# LEARNING AN EFFICIENT NETWORK FOR LARGE-SCALE HIERARCHICAL OBJECT DETECTION WITH DATA IMBALANCE

3<sup>rd</sup> place solution to Open Images Detection Challenge 2019 X Bu, J peng, C Wang, C Yu, G Cao

#### Outline

- Features of Open-Images dataset(Object Detection)
- Single-model solution
- Ensemble

# Features of Open-Images Dataset

- Large scale of data with partial annotations
- Extremely imbalanced data
- Hierarchical label
- Confused annotations

# Large scale of data with partial annotations

- Huge number of training images and instances.
- A great amount of instances are not annotated in training set.

| Dataset     | Pascal VOC | COCO    | Objects365 | Open Images |
|-------------|------------|---------|------------|-------------|
| Categories  | 20         | 80      | 365        | 500         |
| Images      | 11,540     | 123,287 | 638,630    | 1,784,662   |
| Boxes       | 27,450     | 886,287 | 10,101,056 | 12,421,955  |
| Boxes/image | 2.4        | 7.2     | 15.8       | 7.0         |

# Extremely imbalanced data



- Category like person has 1.4M instances annotated.
- Category like pressure cooker has only 14 instances annotated.

#### Hierarchical Label

Strawberry => fruit



Sometimes labeled as parent class.

Strawberry => strawberry



Sometimes labeled as leaf class.

# **Confusing Annotations**



An instance is labeled as *flashlight* and *torch* at the same time.

A *cello* is wrongly annotated as *violin* while keeping the label of *cello*.



# Single-Model Solution

- Backbone
- Loss function
- Data balance sampling
- Data Augmentation
- Classifier

#### Baseline

- Config
  - Backbone: ResNeXt152-32x4d
  - Training from scratch(20epochs)
  - Sync BN
  - More FPN stages
  - More anchors
  - Multi-scale train
  - Multi-scale test
- Performance
  - AP50: 53.88

| Method                          | Public Leader board |
|---------------------------------|---------------------|
| Baseline (FPN with ResNeXt-152) | 53.88               |
| +EfficientNet-B7                | 55.59               |
| +Distributed Softmax Loss       | 56.43               |
| +Class-aware Sampling           | 61.09               |
| +Auto Augmentation              | 61.84               |
| +Classifier                     | 62.29               |
| +Ensemble                       | 67.17               |

# EfficientNet(Initial Trial)

- We set 600pixels as initial size.

Search B0 to B1 under constraint 
$$d, w, r = \underset{\alpha, \beta, \gamma}{\operatorname{arg\,max}} (mAP(model(\alpha, \beta, \gamma)))$$
 s.t.  $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$ 

- Scale up B1 to B7(1.2/1.15/1.05)
- Single scale improvement: 1.8
- However, multi-scale test brings no improvement.

#### Two Reasons:

- 1. FLOPs are equally spread on each stage during scaling-up.
- 2. Input size of B7 is 1200.



# EfficientNet(Final Trial)

#### Config:

- Fix short side to 800.
- Shrink width.
- Make it deeper and concentrate most FLOPs on later stages.

#### Performance:

- Single-scale test 1.4
- Multi-scale test 1.7

| Method                          | Public Leader board |  |
|---------------------------------|---------------------|--|
| Baseline (FPN with ResNeXt-152) | 53.88               |  |
| +EfficientNet-B7                | 55.59               |  |
| +Distributed Softmax Loss       | 56.43               |  |
| +Class-aware Sampling           | 61.09               |  |
| +Auto Augmentation              | 61.84               |  |
| +Classifier                     | 62.29               |  |
| +Ensemble                       | 67.17               |  |

#### Distributed Softmax Loss

■ Vanilla Softmax:

$$\mathcal{L}_{cls} = \sum_{c=1}^{C} \mathbb{1}_{y_c=1} log(\frac{e^{x_c}}{\sum_{i=1}^{C} e^{x_i}})$$

Distributed Softmax:

$$\mathcal{L}_{cls} = \sum_{c=1}^{C} y_c log(\frac{e^{x_c}}{\sum_{i=1}^{C} e^{x_i}})$$

| Method                          | Public Leader board |
|---------------------------------|---------------------|
| Baseline (FPN with ResNeXt-152) | 53.88               |
| +EfficientNet-B7                | 55.59               |
| +Distributed Softmax Loss       | 56.43               |
| +Class-aware Sampling           | 61.09               |
| +Auto Augmentation              | 61.84               |
| +Classifier                     | 62.29               |
| +Ensemble                       | 67.17               |

y\_c means (1/k), where k means number of multiple labels

# Data-Balance Sampling

- Equally sample images of each class in an epoch.
- NOTE1: Models with data-balance sampling COULD NOT be trained from scratch.
- NOTE2: Data-balance does not work fine with many tricks, including DCN, Nas-FPN, Heavier head.

| Method                          | Public Leader board |
|---------------------------------|---------------------|
| Baseline (FPN with ResNeXt-152) | 53.88               |
| +EfficientNet-B7                | 55.59               |
| +Distributed Softmax Loss       | 56.43               |
| +Class-aware Sampling           | 61.09               |
| +Auto Augmentation              | 61.84               |
| +Classifier                     | 62.29               |
| +Ensemble                       | 67.17               |

#### Auto Data Augmentation

- We used the searched autoaugmentation strategy.
- Apply it on only rare classes when using data-balance.

| Method                          | Public Leader board |
|---------------------------------|---------------------|
| Baseline (FPN with ResNeXt-152) | 53.88               |
| +EfficientNet-B7                | 55.59               |
| +Distributed Softmax Loss       | 56.43               |
| +Class-aware Sampling           | 61.09               |
| +Auto Augmentation              | 61.84               |
| +Classifier                     | 62.29               |
| +Ensemble                       | 67.17               |

#### Classifier

- We train several image classifiers of 500 classes and filter the detection result with an extremely low threshold.
- The classifiers are also trained with distributed softmax loss.

| Method                          | Public Leader board |
|---------------------------------|---------------------|
| Baseline (FPN with ResNeXt-152) | 53.88               |
| +EfficientNet-B7                | 55.59               |
| +Distributed Softmax Loss       | 56.43               |
| +Class-aware Sampling           | 61.09               |
| +Auto Augmentation              | 61.84               |
| +Classifier                     | 62.29               |
| +Ensemble                       | 67.17               |

#### Ensemble

- 1. We trained 20 models in total.
- 2. Randomly split them into 4 groups.
- 3. Rescore boxes, merge and apply NMS(Including box voting).
- 4. Repeat 3 on the four ensemble results.

| Method                          | Public Leader board |
|---------------------------------|---------------------|
| Baseline (FPN with ResNeXt-152) | 53.88               |
| +EfficientNet-B7                | 55.59               |
| +Distributed Softmax Loss       | 56.43               |
| +Class-aware Sampling           | 61.09               |
| +Auto Augmentation              | 61.84               |
| +Classifier                     | 62.29               |
| +Ensemble                       | 67.17               |

#### Conclusion

- Data-balance are extremely important.
- The ensemble strategy is very important.
- The variety of model pool for ensemble is important.

# Thank you!