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Abstract

In this article we introduce the solution we used in the
OpenImage 2019 Challenge, detection track. It is com-
monly known that for an object detector, the shared feature
at the end of the backbone is not appropriate for both clas-
sification and regression, which greatly limits the perfor-
mance of both single stage detector and Faster RCNN [13]
based detector. Some recent works try to solve it by split-
ting the backbone at some early stages or by designing a
deeper head to make the information independent. In this
competition, we observe that even with a shared feature,
different locations in one object has completely inconsistent
performances for the two tasks. E.g. the features of salient
locations are usually good for classification, while those
around the object edge are good for regression. Inspired
by this, we propose the Decoupling Head (DH) to disen-
tangle the object classification and regression via the self-
learned optimal feature extraction, which leads to a great
improvement. Furthermore, we adjust the NMS algorithm
via embedding the soft-NMS to obtain stable performance
improvement. Finally, the well-designed ensemble strategy
via voting the bounding box location and confidence can
effectively integrate the results of different models or algo-
rithms. We will also introduce several training/inferencing
strategies and bag of tricks that give minor improvement.
Given those masses of details, we train and aggregate 28
global models with various backbones, heads and 3+2 ex-
pert models, and achieves the 1st place result on the Open-
Image 2019 Object Detection Challenge on the both public
and private lead-board.

* Equal Contribution

1. Datasets
We used OpenImages Challenge 2019 Object Detection

dataset [7] as the training data for most of cases, which is a
subset of OpenImages V5 dataset [8]. It contains 1.74M im-
ages, 14.6M bounding boxes, and 500 categories consisting
of five different levels. Since the categories at different lev-
els have the parent-children relationship, we expand the par-
ent class for each bounding box in the inference stage. The
whole OpenImageV5 with image-level label and segmenta-
tion label is used in weakly-supervised pretraining and la-
bel augmentation as mentioned in Sec. 5.9. We also use the
COCO [10] and Object365 [1] to train some expert models
for the overlapped categories.

2. Decoupling Head
2.1. Overview

We give the detail description for the proposed Decou-
pling Head (DH) in this section. Due to the excellent and
stable performance of the Faster RCNN, it has become the
prior choice for object detection challenge. However, in our
experiments, we observe that the shared feature generated
by ROI pooling in the detection head of Faster RCNN is not
adaptive for object classification and regression. For this
problem, we propose the DH alleviate it effectively, and ex-
periments also demonstrate its advantage compared with the
original detection head in Faster RCNN.

2.2. Detail description

As shown in 1, different from the original detection
head in Faster RCNN, in DH, we disentangle the classifica-
tion and regression by auto-learned pixel-wised offset and
global offset. The purpose of DH is to search the optimal
feature extraction for classification and regression, respec-
tively. Furthermore, we propose the Controllable Margin
Loss (CML) to propel the whole learning.
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Figure 1. Pipeline of the faster RCNN with DH. The whole pipeline are trained in an end-to-end manner.

Define the F as the output feature of the ROI pooling,
the learned offsets for classification and regression are gen-
erated by:

C = Fc(F ; θc) (1)
R = Fr(F ; θr) (2)

where θc and θr are the parameters in fully connected layers
Fc andFr. There areC ∈ Rk×k×2 andC ∈ R1×1×2 where
k is the number of bins in ROI pooling.

Classification. For classification, the output feature of
DHPooling is defined as:

C(i, j) =
∑

0≤i,j≤k

X(p0 + pi,j + Ci,j,∗)/ni,j (3)

where X is the input feature map and ni,j is the number
of pixels in (i, j)-bin pre-defined in ROI pooling. p0 is the
top-left corner.

Regression. For regression, the output feature of DH-
Pooling is defined as:

R(i, j) =
∑

0≤i,j≤k

X(p0 + pi,j +R0,0,∗)/ni,j (4)

In order to propel this training, we propose CML to op-
timize the learning. For classification, the CML is defined
as:

Lc = |So − S +mc|+ (5)

where So is the classification score in the original detection
head and S is the classification score in DH. | · |+ is same
as ReLU function. mc is the pre-defined margin. Similarly,
for regression the CML is adjusted as:

Lr = |IoUo − IoU +mr|+ (6)

where IoUo and IoU are the IoU of the refined proposal
according to the predicted regression in original detection

head and DH, respectively. mo and mr are set to 0.2 in our
experiments.

More details and analysis will be presented on an inde-
pendent article.

3. Adj-NMS

In the post-processing stage, NMS or soft-NMS is com-
monly used to filter the invalid bounding boxes. However,
in our experiments, we find that directly using the soft-NMS
will degrade the performance. In order to better improve
the performance, we adopt the Adj-NMS tto incorporate the
NMS and soft-NMS better. Given the detected bounding
boxes, we preliminarily filter the boxes via the NMS opera-
tor with the threshold 0.5. And then, we adopt the soft-NMS
operator to re-weight the scores of the other boxes by:

w = e−
IoU2

σ (7)

where w is the weight to multiply the classification score
and σ is set to 0.5.

4. Model Ensemble

4.1. Naive Ensemble

For model ensemble, we adopt the solution in PFDet [2]
and the commonly used voting strategy where the bound-
ing box location and confidence are voted by the top k
boxes. Given the bounding boxes P and the top k boxes
Pi (i∈[1,k]) with higher IoU, we first using the solution in
PFDet to reweight the classification score for each model
via the map in validation set. And then, the final classifica-
tion score S of P is computed as:

C = SP + 0.05 ∗
k∑

i=1

SPi (8)



The localization B is computed as:

B = 0.7 ∗BP +
0.3

k
∗

k∑
i=1

BPi (9)

k is set to 4 in our experiments.

4.2. Auto Ensemble

We trained totally 28 models by different architectures,
heads, data splits, class sampling strategies, augmentation
strategies and supervisions. We first use the naive model en-
semble mentioned above to aggregate detectors with similar
settings, which reduces the detections from 28 to 11. Then
we design and launch an auto ensemble method to merge
them into 1.

Search space. Considering each detection as a leaf node
and each ensemble operator as an parent node. The model
ensemble can be formulated as a binary tree generation pro-
cess. All the parent nodes are an aggregation of their chil-
dren by a set of operations and the root will be the final de-
tection. The search space includes the weight of detection
score (a global scale factor for all the classes), box merging
score, element dropout (only use the classification score or
bounding box information of a model) and NMS type (naive
NMS, soft-NMS and adj-NMS).

Search process. In the competition we adopt a two-stage
searching process: first, we search the architecture of the
binary tree with equal contribution for each child node; then
we search the operators of parent nodes based on the fixed
tree.

Result. Since such a large search space may
lead to overfitting, we split the whole dataset (V5
train+val+test+challenge val) in to three parts, 80% for
training and 2×10% as validation sets for tuning the en-
semble strategy. The validation sets are elaborately mined
to keep its distribution as similar to the whole dataset as
possible. We only train the model ID 17-28 under this data
setting. The autoEnsemble leads to 2.9%, 3.6% and 1.2%,
1.0% improvement on the two validation sets and ∼0.9%
on the public lead-board compared to the Naive ensemble.
We also observe an interesting result in the first stage: the
detections with lower mAPs tend to locate at deeper leafs.
We will provide an enhanced one-stage searching method
and more details in an independent article.

5. Bag of tricks
5.1. Sampling

OpenImages dataset [8] has the long-tail distribution
characteristics: the number of categories is not balanced,
and some categories of data are scarce.

Note that before the ensemble, we first re-weight the box score of each
class by the relative AP value as mentioned in Sec. 4.1

Data re-sampling, such as class-aware sampling men-
tioned in [11, 6] is a widely used technique to handle the
class imbalance problem. For each category, the images are
sampled such that the probability of having at least one cat-
egory instance in 500 categories is equal. Table 1 shows the
effectiveness of this sampling method. We use class-aware
sampling in all the below-mentioned methods.

5.2. Decoupling Backbone

For model ID 25-28, we decouple the classification and
regression from the stride 8 in the backbone. One branch
focuses on the classification task where regression is given
a lower weight and the other branch is the opposite.

5.3. Elaborate augmentation

For models trained with 512 accelerators, we design a
’full class batch’ and a elaborate augmentation. For the
’full class batch’, we guarantee that there are at least one
sample for each class. For the elaborate augmentation, we
first randomly select a class and obtain one image contain-
ing it. And then, we apply the random rotation on this image
(larger rotated varience for class with severely unbalanced
aspect ratio such as ’flashlight’). Furthermore, we randomly
select a scale to crop the image covering the bounding box
of this class. For the trick of selecting the scale, we first
generate the maximum image area smem max which is con-
strained by the memory of accelerator, and then, we ran-
domly sample a scale from the minimum scale sstat min to
smax = min(smem max, sstat max). The scale sampling
obey the distribution of the ratio that longer side of a bbox
divided by the long side of its image among the whole train-
ing set.

5.4. Expert Model

An expert model means that a detector trained on a sub-
set of the dataset to predict a subset of categories. The mo-
tivation is that a generalist model is hard to perform well in
all classes, so we need to select some categories for expert
models to handle specifically.

Three important factors to consider in this approach is
how to choose the used positive , negative categories and
the ratio between positive and negative categories. Previ-
ous papers [2] used predefined rules, such as selecting the
least number or the worst-performing category in the vali-
dation set. The drawback of these predefined rules is that:
it ignores the possibility of confusion between categories.
E.g. ”Ski” and ”Snowboard” are an easy-to-confuse cate-
gory pair. If we only choose ”Ski” data to train an expert
model, it is easy to treat the ”Snowboard” in the validation
set as ”Ski”, causing false-positive cases.

The definition of ”easy to confuse” can be derived from
three different perspectives:



Method Validation mAP
Baseline (X50 FPN) 58.88
+ Class Aware Sampling 64.64

Table 1. The effectiveness of the class aware sampling strategy.

a) Hierarchy tag: OpenImages dataset [8] has
hierarchy-tag relationships between different categories.
The straightforward method is to select sub-classes under
the same parent node to train the expert model.

b) Confusion matrix: If the two categories are easily
confused, they will cause many false-positives in the confu-
sion matrix.

c) Visual similarity: The weight of the neural network
can also be used to measure the distance between the two
classes. [14] calculated the Euclidean distance of the fea-
tures extracted by the last layer of ResNet-101 to define the
visual similarity. We go further and consider the weights of
the classification Fully Connected layer in the RCNN stage.
The cosine angle between different categories are defined
as:

cos Θ =
v1 · v2
‖v1‖ ‖v2‖

(10)

We verify that if the semantics of the two categories are
similar, then the corresponding cosine angle is also close to
1.

We train our expert model as following three steps:
1) Select the initial category Cpos, such as the lowest ten

categories of validation mAP. Add images containing Cpos

to the positive data subset χpos.
2) Add the confused categories by using the cosine ma-

trix. For each category ci who satisfy the requirement that
dist(ci, cj) > thr, cj ⊆ Cpos, adding them to Cneg . thr
equals 0.25 in our setting to ensure the ratio of positive and
negative data is close to 1:3. Add images containing Cneg

to the negative data subset χneg .
3) Train a detector with the χpos+neg to predictCpos cat-

egories .
During the inference stage, each RoI will have a corre-

sponding classification score with the shape of (Cpos + 1).
If the background classification score is larger than all other
foreground scores, then this RoI will not be sent to the
bounding box regression step. This modification can reduce
a lot of unnecessary false-positive cases.

5.5. Anchor Selecting

We use k-means clustering to select the anchor for
RPN[13], in our model, we have 18 anchor(ratio:0.1, 0.5,
1, 2, 4, 8. scale:8, 11, 14) per position for each FPN level.

5.6. Cascade RCNN

Cascade RCNN[4] is designed for high quality object
detection and can improve AP at high IOU thresholds,eg

AP0.75. However, in this competition, the evaluation crite-
rion only considers AP0.5, so we modified the IOU thresh-
old for each RCNN level in Cascade-RCNN and redesigned
the weight of each stage for the final result. We set the IOU
thresholds to 0.5,0.5,0.6,0.7, and set weight of each stage to
0.75,1,0.25,0.25. It offers an increase of 0.7 mAP compared
to the standard Cascade RCNN.

5.7. Weakly Supervised Training

There is a serious class imbalance issue in the Open-
Image object detection dataset. Some classes only have a
few images, which cause the model to perform poorly on
these classes. We add some images which only have image-
level annotations to improve the classification ability of
our model. Specifically, We combine data with bounding-
box level annotations and image classification level anno-
tations to build a semi-supervised dataset and integrate a
fully-supervised detector(Faster-RCNN[13]) and a weakly-
supervised detector(WSDDN[3]) in an end-to-end manner.
When encountering bounding-box level data, we use it to
train the fully-supervised detector and constrain the weakly
supervisory detector. when encountering image classifica-
tion level data, we use it to train weakly supervised detector,
and mine pseudo ground-truth from weakly-supervised re-
sults to train the fully supervised detector.

5.8. Relationships Between Categories

There are some special relationships between categories
in the openimage dataset. For example, some classes always
appear along with other classes, like Person and Guitar. In
the training set, Person appears in 90.7% of the images
which have a guitar. So when detected a bounding box of
guitar with high confidence and there is a bounding-box of
person with a certain confidence, we can improve the con-
fidence the bounding-box of person. We denote the number
of objects of category i in the training set asCi. The number
of objects of category i co-occurring with category j as Cij .
We can get the conditional probability p(i|j) = Cij/Ci.
We assume that the max confidence over all proposals
of category i in a image I should greater than the high-
est conditional probability, i.e. max

b
(p(i|proposalb, I)) ≥

max
j

(p(j) ∗ p(i|j)).

In addition to the co-occurrence relationship, there are
two special relationships, surround relationship and being
surrounded relationship, as shown in the Fig.3. Surround re-
lationships mean that bounding boxes of certain categories
always surround bounding box of certain other categories.
Being surrounded relationships mean that certain categories
always appear inside the bounding box of certain other cat-
egories.

These special relationships between categories can be
evidence to improve or reduce the confidence of certain



Figure 2. The co-occurrence conditional probability matrix.

Figure 3. The paddle and the boat always appear at the same
time(left). There are always wheels inside the boundingbox of
the bicycle(middle), and the bounding box of the glasses is always
surrounded by the bouding box of the person(right).

bounding boxes, thereby improving detection performance.

5.9. Data Understanding

Confusing classes. We find there are many confusing
class definitions in OpenImage and some of them can be
used to improve the accuracy. Such as ‘torch’ has various
semantic meanings in train and validation, which is out of
algorithm’s ability. So we expand the training samples of
these confusing classes by both mixing some similar classes
and using extra images with only image-level label. Here
are some more examples: ‘torch’ and ‘flashlight’, ‘sword’
and ‘dagger’, ‘paper tower’ and ‘toilet paper’, ‘slow cooker’
and ‘pressure cooker’, ‘kitchen knife’ and ‘knife’.

Insufficient label. We also find some classes like ‘grape’
has too many group boxes and few instance boxex, so we
use the bounding box of its segmentation label to extend
the detection label. For some other classes such as ‘pres-
sure cooker’ and ‘touch’, we crawling the top-100 results
from google image and directly feed them into the training
pipeline without hand labelling. A good property of these
200 crawled images is their backgrounds are pure enough
so we directly use [0,0,1,1] as their bounding boxes.

Model DH DCN Validation Set MT PA Public LB
ResNet50 64.64 49.79
ResNet50 X 68.18 52.55
ResNet50 X 68.18 X 55.88

ResNext101 X 68.7 X X 55.046
ResNext101 X X 71.71 X X 58.596
SENet154 X 71.13 X X 57.771
SENet154 X X 72.19 X X 60.5

Table 2. Ablation studies on DH with different backbones. DCN
and MT mean the deformable convnet [5] and multi-scale testing.
PA indicates averaging the parameters of epoch [9,13].

6. Implement Details
The 28 final models are trained by PyTorch [12] and Ten-

sorflow and all of the backbones are first pre-trained on Im-
ageNet dataset. All of the models are trained under differ-
ent settings: 13/26 epochs with batch size 2N @ N accel-
erators, where ’N’s are in range of [32, 512] for different
models based on the available number of accelerators. We
warm up the learning rate from 0.001 to 0.004 × N and
then decay it by 0.1 at epoch 9 and 11 (or 18 and 22 for
the 2x setting). At the inference stage, for validation set,
we straightforwardly generate the result and for challenge
test, we adopt the multi-scale test with [600, 800, 1000,
1333, 1666, 2000] and the final parameters are generated
by averaging the parameters of epoch [9,13] (or [19,26] for
the 2x setting). The basic detection framework is FPN [9]
with Faster RCNN and the class-aware sampling is used for
them.

7. Results
7.1. Ablation study on DH

We first study the effectiveness of DH on the valida-
tion set and challenge set with different backbones. Re-
sults are shown in Tab 2. For model ResNet50, we adopt
the anchors with scale 8 and aspect ratio [12 , 1, 2]. For
model ResNext101 and SENet154, we adopt the anchors
with scale [8,11,14] and aspect ratio [0.1, 1

2 , 1, 2, 4, 8].
Note that DH can always stably improve the performance
by 3∼4%.

7.2. Ablation study on Adj-NMS and voting ensem-
ble

Results are shown in Tab 3. Voting can obtain the ∼0.3
improvement. Note that the ensemble solution in PFDet
cooperated with Adj-NMS can bring further improvement.
The 4 models are trained with simple configuration without
bells and whistles.

7.3. Final results

Given all the successful exploration, we train multiple
backbones with the best setting and design as mentioned



Model PFDet Adj-NMS Public LB
4 models 57.994
4 models X 59.4
4 models X X 60.351

Table 3. Ablation studies on PFDet and Adj-NMS. 4 models con-
tain [ResNext101 with DCN, ResNext152 with DCN, SENet154
with DCN, SENet154 with DCN and Cascade RCNN] and all of
the models adopt the basic configuration.

Model Public LB
Single Model (ID 1-16) [58.596 - 60.5]

Single Model (ID 17-28) + 1 expert [N/A - 63.596]
Naive ensemble ID 1-16 61.917

Mix ensemble+voting ID1-28+3experts (V1) 67.2
V1+COCO+Object365 68.0

Final re-weighting 68.174

Table 4. Overview of the submissions.The final submision are
generated with the models trained with full classes and the models
trained with the specific models.

above, including: ResNet family, SENet family, ResNeXt
family, NASNet, NAS-FPN and EfficientNet family. We
conclude some of our recorded results and break down the
final results we achieved on the public lead-board as in
Tab. 4. 3experts mean the SEResNet154 trained with 150,
27, 40 classes with low AP on validation set. COCO means
that we find total 64 classes co-exists in COCO dataset and
OpenImage dataset. And so, we straightforwardly adopt
the Mask RCNN with ResNet152 and Cascade RCNN with
ResNet50 as the 64-classes expert model which are strained
on COCO dataset. Object365 means we trained the expert
class model with embedding the same classes in Object365
and there are total 8 expert models for this. At the final re-
weighting stage, we generate different weights for different
models to ensemble.
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