Coverage Report

Created: 2024-09-08 06:07

/proc/self/cwd/external/com_google_absl/absl/strings/internal/charconv_parse.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include "absl/strings/internal/charconv_parse.h"
16
#include "absl/strings/charconv.h"
17
18
#include <cassert>
19
#include <cstdint>
20
#include <limits>
21
22
#include "absl/strings/internal/memutil.h"
23
24
namespace absl {
25
ABSL_NAMESPACE_BEGIN
26
namespace {
27
28
// ParseFloat<10> will read the first 19 significant digits of the mantissa.
29
// This number was chosen for multiple reasons.
30
//
31
// (a) First, for whatever integer type we choose to represent the mantissa, we
32
// want to choose the largest possible number of decimal digits for that integer
33
// type.  We are using uint64_t, which can express any 19-digit unsigned
34
// integer.
35
//
36
// (b) Second, we need to parse enough digits that the binary value of any
37
// mantissa we capture has more bits of resolution than the mantissa
38
// representation in the target float.  Our algorithm requires at least 3 bits
39
// of headway, but 19 decimal digits give a little more than that.
40
//
41
// The following static assertions verify the above comments:
42
constexpr int kDecimalMantissaDigitsMax = 19;
43
44
static_assert(std::numeric_limits<uint64_t>::digits10 ==
45
                  kDecimalMantissaDigitsMax,
46
              "(a) above");
47
48
// IEEE doubles, which we assume in Abseil, have 53 binary bits of mantissa.
49
static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed");
50
static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact");
51
static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact");
52
53
// The lowest valued 19-digit decimal mantissa we can read still contains
54
// sufficient information to reconstruct a binary mantissa.
55
static_assert(1000000000000000000u > (uint64_t{1} << (53 + 3)), "(b) above");
56
57
// ParseFloat<16> will read the first 15 significant digits of the mantissa.
58
//
59
// Because a base-16-to-base-2 conversion can be done exactly, we do not need
60
// to maximize the number of scanned hex digits to improve our conversion.  What
61
// is required is to scan two more bits than the mantissa can represent, so that
62
// we always round correctly.
63
//
64
// (One extra bit does not suffice to perform correct rounding, since a number
65
// exactly halfway between two representable floats has unique rounding rules,
66
// so we need to differentiate between a "halfway between" number and a "closer
67
// to the larger value" number.)
68
constexpr int kHexadecimalMantissaDigitsMax = 15;
69
70
// The minimum number of significant bits that will be read from
71
// kHexadecimalMantissaDigitsMax hex digits.  We must subtract by three, since
72
// the most significant digit can be a "1", which only contributes a single
73
// significant bit.
74
constexpr int kGuaranteedHexadecimalMantissaBitPrecision =
75
    4 * kHexadecimalMantissaDigitsMax - 3;
76
77
static_assert(kGuaranteedHexadecimalMantissaBitPrecision >
78
                  std::numeric_limits<double>::digits + 2,
79
              "kHexadecimalMantissaDigitsMax too small");
80
81
// We also impose a limit on the number of significant digits we will read from
82
// an exponent, to avoid having to deal with integer overflow.  We use 9 for
83
// this purpose.
84
//
85
// If we read a 9 digit exponent, the end result of the conversion will
86
// necessarily be infinity or zero, depending on the sign of the exponent.
87
// Therefore we can just drop extra digits on the floor without any extra
88
// logic.
89
constexpr int kDecimalExponentDigitsMax = 9;
90
static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax,
91
              "int type too small");
92
93
// To avoid incredibly large inputs causing integer overflow for our exponent,
94
// we impose an arbitrary but very large limit on the number of significant
95
// digits we will accept.  The implementation refuses to match a string with
96
// more consecutive significant mantissa digits than this.
97
constexpr int kDecimalDigitLimit = 50000000;
98
99
// Corresponding limit for hexadecimal digit inputs.  This is one fourth the
100
// amount of kDecimalDigitLimit, since each dropped hexadecimal digit requires
101
// a binary exponent adjustment of 4.
102
constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4;
103
104
// The largest exponent we can read is 999999999 (per
105
// kDecimalExponentDigitsMax), and the largest exponent adjustment we can get
106
// from dropped mantissa digits is 2 * kDecimalDigitLimit, and the sum of these
107
// comfortably fits in an integer.
108
//
109
// We count kDecimalDigitLimit twice because there are independent limits for
110
// numbers before and after the decimal point.  (In the case where there are no
111
// significant digits before the decimal point, there are independent limits for
112
// post-decimal-point leading zeroes and for significant digits.)
113
static_assert(999999999 + 2 * kDecimalDigitLimit <
114
                  std::numeric_limits<int>::max(),
115
              "int type too small");
116
static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) <
117
                  std::numeric_limits<int>::max(),
118
              "int type too small");
119
120
// Returns true if the provided bitfield allows parsing an exponent value
121
// (e.g., "1.5e100").
122
2.48k
bool AllowExponent(chars_format flags) {
123
2.48k
  bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
124
2.48k
  bool scientific =
125
2.48k
      (flags & chars_format::scientific) == chars_format::scientific;
126
2.48k
  return scientific || !fixed;
127
2.48k
}
128
129
// Returns true if the provided bitfield requires an exponent value be present.
130
37
bool RequireExponent(chars_format flags) {
131
37
  bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
132
37
  bool scientific =
133
37
      (flags & chars_format::scientific) == chars_format::scientific;
134
37
  return scientific && !fixed;
135
37
}
136
137
const int8_t kAsciiToInt[256] = {
138
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
139
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
140
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0,  1,  2,  3,  4,  5,  6,  7,  8,
141
    9,  -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1,
142
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
143
    -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
144
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
145
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
146
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
147
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
148
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
149
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
150
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
151
    -1, -1, -1, -1, -1, -1, -1, -1, -1};
152
153
// Returns true if `ch` is a digit in the given base
154
template <int base>
155
bool IsDigit(char ch);
156
157
// Converts a valid `ch` to its digit value in the given base.
158
template <int base>
159
unsigned ToDigit(char ch);
160
161
// Returns true if `ch` is the exponent delimiter for the given base.
162
template <int base>
163
bool IsExponentCharacter(char ch);
164
165
// Returns the maximum number of significant digits we will read for a float
166
// in the given base.
167
template <int base>
168
constexpr int MantissaDigitsMax();
169
170
// Returns the largest consecutive run of digits we will accept when parsing a
171
// number in the given base.
172
template <int base>
173
constexpr int DigitLimit();
174
175
// Returns the amount the exponent must be adjusted by for each dropped digit.
176
// (For decimal this is 1, since the digits are in base 10 and the exponent base
177
// is also 10, but for hexadecimal this is 4, since the digits are base 16 but
178
// the exponent base is 2.)
179
template <int base>
180
constexpr int DigitMagnitude();
181
182
template <>
183
29.0k
bool IsDigit<10>(char ch) {
184
29.0k
  return ch >= '0' && ch <= '9';
185
29.0k
}
186
template <>
187
0
bool IsDigit<16>(char ch) {
188
0
  return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0;
189
0
}
190
191
template <>
192
19.5k
unsigned ToDigit<10>(char ch) {
193
19.5k
  return static_cast<unsigned>(ch - '0');
194
19.5k
}
195
template <>
196
0
unsigned ToDigit<16>(char ch) {
197
0
  return static_cast<unsigned>(kAsciiToInt[static_cast<unsigned char>(ch)]);
198
0
}
199
200
template <>
201
2.44k
bool IsExponentCharacter<10>(char ch) {
202
2.44k
  return ch == 'e' || ch == 'E';
203
2.44k
}
204
205
template <>
206
0
bool IsExponentCharacter<16>(char ch) {
207
0
  return ch == 'p' || ch == 'P';
208
0
}
209
210
template <>
211
7.44k
constexpr int MantissaDigitsMax<10>() {
212
7.44k
  return kDecimalMantissaDigitsMax;
213
7.44k
}
214
template <>
215
0
constexpr int MantissaDigitsMax<16>() {
216
0
  return kHexadecimalMantissaDigitsMax;
217
0
}
218
219
template <>
220
4.75k
constexpr int DigitLimit<10>() {
221
4.75k
  return kDecimalDigitLimit;
222
4.75k
}
223
template <>
224
0
constexpr int DigitLimit<16>() {
225
0
  return kHexadecimalDigitLimit;
226
0
}
227
228
template <>
229
2.44k
constexpr int DigitMagnitude<10>() {
230
2.44k
  return 1;
231
2.44k
}
232
template <>
233
0
constexpr int DigitMagnitude<16>() {
234
0
  return 4;
235
0
}
236
237
// Reads decimal digits from [begin, end) into *out.  Returns the number of
238
// digits consumed.
239
//
240
// After max_digits has been read, keeps consuming characters, but no longer
241
// adjusts *out.  If a nonzero digit is dropped this way, *dropped_nonzero_digit
242
// is set; otherwise, it is left unmodified.
243
//
244
// If no digits are matched, returns 0 and leaves *out unchanged.
245
//
246
// ConsumeDigits does not protect against overflow on *out; max_digits must
247
// be chosen with respect to type T to avoid the possibility of overflow.
248
template <int base, typename T>
249
int ConsumeDigits(const char* begin, const char* end, int max_digits, T* out,
250
7.20k
                  bool* dropped_nonzero_digit) {
251
7.20k
  if (base == 10) {
252
7.20k
    assert(max_digits <= std::numeric_limits<T>::digits10);
253
7.20k
  } else if (base == 16) {
254
0
    assert(max_digits * 4 <= std::numeric_limits<T>::digits);
255
0
  }
256
7.20k
  const char* const original_begin = begin;
257
258
  // Skip leading zeros, but only if *out is zero.
259
  // They don't cause an overflow so we don't have to count them for
260
  // `max_digits`.
261
7.20k
  while (!*out && end != begin && *begin == '0') ++begin;
262
263
7.20k
  T accumulator = *out;
264
7.20k
  const char* significant_digits_end =
265
7.20k
      (end - begin > max_digits) ? begin + max_digits : end;
266
26.7k
  while (begin < significant_digits_end && IsDigit<base>(*begin)) {
267
    // Do not guard against *out overflow; max_digits was chosen to avoid this.
268
    // Do assert against it, to detect problems in debug builds.
269
19.5k
    auto digit = static_cast<T>(ToDigit<base>(*begin));
270
19.5k
    assert(accumulator * base >= accumulator);
271
19.5k
    accumulator *= base;
272
19.5k
    assert(accumulator + digit >= accumulator);
273
19.5k
    accumulator += digit;
274
19.5k
    ++begin;
275
19.5k
  }
276
7.20k
  bool dropped_nonzero = false;
277
7.20k
  while (begin < end && IsDigit<base>(*begin)) {
278
0
    dropped_nonzero = dropped_nonzero || (*begin != '0');
279
0
    ++begin;
280
0
  }
281
7.20k
  if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
282
0
    *dropped_nonzero_digit = true;
283
0
  }
284
7.20k
  *out = accumulator;
285
7.20k
  return static_cast<int>(begin - original_begin);
286
7.20k
}
charconv_parse.cc:int absl::(anonymous namespace)::ConsumeDigits<10, unsigned long>(char const*, char const*, int, unsigned long*, bool*)
Line
Count
Source
250
4.75k
                  bool* dropped_nonzero_digit) {
251
4.75k
  if (base == 10) {
252
4.75k
    assert(max_digits <= std::numeric_limits<T>::digits10);
253
4.75k
  } else if (base == 16) {
254
0
    assert(max_digits * 4 <= std::numeric_limits<T>::digits);
255
0
  }
256
4.75k
  const char* const original_begin = begin;
257
258
  // Skip leading zeros, but only if *out is zero.
259
  // They don't cause an overflow so we don't have to count them for
260
  // `max_digits`.
261
4.75k
  while (!*out && end != begin && *begin == '0') ++begin;
262
263
4.75k
  T accumulator = *out;
264
4.75k
  const char* significant_digits_end =
265
4.75k
      (end - begin > max_digits) ? begin + max_digits : end;
266
18.2k
  while (begin < significant_digits_end && IsDigit<base>(*begin)) {
267
    // Do not guard against *out overflow; max_digits was chosen to avoid this.
268
    // Do assert against it, to detect problems in debug builds.
269
13.4k
    auto digit = static_cast<T>(ToDigit<base>(*begin));
270
13.4k
    assert(accumulator * base >= accumulator);
271
13.4k
    accumulator *= base;
272
13.4k
    assert(accumulator + digit >= accumulator);
273
13.4k
    accumulator += digit;
274
13.4k
    ++begin;
275
13.4k
  }
276
4.75k
  bool dropped_nonzero = false;
277
4.75k
  while (begin < end && IsDigit<base>(*begin)) {
278
0
    dropped_nonzero = dropped_nonzero || (*begin != '0');
279
0
    ++begin;
280
0
  }
281
4.75k
  if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
282
0
    *dropped_nonzero_digit = true;
283
0
  }
284
4.75k
  *out = accumulator;
285
4.75k
  return static_cast<int>(begin - original_begin);
286
4.75k
}
charconv_parse.cc:int absl::(anonymous namespace)::ConsumeDigits<10, int>(char const*, char const*, int, int*, bool*)
Line
Count
Source
250
2.44k
                  bool* dropped_nonzero_digit) {
251
2.44k
  if (base == 10) {
252
2.44k
    assert(max_digits <= std::numeric_limits<T>::digits10);
253
2.44k
  } else if (base == 16) {
254
0
    assert(max_digits * 4 <= std::numeric_limits<T>::digits);
255
0
  }
256
2.44k
  const char* const original_begin = begin;
257
258
  // Skip leading zeros, but only if *out is zero.
259
  // They don't cause an overflow so we don't have to count them for
260
  // `max_digits`.
261
2.44k
  while (!*out && end != begin && *begin == '0') ++begin;
262
263
2.44k
  T accumulator = *out;
264
2.44k
  const char* significant_digits_end =
265
2.44k
      (end - begin > max_digits) ? begin + max_digits : end;
266
8.56k
  while (begin < significant_digits_end && IsDigit<base>(*begin)) {
267
    // Do not guard against *out overflow; max_digits was chosen to avoid this.
268
    // Do assert against it, to detect problems in debug builds.
269
6.11k
    auto digit = static_cast<T>(ToDigit<base>(*begin));
270
6.11k
    assert(accumulator * base >= accumulator);
271
6.11k
    accumulator *= base;
272
6.11k
    assert(accumulator + digit >= accumulator);
273
6.11k
    accumulator += digit;
274
6.11k
    ++begin;
275
6.11k
  }
276
2.44k
  bool dropped_nonzero = false;
277
2.44k
  while (begin < end && IsDigit<base>(*begin)) {
278
0
    dropped_nonzero = dropped_nonzero || (*begin != '0');
279
0
    ++begin;
280
0
  }
281
2.44k
  if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
282
0
    *dropped_nonzero_digit = true;
283
0
  }
284
2.44k
  *out = accumulator;
285
2.44k
  return static_cast<int>(begin - original_begin);
286
2.44k
}
Unexecuted instantiation: charconv_parse.cc:int absl::(anonymous namespace)::ConsumeDigits<16, unsigned long>(char const*, char const*, int, unsigned long*, bool*)
287
288
// Returns true if `v` is one of the chars allowed inside parentheses following
289
// a NaN.
290
0
bool IsNanChar(char v) {
291
0
  return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') ||
292
0
         (v >= 'A' && v <= 'Z');
293
0
}
294
295
// Checks the range [begin, end) for a strtod()-formatted infinity or NaN.  If
296
// one is found, sets `out` appropriately and returns true.
297
bool ParseInfinityOrNan(const char* begin, const char* end,
298
2.48k
                        strings_internal::ParsedFloat* out) {
299
2.48k
  if (end - begin < 3) {
300
37
    return false;
301
37
  }
302
2.44k
  switch (*begin) {
303
0
    case 'i':
304
0
    case 'I': {
305
      // An infinity string consists of the characters "inf" or "infinity",
306
      // case insensitive.
307
0
      if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) {
308
0
        return false;
309
0
      }
310
0
      out->type = strings_internal::FloatType::kInfinity;
311
0
      if (end - begin >= 8 &&
312
0
          strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) {
313
0
        out->end = begin + 8;
314
0
      } else {
315
0
        out->end = begin + 3;
316
0
      }
317
0
      return true;
318
0
    }
319
0
    case 'n':
320
0
    case 'N': {
321
      // A NaN consists of the characters "nan", case insensitive, optionally
322
      // followed by a parenthesized sequence of zero or more alphanumeric
323
      // characters and/or underscores.
324
0
      if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) {
325
0
        return false;
326
0
      }
327
0
      out->type = strings_internal::FloatType::kNan;
328
0
      out->end = begin + 3;
329
      // NaN is allowed to be followed by a parenthesized string, consisting of
330
      // only the characters [a-zA-Z0-9_].  Match that if it's present.
331
0
      begin += 3;
332
0
      if (begin < end && *begin == '(') {
333
0
        const char* nan_begin = begin + 1;
334
0
        while (nan_begin < end && IsNanChar(*nan_begin)) {
335
0
          ++nan_begin;
336
0
        }
337
0
        if (nan_begin < end && *nan_begin == ')') {
338
          // We found an extra NaN specifier range
339
0
          out->subrange_begin = begin + 1;
340
0
          out->subrange_end = nan_begin;
341
0
          out->end = nan_begin + 1;
342
0
        }
343
0
      }
344
0
      return true;
345
0
    }
346
2.44k
    default:
347
2.44k
      return false;
348
2.44k
  }
349
2.44k
}
350
}  // namespace
351
352
namespace strings_internal {
353
354
template <int base>
355
strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
356
2.48k
                                         chars_format format_flags) {
357
2.48k
  strings_internal::ParsedFloat result;
358
359
  // Exit early if we're given an empty range.
360
2.48k
  if (begin == end) return result;
361
362
  // Handle the infinity and NaN cases.
363
2.48k
  if (ParseInfinityOrNan(begin, end, &result)) {
364
0
    return result;
365
0
  }
366
367
2.48k
  const char* const mantissa_begin = begin;
368
2.51k
  while (begin < end && *begin == '0') {
369
37
    ++begin;  // skip leading zeros
370
37
  }
371
2.48k
  uint64_t mantissa = 0;
372
373
2.48k
  int exponent_adjustment = 0;
374
2.48k
  bool mantissa_is_inexact = false;
375
2.48k
  int pre_decimal_digits = ConsumeDigits<base>(
376
2.48k
      begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
377
2.48k
  begin += pre_decimal_digits;
378
2.48k
  int digits_left;
379
2.48k
  if (pre_decimal_digits >= DigitLimit<base>()) {
380
    // refuse to parse pathological inputs
381
0
    return result;
382
2.48k
  } else if (pre_decimal_digits > MantissaDigitsMax<base>()) {
383
    // We dropped some non-fraction digits on the floor.  Adjust our exponent
384
    // to compensate.
385
0
    exponent_adjustment =
386
0
        static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>());
387
0
    digits_left = 0;
388
2.48k
  } else {
389
2.48k
    digits_left =
390
2.48k
        static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits);
391
2.48k
  }
392
2.48k
  if (begin < end && *begin == '.') {
393
2.27k
    ++begin;
394
2.27k
    if (mantissa == 0) {
395
      // If we haven't seen any nonzero digits yet, keep skipping zeros.  We
396
      // have to adjust the exponent to reflect the changed place value.
397
0
      const char* begin_zeros = begin;
398
0
      while (begin < end && *begin == '0') {
399
0
        ++begin;
400
0
      }
401
0
      int zeros_skipped = static_cast<int>(begin - begin_zeros);
402
0
      if (zeros_skipped >= DigitLimit<base>()) {
403
        // refuse to parse pathological inputs
404
0
        return result;
405
0
      }
406
0
      exponent_adjustment -= static_cast<int>(zeros_skipped);
407
0
    }
408
2.27k
    int post_decimal_digits = ConsumeDigits<base>(
409
2.27k
        begin, end, digits_left, &mantissa, &mantissa_is_inexact);
410
2.27k
    begin += post_decimal_digits;
411
412
    // Since `mantissa` is an integer, each significant digit we read after
413
    // the decimal point requires an adjustment to the exponent. "1.23e0" will
414
    // be stored as `mantissa` == 123 and `exponent` == -2 (that is,
415
    // "123e-2").
416
2.27k
    if (post_decimal_digits >= DigitLimit<base>()) {
417
      // refuse to parse pathological inputs
418
0
      return result;
419
2.27k
    } else if (post_decimal_digits > digits_left) {
420
0
      exponent_adjustment -= digits_left;
421
2.27k
    } else {
422
2.27k
      exponent_adjustment -= post_decimal_digits;
423
2.27k
    }
424
2.27k
  }
425
  // If we've found no mantissa whatsoever, this isn't a number.
426
2.48k
  if (mantissa_begin == begin) {
427
0
    return result;
428
0
  }
429
  // A bare "." doesn't count as a mantissa either.
430
2.48k
  if (begin - mantissa_begin == 1 && *mantissa_begin == '.') {
431
0
    return result;
432
0
  }
433
434
2.48k
  if (mantissa_is_inexact) {
435
    // We dropped significant digits on the floor.  Handle this appropriately.
436
0
    if (base == 10) {
437
      // If we truncated significant decimal digits, store the full range of the
438
      // mantissa for future big integer math for exact rounding.
439
0
      result.subrange_begin = mantissa_begin;
440
0
      result.subrange_end = begin;
441
0
    } else if (base == 16) {
442
      // If we truncated hex digits, reflect this fact by setting the low
443
      // ("sticky") bit.  This allows for correct rounding in all cases.
444
0
      mantissa |= 1;
445
0
    }
446
0
  }
447
2.48k
  result.mantissa = mantissa;
448
449
2.48k
  const char* const exponent_begin = begin;
450
2.48k
  result.literal_exponent = 0;
451
2.48k
  bool found_exponent = false;
452
2.48k
  if (AllowExponent(format_flags) && begin < end &&
453
2.48k
      IsExponentCharacter<base>(*begin)) {
454
2.44k
    bool negative_exponent = false;
455
2.44k
    ++begin;
456
2.44k
    if (begin < end && *begin == '-') {
457
0
      negative_exponent = true;
458
0
      ++begin;
459
2.44k
    } else if (begin < end && *begin == '+') {
460
2.44k
      ++begin;
461
2.44k
    }
462
2.44k
    const char* const exponent_digits_begin = begin;
463
    // Exponent is always expressed in decimal, even for hexadecimal floats.
464
2.44k
    begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax,
465
2.44k
                               &result.literal_exponent, nullptr);
466
2.44k
    if (begin == exponent_digits_begin) {
467
      // there were no digits where we expected an exponent.  We failed to read
468
      // an exponent and should not consume the 'e' after all.  Rewind 'begin'.
469
0
      found_exponent = false;
470
0
      begin = exponent_begin;
471
2.44k
    } else {
472
2.44k
      found_exponent = true;
473
2.44k
      if (negative_exponent) {
474
0
        result.literal_exponent = -result.literal_exponent;
475
0
      }
476
2.44k
    }
477
2.44k
  }
478
479
2.48k
  if (!found_exponent && RequireExponent(format_flags)) {
480
    // Provided flags required an exponent, but none was found.  This results
481
    // in a failure to scan.
482
0
    return result;
483
0
  }
484
485
  // Success!
486
2.48k
  result.type = strings_internal::FloatType::kNumber;
487
2.48k
  if (result.mantissa > 0) {
488
2.44k
    result.exponent = result.literal_exponent +
489
2.44k
                      (DigitMagnitude<base>() * exponent_adjustment);
490
2.44k
  } else {
491
37
    result.exponent = 0;
492
37
  }
493
2.48k
  result.end = begin;
494
2.48k
  return result;
495
2.48k
}
absl::strings_internal::ParsedFloat absl::strings_internal::ParseFloat<10>(char const*, char const*, absl::chars_format)
Line
Count
Source
356
2.48k
                                         chars_format format_flags) {
357
2.48k
  strings_internal::ParsedFloat result;
358
359
  // Exit early if we're given an empty range.
360
2.48k
  if (begin == end) return result;
361
362
  // Handle the infinity and NaN cases.
363
2.48k
  if (ParseInfinityOrNan(begin, end, &result)) {
364
0
    return result;
365
0
  }
366
367
2.48k
  const char* const mantissa_begin = begin;
368
2.51k
  while (begin < end && *begin == '0') {
369
37
    ++begin;  // skip leading zeros
370
37
  }
371
2.48k
  uint64_t mantissa = 0;
372
373
2.48k
  int exponent_adjustment = 0;
374
2.48k
  bool mantissa_is_inexact = false;
375
2.48k
  int pre_decimal_digits = ConsumeDigits<base>(
376
2.48k
      begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
377
2.48k
  begin += pre_decimal_digits;
378
2.48k
  int digits_left;
379
2.48k
  if (pre_decimal_digits >= DigitLimit<base>()) {
380
    // refuse to parse pathological inputs
381
0
    return result;
382
2.48k
  } else if (pre_decimal_digits > MantissaDigitsMax<base>()) {
383
    // We dropped some non-fraction digits on the floor.  Adjust our exponent
384
    // to compensate.
385
0
    exponent_adjustment =
386
0
        static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>());
387
0
    digits_left = 0;
388
2.48k
  } else {
389
2.48k
    digits_left =
390
2.48k
        static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits);
391
2.48k
  }
392
2.48k
  if (begin < end && *begin == '.') {
393
2.27k
    ++begin;
394
2.27k
    if (mantissa == 0) {
395
      // If we haven't seen any nonzero digits yet, keep skipping zeros.  We
396
      // have to adjust the exponent to reflect the changed place value.
397
0
      const char* begin_zeros = begin;
398
0
      while (begin < end && *begin == '0') {
399
0
        ++begin;
400
0
      }
401
0
      int zeros_skipped = static_cast<int>(begin - begin_zeros);
402
0
      if (zeros_skipped >= DigitLimit<base>()) {
403
        // refuse to parse pathological inputs
404
0
        return result;
405
0
      }
406
0
      exponent_adjustment -= static_cast<int>(zeros_skipped);
407
0
    }
408
2.27k
    int post_decimal_digits = ConsumeDigits<base>(
409
2.27k
        begin, end, digits_left, &mantissa, &mantissa_is_inexact);
410
2.27k
    begin += post_decimal_digits;
411
412
    // Since `mantissa` is an integer, each significant digit we read after
413
    // the decimal point requires an adjustment to the exponent. "1.23e0" will
414
    // be stored as `mantissa` == 123 and `exponent` == -2 (that is,
415
    // "123e-2").
416
2.27k
    if (post_decimal_digits >= DigitLimit<base>()) {
417
      // refuse to parse pathological inputs
418
0
      return result;
419
2.27k
    } else if (post_decimal_digits > digits_left) {
420
0
      exponent_adjustment -= digits_left;
421
2.27k
    } else {
422
2.27k
      exponent_adjustment -= post_decimal_digits;
423
2.27k
    }
424
2.27k
  }
425
  // If we've found no mantissa whatsoever, this isn't a number.
426
2.48k
  if (mantissa_begin == begin) {
427
0
    return result;
428
0
  }
429
  // A bare "." doesn't count as a mantissa either.
430
2.48k
  if (begin - mantissa_begin == 1 && *mantissa_begin == '.') {
431
0
    return result;
432
0
  }
433
434
2.48k
  if (mantissa_is_inexact) {
435
    // We dropped significant digits on the floor.  Handle this appropriately.
436
0
    if (base == 10) {
437
      // If we truncated significant decimal digits, store the full range of the
438
      // mantissa for future big integer math for exact rounding.
439
0
      result.subrange_begin = mantissa_begin;
440
0
      result.subrange_end = begin;
441
0
    } else if (base == 16) {
442
      // If we truncated hex digits, reflect this fact by setting the low
443
      // ("sticky") bit.  This allows for correct rounding in all cases.
444
0
      mantissa |= 1;
445
0
    }
446
0
  }
447
2.48k
  result.mantissa = mantissa;
448
449
2.48k
  const char* const exponent_begin = begin;
450
2.48k
  result.literal_exponent = 0;
451
2.48k
  bool found_exponent = false;
452
2.48k
  if (AllowExponent(format_flags) && begin < end &&
453
2.48k
      IsExponentCharacter<base>(*begin)) {
454
2.44k
    bool negative_exponent = false;
455
2.44k
    ++begin;
456
2.44k
    if (begin < end && *begin == '-') {
457
0
      negative_exponent = true;
458
0
      ++begin;
459
2.44k
    } else if (begin < end && *begin == '+') {
460
2.44k
      ++begin;
461
2.44k
    }
462
2.44k
    const char* const exponent_digits_begin = begin;
463
    // Exponent is always expressed in decimal, even for hexadecimal floats.
464
2.44k
    begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax,
465
2.44k
                               &result.literal_exponent, nullptr);
466
2.44k
    if (begin == exponent_digits_begin) {
467
      // there were no digits where we expected an exponent.  We failed to read
468
      // an exponent and should not consume the 'e' after all.  Rewind 'begin'.
469
0
      found_exponent = false;
470
0
      begin = exponent_begin;
471
2.44k
    } else {
472
2.44k
      found_exponent = true;
473
2.44k
      if (negative_exponent) {
474
0
        result.literal_exponent = -result.literal_exponent;
475
0
      }
476
2.44k
    }
477
2.44k
  }
478
479
2.48k
  if (!found_exponent && RequireExponent(format_flags)) {
480
    // Provided flags required an exponent, but none was found.  This results
481
    // in a failure to scan.
482
0
    return result;
483
0
  }
484
485
  // Success!
486
2.48k
  result.type = strings_internal::FloatType::kNumber;
487
2.48k
  if (result.mantissa > 0) {
488
2.44k
    result.exponent = result.literal_exponent +
489
2.44k
                      (DigitMagnitude<base>() * exponent_adjustment);
490
2.44k
  } else {
491
37
    result.exponent = 0;
492
37
  }
493
2.48k
  result.end = begin;
494
2.48k
  return result;
495
2.48k
}
Unexecuted instantiation: absl::strings_internal::ParsedFloat absl::strings_internal::ParseFloat<16>(char const*, char const*, absl::chars_format)
496
497
template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
498
                                    chars_format format_flags);
499
template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
500
                                    chars_format format_flags);
501
502
}  // namespace strings_internal
503
ABSL_NAMESPACE_END
504
}  // namespace absl