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Abstract

This report describes our solution in the 2019 Open Im-
ages Detection Challenge (OID-C). The OID-C dataset is a
large-scale object detection dataset with 1.7M images and
12.2M bounding box annotations of 500 classes. Differ-
ent from other small-scale object detection dataset, OID-
C has several unique features including: imbalanced class
distribution, incomplete annotations with image-level neg-
ative labels, and hierarchical structured classes. These as-
pects make it challenging to train a robust object detector.
Our solution is designed to tackle these challenges. First,
we use class-aware sampling to solve the data imbalance
problem. Second, we propose a novel soft label propagation
to alleviate the incomplete annotation issue. Third, we de-
velop a score aggregation method during inference to take
into consideration the class hierarchy. Last but not least,
we propose a robust ensemble method including score vot-
ing and box voting to fuse the results from multiple models.
We have conducted an ablation study to show the effective-
ness of each component in the proposed ensemble method.
Our solution, without using any external object detection
dataset, ranked the 5th place in the private leader-board.

1. Introduction
Recent years have seen remarkable progress in object de-

tection, thanks to the development of robust algorithms in-
cluding two-stage detectors like Fast-RCNN [6] and Faster-
RCNN [15], and one-stage detectors like YOLO [14] and
SSD [11], and the availability of well-annotated datasets
such as PASCAL VOC [4] and MS COCO [10].

However, when such algorithms are applied to real ap-
plications at scale, they usually suffer from new challenges
as these methods require a huge amount of annotated train-
ing data that is usually expensive to acquire in a large
scale. Recently, Open Images Detection Challenge (OID-
C) dataset [8] is introduced for large-scale object detection.
Although OID-C has 6.25× classes of COCO [10] (500 vs.
80), the average bounding box annotations per image is only
increased from 7.2 to 7.3. In fact, it is very time consum-

ing, or practically impossible to annotate every instance of
each class in all images. Therefore, how to handle the in-
complete annotation problem is crucial for large-scale ob-
ject detection.

Our first contribution is to propose a soft label propaga-
tion algorithm to generate more bounding boxes for train-
ing. First, the fundamental difference to previous label
propagation method [13] is the use of “neutral” label, which
we define as a bounding box without specific class label.
During training, all Region of Interests (RoIs) matched to
neutral labels are ignored. Neutral label is used to exclude a
region from being sampled as background during training.
Second, for the propagated positive labels, we use the con-
fidence score of each box as the loss weight so that the de-
tection results with higher confidences will contribute more.
Moreover, our soft label propagation also takes considera-
tion of the image-level negative labels, object-part relation,
and the group box priors in OID-C dataset.

Our second contribution includes the proposed score ag-
gregation method during inference. The 500 classes in OID-
C are organized in hierarchical structure, which means these
classes are not mutually exclusive. In this work, we use
Faster R-CNN as our framework and train using softmax
with cross-entropy loss for label classification, which we
find to be easier to train compared to sigmoid with cross-
entropy loss. During inference, to handle the hierarchical
structure, we aggregate the confidence scores of each child
class to all its ancestors before applying NMS. This opera-
tion guarantees that the probability of classifying a RoI into
a parent class is always higher than those of its child classes.

Our third contribution is the proposed ensemble method.
Although model ensemble has been widely used in previous
work [12, 5], it is not clear what is the best way to conduct
model ensemble. We propose to take full advantages of the
detected bounding box locations and confidence scores to
generate more robust results. Specifically, we propose score
voting to aggregate the confidences from a set of closely
located bounding boxes to the box with the highest confi-
dence, and box voting to fuse the bounding box locations
to produce a new bounding box. The proposed score voting
and box voting boost the performance significantly.



All training is conducted on the OID-C dataset only
without any external object detection dataset. Our solution
ranked the 5th place in the private leader-board. We will
elaborate the details of the top three contributions in our so-
lution in the following three sections.

2. Dataset
There are two major challenges in OID-C dataset. First,

the class distribution is imbalanced, i.e., there are many
rare classes that are with very limited numbers of bound-
ing boxes. Second, the dataset is sparsely annotated. In
our solution, we mainly focus on solving these two chal-
lenges for dataset processing. Specifically, we use class-
aware sampling to solve the data imbalance problem and
develop a novel soft label propagation method to overcome
the incomplete label problem.

2.1. Class-Aware Sampling

As shown in Figure 1, the original bounding box anno-
tation distribution is imbalanced (red curve). For example,
the class with the most number of annotations is “Man” with
1.4M bounding boxes while the class with the least number
of annotation is “Pressure Cooker” with only 14 bounding
boxes. Training on such an imbalanced distribution will cer-
tainly affect the performance on rare classes.

Class-Aware Sampling [5] has been explored in previ-
ous challenge solutions. Different from [5] that samples
all classes with equal probabilities, we simply duplicate the
images with rare classes such that the minimum number of
bounding box annotations for each class is at least Nmin.
We empirically find that Nmin = 2, 000 works well in our
experiments. The updated distribution is shown as the green
curve in Figure 1. Note that as we duplicate the images, all
annotations in the images will be duplicated so the numbers
of annotations for other classes are increased as well. We
observe an improvement of ∼ 5.0 points in mAP with this
sampling method.

2.2. Soft Label Propagation

OID-C dataset has image-level positive and negative la-
bels. On average, there are 2.3 positive labels and 1.1 neg-
ative labels per image not considering hierarchical label ex-
pansion. The real label for all other unannotated classes
are ambiguous. Although these classes are ignored in the
evaluation, the impact during training is not negligible. In
Faster R-CNN framework, all unannotated regions will be
considered as background in RoI sampling, which will lead
to false negative RoIs during training.

The incomplete label problem has been studied in previ-
ous work. Wu et al. [16] proposed soft sampling to decay
the weight of each RoI based on the overlap with positive
bounding boxes. This approach can reduce the negative im-
pact of false negative RoIs to some extend. However, it will

Figure 1. Dataset label distribution before and after applying
class-aware sampling. X-axis: the class ID sorted by the number
of annotated bounding boxes. Y-axis: log(#labels).

also ignore the rich background information that is useful
to learn discriminative features. In contrast, we propose to
propagate labels on the training images to generate more
bounding boxes from a pre-trained model. We then train
a new model with both the original and the propagated la-
bels. Label propagation has been used in [13]. However,
our approach is tailored to work with OID-C dataset that
has many features like group box, image-level negative la-
bels, and object-part relations. Our method differs to [13]
in various aspects as described below.

First, we apply a detection model, trained on the origi-
nal labels, on the training images. And select all detection
results with confidence larger than a pre-defined threshold
tn. Second, we remove all detection results with predicted
class being labeled as a negative image-level label. These
detected boxes are likely to be false positives. Third, we
remove a detected box if it is overlapped with any of the
annotated box with IoU larger than 0.5. This is to avoid po-
tential conflict in RoI matching. For the remaining detected
boxes, we generate new labels by considering the group box
property and the object-part relations.

Group Box A group box consists of multiple instances of
the same class. We can propagate labels given the clue of a
group box. Specifically, for each group box in the ground-
truth annotations, we select the detected box as a positive in-
stance of that class if the IoA (intersection over the smaller
box’s area) is larger than 0.5. This can result in multiple
instances being propagated based on one group box.

Object-Part Relation There are classes with object-part
relations as described in [13]. However, most of the part
classes are with much less numbers of annotations com-
pared to the object classes. To take advantage of this object-
part prior, we select the detected box as a positive part class
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Figure 2. Soft label propagation results. red: ground-truth annotations of positive labels; yellow: propagated positive labels; green:
propagated neutral labels. The class names are shown in the corner texts with the corresponding colors. Our propagation method can
consistently generate valid labels to mitigate the sparse annotation problem. Best viewed in color.

label if the IoA with the object box is larger than 0.5.

Soft Label Assignment We propagate two types of labels:
positive labels and neutral labels. Positive labels are treated
similarly to a ground-truth annotation. we define neutral la-
bel as a bounding box without specific class label, which
is considered as neither positive nor negative during train-
ing. For detected boxes that are selected based on group
box or object-part relation, they are considered as positive
labels. For the remaining boxes, if its confidence is larger
than a pre-defined threshold tp, it is considered as positive.
Otherwise, it is treated as a neutral label.

The introduction of neutral label is a fundamental dif-
ference compared to prior work [13]. The detection results
we are less confident about will become neutral labels. The
benefits of using neutral label are in two-folds. First, it can
avoid potential false positive from the false detection result
if it is considered as positive label. Second, it can avoid po-
tential false negatives if we remove this box during training
that makes the region as background.

For propagated positive labels, we take each box’s confi-
dence score as the loss weight for the matched RoI samples
during training so that the box with higher confidence will
have larger contribution in the loss computation. The loss
weight for the ground-truth bounding box is 1. For neutral
labels, we will ignore all RoIs that are matched to them. In

other words, the loss weight for neutral label is 0.

Figure 2 shows some example images with our soft label
propagation. We observe that our method can consistenly
generate high quality labels for second round training. In
our experiments, we set tn = 0.3 and tp = 0.7. On aver-
age, we have propagated 2.3 positive labels and 2.0 neutral
labels per image. We observe around 1.0 point gain in mAP
with our proposed soft label propagation. Using the confi-
dence scores of propagated positive labels as the weights in
the loss function brings another 0.3 point gain in mAP.

3. Modeling

3.1. Framework

We use Faster R-CNN [15] as our framework. Our back-
bone is based on ResNeXt-152 [17] with Feature Pyramid
Network (FPN) [9]. We use class-aware sampling and soft
label propagation to process the dataset. We use softmax
cross-entropy loss for label classification and smoothed L1
loss for bounding box regression. The main novelty in our
work is to use a confidence score for each bounding box to
weight the loss of the positive RoIs that are matched to these
boxes. This applies to all the loss functions in both stages.
All RoIs matched to neutral labels are ignored.



3.2. Score Aggregation

The classes in OID is organized in a semantic hierarchi-
cal structure. These classes are not mutually exclusive for
training softmax with cross-entropy loss. However, we em-
pirically find that softmax with cross-entroy loss is easier
to train and performs better than the sigmoid with cross-
entropy loss used in [13].

During inference, the detector may not detect the parent
and child classes at the same time. Therefore, we should
expand the detection results from child classes to all its an-
cestor classes. We have explored two ways to perform label
expansion during inference: before and after NMS.

The first approach is to perform label expansion after
NMS. Specifically, we duplicate the bounding box and con-
fidence score from a child class to all its ancestor classes
after inference. Another NMS is applied on all 58 parent
classes after label expansion in order to remove redundant
boxes when the model can detect a similar box of the par-
ent class in the first place. This label expansion and NMS
operation can improve the mAP for about 2.2 points.

The second approach is to perform score aggregation be-
fore applying NMS. In our work, we select the top 1, 000
RoIs from Region Proposal Network (RPN) for the second
stage. These RoIs are used for classification and box re-
gression, after which per-class NMS is applied. We apply
a softmax activation function on the class logits from the
classification layer, which results in 500 confidence scores
of each class for each RoI. For each parent class, we add the
confidence scores from all its child classes to its own con-
fidence. The aggregated scores are then used in the NMS
operation. We find the score aggregation approach work
better than the first approach with an extra 0.2 gain in mAP.
We use this approach in our work.

3.3. Implementation Details

Our work is implemented in PyTorch and based on the
maskrcnn-benchmark repository [12]. We will describe the
training and testing details of a single model. Model ensem-
ble will be presented in the next section.

Training ImageNet [3] pre-trained models are used to ini-
tialize our models. The following setting is used by default
unless otherwise specified. The batch size is set to 32 and
the model is trained for 800K iterations. We use an initial
learning rate of 0.02 and weight decay of 0.00005. Learn-
ing rate is divided by 10 at 400K and 750K iterations. The
input image is scaled to have minimum and maximum sizes
of 800 and 1, 333 pixels. Random flipping is used as data
augmentation during training. Images without annotations
are removed from training.

Testing We evaluate the last checkpoint after training. No
test time augmentation is used. The input image is scaled
the same way as in training. For each image, we select

Table 1. Single model performance (mAP) on the validation set.
All models are trained with ResNeXt-152 backbone and FPN. No
test time augmentation is used. Regular NMS with IoU threshold
0.5 is applied during inference.
model −→ X152 -SE -DCN -cascade
label expansion 69.47 69.62 70.21 69.42
score aggregation 69.59 69.66 70.38 69.50

1, 000 RoIs from RPN for the second stage. After perform-
ing score aggregation and NMS operation (with IoU thresh-
old sets to 0.5 if not specified), we select all detection results
with confidence score larger than 0.0001 while limiting the
maximum number of detection per image to be 600.

4. Model Ensemble
4.1. Single Models

We trained different models with ResNeXt-152 back-
bone and FPN. Besides the regular version (“X152”), we
have trained other model variants with SE block [7] (“X152-
SE”), DCN block [2] (“X152-DCN”), and cascade R-
CNN [1] (“X152-cascade”). As the training for DCN is very
slow, the model is only trained for 600K iterations. For cas-
cade R-CNN, we use three stages and the IoU threshold for
RoI positive/negative assignment is set to 0.3, 0.4, 0.5 for
each stage. The loss weight for each stage is set to 0.5, 0.5
and 1.0 respectively. This is tailored for OID-C dataset that
evaluates AP at IoU threshold 0.5.

The performance of these models on the validation set is
shown in Table 1. We compare the proposed two different
approaches of label expansion and score aggregation to deal
with the hierarchical class structure. The score aggregation
consistently works better than the label expansion version.

4.2. Expert Models

Although class-aware sampling improves the perfor-
mance of rare classes, the performance on different classes
still varies a lot. To improve the performance on classes
that have relatively low AP, we train several expert mod-
els. Specifically, we select 219 classes where the AP is be-
low average to form a training subset. To improve train-
ing speed, we further separate these classes into 20 groups
based on the hierarchical structure such that similar classes
and all sibling classes are within the same group.

We train one model for each of the 20 groups. X152-
DCN is used as the backbone and the model trained on the
full dataset is used for fine-tuning. The first three stages of
ResNeXt-152 are frozen to avoid over-fitting. The number
of classes in each group ranges from 5 to 20. Models are
trained for 50K to 200K iterations based on the training set
size in each group. The initial learning rate is set to 0.002
and reduced similarly as the training of a single model.



Table 2. Model ensemble performance comparison on the validation set. The first row shows the operations applied in order.
models↓ NMS Score Voting Box Voting Soft-NMS mAP @ Val
single models τ = 0.5 NO NO NO 71.95
single models NO NO NO σ = 0.2 72.10
single models τ = 0.6 NO NO σ = 0.2 72.27
single models NO τ = 0.5 NO NO 73.61
single models NO τ = 0.6 NO σ = 0.2 74.02
single models NO τ = 0.6 τ = 0.6 σ = 0.2 74.22
single + expert models NO τ = 0.6 τ = 0.6 σ = 0.2 75.22

For dataset processing, we use class-aware sampling and
soft label propagation similar to what we do on the full set.
Moreover, as each group only considers a small subset of
classes, the bounding box annotations of other classes will
not be used. To avoid generating potential false negatives
during training, for all classes in each group, we treat the
bounding box of their ancestor classes as neutral labels so
that the region is ignored from sampling RoIs.

4.3. Ensemble Method

For model ensemble, we first add the detection results
from all single models and expert models. Then we per-
form bounding box ensemble for each class separately. We
observe that simply applying NMS on top of all detection
results gives very limited gain because it cannot take full ad-
vantage of all the detection results. As the evaluation metric
(AP) is highly dependent on the confidence score (or the or-
der) of the bounding boxes, the key in model ensemble is
to explore how to use the bounding box locations and con-
fidence scores to generate new bounding box and/or change
the order of the bounding boxes.

To this end, we propose a novel score voting and box
voting method to better fuse the bounding box locations and
confidence scores. This is based on the assumption that if
there are more bounding boxes detected at a similar location
from multiple models, the probability that there should be
a true detection is higher. Therefore, we propose to refine
both the bounding box location and the confidence score
based on the IoU between the detected boxes.

Score Voting Given a pre-defined IoU threshold τ , con-
ventional NMS will remove all bounding boxes if they are
overlapped with a box of higher confidence with IoU larger
than τ . In contrast, we use score voting that will accumu-
late the confidence scores from all removed boxes to the
box with the highest confidence. Moreover, the confidence
score is weighted by the IoU score.

Box Voting Different from conventional NMS and score
voting that will remove the bounding boxes with lower con-
fidences, box voting is proposed to fuse the bounding boxes
to produce a new box. Starting from the box with the high-
est confidence, we find a list of bounding boxes with IoU

Table 3. Performance comparison on the test set.
team↓ public private
MMfruit 68.17 65.89
imagesearch 68.16 65.34
Prisms 67.17 64.21
PFDet 65.45 62.22
Omni-Detection (Ours) 63.14 60.41

larger than τ to this box. Then we calculate a weighted av-
erage of all the boxes to generate a new box. The weight for
each bounding box is the confidence score.

Compared to conventional NMS and soft-NMS, our pro-
posed score voting and box voting can take better use of
all bounding box information to generate more robust re-
sults. In Table 2, we compare the performance on various
combination of the proposed voting methods. We have sev-
eral observations: 1) simply applying NMS operation on all
detection results yields 1.6 points gain in mAP compared
to the single best model in Table 1. 2) Soft-NMS can im-
prove the performance to some extend by down-weighting
the confidence scores of overlapped box with lower confi-
dences. 3) The proposed score voting and box voting can
boost the performance significantly, which shows the effec-
tiveness of the proposed voting methods in model ensemble.
4) The expert models can bring 1.0 point gain in mAP. Fi-
nally, in our experiments, we apply score voting and box
voting at the same time with τ = 0.6 to keep more boxes.
Soft-NMS is applied afterwards using the Gaussian-based
confidence re-weighting with σ = 0.2.

Table 3 shows the performance comparison on the test
set. Despite that most of the top ranked teams have used ex-
ternal object detection dataset like Object365, our solution
ranked the 5th without using any external dataset.

5. Conclusions
In this report, we have described the details of our solu-

tion to the Open Images V5 Detection Challenge. We have
made three major contributions. First, our soft label prop-
agation can alleviate the incomplete annotation problem to
a large extend. Second, the score aggregation method can



well handle the hierarchy structured class semantics during
inference. Third, we propose a novel and robust model en-
semble method with score voting and box voting that can
boost the performance significantly. With these approaches,
our method ranked the 5th place without using any external
object detection dataset.
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