Subset of Open Images V4/V5 used for training
- External data/pre-trained models are allowed but must be disclosed
- Evaluation server is hosted by Kaggle
- Full prize: 25K USD split between 5 winners
- Winner obligations:
 - Detailed, minimum 2-page description of method
- Winners encouraged:
 - Open-source their framework
 - Predictions for distillation

Why instance segmentation?

- Datasets & Challenge help drive the field forward
 - Pushes model quality up
 - Increases usage of models in the wild
- Pascal, COCO, and Cityscapes had shown good success
 - However limited domains
- OpenImages boxes allowed us to create the newest largest dataset in the field
 - Compared to COCO:
 - 4x number of classes,
 - 3x number of instances,
 - 7x number of images
- We hope to see many applications spawn-off this new data

Dataset characteristics

Instance segmentation

Task: segment objects on an image

- object mask
- class label

Train set

- Built on top of box annotations
- 2,1M masks
- 848k images
- 300 classes

Validation set:

23k top quality masks

2.1M masks,34s per mask84% mloU / 75% boundaries(better than COCO polygons)

Interactive object segmentation

2.1M masks,34s per mask84% mloU / 75% boundaries(better than COCO polygons)

Interactive object segmentation

Challenge val & test set:

23k on val 136s per mask 90% mloU / 79% boundaries (self-agreement upper-bound)

Free painting annotation

See our CVPR19 paper for details.

2.1M masks,34s per mask84% mloU / 75% boundaries(better than COCO polygons)

Interactive object segmentation

Challenge val & test set:

23k on val 136s per mask 90% mloU / 79% boundaries (self-agreement upper-bound)

Free painting annotation

2.1M masks34s per mask84% mloU / 75% boundaries(better than COCO polygons)

Interactive object segmentation

Challenge val & test set:

23k on val 136s per mask 90% mloU / 79% boundaries (self-agreement upper-bound)

Free painting annotation

Training set is data rich

Each image comes with:

- Positive and negative image-level labels (as well as machine class-scores)
- Each positive label of covered classes has bounding boxes
- Most bounding boxes of covered classes have a mask, and its corrective clicks, and predicted_iou

Positive: Carnivore, Cat, Food, Table, Animal

Negative: Sink, Human face

Evaluation protocol

Evaluation protocol

- Same approach as Object detection, we replace box IoU with masks IoU
- On COCO leaderboard we observed strong correlation between mAP@0.5, mAP@0.75 and mAP@0.5-0.95
 - → we picked mAP@0.5 as suitable evaluation threshold
- Additional complications for boxes without masks (too small, or annotators omitted), and group-of boxes:
 - → detection masks touching these boxes are ignored in evaluation

Public metric implementation is available as a part of <u>Tensorflow Object Detection API</u>

Results analysis

Overview

Number of teams with at least one submission: 193

Number of teams with private mAP ≥ 0.1: 45

External datasets:

Objects365, LVIS, OIDv4, COCO, ImageNet

Deep learning frameworks:

PyTorch, Tensorflow, Keras, Chainer Often via MMDetection, TensorPack

Base model architectures:

HTC, MaskRCNN, FasterRCNN, FastRCNN, Yolo, Retinanet, FPN, UNet, HRNet RestNet, ResneXt, InceptionResnet, Darknet, Nas, SENet, EfficientNet

Submissions overview

- Single strong model, without ensemble, reaches high performance.
- Top result is ~10 mAP points below object detection track. Indicates difficulty in segmentation.

Results analysis: number of submissions per day

Results analysis: public vs private leaderboards

Public leaderboard: 20% of Challenge test set, Private leaderboard: 80%

Results analysis: public vs private leaderboards

Public and private leaderboard are perfectly correlated.

Public leaderboard: 20% of Challenge test set, Private leaderboard: 80%

Results analysis: evolution of maximal leaderboard score

Dots: winners entering the competition.

- Long plateau
- Late entry winners

Results analysis: evolution of scores (winning teams)

Non-monotonic progression within most teams.

Winning teams: final results

Team	Public score	Private score	Num. entries	In OD track last year	In OD track this year
MMfruitSeg	0.5539	0.5257	19		V
[ods.ai] n01z3	0.5552	0.5213	56	V	V
PFDet	0.5533	0.5110	95	V	V
tito	0.5500	0.5098	37	V	V
ZFTurbo & Weimin	0.5368	0.5022	62	V	

- Only minuscule relative score changes between public and private leaderboard
- More entries does not lead to better results
- Most participants are well experienced on these problems

General trends from the methods descriptions

- Large ensembles (15+ models), all kinds of backbone networks
- Methods addressed class imbalance
- Most team conscious of computing time for fast iterations
- Use of high-level detection libraries: MMDetection, TensorPack

Questions?

Today's program

Time	Section
13:30 - 13:40	Overview of the Open Images Challenge
13:40 - 14:00	Object detection track - settings, metrics, winners, analysis, comparison to the previous year
14:00 - 14:45	Presentations by three winners of the Object detection track
14:50 - 15:05	<u>Instance segmentation track</u> - settings, metrics, winners, analysis
15:05 - 15:50	Presentations by three winners of the Instance Segmentation track
15:50 - 16:30	Break and Poster session
16:30 - 16:50	Visual Relationship Detection track - settings, metrics, analysis, comparison to the previous year
16:50 - 17:20	Presentations by two winners of Visual Relationship Detection track
17:25 - 17:30	Concluding remarks