OpenRiskNet

RISK ASSESSMENT E-INFRASTRUCTURE

Reverse dosimetry and PBPK prediction

NTUA, INERIS

PBPK modelling in REVK

PBPK modelling is offered through the integration of 2 modelling environments:

- **PKSIM** (over API): extensive, industry strength, open-source software, fixed model type
- **httk** (over API and Jaqpot 5 UI): R package from US EPA, more capabilities and greater modelling freedom
- JaqpotforR: deploy PBPK model directly from R

PBPK model: Multi-compartment model (System of Ordinary Differential Equations, ODEs)

Non-metabolizing compartments:

$$V_{bl}^{i} \frac{dC_{v}^{i}(t)}{dt} = Q_{l}(C_{art}(t) - C_{v}^{i}(t)) - \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}}\right)$$

$$V^{i} \frac{dC^{i}(t)}{dt} = \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}}\right)$$

Metabolizing or excretion compartments:

$$V_{bl}^{i} \frac{dC_{v}^{i}(t)}{dt} = Q_{i}(C_{art}(t) - C_{v}^{i}(t)) - \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}}\right) - r_{ex}^{i} \left(C_{v}^{i}(t)\right) V_{bl}^{i}$$

$$V^{i} \frac{dC^{i}(t)}{dt} = \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}} \right) - r_{met}^{i} \left(C^{i}(t) \right) V^{i}$$

Blood:

$$V^{pl} \frac{dC^{pl}(t)}{dt} = u(t) + \sum_{i \in I_0 \cup I_1} Q_i C_v^i(t) + \pi_{rbc} C^{rbc}(t) - \pi_{pl} C^{pl}(t) - Q_{pl} C^{pl}(t)$$

$$V^{rbc} \frac{dC^{rbc}(t)}{dt} = \pi_{pl} C^{pl}(t) - \pi_{rbc} C^{rbc}(t)$$

Lung:

$$V_{bl}^{lu} \frac{dC^{art}(t)}{dt} = Q_{lu}(C^{pl}(t) - C^{art}(t)) - \pi_{lu}\left(C^{art}(t) - \frac{C^{lu}(t)}{P_{lu}}\right)$$

$$V^{lu} \frac{dC^{lu}(t)}{dt} = \pi_{lu}\left(C^{art}(t) - \frac{C^{lu}(t)}{P_{lu}}\right)$$

Open Systems Pharmacology Suite with PK-Sim and MoBi

http://www.systems-biology.com/products/pk-sim.html

PKSIM modelling in Jaqpot API

https://api-jaqpot.prod.openrisknet.org/jaqpot/swagger/#/biokinetics

The httk R package

- Four toxicokinetic models have been created in this package, ranging from single-compartmental models to full PBTK models.
- Structure-derived physicochemical properties and species-specific physiological data.
- The package can currently use human *in vitro* data to make predictions for 553 chemicals in humans, rats, mice, dogs, and rabbits, including 94 pharmaceuticals and 415 ToxCast chemicals.
- The package contains tools for Monte Carlo sampling and reverse dosimetry along with functions for the analysis of concentration vs. time simulations.
- httk support oral or iv dosing.

https://cran.r-project.org/web/packages/httk/index.ht

httk modelling workflow in Jaqpot API (example)

This example uses the Jaqpot httk service to create a concentration-time simulation and the AUC curve for 10 days after administering a single dose of 0.1mg/Kg of bisphenolA to a human (weight 70 Kg)

Input dataset:

{"<a href="mailto:chem.name":["bisphenol" A"],"species":["Human"],"days":[101."dose":[0.1]}

Output dataset

Tutorial available at: https://drive.google.com/drive/u/0/folders/1mA2xudmZXeHcav60NpDeJubzvwFHkKwl

JaqpotforR

```
> library(JaqpotforR)
```

```
> deploy.pbpk.jaqpot(dataframe = user_input, covariate_model = covariates,
    odes = odes, comp = comp_names)
Base path of jaqpot *etc: https://api.jaqpot.org/ : https://api.jaqpot.org/
[1] "Model created. The id is: sjxlnk6TsOTfdfB7q4wP.
```

PBPK modelling through Jaqpot GUI

PBPK modelling through Jaqpot GUI

