
www.openrisknet.org

OpenRiskNet: Open e-Infrastructure to Support Data Sharing, Knowledge Integration and in 
silico Analysis and Modelling in Risk Assessment 

Project Number 731075 

Deploying Applications to an 
OpenRiskNet Virtual Environment

The OpenRiskNet Consortium



www.openrisknet.org

OpenRiskNet webinars series

Topic Date & Time

Past events

Introduction sessions to the OpenRiskNet e-infrastructure

Webinar recordings:
● Session 1 (24 Sep 2018)
● Session 2 (27 Sep 2018)
● Session 3 (4 Oct 2018)
● Session 4 (30 Oct 2018)

Learn how to deploy the OpenRiskNet virtual research environment Webinar recordings (25 Feb 2019)

Demonstration on data curation and creation of pre-reasoned datasets in the OpenRiskNet 
framework Webinar recordings (18 Mar 2019)

Identification and linking of data related to AOPWiki (an OpenRiskNet case study) Webinar recordings (26 March 2019)

The Adverse Outcome Pathway Database (AOP-DB) Webinar recordings (8 April 2019)

How to describe OpenRiskNet services and their functionality by semantic annotation Webinar recordings (13 May 2019)

Use of Nextflow tool for toxicogenomics-based prediction and mechanism identification in 
OpenRiskNet e-infrastructure Webinar recordings (27 May 2019)

Demonstration on OpenRiskNet approach on modelling for prediction or read across (ModelRX 
case study)

Tuesday, 11 June 2019, 16:00 CEST
Registration: https://openrisknet.org/events/67/  

Combining neXtProt and WikiPathways strengths using SPARQL federated queries Wednesday, 12 June 2019, 20:00 CEST
Registration: https://openrisknet.org/events/73/ 

Current event Deploying Applications to an OpenRiskNet Virtual Environment Monday, 24 June 2019, 16:00 CEST
Registration: https://openrisknet.org/events/66/ 

Future events AOPlink workflow Monday, 15 July 2019, 16:00 CEST
Registration: https://openrisknet.org/events/70/ 

https://openrisknet.org/events/ 

https://openrisknet.org/events/39/
https://openrisknet.org/events/40/
https://openrisknet.org/events/41/
https://openrisknet.org/events/42/
https://openrisknet.org/events/57/
https://openrisknet.org/events/58/
https://openrisknet.org/events/59/
https://openrisknet.org/events/60/
https://openrisknet.org/events/64/
https://openrisknet.org/events/65/
https://openrisknet.org/events/67/
https://openrisknet.org/events/73/
https://openrisknet.org/events/66/
https://openrisknet.org/events/70/
https://openrisknet.org/events/


www.openrisknet.org

OpenRiskNet Virtual Environment (VE)

● Computational infrastructure into 

which applications can be deployed

● Includes environment for building 

and testing those applications

● Includes compute, security, 

storage, monitoring …

● Can be deployed to range of 

infrastructures

VE

Tools, Apps, Databases

build

deploy

Service 1
Service 2
Service 3
Service 4
Service 5
Service ...

Container
registry



www.openrisknet.org

What forms a VE

OpenShift
Red Hat’s distribution of 
Kubernetes

Kubernetes
Container orchestration 
platform backed by Google

Containers
A way to package software 
and deploy it in an isolated 
and controlled manner 
made popular by Docker  

https://www.openshift.com/

https://kubernetes.io/

https://www.docker.com/

Support
Security
CI/CD

https://www.openshift.com/
https://kubernetes.io/
https://www.docker.com/


www.openrisknet.org

App Deployment to a VE

Hardware
Physical hardware, in-house or cloud VMs

ORN VE

Monitoring
Metrics, logging

Security
SSO, certificates

CI/CD
Container registry, builds, pipelines

Application infrastructure
Databases, message queues

Storage
Volumes

Application 1
Container images located 
on e.g. Docker Hub

Deploy

Application 2
Source code located on 
e.g. GitHub

Build & Deploy

See previous 
webinar for how 
to deploy a VE



www.openrisknet.org

Introduction to containers

● A container is a set of Linux 
processes running in an isolated 
environment that is managed by 
features of the Linux kernel

● A bit like virtual machines but much 
more lightweight and efficient

● The software and data for those 
processes are packed into a 
container image that can be 
distributed 

https://docs.google.com/file/d/1qMMCrBPIrbzA8dH7EL22sLWnSFNmr0EQ/preview


www.openrisknet.org

Packaging container images

● An image can package up pretty 
well anything you want

● Package multiple components 
into one container or each 
component into separate 
containers and let them 
communicate with each other

● Typically defined using a 
‘Dockerfile’

FROM python:3.7.3-slim
WORKDIR /app
ADD . /app
EXPOSE 8080
RUN pip install -r requirements.txt
USER nobody
CMD ["python", "app.py"]

$ git clone git@github.com:alanbchristie/PySimple.git
$ cd PySimple
$ docker build -t tdudgeon/pysimple .
$ docker push tdudgeon/pysimple

…

$ docker pull tdudgeon/pysimple
$ docker run -d -p 8080:8080 tdudgeon/pysimple

$ curl http://localhost:8080/

https://github.com/alanbchristie/PySimple

https://github.com/alanbchristie/PySimple


www.openrisknet.org

K8S/OpenShift

PodPod

Deploying container images on an ORN VE

PodDeployment
Config Defines

Service

Internal
Access

Route/Ingress

External
Access

Browser

https://myapp.myve.org



www.openrisknet.org

Procedure for deploying applications

Step 1: Create your container images

Step 2: Deploy to OpenShift - multiple approaches possible 



www.openrisknet.org

Step 1: creating container images

Create your container images externally and push to registry such as 
DockerHub

or

Use OpenShift’s CI/CD mechanisms to build the container images and 
push to OpenShift’s own container registry running in the VE



www.openrisknet.org

Step 2: Deploy to OpenShift

Multiple approaches possible

1. Web console vs. CLI vs. REST API
2. Manual/interactive procedure
3. Templates
4. Operators

We will show some examples.



www.openrisknet.org

Deployment examples

1. Deploy app through web console

2. Deploy app using CLI

3. Deploy Lazar using CLI
a. The Lazar template
b. Deploying

4. Deploying Lazar from web console

5. Deploying Squonk using Ansible
a. Templates
b. Playbooks



www.openrisknet.org

Anatomy of the Lazar template
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/lazar

Template

Metadata
e.g.
name = lazar

Objects

ImageStream

DeploymentConfig

Service

Route

Labels
e.g.
app = lazar

Parameters
e.g.
LAZAR_SERVICE_PORT = 8088

https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/lazar


www.openrisknet.org

Lazar template - Parameters

parameters:

 - name: IMAGE_TAG

   description:

     The lazar docker image tag

   value: latest

 - name: ROUTE_NAME

   description:

     The name of the service endpoint.

     This is typically *lazar* but if you want different instances

     you can pass another name like *lazar-2*.

   value: lazar

 - name: ROUTES_BASENAME

   description:

     The base name of the service endpoint.

     This is typically the PROD or DEV URL basename.

   value: prod.openrisknet.org

Parameter name

Optional default value

Parameters allow to 
configure the 
deployment 



www.openrisknet.org

Lazar template - DeploymentConfig
- kind: DeploymentConfig

 apiVersion: v1

...

 spec:

   ...

   template:

     ...

     spec:

       containers:

       - name: lazar

         image: docker.io/gebele/lazar-rest:${IMAGE_TAG}

         ports:

         - containerPort: 8088

           protocol: TCP

         ...

         imagePullPolicy: Always

Container specification

Use of a parameter

         readinessProbe:

           httpGet:

             path: "/"

             port: 8088

             scheme: "HTTP"

           failureTreshold: 4

           initialDelaySeconds: 30

           periodSeconds: 30

           timeoutSeconds: 4

         livenessProbe:

           ...

         resources:

           requests:

             cpu: ${CPU_REQUEST}

             memory: ${MEMORY_REQUEST}

           limits:

             cpu: ${CPU_LIMIT}

             memory: ${MEMORY_LIMIT}

Readiness and liveness probes

Resource requests and limits



www.openrisknet.org

- kind: Service

 apiVersion: v1

  metadata:

   name: lazar

   ...

 spec:

   ports:

   - name: lazar

     protocol: TCP

     port: ${LAZAR_SERVICE_PORT}

     targetPort: 8088

     nodePort: 0

   selector:

     name: lazar

   type: ClusterIP

   sessionAffinity: None

Lazar template - Service and Route

Port spec

- kind: Route

 apiVersion: v1

 metadata:

   name: ${ROUTE_NAME}

   annotations:

     kubernetes.io/tls-acme: ${TLS}

 spec:

   host: ${ROUTE_NAME}.${ROUTES_BASENAME}

   to:

     kind: Service

     name: lazar

   tls:

     termination: edge

     insecureEdgeTerminationPolicy: Redirect

Public hostname

Pods to service



www.openrisknet.org

Lazar Template - Template Service Broker

metadata:

 name: lazar

 annotations:

   openshift.io/display-name: lazar toxicity prediction service

   openshift.io/provider-display-name: Johannes Gutenberg University Mainz - JGU, in silico toxicology gmbh - IST

   openshift.io/documentation-url: https://github.com/OpenRiskNet/home.git

   openshift.io/support-url: https://github.com/OpenRiskNet/home/issues

   description: lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology.

     Similar to the read across procedure in toxicological risk assessment, lazar creates local

     QSAR (quantitative structure–activity relationship) models for each compound to be predicted.

   iconClass: ''

   tags: lazar,prediction,rest

These annotations are used by the Template 
Service Broker to allow the template to be 
deployed easily through the web console - 
demo coming later



www.openrisknet.org

Other ORN app templates

https://github.com/OpenRiskNet/home/tree/master/openshift/deployments

Contains templates for most of the ORN partner applications plus some 
additional 3rd party applications such as JupyterHub.

Simple examples: bridgedb, jguweka

More complex examples: jupyterhub, squonk, jaqpot

We’ll now look at Squonk as a more complex example. 

https://github.com/OpenRiskNet/home/tree/master/openshift/deployments
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/bridgedb
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/jguweka
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/jupyter
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/squonk
https://github.com/KinkyDesign/KubeAndOpenshiftTemplates/tree/master/Openshift


www.openrisknet.org

Squonk architecture overview
some of the squonk components

openrisknet-infra
Components used by any application

squonk
Squonk application components

postgres

Keycloak
SSO

coreservices

chemservices

cellexecutor

portal

rabbitmq

route route

jobexecutor

route



www.openrisknet.org

Squonk deployment
Deploy/undeploy PostgreSQL, RabbitMQ and Keycloak SSO 
applications to the openrisknet-infra project

Deploy/undeploy Coreservices, Chemservices, Cellexecutor, 
Jobexecutor and Portal applications to the squonk project

Deploy/undeploy PostgreSQL/RDKitCartridge and 
Chemcentral-search to the openrisknet-infra and squonk 
projects

Infra playbooks
deploy

undeploy

Squonk 
playbooks

deploy

undeploy

Chemcentral 
playbooks

deploy

load data

Other actions to setup and test the environmentMiscellaneous 
playbooks

create users

run tests

https://github.com/InformaticsMatters/squonk/tree/master/openshift/ansible

undeploy

https://github.com/InformaticsMatters/squonk/tree/master/openshift/ansible


www.openrisknet.org

Best practices

● Consider security aspects of your containers
● Try to create small containers
● Consider how much resource (CPU, memory) your containers need
● Use SSO for authentication

Guidelines are provided here:
https://github.com/OpenRiskNet/home/wiki/Deployment-Guidelines

https://github.com/OpenRiskNet/home/wiki/Deployment-Guidelines


www.openrisknet.org

For full details of the ORN partner and 3rd party applications that can be 
deployed to an ORN VE look here: https://home.prod.openrisknet.org/ 

https://home.prod.openrisknet.org/


www.openrisknet.org

Conclusion

● OpenShift/Kubernetes is a powerful application platform

● A wide range of options for deploying applications

● Support for simple and complex application topologies

● Can also include building applications from source

● Significant learning curve is involved

● But provides excellent approach for robust and automated 
deployment of applications



www.openrisknet.org

Acknowledgements

OpenRiskNet (Grant Agreement 731075) is a project funded by the European 
Commission within Horizon 2020 Programme

Project partners:
P1 Edelweiss Connect GmbH, Switzerland (EwC)
P2 Johannes Gutenberg-Universität Mainz, Germany (JGU)
P3 Fundacio Centre De Regulacio Genomica, Spain (CRG)
P4 Universiteit Maastricht, Netherlands (UM)
P5 The University Of Birmingham, United Kingdom (UoB)
P6 National Technical University Of Athens, Greece (NTUA)
P7 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 

Germany (Fraunhofer)
P8 Uppsala Universitet, Sweden (UU)
P9 Medizinische Universität Innsbruck, Austria (MUI)
P10 Informatics Matters Limited, United Kingdom (IM)
P11 Institut National De L’environnement Et Des Risques INERIS, France (INERIS)
P12 Vrije Universiteit Amsterdam, Netherlands (VU)


