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SUMMARY

The ModelRX case study was designed to cover the important area of generating and
applying predictive models, and more specifically QSAR models in hazard assessment
endorsed by different regulations, as completely in silico alternatives to animal testing and
useful also in early research when no data is available for a compound. The QSAR
development process schematically presented in Figure 1 begins by obtaining a training
data set from an OpenRiskNet data source. A model can then be trained with OpenRiskNet
modelling tools and the resulting models are packaged into a container, documented and
ontologically annotated. To assure the quality of the models, they are validated using
OECD guidelines (Jennings et al. 2018). Prediction for new compounds can be obtained
using a specific model or a consensus of predictions of all models. This case study will
present this workflow with the example of blood-brain-barrier (BBB) penetration, for
which multiple models were generated using tools from OpenRiskNet consortium and
associated partners used individually as well as in a consensus approach using
Dempster-Shafer theory (Park et al. 2014; Rathman et al. 2018).

Training
algorithm

Training

Training dataset
dataset +algorithm
+parameters

Prediction
dataset

Model

Maodel + Prediction
dataset

Prediction

Figure 1. Building and using a prediction model workflow
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DESCRIPTION

Implementation team

CS leader

Team

Harry Sarimveis (NTUA)

NTUA, JGU, UU, EwC

Case Study objective

The objectives of this case study are: use in-silico predictive modelling approaches (QSAR)
to support final risk assessment by supporting similarity identification related to the
DataCure case study (by providing tools for calculating theoretical descriptors of
substances) and fill data gaps for specific compounds or to augment incomplete datasets.

Risk assessment framework

The ModelRX case study contributes in two tiers (as tiers are defined in Berggren et al.

2017):

e On the one hand, it provides computational methods to support suitability
assessment of existing data and identification of analogues (Tier 0);
e On the other hand, it provides predictive modelling functionalities, which are
essential in the field of final risk assessment (Tier 2).

OpenRiskNet
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DEVELOPMENT

Databases and tools

Jagpot Quattro (NTUA), CPSign (UU), JGU WEKA Rest service (JGU), Lazar (JGU/IST).

Technical implementation

From the developer’s perspective, this case study demonstrates the improved
interoperability and compatibility/complementarity of the models based on services
deployed following the general steps that have been agreed for developing the
OpenRiskNet infrastructure and services. Each application is delivered in the form of a
container image and deployed. Docker is used as the basic engine for the containerisation
of the applications. Above that, OpenShift, which is a container orchestration tool, is used
for the management of the containers and services. OpenShift provides many different
options for deploying applications. Some recipes and examples have been documented in
the OpenRiskNet GitHub page’.

When an application is deployed, a service discovery mechanism is responsible for
discovering the most suitable services for each application. Based upon the OpenAPI
specification, each APl should be deployed with the swagger definition. This swagger file
should then be integrated with the Json-LD annotations as dictated by the Json-LD
specification. The discovery service mechanism parses the resulting Json-LD and resolves
the annotations into RDF triplets. These triplets can then be queried with SPARQL. The
result of the SPARQL query lets the user know which services are responsible for making
models or predictions. The documentation can be found via swagger definition of each
application. This way, the services are integrated into the OpenRiskNet virtual
environments and can be used and incorporated into end user applications and other
services as demonstrated here with a workflow performing consensus modelling.

QSAR modelling was already the main topic of the OpenTox project, which is a clear
predecessor of OpenRiskNet. OpenTox had a much more focused aim and the clear goal to
have very interlinked services, where it is even possible to combine parts of the workflow
from different partners, e.g. descriptor calculation is performed by a service from one
partner, the model is trained using algorithms from another partner, and finally the
prediction is performed by integrating the trained model into a user interface of a third
partner. To allow this, the technical implementation had to be based on rigorously
defined modelling APIs the OpenTox standards? Additionally, following these
specifications and standards opened the full flexibility of model development and
performing predictions to the user, which, on the one side, allows optimization of the
workflow to a specific problem at hand but, on the other hand, also requires more
experienced users. Therefore, the case study and the integration of QSAR services into
OpenRiskNet in general used the OpenTox specifications as the starting point for
developing a more flexible QSAR workflow, which, like the OpenTox workflow, has all
components represented in Figure 1 but allows services to combine and simplify different
steps and, in this way, e.g. reduces the necessity for rigorous usage of Uniform Resource
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Identifiers (URIs) for simple substances, which can be referenced by chemical identifiers
like SMILES or InChls, and descriptors, e.g. when they are calculated on the fly by the
service. This allows the easier integration of external tools as e.g. provided by the
associated partners, which don’t support all the features required for an OpenTox service.
This approach allows us to include both more straightforward tools that can work
together with OpenRiskNet with minimal setup, but at the same time can accommodate
more feature-rich tools that require more feature-rich APIs to provide their full offering.

However, OpenRiskNet enforces additional requirements due to the broadening of the
application area. As described in detail in deliverable reports D2.2 and D24,
standardization of the APIs was not possible and even not desired to allow very different
tools from many areas to be run on the OpenRiskNet virtual environments. Instead,
harmonization and interoperability was obtained by semantic annotation of the APIs and
the semantic interoperability later, which provide the user with the information needed to
link to services using workflow tools. Modelling APIs need a high level of integration into
the OpenRiskNet ecosystem. Integration with the DataCure CS is vital. On the semantic
interoperability layer, training datasets should be compatible with an algorithm and, in
turn, prediction datasets should be compatible with a prediction model. Additionally, in a
best practice scenario, the generated models and datasets need to be accompanied with
semantic metadata on their life cycle, thus enforcing semantic enrichment of the
dynamically-created entities. Algorithms, models and predicted datasets are built as
services, discoverable by the OpenRiskNet discovery service. This is a step that should
occur whenever an entity (algorithm, model, predicted dataset) is created.

To enable the user to train models and use them in predictions, , the guidelines agreed on
by OpenRiskNet for functionality, which should be provided by QSAR and read-across
services to allow highest flexibility include the following steps. As already stated before,
some of the requirements might become irrelevant for a specific service if it combines
different steps to provide an easier way to make predictions, especially for Lless
experienced users. More details on the features implemented in each service are annexed
below.

1. Selecting a training data set

The user chooses among OpenRiskNet compliant data sets already accessible through the
discovery service. Following the OpenTox specification, a Dataset includes, at a minimum:

e a dataset URI
e substances: substance URIs (each substance URI will be associated with a term
from the ontology)
e features:
o feature URIs (each feature URI will be associated with a term from the
ontology)
values in numerical format
category (experimental/computed)
if computed, the URI of the model used to generate the values
Units

o O O ©

An alternative path to provide data in OpenRiskNet e.g. followed in the DataCure case
study is by dedicated services offering the following elements:

e a dataset URI
e a semantically annotated data API providing information on how to access the data

OpenRiskNet m Page 5



and what specific data schema is used

With this information, it will be possible for alternative implementations to integrate into
OpenRiskNet and interact with modelling services following the full OpenTox
specifications, provided they also implement intermediate processing steps, i.e. within the
environment of a Jupyter notebook, to structure the data so that it fulfills the minimum
set of requirements for the following steps of the QSAR workflow.

2. Selecting a (suitable) modelling algorithm
The user chooses a suitable algorithm. Algorithms include at a minimum:

algorithm URI

title

description

algorithm type (regression/classification)

default values for its parameters (where applicable)

3. Specifying parameters and Generating Predictive model

Once an algorithm has been selected, the user defines the endpoint, selects the tuning
parameters, (only if different values from the default ones are desired) and runs the
algorithm. The generated Model contains, at a minimum:

model URI

title

description

the URI of the dataset that was used to create it
the URIs of the input features

the URI of the predicted feature

values of tuning parameters

The following were identified as possible extensions:
e Include services/APIs for validation of the generated model

This has been implemented by Jagpot (NTUA) as well as Weka (JGU) and Lazar
(JGU).

e Provide mechanisms to pick out the best algorithm for a specific dataset: (e.g.
RRegrs)

As this is a highly resource-intensive process and requires significant exploration of
possible choices and parameters, it would translate into additional workload on
the infrastructure, which would be challenging to sustain. That, together with the
fact that users have a selection of tools in the search for the best model: tools like
RRegrs® (written in the R language) and TPOT (written in Python) can be used in
common R-Python notebooks so that the user settles down on the most
appropriate model and then resorts to OpenRisket tools.

3 https://github.com/muntisa/RRegrs
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e Include algorithms to calculate domain of applicability

Domain of applicability calculations have been implemented by Jagpot (NTUA). An
alternative to applicability domains using Conformal Prediction methodologies
(Norinder et al, 2014) is provided by the CPSign/ModelingWeb tool (UU).

4. Selecting a prediction data set

After the creation of a model, the user selects a prediction dataset meeting all the
requirements specified in (Chomenidis et al. 2017). This dataset is tested for compatibility
against the required features of the model in terms of feature URIs, i.e. the dataset should
contain all the subset of features used to produce the model. Additional features are
allowed, however they will be ignored.

5. Running predictive model on the prediction data set

The predictive model is applied on the prediction dataset to generate the predicted
dataset, which must be compatible with the requirements specified in (Chomenidis et al.
2017). The predicted dataset augments the prediction dataset with all necessary
information about the predicted feature:

e prediction feature URIs (each feature URI will be associated with a term from the
ontology)

values in numerical format

category (computed)

the URI of the model used to generate the values

units
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OUTCOMES

The work on the case study was designed to showcase how the workflow defined above
for producing semantically annotated predictive models can be shared, tested, validated
and eventually be applied for predicting adverse effects of substances in a safe by design
and/or risk assessment regulatory framework. OpenRiskNet provides the necessary
functionalities that allow not only service developers but also researchers and
practitioners to easily produce and expose their models as ready-to-use web applications.
The OpenRiskNet e-infrastructure serves as a central model repository in the area of
predictive toxicology. For example, when a research group publishes a predictive model in
a scientific journal, they can additionally provide the implementation of the model as a
web service using the OpenRiskNet implementation. The produced models contain all the
necessary metadata and ontological information to make them easily searchable by the
users and systematically and rigorously define their domain of applicability. Most
importantly, the produced resources are not just static representations of the models, but
actual web applications where the users can supply the necessary information for query
substances and receive the predictions for their adverse effects. However, because of the
harmonization and interoperability, these are not just stand-alone tools but can be easily
combined to improve the overall performance or can be used to replace older tools with
newer ones without changing the overall procedure. This was demonstrated with the
workflows for developing a consensus model for blood-brain-barrier (BBB) penetration
(available online*). The test set of 414 compounds was obtained from the Lazar service®.
Part of this dataset is shown below:

2https://lazar.prod.openrisknet.org/predict/dataset/blood-brain-barrier
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In the consensus modelling, we combine independent sources of evidence in a well
defined manner to generate the final prediction and estimate its uncertainty. For that
purpose we employed the Dempster-Shafer theory (DST), which provides a solid
mathematical framework for combining multiple evidences, where each of them is
characterized by evidence-specific certainty (Park et al. 2014, Rathman et al. 2018).

Here we combine multiple independent in silico predictive models, each of which
classifies compounds as BBB penetrating or non-penetrating. The models, which were
available before the start of the project or were specifically generated for this case study,
are:

LAZAR (JGU/IST): The model is based on the MP2D fingerprints and uses
nearest-neighbour algorithm with a weighted majority vote and distance based on
the Tanimoto similarity with a threshold of 0.1. The model was validated using
3-fold cross-validation.

Jagpot (NTUA): The model is based on the Mordred descriptors obtained from the
SMILES using RDKit and recursive feature elimination for the selection of the 20
most important features. The model uses logistic regression based on these 20
features. The model was validated using 10-fold cross-validation.

CPSign (UU): The Cross Venn-ABERS predictor (CVAP), as implemented in the
CPSign software. The signatures descriptor of atom neighbours height 1 to 3 was
used together with an SVM with RBF kernel as underlying learning model. The
gamma and cost values were optimized with 10-fold cross-validation and set to
0.0039 (gamma) and 4 (cost).

JGU WEKA Rest service (JGU): The model is based on features/fingerprints

m Page 9
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extracted from the Blood-Brain Barrier dataset using a graph mining based
algorithm called LAST-PM or Latent Structure Pattern Mining. The fingerprints used
in the majority of chemical toolkits are handcrafted by chemical experts, however,
identifying frequent or correlated subgraphs has the potential to reveal latent
information not present in any individual ground features. This also provides a
potentially different perspective to the problem at hand. The model is created
using Support Vector Machines (specifically the implementation provided by
LibSVM in Weka). The model parameters (cost and gamma) have been tuned using
grid search.

OCHEM (BIGCHEM): On-line Chemical Database and Modeling environment
(OCHEM) platform was used to develop OCHEM model, which was based on
Associative Neural Network (ASNN, Tetko 2008) and alvaDesc
(https://www.alvascience.com/alvadesc/) descriptors. The default
hyper-parameters of the ASNN were used. Namely, neural networks with one
hidden layer, which included three neurons each, were used. Each network was
trained for 1000 iterations using early-stopping. ASNN used an ensemble of 64
individual networks, predictions of which were averaged, to provide final model
predictions. The 2D to 3D conversion was done wusing Corina
(https://www.mn-am.com/) program. The developed model is available at
http://ochem.eu/model/12147752. The accuracy of predictions are estimated based
on the uncertainty of ensemble predictions as described in (Sushko et al 2010).

In DST, each model used for the consensus is not weighted equally but based on the
confidence in the individual predictions. The certainty of a positive or negative prediction
of every model is characterized by its positive or negative predictive value (PPV or NPV),
where PPV is defined as the fraction of true positives of all the positive predictions (PPV =
TP / (TP + FP)), and NPV is defined as the fraction of true negatives of all the negative
predictions by a given model (NPV = TN / (TN + FN)). In our case PPV and NPV were
obtained from the k-fold cross-validation of the respective models. Since the models from
the associated partners were not completely integrated into the OpenRiskNet
infrastructure at the time of this writing, only the LAZAR, Jagpot, CPSign, WEKA and
OCHEM models are considered in the following analysis.

LAZAR Jagpot | CPSign | WEKA | OCHEM
PPV | 0.765 0.864 0.806 0.909 0.86
NPV | 0.690 0.788 0.698 0.924 0.71

DST additionally allows the user to put more or less weight on the concordance between
the sources of evidence by the choice of the so-called combination rule. In this way the
user is allowed to choose how conservative the consensus prediction should be. The two
rules examined in this case study are Dempster and Yager combination rule. The first one
neglects the disagreements among the various sources of evidence and provides lower
uncertainties, whereas the conflicts among the sources of evidence result to a greater
uncertainty when using the latter one. In other words, Dempster combination rule
provides results similar to the majority voting rule, whereas Yager rule is more likely to
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produce equivocal prediction in case of disagreements between the sources of evidence.

For every possible outcome, the DST provides belief and plausibility, which can be viewed
as the lower and upper bound of the probability of that outcome, respectively, and their
difference is the uncertainty of that outcome.

To illustrate these concepts, the figure below shows the computed average belief,
plausibility and uncertainty for different combinations of predictions from three sources
of evidence (where each source of evidence is a single predictive model, which predicts a
compound to be penetrating or non-penetrating). The three models used for this
demonstration are Lazar (JGU/IST), Jagpot (NTUA) and CPSign (UU). The red bars
represent the belief that a compound is penetrating, green bars show that it is
non-penetrating and the blue bar is the corresponding uncertainty.

Belief of penetrating and uncertainty sum up to the plausibility that compound is
penetrating. Analogously, the belief of non-penetrating and uncertainty sum up to
plausibility that a compound is non-penetrating. Clearly, both beliefs and uncertainty
should always sum up to 1.

Mean consensus prediction using Yager rule
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Belief bar

The heatmaps below show the difference of the consensus predictions using the
Dempster rule (left) and the Yager rule (right). The color designates the probability and
ranges from blue (0) through white (0.5) to red (1). Every row represents the result for a
single compound. The first 4 columns in each figure correspond to the probability that a
given compound is BBB penetrating according to the individual predictive models. The next
two columns (termed Cons_P and Cons_N) represent the consensus belief that a given
compound is penetrating (Cons_P) or non-penetrating (Cons_N), while the last column
depicts the uncertainty of the consensus prediction. Note that Cons_P, Cons_N and
Uncertainty always sum up to 1.

When all 4 models agree in their prediction (all 4 are blue or red), the consensus
prediction is very clear. However, the difference between the two combination rules
becomes evident when we look at the cases where the models disagree. Clearly,
Dempster rule tends to diminish uncertainty and puts more weight to the prevailing
prediction, while the Yager rule tends to increase uncertainty, being a more conservative
prediction since more molecules will show high uncertainty levels preventing a clear
categorization.
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Heatmap representation of BBB predictions of individual and consensus models. Left side:
consensus model using the Dempster combination rule. Right side: consensus model using
the Yager combination rule. Each row presents the results for a single compound. Only the
results for the first 20 compounds are displayed. Columns 1 to 5 represent the probability
that a given compound is BBB penetrating as predicted by individual models (from left to
right: CPSign, Jagpot, Lazar, WEKA, OCHEM). Columns 6 and 7 represent the consensus
probability that a given compound is BBB penetrating and non-penetrating, while column 8
depicts the uncertainty of the consensus approach. The figure was generated within the
workflow of the batch-compounds-offline.ipynb Jupyter notebook available over GitHub®.

6

https://github.com/OpenRiskNet/notebooks/blob/master/ModelRX/Blood-brain%20barrier%20-%20C
onsensus/batch-compounds-offline.ipynb
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The performance of individual predictive models and the consensus predictions can be
compared on the ROC plot (below). Clearly, the consensus predictions based on five
models offer better performance, which is also reflected in greater AUC values. Note that
for the WEKA predictive model the results could not be quantified, so the ROC curve could
not be made.

Also it should be noted that not every predictive model was able to make a prediction for
all the compounds of the test set. For example:

- The Lazar predictive model uses a nearest-neighbour algorithm with a cutoff chemical
similarity of 0.1. If there was no compound found in the training set that would be
sufficiently similar, then prediction could not be made.

- The Jagpot predictive model uses Mordred descriptors, which are generated from the
Mol representation of the compound. During preprocessing the Mol representations were
generated from the SMILES strings using RDKit, but not all conversions were successful.
Hence in the analysis for Jagpot compounds for which Mol representation and Mordred
descriptors could not be calculated were removed.

These restrictions resulted in the final number of 348 compounds, for which the
consensus predictions could be made.

i Consensus on CPSign, Jagpot, Lazar, WEKA, OCHEM
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This figure was generated within the workflow of the model-comparison.ipynb Jupyter
notebook available over GitHub’. More complete summary and comparison of consensus
predictions of  different combinations of models is available in the
model-comparison-summary.ipynb also available over GitHub®.

7

https://github.com/OpenRiskNet/notebooks/blob/master/ModelRX/Blood-brain%20barrier%20-%20C
onsensus/model-comparison.ipynb.
8

https://github.com/OpenRiskNet/notebooks/blob/master/ModelRX/Blood-brain%20barrier%20-%20C
onsensus/model-comparison-summary.ipynb
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APPENDIX
Jagpot

Jagpot (developed at NTUA) allows users to transform models they create in Python into
web services with 1 line of code using the Jagpotpy package. For more extended reference
to the Jaqgpotpy package, ©please refer to the package reference at
https://jagpotpy.readthedocs.io and for Jagpot in PBPK modelling, please refer to the
REVK Case Study.

In order to briefly demonstrate the functionality of Jagpot, we will present an example of
the user creating a new model in Python, making the model as a web service in Jagpot
and finally, using the new model to make predictions. The example was presented at the
Modelling Session of the Final OpenRiskNet workshop in Amsterdam and is available here:
https://github.com/OpenRiskNet/workshop/tree/master/ModelRX (please note that all
services run on the cloud and the CSV files are only provided to users for comparison
purposes).

] OpenRiskNet / workshop @®unwatch~ 21 | %star 1 YFork 3
<> Code Issues 3 Pull requests 1 Actions Projects 0 Wiki Security Insights
Branch: master v workshop / ModelRX / Blood-brain barrier - Jagpot / Createnewfile  Uploadfiles Findfile History
T dphilip Update Jagpot.md Latest commit fc@@bda on Oct 16
[£) Jagpot.md Update Jagpot.md last month
£l compounds.cav Files for ORN Amsterdam workshop last month
[E] compounds_descriptors.csv Files for ORN Amsterdam workshop last month
[E] jaqpot-descriptors.ipynb Files for ORN Amsterdam workshop last month
El jagpot-model.ipynb Files for ORN Amsterdam workshop last month
E predictions_Jagpot.csv Files for ORN Amsterdam workshop last month

The example is split in two phases, with respective notebooks. In the first phase (in the
https://github.com/OpenRiskNet/workshop/blob/master/ModelRX/Blood-brain%20barrier%
20-%20Jagpot/jagpot-descriptors.ipynb notebook), users first get the dataset from Lazar:

Communicate with Lazar to obtain the dataset

url = 'https://lazar.prod.openrisknet.org/endpoint’
headers = {'accept': ‘application/json’,
'Content-Type': ‘application/x-www-form-urlencoded'}

rl = requests.get(url, headers=headers)
print("LAZAR Status code GET endpeints: {@}".format(rl.status_code))

if rl.status_code == 208:
endpoints = rl.json()

LAZAR Status code GET endpoints: 2@

After necessary preprocessing steps on the dataset are performed, the user produces
Mordred descriptors on the dataset:
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Calculate Mordred descriptors

calc = Calculator(descriptors)

dfMord = calc.pandas(df['Mol’'])

dfMord.head()

ABC ABCGG nAcid nBase SpAbs A SpMax_A SpDiam_A

0 21474080 17.978542
1 0151948 B.206878
2 9.151948 B.206878
3 14946702 13.140670

4 24862776 17.B08B737

5 rows x 1826 columns

0
0
0

0]
1
1
1
1

34.5534
15.659
15.659

25,0359

40.9336

2.54198
2.37835
2.37835
245245

2.48674

493359
4.57188
4.57188
4.79766

49288

SpAD_A SpMAD_A

345534
15.659
15.659

25.0359

40.9336

1.27976
1.30481
1.30481

1.2518

132044

LogEE_A ...

42518 ..
3.42249 ..
3.42243 ..
3.90305 ..

4.38836 ...

SRW10
10.428837
9190852
9180852
9.742808

10.513824

TSRW10
78.871649
56.587917
56.587917
67137495

81.350168

MW
389.089082
161.085297
161.085297
274.204513

426208719

AMW WPath W
9.048583 1727
7.004143 197
7.004143 197
5.960968 862

7.348382 3047

The results are in turn processed to make sure only meaningful results will be used for

modelling.

In the second phase, users build their model (available as a Python notebook at
https://github.com/OpenRiskNet/workshop/blob/master/ModelRX/Blood-brain%20barrier%

20-%20Jagpot/jagpot-model.ipynb).

Users develop a predictive model for blood-brain-barrier penetration using Logistic
Regression (from scikit-learn®), after reducing the number of descriptors used to 20, based
on Recursive Feature Elimination (scikit-learn).

Split the main dataframe into X and Y

df.drop(['True',

Scaling between 0 and 1

'SMILES'], axis=1)
df[['True']].replace({'non-penetrating': @,

X_scaled = (X = X.min()) / (X.max() = X.min())

Select only 20 most important features

More here: Recursive Feature Elimination (scikit-learn)

‘penetrating': 1})

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

model = LogisticRegression{solver='newton-cg', multi_class='multinomial’, max_iter=100)

rfe

= RFE(model, 28, verbose=1)
fit = rfe.fit(X_scaled, Y['True'])

X_rfe = X_scaled.loc[:, fit.support_.tolist(}]

After evaluating model performance through the Confusion matrix, the Positive predictive
value, the Negative predictive value and the ROC plot (shown below) the model is

accepted.

® https://scikit-learn.org
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iegend ( loc="1lower right")

ax.
ax.set_xlabel('False positive rate’)
ax.set_ylabel('True positive rate')
ax.set_aspect('equal’
ax.set_xlim([@, 11)
ax.set_ylim([@, 1])
fig.tight_layout()
plt.show()
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trained model can be added to Jagpot using the Jaqpotpy library that was specially

written by the NTUA team for the purpose of uploading models to Jagpot. First the user
needs to define which Jagpot instance actions will refer to and authenticate access to it.

Deploy the model to Jagpot service

# URL to access the jagpot service
jagpot = Jagpot("https://api-jagpot.prod.openrisknet.org/jagpot/services/")

#alternative link for Jagpot services

#jagpet = Jagpot(“https://api.jaqpot.org/jaqgpot/services/")

Authentication 9|

You can authenticate yourself either through username/password (have to entered everytime) or with API key obtained from the Jagpot website (requires login
and has validity for a limited time - does not have to entered everytime)

#with username/password
#jaqpot.request_key_safe()

#with API key
apiKey = "eyJhbGci0ilSUzIINiIsInR5cCIgOiAiS1dUTIiwia2lkIiAGICIoX2p2Z313bWZAVGIZ0HILNWIFb3dWWUVHUMS2Z8hsLWSsS]dPUNQ3V20wIng. eylqdGki0id
jagpot.set_api_key(apiKey)

After that, uploading a ready model is a matter of 1 line of code, where the user defines
the details for the model and necessary references:

Now

From model to web service in 1 line of code

# deploy the model to jagpot
url = jagpot.deploy_linear_model(model, X rfe, Y[['True'l], title="OpenRiskNet/ModelRX", description="Logistic regression model + RFE

You now have a web service.

that the model has become a web service, getting predictions from it is simple:
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You can also get predictions from your model:

pred, predCol = jaqpot.predict(X_rfe, medelId=url)

pred
NssssN PEOE_VSA3 nAcid SlogPVSA10 MATS1p nBondsD EState VSA2 GATS1se SddssS RPCG ... IC1 Lipinski VSA_EState8 EState VS/
0 0 0.177288 0.0 0.000000 0.525334 0.066667 0.274539 0.336161 1.000000 0.103911 .. 0.982863 1 0.217271 0.6187
4 0 0.177288 0.0 0.000000 0.535277 0.000000 0.000000 0572574 1.000000 0.166547 .. 0.706634 1 0.199741 0.1463¢
2 0 0.177288 0o 0.000000 0.535277 0.000000 0.000000 0572574 1.000000 0.66547 .. 0.706634 1 0.199741 0.1463¢
3 0 0.000000 0.0 0.185059 0.554742 0.066667 0.000000 0.515808 1.000000 0.234713 .. 0.677722 1 0.708066 0.1286!
4 0 0.333461 0.0 0142857 0.542120 0.066667 0129238 0.198597 1.000000 0.124416 .. 0.8086137 1 0.402696 0.82112
383 0 0.000000 0.0 0.000000 0.654844 0.000000 0.000000 0.487902 1.000000 0.287180 .. 0.682089 1 0.419335 0.4023¢
384 0 0.476721 0.0 0189304 0.512887 0.266667 0.307252 0.215919 0.513168 0.154092 ... 0.9553968 1 0.169934 0.0000(
385 0 0.000000 0.0 0.000000 0.643280 0.000000 0.128742 0.452737 1.000000 0.089241 .. 0.599099 0 0.604214 0.0000C
386 0 0.000000 0.0 0.000000 0725519 0.133333 0.192371 0.246524 1.000000 0.210130 ... 0.508553 1 0.386176 0.2617%
387 0 0.000000 0.0 0.000000 0.506561 0.066667 0.067106 0.155743 1.000000 0.186433 .. 0.591139 1 0.278014 0.6385¢

388 rows x 21 columns

Please note that the model is now also available over the Jagpot user interface at
https://ui-jagpot.prod.openrisknet.org for users to inspect:

Qverview Features Predict / Validate Discussion Archive
D Dependent feature / Predicted feature
MODEL True
Title:
OpenRiskNet/ModelRX

Owner: filipposd Independent features
Description:

Logistic regression model + RFE

RPCG

Description: Feature created to link to independent feature of model OpenRiskNet/ModelRX

nAcid

Description: Feature created to link to independent feature of model OpenRiskNet/ModelRX

GATS1se

Description: Feature created to link to independent feature of model OpenRiskNet/ModelRX

And also make predictions on their own data, either typed in or provided over a CSV file,
using the auto-generated template provided by Jagpot:
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= Jagpot a &

Overview Features Predict / Validate Discussion Archive
D Choose method
MODEL Predict >
Title:
OpenRiskNet/ModelRX

Owner: filipposd
Upload dataset with the required independent features and values
Description:

Logistic regression model + RFE NP

Input values for the independent features

nAcid MATS1p GATS1se nBondsD RPCG
SssssN NssssN SddssS IC1 EState VSAS
PEOE_VSA3 Lipinski PECE_VSA8 PEOE_VSA11 EState VSA3

A more detailed presentation of Jagpot’s offering was presented during the webinar
“Demonstration on OpenRiskNet approach on modelling for prediction or read across”,
available at https://openrisknet.org/events/67/, where both the recording and the slides
are available.

The documentation for the Jagpot 5 API has been made available over Swagger at
https://api-Jagpot.prod.openrisknet.org/Jagpot/swagger/.

NEDACTDIICT
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Lazar

lazar (Lazy Structure-Activity Relationships developed at JGU/IST) is a framework based
on Ruby libraries. It also depends on a couple of external programs and libraries. All
required libraries will be installed with the gem install lazar command. To build this prediction
model in lazar following steps where required. Executing the following commands either
from an interactive Ruby shell or a Ruby script.

1. Create the training dataset

Create a CSV file with two columns. The first line should contain either SMILES or InChl
(first column) and the endpoint (second column). The first column should contain either
the SMILES or InChl of the training compounds, the second column the training
compounds toxic activities (qualitative or quantitative). Add metadata to a JSON file with
the same basename containing the fields "species", "endpoint", "source".

training_dataset = Dataset.from_csv_file "Blood_Brain_Barrier_Penetration-Human.csv"

2. Create and validate the lazar model with default algorithms and parameters

validated_model = Model::Validation.create_from_csv_file Blood_Brain_Barrier_Penetration-Human.csv

This command will create a lazar model and validate it with three independent 10-fold
cross validations.

Following screenshots represents the model details and validation results as shown in the
lazar GUI (https://lazar.prod.openrisknet.org/predict).

Blood Brain Barrier Penetration
Human + Details | Validation

Model:

Source: http://cheminformatics.org/datasets/
Type: Classification

Training compounds: 404

Training dataset: blood-brain-barrier

Algorithms:

Similarity: Algorithm::Similarity.tanimoto , min: 0.1
Prediction: Algorithm::Classification.weighted_majority vote
Descriptors: fingerprint, MP2D

Independent crossvalidations:

Num folds: 10

Num instances: 404

Num unpredicted 38

Accuracy: 0.74

Weighted accuracy: 0.784

True positive rate: 0.678

True negative rate: 0.759
Positive predictive value: 0.468
Negative predictive value: 0.883

Num folds: 10

Num instances: 404

Num unpredicted 37

Accuracy: 0.76

Weighted accuracy: 0.811

True positive rate: 0.707

True negative rate: 0.777
Positive predictive value: 0.516
Negative predictive value: 0.888

Num folds: 10

Num instances: 404

Num unpredicted 37

Accuracy: 0.749

Weighted accuracy: 0.804

True positive rate: 0.693

True negative rate: 0.766
Positive predictive value: 0.484
Negative predictive value: 0.888
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Confusion Matrix Confusion Matrix Confusion Matrix

actual actual actual
active inactive active inactive active
predicted active 59 28 predicted active 65 27 predicted 61
inactive 67 21 inactive 61 213 65
Weighted Confusion Matrix Weighted Confusion Matrix Weighted Confusion Matrix
actual actual actual
active inactive active inactive active
predicted active 19.921 8.742 predicted active 23.848 8.218 predicted 2294
inactive 19.482 82.477 inactive 17.098 85.046 18.867

QMRF:

& XML

Experiment with other algorithms

inactive
27
213

inactive
7.997
87171

You can pass algorithm specifications as parameters to the Model:Validation.create_from_csv_file
command. Algorithms for descriptors, similarity calculations, feature_selection and local
models are specified in the algorithm parameter. Unspecified algorithms and parameters

are substituted by default values.

The example below selects
MP2D fingerprint descriptors
Tanimoto similarity with a threshold of 0.1
no feature selection

weighted majority vote predictions

algorithms = {
:descriptors => { # descriptor algorithm
:method => "fingerprint", # fingerprint descriptors
:type => "MP2D" # fingerprint type, e.g. FP4, MACCS
13
:similarity => { # similarity algorithm
:method => "Algorithm::Similarity.tanimoto”,
:min => 0.1 # similarity threshold for neighbors
h
:feature_selection => nil, # no feature selection
:prediction => { # local modelling algorithm
:method => "Algorithm::Classification.weighted_maijority_vote",
h
}
training_dataset = Dataset.from_csv_file "Blood_Brain_Barrier_Penetration-Human.csv"

model = Model::Validation.create training_dataset: training_dataset, algorithms: algorithms

OpenRiskNet
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lazar is implemented as a RESTful service as well as a graphical user interface.

REST API: https://lazar.prod.openrisknet.org

GUI: https://lazar.prod.openrisknet.org/predict
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WEKA

In this section, we present a sample use case for employing the JGU Weka REST API
for creating a predictive model based on a user-provided dataset. The model can be
evaluated based on the already provided dataset or the user can use the generated
model for evaluating a different dataset split kept as a test set. The web version of
the JGU Weka REST API can be explored at the URL
https://jguweka.prod.openrisknet.org/.

The BBB penetration dataset contains SMILES representations of chemical
compounds and whether the particular compound can cross the blood-brain-barrier.
In order to train a model for predicting the blood-brain-barrier penetrating or
non-penetrating chemicals, we need some features for the chemical compounds,
based on which we can train a model. The user can create the feature based dataset
compatible with Weka ARFF format in any desired way. It is possible to use existing
chemoinformatics libraries, e.g. CDK, Mordred, RDKit, etc. for extracting features from
the chemical compounds, however, since the other services in this case study already
use one or the other mentioned libraries, we will use a graph mining based feature
extraction algorithm for chemical compounds in order to use features which provide a
different perspective to the problem.

The existing libraries use handcrafted features which have been identified by chemical
experts due to certain properties of these chemical structures/features. It has been
demonstrated that elaborate patterns can also be used to summarize ground
features. Using patterns which summarize several ground features also has the
potential of revealing latent information not present in any ground feature. The Latent
Structure Pattern Mining (LAST-PM) algorithm by Maunz et al."® aims to extract ground
features from chemical compounds based on embedding relationships between
individual patterns while taking into consideration the frequency and/or correlation of
the patterns.

The LAST-PM implementation depends on a number of libraries, therefore, the
algorithm has been containerised and a fully functional Docker image has been made
available at https://hub.docker.com/r/jguweka/chem_descriptor_miner. The feature
extraction application takes as input two files, (i) an “smi” file containing SMILES
formatted chemical compounds, and (ii) a “class” file with the target/class variable
corresponding to each chemical compound in the SMILES file. All the processing steps
are then handled by the containerised application and feature extraction, conversion
of chemical features from graph data format into SMARTS notation, and finally, the
creation of a Weka ARFF file with the extracted features is carried out by the
containerised application.

Assuming that we have separated the SMILES formatted chemical compounds and the
target variable of the BBB dataset into an smi file and a class file, respectively, we can
initiate the LAST-PM based feature extraction process using the following command

' Maunz A., Helma C., Cramer T., Kramer S. (2010) Latent Structure Pattern Mining. In:
Balcazar J.L., Bonchi F., Gionis A., Sebag M. (eds) Machine Learning and Knowledge Discovery
in Databases. ECML PKDD 2010. Lecture Notes in Computer Science, vol 6322. Springer,
Berlin, Heidelberg
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to start the chem_descriptor_miner Docker container.
docker run -ti -v /path/to/data_dir:/work jguweka/chem_descriptor_miner /bin/bash

Here, the /path/to/data_dir is the host computer’s directory containing the smi and
class files. The resulting ARFF files are also saved to the same directory on the host
machine. Running the above command starts the Docker container, which contains
the main script in the chem-descriptors directory and the smi and class files are linked
from the /path/to/data_dir directory in the host machine to the work directory in the
Docker container. The different program options, e.g. dataset name, minimum
descriptor frequency, number of ground features, SMARTS wildcarding and aromatic
annotations, etc. can be adjusted by editing the script.sh BASH script in the
chem-descriptors directory before running the task of feature extraction. Once the
process completes, the ARFF file is created in the host computer’s data directory
/path/to/data_dir.

Here we assume that the BBB dataset has been successfully processed by the
jguweka/chem_descriptor_miner containerised application. The Weka REST API exposes
a number of machine learning algorithms. We will use the Random Forest algorithm
for this demonstration using the default parameters. Apart from appearing under the
algorithm category, the ensemble methods are also grouped under the meta algorithm
category.

OpenRiskNet 5] Page 24



@ JGUWEKAREST services x  + - 0o x

<« C & jguwekaprod.openrisknet.org/# : Incognito @
dataset >
meta algorithm ~

POST /algorithm/BayesNet/adaboost REST interface to the WEKA AdaBoost M1 with BayesNet classifier.

POST /algorithm/BayesNet/bagging REST interface to the WEKA Bagging with BayesNet classifier.

E

S /algorithm/DecisionStump/adaboost REST interface to the WEKA AdaBoost M1 with DecisionStump classifier.

POST /algorithm/DecisionStump/bagging REST interface to the WEKA Bagging with DecisionStump classifier.

POST /algorithm/J48/adaboost REST interface to the WEKA Adaboost M1 with J48 classifier.

POST /algorithm/J48/bagging REST interface to the WEKA Bagging meta classifier.

E

S falgorithm/linearRegression/adaboost REST interface to the WEKA Bagging with linear regression classifier.

POST falgorithm/linearRegression/bagging REST interface to the WEKA Bagging with linear regression classifier

POST falgorithm/M5P/adaboost REST interface to WEKA AdaBoost M1 with M5P classifier

l

POS’ /algorithm/M5P/bagging REST interface to WEKA Bagging with M5P classifier

POST /algorithm/RandomForest REST interface to the WEKA RandomForest classifier.

Selecting an algorithm entry opens the details for the particular algorithm. Clicking
the “Try it out” button allows the user to upload a dataset or provide a URI and run
the algorithm for the given data. The interface provides default values for the
different parameters required for the selected algorithm. Here, we are using the
default values.
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@ JGUWEKA REST services X

C & jguwekaprod.openrisknet.org/#/meta%:2

POST /algorithm/RandomForest REST interface to the WEKA RandomForest classifier.

REST interface to the WEKA RandomForest classifier. Returns a Task URI.

Parameters
Name Description
subjectid Authorization token

string

(header)

subjectid - Authorization token

Request body multipart/form-data v

file ARFF data file.

string(sbi ' Choose File | bloodbarr_wi...ards_0.arff

datasetUri Dataset URI or local dataset D (to the arff representation of a dataset).

string datasetUri

storeOutOfBagPredictions Whether to store the out-of-bag predictions.

boolean - v

numExecutionSlots The number of execution slots (threads) to use for constructing the ensemble.

integer($int32) 1

bagSizePercent Size of each bag, as a percentage of the training set size.

integer($int32) 100

numDecimalPlaces The number of decimal places to be used for the output of numbers in the model.

integer($int32) 10

batchSize The preferred number of instances to process if batch prediction is being performed. More or fewer

integer ($i instances may be provided, but this gives implementations a chance to specify a preferred batch size.

100

Drint(‘laqqmprs Print the individual classifiers in the output -
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Clicking the “Execute” button creates a task for model creation. The task link is
returned as a response to the execute command.

@ JGUWEKAREST services x  +

& (& & jguweka.prod.openrisknet.org 1 u Incognito @

number ($double) 10

Responses

Curl

curl -X POST "httE
ntent-Type: mu
"putputOut0fBagComplexityStatistic printClassifier -F lidationNum=10" -F "breakTiesRandomly=
"numDecimalPlace alcOutDfBag -F "computeAttributeImportance

ation" -F "batchSize=188" -F "numIterations=1080" -F
_duplicates freq 560 mhops_20_opt_msa node_anno_8 wildcards_8.arff" -F "bagSizePercent=108" -

://jguweka.prod.openrisknet.org/algorithm/RandomForest” -H "accept: text/uri-lis -H
tipart/form-data" -F "storeDutOfBagPrediction -F "numFeature -F "numExecutionSlots:

Server response

Code Details

200 Response body

http://jguweka.prod.openrisknet.org/task/5de8fa5a976d05000195886b

Response headers
access-control-allow-heade Content-Type
access-control-allow-methods: GET, POST, DELETE, PUT
access-control-allow-origin:

content-length: 65

content-type: text/uri-list

date: Fri, 29 Nov 2019 11:00:43 GMT
server: Apache-Coyote/1.1

Responses

Code Description Links
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The task ID can be used to query the server about the state of the modelling task.

@ JCGUWEKARESTservices X  +

&« C & jguweka.prod.openrisknet.org

GET /task/{1id} Getjson representation of a task.

Get json representation of a task.

Parameters Cancel

Name Description

id # required Task ID

string 5de10233976d0500015576b9
subjectid Authorization token

St?:g . subjectid - Authorization token

Responses

Curl

curl -X GET "https://jguweka.prod.openrisknet.org/task/5de10233976d0560015576b9" -H “accept: application/json”

Request URL

Server response

Code Details

200 Response body

COMPLETED",
5del0233976dA508015576b9",
j sknet.org/task/5delf233976d0500015576b9",
"resultURI ttp://jguweka.prod.openrisknet.org/model/5del023d976d0500015576bf",

P://]
"creator RandomForest",
AVED",
"RandomForest algorithm",
OMPLETED" ,
ining data on RandomForest algorithm.",
lee

Download
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Once the server returns the COMPLETED status for the task, the model can be
retrieved based on the model ID given under resultURI. The generated model is
presented in human readable form but it can also be downloaded as a JSON object.

@ JCUWEKAREST services x  + - b x

&« (] & jguweka.prod.openrisknet.org/# & t 1r L Incognito 9

Curl -

curl -X GET "https://jguweka.prod.openrisknet.org/model/5del823d976d0500015576bf" -H "accept: text/plain”

Request URL

prod.openrisknet.org/model/5de162 d8568015576bf

Server response

Code Details

200 Response body

Bagging with 100 iterations and base learner
weka.classifiers.trees.RandomTree -K 8 -M 1.8 -V 0.801 -S 1 -do-not-check-capabilities -num-decimal-places 18
=== Crossvalidation Results ===

Correctly Classified Instances 72.0482 %
Incorrectly Classified Instances 27.9518 %
Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error

Total Number of Instances

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area C(lass
8.561 199 6.586 08.561 574 0.366 08.756 8.611 ]
6.801 0.439 6.784 06.801 08.792 0.366 08.755 08.849 1
Weighted Avg. 6.720 0.359 8.718 8.728 8.719 0.366 08.756 08.769

=== Confusion Matrix

a b <-- classified as
]

Response headers

access-control-allow-headers: Content-Type
access-control-allow-methods: GET, POST, DELETE, PUT
access-control-allow-origin: *

content-leng 287

content-type: text/plain
date: Fri, 29 Nov 2019 11:36:55 GMT
server: Apache-Coyote/1.

Responses

Code Description Links

I text/plain ~ ]

Controls Accept header.

200

In this case, the generated model was able to achieve a 72% accuracy. The outlined
steps can also be carried out using REST calls through a Jupyter Notebook or in any
other scripts the user is writing for their predictive task. The REST calls for each step
are also shown in the Swagger Ul based front end.
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CPSign

CPSign is a licensed software co-developed by the UU team. This software brings
together Conformal Prediction and cheminformatics, accessible through a Java API,
command line interface and a Web Ul. Currently it supports loading chemistry from
various formats, basic filtration of data, descriptor generation using the Signatures
descriptor and predictive modeling using Transductive (TCP) and Inductive conformal
prediction (ACP and CCP) as well as Cross Venn-ABERS prediction (CVAP). Models can
be trained from a web Ul as well as a OpenAPl documented REST API. Currently the
REST API supports uploading of license files, datasets and training of Venn-ABERS
based classification models. Since CPSign is a licensed software the functionality
requires authentication using Keycloak. The web Ul is located at the URL:
http://modelingweb.prod.openrisknet.org/ and the Swagger Ul for the OpenAPI
definition is available at the URL:
http://modelingweb.prod.openrisknet.org/swagger-ui/. Trained models can, aside from
previous modes of access, be deployed as microservices in OpenShift and expose a
REST API described using OpenAPIl. Each microservice also include a GUI where users
can load molecules or draw them on their own, continuously making predictions as
the molecule is edited in the GUI. An example of the drawing GUI is shown below, for
a model predicting the LogD value. Colouring of the atoms show how individual atoms
contribute to the prediction (blue contribute towards a lower LogD and red towards
an increased LogD).
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https://cplogd.service.pharmb X+

C A NotSecure | cplogd.service.pharmb.io)

/draw

& b.io cpLogD
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B 1,0

Siructure pasted. SMILES conversion provided by OpenChemLib
Confidence: = 08

Prediction (cont=0.8):
(-0.081; 0.894)

»

Chembl23 cpLogD

=z

cplLogD - confidence predictor for logD

Instructions: Draw your molecule in the editor, the prediction underneath will
update as you draw.

The model predicts Log D based on a support vector machine trained on data
from ChEMBL version 23 comprising approximately 1.6 million compounds. The
confidence interval is calculated for the confidence specified by the slider using
the conformal prediction approach. For citing this service and for more
information:

A i i for logD using g ion and a support-

vector machine

Maris Lapins, Staffan Arvidsson, Samuel Lampa, Arvid Berg, Wesley Schaal,
Jonathan Alvarsson and Ola Spjuth Journal of Cheminformatics 10.1 (2018): 17.
https://link.springer.com/article/10.1186/513321-018-0271-1
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