Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py: 41%
179 statements
« prev ^ index » next coverage.py v7.0.1, created at 2022-12-25 06:11 +0000
« prev ^ index » next coverage.py v7.0.1, created at 2022-12-25 06:11 +0000
1# This file is dual licensed under the terms of the Apache License, Version
2# 2.0, and the BSD License. See the LICENSE file in the root of this repository
3# for complete details.
6import abc
7import typing
8from math import gcd
10from cryptography.hazmat.primitives import _serialization, hashes
11from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
12from cryptography.hazmat.primitives.asymmetric import (
13 utils as asym_utils,
14)
17class RSAPrivateKey(metaclass=abc.ABCMeta):
18 @abc.abstractmethod
19 def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
20 """
21 Decrypts the provided ciphertext.
22 """
24 @abc.abstractproperty
25 def key_size(self) -> int:
26 """
27 The bit length of the public modulus.
28 """
30 @abc.abstractmethod
31 def public_key(self) -> "RSAPublicKey":
32 """
33 The RSAPublicKey associated with this private key.
34 """
36 @abc.abstractmethod
37 def sign(
38 self,
39 data: bytes,
40 padding: AsymmetricPadding,
41 algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
42 ) -> bytes:
43 """
44 Signs the data.
45 """
47 @abc.abstractmethod
48 def private_numbers(self) -> "RSAPrivateNumbers":
49 """
50 Returns an RSAPrivateNumbers.
51 """
53 @abc.abstractmethod
54 def private_bytes(
55 self,
56 encoding: _serialization.Encoding,
57 format: _serialization.PrivateFormat,
58 encryption_algorithm: _serialization.KeySerializationEncryption,
59 ) -> bytes:
60 """
61 Returns the key serialized as bytes.
62 """
65RSAPrivateKeyWithSerialization = RSAPrivateKey
68class RSAPublicKey(metaclass=abc.ABCMeta):
69 @abc.abstractmethod
70 def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
71 """
72 Encrypts the given plaintext.
73 """
75 @abc.abstractproperty
76 def key_size(self) -> int:
77 """
78 The bit length of the public modulus.
79 """
81 @abc.abstractmethod
82 def public_numbers(self) -> "RSAPublicNumbers":
83 """
84 Returns an RSAPublicNumbers
85 """
87 @abc.abstractmethod
88 def public_bytes(
89 self,
90 encoding: _serialization.Encoding,
91 format: _serialization.PublicFormat,
92 ) -> bytes:
93 """
94 Returns the key serialized as bytes.
95 """
97 @abc.abstractmethod
98 def verify(
99 self,
100 signature: bytes,
101 data: bytes,
102 padding: AsymmetricPadding,
103 algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
104 ) -> None:
105 """
106 Verifies the signature of the data.
107 """
109 @abc.abstractmethod
110 def recover_data_from_signature(
111 self,
112 signature: bytes,
113 padding: AsymmetricPadding,
114 algorithm: typing.Optional[hashes.HashAlgorithm],
115 ) -> bytes:
116 """
117 Recovers the original data from the signature.
118 """
121RSAPublicKeyWithSerialization = RSAPublicKey
124def generate_private_key(
125 public_exponent: int,
126 key_size: int,
127 backend: typing.Any = None,
128) -> RSAPrivateKey:
129 from cryptography.hazmat.backends.openssl.backend import backend as ossl
131 _verify_rsa_parameters(public_exponent, key_size)
132 return ossl.generate_rsa_private_key(public_exponent, key_size)
135def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
136 if public_exponent not in (3, 65537):
137 raise ValueError(
138 "public_exponent must be either 3 (for legacy compatibility) or "
139 "65537. Almost everyone should choose 65537 here!"
140 )
142 if key_size < 512:
143 raise ValueError("key_size must be at least 512-bits.")
146def _check_private_key_components(
147 p: int,
148 q: int,
149 private_exponent: int,
150 dmp1: int,
151 dmq1: int,
152 iqmp: int,
153 public_exponent: int,
154 modulus: int,
155) -> None:
156 if modulus < 3:
157 raise ValueError("modulus must be >= 3.")
159 if p >= modulus:
160 raise ValueError("p must be < modulus.")
162 if q >= modulus:
163 raise ValueError("q must be < modulus.")
165 if dmp1 >= modulus:
166 raise ValueError("dmp1 must be < modulus.")
168 if dmq1 >= modulus:
169 raise ValueError("dmq1 must be < modulus.")
171 if iqmp >= modulus:
172 raise ValueError("iqmp must be < modulus.")
174 if private_exponent >= modulus:
175 raise ValueError("private_exponent must be < modulus.")
177 if public_exponent < 3 or public_exponent >= modulus:
178 raise ValueError("public_exponent must be >= 3 and < modulus.")
180 if public_exponent & 1 == 0:
181 raise ValueError("public_exponent must be odd.")
183 if dmp1 & 1 == 0:
184 raise ValueError("dmp1 must be odd.")
186 if dmq1 & 1 == 0:
187 raise ValueError("dmq1 must be odd.")
189 if p * q != modulus:
190 raise ValueError("p*q must equal modulus.")
193def _check_public_key_components(e: int, n: int) -> None:
194 if n < 3:
195 raise ValueError("n must be >= 3.")
197 if e < 3 or e >= n:
198 raise ValueError("e must be >= 3 and < n.")
200 if e & 1 == 0:
201 raise ValueError("e must be odd.")
204def _modinv(e: int, m: int) -> int:
205 """
206 Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
207 """
208 x1, x2 = 1, 0
209 a, b = e, m
210 while b > 0:
211 q, r = divmod(a, b)
212 xn = x1 - q * x2
213 a, b, x1, x2 = b, r, x2, xn
214 return x1 % m
217def rsa_crt_iqmp(p: int, q: int) -> int:
218 """
219 Compute the CRT (q ** -1) % p value from RSA primes p and q.
220 """
221 return _modinv(q, p)
224def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
225 """
226 Compute the CRT private_exponent % (p - 1) value from the RSA
227 private_exponent (d) and p.
228 """
229 return private_exponent % (p - 1)
232def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
233 """
234 Compute the CRT private_exponent % (q - 1) value from the RSA
235 private_exponent (d) and q.
236 """
237 return private_exponent % (q - 1)
240# Controls the number of iterations rsa_recover_prime_factors will perform
241# to obtain the prime factors. Each iteration increments by 2 so the actual
242# maximum attempts is half this number.
243_MAX_RECOVERY_ATTEMPTS = 1000
246def rsa_recover_prime_factors(
247 n: int, e: int, d: int
248) -> typing.Tuple[int, int]:
249 """
250 Compute factors p and q from the private exponent d. We assume that n has
251 no more than two factors. This function is adapted from code in PyCrypto.
252 """
253 # See 8.2.2(i) in Handbook of Applied Cryptography.
254 ktot = d * e - 1
255 # The quantity d*e-1 is a multiple of phi(n), even,
256 # and can be represented as t*2^s.
257 t = ktot
258 while t % 2 == 0:
259 t = t // 2
260 # Cycle through all multiplicative inverses in Zn.
261 # The algorithm is non-deterministic, but there is a 50% chance
262 # any candidate a leads to successful factoring.
263 # See "Digitalized Signatures and Public Key Functions as Intractable
264 # as Factorization", M. Rabin, 1979
265 spotted = False
266 a = 2
267 while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
268 k = t
269 # Cycle through all values a^{t*2^i}=a^k
270 while k < ktot:
271 cand = pow(a, k, n)
272 # Check if a^k is a non-trivial root of unity (mod n)
273 if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
274 # We have found a number such that (cand-1)(cand+1)=0 (mod n).
275 # Either of the terms divides n.
276 p = gcd(cand + 1, n)
277 spotted = True
278 break
279 k *= 2
280 # This value was not any good... let's try another!
281 a += 2
282 if not spotted:
283 raise ValueError("Unable to compute factors p and q from exponent d.")
284 # Found !
285 q, r = divmod(n, p)
286 assert r == 0
287 p, q = sorted((p, q), reverse=True)
288 return (p, q)
291class RSAPrivateNumbers:
292 def __init__(
293 self,
294 p: int,
295 q: int,
296 d: int,
297 dmp1: int,
298 dmq1: int,
299 iqmp: int,
300 public_numbers: "RSAPublicNumbers",
301 ):
302 if (
303 not isinstance(p, int)
304 or not isinstance(q, int)
305 or not isinstance(d, int)
306 or not isinstance(dmp1, int)
307 or not isinstance(dmq1, int)
308 or not isinstance(iqmp, int)
309 ):
310 raise TypeError(
311 "RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
312 " all be an integers."
313 )
315 if not isinstance(public_numbers, RSAPublicNumbers):
316 raise TypeError(
317 "RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
318 " instance."
319 )
321 self._p = p
322 self._q = q
323 self._d = d
324 self._dmp1 = dmp1
325 self._dmq1 = dmq1
326 self._iqmp = iqmp
327 self._public_numbers = public_numbers
329 @property
330 def p(self) -> int:
331 return self._p
333 @property
334 def q(self) -> int:
335 return self._q
337 @property
338 def d(self) -> int:
339 return self._d
341 @property
342 def dmp1(self) -> int:
343 return self._dmp1
345 @property
346 def dmq1(self) -> int:
347 return self._dmq1
349 @property
350 def iqmp(self) -> int:
351 return self._iqmp
353 @property
354 def public_numbers(self) -> "RSAPublicNumbers":
355 return self._public_numbers
357 def private_key(self, backend: typing.Any = None) -> RSAPrivateKey:
358 from cryptography.hazmat.backends.openssl.backend import (
359 backend as ossl,
360 )
362 return ossl.load_rsa_private_numbers(self)
364 def __eq__(self, other: object) -> bool:
365 if not isinstance(other, RSAPrivateNumbers):
366 return NotImplemented
368 return (
369 self.p == other.p
370 and self.q == other.q
371 and self.d == other.d
372 and self.dmp1 == other.dmp1
373 and self.dmq1 == other.dmq1
374 and self.iqmp == other.iqmp
375 and self.public_numbers == other.public_numbers
376 )
378 def __hash__(self) -> int:
379 return hash(
380 (
381 self.p,
382 self.q,
383 self.d,
384 self.dmp1,
385 self.dmq1,
386 self.iqmp,
387 self.public_numbers,
388 )
389 )
392class RSAPublicNumbers:
393 def __init__(self, e: int, n: int):
394 if not isinstance(e, int) or not isinstance(n, int):
395 raise TypeError("RSAPublicNumbers arguments must be integers.")
397 self._e = e
398 self._n = n
400 @property
401 def e(self) -> int:
402 return self._e
404 @property
405 def n(self) -> int:
406 return self._n
408 def public_key(self, backend: typing.Any = None) -> RSAPublicKey:
409 from cryptography.hazmat.backends.openssl.backend import (
410 backend as ossl,
411 )
413 return ossl.load_rsa_public_numbers(self)
415 def __repr__(self) -> str:
416 return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
418 def __eq__(self, other: object) -> bool:
419 if not isinstance(other, RSAPublicNumbers):
420 return NotImplemented
422 return self.e == other.e and self.n == other.n
424 def __hash__(self) -> int:
425 return hash((self.e, self.n))