MMfruit - OpenImage 2019 1st solution

Yu Liu, Guanglu Song, Yuhang Zang, Yan Gao, Junjie Yan, Chen Change Loy, Xiaogang Wang

Multimedia Laboratory, The Chinese University of Hong Kong Multimedia Laboratory, Nanyang Technological University Sensetime X-Lab

Team members

MMfruit Team

Yu Liu

Guanglu Song

Yuhang Zang

Yan Gao

Junjie Yan

Chen Change Loy

Xiaogang Wang

Results Breakdown

- 39 models in total (including exps):
- Data distribution:
 - 26 trained by all classes
 - 3 expert models (low AP)
 - 2 models from COCO
 - 8 models from 0365
- Framework:
 - 27 from pytorch
 - 10 from tensorflow
- 32~512 accelerators for each model
- 2 images on each accelerator

Solutions

- Multiple Large Backbones
- Gradient Decoupling
- Class Sampling & Full Batch
- Augmentation (Segmentation Label)
- Truncated Loss
- Multiscale Testing
- Adj-soft NMS
- Expert Model
- Weakly & Fully Supervised Pipeline
- Auto Ensemble

Multiple Large Backbones

Model Zoo

Decoupling Backbone (Naive implementation)

Gradient Decoupling

Learn the offset for classification and regression separately.

 $C = \mathcal{F}_c(F; heta_c) \;\; C \in \mathbb{R}^{k imes k imes 2}$

CML for classification: $L_c = \left|S_o - S + m_c
ight|_+$

Exp on OpenImage2019

$R = \mathcal{F}_r(F; heta_r)$	$R \in \mathbb{R}^{1 imes 1 imes 2}$
--------------------------------	--

for regression: $L_r = \left| IoU_o - IoU + m_r \right|_+$

Exp on COCO 2017 (FPN)

Model	DCP	Val	Public LB	Model	A1	A2	A3	CML	DCP	mAP(IOU=0.50:0.95)
ResNet50		64.64	49.79	ResNet50						36.1
ResNet50	V	68.18	52.55	ResNet50	\checkmark					37.3
DCN-ResNext101		68.70	55.05	ResNet50		V				38.0
DCN-ResNext101	V	71.71	58.59	ResNet50						38.5
DCN-SENet154		71.13	57.77	ResNet50					\checkmark	39.7
DCN-SENet154	V	72.19	60.5	ResNet50					\checkmark	40.8

A1: separate classification and regression

A2: Deformable ROIPooling for classification and ROIAlignPooling for regression.

A3: Deformable ROIPooling for classification and Deformable ROIPooling for regression.

Class Sampling & Full Batch

Class-aware sampling & full batch:

Augmentation (Segmentation Label)

Elaborate Augmentation

Select an image and a bounding box

Copy-and-Paste Augmentation

Truncated Loss

Missing (red dashed box): human eye, ear, nose, mouth,

. . .

Missing (red dashed box): wheel, tire, tree, light, ...

[600, 800, 1000, 1333, 1666, 2000]

Adj-soft NMS

 $Input: \mathcal{B} = \{b_1, \cdots, b_N\}, \mathcal{S} = \{s_1, \cdots, s_N\}, T = 0.5$ Begin

$$\mathcal{D} \leftarrow \{\}$$

 $\mathcal{D} \leftarrow Step1(\mathcal{B}, \mathcal{S}, \mathcal{D}, T) \text{ NMS } \}$
 $\mathcal{F} \leftarrow \{\}$
 $\mathcal{F} \leftarrow Step2(\mathcal{B}, \mathcal{S}, \mathcal{D}) \text{ Soft-NMS } \}$
 $return \ \overline{\mathcal{F}}, \overline{\mathcal{S}}$
 end

Model	Adj-soft NMS	Public LB
{4models}		59.40
{4models}	\checkmark	60.35

Expert Model

Weakly & Fully Supervised Pipeline

Auto Ensemble

• Functions set, such as NMS, Adj-soft NMS, and so on

Selecting the operation in each Ovia greedy algorithm

Misc.

• Confusing definitions:

• For more please read our solutions

Thanks, Q & A