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Abstract
Estimation of susceptibility differences in human health risk assessment (HHRA) has been challenged by a lack of available 
susceptibility and variability data after exposure to a specific environmental chemical or pharmaceutical. With the increas-
ingly large number of available data sources that contain polymorphism and other genetic data, human genetic variability that 
informs susceptibility can be better incorporated into HHRA. A recent policy, the 2016 The Frank R. Lautenberg Chemical 
Safety for the twenty-first Century Act, requires the US Environmental Protection Agency to evaluate new and existing 
toxic chemicals with explicit consideration of susceptible populations of all types (life stage, exposure, genetic, etc.). We 
propose using the adverse outcome pathway (AOP) construct to organize, identify, and characterize human genetic suscep-
tibility in HHRA. We explore how publicly available human genetic datasets can be used to gain mechanistic understanding 
of molecular events and characterize human susceptibility for an adverse outcome. We present a computational method 
that implements publicly available human genetic data to prioritize AOPs with potential for human genetic variability. We 
describe the application of this approach across multiple described AOPs for health outcomes of interest, and by focusing 
on a single molecular initiating event. This contributes to a long-term goal to improve estimates of human susceptibility for 
use in HHRA for single and multiple chemicals.

Introduction

Genetic susceptibility and variability in response to envi-
ronmental chemicals across human populations is an 
active area of investigation for human health risk assess-
ment (HHRA) (NRC 2010; Krewski et  al. 2014). The 
National Research Council (NRC) defined susceptibility 
as “the capacity to be affected” (NRC 2009) and stated 
that “variability in human susceptibility has not received 
sufficient or consistent attention in many EPA health risk 
assessments...” in their Science and Decisions: Advancing 
Risk Assessment report (NRC 2009). Four additional NRC 
reports include the need for incorporating human interin-
dividual variability data in risk assessment (NRC 2009, 
2011a, 2014a, 2014b, 2016). Two of these reports (NRC 
2009, NRC) encourage the EPA to integrate information 
from twenty-first century methods. The NRC also makes 
recommendation on how emerging data streams (e.g., big 
data and toxicogenomic) can be integrated and used to 
improve risk-related evaluations (NRC 2017). Addition-
ally, two EPA policies require accounting for life stage 
susceptibility for environmental chemicals, including the 
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Food Quality Protection Act (FQPA 1996) and the Safe 
Drinking Water Act amendments (SDWA 1996). Most 
recently, the Frank R. Lautenberg Chemical Safety for 
the twenty-first Century Act (Public Law 114-182 2016), 
also referred to as the amended Toxic Substances Control 
Act (TSCA), modernizes and accelerates the pace of US 
EPA’s toxic chemical evaluation process and, includes a 
requirement for consideration of all types of susceptibility. 
The law defines a ‘potentially exposed or susceptible sub-
population’ as “…a group of individuals within the gen-
eral population identified by the Administrator who, due 
to either greater susceptibility or greater exposure, may 
be at greater risk than the general population of adverse 
health effects from exposure to a chemical substance or 
mixture, such as infants, children, pregnant women, work-
ers, or the elderly’’ (Public Law 114-182 2016). The law 
also requires prioritization of potentially high-risk toxic 
chemicals, in part based on “unreasonable risk to a poten-
tially exposed or susceptible subpopulation” (Public Law 
114-182 2016).

Current EPA approaches to incorporating genetic sus-
ceptibility information into HHRA include an assessment 
template that prompts the description of various suscep-
tibility factors, including genetic factors. For example, 
genetic factors are considered in the “At Risk” Chapter 
of the Integrative Science Assessments (ISA) that sup-
port national ambient air quality standards (NAAQS) 
(Sacks et al. 2010) and a weight of evidence approach is 
used to determine potential modifying factors in the ISAs 
(Vinikoor-Imler et al. 2014). IRIS toxicological reviews, 
which develop noncancer oral reference doses (RfDs) or 
inhalation reference concentrations (RfCs), and unit risk 
estimates for cancer potency by each exposure route, 
include a susceptibility section that synthesizes the avail-
able information qualitatively. In rare cases such as the US 
EPA IRIS cancer assessment for benzene, human polymor-
phism data leading to differences in response to benzene, 
specifically single nucleotide polymorphism (SNP) data in 
benzene metabolic enzymes (CYP2E1, NADPH-depend-
ent quinone oxidoreductase, MPO, GSH transferase, etc.), 
were included (US EPA 2002). However, comprehensive 
genetic data addressing specific chemical effects are often 
lacking and further, methods for quantitatively utilizing 
genetic information are limited. For this reason, one of 
the challenges for HHRA is quantifying human variability 
and defining the full range of response values that define a 
susceptible population. In EPA noncancer assessments, the 
approach for deriving a reference response value is to iden-
tify the point of departure and then, apply a set of default 
adjustment or uncertainty factors to account for missing 
data. For the case of intraspecies (interhuman) variability, 
the intraspecies [human uncertainty factor (UFH)] default 
value of 10X [comprised of 3X for toxicokinetics (TK) and 

3X for toxicodynamic (TD) differences] is applied in the 
absence of data on human variability.

The approach presented herein aims to improve upon 
these existing measures through the identification and use 
of publically available genetic data, a first step in the predic-
tion of susceptibility. The use of publicly available human 
genetic data eliminates the need for considering uncertainty 
when extrapolating from other organisms to humans. One 
approach for integrating mechanistic and polymorphism 
data to characterize human genetic susceptibility to chemi-
cal exposure has been described by Mortensen and Euling 
(2013). Here, we build upon this approach by using the 
chemical agnostic adverse outcome pathway (AOP) (Ankley 
et al. 2010; Villeneuve et al. 2014a, b) as a framework for 
organizing and integrating data sources for genetic suscep-
tibility, and to identify mechanistically relevant molecular 
targets. By investigating the genetic components of environ-
mental toxicant susceptibility etiology, we can better under-
stand the mechanistic components implicated in adverse 
outcomes, and characterize the individual and population 
level heterogeneity and heritability of exposure risk. We pre-
sent a computational approach that integrates mechanistic 
data associated with an AOP with data capturing human 
genetic variability and function. This AOP-anchored genetic 
susceptibility approach uses both functional genomic and 
human polymorphism data to characterize individual and 
population level genetic variation that may impact responses 
to environmental chemicals. Here, we first review the cur-
rent state of the science in the incorporation of genetic data 
to define susceptibility to environmental chemicals (also 
refer to Chui and Rusyn, this issue). Secondly, we outline 
a general computational approach that implements exist-
ing adverse outcome information with available functional 
genomic data to define human genetic susceptibility. Lastly, 
we discuss future directions and the preparation for case 
study to illustrate aspects of the approach. The approach 
presented here is a first step towards defining genetic sus-
ceptibility using publicly available data, and contributes to 
the long-term goal of a more comprehensive model of sus-
ceptibility and risk for HHRA in the future.

Review of existing approaches for the study 
of human diversity in chemical response

To identify examples using genetics to define susceptibility 
to environmental chemicals, we used EPA’s HERO data-
base (http://www.hero.epa.gov) to simultaneously search 
PubMed, Toxnet, and Web of Science (described in S1). 
Subsearches were designed in collaboration with EPA sci-
ence librarians to identify the literature on (1) approaches for 
incorporating genetic susceptibility information into HHRA, 
including a query about whether the AOP construct had been 
used previously; and (2) human genetic susceptibility data 
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192	 H. M. Mortensen et al.

1 3

sources (review articles, primary research, and databases 
of information). Subsequent sorting of the literature was 
performed using defined inclusion and exclusion criteria. 
In addition to the HERO literature searches, “snowball 
searches” (based on backward searches and discussions with 
experts) and Google searches were used to identify publicly 
available human genetic sequence annotation resources and 
phenotypic inference tools. Key conclusions from the litera-
ture subsearch results are that (1) there is substantial interest 
in utilizing polymorphism data to inform HHRA, but lim-
ited data exists describing the associations between chemical 
exposures and health outcomes; and (2) no prior approach 
had utilized the AOP construct for this purpose. In general, 
current efforts to characterize susceptibility for chemical risk 
assessment typically fall into three subject areas: (1) dis-
ease/biomarker characterization, (2) in vitro human diversity 
panel approaches, and (3) in silico toxicokinetic approaches.

Disease‑biomarker studies

Davis and Burgoon (2015) studied a SNP (rs13266634 
in SLC20A8 zinc transporter) previously identified to be 
associated with type II diabetes mellitus (T2DM) (Cauchi 
et al. 2010) and calculated the attributable risk based on 
reported SNP frequency in three cohorts (Mexican, Asian, 
and European). The authors then applied this information 
to the California demographic data (2007–2011 American 
Communities Survey: Caucasian, Asian, and Mexican (of 
any race) populations) to identify community-specific “hot-
spots” at increased risk of developing T2DM. Demographic 
data were obtained from the US Census Bureau and counties 
with > 25% of their population residing in census tracts in 
the highest quintile for population attributable risk (PAR) 
were identified as “hotspots.” Although this approach is lim-
ited to the data available in different populations, this genetic 
risk measure could be used to adjust for T2DM health out-
comes in a population-specific manner.

A second disease focused study implemented the Envi-
ronmentally sensitive genes (ESG) from the NIEHS’ Envi-
ronmental Genome Project (http://egp.gs.washi​ngton​.edu/); 
(Wilson 2004) to identify variants in genes statistically asso-
ciated with myeloproliferative neoplasms (MPN) (Gross-
Davis et  al. 2015). Genes that contained nsSNPs, with 
a > 5% minor allele frequency (MAF), were considered. One 
hundred and fourteen Phase I and Phase II metabolism genes 
were initially investigated. The Genome Variation Server 
(GVS) (http://gvs.gs.washi​ngton​.edu) was used to facilitate 
nsSNP identification and selection for genotyping, where 82 
genes with coding region SNPs were selected. Twenty-one 
genes were identified to be relevant to a mutagenic path-
way, and variants in 13 ESGs were found to be statistically 
significantly associated with MPN risk (Gross-Davis et al. 
2015). While this study provides qualitative information on 

gene-environment interactions, measurements of exposure 
were not included in this study.

In vivo and in vitro diversity panel approaches

Much of the work in genetics and medicine surrounding 
human diversity panels or more specifically, human diversity 
cell lines, has been for the purpose of gaining understanding 
into human variation, genetic diversity, and human evolu-
tion, though these human genetic diversity studies were not 
incorporated in environmental toxicology until relatively 
recently.

In a recent toxicological application of the 1000 Genomes 
resource, Abdo (2015a, b) evaluated lymphoblastoid cell 
lines (LCLs) from the 1000 Genomes Project against a 179 
chemical subset from the NTP’s 1408 chemical library (1000 
Genomes Project Consortium 2010) to identify genetic vari-
ants associated with cytotoxic responses. Using GWAS data, 
Abdo (2015a, b) found genetic variants in transmembrane 
and solute carrier genes that were associated with cytotox-
icity. Depending on the level of chemical concentration 
in vitro (factor of 3), these variants captured the response in 
the top 1% of “sensitive” individuals. However, there were 
some chemicals outside of this range (factor of 10 rather 
than 3) that may be good targets for further evaluation. 
Works like these can provide the evidence needed to prior-
itize chemicals and genetic loci for further evaluation. Chui 
et al. (2016) proposed a tiered workflow whereby chemicals 
eliciting the most divergent population responses are com-
putationally identified using in silico models (Eduati et al. 
2015), and then further characterized to determine popu-
lation-wide responses. An integrative in vitro and in silico 
tiered approach may have the most realistic application to 
chemical prioritization and translation to hazard identifica-
tion by including computational approaches to assess physi-
ochemical properties and structure–activity relationships.

Where the in vitro models are insufficient (i.e., miss key 
biological spaces, lack comparative metabolism data, and 
lack toxicokinetics) in vivo models can gain traction. There 
are several new rodent population models available that 
were recently reviewed by Harrill (2017). The Collabora-
tive Cross (CC) (Churchill et al. 2004 , Churchill et al. 2012; 
Threadgill and Churchill 2012), a breeding scheme designed 
to generate a large panel of genetically diverse recombinant 
inbred strains from 8 genetically distinct founder strains, was 
recently applied for the first time in toxicological studies. 
Cichocki (2017) and Venkatratnam (2017) used CC sample 
populations to investigate how genetic variation influenced 
tetrachloroethylene and trichloroethylene, respectively, 
metabolism to metabolites including trichloroacetic acid 
(TCA). TCA is a known PPARα agonist thought to mediate 
toxicities elicited by metabolism of the chlorinated olefins 
such as TCE (Corton 2008), a metabolite also influenced by 
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genetic variation (Bradford et al. 2011). Even though rodent 
studies would still require an interspecies uncertainty fac-
tor of 10, we can begin to use these in vivo data to build 
evidence-based biological plausibility for pathways linking 
exposure to outcome that incorporate critical toxicodynamic, 
toxicokinetic, and dose–response information. For example, 
notable findings from Cichocki (2017) and Venkatratnam 
(2017) found that TCA levels did not covary across the CC 
stains, but the PPARa responsive genes Acox1 and Cyp4a10 
mRNA levels did, suggesting interactions between genetic 
variants that influenced the PPARa network response to 
TCA. This critical MOA information would be missed if not 
for in vivo data. Furthermore, these studies can help identify 
critical genetic variants that might put human populations 
at risk of an adverse health outcome from chlorinated olefin 
exposure. Clearly, there is a need to organize in vitro, in 
silico, and in vivo findings into an integrative AOP frame-
work, further supported by human exposure, biomarker, and 
epidemiologic evidence (if available), so that causal relation-
ships can be defensibly determined.

Modeling human toxicokinetic variability 
through in silico approaches

Polymorphism data are routinely incorporated into compu-
tational models to quantitate population variability to drug 
responses (Rostami-Hodjegan and Tucker 2007; Rostami-
Hodjegan 2012; Sager et al. 2015). Many of these models use 
in vitro-in vivo extrapolation (IVIVE) approaches to inte-
grate in vitro chemical-specific data (e.g., intrinsic hepatic 
clearance, fraction of the chemical unbound in plasma) 
into toxicokinetic (TK) models [e.g., physiologically based 
pharmacokinetic (PBPK)], where TK variability is known 
to exist among different populations and may impact tissue 
dosimetry (Clewell et al. 2002). Specifically, variability in 
age (Johnson et al. 2006), race (Inoue et al. 2006), gender 
(Polak et al. 2012), and genetic polymorphisms (including 
drug metabolizing enzymes) (Dickinson et al. 2007; Gertz 
et al. 2014) have been simulated in these models using 
Monte Carlo methods to estimate diversity in pharmacoki-
netic behavior. The power of these IVIVE approaches allows 
us to make predictions of specific compound responses using 
in vitro human data without the need for allometric scaling 
of animal data. These modeling approaches have been used 
in estimating population TK variability for environmental 
chemicals (Clewell and Andersen 1996). The combining of 
genetic polymorphism distributions with their effects on TK 
distributions illustrates the potential to provide quantitative 
estimates of TK variability for sensitive populations (Johan-
son et al. 1999, Timchalk et al. 2002).

Computational approaches are utilizing human vari-
ability parameters and in vitro high-throughput screen-
ing (HTS) data together in population-specific dosimetry 

models for estimating toxicity potential of non-pharmaceu-
tical compounds (Rotroff et al. 2010; Wetmore et al. 2012, 
2014; Wambaugh et al. 2015). The idea was to convert the 
chemical-assay HTS data, gathered from the Federal Tox21 
partnership (Kavlock et al. 2009) and the U.S. EPA’s Tox-
Cast program (Dix et al. 2007) to equivalent doses utilizing 
information on in vitro measured TK parameters (fraction 
of the chemical unbound in plasma and the intrinsic meta-
bolic clearance), physicochemical properties and population 
variability using the Simcyp simulator (Jamei et al. 2009a, 
b). Simcyp has a population variability function, which uti-
lizes information on age, weight, height, sex, genetics, race, 
and disease. Specifically, the frequencies of CYP and UGT 
enzyme polymorphism are captured in this program (Gins-
berg et al. 2009). Specifying a population of 100 healthy 
adults (20–50 years old) of both sexes, a subset of chemicals 
were identified as having equivalent HTS doses lower than 
or equal to estimated U.S. population exposures (Rotroff 
et al. 2010; Wetmore et al. 2012; Wambaugh et al. 2015), 
indicating potential biological activity for these environ-
mental chemicals. Furthermore, individual CYP and UGTs 
expression profiles were measured for 9 chemicals, where 
life-stage and ethnicity models revealed up to a 13.1-fold 
difference in steady-state blood concentrations for the most 
sensitive population over the median (Wetmore et al. 2014). 
Subsequent work has broadened the use of these approaches 
by providing a publicly available tool [High-Throughput 
Toxicokinetic (HTTK) R-package] to perform these analy-
ses and incorporate population variability (Wambaugh et al. 
2015; Pearce et al. 2017; Ring et al. 2017). Whether the 
population parameters used in these computational models 
are sufficient for the purposes of risk assessment and how 
computational approaches that incorporate TK and TD can 
be integrated with more comprehensive genetic susceptibil-
ity information across diverse outcomes has yet to be sys-
tematically investigated.

Incorporation of genomic information 
into an AOP framework

The AOP framework provides an integrative tool for adapt-
ing existing data, including HTS assay information like 
that generated by the Federal ToxCast and Tox21 programs 
(Dix et al. 2007; Collins et al. 2008). AOPs are generally 
described by key events (KE) within different levels of 
organization (molecular, cellular, tissue, organism, popula-
tion) that when perturbed lead to an adverse outcome (AO). 
The MIE is the first KE in a pathway, thought to trigger 
the adverse outcome, but can also act as a KE in alternate 
AOPs. The entire path (linear or networked) is anchored by 
an upstream molecular initiating event (MIE), the first point 
of chemical–molecular interaction, and leading one or more 
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key events (KE) to an adverse outcome (Ankley et al. 2010; 
Villeneuve et al. 2014a, b).

The pace at which genetic information can be incorpo-
rated into risk assessment decisions depends to a certain 
extent on expert-driven AOP development. The AOP devel-
opment process has been described (Villeneuve et al. 2014a, 
b). Formal guidance on AOP development can be found in 
the “Guidance on Developing and Assessing AOPs” docu-
ment (IOMC 2017). Additionally, confidence frameworks 
have been developed for the implementation of AOPs for 
regulatory purposes (Patlewicz et al. 2015). These efforts 
have been underway for several years and publicly avail-
able web-based applications exist, such as the AOP Knowl-
edgeBase (AOP-KB) (http://aopkb​.org/index​.html), which 
includes modules like the AOPWiki (https​://aopwi​ki.org/), 
a central repository for all AOPs developed as part of the 
Organization for Economic Co-operation and Development 
(OECD) AOP development effort by the Extended Advi-
sory Group on Molecular Screening and Toxicogenomics. 
EPA efforts like the AOP-DB, a database tool that integrates 
publicly available AOP resources with gene, pathway, and 
disease information (Pittman et al. 2017), make it possible 
to link AOP information from the AOPWiki to gene target 
and in vitro assay information from ToxCast, for example 
(S2). These data will soon be available to the public through 
the EPA Chemistry Dashboard (https​://compt​ox.epa.gov/
dashb​oard), and possibly as a user-friendly frontend in the 
near future dependent on EPA research funding available. 
Resources like the AOP-KB, AOP-Wiki, and AOP-DB are 
integral in the computational prediction of AOPs discussed 
by Oki (2016).

In order to apply genetic information into risk assess-
ment paradigms, it is critical to integrate genetic data 
so that the relationship between chemical-gene target 
and population polymorphism data is clearly linked to 
an adverse outcome (Fig. 1). Given the AOP concept is 
relatively novel, it is not surprising that there is a lim-
ited number of well-characterized and documented AOPs 
(https​://aopwi​ki.org/). For this reason, it is important for 
any susceptibility approach to integrate disease, pathway, 
and chemical association information when available. 
Table 1 lists the data sources necessary to integrate AOP 
information with functional genomic targets, as well as 
the data sources used to characterize selected targets for 
tissue level expression and individual and population level 
variation. Figure 2 describes the proposed computational 
workflow for the characterization of human individual and 
population level susceptibility to an adverse outcome. The 
derivation of a relevant gene list associated with a bio-
logical process and leading to an adverse outcome (Step 
1), underlines that a gene set could be selected for a sin-
gle or multiple biological processes simultaneously. The 
selected gene set is then validated (Step 2) to establish that 
is in fact relevant for the biological process in question. 
The individual genes in question are then characterized 
in terms of their regulatory regions (Step 3), so that the 
functionally relevant SNPs can be selected (Step 4), and 
finally characterized for individual and population level 
variation (Steps 5 and 6).

Fig. 1   Conceptual model of 
associations needed between 
genetic human genetic vari-
ability, environmental chemical 
exposure, and adverse outcomes 
to inform genetic susceptibility 
in HHRA. Note that multiple 
data sources linking environ-
mental exposures to human 
genetic variability information, 
and in turn linking genetic 
susceptibility to environmental 
exposures to adverse outcomes 
(illustrated by arrows), are 
needed to be informative to 
HHRA

http://aopkb.org/index.html
https://aopwiki.org/
https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
https://aopwiki.org/
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Steps 1 and 2: mechanism‑relevant gene lists 
for environmental toxicology

To characterize population genetic variation for a single 
observed, complex phenotype, it is critical to identify the 
mechanistic targets (e.g., genes, proteins, and epigenetic 
factors) controlling the phenotype as completely as pos-
sible. Because the knowledge of any given complex phe-
notype, and the completeness of genetic elements known 
to control it, depends wholly on the state of the science at 

a given time, a mechanistically relevant gene list is tem-
porally dependent and can be derived in a variety of ways, 
such as from an AOP with defined molecular MIE and 
KEs, a disease or phenotype of interest, a list of assay tar-
gets with environmental association, or a computationally 
derived list based on pathways or ontologies, for example. 
Figure 3 illustrates the overlap in number of molecular 
targets between four data sources (refer to Table 1 for 
links to sources), expert-derived AOPs obtained from the 
joint EPA-OECD AOP-Wiki (http://www.AOPwi​ki.org); 

Table 1   Data source, level of biological organization, and data type included

Table format adapted from Oki et al. (2016)
Y definitely covers this level of organization, N definitely does not covers this level of organization, I inferred data, – ambiguous, A data aggrega-
tor, C curated data, R raw data, P processed data

Data source Level of biological organization Data type Data source location

Molecular Bio-
logical 
pathway

Cellular Tissue Organ Individual Population

dbSNP Y N N N N Y Y R, P, C, I https​://www.ncbi.nlm.nih.
gov/proje​cts/SNP/

dbVar Y N N N N Y Y R, C, A https​://www.ncbi.nlm.nih.
gov/dbvar​

dbGaP Y – – – – Y Y A https​://www.ncbi.nlm.nih.
gov/gap

ClinVar Y – – – – Y N A https​://www.ncbi.nlm.nih.
gov/clinv​ar/

CTD Y Y Y – – – – C http://ctdba​se.org/
REACTOME Y Y – – – N N C http://www.react​ome.org/
1000 Genomes Y – – – – Y Y R, P http://www.inter​natio​nalge​

nome.org/data/
UniProt Y – – – – – – C uniprot.org
Ensembl Y Y Y Y Y Y Y A, C, P http://ensem​bl.org/
ENCODE Y – Y – – – N R ENCODE https​://www.

encod​eproj​ect.org/
GTEx Y – – Y Y Y Y R, P GTEx https​://gtexp​ortal​.org/

home/
AOP-Wiki Y Y – – – N N C AOP Wiki https​://aopwi​

ki.org/
NHGRI-EBI GWAS 

Catalog
Y – – – – Y Y A https​://www.ebi.ac.uk/gwas/

GIANT Y Y Y Y Y – – A, P http://giant​.princ​eton.edu/
downl​oad/

s1500 Gene set Y Y Y – – – – R, P https​://ntp.niehs​.nih.gov/
resul​ts/tox21​/s1500​
-gene-set-conse​nsus-strat​
egy-index​.html

NIEHS SNPs Program Y – – – – – – R, P http://egp.gs.washi​ngton​
.edu/

DisGeNET Y – – – Y Y – A http://www.disge​net.org
ToxCast Y – – – N N N R, P https​://www.epa.gov/chemi​

cal-resea​rch/toxic​ity-forec​
aster​-toxca​sttm-data

OMIM – – – – Y Y – C http://www.ncbi.nlm.nih.
gov/omim

http://www.AOPwiki.org
https://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ncbi.nlm.nih.gov/dbvar
https://www.ncbi.nlm.nih.gov/dbvar
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
http://ctdbase.org/
http://www.reactome.org/
http://www.internationalgenome.org/data/
http://www.internationalgenome.org/data/
http://ensembl.org/
https://www.encodeproject.org/
https://www.encodeproject.org/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://aopwiki.org/
https://aopwiki.org/
https://www.ebi.ac.uk/gwas/
http://giant.princeton.edu/download/
http://giant.princeton.edu/download/
https://ntp.niehs.nih.gov/results/tox21/s1500-gene-set-consensus-strategy-index.html
https://ntp.niehs.nih.gov/results/tox21/s1500-gene-set-consensus-strategy-index.html
https://ntp.niehs.nih.gov/results/tox21/s1500-gene-set-consensus-strategy-index.html
https://ntp.niehs.nih.gov/results/tox21/s1500-gene-set-consensus-strategy-index.html
http://egp.gs.washington.edu/
http://egp.gs.washington.edu/
http://www.disgenet.org
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
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refer to (Pittman et al. 2017), two notable environmentally 
responsive gene (ERG) sets derived as part of NIH funded 
initiatives, the NIEHS Environmental Genome Project 
(EGP) (see Mortensen and Euling 2013 for discussion) 
and the Tox21 Phase III “s1500” Gene Set (Federal Reg-
ister 2015) based on the 1000 landmark genes or L1000 
(Lamb et al. 2006), and disease-associated genes obtained 
from DisGeNET, a human disease gene repository (Piñero 
et al. 2016). Selection of environmentally responsive and 
disease phenotype targets at Step 1 (Fig. 2) that are present 
in existing AOPs is one way to begin the gene list selection 
for a global analysis.

Molecular (e.g., gene–gene, protein–protein) interac-
tions have been described in terms of their modularity (Ide-
ker et al. 2002; Bar-Joseph et al. 2003; Snel and Huynen 
2004; Qi and Ge 2006; Mitra et al. 2013). The modularity 

of functional gene sets becomes important for the current 
approach in that we are selecting unlinked, molecular targets 
whose coordinated function can result in an adverse outcome 
or phenotype of interest. Because an adverse outcome, like a 
disease, is rarely the consequence of a single gene defect, but 
results from the perturbations of one or more functionally 
related gene modules (Zaghloul and Katsanis 2010; Barabasi 
et al. 2011), and because the gene targets thought to be asso-
ciated with an adverse or disease outcome may be incom-
plete, we propose a workflow that includes an independent 
validation method (Step 2, Fig. 2) of the outcome gene sets. 
With the inclusion of an independent validation step, such as 
pathway-based association (PBA) or other statistical meas-
ure, we increase the probability of capturing all functionally 
relevant targets, as well as any population-specific variants, 
for downstream characterization. There has been a substan-
tial amount of work to computationally determine gene lists 
using PBA and related methods for predictive modeling of 
disease risk (Torkamani et al. 2008; Dudley and Butte 2009; 
Fridley and Biernacka 2011; Yang et al. 2011; Fernandez 
et al. 2013; Mooney and Wilmot 2015), as well as chemical 
toxicity studies (Fujibuchi et al. 2009; Smalley et al. 2010; 
Judson et al. 2012), and many methods now incorporate net-
work, multilocus methods that utilize GWAS information 
and prior biological knowledge (Azencott et al. 2013; Cro-
teau-Chonka et al. 2015; Ayati and Koyuturk 2016; Hormoz-
diari et al. 2016a, b; Reyes-Gibby et al. 2017). Approaches 
used in GWAS, such as kernal machine testing for variable 
selection, could also be used in this context in a unique way. 
This strategy is just one of many to prioritize groups of SNPs 
related to biological processes (He et al. 2016). Tissue and 
cell-specific approaches (Greene et al. 2015) (Table 1), that 
incorporate Bayesian and network methodologies, are also 
useful in illuminating functional gene groupings in specific 
tissue types and related diseases.

A possible iteration to Step 2, in some ways to serve 
as replication, could be to implement pathway analysis 
approaches used in GWAS to verify the biology of groups 
of SNPs selected in an AOP. Many large-scale GWAS meta-
analyses validate the SNP-specific, statistical analyses with 
pathway analyses to understand the implicated biology 
(Gharib et al. 2015). For a specific AOP, researchers fol-
lowing Fig. 2 outline could implement pathway analyses as 
a secondary check of the AOP-associated molecular variants 
for Step 2.

Steps 3 and 4: evaluating regulatory variation

Once we have obtained the validated gene list associated 
with AOs, it is possible to identify and characterize the 
regulatory elements that may contribute to variation in 
function (Steps 3 and 4, Fig. 2). Non-coding sequence poly-
morphisms, located in 5′ promoter regions, 3′ untranslated 

Step 1: Outcome-specific Gene Set Selec
on 

# Human Genes

# Human func
onal, outcome 
related SNPs in each iden
fied region

Step 3: Iden
fy regulatory regions for each gene 
(ENCODE)

Step 2: Pathway Module Iden
fica
on/Gene Set 
Valida
on  

# Human Validated Genes

Step 4: Iden
fy func
onally significant SNPS (Ensembl/Gtex)

Outcome related regulatory regions 

Step 5: Popula
on characteriza
on (1000 Genomes)

Step 6: Outcome-specific mul
genic characteriza
on 

Individual/Popula
on level frequency 
data for func
onal, outcome related 
SNPs

Step 7: Outcome-specific gene
c suscep
bility priori
za
on

Iden
fica
on of poten
al for gene
c 
variability of outcome

Fig. 2   Proposed computational workflow illustrating how a given out-
come-specific, gene set of interest can be selected (Step 1), validated 
(Step 2), regulatory regions identified (Step 3), SNPs of interested 
selected (Step 4), characterized for human individual and population 
level, multigenic susceptibility to an adverse outcome (Step 6), and 
finally, prioritized by outcome for potential for human genetic suscep-
tibility (Step 7)
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regions (UTRs), enhancers, or elsewhere in the genome may 
impact the regulation of gene expression through a myriad 
of mechanisms, including but not limited to protein stabil-
ity, isoform variation, abundance, or tissue specificity. A 
variety of computational tools have been developed for the 
evaluation of polymorphisms in protein-coding sequences, 
which estimate the functional significance of exonic poly-
morphisms in terms of protein structure (Kumar et al. 2009; 
Adzhubei et al. 2010). Non-coding or intronic regions of the 
genome are far less tractable. We know from GWAS that 
many trait-associated variants map to non-coding regions 
(Deplancke et al. 2016), which supports the idea that a high 
a proportion of observed phenotypic variability in humans 
may be due to variation in gene regulation (Lonsdale et al. 
2013). Regulatory variants are also thought to occur at dis-
tances of 100 s of kilobases from associated coding regions 
(GuhaThakurta 2006), making the computational screen-
ing for regulatory variants using publicly available tools 
challenging. Further, trans-regulatory processes are also 
important, due to 3-day conformational changes in chro-
matin structure, long distance enhancer-promoter contacts, 
non-strand-specific gene expression, etc. Large-scale efforts 
like the ENCODE (Encyclopedia of DNA Elements) Project 
Consortium (2007) aim to identify and characterize all func-
tional elements in the human genome (protein-coding genes, 
regulatory elements, etc.). To incorporate important regula-
tory variants into the current workflow, we focus on the inte-
gration of three data sources (Step 4, Fig. 2; Table 1; S3): (1) 
the ENCODE Project which identifies functional elements 

in human genome sequence (ENCODE Project Consortium 
2004, ENCODE Project Consortium); (2) Ensembl (Yates 
et al. 2015; Zerbino et al. 2015), which provides regulatory 
element data for humans in an annotated reference genome, 
the Ensembl Regulatory Build; and (3) Genotype-Tissue 
Expression (GTex) Portal (Lonsdale et al. 2013), an NIH 
Common Fund Program, which provides data on tissue spe-
cific and shared regulatory human gene Expression Quanti-
tative Trait Loci (eQTL) variants.

Together, these data sources when integrated with indi-
vidual and population level variation sources (Table 1) make 
it possible to establish the basis of a global or systems level 
approach to the evaluation of genetic variability and chemi-
cal susceptibility. By combining eQTL data with candidate 
gene sets such as those involved in an AOP, we can evaluate 
functionally specific target variation in expression on a path-
way, tissue, and outcome-relevant level within and between 
populations. One current limitation of the most recent GTex 
version 6 (V6p) is that samples disproportionately repre-
sent white American (84.3%) and African American (13.7%) 
populations, with a total number of donor individuals ~ 500. 
Nonetheless, the integration of coding, non-coding and 
regulatory variation with tissue-specific, functional effects 
is essential to future efforts to characterize the impact of 
human genetic variability on chemical susceptibility.

Steps 5, 6, and 7: incorporating publicly available 
human variation sources for outcome‑specific 
prioritization

With a defined region for each gene, typically ~ 5 KB both 
upstream and downstream of each exonic region, and a selec-
tion of functionally characterized variants corresponding to 
each AOP, we can begin to characterize those variants in terms 
of their allele frequencies (Step 5, Fig. 2) and build multigenic 
haplotypes across human population groups that are outcome 
specific (Step 6, Fig. 2). Here, we use data obtained from the 
1000 Genomes Project, accessible through the National Center 
for Biotechnology (NCBI) Database of single-nucleotide poly-
morphisms (dbSNP) (Table 1). dbSNP also contains data on 
small-scale variants (insertions, deletions, microsatellites, and 
non-polymorphic variants). NCBI, a division of the National 
Library of Medicine (NLM) at the National Institutes of Health 
(NIH), is now the primary repository for molecular genetic 
data. These data for humans come from two large initiatives: 
the International HapMap Project (The International HapMap 
Consortium 2005; International HapMap Consortium 2007) 
and the 1000 Genomes Project (1000 Genomes Project Con-
sortium 2012, 1000; Genomes Project Consortium 2015b). 
With the information gained in Step 6, we are able to prioritize 
on an outcome-specific basis the level of genetic variability 
observed at the individual and population levels in Step 7.

Fig. 3   Venn diagram illustrating the overlap in number of molecu-
lar targets between four data sources, expert-derived AOPs from the 
AOP-Wiki (http://www.AOPwi​ki.org), two notable environmentally 
responsive gene sets NIEHS s1500 (https​://ntp.niehs​.nih.gov/resul​ts/
tox21​/s1500​-gene-set-conse​nsus-strat​egy-index​.html) and the NIEHS 
EGP (http://egp.gs.washi​ngton​.edu/), and disease-associated genes 
present in the DisGeNET database (http://www.disge​net.org) (Refer 
to Table 1)

http://www.AOPwiki.org
https://ntp.niehs.nih.gov/results/tox21/s1500-gene-set-consensus-strategy-index.html
https://ntp.niehs.nih.gov/results/tox21/s1500-gene-set-consensus-strategy-index.html
http://egp.gs.washington.edu/
http://www.disgenet.org
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Future directions

Setting the stage for a case study

With the goal of developing an AOP-based workflow for 
the evaluation of human population genetic susceptibility 
to environmental toxicants, we investigated a variety of data 
sources. Table 1 is organized to illustrate the presence of 
information at each level of complexity in the AOP frame-
work. Table 1 lists each relevant data source, including 
those that describe mechanistic information pertaining to 
adverse outcomes, and those sources used to obtain human 
individual and population level variability information. Fig-
ure 2 illustrates the data integration workflow proposed in 
the current approach. Figure 3 illustrates the overlap of gene 
targets for four environmentally relevant datasets, described 
above. Though we envision the proposed workflow to be 

performed globally, across many AOs, we focus for the pre-
sent review on the goal of selection of a candidate AOP, 
with a MIE suitable for future case study. In preparation 
for future case study, we outlined the workflow for a single 
molecular gene target, or MIE. To identify a suitable tar-
get, we queried the AOPwiki for KEs known to be variable 
across human populations, and found three molecular targets 
with documented variation in response in humans: Glucose-
6-phosphate dehydrogenase (G6PD) (Tishkoff 2001), human 
thyroid peroxidase (TPO) (Fu et al. 2016; Graf et al. 2017), 
and cytochrome 2E1(CYP2E1) (Lee et al. 2008) (Fig. 4). 
We built association networks to illustrate the relationships 
between the selected AOP-MIEs and associated chemi-
cals, by querying the AOP-DB for AOP-gene targets and 
chemical-gene associations (Davis et al. 2016; Pittman et al. 
2017). Figure 4 illustrates that the majority of TSCA high-
priority chemicals (US EPA 2014) are associated with the 

Fig. 4   Chemical-gene association network illustrating chemicals 
associated with CYP2E1 in humans, TPO, and G6PD, according to 
the CTD database. Large nodes indicate TSCA Workplan Chemicals, 
and small nodes indicate non-TSCA Workplan chemicals. Blue nodes 
indicate increased expression or activation of CYP2E1, in concord-

ance with the AOP, “chronic activation of CYP2E1 leading to liver 
cancer.” Red and pink nodes indicate chemical-gene association with 
CYP2E1, according to the literature-based chemical-gene information 
in CTD. (Color figure online)
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AOP-MIE CYP2E1, but not the other two candidates, and 
indicates the specific TSCA high-priority chemicals asso-
ciated with this AOP-MIE in humans. Figure 5 illustrates 
TSCA high-priority chemicals associated with the AOP-
MIE CYP2E1 for human and mouse, and indicates that 
1-bromopropane (1-BP), a TSCA chemical recently identi-
fied to cause adverse neurological, reproductive, kidney, and 
liver effects in humans (Federal Register 2016), association 
with CYP2E1 is based entirely on evidence from the mouse 
(Garner et al. 2007; Liu et al. 2009). In addition, to illustrate 
and confirm the mechanism of the AOP [Chronic Cyp2E1 
Activation Leading to Liver Cancer (AOP220: Webster, 
Lambert, Yauk, http://aopwi​ki.org; OECD Project 1.24)], 
we explored disease association in the network as shown in 
Fig. 6, where liver-associated disease is indicated, confirm-
ing that the outcome mechanism described for this AOP is 
accurate.

Future challenges and opportunities: characterizing 
genetic susceptibility using an AOP framework 
for HHRA

The computational approach developed here is generaliz-
able to select AOP molecular targets that can be identified 
using the AOP-DB (Pittman et al. 2017) that is seamlessly 
connected to the AOPWiki, making it possible to both 
look across all AOPs or at a specific AOP of interest. The 
next challenges include validating AOP relevant genes for 
causality between the genes and the health outcome. There 
are available methods for validating AOP relevant genes, 
discussed above, including methods originally developed 
for other purposes e.g., GWAS to infer genes and predict 
trait-associated networks (Akula et al. 2011; Lee et al. 
2011). It is clear that the incorporation of epigenetic data 
in this workflow, though beyond the scope of the current 
paper, is necessary for a more complete characterization 
of susceptibility for risk assessment (Cote et al. 2017), and 
could easily be incorporated as an additional step in the 

Fig. 5   Chemical-gene association network illustrating chemicals 
associated with CYP2E1 in humans and mouse, according to the 
CTD Database, and selecting for only TSCA Workplan Chemicals. 
Red edges indicate human studies; green edges indicate mouse stud-

ies. 1-Bromopropane (1-BP) has been highlighted, whereby infor-
mation associating 1-BP with CYP2E1 from CTD is derived from 
mouse studies only. (Color figure online)

http://aopwiki.org
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approach described here. A second challenge is the inter-
pretation and visualization of population susceptibility for 
each multigenic AOP in a way that is readily accessible 
for risk assessors. However, the prioritization of outcomes 
for genetic susceptibility potential readily identifies which 
outcomes are subject to genetic variability difference in 
humans. Though the AOP-anchored approach presented 
here for specifically genetic susceptibility is but one part 
of a more comprehensive model of human susceptibility 
to environmental chemicals needed in HHRA, we have 
described the first step for the inclusion of existing, pub-
licly available information to identify the potential for 
human susceptibility across adverse outcomes.
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