Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/_pydecimal.py: 0%
2572 statements
« prev ^ index » next coverage.py v7.0.1, created at 2022-12-25 06:11 +0000
« prev ^ index » next coverage.py v7.0.1, created at 2022-12-25 06:11 +0000
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
4# Written by Eric Price <eprice at tjhsst.edu>
5# and Facundo Batista <facundo at taniquetil.com.ar>
6# and Raymond Hettinger <python at rcn.com>
7# and Aahz <aahz at pobox.com>
8# and Tim Peters
10# This module should be kept in sync with the latest updates of the
11# IBM specification as it evolves. Those updates will be treated
12# as bug fixes (deviation from the spec is a compatibility, usability
13# bug) and will be backported. At this point the spec is stabilizing
14# and the updates are becoming fewer, smaller, and less significant.
16"""
17This is an implementation of decimal floating point arithmetic based on
18the General Decimal Arithmetic Specification:
20 http://speleotrove.com/decimal/decarith.html
22and IEEE standard 854-1987:
24 http://en.wikipedia.org/wiki/IEEE_854-1987
26Decimal floating point has finite precision with arbitrarily large bounds.
28The purpose of this module is to support arithmetic using familiar
29"schoolhouse" rules and to avoid some of the tricky representation
30issues associated with binary floating point. The package is especially
31useful for financial applications or for contexts where users have
32expectations that are at odds with binary floating point (for instance,
33in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
34of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected
35Decimal('0.00')).
37Here are some examples of using the decimal module:
39>>> from decimal import *
40>>> setcontext(ExtendedContext)
41>>> Decimal(0)
42Decimal('0')
43>>> Decimal('1')
44Decimal('1')
45>>> Decimal('-.0123')
46Decimal('-0.0123')
47>>> Decimal(123456)
48Decimal('123456')
49>>> Decimal('123.45e12345678')
50Decimal('1.2345E+12345680')
51>>> Decimal('1.33') + Decimal('1.27')
52Decimal('2.60')
53>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
54Decimal('-2.20')
55>>> dig = Decimal(1)
56>>> print(dig / Decimal(3))
570.333333333
58>>> getcontext().prec = 18
59>>> print(dig / Decimal(3))
600.333333333333333333
61>>> print(dig.sqrt())
621
63>>> print(Decimal(3).sqrt())
641.73205080756887729
65>>> print(Decimal(3) ** 123)
664.85192780976896427E+58
67>>> inf = Decimal(1) / Decimal(0)
68>>> print(inf)
69Infinity
70>>> neginf = Decimal(-1) / Decimal(0)
71>>> print(neginf)
72-Infinity
73>>> print(neginf + inf)
74NaN
75>>> print(neginf * inf)
76-Infinity
77>>> print(dig / 0)
78Infinity
79>>> getcontext().traps[DivisionByZero] = 1
80>>> print(dig / 0)
81Traceback (most recent call last):
82 ...
83 ...
84 ...
85decimal.DivisionByZero: x / 0
86>>> c = Context()
87>>> c.traps[InvalidOperation] = 0
88>>> print(c.flags[InvalidOperation])
890
90>>> c.divide(Decimal(0), Decimal(0))
91Decimal('NaN')
92>>> c.traps[InvalidOperation] = 1
93>>> print(c.flags[InvalidOperation])
941
95>>> c.flags[InvalidOperation] = 0
96>>> print(c.flags[InvalidOperation])
970
98>>> print(c.divide(Decimal(0), Decimal(0)))
99Traceback (most recent call last):
100 ...
101 ...
102 ...
103decimal.InvalidOperation: 0 / 0
104>>> print(c.flags[InvalidOperation])
1051
106>>> c.flags[InvalidOperation] = 0
107>>> c.traps[InvalidOperation] = 0
108>>> print(c.divide(Decimal(0), Decimal(0)))
109NaN
110>>> print(c.flags[InvalidOperation])
1111
112>>>
113"""
115__all__ = [
116 # Two major classes
117 'Decimal', 'Context',
119 # Named tuple representation
120 'DecimalTuple',
122 # Contexts
123 'DefaultContext', 'BasicContext', 'ExtendedContext',
125 # Exceptions
126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128 'FloatOperation',
130 # Exceptional conditions that trigger InvalidOperation
131 'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined',
133 # Constants for use in setting up contexts
134 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
135 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
137 # Functions for manipulating contexts
138 'setcontext', 'getcontext', 'localcontext',
140 # Limits for the C version for compatibility
141 'MAX_PREC', 'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY',
143 # C version: compile time choice that enables the thread local context (deprecated, now always true)
144 'HAVE_THREADS',
146 # C version: compile time choice that enables the coroutine local context
147 'HAVE_CONTEXTVAR'
148]
150__xname__ = __name__ # sys.modules lookup (--without-threads)
151__name__ = 'decimal' # For pickling
152__version__ = '1.70' # Highest version of the spec this complies with
153 # See http://speleotrove.com/decimal/
154__libmpdec_version__ = "2.4.2" # compatible libmpdec version
156import math as _math
157import numbers as _numbers
158import sys
160try:
161 from collections import namedtuple as _namedtuple
162 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
163except ImportError:
164 DecimalTuple = lambda *args: args
166# Rounding
167ROUND_DOWN = 'ROUND_DOWN'
168ROUND_HALF_UP = 'ROUND_HALF_UP'
169ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
170ROUND_CEILING = 'ROUND_CEILING'
171ROUND_FLOOR = 'ROUND_FLOOR'
172ROUND_UP = 'ROUND_UP'
173ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
174ROUND_05UP = 'ROUND_05UP'
176# Compatibility with the C version
177HAVE_THREADS = True
178HAVE_CONTEXTVAR = True
179if sys.maxsize == 2**63-1:
180 MAX_PREC = 999999999999999999
181 MAX_EMAX = 999999999999999999
182 MIN_EMIN = -999999999999999999
183else:
184 MAX_PREC = 425000000
185 MAX_EMAX = 425000000
186 MIN_EMIN = -425000000
188MIN_ETINY = MIN_EMIN - (MAX_PREC-1)
190# Errors
192class DecimalException(ArithmeticError):
193 """Base exception class.
195 Used exceptions derive from this.
196 If an exception derives from another exception besides this (such as
197 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
198 called if the others are present. This isn't actually used for
199 anything, though.
201 handle -- Called when context._raise_error is called and the
202 trap_enabler is not set. First argument is self, second is the
203 context. More arguments can be given, those being after
204 the explanation in _raise_error (For example,
205 context._raise_error(NewError, '(-x)!', self._sign) would
206 call NewError().handle(context, self._sign).)
208 To define a new exception, it should be sufficient to have it derive
209 from DecimalException.
210 """
211 def handle(self, context, *args):
212 pass
215class Clamped(DecimalException):
216 """Exponent of a 0 changed to fit bounds.
218 This occurs and signals clamped if the exponent of a result has been
219 altered in order to fit the constraints of a specific concrete
220 representation. This may occur when the exponent of a zero result would
221 be outside the bounds of a representation, or when a large normal
222 number would have an encoded exponent that cannot be represented. In
223 this latter case, the exponent is reduced to fit and the corresponding
224 number of zero digits are appended to the coefficient ("fold-down").
225 """
227class InvalidOperation(DecimalException):
228 """An invalid operation was performed.
230 Various bad things cause this:
232 Something creates a signaling NaN
233 -INF + INF
234 0 * (+-)INF
235 (+-)INF / (+-)INF
236 x % 0
237 (+-)INF % x
238 x._rescale( non-integer )
239 sqrt(-x) , x > 0
240 0 ** 0
241 x ** (non-integer)
242 x ** (+-)INF
243 An operand is invalid
245 The result of the operation after these is a quiet positive NaN,
246 except when the cause is a signaling NaN, in which case the result is
247 also a quiet NaN, but with the original sign, and an optional
248 diagnostic information.
249 """
250 def handle(self, context, *args):
251 if args:
252 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
253 return ans._fix_nan(context)
254 return _NaN
256class ConversionSyntax(InvalidOperation):
257 """Trying to convert badly formed string.
259 This occurs and signals invalid-operation if a string is being
260 converted to a number and it does not conform to the numeric string
261 syntax. The result is [0,qNaN].
262 """
263 def handle(self, context, *args):
264 return _NaN
266class DivisionByZero(DecimalException, ZeroDivisionError):
267 """Division by 0.
269 This occurs and signals division-by-zero if division of a finite number
270 by zero was attempted (during a divide-integer or divide operation, or a
271 power operation with negative right-hand operand), and the dividend was
272 not zero.
274 The result of the operation is [sign,inf], where sign is the exclusive
275 or of the signs of the operands for divide, or is 1 for an odd power of
276 -0, for power.
277 """
279 def handle(self, context, sign, *args):
280 return _SignedInfinity[sign]
282class DivisionImpossible(InvalidOperation):
283 """Cannot perform the division adequately.
285 This occurs and signals invalid-operation if the integer result of a
286 divide-integer or remainder operation had too many digits (would be
287 longer than precision). The result is [0,qNaN].
288 """
290 def handle(self, context, *args):
291 return _NaN
293class DivisionUndefined(InvalidOperation, ZeroDivisionError):
294 """Undefined result of division.
296 This occurs and signals invalid-operation if division by zero was
297 attempted (during a divide-integer, divide, or remainder operation), and
298 the dividend is also zero. The result is [0,qNaN].
299 """
301 def handle(self, context, *args):
302 return _NaN
304class Inexact(DecimalException):
305 """Had to round, losing information.
307 This occurs and signals inexact whenever the result of an operation is
308 not exact (that is, it needed to be rounded and any discarded digits
309 were non-zero), or if an overflow or underflow condition occurs. The
310 result in all cases is unchanged.
312 The inexact signal may be tested (or trapped) to determine if a given
313 operation (or sequence of operations) was inexact.
314 """
316class InvalidContext(InvalidOperation):
317 """Invalid context. Unknown rounding, for example.
319 This occurs and signals invalid-operation if an invalid context was
320 detected during an operation. This can occur if contexts are not checked
321 on creation and either the precision exceeds the capability of the
322 underlying concrete representation or an unknown or unsupported rounding
323 was specified. These aspects of the context need only be checked when
324 the values are required to be used. The result is [0,qNaN].
325 """
327 def handle(self, context, *args):
328 return _NaN
330class Rounded(DecimalException):
331 """Number got rounded (not necessarily changed during rounding).
333 This occurs and signals rounded whenever the result of an operation is
334 rounded (that is, some zero or non-zero digits were discarded from the
335 coefficient), or if an overflow or underflow condition occurs. The
336 result in all cases is unchanged.
338 The rounded signal may be tested (or trapped) to determine if a given
339 operation (or sequence of operations) caused a loss of precision.
340 """
342class Subnormal(DecimalException):
343 """Exponent < Emin before rounding.
345 This occurs and signals subnormal whenever the result of a conversion or
346 operation is subnormal (that is, its adjusted exponent is less than
347 Emin, before any rounding). The result in all cases is unchanged.
349 The subnormal signal may be tested (or trapped) to determine if a given
350 or operation (or sequence of operations) yielded a subnormal result.
351 """
353class Overflow(Inexact, Rounded):
354 """Numerical overflow.
356 This occurs and signals overflow if the adjusted exponent of a result
357 (from a conversion or from an operation that is not an attempt to divide
358 by zero), after rounding, would be greater than the largest value that
359 can be handled by the implementation (the value Emax).
361 The result depends on the rounding mode:
363 For round-half-up and round-half-even (and for round-half-down and
364 round-up, if implemented), the result of the operation is [sign,inf],
365 where sign is the sign of the intermediate result. For round-down, the
366 result is the largest finite number that can be represented in the
367 current precision, with the sign of the intermediate result. For
368 round-ceiling, the result is the same as for round-down if the sign of
369 the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
370 the result is the same as for round-down if the sign of the intermediate
371 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
372 will also be raised.
373 """
375 def handle(self, context, sign, *args):
376 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
377 ROUND_HALF_DOWN, ROUND_UP):
378 return _SignedInfinity[sign]
379 if sign == 0:
380 if context.rounding == ROUND_CEILING:
381 return _SignedInfinity[sign]
382 return _dec_from_triple(sign, '9'*context.prec,
383 context.Emax-context.prec+1)
384 if sign == 1:
385 if context.rounding == ROUND_FLOOR:
386 return _SignedInfinity[sign]
387 return _dec_from_triple(sign, '9'*context.prec,
388 context.Emax-context.prec+1)
391class Underflow(Inexact, Rounded, Subnormal):
392 """Numerical underflow with result rounded to 0.
394 This occurs and signals underflow if a result is inexact and the
395 adjusted exponent of the result would be smaller (more negative) than
396 the smallest value that can be handled by the implementation (the value
397 Emin). That is, the result is both inexact and subnormal.
399 The result after an underflow will be a subnormal number rounded, if
400 necessary, so that its exponent is not less than Etiny. This may result
401 in 0 with the sign of the intermediate result and an exponent of Etiny.
403 In all cases, Inexact, Rounded, and Subnormal will also be raised.
404 """
406class FloatOperation(DecimalException, TypeError):
407 """Enable stricter semantics for mixing floats and Decimals.
409 If the signal is not trapped (default), mixing floats and Decimals is
410 permitted in the Decimal() constructor, context.create_decimal() and
411 all comparison operators. Both conversion and comparisons are exact.
412 Any occurrence of a mixed operation is silently recorded by setting
413 FloatOperation in the context flags. Explicit conversions with
414 Decimal.from_float() or context.create_decimal_from_float() do not
415 set the flag.
417 Otherwise (the signal is trapped), only equality comparisons and explicit
418 conversions are silent. All other mixed operations raise FloatOperation.
419 """
421# List of public traps and flags
422_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
423 Underflow, InvalidOperation, Subnormal, FloatOperation]
425# Map conditions (per the spec) to signals
426_condition_map = {ConversionSyntax:InvalidOperation,
427 DivisionImpossible:InvalidOperation,
428 DivisionUndefined:InvalidOperation,
429 InvalidContext:InvalidOperation}
431# Valid rounding modes
432_rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING,
433 ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP)
435##### Context Functions ##################################################
437# The getcontext() and setcontext() function manage access to a thread-local
438# current context.
440import contextvars
442_current_context_var = contextvars.ContextVar('decimal_context')
444def getcontext():
445 """Returns this thread's context.
447 If this thread does not yet have a context, returns
448 a new context and sets this thread's context.
449 New contexts are copies of DefaultContext.
450 """
451 try:
452 return _current_context_var.get()
453 except LookupError:
454 context = Context()
455 _current_context_var.set(context)
456 return context
458def setcontext(context):
459 """Set this thread's context to context."""
460 if context in (DefaultContext, BasicContext, ExtendedContext):
461 context = context.copy()
462 context.clear_flags()
463 _current_context_var.set(context)
465del contextvars # Don't contaminate the namespace
467def localcontext(ctx=None):
468 """Return a context manager for a copy of the supplied context
470 Uses a copy of the current context if no context is specified
471 The returned context manager creates a local decimal context
472 in a with statement:
473 def sin(x):
474 with localcontext() as ctx:
475 ctx.prec += 2
476 # Rest of sin calculation algorithm
477 # uses a precision 2 greater than normal
478 return +s # Convert result to normal precision
480 def sin(x):
481 with localcontext(ExtendedContext):
482 # Rest of sin calculation algorithm
483 # uses the Extended Context from the
484 # General Decimal Arithmetic Specification
485 return +s # Convert result to normal context
487 >>> setcontext(DefaultContext)
488 >>> print(getcontext().prec)
489 28
490 >>> with localcontext():
491 ... ctx = getcontext()
492 ... ctx.prec += 2
493 ... print(ctx.prec)
494 ...
495 30
496 >>> with localcontext(ExtendedContext):
497 ... print(getcontext().prec)
498 ...
499 9
500 >>> print(getcontext().prec)
501 28
502 """
503 if ctx is None: ctx = getcontext()
504 return _ContextManager(ctx)
507##### Decimal class #######################################################
509# Do not subclass Decimal from numbers.Real and do not register it as such
510# (because Decimals are not interoperable with floats). See the notes in
511# numbers.py for more detail.
513class Decimal(object):
514 """Floating point class for decimal arithmetic."""
516 __slots__ = ('_exp','_int','_sign', '_is_special')
517 # Generally, the value of the Decimal instance is given by
518 # (-1)**_sign * _int * 10**_exp
519 # Special values are signified by _is_special == True
521 # We're immutable, so use __new__ not __init__
522 def __new__(cls, value="0", context=None):
523 """Create a decimal point instance.
525 >>> Decimal('3.14') # string input
526 Decimal('3.14')
527 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
528 Decimal('3.14')
529 >>> Decimal(314) # int
530 Decimal('314')
531 >>> Decimal(Decimal(314)) # another decimal instance
532 Decimal('314')
533 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
534 Decimal('3.14')
535 """
537 # Note that the coefficient, self._int, is actually stored as
538 # a string rather than as a tuple of digits. This speeds up
539 # the "digits to integer" and "integer to digits" conversions
540 # that are used in almost every arithmetic operation on
541 # Decimals. This is an internal detail: the as_tuple function
542 # and the Decimal constructor still deal with tuples of
543 # digits.
545 self = object.__new__(cls)
547 # From a string
548 # REs insist on real strings, so we can too.
549 if isinstance(value, str):
550 m = _parser(value.strip().replace("_", ""))
551 if m is None:
552 if context is None:
553 context = getcontext()
554 return context._raise_error(ConversionSyntax,
555 "Invalid literal for Decimal: %r" % value)
557 if m.group('sign') == "-":
558 self._sign = 1
559 else:
560 self._sign = 0
561 intpart = m.group('int')
562 if intpart is not None:
563 # finite number
564 fracpart = m.group('frac') or ''
565 exp = int(m.group('exp') or '0')
566 self._int = str(int(intpart+fracpart))
567 self._exp = exp - len(fracpart)
568 self._is_special = False
569 else:
570 diag = m.group('diag')
571 if diag is not None:
572 # NaN
573 self._int = str(int(diag or '0')).lstrip('0')
574 if m.group('signal'):
575 self._exp = 'N'
576 else:
577 self._exp = 'n'
578 else:
579 # infinity
580 self._int = '0'
581 self._exp = 'F'
582 self._is_special = True
583 return self
585 # From an integer
586 if isinstance(value, int):
587 if value >= 0:
588 self._sign = 0
589 else:
590 self._sign = 1
591 self._exp = 0
592 self._int = str(abs(value))
593 self._is_special = False
594 return self
596 # From another decimal
597 if isinstance(value, Decimal):
598 self._exp = value._exp
599 self._sign = value._sign
600 self._int = value._int
601 self._is_special = value._is_special
602 return self
604 # From an internal working value
605 if isinstance(value, _WorkRep):
606 self._sign = value.sign
607 self._int = str(value.int)
608 self._exp = int(value.exp)
609 self._is_special = False
610 return self
612 # tuple/list conversion (possibly from as_tuple())
613 if isinstance(value, (list,tuple)):
614 if len(value) != 3:
615 raise ValueError('Invalid tuple size in creation of Decimal '
616 'from list or tuple. The list or tuple '
617 'should have exactly three elements.')
618 # process sign. The isinstance test rejects floats
619 if not (isinstance(value[0], int) and value[0] in (0,1)):
620 raise ValueError("Invalid sign. The first value in the tuple "
621 "should be an integer; either 0 for a "
622 "positive number or 1 for a negative number.")
623 self._sign = value[0]
624 if value[2] == 'F':
625 # infinity: value[1] is ignored
626 self._int = '0'
627 self._exp = value[2]
628 self._is_special = True
629 else:
630 # process and validate the digits in value[1]
631 digits = []
632 for digit in value[1]:
633 if isinstance(digit, int) and 0 <= digit <= 9:
634 # skip leading zeros
635 if digits or digit != 0:
636 digits.append(digit)
637 else:
638 raise ValueError("The second value in the tuple must "
639 "be composed of integers in the range "
640 "0 through 9.")
641 if value[2] in ('n', 'N'):
642 # NaN: digits form the diagnostic
643 self._int = ''.join(map(str, digits))
644 self._exp = value[2]
645 self._is_special = True
646 elif isinstance(value[2], int):
647 # finite number: digits give the coefficient
648 self._int = ''.join(map(str, digits or [0]))
649 self._exp = value[2]
650 self._is_special = False
651 else:
652 raise ValueError("The third value in the tuple must "
653 "be an integer, or one of the "
654 "strings 'F', 'n', 'N'.")
655 return self
657 if isinstance(value, float):
658 if context is None:
659 context = getcontext()
660 context._raise_error(FloatOperation,
661 "strict semantics for mixing floats and Decimals are "
662 "enabled")
663 value = Decimal.from_float(value)
664 self._exp = value._exp
665 self._sign = value._sign
666 self._int = value._int
667 self._is_special = value._is_special
668 return self
670 raise TypeError("Cannot convert %r to Decimal" % value)
672 @classmethod
673 def from_float(cls, f):
674 """Converts a float to a decimal number, exactly.
676 Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
677 Since 0.1 is not exactly representable in binary floating point, the
678 value is stored as the nearest representable value which is
679 0x1.999999999999ap-4. The exact equivalent of the value in decimal
680 is 0.1000000000000000055511151231257827021181583404541015625.
682 >>> Decimal.from_float(0.1)
683 Decimal('0.1000000000000000055511151231257827021181583404541015625')
684 >>> Decimal.from_float(float('nan'))
685 Decimal('NaN')
686 >>> Decimal.from_float(float('inf'))
687 Decimal('Infinity')
688 >>> Decimal.from_float(-float('inf'))
689 Decimal('-Infinity')
690 >>> Decimal.from_float(-0.0)
691 Decimal('-0')
693 """
694 if isinstance(f, int): # handle integer inputs
695 sign = 0 if f >= 0 else 1
696 k = 0
697 coeff = str(abs(f))
698 elif isinstance(f, float):
699 if _math.isinf(f) or _math.isnan(f):
700 return cls(repr(f))
701 if _math.copysign(1.0, f) == 1.0:
702 sign = 0
703 else:
704 sign = 1
705 n, d = abs(f).as_integer_ratio()
706 k = d.bit_length() - 1
707 coeff = str(n*5**k)
708 else:
709 raise TypeError("argument must be int or float.")
711 result = _dec_from_triple(sign, coeff, -k)
712 if cls is Decimal:
713 return result
714 else:
715 return cls(result)
717 def _isnan(self):
718 """Returns whether the number is not actually one.
720 0 if a number
721 1 if NaN
722 2 if sNaN
723 """
724 if self._is_special:
725 exp = self._exp
726 if exp == 'n':
727 return 1
728 elif exp == 'N':
729 return 2
730 return 0
732 def _isinfinity(self):
733 """Returns whether the number is infinite
735 0 if finite or not a number
736 1 if +INF
737 -1 if -INF
738 """
739 if self._exp == 'F':
740 if self._sign:
741 return -1
742 return 1
743 return 0
745 def _check_nans(self, other=None, context=None):
746 """Returns whether the number is not actually one.
748 if self, other are sNaN, signal
749 if self, other are NaN return nan
750 return 0
752 Done before operations.
753 """
755 self_is_nan = self._isnan()
756 if other is None:
757 other_is_nan = False
758 else:
759 other_is_nan = other._isnan()
761 if self_is_nan or other_is_nan:
762 if context is None:
763 context = getcontext()
765 if self_is_nan == 2:
766 return context._raise_error(InvalidOperation, 'sNaN',
767 self)
768 if other_is_nan == 2:
769 return context._raise_error(InvalidOperation, 'sNaN',
770 other)
771 if self_is_nan:
772 return self._fix_nan(context)
774 return other._fix_nan(context)
775 return 0
777 def _compare_check_nans(self, other, context):
778 """Version of _check_nans used for the signaling comparisons
779 compare_signal, __le__, __lt__, __ge__, __gt__.
781 Signal InvalidOperation if either self or other is a (quiet
782 or signaling) NaN. Signaling NaNs take precedence over quiet
783 NaNs.
785 Return 0 if neither operand is a NaN.
787 """
788 if context is None:
789 context = getcontext()
791 if self._is_special or other._is_special:
792 if self.is_snan():
793 return context._raise_error(InvalidOperation,
794 'comparison involving sNaN',
795 self)
796 elif other.is_snan():
797 return context._raise_error(InvalidOperation,
798 'comparison involving sNaN',
799 other)
800 elif self.is_qnan():
801 return context._raise_error(InvalidOperation,
802 'comparison involving NaN',
803 self)
804 elif other.is_qnan():
805 return context._raise_error(InvalidOperation,
806 'comparison involving NaN',
807 other)
808 return 0
810 def __bool__(self):
811 """Return True if self is nonzero; otherwise return False.
813 NaNs and infinities are considered nonzero.
814 """
815 return self._is_special or self._int != '0'
817 def _cmp(self, other):
818 """Compare the two non-NaN decimal instances self and other.
820 Returns -1 if self < other, 0 if self == other and 1
821 if self > other. This routine is for internal use only."""
823 if self._is_special or other._is_special:
824 self_inf = self._isinfinity()
825 other_inf = other._isinfinity()
826 if self_inf == other_inf:
827 return 0
828 elif self_inf < other_inf:
829 return -1
830 else:
831 return 1
833 # check for zeros; Decimal('0') == Decimal('-0')
834 if not self:
835 if not other:
836 return 0
837 else:
838 return -((-1)**other._sign)
839 if not other:
840 return (-1)**self._sign
842 # If different signs, neg one is less
843 if other._sign < self._sign:
844 return -1
845 if self._sign < other._sign:
846 return 1
848 self_adjusted = self.adjusted()
849 other_adjusted = other.adjusted()
850 if self_adjusted == other_adjusted:
851 self_padded = self._int + '0'*(self._exp - other._exp)
852 other_padded = other._int + '0'*(other._exp - self._exp)
853 if self_padded == other_padded:
854 return 0
855 elif self_padded < other_padded:
856 return -(-1)**self._sign
857 else:
858 return (-1)**self._sign
859 elif self_adjusted > other_adjusted:
860 return (-1)**self._sign
861 else: # self_adjusted < other_adjusted
862 return -((-1)**self._sign)
864 # Note: The Decimal standard doesn't cover rich comparisons for
865 # Decimals. In particular, the specification is silent on the
866 # subject of what should happen for a comparison involving a NaN.
867 # We take the following approach:
868 #
869 # == comparisons involving a quiet NaN always return False
870 # != comparisons involving a quiet NaN always return True
871 # == or != comparisons involving a signaling NaN signal
872 # InvalidOperation, and return False or True as above if the
873 # InvalidOperation is not trapped.
874 # <, >, <= and >= comparisons involving a (quiet or signaling)
875 # NaN signal InvalidOperation, and return False if the
876 # InvalidOperation is not trapped.
877 #
878 # This behavior is designed to conform as closely as possible to
879 # that specified by IEEE 754.
881 def __eq__(self, other, context=None):
882 self, other = _convert_for_comparison(self, other, equality_op=True)
883 if other is NotImplemented:
884 return other
885 if self._check_nans(other, context):
886 return False
887 return self._cmp(other) == 0
889 def __lt__(self, other, context=None):
890 self, other = _convert_for_comparison(self, other)
891 if other is NotImplemented:
892 return other
893 ans = self._compare_check_nans(other, context)
894 if ans:
895 return False
896 return self._cmp(other) < 0
898 def __le__(self, other, context=None):
899 self, other = _convert_for_comparison(self, other)
900 if other is NotImplemented:
901 return other
902 ans = self._compare_check_nans(other, context)
903 if ans:
904 return False
905 return self._cmp(other) <= 0
907 def __gt__(self, other, context=None):
908 self, other = _convert_for_comparison(self, other)
909 if other is NotImplemented:
910 return other
911 ans = self._compare_check_nans(other, context)
912 if ans:
913 return False
914 return self._cmp(other) > 0
916 def __ge__(self, other, context=None):
917 self, other = _convert_for_comparison(self, other)
918 if other is NotImplemented:
919 return other
920 ans = self._compare_check_nans(other, context)
921 if ans:
922 return False
923 return self._cmp(other) >= 0
925 def compare(self, other, context=None):
926 """Compare self to other. Return a decimal value:
928 a or b is a NaN ==> Decimal('NaN')
929 a < b ==> Decimal('-1')
930 a == b ==> Decimal('0')
931 a > b ==> Decimal('1')
932 """
933 other = _convert_other(other, raiseit=True)
935 # Compare(NaN, NaN) = NaN
936 if (self._is_special or other and other._is_special):
937 ans = self._check_nans(other, context)
938 if ans:
939 return ans
941 return Decimal(self._cmp(other))
943 def __hash__(self):
944 """x.__hash__() <==> hash(x)"""
946 # In order to make sure that the hash of a Decimal instance
947 # agrees with the hash of a numerically equal integer, float
948 # or Fraction, we follow the rules for numeric hashes outlined
949 # in the documentation. (See library docs, 'Built-in Types').
950 if self._is_special:
951 if self.is_snan():
952 raise TypeError('Cannot hash a signaling NaN value.')
953 elif self.is_nan():
954 return _PyHASH_NAN
955 else:
956 if self._sign:
957 return -_PyHASH_INF
958 else:
959 return _PyHASH_INF
961 if self._exp >= 0:
962 exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
963 else:
964 exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
965 hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
966 ans = hash_ if self >= 0 else -hash_
967 return -2 if ans == -1 else ans
969 def as_tuple(self):
970 """Represents the number as a triple tuple.
972 To show the internals exactly as they are.
973 """
974 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
976 def as_integer_ratio(self):
977 """Express a finite Decimal instance in the form n / d.
979 Returns a pair (n, d) of integers. When called on an infinity
980 or NaN, raises OverflowError or ValueError respectively.
982 >>> Decimal('3.14').as_integer_ratio()
983 (157, 50)
984 >>> Decimal('-123e5').as_integer_ratio()
985 (-12300000, 1)
986 >>> Decimal('0.00').as_integer_ratio()
987 (0, 1)
989 """
990 if self._is_special:
991 if self.is_nan():
992 raise ValueError("cannot convert NaN to integer ratio")
993 else:
994 raise OverflowError("cannot convert Infinity to integer ratio")
996 if not self:
997 return 0, 1
999 # Find n, d in lowest terms such that abs(self) == n / d;
1000 # we'll deal with the sign later.
1001 n = int(self._int)
1002 if self._exp >= 0:
1003 # self is an integer.
1004 n, d = n * 10**self._exp, 1
1005 else:
1006 # Find d2, d5 such that abs(self) = n / (2**d2 * 5**d5).
1007 d5 = -self._exp
1008 while d5 > 0 and n % 5 == 0:
1009 n //= 5
1010 d5 -= 1
1012 # (n & -n).bit_length() - 1 counts trailing zeros in binary
1013 # representation of n (provided n is nonzero).
1014 d2 = -self._exp
1015 shift2 = min((n & -n).bit_length() - 1, d2)
1016 if shift2:
1017 n >>= shift2
1018 d2 -= shift2
1020 d = 5**d5 << d2
1022 if self._sign:
1023 n = -n
1024 return n, d
1026 def __repr__(self):
1027 """Represents the number as an instance of Decimal."""
1028 # Invariant: eval(repr(d)) == d
1029 return "Decimal('%s')" % str(self)
1031 def __str__(self, eng=False, context=None):
1032 """Return string representation of the number in scientific notation.
1034 Captures all of the information in the underlying representation.
1035 """
1037 sign = ['', '-'][self._sign]
1038 if self._is_special:
1039 if self._exp == 'F':
1040 return sign + 'Infinity'
1041 elif self._exp == 'n':
1042 return sign + 'NaN' + self._int
1043 else: # self._exp == 'N'
1044 return sign + 'sNaN' + self._int
1046 # number of digits of self._int to left of decimal point
1047 leftdigits = self._exp + len(self._int)
1049 # dotplace is number of digits of self._int to the left of the
1050 # decimal point in the mantissa of the output string (that is,
1051 # after adjusting the exponent)
1052 if self._exp <= 0 and leftdigits > -6:
1053 # no exponent required
1054 dotplace = leftdigits
1055 elif not eng:
1056 # usual scientific notation: 1 digit on left of the point
1057 dotplace = 1
1058 elif self._int == '0':
1059 # engineering notation, zero
1060 dotplace = (leftdigits + 1) % 3 - 1
1061 else:
1062 # engineering notation, nonzero
1063 dotplace = (leftdigits - 1) % 3 + 1
1065 if dotplace <= 0:
1066 intpart = '0'
1067 fracpart = '.' + '0'*(-dotplace) + self._int
1068 elif dotplace >= len(self._int):
1069 intpart = self._int+'0'*(dotplace-len(self._int))
1070 fracpart = ''
1071 else:
1072 intpart = self._int[:dotplace]
1073 fracpart = '.' + self._int[dotplace:]
1074 if leftdigits == dotplace:
1075 exp = ''
1076 else:
1077 if context is None:
1078 context = getcontext()
1079 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1081 return sign + intpart + fracpart + exp
1083 def to_eng_string(self, context=None):
1084 """Convert to a string, using engineering notation if an exponent is needed.
1086 Engineering notation has an exponent which is a multiple of 3. This
1087 can leave up to 3 digits to the left of the decimal place and may
1088 require the addition of either one or two trailing zeros.
1089 """
1090 return self.__str__(eng=True, context=context)
1092 def __neg__(self, context=None):
1093 """Returns a copy with the sign switched.
1095 Rounds, if it has reason.
1096 """
1097 if self._is_special:
1098 ans = self._check_nans(context=context)
1099 if ans:
1100 return ans
1102 if context is None:
1103 context = getcontext()
1105 if not self and context.rounding != ROUND_FLOOR:
1106 # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
1107 # in ROUND_FLOOR rounding mode.
1108 ans = self.copy_abs()
1109 else:
1110 ans = self.copy_negate()
1112 return ans._fix(context)
1114 def __pos__(self, context=None):
1115 """Returns a copy, unless it is a sNaN.
1117 Rounds the number (if more than precision digits)
1118 """
1119 if self._is_special:
1120 ans = self._check_nans(context=context)
1121 if ans:
1122 return ans
1124 if context is None:
1125 context = getcontext()
1127 if not self and context.rounding != ROUND_FLOOR:
1128 # + (-0) = 0, except in ROUND_FLOOR rounding mode.
1129 ans = self.copy_abs()
1130 else:
1131 ans = Decimal(self)
1133 return ans._fix(context)
1135 def __abs__(self, round=True, context=None):
1136 """Returns the absolute value of self.
1138 If the keyword argument 'round' is false, do not round. The
1139 expression self.__abs__(round=False) is equivalent to
1140 self.copy_abs().
1141 """
1142 if not round:
1143 return self.copy_abs()
1145 if self._is_special:
1146 ans = self._check_nans(context=context)
1147 if ans:
1148 return ans
1150 if self._sign:
1151 ans = self.__neg__(context=context)
1152 else:
1153 ans = self.__pos__(context=context)
1155 return ans
1157 def __add__(self, other, context=None):
1158 """Returns self + other.
1160 -INF + INF (or the reverse) cause InvalidOperation errors.
1161 """
1162 other = _convert_other(other)
1163 if other is NotImplemented:
1164 return other
1166 if context is None:
1167 context = getcontext()
1169 if self._is_special or other._is_special:
1170 ans = self._check_nans(other, context)
1171 if ans:
1172 return ans
1174 if self._isinfinity():
1175 # If both INF, same sign => same as both, opposite => error.
1176 if self._sign != other._sign and other._isinfinity():
1177 return context._raise_error(InvalidOperation, '-INF + INF')
1178 return Decimal(self)
1179 if other._isinfinity():
1180 return Decimal(other) # Can't both be infinity here
1182 exp = min(self._exp, other._exp)
1183 negativezero = 0
1184 if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1185 # If the answer is 0, the sign should be negative, in this case.
1186 negativezero = 1
1188 if not self and not other:
1189 sign = min(self._sign, other._sign)
1190 if negativezero:
1191 sign = 1
1192 ans = _dec_from_triple(sign, '0', exp)
1193 ans = ans._fix(context)
1194 return ans
1195 if not self:
1196 exp = max(exp, other._exp - context.prec-1)
1197 ans = other._rescale(exp, context.rounding)
1198 ans = ans._fix(context)
1199 return ans
1200 if not other:
1201 exp = max(exp, self._exp - context.prec-1)
1202 ans = self._rescale(exp, context.rounding)
1203 ans = ans._fix(context)
1204 return ans
1206 op1 = _WorkRep(self)
1207 op2 = _WorkRep(other)
1208 op1, op2 = _normalize(op1, op2, context.prec)
1210 result = _WorkRep()
1211 if op1.sign != op2.sign:
1212 # Equal and opposite
1213 if op1.int == op2.int:
1214 ans = _dec_from_triple(negativezero, '0', exp)
1215 ans = ans._fix(context)
1216 return ans
1217 if op1.int < op2.int:
1218 op1, op2 = op2, op1
1219 # OK, now abs(op1) > abs(op2)
1220 if op1.sign == 1:
1221 result.sign = 1
1222 op1.sign, op2.sign = op2.sign, op1.sign
1223 else:
1224 result.sign = 0
1225 # So we know the sign, and op1 > 0.
1226 elif op1.sign == 1:
1227 result.sign = 1
1228 op1.sign, op2.sign = (0, 0)
1229 else:
1230 result.sign = 0
1231 # Now, op1 > abs(op2) > 0
1233 if op2.sign == 0:
1234 result.int = op1.int + op2.int
1235 else:
1236 result.int = op1.int - op2.int
1238 result.exp = op1.exp
1239 ans = Decimal(result)
1240 ans = ans._fix(context)
1241 return ans
1243 __radd__ = __add__
1245 def __sub__(self, other, context=None):
1246 """Return self - other"""
1247 other = _convert_other(other)
1248 if other is NotImplemented:
1249 return other
1251 if self._is_special or other._is_special:
1252 ans = self._check_nans(other, context=context)
1253 if ans:
1254 return ans
1256 # self - other is computed as self + other.copy_negate()
1257 return self.__add__(other.copy_negate(), context=context)
1259 def __rsub__(self, other, context=None):
1260 """Return other - self"""
1261 other = _convert_other(other)
1262 if other is NotImplemented:
1263 return other
1265 return other.__sub__(self, context=context)
1267 def __mul__(self, other, context=None):
1268 """Return self * other.
1270 (+-) INF * 0 (or its reverse) raise InvalidOperation.
1271 """
1272 other = _convert_other(other)
1273 if other is NotImplemented:
1274 return other
1276 if context is None:
1277 context = getcontext()
1279 resultsign = self._sign ^ other._sign
1281 if self._is_special or other._is_special:
1282 ans = self._check_nans(other, context)
1283 if ans:
1284 return ans
1286 if self._isinfinity():
1287 if not other:
1288 return context._raise_error(InvalidOperation, '(+-)INF * 0')
1289 return _SignedInfinity[resultsign]
1291 if other._isinfinity():
1292 if not self:
1293 return context._raise_error(InvalidOperation, '0 * (+-)INF')
1294 return _SignedInfinity[resultsign]
1296 resultexp = self._exp + other._exp
1298 # Special case for multiplying by zero
1299 if not self or not other:
1300 ans = _dec_from_triple(resultsign, '0', resultexp)
1301 # Fixing in case the exponent is out of bounds
1302 ans = ans._fix(context)
1303 return ans
1305 # Special case for multiplying by power of 10
1306 if self._int == '1':
1307 ans = _dec_from_triple(resultsign, other._int, resultexp)
1308 ans = ans._fix(context)
1309 return ans
1310 if other._int == '1':
1311 ans = _dec_from_triple(resultsign, self._int, resultexp)
1312 ans = ans._fix(context)
1313 return ans
1315 op1 = _WorkRep(self)
1316 op2 = _WorkRep(other)
1318 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1319 ans = ans._fix(context)
1321 return ans
1322 __rmul__ = __mul__
1324 def __truediv__(self, other, context=None):
1325 """Return self / other."""
1326 other = _convert_other(other)
1327 if other is NotImplemented:
1328 return NotImplemented
1330 if context is None:
1331 context = getcontext()
1333 sign = self._sign ^ other._sign
1335 if self._is_special or other._is_special:
1336 ans = self._check_nans(other, context)
1337 if ans:
1338 return ans
1340 if self._isinfinity() and other._isinfinity():
1341 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1343 if self._isinfinity():
1344 return _SignedInfinity[sign]
1346 if other._isinfinity():
1347 context._raise_error(Clamped, 'Division by infinity')
1348 return _dec_from_triple(sign, '0', context.Etiny())
1350 # Special cases for zeroes
1351 if not other:
1352 if not self:
1353 return context._raise_error(DivisionUndefined, '0 / 0')
1354 return context._raise_error(DivisionByZero, 'x / 0', sign)
1356 if not self:
1357 exp = self._exp - other._exp
1358 coeff = 0
1359 else:
1360 # OK, so neither = 0, INF or NaN
1361 shift = len(other._int) - len(self._int) + context.prec + 1
1362 exp = self._exp - other._exp - shift
1363 op1 = _WorkRep(self)
1364 op2 = _WorkRep(other)
1365 if shift >= 0:
1366 coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1367 else:
1368 coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1369 if remainder:
1370 # result is not exact; adjust to ensure correct rounding
1371 if coeff % 5 == 0:
1372 coeff += 1
1373 else:
1374 # result is exact; get as close to ideal exponent as possible
1375 ideal_exp = self._exp - other._exp
1376 while exp < ideal_exp and coeff % 10 == 0:
1377 coeff //= 10
1378 exp += 1
1380 ans = _dec_from_triple(sign, str(coeff), exp)
1381 return ans._fix(context)
1383 def _divide(self, other, context):
1384 """Return (self // other, self % other), to context.prec precision.
1386 Assumes that neither self nor other is a NaN, that self is not
1387 infinite and that other is nonzero.
1388 """
1389 sign = self._sign ^ other._sign
1390 if other._isinfinity():
1391 ideal_exp = self._exp
1392 else:
1393 ideal_exp = min(self._exp, other._exp)
1395 expdiff = self.adjusted() - other.adjusted()
1396 if not self or other._isinfinity() or expdiff <= -2:
1397 return (_dec_from_triple(sign, '0', 0),
1398 self._rescale(ideal_exp, context.rounding))
1399 if expdiff <= context.prec:
1400 op1 = _WorkRep(self)
1401 op2 = _WorkRep(other)
1402 if op1.exp >= op2.exp:
1403 op1.int *= 10**(op1.exp - op2.exp)
1404 else:
1405 op2.int *= 10**(op2.exp - op1.exp)
1406 q, r = divmod(op1.int, op2.int)
1407 if q < 10**context.prec:
1408 return (_dec_from_triple(sign, str(q), 0),
1409 _dec_from_triple(self._sign, str(r), ideal_exp))
1411 # Here the quotient is too large to be representable
1412 ans = context._raise_error(DivisionImpossible,
1413 'quotient too large in //, % or divmod')
1414 return ans, ans
1416 def __rtruediv__(self, other, context=None):
1417 """Swaps self/other and returns __truediv__."""
1418 other = _convert_other(other)
1419 if other is NotImplemented:
1420 return other
1421 return other.__truediv__(self, context=context)
1423 def __divmod__(self, other, context=None):
1424 """
1425 Return (self // other, self % other)
1426 """
1427 other = _convert_other(other)
1428 if other is NotImplemented:
1429 return other
1431 if context is None:
1432 context = getcontext()
1434 ans = self._check_nans(other, context)
1435 if ans:
1436 return (ans, ans)
1438 sign = self._sign ^ other._sign
1439 if self._isinfinity():
1440 if other._isinfinity():
1441 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1442 return ans, ans
1443 else:
1444 return (_SignedInfinity[sign],
1445 context._raise_error(InvalidOperation, 'INF % x'))
1447 if not other:
1448 if not self:
1449 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1450 return ans, ans
1451 else:
1452 return (context._raise_error(DivisionByZero, 'x // 0', sign),
1453 context._raise_error(InvalidOperation, 'x % 0'))
1455 quotient, remainder = self._divide(other, context)
1456 remainder = remainder._fix(context)
1457 return quotient, remainder
1459 def __rdivmod__(self, other, context=None):
1460 """Swaps self/other and returns __divmod__."""
1461 other = _convert_other(other)
1462 if other is NotImplemented:
1463 return other
1464 return other.__divmod__(self, context=context)
1466 def __mod__(self, other, context=None):
1467 """
1468 self % other
1469 """
1470 other = _convert_other(other)
1471 if other is NotImplemented:
1472 return other
1474 if context is None:
1475 context = getcontext()
1477 ans = self._check_nans(other, context)
1478 if ans:
1479 return ans
1481 if self._isinfinity():
1482 return context._raise_error(InvalidOperation, 'INF % x')
1483 elif not other:
1484 if self:
1485 return context._raise_error(InvalidOperation, 'x % 0')
1486 else:
1487 return context._raise_error(DivisionUndefined, '0 % 0')
1489 remainder = self._divide(other, context)[1]
1490 remainder = remainder._fix(context)
1491 return remainder
1493 def __rmod__(self, other, context=None):
1494 """Swaps self/other and returns __mod__."""
1495 other = _convert_other(other)
1496 if other is NotImplemented:
1497 return other
1498 return other.__mod__(self, context=context)
1500 def remainder_near(self, other, context=None):
1501 """
1502 Remainder nearest to 0- abs(remainder-near) <= other/2
1503 """
1504 if context is None:
1505 context = getcontext()
1507 other = _convert_other(other, raiseit=True)
1509 ans = self._check_nans(other, context)
1510 if ans:
1511 return ans
1513 # self == +/-infinity -> InvalidOperation
1514 if self._isinfinity():
1515 return context._raise_error(InvalidOperation,
1516 'remainder_near(infinity, x)')
1518 # other == 0 -> either InvalidOperation or DivisionUndefined
1519 if not other:
1520 if self:
1521 return context._raise_error(InvalidOperation,
1522 'remainder_near(x, 0)')
1523 else:
1524 return context._raise_error(DivisionUndefined,
1525 'remainder_near(0, 0)')
1527 # other = +/-infinity -> remainder = self
1528 if other._isinfinity():
1529 ans = Decimal(self)
1530 return ans._fix(context)
1532 # self = 0 -> remainder = self, with ideal exponent
1533 ideal_exponent = min(self._exp, other._exp)
1534 if not self:
1535 ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1536 return ans._fix(context)
1538 # catch most cases of large or small quotient
1539 expdiff = self.adjusted() - other.adjusted()
1540 if expdiff >= context.prec + 1:
1541 # expdiff >= prec+1 => abs(self/other) > 10**prec
1542 return context._raise_error(DivisionImpossible)
1543 if expdiff <= -2:
1544 # expdiff <= -2 => abs(self/other) < 0.1
1545 ans = self._rescale(ideal_exponent, context.rounding)
1546 return ans._fix(context)
1548 # adjust both arguments to have the same exponent, then divide
1549 op1 = _WorkRep(self)
1550 op2 = _WorkRep(other)
1551 if op1.exp >= op2.exp:
1552 op1.int *= 10**(op1.exp - op2.exp)
1553 else:
1554 op2.int *= 10**(op2.exp - op1.exp)
1555 q, r = divmod(op1.int, op2.int)
1556 # remainder is r*10**ideal_exponent; other is +/-op2.int *
1557 # 10**ideal_exponent. Apply correction to ensure that
1558 # abs(remainder) <= abs(other)/2
1559 if 2*r + (q&1) > op2.int:
1560 r -= op2.int
1561 q += 1
1563 if q >= 10**context.prec:
1564 return context._raise_error(DivisionImpossible)
1566 # result has same sign as self unless r is negative
1567 sign = self._sign
1568 if r < 0:
1569 sign = 1-sign
1570 r = -r
1572 ans = _dec_from_triple(sign, str(r), ideal_exponent)
1573 return ans._fix(context)
1575 def __floordiv__(self, other, context=None):
1576 """self // other"""
1577 other = _convert_other(other)
1578 if other is NotImplemented:
1579 return other
1581 if context is None:
1582 context = getcontext()
1584 ans = self._check_nans(other, context)
1585 if ans:
1586 return ans
1588 if self._isinfinity():
1589 if other._isinfinity():
1590 return context._raise_error(InvalidOperation, 'INF // INF')
1591 else:
1592 return _SignedInfinity[self._sign ^ other._sign]
1594 if not other:
1595 if self:
1596 return context._raise_error(DivisionByZero, 'x // 0',
1597 self._sign ^ other._sign)
1598 else:
1599 return context._raise_error(DivisionUndefined, '0 // 0')
1601 return self._divide(other, context)[0]
1603 def __rfloordiv__(self, other, context=None):
1604 """Swaps self/other and returns __floordiv__."""
1605 other = _convert_other(other)
1606 if other is NotImplemented:
1607 return other
1608 return other.__floordiv__(self, context=context)
1610 def __float__(self):
1611 """Float representation."""
1612 if self._isnan():
1613 if self.is_snan():
1614 raise ValueError("Cannot convert signaling NaN to float")
1615 s = "-nan" if self._sign else "nan"
1616 else:
1617 s = str(self)
1618 return float(s)
1620 def __int__(self):
1621 """Converts self to an int, truncating if necessary."""
1622 if self._is_special:
1623 if self._isnan():
1624 raise ValueError("Cannot convert NaN to integer")
1625 elif self._isinfinity():
1626 raise OverflowError("Cannot convert infinity to integer")
1627 s = (-1)**self._sign
1628 if self._exp >= 0:
1629 return s*int(self._int)*10**self._exp
1630 else:
1631 return s*int(self._int[:self._exp] or '0')
1633 __trunc__ = __int__
1635 @property
1636 def real(self):
1637 return self
1639 @property
1640 def imag(self):
1641 return Decimal(0)
1643 def conjugate(self):
1644 return self
1646 def __complex__(self):
1647 return complex(float(self))
1649 def _fix_nan(self, context):
1650 """Decapitate the payload of a NaN to fit the context"""
1651 payload = self._int
1653 # maximum length of payload is precision if clamp=0,
1654 # precision-1 if clamp=1.
1655 max_payload_len = context.prec - context.clamp
1656 if len(payload) > max_payload_len:
1657 payload = payload[len(payload)-max_payload_len:].lstrip('0')
1658 return _dec_from_triple(self._sign, payload, self._exp, True)
1659 return Decimal(self)
1661 def _fix(self, context):
1662 """Round if it is necessary to keep self within prec precision.
1664 Rounds and fixes the exponent. Does not raise on a sNaN.
1666 Arguments:
1667 self - Decimal instance
1668 context - context used.
1669 """
1671 if self._is_special:
1672 if self._isnan():
1673 # decapitate payload if necessary
1674 return self._fix_nan(context)
1675 else:
1676 # self is +/-Infinity; return unaltered
1677 return Decimal(self)
1679 # if self is zero then exponent should be between Etiny and
1680 # Emax if clamp==0, and between Etiny and Etop if clamp==1.
1681 Etiny = context.Etiny()
1682 Etop = context.Etop()
1683 if not self:
1684 exp_max = [context.Emax, Etop][context.clamp]
1685 new_exp = min(max(self._exp, Etiny), exp_max)
1686 if new_exp != self._exp:
1687 context._raise_error(Clamped)
1688 return _dec_from_triple(self._sign, '0', new_exp)
1689 else:
1690 return Decimal(self)
1692 # exp_min is the smallest allowable exponent of the result,
1693 # equal to max(self.adjusted()-context.prec+1, Etiny)
1694 exp_min = len(self._int) + self._exp - context.prec
1695 if exp_min > Etop:
1696 # overflow: exp_min > Etop iff self.adjusted() > Emax
1697 ans = context._raise_error(Overflow, 'above Emax', self._sign)
1698 context._raise_error(Inexact)
1699 context._raise_error(Rounded)
1700 return ans
1702 self_is_subnormal = exp_min < Etiny
1703 if self_is_subnormal:
1704 exp_min = Etiny
1706 # round if self has too many digits
1707 if self._exp < exp_min:
1708 digits = len(self._int) + self._exp - exp_min
1709 if digits < 0:
1710 self = _dec_from_triple(self._sign, '1', exp_min-1)
1711 digits = 0
1712 rounding_method = self._pick_rounding_function[context.rounding]
1713 changed = rounding_method(self, digits)
1714 coeff = self._int[:digits] or '0'
1715 if changed > 0:
1716 coeff = str(int(coeff)+1)
1717 if len(coeff) > context.prec:
1718 coeff = coeff[:-1]
1719 exp_min += 1
1721 # check whether the rounding pushed the exponent out of range
1722 if exp_min > Etop:
1723 ans = context._raise_error(Overflow, 'above Emax', self._sign)
1724 else:
1725 ans = _dec_from_triple(self._sign, coeff, exp_min)
1727 # raise the appropriate signals, taking care to respect
1728 # the precedence described in the specification
1729 if changed and self_is_subnormal:
1730 context._raise_error(Underflow)
1731 if self_is_subnormal:
1732 context._raise_error(Subnormal)
1733 if changed:
1734 context._raise_error(Inexact)
1735 context._raise_error(Rounded)
1736 if not ans:
1737 # raise Clamped on underflow to 0
1738 context._raise_error(Clamped)
1739 return ans
1741 if self_is_subnormal:
1742 context._raise_error(Subnormal)
1744 # fold down if clamp == 1 and self has too few digits
1745 if context.clamp == 1 and self._exp > Etop:
1746 context._raise_error(Clamped)
1747 self_padded = self._int + '0'*(self._exp - Etop)
1748 return _dec_from_triple(self._sign, self_padded, Etop)
1750 # here self was representable to begin with; return unchanged
1751 return Decimal(self)
1753 # for each of the rounding functions below:
1754 # self is a finite, nonzero Decimal
1755 # prec is an integer satisfying 0 <= prec < len(self._int)
1756 #
1757 # each function returns either -1, 0, or 1, as follows:
1758 # 1 indicates that self should be rounded up (away from zero)
1759 # 0 indicates that self should be truncated, and that all the
1760 # digits to be truncated are zeros (so the value is unchanged)
1761 # -1 indicates that there are nonzero digits to be truncated
1763 def _round_down(self, prec):
1764 """Also known as round-towards-0, truncate."""
1765 if _all_zeros(self._int, prec):
1766 return 0
1767 else:
1768 return -1
1770 def _round_up(self, prec):
1771 """Rounds away from 0."""
1772 return -self._round_down(prec)
1774 def _round_half_up(self, prec):
1775 """Rounds 5 up (away from 0)"""
1776 if self._int[prec] in '56789':
1777 return 1
1778 elif _all_zeros(self._int, prec):
1779 return 0
1780 else:
1781 return -1
1783 def _round_half_down(self, prec):
1784 """Round 5 down"""
1785 if _exact_half(self._int, prec):
1786 return -1
1787 else:
1788 return self._round_half_up(prec)
1790 def _round_half_even(self, prec):
1791 """Round 5 to even, rest to nearest."""
1792 if _exact_half(self._int, prec) and \
1793 (prec == 0 or self._int[prec-1] in '02468'):
1794 return -1
1795 else:
1796 return self._round_half_up(prec)
1798 def _round_ceiling(self, prec):
1799 """Rounds up (not away from 0 if negative.)"""
1800 if self._sign:
1801 return self._round_down(prec)
1802 else:
1803 return -self._round_down(prec)
1805 def _round_floor(self, prec):
1806 """Rounds down (not towards 0 if negative)"""
1807 if not self._sign:
1808 return self._round_down(prec)
1809 else:
1810 return -self._round_down(prec)
1812 def _round_05up(self, prec):
1813 """Round down unless digit prec-1 is 0 or 5."""
1814 if prec and self._int[prec-1] not in '05':
1815 return self._round_down(prec)
1816 else:
1817 return -self._round_down(prec)
1819 _pick_rounding_function = dict(
1820 ROUND_DOWN = _round_down,
1821 ROUND_UP = _round_up,
1822 ROUND_HALF_UP = _round_half_up,
1823 ROUND_HALF_DOWN = _round_half_down,
1824 ROUND_HALF_EVEN = _round_half_even,
1825 ROUND_CEILING = _round_ceiling,
1826 ROUND_FLOOR = _round_floor,
1827 ROUND_05UP = _round_05up,
1828 )
1830 def __round__(self, n=None):
1831 """Round self to the nearest integer, or to a given precision.
1833 If only one argument is supplied, round a finite Decimal
1834 instance self to the nearest integer. If self is infinite or
1835 a NaN then a Python exception is raised. If self is finite
1836 and lies exactly halfway between two integers then it is
1837 rounded to the integer with even last digit.
1839 >>> round(Decimal('123.456'))
1840 123
1841 >>> round(Decimal('-456.789'))
1842 -457
1843 >>> round(Decimal('-3.0'))
1844 -3
1845 >>> round(Decimal('2.5'))
1846 2
1847 >>> round(Decimal('3.5'))
1848 4
1849 >>> round(Decimal('Inf'))
1850 Traceback (most recent call last):
1851 ...
1852 OverflowError: cannot round an infinity
1853 >>> round(Decimal('NaN'))
1854 Traceback (most recent call last):
1855 ...
1856 ValueError: cannot round a NaN
1858 If a second argument n is supplied, self is rounded to n
1859 decimal places using the rounding mode for the current
1860 context.
1862 For an integer n, round(self, -n) is exactly equivalent to
1863 self.quantize(Decimal('1En')).
1865 >>> round(Decimal('123.456'), 0)
1866 Decimal('123')
1867 >>> round(Decimal('123.456'), 2)
1868 Decimal('123.46')
1869 >>> round(Decimal('123.456'), -2)
1870 Decimal('1E+2')
1871 >>> round(Decimal('-Infinity'), 37)
1872 Decimal('NaN')
1873 >>> round(Decimal('sNaN123'), 0)
1874 Decimal('NaN123')
1876 """
1877 if n is not None:
1878 # two-argument form: use the equivalent quantize call
1879 if not isinstance(n, int):
1880 raise TypeError('Second argument to round should be integral')
1881 exp = _dec_from_triple(0, '1', -n)
1882 return self.quantize(exp)
1884 # one-argument form
1885 if self._is_special:
1886 if self.is_nan():
1887 raise ValueError("cannot round a NaN")
1888 else:
1889 raise OverflowError("cannot round an infinity")
1890 return int(self._rescale(0, ROUND_HALF_EVEN))
1892 def __floor__(self):
1893 """Return the floor of self, as an integer.
1895 For a finite Decimal instance self, return the greatest
1896 integer n such that n <= self. If self is infinite or a NaN
1897 then a Python exception is raised.
1899 """
1900 if self._is_special:
1901 if self.is_nan():
1902 raise ValueError("cannot round a NaN")
1903 else:
1904 raise OverflowError("cannot round an infinity")
1905 return int(self._rescale(0, ROUND_FLOOR))
1907 def __ceil__(self):
1908 """Return the ceiling of self, as an integer.
1910 For a finite Decimal instance self, return the least integer n
1911 such that n >= self. If self is infinite or a NaN then a
1912 Python exception is raised.
1914 """
1915 if self._is_special:
1916 if self.is_nan():
1917 raise ValueError("cannot round a NaN")
1918 else:
1919 raise OverflowError("cannot round an infinity")
1920 return int(self._rescale(0, ROUND_CEILING))
1922 def fma(self, other, third, context=None):
1923 """Fused multiply-add.
1925 Returns self*other+third with no rounding of the intermediate
1926 product self*other.
1928 self and other are multiplied together, with no rounding of
1929 the result. The third operand is then added to the result,
1930 and a single final rounding is performed.
1931 """
1933 other = _convert_other(other, raiseit=True)
1934 third = _convert_other(third, raiseit=True)
1936 # compute product; raise InvalidOperation if either operand is
1937 # a signaling NaN or if the product is zero times infinity.
1938 if self._is_special or other._is_special:
1939 if context is None:
1940 context = getcontext()
1941 if self._exp == 'N':
1942 return context._raise_error(InvalidOperation, 'sNaN', self)
1943 if other._exp == 'N':
1944 return context._raise_error(InvalidOperation, 'sNaN', other)
1945 if self._exp == 'n':
1946 product = self
1947 elif other._exp == 'n':
1948 product = other
1949 elif self._exp == 'F':
1950 if not other:
1951 return context._raise_error(InvalidOperation,
1952 'INF * 0 in fma')
1953 product = _SignedInfinity[self._sign ^ other._sign]
1954 elif other._exp == 'F':
1955 if not self:
1956 return context._raise_error(InvalidOperation,
1957 '0 * INF in fma')
1958 product = _SignedInfinity[self._sign ^ other._sign]
1959 else:
1960 product = _dec_from_triple(self._sign ^ other._sign,
1961 str(int(self._int) * int(other._int)),
1962 self._exp + other._exp)
1964 return product.__add__(third, context)
1966 def _power_modulo(self, other, modulo, context=None):
1967 """Three argument version of __pow__"""
1969 other = _convert_other(other)
1970 if other is NotImplemented:
1971 return other
1972 modulo = _convert_other(modulo)
1973 if modulo is NotImplemented:
1974 return modulo
1976 if context is None:
1977 context = getcontext()
1979 # deal with NaNs: if there are any sNaNs then first one wins,
1980 # (i.e. behaviour for NaNs is identical to that of fma)
1981 self_is_nan = self._isnan()
1982 other_is_nan = other._isnan()
1983 modulo_is_nan = modulo._isnan()
1984 if self_is_nan or other_is_nan or modulo_is_nan:
1985 if self_is_nan == 2:
1986 return context._raise_error(InvalidOperation, 'sNaN',
1987 self)
1988 if other_is_nan == 2:
1989 return context._raise_error(InvalidOperation, 'sNaN',
1990 other)
1991 if modulo_is_nan == 2:
1992 return context._raise_error(InvalidOperation, 'sNaN',
1993 modulo)
1994 if self_is_nan:
1995 return self._fix_nan(context)
1996 if other_is_nan:
1997 return other._fix_nan(context)
1998 return modulo._fix_nan(context)
2000 # check inputs: we apply same restrictions as Python's pow()
2001 if not (self._isinteger() and
2002 other._isinteger() and
2003 modulo._isinteger()):
2004 return context._raise_error(InvalidOperation,
2005 'pow() 3rd argument not allowed '
2006 'unless all arguments are integers')
2007 if other < 0:
2008 return context._raise_error(InvalidOperation,
2009 'pow() 2nd argument cannot be '
2010 'negative when 3rd argument specified')
2011 if not modulo:
2012 return context._raise_error(InvalidOperation,
2013 'pow() 3rd argument cannot be 0')
2015 # additional restriction for decimal: the modulus must be less
2016 # than 10**prec in absolute value
2017 if modulo.adjusted() >= context.prec:
2018 return context._raise_error(InvalidOperation,
2019 'insufficient precision: pow() 3rd '
2020 'argument must not have more than '
2021 'precision digits')
2023 # define 0**0 == NaN, for consistency with two-argument pow
2024 # (even though it hurts!)
2025 if not other and not self:
2026 return context._raise_error(InvalidOperation,
2027 'at least one of pow() 1st argument '
2028 'and 2nd argument must be nonzero; '
2029 '0**0 is not defined')
2031 # compute sign of result
2032 if other._iseven():
2033 sign = 0
2034 else:
2035 sign = self._sign
2037 # convert modulo to a Python integer, and self and other to
2038 # Decimal integers (i.e. force their exponents to be >= 0)
2039 modulo = abs(int(modulo))
2040 base = _WorkRep(self.to_integral_value())
2041 exponent = _WorkRep(other.to_integral_value())
2043 # compute result using integer pow()
2044 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
2045 for i in range(exponent.exp):
2046 base = pow(base, 10, modulo)
2047 base = pow(base, exponent.int, modulo)
2049 return _dec_from_triple(sign, str(base), 0)
2051 def _power_exact(self, other, p):
2052 """Attempt to compute self**other exactly.
2054 Given Decimals self and other and an integer p, attempt to
2055 compute an exact result for the power self**other, with p
2056 digits of precision. Return None if self**other is not
2057 exactly representable in p digits.
2059 Assumes that elimination of special cases has already been
2060 performed: self and other must both be nonspecial; self must
2061 be positive and not numerically equal to 1; other must be
2062 nonzero. For efficiency, other._exp should not be too large,
2063 so that 10**abs(other._exp) is a feasible calculation."""
2065 # In the comments below, we write x for the value of self and y for the
2066 # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
2067 # and yc positive integers not divisible by 10.
2069 # The main purpose of this method is to identify the *failure*
2070 # of x**y to be exactly representable with as little effort as
2071 # possible. So we look for cheap and easy tests that
2072 # eliminate the possibility of x**y being exact. Only if all
2073 # these tests are passed do we go on to actually compute x**y.
2075 # Here's the main idea. Express y as a rational number m/n, with m and
2076 # n relatively prime and n>0. Then for x**y to be exactly
2077 # representable (at *any* precision), xc must be the nth power of a
2078 # positive integer and xe must be divisible by n. If y is negative
2079 # then additionally xc must be a power of either 2 or 5, hence a power
2080 # of 2**n or 5**n.
2081 #
2082 # There's a limit to how small |y| can be: if y=m/n as above
2083 # then:
2084 #
2085 # (1) if xc != 1 then for the result to be representable we
2086 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
2087 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
2088 # 2**(1/|y|), hence xc**|y| < 2 and the result is not
2089 # representable.
2090 #
2091 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
2092 # |y| < 1/|xe| then the result is not representable.
2093 #
2094 # Note that since x is not equal to 1, at least one of (1) and
2095 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
2096 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
2097 #
2098 # There's also a limit to how large y can be, at least if it's
2099 # positive: the normalized result will have coefficient xc**y,
2100 # so if it's representable then xc**y < 10**p, and y <
2101 # p/log10(xc). Hence if y*log10(xc) >= p then the result is
2102 # not exactly representable.
2104 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
2105 # so |y| < 1/xe and the result is not representable.
2106 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
2107 # < 1/nbits(xc).
2109 x = _WorkRep(self)
2110 xc, xe = x.int, x.exp
2111 while xc % 10 == 0:
2112 xc //= 10
2113 xe += 1
2115 y = _WorkRep(other)
2116 yc, ye = y.int, y.exp
2117 while yc % 10 == 0:
2118 yc //= 10
2119 ye += 1
2121 # case where xc == 1: result is 10**(xe*y), with xe*y
2122 # required to be an integer
2123 if xc == 1:
2124 xe *= yc
2125 # result is now 10**(xe * 10**ye); xe * 10**ye must be integral
2126 while xe % 10 == 0:
2127 xe //= 10
2128 ye += 1
2129 if ye < 0:
2130 return None
2131 exponent = xe * 10**ye
2132 if y.sign == 1:
2133 exponent = -exponent
2134 # if other is a nonnegative integer, use ideal exponent
2135 if other._isinteger() and other._sign == 0:
2136 ideal_exponent = self._exp*int(other)
2137 zeros = min(exponent-ideal_exponent, p-1)
2138 else:
2139 zeros = 0
2140 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
2142 # case where y is negative: xc must be either a power
2143 # of 2 or a power of 5.
2144 if y.sign == 1:
2145 last_digit = xc % 10
2146 if last_digit in (2,4,6,8):
2147 # quick test for power of 2
2148 if xc & -xc != xc:
2149 return None
2150 # now xc is a power of 2; e is its exponent
2151 e = _nbits(xc)-1
2153 # We now have:
2154 #
2155 # x = 2**e * 10**xe, e > 0, and y < 0.
2156 #
2157 # The exact result is:
2158 #
2159 # x**y = 5**(-e*y) * 10**(e*y + xe*y)
2160 #
2161 # provided that both e*y and xe*y are integers. Note that if
2162 # 5**(-e*y) >= 10**p, then the result can't be expressed
2163 # exactly with p digits of precision.
2164 #
2165 # Using the above, we can guard against large values of ye.
2166 # 93/65 is an upper bound for log(10)/log(5), so if
2167 #
2168 # ye >= len(str(93*p//65))
2169 #
2170 # then
2171 #
2172 # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
2173 #
2174 # so 5**(-e*y) >= 10**p, and the coefficient of the result
2175 # can't be expressed in p digits.
2177 # emax >= largest e such that 5**e < 10**p.
2178 emax = p*93//65
2179 if ye >= len(str(emax)):
2180 return None
2182 # Find -e*y and -xe*y; both must be integers
2183 e = _decimal_lshift_exact(e * yc, ye)
2184 xe = _decimal_lshift_exact(xe * yc, ye)
2185 if e is None or xe is None:
2186 return None
2188 if e > emax:
2189 return None
2190 xc = 5**e
2192 elif last_digit == 5:
2193 # e >= log_5(xc) if xc is a power of 5; we have
2194 # equality all the way up to xc=5**2658
2195 e = _nbits(xc)*28//65
2196 xc, remainder = divmod(5**e, xc)
2197 if remainder:
2198 return None
2199 while xc % 5 == 0:
2200 xc //= 5
2201 e -= 1
2203 # Guard against large values of ye, using the same logic as in
2204 # the 'xc is a power of 2' branch. 10/3 is an upper bound for
2205 # log(10)/log(2).
2206 emax = p*10//3
2207 if ye >= len(str(emax)):
2208 return None
2210 e = _decimal_lshift_exact(e * yc, ye)
2211 xe = _decimal_lshift_exact(xe * yc, ye)
2212 if e is None or xe is None:
2213 return None
2215 if e > emax:
2216 return None
2217 xc = 2**e
2218 else:
2219 return None
2221 if xc >= 10**p:
2222 return None
2223 xe = -e-xe
2224 return _dec_from_triple(0, str(xc), xe)
2226 # now y is positive; find m and n such that y = m/n
2227 if ye >= 0:
2228 m, n = yc*10**ye, 1
2229 else:
2230 if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2231 return None
2232 xc_bits = _nbits(xc)
2233 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2234 return None
2235 m, n = yc, 10**(-ye)
2236 while m % 2 == n % 2 == 0:
2237 m //= 2
2238 n //= 2
2239 while m % 5 == n % 5 == 0:
2240 m //= 5
2241 n //= 5
2243 # compute nth root of xc*10**xe
2244 if n > 1:
2245 # if 1 < xc < 2**n then xc isn't an nth power
2246 if xc != 1 and xc_bits <= n:
2247 return None
2249 xe, rem = divmod(xe, n)
2250 if rem != 0:
2251 return None
2253 # compute nth root of xc using Newton's method
2254 a = 1 << -(-_nbits(xc)//n) # initial estimate
2255 while True:
2256 q, r = divmod(xc, a**(n-1))
2257 if a <= q:
2258 break
2259 else:
2260 a = (a*(n-1) + q)//n
2261 if not (a == q and r == 0):
2262 return None
2263 xc = a
2265 # now xc*10**xe is the nth root of the original xc*10**xe
2266 # compute mth power of xc*10**xe
2268 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2269 # 10**p and the result is not representable.
2270 if xc > 1 and m > p*100//_log10_lb(xc):
2271 return None
2272 xc = xc**m
2273 xe *= m
2274 if xc > 10**p:
2275 return None
2277 # by this point the result *is* exactly representable
2278 # adjust the exponent to get as close as possible to the ideal
2279 # exponent, if necessary
2280 str_xc = str(xc)
2281 if other._isinteger() and other._sign == 0:
2282 ideal_exponent = self._exp*int(other)
2283 zeros = min(xe-ideal_exponent, p-len(str_xc))
2284 else:
2285 zeros = 0
2286 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2288 def __pow__(self, other, modulo=None, context=None):
2289 """Return self ** other [ % modulo].
2291 With two arguments, compute self**other.
2293 With three arguments, compute (self**other) % modulo. For the
2294 three argument form, the following restrictions on the
2295 arguments hold:
2297 - all three arguments must be integral
2298 - other must be nonnegative
2299 - either self or other (or both) must be nonzero
2300 - modulo must be nonzero and must have at most p digits,
2301 where p is the context precision.
2303 If any of these restrictions is violated the InvalidOperation
2304 flag is raised.
2306 The result of pow(self, other, modulo) is identical to the
2307 result that would be obtained by computing (self**other) %
2308 modulo with unbounded precision, but is computed more
2309 efficiently. It is always exact.
2310 """
2312 if modulo is not None:
2313 return self._power_modulo(other, modulo, context)
2315 other = _convert_other(other)
2316 if other is NotImplemented:
2317 return other
2319 if context is None:
2320 context = getcontext()
2322 # either argument is a NaN => result is NaN
2323 ans = self._check_nans(other, context)
2324 if ans:
2325 return ans
2327 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2328 if not other:
2329 if not self:
2330 return context._raise_error(InvalidOperation, '0 ** 0')
2331 else:
2332 return _One
2334 # result has sign 1 iff self._sign is 1 and other is an odd integer
2335 result_sign = 0
2336 if self._sign == 1:
2337 if other._isinteger():
2338 if not other._iseven():
2339 result_sign = 1
2340 else:
2341 # -ve**noninteger = NaN
2342 # (-0)**noninteger = 0**noninteger
2343 if self:
2344 return context._raise_error(InvalidOperation,
2345 'x ** y with x negative and y not an integer')
2346 # negate self, without doing any unwanted rounding
2347 self = self.copy_negate()
2349 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2350 if not self:
2351 if other._sign == 0:
2352 return _dec_from_triple(result_sign, '0', 0)
2353 else:
2354 return _SignedInfinity[result_sign]
2356 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2357 if self._isinfinity():
2358 if other._sign == 0:
2359 return _SignedInfinity[result_sign]
2360 else:
2361 return _dec_from_triple(result_sign, '0', 0)
2363 # 1**other = 1, but the choice of exponent and the flags
2364 # depend on the exponent of self, and on whether other is a
2365 # positive integer, a negative integer, or neither
2366 if self == _One:
2367 if other._isinteger():
2368 # exp = max(self._exp*max(int(other), 0),
2369 # 1-context.prec) but evaluating int(other) directly
2370 # is dangerous until we know other is small (other
2371 # could be 1e999999999)
2372 if other._sign == 1:
2373 multiplier = 0
2374 elif other > context.prec:
2375 multiplier = context.prec
2376 else:
2377 multiplier = int(other)
2379 exp = self._exp * multiplier
2380 if exp < 1-context.prec:
2381 exp = 1-context.prec
2382 context._raise_error(Rounded)
2383 else:
2384 context._raise_error(Inexact)
2385 context._raise_error(Rounded)
2386 exp = 1-context.prec
2388 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2390 # compute adjusted exponent of self
2391 self_adj = self.adjusted()
2393 # self ** infinity is infinity if self > 1, 0 if self < 1
2394 # self ** -infinity is infinity if self < 1, 0 if self > 1
2395 if other._isinfinity():
2396 if (other._sign == 0) == (self_adj < 0):
2397 return _dec_from_triple(result_sign, '0', 0)
2398 else:
2399 return _SignedInfinity[result_sign]
2401 # from here on, the result always goes through the call
2402 # to _fix at the end of this function.
2403 ans = None
2404 exact = False
2406 # crude test to catch cases of extreme overflow/underflow. If
2407 # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2408 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2409 # self**other >= 10**(Emax+1), so overflow occurs. The test
2410 # for underflow is similar.
2411 bound = self._log10_exp_bound() + other.adjusted()
2412 if (self_adj >= 0) == (other._sign == 0):
2413 # self > 1 and other +ve, or self < 1 and other -ve
2414 # possibility of overflow
2415 if bound >= len(str(context.Emax)):
2416 ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2417 else:
2418 # self > 1 and other -ve, or self < 1 and other +ve
2419 # possibility of underflow to 0
2420 Etiny = context.Etiny()
2421 if bound >= len(str(-Etiny)):
2422 ans = _dec_from_triple(result_sign, '1', Etiny-1)
2424 # try for an exact result with precision +1
2425 if ans is None:
2426 ans = self._power_exact(other, context.prec + 1)
2427 if ans is not None:
2428 if result_sign == 1:
2429 ans = _dec_from_triple(1, ans._int, ans._exp)
2430 exact = True
2432 # usual case: inexact result, x**y computed directly as exp(y*log(x))
2433 if ans is None:
2434 p = context.prec
2435 x = _WorkRep(self)
2436 xc, xe = x.int, x.exp
2437 y = _WorkRep(other)
2438 yc, ye = y.int, y.exp
2439 if y.sign == 1:
2440 yc = -yc
2442 # compute correctly rounded result: start with precision +3,
2443 # then increase precision until result is unambiguously roundable
2444 extra = 3
2445 while True:
2446 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2447 if coeff % (5*10**(len(str(coeff))-p-1)):
2448 break
2449 extra += 3
2451 ans = _dec_from_triple(result_sign, str(coeff), exp)
2453 # unlike exp, ln and log10, the power function respects the
2454 # rounding mode; no need to switch to ROUND_HALF_EVEN here
2456 # There's a difficulty here when 'other' is not an integer and
2457 # the result is exact. In this case, the specification
2458 # requires that the Inexact flag be raised (in spite of
2459 # exactness), but since the result is exact _fix won't do this
2460 # for us. (Correspondingly, the Underflow signal should also
2461 # be raised for subnormal results.) We can't directly raise
2462 # these signals either before or after calling _fix, since
2463 # that would violate the precedence for signals. So we wrap
2464 # the ._fix call in a temporary context, and reraise
2465 # afterwards.
2466 if exact and not other._isinteger():
2467 # pad with zeros up to length context.prec+1 if necessary; this
2468 # ensures that the Rounded signal will be raised.
2469 if len(ans._int) <= context.prec:
2470 expdiff = context.prec + 1 - len(ans._int)
2471 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2472 ans._exp-expdiff)
2474 # create a copy of the current context, with cleared flags/traps
2475 newcontext = context.copy()
2476 newcontext.clear_flags()
2477 for exception in _signals:
2478 newcontext.traps[exception] = 0
2480 # round in the new context
2481 ans = ans._fix(newcontext)
2483 # raise Inexact, and if necessary, Underflow
2484 newcontext._raise_error(Inexact)
2485 if newcontext.flags[Subnormal]:
2486 newcontext._raise_error(Underflow)
2488 # propagate signals to the original context; _fix could
2489 # have raised any of Overflow, Underflow, Subnormal,
2490 # Inexact, Rounded, Clamped. Overflow needs the correct
2491 # arguments. Note that the order of the exceptions is
2492 # important here.
2493 if newcontext.flags[Overflow]:
2494 context._raise_error(Overflow, 'above Emax', ans._sign)
2495 for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
2496 if newcontext.flags[exception]:
2497 context._raise_error(exception)
2499 else:
2500 ans = ans._fix(context)
2502 return ans
2504 def __rpow__(self, other, context=None):
2505 """Swaps self/other and returns __pow__."""
2506 other = _convert_other(other)
2507 if other is NotImplemented:
2508 return other
2509 return other.__pow__(self, context=context)
2511 def normalize(self, context=None):
2512 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2514 if context is None:
2515 context = getcontext()
2517 if self._is_special:
2518 ans = self._check_nans(context=context)
2519 if ans:
2520 return ans
2522 dup = self._fix(context)
2523 if dup._isinfinity():
2524 return dup
2526 if not dup:
2527 return _dec_from_triple(dup._sign, '0', 0)
2528 exp_max = [context.Emax, context.Etop()][context.clamp]
2529 end = len(dup._int)
2530 exp = dup._exp
2531 while dup._int[end-1] == '0' and exp < exp_max:
2532 exp += 1
2533 end -= 1
2534 return _dec_from_triple(dup._sign, dup._int[:end], exp)
2536 def quantize(self, exp, rounding=None, context=None):
2537 """Quantize self so its exponent is the same as that of exp.
2539 Similar to self._rescale(exp._exp) but with error checking.
2540 """
2541 exp = _convert_other(exp, raiseit=True)
2543 if context is None:
2544 context = getcontext()
2545 if rounding is None:
2546 rounding = context.rounding
2548 if self._is_special or exp._is_special:
2549 ans = self._check_nans(exp, context)
2550 if ans:
2551 return ans
2553 if exp._isinfinity() or self._isinfinity():
2554 if exp._isinfinity() and self._isinfinity():
2555 return Decimal(self) # if both are inf, it is OK
2556 return context._raise_error(InvalidOperation,
2557 'quantize with one INF')
2559 # exp._exp should be between Etiny and Emax
2560 if not (context.Etiny() <= exp._exp <= context.Emax):
2561 return context._raise_error(InvalidOperation,
2562 'target exponent out of bounds in quantize')
2564 if not self:
2565 ans = _dec_from_triple(self._sign, '0', exp._exp)
2566 return ans._fix(context)
2568 self_adjusted = self.adjusted()
2569 if self_adjusted > context.Emax:
2570 return context._raise_error(InvalidOperation,
2571 'exponent of quantize result too large for current context')
2572 if self_adjusted - exp._exp + 1 > context.prec:
2573 return context._raise_error(InvalidOperation,
2574 'quantize result has too many digits for current context')
2576 ans = self._rescale(exp._exp, rounding)
2577 if ans.adjusted() > context.Emax:
2578 return context._raise_error(InvalidOperation,
2579 'exponent of quantize result too large for current context')
2580 if len(ans._int) > context.prec:
2581 return context._raise_error(InvalidOperation,
2582 'quantize result has too many digits for current context')
2584 # raise appropriate flags
2585 if ans and ans.adjusted() < context.Emin:
2586 context._raise_error(Subnormal)
2587 if ans._exp > self._exp:
2588 if ans != self:
2589 context._raise_error(Inexact)
2590 context._raise_error(Rounded)
2592 # call to fix takes care of any necessary folddown, and
2593 # signals Clamped if necessary
2594 ans = ans._fix(context)
2595 return ans
2597 def same_quantum(self, other, context=None):
2598 """Return True if self and other have the same exponent; otherwise
2599 return False.
2601 If either operand is a special value, the following rules are used:
2602 * return True if both operands are infinities
2603 * return True if both operands are NaNs
2604 * otherwise, return False.
2605 """
2606 other = _convert_other(other, raiseit=True)
2607 if self._is_special or other._is_special:
2608 return (self.is_nan() and other.is_nan() or
2609 self.is_infinite() and other.is_infinite())
2610 return self._exp == other._exp
2612 def _rescale(self, exp, rounding):
2613 """Rescale self so that the exponent is exp, either by padding with zeros
2614 or by truncating digits, using the given rounding mode.
2616 Specials are returned without change. This operation is
2617 quiet: it raises no flags, and uses no information from the
2618 context.
2620 exp = exp to scale to (an integer)
2621 rounding = rounding mode
2622 """
2623 if self._is_special:
2624 return Decimal(self)
2625 if not self:
2626 return _dec_from_triple(self._sign, '0', exp)
2628 if self._exp >= exp:
2629 # pad answer with zeros if necessary
2630 return _dec_from_triple(self._sign,
2631 self._int + '0'*(self._exp - exp), exp)
2633 # too many digits; round and lose data. If self.adjusted() <
2634 # exp-1, replace self by 10**(exp-1) before rounding
2635 digits = len(self._int) + self._exp - exp
2636 if digits < 0:
2637 self = _dec_from_triple(self._sign, '1', exp-1)
2638 digits = 0
2639 this_function = self._pick_rounding_function[rounding]
2640 changed = this_function(self, digits)
2641 coeff = self._int[:digits] or '0'
2642 if changed == 1:
2643 coeff = str(int(coeff)+1)
2644 return _dec_from_triple(self._sign, coeff, exp)
2646 def _round(self, places, rounding):
2647 """Round a nonzero, nonspecial Decimal to a fixed number of
2648 significant figures, using the given rounding mode.
2650 Infinities, NaNs and zeros are returned unaltered.
2652 This operation is quiet: it raises no flags, and uses no
2653 information from the context.
2655 """
2656 if places <= 0:
2657 raise ValueError("argument should be at least 1 in _round")
2658 if self._is_special or not self:
2659 return Decimal(self)
2660 ans = self._rescale(self.adjusted()+1-places, rounding)
2661 # it can happen that the rescale alters the adjusted exponent;
2662 # for example when rounding 99.97 to 3 significant figures.
2663 # When this happens we end up with an extra 0 at the end of
2664 # the number; a second rescale fixes this.
2665 if ans.adjusted() != self.adjusted():
2666 ans = ans._rescale(ans.adjusted()+1-places, rounding)
2667 return ans
2669 def to_integral_exact(self, rounding=None, context=None):
2670 """Rounds to a nearby integer.
2672 If no rounding mode is specified, take the rounding mode from
2673 the context. This method raises the Rounded and Inexact flags
2674 when appropriate.
2676 See also: to_integral_value, which does exactly the same as
2677 this method except that it doesn't raise Inexact or Rounded.
2678 """
2679 if self._is_special:
2680 ans = self._check_nans(context=context)
2681 if ans:
2682 return ans
2683 return Decimal(self)
2684 if self._exp >= 0:
2685 return Decimal(self)
2686 if not self:
2687 return _dec_from_triple(self._sign, '0', 0)
2688 if context is None:
2689 context = getcontext()
2690 if rounding is None:
2691 rounding = context.rounding
2692 ans = self._rescale(0, rounding)
2693 if ans != self:
2694 context._raise_error(Inexact)
2695 context._raise_error(Rounded)
2696 return ans
2698 def to_integral_value(self, rounding=None, context=None):
2699 """Rounds to the nearest integer, without raising inexact, rounded."""
2700 if context is None:
2701 context = getcontext()
2702 if rounding is None:
2703 rounding = context.rounding
2704 if self._is_special:
2705 ans = self._check_nans(context=context)
2706 if ans:
2707 return ans
2708 return Decimal(self)
2709 if self._exp >= 0:
2710 return Decimal(self)
2711 else:
2712 return self._rescale(0, rounding)
2714 # the method name changed, but we provide also the old one, for compatibility
2715 to_integral = to_integral_value
2717 def sqrt(self, context=None):
2718 """Return the square root of self."""
2719 if context is None:
2720 context = getcontext()
2722 if self._is_special:
2723 ans = self._check_nans(context=context)
2724 if ans:
2725 return ans
2727 if self._isinfinity() and self._sign == 0:
2728 return Decimal(self)
2730 if not self:
2731 # exponent = self._exp // 2. sqrt(-0) = -0
2732 ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2733 return ans._fix(context)
2735 if self._sign == 1:
2736 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2738 # At this point self represents a positive number. Let p be
2739 # the desired precision and express self in the form c*100**e
2740 # with c a positive real number and e an integer, c and e
2741 # being chosen so that 100**(p-1) <= c < 100**p. Then the
2742 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2743 # <= sqrt(c) < 10**p, so the closest representable Decimal at
2744 # precision p is n*10**e where n = round_half_even(sqrt(c)),
2745 # the closest integer to sqrt(c) with the even integer chosen
2746 # in the case of a tie.
2747 #
2748 # To ensure correct rounding in all cases, we use the
2749 # following trick: we compute the square root to an extra
2750 # place (precision p+1 instead of precision p), rounding down.
2751 # Then, if the result is inexact and its last digit is 0 or 5,
2752 # we increase the last digit to 1 or 6 respectively; if it's
2753 # exact we leave the last digit alone. Now the final round to
2754 # p places (or fewer in the case of underflow) will round
2755 # correctly and raise the appropriate flags.
2757 # use an extra digit of precision
2758 prec = context.prec+1
2760 # write argument in the form c*100**e where e = self._exp//2
2761 # is the 'ideal' exponent, to be used if the square root is
2762 # exactly representable. l is the number of 'digits' of c in
2763 # base 100, so that 100**(l-1) <= c < 100**l.
2764 op = _WorkRep(self)
2765 e = op.exp >> 1
2766 if op.exp & 1:
2767 c = op.int * 10
2768 l = (len(self._int) >> 1) + 1
2769 else:
2770 c = op.int
2771 l = len(self._int)+1 >> 1
2773 # rescale so that c has exactly prec base 100 'digits'
2774 shift = prec-l
2775 if shift >= 0:
2776 c *= 100**shift
2777 exact = True
2778 else:
2779 c, remainder = divmod(c, 100**-shift)
2780 exact = not remainder
2781 e -= shift
2783 # find n = floor(sqrt(c)) using Newton's method
2784 n = 10**prec
2785 while True:
2786 q = c//n
2787 if n <= q:
2788 break
2789 else:
2790 n = n + q >> 1
2791 exact = exact and n*n == c
2793 if exact:
2794 # result is exact; rescale to use ideal exponent e
2795 if shift >= 0:
2796 # assert n % 10**shift == 0
2797 n //= 10**shift
2798 else:
2799 n *= 10**-shift
2800 e += shift
2801 else:
2802 # result is not exact; fix last digit as described above
2803 if n % 5 == 0:
2804 n += 1
2806 ans = _dec_from_triple(0, str(n), e)
2808 # round, and fit to current context
2809 context = context._shallow_copy()
2810 rounding = context._set_rounding(ROUND_HALF_EVEN)
2811 ans = ans._fix(context)
2812 context.rounding = rounding
2814 return ans
2816 def max(self, other, context=None):
2817 """Returns the larger value.
2819 Like max(self, other) except if one is not a number, returns
2820 NaN (and signals if one is sNaN). Also rounds.
2821 """
2822 other = _convert_other(other, raiseit=True)
2824 if context is None:
2825 context = getcontext()
2827 if self._is_special or other._is_special:
2828 # If one operand is a quiet NaN and the other is number, then the
2829 # number is always returned
2830 sn = self._isnan()
2831 on = other._isnan()
2832 if sn or on:
2833 if on == 1 and sn == 0:
2834 return self._fix(context)
2835 if sn == 1 and on == 0:
2836 return other._fix(context)
2837 return self._check_nans(other, context)
2839 c = self._cmp(other)
2840 if c == 0:
2841 # If both operands are finite and equal in numerical value
2842 # then an ordering is applied:
2843 #
2844 # If the signs differ then max returns the operand with the
2845 # positive sign and min returns the operand with the negative sign
2846 #
2847 # If the signs are the same then the exponent is used to select
2848 # the result. This is exactly the ordering used in compare_total.
2849 c = self.compare_total(other)
2851 if c == -1:
2852 ans = other
2853 else:
2854 ans = self
2856 return ans._fix(context)
2858 def min(self, other, context=None):
2859 """Returns the smaller value.
2861 Like min(self, other) except if one is not a number, returns
2862 NaN (and signals if one is sNaN). Also rounds.
2863 """
2864 other = _convert_other(other, raiseit=True)
2866 if context is None:
2867 context = getcontext()
2869 if self._is_special or other._is_special:
2870 # If one operand is a quiet NaN and the other is number, then the
2871 # number is always returned
2872 sn = self._isnan()
2873 on = other._isnan()
2874 if sn or on:
2875 if on == 1 and sn == 0:
2876 return self._fix(context)
2877 if sn == 1 and on == 0:
2878 return other._fix(context)
2879 return self._check_nans(other, context)
2881 c = self._cmp(other)
2882 if c == 0:
2883 c = self.compare_total(other)
2885 if c == -1:
2886 ans = self
2887 else:
2888 ans = other
2890 return ans._fix(context)
2892 def _isinteger(self):
2893 """Returns whether self is an integer"""
2894 if self._is_special:
2895 return False
2896 if self._exp >= 0:
2897 return True
2898 rest = self._int[self._exp:]
2899 return rest == '0'*len(rest)
2901 def _iseven(self):
2902 """Returns True if self is even. Assumes self is an integer."""
2903 if not self or self._exp > 0:
2904 return True
2905 return self._int[-1+self._exp] in '02468'
2907 def adjusted(self):
2908 """Return the adjusted exponent of self"""
2909 try:
2910 return self._exp + len(self._int) - 1
2911 # If NaN or Infinity, self._exp is string
2912 except TypeError:
2913 return 0
2915 def canonical(self):
2916 """Returns the same Decimal object.
2918 As we do not have different encodings for the same number, the
2919 received object already is in its canonical form.
2920 """
2921 return self
2923 def compare_signal(self, other, context=None):
2924 """Compares self to the other operand numerically.
2926 It's pretty much like compare(), but all NaNs signal, with signaling
2927 NaNs taking precedence over quiet NaNs.
2928 """
2929 other = _convert_other(other, raiseit = True)
2930 ans = self._compare_check_nans(other, context)
2931 if ans:
2932 return ans
2933 return self.compare(other, context=context)
2935 def compare_total(self, other, context=None):
2936 """Compares self to other using the abstract representations.
2938 This is not like the standard compare, which use their numerical
2939 value. Note that a total ordering is defined for all possible abstract
2940 representations.
2941 """
2942 other = _convert_other(other, raiseit=True)
2944 # if one is negative and the other is positive, it's easy
2945 if self._sign and not other._sign:
2946 return _NegativeOne
2947 if not self._sign and other._sign:
2948 return _One
2949 sign = self._sign
2951 # let's handle both NaN types
2952 self_nan = self._isnan()
2953 other_nan = other._isnan()
2954 if self_nan or other_nan:
2955 if self_nan == other_nan:
2956 # compare payloads as though they're integers
2957 self_key = len(self._int), self._int
2958 other_key = len(other._int), other._int
2959 if self_key < other_key:
2960 if sign:
2961 return _One
2962 else:
2963 return _NegativeOne
2964 if self_key > other_key:
2965 if sign:
2966 return _NegativeOne
2967 else:
2968 return _One
2969 return _Zero
2971 if sign:
2972 if self_nan == 1:
2973 return _NegativeOne
2974 if other_nan == 1:
2975 return _One
2976 if self_nan == 2:
2977 return _NegativeOne
2978 if other_nan == 2:
2979 return _One
2980 else:
2981 if self_nan == 1:
2982 return _One
2983 if other_nan == 1:
2984 return _NegativeOne
2985 if self_nan == 2:
2986 return _One
2987 if other_nan == 2:
2988 return _NegativeOne
2990 if self < other:
2991 return _NegativeOne
2992 if self > other:
2993 return _One
2995 if self._exp < other._exp:
2996 if sign:
2997 return _One
2998 else:
2999 return _NegativeOne
3000 if self._exp > other._exp:
3001 if sign:
3002 return _NegativeOne
3003 else:
3004 return _One
3005 return _Zero
3008 def compare_total_mag(self, other, context=None):
3009 """Compares self to other using abstract repr., ignoring sign.
3011 Like compare_total, but with operand's sign ignored and assumed to be 0.
3012 """
3013 other = _convert_other(other, raiseit=True)
3015 s = self.copy_abs()
3016 o = other.copy_abs()
3017 return s.compare_total(o)
3019 def copy_abs(self):
3020 """Returns a copy with the sign set to 0. """
3021 return _dec_from_triple(0, self._int, self._exp, self._is_special)
3023 def copy_negate(self):
3024 """Returns a copy with the sign inverted."""
3025 if self._sign:
3026 return _dec_from_triple(0, self._int, self._exp, self._is_special)
3027 else:
3028 return _dec_from_triple(1, self._int, self._exp, self._is_special)
3030 def copy_sign(self, other, context=None):
3031 """Returns self with the sign of other."""
3032 other = _convert_other(other, raiseit=True)
3033 return _dec_from_triple(other._sign, self._int,
3034 self._exp, self._is_special)
3036 def exp(self, context=None):
3037 """Returns e ** self."""
3039 if context is None:
3040 context = getcontext()
3042 # exp(NaN) = NaN
3043 ans = self._check_nans(context=context)
3044 if ans:
3045 return ans
3047 # exp(-Infinity) = 0
3048 if self._isinfinity() == -1:
3049 return _Zero
3051 # exp(0) = 1
3052 if not self:
3053 return _One
3055 # exp(Infinity) = Infinity
3056 if self._isinfinity() == 1:
3057 return Decimal(self)
3059 # the result is now guaranteed to be inexact (the true
3060 # mathematical result is transcendental). There's no need to
3061 # raise Rounded and Inexact here---they'll always be raised as
3062 # a result of the call to _fix.
3063 p = context.prec
3064 adj = self.adjusted()
3066 # we only need to do any computation for quite a small range
3067 # of adjusted exponents---for example, -29 <= adj <= 10 for
3068 # the default context. For smaller exponent the result is
3069 # indistinguishable from 1 at the given precision, while for
3070 # larger exponent the result either overflows or underflows.
3071 if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
3072 # overflow
3073 ans = _dec_from_triple(0, '1', context.Emax+1)
3074 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
3075 # underflow to 0
3076 ans = _dec_from_triple(0, '1', context.Etiny()-1)
3077 elif self._sign == 0 and adj < -p:
3078 # p+1 digits; final round will raise correct flags
3079 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
3080 elif self._sign == 1 and adj < -p-1:
3081 # p+1 digits; final round will raise correct flags
3082 ans = _dec_from_triple(0, '9'*(p+1), -p-1)
3083 # general case
3084 else:
3085 op = _WorkRep(self)
3086 c, e = op.int, op.exp
3087 if op.sign == 1:
3088 c = -c
3090 # compute correctly rounded result: increase precision by
3091 # 3 digits at a time until we get an unambiguously
3092 # roundable result
3093 extra = 3
3094 while True:
3095 coeff, exp = _dexp(c, e, p+extra)
3096 if coeff % (5*10**(len(str(coeff))-p-1)):
3097 break
3098 extra += 3
3100 ans = _dec_from_triple(0, str(coeff), exp)
3102 # at this stage, ans should round correctly with *any*
3103 # rounding mode, not just with ROUND_HALF_EVEN
3104 context = context._shallow_copy()
3105 rounding = context._set_rounding(ROUND_HALF_EVEN)
3106 ans = ans._fix(context)
3107 context.rounding = rounding
3109 return ans
3111 def is_canonical(self):
3112 """Return True if self is canonical; otherwise return False.
3114 Currently, the encoding of a Decimal instance is always
3115 canonical, so this method returns True for any Decimal.
3116 """
3117 return True
3119 def is_finite(self):
3120 """Return True if self is finite; otherwise return False.
3122 A Decimal instance is considered finite if it is neither
3123 infinite nor a NaN.
3124 """
3125 return not self._is_special
3127 def is_infinite(self):
3128 """Return True if self is infinite; otherwise return False."""
3129 return self._exp == 'F'
3131 def is_nan(self):
3132 """Return True if self is a qNaN or sNaN; otherwise return False."""
3133 return self._exp in ('n', 'N')
3135 def is_normal(self, context=None):
3136 """Return True if self is a normal number; otherwise return False."""
3137 if self._is_special or not self:
3138 return False
3139 if context is None:
3140 context = getcontext()
3141 return context.Emin <= self.adjusted()
3143 def is_qnan(self):
3144 """Return True if self is a quiet NaN; otherwise return False."""
3145 return self._exp == 'n'
3147 def is_signed(self):
3148 """Return True if self is negative; otherwise return False."""
3149 return self._sign == 1
3151 def is_snan(self):
3152 """Return True if self is a signaling NaN; otherwise return False."""
3153 return self._exp == 'N'
3155 def is_subnormal(self, context=None):
3156 """Return True if self is subnormal; otherwise return False."""
3157 if self._is_special or not self:
3158 return False
3159 if context is None:
3160 context = getcontext()
3161 return self.adjusted() < context.Emin
3163 def is_zero(self):
3164 """Return True if self is a zero; otherwise return False."""
3165 return not self._is_special and self._int == '0'
3167 def _ln_exp_bound(self):
3168 """Compute a lower bound for the adjusted exponent of self.ln().
3169 In other words, compute r such that self.ln() >= 10**r. Assumes
3170 that self is finite and positive and that self != 1.
3171 """
3173 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
3174 adj = self._exp + len(self._int) - 1
3175 if adj >= 1:
3176 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
3177 return len(str(adj*23//10)) - 1
3178 if adj <= -2:
3179 # argument <= 0.1
3180 return len(str((-1-adj)*23//10)) - 1
3181 op = _WorkRep(self)
3182 c, e = op.int, op.exp
3183 if adj == 0:
3184 # 1 < self < 10
3185 num = str(c-10**-e)
3186 den = str(c)
3187 return len(num) - len(den) - (num < den)
3188 # adj == -1, 0.1 <= self < 1
3189 return e + len(str(10**-e - c)) - 1
3192 def ln(self, context=None):
3193 """Returns the natural (base e) logarithm of self."""
3195 if context is None:
3196 context = getcontext()
3198 # ln(NaN) = NaN
3199 ans = self._check_nans(context=context)
3200 if ans:
3201 return ans
3203 # ln(0.0) == -Infinity
3204 if not self:
3205 return _NegativeInfinity
3207 # ln(Infinity) = Infinity
3208 if self._isinfinity() == 1:
3209 return _Infinity
3211 # ln(1.0) == 0.0
3212 if self == _One:
3213 return _Zero
3215 # ln(negative) raises InvalidOperation
3216 if self._sign == 1:
3217 return context._raise_error(InvalidOperation,
3218 'ln of a negative value')
3220 # result is irrational, so necessarily inexact
3221 op = _WorkRep(self)
3222 c, e = op.int, op.exp
3223 p = context.prec
3225 # correctly rounded result: repeatedly increase precision by 3
3226 # until we get an unambiguously roundable result
3227 places = p - self._ln_exp_bound() + 2 # at least p+3 places
3228 while True:
3229 coeff = _dlog(c, e, places)
3230 # assert len(str(abs(coeff)))-p >= 1
3231 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3232 break
3233 places += 3
3234 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3236 context = context._shallow_copy()
3237 rounding = context._set_rounding(ROUND_HALF_EVEN)
3238 ans = ans._fix(context)
3239 context.rounding = rounding
3240 return ans
3242 def _log10_exp_bound(self):
3243 """Compute a lower bound for the adjusted exponent of self.log10().
3244 In other words, find r such that self.log10() >= 10**r.
3245 Assumes that self is finite and positive and that self != 1.
3246 """
3248 # For x >= 10 or x < 0.1 we only need a bound on the integer
3249 # part of log10(self), and this comes directly from the
3250 # exponent of x. For 0.1 <= x <= 10 we use the inequalities
3251 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3252 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3254 adj = self._exp + len(self._int) - 1
3255 if adj >= 1:
3256 # self >= 10
3257 return len(str(adj))-1
3258 if adj <= -2:
3259 # self < 0.1
3260 return len(str(-1-adj))-1
3261 op = _WorkRep(self)
3262 c, e = op.int, op.exp
3263 if adj == 0:
3264 # 1 < self < 10
3265 num = str(c-10**-e)
3266 den = str(231*c)
3267 return len(num) - len(den) - (num < den) + 2
3268 # adj == -1, 0.1 <= self < 1
3269 num = str(10**-e-c)
3270 return len(num) + e - (num < "231") - 1
3272 def log10(self, context=None):
3273 """Returns the base 10 logarithm of self."""
3275 if context is None:
3276 context = getcontext()
3278 # log10(NaN) = NaN
3279 ans = self._check_nans(context=context)
3280 if ans:
3281 return ans
3283 # log10(0.0) == -Infinity
3284 if not self:
3285 return _NegativeInfinity
3287 # log10(Infinity) = Infinity
3288 if self._isinfinity() == 1:
3289 return _Infinity
3291 # log10(negative or -Infinity) raises InvalidOperation
3292 if self._sign == 1:
3293 return context._raise_error(InvalidOperation,
3294 'log10 of a negative value')
3296 # log10(10**n) = n
3297 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3298 # answer may need rounding
3299 ans = Decimal(self._exp + len(self._int) - 1)
3300 else:
3301 # result is irrational, so necessarily inexact
3302 op = _WorkRep(self)
3303 c, e = op.int, op.exp
3304 p = context.prec
3306 # correctly rounded result: repeatedly increase precision
3307 # until result is unambiguously roundable
3308 places = p-self._log10_exp_bound()+2
3309 while True:
3310 coeff = _dlog10(c, e, places)
3311 # assert len(str(abs(coeff)))-p >= 1
3312 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3313 break
3314 places += 3
3315 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3317 context = context._shallow_copy()
3318 rounding = context._set_rounding(ROUND_HALF_EVEN)
3319 ans = ans._fix(context)
3320 context.rounding = rounding
3321 return ans
3323 def logb(self, context=None):
3324 """ Returns the exponent of the magnitude of self's MSD.
3326 The result is the integer which is the exponent of the magnitude
3327 of the most significant digit of self (as though it were truncated
3328 to a single digit while maintaining the value of that digit and
3329 without limiting the resulting exponent).
3330 """
3331 # logb(NaN) = NaN
3332 ans = self._check_nans(context=context)
3333 if ans:
3334 return ans
3336 if context is None:
3337 context = getcontext()
3339 # logb(+/-Inf) = +Inf
3340 if self._isinfinity():
3341 return _Infinity
3343 # logb(0) = -Inf, DivisionByZero
3344 if not self:
3345 return context._raise_error(DivisionByZero, 'logb(0)', 1)
3347 # otherwise, simply return the adjusted exponent of self, as a
3348 # Decimal. Note that no attempt is made to fit the result
3349 # into the current context.
3350 ans = Decimal(self.adjusted())
3351 return ans._fix(context)
3353 def _islogical(self):
3354 """Return True if self is a logical operand.
3356 For being logical, it must be a finite number with a sign of 0,
3357 an exponent of 0, and a coefficient whose digits must all be
3358 either 0 or 1.
3359 """
3360 if self._sign != 0 or self._exp != 0:
3361 return False
3362 for dig in self._int:
3363 if dig not in '01':
3364 return False
3365 return True
3367 def _fill_logical(self, context, opa, opb):
3368 dif = context.prec - len(opa)
3369 if dif > 0:
3370 opa = '0'*dif + opa
3371 elif dif < 0:
3372 opa = opa[-context.prec:]
3373 dif = context.prec - len(opb)
3374 if dif > 0:
3375 opb = '0'*dif + opb
3376 elif dif < 0:
3377 opb = opb[-context.prec:]
3378 return opa, opb
3380 def logical_and(self, other, context=None):
3381 """Applies an 'and' operation between self and other's digits."""
3382 if context is None:
3383 context = getcontext()
3385 other = _convert_other(other, raiseit=True)
3387 if not self._islogical() or not other._islogical():
3388 return context._raise_error(InvalidOperation)
3390 # fill to context.prec
3391 (opa, opb) = self._fill_logical(context, self._int, other._int)
3393 # make the operation, and clean starting zeroes
3394 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3395 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3397 def logical_invert(self, context=None):
3398 """Invert all its digits."""
3399 if context is None:
3400 context = getcontext()
3401 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3402 context)
3404 def logical_or(self, other, context=None):
3405 """Applies an 'or' operation between self and other's digits."""
3406 if context is None:
3407 context = getcontext()
3409 other = _convert_other(other, raiseit=True)
3411 if not self._islogical() or not other._islogical():
3412 return context._raise_error(InvalidOperation)
3414 # fill to context.prec
3415 (opa, opb) = self._fill_logical(context, self._int, other._int)
3417 # make the operation, and clean starting zeroes
3418 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3419 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3421 def logical_xor(self, other, context=None):
3422 """Applies an 'xor' operation between self and other's digits."""
3423 if context is None:
3424 context = getcontext()
3426 other = _convert_other(other, raiseit=True)
3428 if not self._islogical() or not other._islogical():
3429 return context._raise_error(InvalidOperation)
3431 # fill to context.prec
3432 (opa, opb) = self._fill_logical(context, self._int, other._int)
3434 # make the operation, and clean starting zeroes
3435 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3436 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3438 def max_mag(self, other, context=None):
3439 """Compares the values numerically with their sign ignored."""
3440 other = _convert_other(other, raiseit=True)
3442 if context is None:
3443 context = getcontext()
3445 if self._is_special or other._is_special:
3446 # If one operand is a quiet NaN and the other is number, then the
3447 # number is always returned
3448 sn = self._isnan()
3449 on = other._isnan()
3450 if sn or on:
3451 if on == 1 and sn == 0:
3452 return self._fix(context)
3453 if sn == 1 and on == 0:
3454 return other._fix(context)
3455 return self._check_nans(other, context)
3457 c = self.copy_abs()._cmp(other.copy_abs())
3458 if c == 0:
3459 c = self.compare_total(other)
3461 if c == -1:
3462 ans = other
3463 else:
3464 ans = self
3466 return ans._fix(context)
3468 def min_mag(self, other, context=None):
3469 """Compares the values numerically with their sign ignored."""
3470 other = _convert_other(other, raiseit=True)
3472 if context is None:
3473 context = getcontext()
3475 if self._is_special or other._is_special:
3476 # If one operand is a quiet NaN and the other is number, then the
3477 # number is always returned
3478 sn = self._isnan()
3479 on = other._isnan()
3480 if sn or on:
3481 if on == 1 and sn == 0:
3482 return self._fix(context)
3483 if sn == 1 and on == 0:
3484 return other._fix(context)
3485 return self._check_nans(other, context)
3487 c = self.copy_abs()._cmp(other.copy_abs())
3488 if c == 0:
3489 c = self.compare_total(other)
3491 if c == -1:
3492 ans = self
3493 else:
3494 ans = other
3496 return ans._fix(context)
3498 def next_minus(self, context=None):
3499 """Returns the largest representable number smaller than itself."""
3500 if context is None:
3501 context = getcontext()
3503 ans = self._check_nans(context=context)
3504 if ans:
3505 return ans
3507 if self._isinfinity() == -1:
3508 return _NegativeInfinity
3509 if self._isinfinity() == 1:
3510 return _dec_from_triple(0, '9'*context.prec, context.Etop())
3512 context = context.copy()
3513 context._set_rounding(ROUND_FLOOR)
3514 context._ignore_all_flags()
3515 new_self = self._fix(context)
3516 if new_self != self:
3517 return new_self
3518 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3519 context)
3521 def next_plus(self, context=None):
3522 """Returns the smallest representable number larger than itself."""
3523 if context is None:
3524 context = getcontext()
3526 ans = self._check_nans(context=context)
3527 if ans:
3528 return ans
3530 if self._isinfinity() == 1:
3531 return _Infinity
3532 if self._isinfinity() == -1:
3533 return _dec_from_triple(1, '9'*context.prec, context.Etop())
3535 context = context.copy()
3536 context._set_rounding(ROUND_CEILING)
3537 context._ignore_all_flags()
3538 new_self = self._fix(context)
3539 if new_self != self:
3540 return new_self
3541 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3542 context)
3544 def next_toward(self, other, context=None):
3545 """Returns the number closest to self, in the direction towards other.
3547 The result is the closest representable number to self
3548 (excluding self) that is in the direction towards other,
3549 unless both have the same value. If the two operands are
3550 numerically equal, then the result is a copy of self with the
3551 sign set to be the same as the sign of other.
3552 """
3553 other = _convert_other(other, raiseit=True)
3555 if context is None:
3556 context = getcontext()
3558 ans = self._check_nans(other, context)
3559 if ans:
3560 return ans
3562 comparison = self._cmp(other)
3563 if comparison == 0:
3564 return self.copy_sign(other)
3566 if comparison == -1:
3567 ans = self.next_plus(context)
3568 else: # comparison == 1
3569 ans = self.next_minus(context)
3571 # decide which flags to raise using value of ans
3572 if ans._isinfinity():
3573 context._raise_error(Overflow,
3574 'Infinite result from next_toward',
3575 ans._sign)
3576 context._raise_error(Inexact)
3577 context._raise_error(Rounded)
3578 elif ans.adjusted() < context.Emin:
3579 context._raise_error(Underflow)
3580 context._raise_error(Subnormal)
3581 context._raise_error(Inexact)
3582 context._raise_error(Rounded)
3583 # if precision == 1 then we don't raise Clamped for a
3584 # result 0E-Etiny.
3585 if not ans:
3586 context._raise_error(Clamped)
3588 return ans
3590 def number_class(self, context=None):
3591 """Returns an indication of the class of self.
3593 The class is one of the following strings:
3594 sNaN
3595 NaN
3596 -Infinity
3597 -Normal
3598 -Subnormal
3599 -Zero
3600 +Zero
3601 +Subnormal
3602 +Normal
3603 +Infinity
3604 """
3605 if self.is_snan():
3606 return "sNaN"
3607 if self.is_qnan():
3608 return "NaN"
3609 inf = self._isinfinity()
3610 if inf == 1:
3611 return "+Infinity"
3612 if inf == -1:
3613 return "-Infinity"
3614 if self.is_zero():
3615 if self._sign:
3616 return "-Zero"
3617 else:
3618 return "+Zero"
3619 if context is None:
3620 context = getcontext()
3621 if self.is_subnormal(context=context):
3622 if self._sign:
3623 return "-Subnormal"
3624 else:
3625 return "+Subnormal"
3626 # just a normal, regular, boring number, :)
3627 if self._sign:
3628 return "-Normal"
3629 else:
3630 return "+Normal"
3632 def radix(self):
3633 """Just returns 10, as this is Decimal, :)"""
3634 return Decimal(10)
3636 def rotate(self, other, context=None):
3637 """Returns a rotated copy of self, value-of-other times."""
3638 if context is None:
3639 context = getcontext()
3641 other = _convert_other(other, raiseit=True)
3643 ans = self._check_nans(other, context)
3644 if ans:
3645 return ans
3647 if other._exp != 0:
3648 return context._raise_error(InvalidOperation)
3649 if not (-context.prec <= int(other) <= context.prec):
3650 return context._raise_error(InvalidOperation)
3652 if self._isinfinity():
3653 return Decimal(self)
3655 # get values, pad if necessary
3656 torot = int(other)
3657 rotdig = self._int
3658 topad = context.prec - len(rotdig)
3659 if topad > 0:
3660 rotdig = '0'*topad + rotdig
3661 elif topad < 0:
3662 rotdig = rotdig[-topad:]
3664 # let's rotate!
3665 rotated = rotdig[torot:] + rotdig[:torot]
3666 return _dec_from_triple(self._sign,
3667 rotated.lstrip('0') or '0', self._exp)
3669 def scaleb(self, other, context=None):
3670 """Returns self operand after adding the second value to its exp."""
3671 if context is None:
3672 context = getcontext()
3674 other = _convert_other(other, raiseit=True)
3676 ans = self._check_nans(other, context)
3677 if ans:
3678 return ans
3680 if other._exp != 0:
3681 return context._raise_error(InvalidOperation)
3682 liminf = -2 * (context.Emax + context.prec)
3683 limsup = 2 * (context.Emax + context.prec)
3684 if not (liminf <= int(other) <= limsup):
3685 return context._raise_error(InvalidOperation)
3687 if self._isinfinity():
3688 return Decimal(self)
3690 d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3691 d = d._fix(context)
3692 return d
3694 def shift(self, other, context=None):
3695 """Returns a shifted copy of self, value-of-other times."""
3696 if context is None:
3697 context = getcontext()
3699 other = _convert_other(other, raiseit=True)
3701 ans = self._check_nans(other, context)
3702 if ans:
3703 return ans
3705 if other._exp != 0:
3706 return context._raise_error(InvalidOperation)
3707 if not (-context.prec <= int(other) <= context.prec):
3708 return context._raise_error(InvalidOperation)
3710 if self._isinfinity():
3711 return Decimal(self)
3713 # get values, pad if necessary
3714 torot = int(other)
3715 rotdig = self._int
3716 topad = context.prec - len(rotdig)
3717 if topad > 0:
3718 rotdig = '0'*topad + rotdig
3719 elif topad < 0:
3720 rotdig = rotdig[-topad:]
3722 # let's shift!
3723 if torot < 0:
3724 shifted = rotdig[:torot]
3725 else:
3726 shifted = rotdig + '0'*torot
3727 shifted = shifted[-context.prec:]
3729 return _dec_from_triple(self._sign,
3730 shifted.lstrip('0') or '0', self._exp)
3732 # Support for pickling, copy, and deepcopy
3733 def __reduce__(self):
3734 return (self.__class__, (str(self),))
3736 def __copy__(self):
3737 if type(self) is Decimal:
3738 return self # I'm immutable; therefore I am my own clone
3739 return self.__class__(str(self))
3741 def __deepcopy__(self, memo):
3742 if type(self) is Decimal:
3743 return self # My components are also immutable
3744 return self.__class__(str(self))
3746 # PEP 3101 support. the _localeconv keyword argument should be
3747 # considered private: it's provided for ease of testing only.
3748 def __format__(self, specifier, context=None, _localeconv=None):
3749 """Format a Decimal instance according to the given specifier.
3751 The specifier should be a standard format specifier, with the
3752 form described in PEP 3101. Formatting types 'e', 'E', 'f',
3753 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
3754 type is omitted it defaults to 'g' or 'G', depending on the
3755 value of context.capitals.
3756 """
3758 # Note: PEP 3101 says that if the type is not present then
3759 # there should be at least one digit after the decimal point.
3760 # We take the liberty of ignoring this requirement for
3761 # Decimal---it's presumably there to make sure that
3762 # format(float, '') behaves similarly to str(float).
3763 if context is None:
3764 context = getcontext()
3766 spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3768 # special values don't care about the type or precision
3769 if self._is_special:
3770 sign = _format_sign(self._sign, spec)
3771 body = str(self.copy_abs())
3772 if spec['type'] == '%':
3773 body += '%'
3774 return _format_align(sign, body, spec)
3776 # a type of None defaults to 'g' or 'G', depending on context
3777 if spec['type'] is None:
3778 spec['type'] = ['g', 'G'][context.capitals]
3780 # if type is '%', adjust exponent of self accordingly
3781 if spec['type'] == '%':
3782 self = _dec_from_triple(self._sign, self._int, self._exp+2)
3784 # round if necessary, taking rounding mode from the context
3785 rounding = context.rounding
3786 precision = spec['precision']
3787 if precision is not None:
3788 if spec['type'] in 'eE':
3789 self = self._round(precision+1, rounding)
3790 elif spec['type'] in 'fF%':
3791 self = self._rescale(-precision, rounding)
3792 elif spec['type'] in 'gG' and len(self._int) > precision:
3793 self = self._round(precision, rounding)
3794 # special case: zeros with a positive exponent can't be
3795 # represented in fixed point; rescale them to 0e0.
3796 if not self and self._exp > 0 and spec['type'] in 'fF%':
3797 self = self._rescale(0, rounding)
3799 # figure out placement of the decimal point
3800 leftdigits = self._exp + len(self._int)
3801 if spec['type'] in 'eE':
3802 if not self and precision is not None:
3803 dotplace = 1 - precision
3804 else:
3805 dotplace = 1
3806 elif spec['type'] in 'fF%':
3807 dotplace = leftdigits
3808 elif spec['type'] in 'gG':
3809 if self._exp <= 0 and leftdigits > -6:
3810 dotplace = leftdigits
3811 else:
3812 dotplace = 1
3814 # find digits before and after decimal point, and get exponent
3815 if dotplace < 0:
3816 intpart = '0'
3817 fracpart = '0'*(-dotplace) + self._int
3818 elif dotplace > len(self._int):
3819 intpart = self._int + '0'*(dotplace-len(self._int))
3820 fracpart = ''
3821 else:
3822 intpart = self._int[:dotplace] or '0'
3823 fracpart = self._int[dotplace:]
3824 exp = leftdigits-dotplace
3826 # done with the decimal-specific stuff; hand over the rest
3827 # of the formatting to the _format_number function
3828 return _format_number(self._sign, intpart, fracpart, exp, spec)
3830def _dec_from_triple(sign, coefficient, exponent, special=False):
3831 """Create a decimal instance directly, without any validation,
3832 normalization (e.g. removal of leading zeros) or argument
3833 conversion.
3835 This function is for *internal use only*.
3836 """
3838 self = object.__new__(Decimal)
3839 self._sign = sign
3840 self._int = coefficient
3841 self._exp = exponent
3842 self._is_special = special
3844 return self
3846# Register Decimal as a kind of Number (an abstract base class).
3847# However, do not register it as Real (because Decimals are not
3848# interoperable with floats).
3849_numbers.Number.register(Decimal)
3852##### Context class #######################################################
3854class _ContextManager(object):
3855 """Context manager class to support localcontext().
3857 Sets a copy of the supplied context in __enter__() and restores
3858 the previous decimal context in __exit__()
3859 """
3860 def __init__(self, new_context):
3861 self.new_context = new_context.copy()
3862 def __enter__(self):
3863 self.saved_context = getcontext()
3864 setcontext(self.new_context)
3865 return self.new_context
3866 def __exit__(self, t, v, tb):
3867 setcontext(self.saved_context)
3869class Context(object):
3870 """Contains the context for a Decimal instance.
3872 Contains:
3873 prec - precision (for use in rounding, division, square roots..)
3874 rounding - rounding type (how you round)
3875 traps - If traps[exception] = 1, then the exception is
3876 raised when it is caused. Otherwise, a value is
3877 substituted in.
3878 flags - When an exception is caused, flags[exception] is set.
3879 (Whether or not the trap_enabler is set)
3880 Should be reset by user of Decimal instance.
3881 Emin - Minimum exponent
3882 Emax - Maximum exponent
3883 capitals - If 1, 1*10^1 is printed as 1E+1.
3884 If 0, printed as 1e1
3885 clamp - If 1, change exponents if too high (Default 0)
3886 """
3888 def __init__(self, prec=None, rounding=None, Emin=None, Emax=None,
3889 capitals=None, clamp=None, flags=None, traps=None,
3890 _ignored_flags=None):
3891 # Set defaults; for everything except flags and _ignored_flags,
3892 # inherit from DefaultContext.
3893 try:
3894 dc = DefaultContext
3895 except NameError:
3896 pass
3898 self.prec = prec if prec is not None else dc.prec
3899 self.rounding = rounding if rounding is not None else dc.rounding
3900 self.Emin = Emin if Emin is not None else dc.Emin
3901 self.Emax = Emax if Emax is not None else dc.Emax
3902 self.capitals = capitals if capitals is not None else dc.capitals
3903 self.clamp = clamp if clamp is not None else dc.clamp
3905 if _ignored_flags is None:
3906 self._ignored_flags = []
3907 else:
3908 self._ignored_flags = _ignored_flags
3910 if traps is None:
3911 self.traps = dc.traps.copy()
3912 elif not isinstance(traps, dict):
3913 self.traps = dict((s, int(s in traps)) for s in _signals + traps)
3914 else:
3915 self.traps = traps
3917 if flags is None:
3918 self.flags = dict.fromkeys(_signals, 0)
3919 elif not isinstance(flags, dict):
3920 self.flags = dict((s, int(s in flags)) for s in _signals + flags)
3921 else:
3922 self.flags = flags
3924 def _set_integer_check(self, name, value, vmin, vmax):
3925 if not isinstance(value, int):
3926 raise TypeError("%s must be an integer" % name)
3927 if vmin == '-inf':
3928 if value > vmax:
3929 raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value))
3930 elif vmax == 'inf':
3931 if value < vmin:
3932 raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value))
3933 else:
3934 if value < vmin or value > vmax:
3935 raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value))
3936 return object.__setattr__(self, name, value)
3938 def _set_signal_dict(self, name, d):
3939 if not isinstance(d, dict):
3940 raise TypeError("%s must be a signal dict" % d)
3941 for key in d:
3942 if not key in _signals:
3943 raise KeyError("%s is not a valid signal dict" % d)
3944 for key in _signals:
3945 if not key in d:
3946 raise KeyError("%s is not a valid signal dict" % d)
3947 return object.__setattr__(self, name, d)
3949 def __setattr__(self, name, value):
3950 if name == 'prec':
3951 return self._set_integer_check(name, value, 1, 'inf')
3952 elif name == 'Emin':
3953 return self._set_integer_check(name, value, '-inf', 0)
3954 elif name == 'Emax':
3955 return self._set_integer_check(name, value, 0, 'inf')
3956 elif name == 'capitals':
3957 return self._set_integer_check(name, value, 0, 1)
3958 elif name == 'clamp':
3959 return self._set_integer_check(name, value, 0, 1)
3960 elif name == 'rounding':
3961 if not value in _rounding_modes:
3962 # raise TypeError even for strings to have consistency
3963 # among various implementations.
3964 raise TypeError("%s: invalid rounding mode" % value)
3965 return object.__setattr__(self, name, value)
3966 elif name == 'flags' or name == 'traps':
3967 return self._set_signal_dict(name, value)
3968 elif name == '_ignored_flags':
3969 return object.__setattr__(self, name, value)
3970 else:
3971 raise AttributeError(
3972 "'decimal.Context' object has no attribute '%s'" % name)
3974 def __delattr__(self, name):
3975 raise AttributeError("%s cannot be deleted" % name)
3977 # Support for pickling, copy, and deepcopy
3978 def __reduce__(self):
3979 flags = [sig for sig, v in self.flags.items() if v]
3980 traps = [sig for sig, v in self.traps.items() if v]
3981 return (self.__class__,
3982 (self.prec, self.rounding, self.Emin, self.Emax,
3983 self.capitals, self.clamp, flags, traps))
3985 def __repr__(self):
3986 """Show the current context."""
3987 s = []
3988 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3989 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, '
3990 'clamp=%(clamp)d'
3991 % vars(self))
3992 names = [f.__name__ for f, v in self.flags.items() if v]
3993 s.append('flags=[' + ', '.join(names) + ']')
3994 names = [t.__name__ for t, v in self.traps.items() if v]
3995 s.append('traps=[' + ', '.join(names) + ']')
3996 return ', '.join(s) + ')'
3998 def clear_flags(self):
3999 """Reset all flags to zero"""
4000 for flag in self.flags:
4001 self.flags[flag] = 0
4003 def clear_traps(self):
4004 """Reset all traps to zero"""
4005 for flag in self.traps:
4006 self.traps[flag] = 0
4008 def _shallow_copy(self):
4009 """Returns a shallow copy from self."""
4010 nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
4011 self.capitals, self.clamp, self.flags, self.traps,
4012 self._ignored_flags)
4013 return nc
4015 def copy(self):
4016 """Returns a deep copy from self."""
4017 nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
4018 self.capitals, self.clamp,
4019 self.flags.copy(), self.traps.copy(),
4020 self._ignored_flags)
4021 return nc
4022 __copy__ = copy
4024 def _raise_error(self, condition, explanation = None, *args):
4025 """Handles an error
4027 If the flag is in _ignored_flags, returns the default response.
4028 Otherwise, it sets the flag, then, if the corresponding
4029 trap_enabler is set, it reraises the exception. Otherwise, it returns
4030 the default value after setting the flag.
4031 """
4032 error = _condition_map.get(condition, condition)
4033 if error in self._ignored_flags:
4034 # Don't touch the flag
4035 return error().handle(self, *args)
4037 self.flags[error] = 1
4038 if not self.traps[error]:
4039 # The errors define how to handle themselves.
4040 return condition().handle(self, *args)
4042 # Errors should only be risked on copies of the context
4043 # self._ignored_flags = []
4044 raise error(explanation)
4046 def _ignore_all_flags(self):
4047 """Ignore all flags, if they are raised"""
4048 return self._ignore_flags(*_signals)
4050 def _ignore_flags(self, *flags):
4051 """Ignore the flags, if they are raised"""
4052 # Do not mutate-- This way, copies of a context leave the original
4053 # alone.
4054 self._ignored_flags = (self._ignored_flags + list(flags))
4055 return list(flags)
4057 def _regard_flags(self, *flags):
4058 """Stop ignoring the flags, if they are raised"""
4059 if flags and isinstance(flags[0], (tuple,list)):
4060 flags = flags[0]
4061 for flag in flags:
4062 self._ignored_flags.remove(flag)
4064 # We inherit object.__hash__, so we must deny this explicitly
4065 __hash__ = None
4067 def Etiny(self):
4068 """Returns Etiny (= Emin - prec + 1)"""
4069 return int(self.Emin - self.prec + 1)
4071 def Etop(self):
4072 """Returns maximum exponent (= Emax - prec + 1)"""
4073 return int(self.Emax - self.prec + 1)
4075 def _set_rounding(self, type):
4076 """Sets the rounding type.
4078 Sets the rounding type, and returns the current (previous)
4079 rounding type. Often used like:
4081 context = context.copy()
4082 # so you don't change the calling context
4083 # if an error occurs in the middle.
4084 rounding = context._set_rounding(ROUND_UP)
4085 val = self.__sub__(other, context=context)
4086 context._set_rounding(rounding)
4088 This will make it round up for that operation.
4089 """
4090 rounding = self.rounding
4091 self.rounding = type
4092 return rounding
4094 def create_decimal(self, num='0'):
4095 """Creates a new Decimal instance but using self as context.
4097 This method implements the to-number operation of the
4098 IBM Decimal specification."""
4100 if isinstance(num, str) and (num != num.strip() or '_' in num):
4101 return self._raise_error(ConversionSyntax,
4102 "trailing or leading whitespace and "
4103 "underscores are not permitted.")
4105 d = Decimal(num, context=self)
4106 if d._isnan() and len(d._int) > self.prec - self.clamp:
4107 return self._raise_error(ConversionSyntax,
4108 "diagnostic info too long in NaN")
4109 return d._fix(self)
4111 def create_decimal_from_float(self, f):
4112 """Creates a new Decimal instance from a float but rounding using self
4113 as the context.
4115 >>> context = Context(prec=5, rounding=ROUND_DOWN)
4116 >>> context.create_decimal_from_float(3.1415926535897932)
4117 Decimal('3.1415')
4118 >>> context = Context(prec=5, traps=[Inexact])
4119 >>> context.create_decimal_from_float(3.1415926535897932)
4120 Traceback (most recent call last):
4121 ...
4122 decimal.Inexact: None
4124 """
4125 d = Decimal.from_float(f) # An exact conversion
4126 return d._fix(self) # Apply the context rounding
4128 # Methods
4129 def abs(self, a):
4130 """Returns the absolute value of the operand.
4132 If the operand is negative, the result is the same as using the minus
4133 operation on the operand. Otherwise, the result is the same as using
4134 the plus operation on the operand.
4136 >>> ExtendedContext.abs(Decimal('2.1'))
4137 Decimal('2.1')
4138 >>> ExtendedContext.abs(Decimal('-100'))
4139 Decimal('100')
4140 >>> ExtendedContext.abs(Decimal('101.5'))
4141 Decimal('101.5')
4142 >>> ExtendedContext.abs(Decimal('-101.5'))
4143 Decimal('101.5')
4144 >>> ExtendedContext.abs(-1)
4145 Decimal('1')
4146 """
4147 a = _convert_other(a, raiseit=True)
4148 return a.__abs__(context=self)
4150 def add(self, a, b):
4151 """Return the sum of the two operands.
4153 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
4154 Decimal('19.00')
4155 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
4156 Decimal('1.02E+4')
4157 >>> ExtendedContext.add(1, Decimal(2))
4158 Decimal('3')
4159 >>> ExtendedContext.add(Decimal(8), 5)
4160 Decimal('13')
4161 >>> ExtendedContext.add(5, 5)
4162 Decimal('10')
4163 """
4164 a = _convert_other(a, raiseit=True)
4165 r = a.__add__(b, context=self)
4166 if r is NotImplemented:
4167 raise TypeError("Unable to convert %s to Decimal" % b)
4168 else:
4169 return r
4171 def _apply(self, a):
4172 return str(a._fix(self))
4174 def canonical(self, a):
4175 """Returns the same Decimal object.
4177 As we do not have different encodings for the same number, the
4178 received object already is in its canonical form.
4180 >>> ExtendedContext.canonical(Decimal('2.50'))
4181 Decimal('2.50')
4182 """
4183 if not isinstance(a, Decimal):
4184 raise TypeError("canonical requires a Decimal as an argument.")
4185 return a.canonical()
4187 def compare(self, a, b):
4188 """Compares values numerically.
4190 If the signs of the operands differ, a value representing each operand
4191 ('-1' if the operand is less than zero, '0' if the operand is zero or
4192 negative zero, or '1' if the operand is greater than zero) is used in
4193 place of that operand for the comparison instead of the actual
4194 operand.
4196 The comparison is then effected by subtracting the second operand from
4197 the first and then returning a value according to the result of the
4198 subtraction: '-1' if the result is less than zero, '0' if the result is
4199 zero or negative zero, or '1' if the result is greater than zero.
4201 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
4202 Decimal('-1')
4203 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
4204 Decimal('0')
4205 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
4206 Decimal('0')
4207 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
4208 Decimal('1')
4209 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
4210 Decimal('1')
4211 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
4212 Decimal('-1')
4213 >>> ExtendedContext.compare(1, 2)
4214 Decimal('-1')
4215 >>> ExtendedContext.compare(Decimal(1), 2)
4216 Decimal('-1')
4217 >>> ExtendedContext.compare(1, Decimal(2))
4218 Decimal('-1')
4219 """
4220 a = _convert_other(a, raiseit=True)
4221 return a.compare(b, context=self)
4223 def compare_signal(self, a, b):
4224 """Compares the values of the two operands numerically.
4226 It's pretty much like compare(), but all NaNs signal, with signaling
4227 NaNs taking precedence over quiet NaNs.
4229 >>> c = ExtendedContext
4230 >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
4231 Decimal('-1')
4232 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
4233 Decimal('0')
4234 >>> c.flags[InvalidOperation] = 0
4235 >>> print(c.flags[InvalidOperation])
4236 0
4237 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
4238 Decimal('NaN')
4239 >>> print(c.flags[InvalidOperation])
4240 1
4241 >>> c.flags[InvalidOperation] = 0
4242 >>> print(c.flags[InvalidOperation])
4243 0
4244 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
4245 Decimal('NaN')
4246 >>> print(c.flags[InvalidOperation])
4247 1
4248 >>> c.compare_signal(-1, 2)
4249 Decimal('-1')
4250 >>> c.compare_signal(Decimal(-1), 2)
4251 Decimal('-1')
4252 >>> c.compare_signal(-1, Decimal(2))
4253 Decimal('-1')
4254 """
4255 a = _convert_other(a, raiseit=True)
4256 return a.compare_signal(b, context=self)
4258 def compare_total(self, a, b):
4259 """Compares two operands using their abstract representation.
4261 This is not like the standard compare, which use their numerical
4262 value. Note that a total ordering is defined for all possible abstract
4263 representations.
4265 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
4266 Decimal('-1')
4267 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
4268 Decimal('-1')
4269 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
4270 Decimal('-1')
4271 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
4272 Decimal('0')
4273 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
4274 Decimal('1')
4275 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
4276 Decimal('-1')
4277 >>> ExtendedContext.compare_total(1, 2)
4278 Decimal('-1')
4279 >>> ExtendedContext.compare_total(Decimal(1), 2)
4280 Decimal('-1')
4281 >>> ExtendedContext.compare_total(1, Decimal(2))
4282 Decimal('-1')
4283 """
4284 a = _convert_other(a, raiseit=True)
4285 return a.compare_total(b)
4287 def compare_total_mag(self, a, b):
4288 """Compares two operands using their abstract representation ignoring sign.
4290 Like compare_total, but with operand's sign ignored and assumed to be 0.
4291 """
4292 a = _convert_other(a, raiseit=True)
4293 return a.compare_total_mag(b)
4295 def copy_abs(self, a):
4296 """Returns a copy of the operand with the sign set to 0.
4298 >>> ExtendedContext.copy_abs(Decimal('2.1'))
4299 Decimal('2.1')
4300 >>> ExtendedContext.copy_abs(Decimal('-100'))
4301 Decimal('100')
4302 >>> ExtendedContext.copy_abs(-1)
4303 Decimal('1')
4304 """
4305 a = _convert_other(a, raiseit=True)
4306 return a.copy_abs()
4308 def copy_decimal(self, a):
4309 """Returns a copy of the decimal object.
4311 >>> ExtendedContext.copy_decimal(Decimal('2.1'))
4312 Decimal('2.1')
4313 >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
4314 Decimal('-1.00')
4315 >>> ExtendedContext.copy_decimal(1)
4316 Decimal('1')
4317 """
4318 a = _convert_other(a, raiseit=True)
4319 return Decimal(a)
4321 def copy_negate(self, a):
4322 """Returns a copy of the operand with the sign inverted.
4324 >>> ExtendedContext.copy_negate(Decimal('101.5'))
4325 Decimal('-101.5')
4326 >>> ExtendedContext.copy_negate(Decimal('-101.5'))
4327 Decimal('101.5')
4328 >>> ExtendedContext.copy_negate(1)
4329 Decimal('-1')
4330 """
4331 a = _convert_other(a, raiseit=True)
4332 return a.copy_negate()
4334 def copy_sign(self, a, b):
4335 """Copies the second operand's sign to the first one.
4337 In detail, it returns a copy of the first operand with the sign
4338 equal to the sign of the second operand.
4340 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
4341 Decimal('1.50')
4342 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
4343 Decimal('1.50')
4344 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
4345 Decimal('-1.50')
4346 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
4347 Decimal('-1.50')
4348 >>> ExtendedContext.copy_sign(1, -2)
4349 Decimal('-1')
4350 >>> ExtendedContext.copy_sign(Decimal(1), -2)
4351 Decimal('-1')
4352 >>> ExtendedContext.copy_sign(1, Decimal(-2))
4353 Decimal('-1')
4354 """
4355 a = _convert_other(a, raiseit=True)
4356 return a.copy_sign(b)
4358 def divide(self, a, b):
4359 """Decimal division in a specified context.
4361 >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
4362 Decimal('0.333333333')
4363 >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4364 Decimal('0.666666667')
4365 >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4366 Decimal('2.5')
4367 >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4368 Decimal('0.1')
4369 >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4370 Decimal('1')
4371 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4372 Decimal('4.00')
4373 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4374 Decimal('1.20')
4375 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4376 Decimal('10')
4377 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4378 Decimal('1000')
4379 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4380 Decimal('1.20E+6')
4381 >>> ExtendedContext.divide(5, 5)
4382 Decimal('1')
4383 >>> ExtendedContext.divide(Decimal(5), 5)
4384 Decimal('1')
4385 >>> ExtendedContext.divide(5, Decimal(5))
4386 Decimal('1')
4387 """
4388 a = _convert_other(a, raiseit=True)
4389 r = a.__truediv__(b, context=self)
4390 if r is NotImplemented:
4391 raise TypeError("Unable to convert %s to Decimal" % b)
4392 else:
4393 return r
4395 def divide_int(self, a, b):
4396 """Divides two numbers and returns the integer part of the result.
4398 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4399 Decimal('0')
4400 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4401 Decimal('3')
4402 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4403 Decimal('3')
4404 >>> ExtendedContext.divide_int(10, 3)
4405 Decimal('3')
4406 >>> ExtendedContext.divide_int(Decimal(10), 3)
4407 Decimal('3')
4408 >>> ExtendedContext.divide_int(10, Decimal(3))
4409 Decimal('3')
4410 """
4411 a = _convert_other(a, raiseit=True)
4412 r = a.__floordiv__(b, context=self)
4413 if r is NotImplemented:
4414 raise TypeError("Unable to convert %s to Decimal" % b)
4415 else:
4416 return r
4418 def divmod(self, a, b):
4419 """Return (a // b, a % b).
4421 >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
4422 (Decimal('2'), Decimal('2'))
4423 >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
4424 (Decimal('2'), Decimal('0'))
4425 >>> ExtendedContext.divmod(8, 4)
4426 (Decimal('2'), Decimal('0'))
4427 >>> ExtendedContext.divmod(Decimal(8), 4)
4428 (Decimal('2'), Decimal('0'))
4429 >>> ExtendedContext.divmod(8, Decimal(4))
4430 (Decimal('2'), Decimal('0'))
4431 """
4432 a = _convert_other(a, raiseit=True)
4433 r = a.__divmod__(b, context=self)
4434 if r is NotImplemented:
4435 raise TypeError("Unable to convert %s to Decimal" % b)
4436 else:
4437 return r
4439 def exp(self, a):
4440 """Returns e ** a.
4442 >>> c = ExtendedContext.copy()
4443 >>> c.Emin = -999
4444 >>> c.Emax = 999
4445 >>> c.exp(Decimal('-Infinity'))
4446 Decimal('0')
4447 >>> c.exp(Decimal('-1'))
4448 Decimal('0.367879441')
4449 >>> c.exp(Decimal('0'))
4450 Decimal('1')
4451 >>> c.exp(Decimal('1'))
4452 Decimal('2.71828183')
4453 >>> c.exp(Decimal('0.693147181'))
4454 Decimal('2.00000000')
4455 >>> c.exp(Decimal('+Infinity'))
4456 Decimal('Infinity')
4457 >>> c.exp(10)
4458 Decimal('22026.4658')
4459 """
4460 a =_convert_other(a, raiseit=True)
4461 return a.exp(context=self)
4463 def fma(self, a, b, c):
4464 """Returns a multiplied by b, plus c.
4466 The first two operands are multiplied together, using multiply,
4467 the third operand is then added to the result of that
4468 multiplication, using add, all with only one final rounding.
4470 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4471 Decimal('22')
4472 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4473 Decimal('-8')
4474 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4475 Decimal('1.38435736E+12')
4476 >>> ExtendedContext.fma(1, 3, 4)
4477 Decimal('7')
4478 >>> ExtendedContext.fma(1, Decimal(3), 4)
4479 Decimal('7')
4480 >>> ExtendedContext.fma(1, 3, Decimal(4))
4481 Decimal('7')
4482 """
4483 a = _convert_other(a, raiseit=True)
4484 return a.fma(b, c, context=self)
4486 def is_canonical(self, a):
4487 """Return True if the operand is canonical; otherwise return False.
4489 Currently, the encoding of a Decimal instance is always
4490 canonical, so this method returns True for any Decimal.
4492 >>> ExtendedContext.is_canonical(Decimal('2.50'))
4493 True
4494 """
4495 if not isinstance(a, Decimal):
4496 raise TypeError("is_canonical requires a Decimal as an argument.")
4497 return a.is_canonical()
4499 def is_finite(self, a):
4500 """Return True if the operand is finite; otherwise return False.
4502 A Decimal instance is considered finite if it is neither
4503 infinite nor a NaN.
4505 >>> ExtendedContext.is_finite(Decimal('2.50'))
4506 True
4507 >>> ExtendedContext.is_finite(Decimal('-0.3'))
4508 True
4509 >>> ExtendedContext.is_finite(Decimal('0'))
4510 True
4511 >>> ExtendedContext.is_finite(Decimal('Inf'))
4512 False
4513 >>> ExtendedContext.is_finite(Decimal('NaN'))
4514 False
4515 >>> ExtendedContext.is_finite(1)
4516 True
4517 """
4518 a = _convert_other(a, raiseit=True)
4519 return a.is_finite()
4521 def is_infinite(self, a):
4522 """Return True if the operand is infinite; otherwise return False.
4524 >>> ExtendedContext.is_infinite(Decimal('2.50'))
4525 False
4526 >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4527 True
4528 >>> ExtendedContext.is_infinite(Decimal('NaN'))
4529 False
4530 >>> ExtendedContext.is_infinite(1)
4531 False
4532 """
4533 a = _convert_other(a, raiseit=True)
4534 return a.is_infinite()
4536 def is_nan(self, a):
4537 """Return True if the operand is a qNaN or sNaN;
4538 otherwise return False.
4540 >>> ExtendedContext.is_nan(Decimal('2.50'))
4541 False
4542 >>> ExtendedContext.is_nan(Decimal('NaN'))
4543 True
4544 >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4545 True
4546 >>> ExtendedContext.is_nan(1)
4547 False
4548 """
4549 a = _convert_other(a, raiseit=True)
4550 return a.is_nan()
4552 def is_normal(self, a):
4553 """Return True if the operand is a normal number;
4554 otherwise return False.
4556 >>> c = ExtendedContext.copy()
4557 >>> c.Emin = -999
4558 >>> c.Emax = 999
4559 >>> c.is_normal(Decimal('2.50'))
4560 True
4561 >>> c.is_normal(Decimal('0.1E-999'))
4562 False
4563 >>> c.is_normal(Decimal('0.00'))
4564 False
4565 >>> c.is_normal(Decimal('-Inf'))
4566 False
4567 >>> c.is_normal(Decimal('NaN'))
4568 False
4569 >>> c.is_normal(1)
4570 True
4571 """
4572 a = _convert_other(a, raiseit=True)
4573 return a.is_normal(context=self)
4575 def is_qnan(self, a):
4576 """Return True if the operand is a quiet NaN; otherwise return False.
4578 >>> ExtendedContext.is_qnan(Decimal('2.50'))
4579 False
4580 >>> ExtendedContext.is_qnan(Decimal('NaN'))
4581 True
4582 >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4583 False
4584 >>> ExtendedContext.is_qnan(1)
4585 False
4586 """
4587 a = _convert_other(a, raiseit=True)
4588 return a.is_qnan()
4590 def is_signed(self, a):
4591 """Return True if the operand is negative; otherwise return False.
4593 >>> ExtendedContext.is_signed(Decimal('2.50'))
4594 False
4595 >>> ExtendedContext.is_signed(Decimal('-12'))
4596 True
4597 >>> ExtendedContext.is_signed(Decimal('-0'))
4598 True
4599 >>> ExtendedContext.is_signed(8)
4600 False
4601 >>> ExtendedContext.is_signed(-8)
4602 True
4603 """
4604 a = _convert_other(a, raiseit=True)
4605 return a.is_signed()
4607 def is_snan(self, a):
4608 """Return True if the operand is a signaling NaN;
4609 otherwise return False.
4611 >>> ExtendedContext.is_snan(Decimal('2.50'))
4612 False
4613 >>> ExtendedContext.is_snan(Decimal('NaN'))
4614 False
4615 >>> ExtendedContext.is_snan(Decimal('sNaN'))
4616 True
4617 >>> ExtendedContext.is_snan(1)
4618 False
4619 """
4620 a = _convert_other(a, raiseit=True)
4621 return a.is_snan()
4623 def is_subnormal(self, a):
4624 """Return True if the operand is subnormal; otherwise return False.
4626 >>> c = ExtendedContext.copy()
4627 >>> c.Emin = -999
4628 >>> c.Emax = 999
4629 >>> c.is_subnormal(Decimal('2.50'))
4630 False
4631 >>> c.is_subnormal(Decimal('0.1E-999'))
4632 True
4633 >>> c.is_subnormal(Decimal('0.00'))
4634 False
4635 >>> c.is_subnormal(Decimal('-Inf'))
4636 False
4637 >>> c.is_subnormal(Decimal('NaN'))
4638 False
4639 >>> c.is_subnormal(1)
4640 False
4641 """
4642 a = _convert_other(a, raiseit=True)
4643 return a.is_subnormal(context=self)
4645 def is_zero(self, a):
4646 """Return True if the operand is a zero; otherwise return False.
4648 >>> ExtendedContext.is_zero(Decimal('0'))
4649 True
4650 >>> ExtendedContext.is_zero(Decimal('2.50'))
4651 False
4652 >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4653 True
4654 >>> ExtendedContext.is_zero(1)
4655 False
4656 >>> ExtendedContext.is_zero(0)
4657 True
4658 """
4659 a = _convert_other(a, raiseit=True)
4660 return a.is_zero()
4662 def ln(self, a):
4663 """Returns the natural (base e) logarithm of the operand.
4665 >>> c = ExtendedContext.copy()
4666 >>> c.Emin = -999
4667 >>> c.Emax = 999
4668 >>> c.ln(Decimal('0'))
4669 Decimal('-Infinity')
4670 >>> c.ln(Decimal('1.000'))
4671 Decimal('0')
4672 >>> c.ln(Decimal('2.71828183'))
4673 Decimal('1.00000000')
4674 >>> c.ln(Decimal('10'))
4675 Decimal('2.30258509')
4676 >>> c.ln(Decimal('+Infinity'))
4677 Decimal('Infinity')
4678 >>> c.ln(1)
4679 Decimal('0')
4680 """
4681 a = _convert_other(a, raiseit=True)
4682 return a.ln(context=self)
4684 def log10(self, a):
4685 """Returns the base 10 logarithm of the operand.
4687 >>> c = ExtendedContext.copy()
4688 >>> c.Emin = -999
4689 >>> c.Emax = 999
4690 >>> c.log10(Decimal('0'))
4691 Decimal('-Infinity')
4692 >>> c.log10(Decimal('0.001'))
4693 Decimal('-3')
4694 >>> c.log10(Decimal('1.000'))
4695 Decimal('0')
4696 >>> c.log10(Decimal('2'))
4697 Decimal('0.301029996')
4698 >>> c.log10(Decimal('10'))
4699 Decimal('1')
4700 >>> c.log10(Decimal('70'))
4701 Decimal('1.84509804')
4702 >>> c.log10(Decimal('+Infinity'))
4703 Decimal('Infinity')
4704 >>> c.log10(0)
4705 Decimal('-Infinity')
4706 >>> c.log10(1)
4707 Decimal('0')
4708 """
4709 a = _convert_other(a, raiseit=True)
4710 return a.log10(context=self)
4712 def logb(self, a):
4713 """ Returns the exponent of the magnitude of the operand's MSD.
4715 The result is the integer which is the exponent of the magnitude
4716 of the most significant digit of the operand (as though the
4717 operand were truncated to a single digit while maintaining the
4718 value of that digit and without limiting the resulting exponent).
4720 >>> ExtendedContext.logb(Decimal('250'))
4721 Decimal('2')
4722 >>> ExtendedContext.logb(Decimal('2.50'))
4723 Decimal('0')
4724 >>> ExtendedContext.logb(Decimal('0.03'))
4725 Decimal('-2')
4726 >>> ExtendedContext.logb(Decimal('0'))
4727 Decimal('-Infinity')
4728 >>> ExtendedContext.logb(1)
4729 Decimal('0')
4730 >>> ExtendedContext.logb(10)
4731 Decimal('1')
4732 >>> ExtendedContext.logb(100)
4733 Decimal('2')
4734 """
4735 a = _convert_other(a, raiseit=True)
4736 return a.logb(context=self)
4738 def logical_and(self, a, b):
4739 """Applies the logical operation 'and' between each operand's digits.
4741 The operands must be both logical numbers.
4743 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4744 Decimal('0')
4745 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4746 Decimal('0')
4747 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4748 Decimal('0')
4749 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4750 Decimal('1')
4751 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4752 Decimal('1000')
4753 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4754 Decimal('10')
4755 >>> ExtendedContext.logical_and(110, 1101)
4756 Decimal('100')
4757 >>> ExtendedContext.logical_and(Decimal(110), 1101)
4758 Decimal('100')
4759 >>> ExtendedContext.logical_and(110, Decimal(1101))
4760 Decimal('100')
4761 """
4762 a = _convert_other(a, raiseit=True)
4763 return a.logical_and(b, context=self)
4765 def logical_invert(self, a):
4766 """Invert all the digits in the operand.
4768 The operand must be a logical number.
4770 >>> ExtendedContext.logical_invert(Decimal('0'))
4771 Decimal('111111111')
4772 >>> ExtendedContext.logical_invert(Decimal('1'))
4773 Decimal('111111110')
4774 >>> ExtendedContext.logical_invert(Decimal('111111111'))
4775 Decimal('0')
4776 >>> ExtendedContext.logical_invert(Decimal('101010101'))
4777 Decimal('10101010')
4778 >>> ExtendedContext.logical_invert(1101)
4779 Decimal('111110010')
4780 """
4781 a = _convert_other(a, raiseit=True)
4782 return a.logical_invert(context=self)
4784 def logical_or(self, a, b):
4785 """Applies the logical operation 'or' between each operand's digits.
4787 The operands must be both logical numbers.
4789 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4790 Decimal('0')
4791 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4792 Decimal('1')
4793 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4794 Decimal('1')
4795 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4796 Decimal('1')
4797 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4798 Decimal('1110')
4799 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4800 Decimal('1110')
4801 >>> ExtendedContext.logical_or(110, 1101)
4802 Decimal('1111')
4803 >>> ExtendedContext.logical_or(Decimal(110), 1101)
4804 Decimal('1111')
4805 >>> ExtendedContext.logical_or(110, Decimal(1101))
4806 Decimal('1111')
4807 """
4808 a = _convert_other(a, raiseit=True)
4809 return a.logical_or(b, context=self)
4811 def logical_xor(self, a, b):
4812 """Applies the logical operation 'xor' between each operand's digits.
4814 The operands must be both logical numbers.
4816 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4817 Decimal('0')
4818 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4819 Decimal('1')
4820 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4821 Decimal('1')
4822 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4823 Decimal('0')
4824 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4825 Decimal('110')
4826 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4827 Decimal('1101')
4828 >>> ExtendedContext.logical_xor(110, 1101)
4829 Decimal('1011')
4830 >>> ExtendedContext.logical_xor(Decimal(110), 1101)
4831 Decimal('1011')
4832 >>> ExtendedContext.logical_xor(110, Decimal(1101))
4833 Decimal('1011')
4834 """
4835 a = _convert_other(a, raiseit=True)
4836 return a.logical_xor(b, context=self)
4838 def max(self, a, b):
4839 """max compares two values numerically and returns the maximum.
4841 If either operand is a NaN then the general rules apply.
4842 Otherwise, the operands are compared as though by the compare
4843 operation. If they are numerically equal then the left-hand operand
4844 is chosen as the result. Otherwise the maximum (closer to positive
4845 infinity) of the two operands is chosen as the result.
4847 >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4848 Decimal('3')
4849 >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4850 Decimal('3')
4851 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4852 Decimal('1')
4853 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4854 Decimal('7')
4855 >>> ExtendedContext.max(1, 2)
4856 Decimal('2')
4857 >>> ExtendedContext.max(Decimal(1), 2)
4858 Decimal('2')
4859 >>> ExtendedContext.max(1, Decimal(2))
4860 Decimal('2')
4861 """
4862 a = _convert_other(a, raiseit=True)
4863 return a.max(b, context=self)
4865 def max_mag(self, a, b):
4866 """Compares the values numerically with their sign ignored.
4868 >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
4869 Decimal('7')
4870 >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
4871 Decimal('-10')
4872 >>> ExtendedContext.max_mag(1, -2)
4873 Decimal('-2')
4874 >>> ExtendedContext.max_mag(Decimal(1), -2)
4875 Decimal('-2')
4876 >>> ExtendedContext.max_mag(1, Decimal(-2))
4877 Decimal('-2')
4878 """
4879 a = _convert_other(a, raiseit=True)
4880 return a.max_mag(b, context=self)
4882 def min(self, a, b):
4883 """min compares two values numerically and returns the minimum.
4885 If either operand is a NaN then the general rules apply.
4886 Otherwise, the operands are compared as though by the compare
4887 operation. If they are numerically equal then the left-hand operand
4888 is chosen as the result. Otherwise the minimum (closer to negative
4889 infinity) of the two operands is chosen as the result.
4891 >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4892 Decimal('2')
4893 >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4894 Decimal('-10')
4895 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4896 Decimal('1.0')
4897 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4898 Decimal('7')
4899 >>> ExtendedContext.min(1, 2)
4900 Decimal('1')
4901 >>> ExtendedContext.min(Decimal(1), 2)
4902 Decimal('1')
4903 >>> ExtendedContext.min(1, Decimal(29))
4904 Decimal('1')
4905 """
4906 a = _convert_other(a, raiseit=True)
4907 return a.min(b, context=self)
4909 def min_mag(self, a, b):
4910 """Compares the values numerically with their sign ignored.
4912 >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
4913 Decimal('-2')
4914 >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
4915 Decimal('-3')
4916 >>> ExtendedContext.min_mag(1, -2)
4917 Decimal('1')
4918 >>> ExtendedContext.min_mag(Decimal(1), -2)
4919 Decimal('1')
4920 >>> ExtendedContext.min_mag(1, Decimal(-2))
4921 Decimal('1')
4922 """
4923 a = _convert_other(a, raiseit=True)
4924 return a.min_mag(b, context=self)
4926 def minus(self, a):
4927 """Minus corresponds to unary prefix minus in Python.
4929 The operation is evaluated using the same rules as subtract; the
4930 operation minus(a) is calculated as subtract('0', a) where the '0'
4931 has the same exponent as the operand.
4933 >>> ExtendedContext.minus(Decimal('1.3'))
4934 Decimal('-1.3')
4935 >>> ExtendedContext.minus(Decimal('-1.3'))
4936 Decimal('1.3')
4937 >>> ExtendedContext.minus(1)
4938 Decimal('-1')
4939 """
4940 a = _convert_other(a, raiseit=True)
4941 return a.__neg__(context=self)
4943 def multiply(self, a, b):
4944 """multiply multiplies two operands.
4946 If either operand is a special value then the general rules apply.
4947 Otherwise, the operands are multiplied together
4948 ('long multiplication'), resulting in a number which may be as long as
4949 the sum of the lengths of the two operands.
4951 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4952 Decimal('3.60')
4953 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4954 Decimal('21')
4955 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4956 Decimal('0.72')
4957 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4958 Decimal('-0.0')
4959 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4960 Decimal('4.28135971E+11')
4961 >>> ExtendedContext.multiply(7, 7)
4962 Decimal('49')
4963 >>> ExtendedContext.multiply(Decimal(7), 7)
4964 Decimal('49')
4965 >>> ExtendedContext.multiply(7, Decimal(7))
4966 Decimal('49')
4967 """
4968 a = _convert_other(a, raiseit=True)
4969 r = a.__mul__(b, context=self)
4970 if r is NotImplemented:
4971 raise TypeError("Unable to convert %s to Decimal" % b)
4972 else:
4973 return r
4975 def next_minus(self, a):
4976 """Returns the largest representable number smaller than a.
4978 >>> c = ExtendedContext.copy()
4979 >>> c.Emin = -999
4980 >>> c.Emax = 999
4981 >>> ExtendedContext.next_minus(Decimal('1'))
4982 Decimal('0.999999999')
4983 >>> c.next_minus(Decimal('1E-1007'))
4984 Decimal('0E-1007')
4985 >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4986 Decimal('-1.00000004')
4987 >>> c.next_minus(Decimal('Infinity'))
4988 Decimal('9.99999999E+999')
4989 >>> c.next_minus(1)
4990 Decimal('0.999999999')
4991 """
4992 a = _convert_other(a, raiseit=True)
4993 return a.next_minus(context=self)
4995 def next_plus(self, a):
4996 """Returns the smallest representable number larger than a.
4998 >>> c = ExtendedContext.copy()
4999 >>> c.Emin = -999
5000 >>> c.Emax = 999
5001 >>> ExtendedContext.next_plus(Decimal('1'))
5002 Decimal('1.00000001')
5003 >>> c.next_plus(Decimal('-1E-1007'))
5004 Decimal('-0E-1007')
5005 >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
5006 Decimal('-1.00000002')
5007 >>> c.next_plus(Decimal('-Infinity'))
5008 Decimal('-9.99999999E+999')
5009 >>> c.next_plus(1)
5010 Decimal('1.00000001')
5011 """
5012 a = _convert_other(a, raiseit=True)
5013 return a.next_plus(context=self)
5015 def next_toward(self, a, b):
5016 """Returns the number closest to a, in direction towards b.
5018 The result is the closest representable number from the first
5019 operand (but not the first operand) that is in the direction
5020 towards the second operand, unless the operands have the same
5021 value.
5023 >>> c = ExtendedContext.copy()
5024 >>> c.Emin = -999
5025 >>> c.Emax = 999
5026 >>> c.next_toward(Decimal('1'), Decimal('2'))
5027 Decimal('1.00000001')
5028 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
5029 Decimal('-0E-1007')
5030 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
5031 Decimal('-1.00000002')
5032 >>> c.next_toward(Decimal('1'), Decimal('0'))
5033 Decimal('0.999999999')
5034 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
5035 Decimal('0E-1007')
5036 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
5037 Decimal('-1.00000004')
5038 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
5039 Decimal('-0.00')
5040 >>> c.next_toward(0, 1)
5041 Decimal('1E-1007')
5042 >>> c.next_toward(Decimal(0), 1)
5043 Decimal('1E-1007')
5044 >>> c.next_toward(0, Decimal(1))
5045 Decimal('1E-1007')
5046 """
5047 a = _convert_other(a, raiseit=True)
5048 return a.next_toward(b, context=self)
5050 def normalize(self, a):
5051 """normalize reduces an operand to its simplest form.
5053 Essentially a plus operation with all trailing zeros removed from the
5054 result.
5056 >>> ExtendedContext.normalize(Decimal('2.1'))
5057 Decimal('2.1')
5058 >>> ExtendedContext.normalize(Decimal('-2.0'))
5059 Decimal('-2')
5060 >>> ExtendedContext.normalize(Decimal('1.200'))
5061 Decimal('1.2')
5062 >>> ExtendedContext.normalize(Decimal('-120'))
5063 Decimal('-1.2E+2')
5064 >>> ExtendedContext.normalize(Decimal('120.00'))
5065 Decimal('1.2E+2')
5066 >>> ExtendedContext.normalize(Decimal('0.00'))
5067 Decimal('0')
5068 >>> ExtendedContext.normalize(6)
5069 Decimal('6')
5070 """
5071 a = _convert_other(a, raiseit=True)
5072 return a.normalize(context=self)
5074 def number_class(self, a):
5075 """Returns an indication of the class of the operand.
5077 The class is one of the following strings:
5078 -sNaN
5079 -NaN
5080 -Infinity
5081 -Normal
5082 -Subnormal
5083 -Zero
5084 +Zero
5085 +Subnormal
5086 +Normal
5087 +Infinity
5089 >>> c = ExtendedContext.copy()
5090 >>> c.Emin = -999
5091 >>> c.Emax = 999
5092 >>> c.number_class(Decimal('Infinity'))
5093 '+Infinity'
5094 >>> c.number_class(Decimal('1E-10'))
5095 '+Normal'
5096 >>> c.number_class(Decimal('2.50'))
5097 '+Normal'
5098 >>> c.number_class(Decimal('0.1E-999'))
5099 '+Subnormal'
5100 >>> c.number_class(Decimal('0'))
5101 '+Zero'
5102 >>> c.number_class(Decimal('-0'))
5103 '-Zero'
5104 >>> c.number_class(Decimal('-0.1E-999'))
5105 '-Subnormal'
5106 >>> c.number_class(Decimal('-1E-10'))
5107 '-Normal'
5108 >>> c.number_class(Decimal('-2.50'))
5109 '-Normal'
5110 >>> c.number_class(Decimal('-Infinity'))
5111 '-Infinity'
5112 >>> c.number_class(Decimal('NaN'))
5113 'NaN'
5114 >>> c.number_class(Decimal('-NaN'))
5115 'NaN'
5116 >>> c.number_class(Decimal('sNaN'))
5117 'sNaN'
5118 >>> c.number_class(123)
5119 '+Normal'
5120 """
5121 a = _convert_other(a, raiseit=True)
5122 return a.number_class(context=self)
5124 def plus(self, a):
5125 """Plus corresponds to unary prefix plus in Python.
5127 The operation is evaluated using the same rules as add; the
5128 operation plus(a) is calculated as add('0', a) where the '0'
5129 has the same exponent as the operand.
5131 >>> ExtendedContext.plus(Decimal('1.3'))
5132 Decimal('1.3')
5133 >>> ExtendedContext.plus(Decimal('-1.3'))
5134 Decimal('-1.3')
5135 >>> ExtendedContext.plus(-1)
5136 Decimal('-1')
5137 """
5138 a = _convert_other(a, raiseit=True)
5139 return a.__pos__(context=self)
5141 def power(self, a, b, modulo=None):
5142 """Raises a to the power of b, to modulo if given.
5144 With two arguments, compute a**b. If a is negative then b
5145 must be integral. The result will be inexact unless b is
5146 integral and the result is finite and can be expressed exactly
5147 in 'precision' digits.
5149 With three arguments, compute (a**b) % modulo. For the
5150 three argument form, the following restrictions on the
5151 arguments hold:
5153 - all three arguments must be integral
5154 - b must be nonnegative
5155 - at least one of a or b must be nonzero
5156 - modulo must be nonzero and have at most 'precision' digits
5158 The result of pow(a, b, modulo) is identical to the result
5159 that would be obtained by computing (a**b) % modulo with
5160 unbounded precision, but is computed more efficiently. It is
5161 always exact.
5163 >>> c = ExtendedContext.copy()
5164 >>> c.Emin = -999
5165 >>> c.Emax = 999
5166 >>> c.power(Decimal('2'), Decimal('3'))
5167 Decimal('8')
5168 >>> c.power(Decimal('-2'), Decimal('3'))
5169 Decimal('-8')
5170 >>> c.power(Decimal('2'), Decimal('-3'))
5171 Decimal('0.125')
5172 >>> c.power(Decimal('1.7'), Decimal('8'))
5173 Decimal('69.7575744')
5174 >>> c.power(Decimal('10'), Decimal('0.301029996'))
5175 Decimal('2.00000000')
5176 >>> c.power(Decimal('Infinity'), Decimal('-1'))
5177 Decimal('0')
5178 >>> c.power(Decimal('Infinity'), Decimal('0'))
5179 Decimal('1')
5180 >>> c.power(Decimal('Infinity'), Decimal('1'))
5181 Decimal('Infinity')
5182 >>> c.power(Decimal('-Infinity'), Decimal('-1'))
5183 Decimal('-0')
5184 >>> c.power(Decimal('-Infinity'), Decimal('0'))
5185 Decimal('1')
5186 >>> c.power(Decimal('-Infinity'), Decimal('1'))
5187 Decimal('-Infinity')
5188 >>> c.power(Decimal('-Infinity'), Decimal('2'))
5189 Decimal('Infinity')
5190 >>> c.power(Decimal('0'), Decimal('0'))
5191 Decimal('NaN')
5193 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
5194 Decimal('11')
5195 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
5196 Decimal('-11')
5197 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
5198 Decimal('1')
5199 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
5200 Decimal('11')
5201 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
5202 Decimal('11729830')
5203 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
5204 Decimal('-0')
5205 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
5206 Decimal('1')
5207 >>> ExtendedContext.power(7, 7)
5208 Decimal('823543')
5209 >>> ExtendedContext.power(Decimal(7), 7)
5210 Decimal('823543')
5211 >>> ExtendedContext.power(7, Decimal(7), 2)
5212 Decimal('1')
5213 """
5214 a = _convert_other(a, raiseit=True)
5215 r = a.__pow__(b, modulo, context=self)
5216 if r is NotImplemented:
5217 raise TypeError("Unable to convert %s to Decimal" % b)
5218 else:
5219 return r
5221 def quantize(self, a, b):
5222 """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
5224 The coefficient of the result is derived from that of the left-hand
5225 operand. It may be rounded using the current rounding setting (if the
5226 exponent is being increased), multiplied by a positive power of ten (if
5227 the exponent is being decreased), or is unchanged (if the exponent is
5228 already equal to that of the right-hand operand).
5230 Unlike other operations, if the length of the coefficient after the
5231 quantize operation would be greater than precision then an Invalid
5232 operation condition is raised. This guarantees that, unless there is
5233 an error condition, the exponent of the result of a quantize is always
5234 equal to that of the right-hand operand.
5236 Also unlike other operations, quantize will never raise Underflow, even
5237 if the result is subnormal and inexact.
5239 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
5240 Decimal('2.170')
5241 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
5242 Decimal('2.17')
5243 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
5244 Decimal('2.2')
5245 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
5246 Decimal('2')
5247 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
5248 Decimal('0E+1')
5249 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
5250 Decimal('-Infinity')
5251 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
5252 Decimal('NaN')
5253 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
5254 Decimal('-0')
5255 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
5256 Decimal('-0E+5')
5257 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
5258 Decimal('NaN')
5259 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
5260 Decimal('NaN')
5261 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
5262 Decimal('217.0')
5263 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
5264 Decimal('217')
5265 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
5266 Decimal('2.2E+2')
5267 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
5268 Decimal('2E+2')
5269 >>> ExtendedContext.quantize(1, 2)
5270 Decimal('1')
5271 >>> ExtendedContext.quantize(Decimal(1), 2)
5272 Decimal('1')
5273 >>> ExtendedContext.quantize(1, Decimal(2))
5274 Decimal('1')
5275 """
5276 a = _convert_other(a, raiseit=True)
5277 return a.quantize(b, context=self)
5279 def radix(self):
5280 """Just returns 10, as this is Decimal, :)
5282 >>> ExtendedContext.radix()
5283 Decimal('10')
5284 """
5285 return Decimal(10)
5287 def remainder(self, a, b):
5288 """Returns the remainder from integer division.
5290 The result is the residue of the dividend after the operation of
5291 calculating integer division as described for divide-integer, rounded
5292 to precision digits if necessary. The sign of the result, if
5293 non-zero, is the same as that of the original dividend.
5295 This operation will fail under the same conditions as integer division
5296 (that is, if integer division on the same two operands would fail, the
5297 remainder cannot be calculated).
5299 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
5300 Decimal('2.1')
5301 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
5302 Decimal('1')
5303 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
5304 Decimal('-1')
5305 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
5306 Decimal('0.2')
5307 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
5308 Decimal('0.1')
5309 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
5310 Decimal('1.0')
5311 >>> ExtendedContext.remainder(22, 6)
5312 Decimal('4')
5313 >>> ExtendedContext.remainder(Decimal(22), 6)
5314 Decimal('4')
5315 >>> ExtendedContext.remainder(22, Decimal(6))
5316 Decimal('4')
5317 """
5318 a = _convert_other(a, raiseit=True)
5319 r = a.__mod__(b, context=self)
5320 if r is NotImplemented:
5321 raise TypeError("Unable to convert %s to Decimal" % b)
5322 else:
5323 return r
5325 def remainder_near(self, a, b):
5326 """Returns to be "a - b * n", where n is the integer nearest the exact
5327 value of "x / b" (if two integers are equally near then the even one
5328 is chosen). If the result is equal to 0 then its sign will be the
5329 sign of a.
5331 This operation will fail under the same conditions as integer division
5332 (that is, if integer division on the same two operands would fail, the
5333 remainder cannot be calculated).
5335 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
5336 Decimal('-0.9')
5337 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
5338 Decimal('-2')
5339 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
5340 Decimal('1')
5341 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
5342 Decimal('-1')
5343 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
5344 Decimal('0.2')
5345 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
5346 Decimal('0.1')
5347 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
5348 Decimal('-0.3')
5349 >>> ExtendedContext.remainder_near(3, 11)
5350 Decimal('3')
5351 >>> ExtendedContext.remainder_near(Decimal(3), 11)
5352 Decimal('3')
5353 >>> ExtendedContext.remainder_near(3, Decimal(11))
5354 Decimal('3')
5355 """
5356 a = _convert_other(a, raiseit=True)
5357 return a.remainder_near(b, context=self)
5359 def rotate(self, a, b):
5360 """Returns a rotated copy of a, b times.
5362 The coefficient of the result is a rotated copy of the digits in
5363 the coefficient of the first operand. The number of places of
5364 rotation is taken from the absolute value of the second operand,
5365 with the rotation being to the left if the second operand is
5366 positive or to the right otherwise.
5368 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
5369 Decimal('400000003')
5370 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
5371 Decimal('12')
5372 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
5373 Decimal('891234567')
5374 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
5375 Decimal('123456789')
5376 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
5377 Decimal('345678912')
5378 >>> ExtendedContext.rotate(1333333, 1)
5379 Decimal('13333330')
5380 >>> ExtendedContext.rotate(Decimal(1333333), 1)
5381 Decimal('13333330')
5382 >>> ExtendedContext.rotate(1333333, Decimal(1))
5383 Decimal('13333330')
5384 """
5385 a = _convert_other(a, raiseit=True)
5386 return a.rotate(b, context=self)
5388 def same_quantum(self, a, b):
5389 """Returns True if the two operands have the same exponent.
5391 The result is never affected by either the sign or the coefficient of
5392 either operand.
5394 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
5395 False
5396 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
5397 True
5398 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
5399 False
5400 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
5401 True
5402 >>> ExtendedContext.same_quantum(10000, -1)
5403 True
5404 >>> ExtendedContext.same_quantum(Decimal(10000), -1)
5405 True
5406 >>> ExtendedContext.same_quantum(10000, Decimal(-1))
5407 True
5408 """
5409 a = _convert_other(a, raiseit=True)
5410 return a.same_quantum(b)
5412 def scaleb (self, a, b):
5413 """Returns the first operand after adding the second value its exp.
5415 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
5416 Decimal('0.0750')
5417 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
5418 Decimal('7.50')
5419 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
5420 Decimal('7.50E+3')
5421 >>> ExtendedContext.scaleb(1, 4)
5422 Decimal('1E+4')
5423 >>> ExtendedContext.scaleb(Decimal(1), 4)
5424 Decimal('1E+4')
5425 >>> ExtendedContext.scaleb(1, Decimal(4))
5426 Decimal('1E+4')
5427 """
5428 a = _convert_other(a, raiseit=True)
5429 return a.scaleb(b, context=self)
5431 def shift(self, a, b):
5432 """Returns a shifted copy of a, b times.
5434 The coefficient of the result is a shifted copy of the digits
5435 in the coefficient of the first operand. The number of places
5436 to shift is taken from the absolute value of the second operand,
5437 with the shift being to the left if the second operand is
5438 positive or to the right otherwise. Digits shifted into the
5439 coefficient are zeros.
5441 >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
5442 Decimal('400000000')
5443 >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
5444 Decimal('0')
5445 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
5446 Decimal('1234567')
5447 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
5448 Decimal('123456789')
5449 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
5450 Decimal('345678900')
5451 >>> ExtendedContext.shift(88888888, 2)
5452 Decimal('888888800')
5453 >>> ExtendedContext.shift(Decimal(88888888), 2)
5454 Decimal('888888800')
5455 >>> ExtendedContext.shift(88888888, Decimal(2))
5456 Decimal('888888800')
5457 """
5458 a = _convert_other(a, raiseit=True)
5459 return a.shift(b, context=self)
5461 def sqrt(self, a):
5462 """Square root of a non-negative number to context precision.
5464 If the result must be inexact, it is rounded using the round-half-even
5465 algorithm.
5467 >>> ExtendedContext.sqrt(Decimal('0'))
5468 Decimal('0')
5469 >>> ExtendedContext.sqrt(Decimal('-0'))
5470 Decimal('-0')
5471 >>> ExtendedContext.sqrt(Decimal('0.39'))
5472 Decimal('0.624499800')
5473 >>> ExtendedContext.sqrt(Decimal('100'))
5474 Decimal('10')
5475 >>> ExtendedContext.sqrt(Decimal('1'))
5476 Decimal('1')
5477 >>> ExtendedContext.sqrt(Decimal('1.0'))
5478 Decimal('1.0')
5479 >>> ExtendedContext.sqrt(Decimal('1.00'))
5480 Decimal('1.0')
5481 >>> ExtendedContext.sqrt(Decimal('7'))
5482 Decimal('2.64575131')
5483 >>> ExtendedContext.sqrt(Decimal('10'))
5484 Decimal('3.16227766')
5485 >>> ExtendedContext.sqrt(2)
5486 Decimal('1.41421356')
5487 >>> ExtendedContext.prec
5488 9
5489 """
5490 a = _convert_other(a, raiseit=True)
5491 return a.sqrt(context=self)
5493 def subtract(self, a, b):
5494 """Return the difference between the two operands.
5496 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
5497 Decimal('0.23')
5498 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
5499 Decimal('0.00')
5500 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
5501 Decimal('-0.77')
5502 >>> ExtendedContext.subtract(8, 5)
5503 Decimal('3')
5504 >>> ExtendedContext.subtract(Decimal(8), 5)
5505 Decimal('3')
5506 >>> ExtendedContext.subtract(8, Decimal(5))
5507 Decimal('3')
5508 """
5509 a = _convert_other(a, raiseit=True)
5510 r = a.__sub__(b, context=self)
5511 if r is NotImplemented:
5512 raise TypeError("Unable to convert %s to Decimal" % b)
5513 else:
5514 return r
5516 def to_eng_string(self, a):
5517 """Convert to a string, using engineering notation if an exponent is needed.
5519 Engineering notation has an exponent which is a multiple of 3. This
5520 can leave up to 3 digits to the left of the decimal place and may
5521 require the addition of either one or two trailing zeros.
5523 The operation is not affected by the context.
5525 >>> ExtendedContext.to_eng_string(Decimal('123E+1'))
5526 '1.23E+3'
5527 >>> ExtendedContext.to_eng_string(Decimal('123E+3'))
5528 '123E+3'
5529 >>> ExtendedContext.to_eng_string(Decimal('123E-10'))
5530 '12.3E-9'
5531 >>> ExtendedContext.to_eng_string(Decimal('-123E-12'))
5532 '-123E-12'
5533 >>> ExtendedContext.to_eng_string(Decimal('7E-7'))
5534 '700E-9'
5535 >>> ExtendedContext.to_eng_string(Decimal('7E+1'))
5536 '70'
5537 >>> ExtendedContext.to_eng_string(Decimal('0E+1'))
5538 '0.00E+3'
5540 """
5541 a = _convert_other(a, raiseit=True)
5542 return a.to_eng_string(context=self)
5544 def to_sci_string(self, a):
5545 """Converts a number to a string, using scientific notation.
5547 The operation is not affected by the context.
5548 """
5549 a = _convert_other(a, raiseit=True)
5550 return a.__str__(context=self)
5552 def to_integral_exact(self, a):
5553 """Rounds to an integer.
5555 When the operand has a negative exponent, the result is the same
5556 as using the quantize() operation using the given operand as the
5557 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5558 of the operand as the precision setting; Inexact and Rounded flags
5559 are allowed in this operation. The rounding mode is taken from the
5560 context.
5562 >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
5563 Decimal('2')
5564 >>> ExtendedContext.to_integral_exact(Decimal('100'))
5565 Decimal('100')
5566 >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
5567 Decimal('100')
5568 >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
5569 Decimal('102')
5570 >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
5571 Decimal('-102')
5572 >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
5573 Decimal('1.0E+6')
5574 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
5575 Decimal('7.89E+77')
5576 >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
5577 Decimal('-Infinity')
5578 """
5579 a = _convert_other(a, raiseit=True)
5580 return a.to_integral_exact(context=self)
5582 def to_integral_value(self, a):
5583 """Rounds to an integer.
5585 When the operand has a negative exponent, the result is the same
5586 as using the quantize() operation using the given operand as the
5587 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5588 of the operand as the precision setting, except that no flags will
5589 be set. The rounding mode is taken from the context.
5591 >>> ExtendedContext.to_integral_value(Decimal('2.1'))
5592 Decimal('2')
5593 >>> ExtendedContext.to_integral_value(Decimal('100'))
5594 Decimal('100')
5595 >>> ExtendedContext.to_integral_value(Decimal('100.0'))
5596 Decimal('100')
5597 >>> ExtendedContext.to_integral_value(Decimal('101.5'))
5598 Decimal('102')
5599 >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
5600 Decimal('-102')
5601 >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
5602 Decimal('1.0E+6')
5603 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
5604 Decimal('7.89E+77')
5605 >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
5606 Decimal('-Infinity')
5607 """
5608 a = _convert_other(a, raiseit=True)
5609 return a.to_integral_value(context=self)
5611 # the method name changed, but we provide also the old one, for compatibility
5612 to_integral = to_integral_value
5614class _WorkRep(object):
5615 __slots__ = ('sign','int','exp')
5616 # sign: 0 or 1
5617 # int: int
5618 # exp: None, int, or string
5620 def __init__(self, value=None):
5621 if value is None:
5622 self.sign = None
5623 self.int = 0
5624 self.exp = None
5625 elif isinstance(value, Decimal):
5626 self.sign = value._sign
5627 self.int = int(value._int)
5628 self.exp = value._exp
5629 else:
5630 # assert isinstance(value, tuple)
5631 self.sign = value[0]
5632 self.int = value[1]
5633 self.exp = value[2]
5635 def __repr__(self):
5636 return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
5640def _normalize(op1, op2, prec = 0):
5641 """Normalizes op1, op2 to have the same exp and length of coefficient.
5643 Done during addition.
5644 """
5645 if op1.exp < op2.exp:
5646 tmp = op2
5647 other = op1
5648 else:
5649 tmp = op1
5650 other = op2
5652 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
5653 # Then adding 10**exp to tmp has the same effect (after rounding)
5654 # as adding any positive quantity smaller than 10**exp; similarly
5655 # for subtraction. So if other is smaller than 10**exp we replace
5656 # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
5657 tmp_len = len(str(tmp.int))
5658 other_len = len(str(other.int))
5659 exp = tmp.exp + min(-1, tmp_len - prec - 2)
5660 if other_len + other.exp - 1 < exp:
5661 other.int = 1
5662 other.exp = exp
5664 tmp.int *= 10 ** (tmp.exp - other.exp)
5665 tmp.exp = other.exp
5666 return op1, op2
5668##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5670_nbits = int.bit_length
5672def _decimal_lshift_exact(n, e):
5673 """ Given integers n and e, return n * 10**e if it's an integer, else None.
5675 The computation is designed to avoid computing large powers of 10
5676 unnecessarily.
5678 >>> _decimal_lshift_exact(3, 4)
5679 30000
5680 >>> _decimal_lshift_exact(300, -999999999) # returns None
5682 """
5683 if n == 0:
5684 return 0
5685 elif e >= 0:
5686 return n * 10**e
5687 else:
5688 # val_n = largest power of 10 dividing n.
5689 str_n = str(abs(n))
5690 val_n = len(str_n) - len(str_n.rstrip('0'))
5691 return None if val_n < -e else n // 10**-e
5693def _sqrt_nearest(n, a):
5694 """Closest integer to the square root of the positive integer n. a is
5695 an initial approximation to the square root. Any positive integer
5696 will do for a, but the closer a is to the square root of n the
5697 faster convergence will be.
5699 """
5700 if n <= 0 or a <= 0:
5701 raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5703 b=0
5704 while a != b:
5705 b, a = a, a--n//a>>1
5706 return a
5708def _rshift_nearest(x, shift):
5709 """Given an integer x and a nonnegative integer shift, return closest
5710 integer to x / 2**shift; use round-to-even in case of a tie.
5712 """
5713 b, q = 1 << shift, x >> shift
5714 return q + (2*(x & (b-1)) + (q&1) > b)
5716def _div_nearest(a, b):
5717 """Closest integer to a/b, a and b positive integers; rounds to even
5718 in the case of a tie.
5720 """
5721 q, r = divmod(a, b)
5722 return q + (2*r + (q&1) > b)
5724def _ilog(x, M, L = 8):
5725 """Integer approximation to M*log(x/M), with absolute error boundable
5726 in terms only of x/M.
5728 Given positive integers x and M, return an integer approximation to
5729 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
5730 between the approximation and the exact result is at most 22. For
5731 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
5732 both cases these are upper bounds on the error; it will usually be
5733 much smaller."""
5735 # The basic algorithm is the following: let log1p be the function
5736 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
5737 # the reduction
5738 #
5739 # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5740 #
5741 # repeatedly until the argument to log1p is small (< 2**-L in
5742 # absolute value). For small y we can use the Taylor series
5743 # expansion
5744 #
5745 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5746 #
5747 # truncating at T such that y**T is small enough. The whole
5748 # computation is carried out in a form of fixed-point arithmetic,
5749 # with a real number z being represented by an integer
5750 # approximation to z*M. To avoid loss of precision, the y below
5751 # is actually an integer approximation to 2**R*y*M, where R is the
5752 # number of reductions performed so far.
5754 y = x-M
5755 # argument reduction; R = number of reductions performed
5756 R = 0
5757 while (R <= L and abs(y) << L-R >= M or
5758 R > L and abs(y) >> R-L >= M):
5759 y = _div_nearest((M*y) << 1,
5760 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5761 R += 1
5763 # Taylor series with T terms
5764 T = -int(-10*len(str(M))//(3*L))
5765 yshift = _rshift_nearest(y, R)
5766 w = _div_nearest(M, T)
5767 for k in range(T-1, 0, -1):
5768 w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5770 return _div_nearest(w*y, M)
5772def _dlog10(c, e, p):
5773 """Given integers c, e and p with c > 0, p >= 0, compute an integer
5774 approximation to 10**p * log10(c*10**e), with an absolute error of
5775 at most 1. Assumes that c*10**e is not exactly 1."""
5777 # increase precision by 2; compensate for this by dividing
5778 # final result by 100
5779 p += 2
5781 # write c*10**e as d*10**f with either:
5782 # f >= 0 and 1 <= d <= 10, or
5783 # f <= 0 and 0.1 <= d <= 1.
5784 # Thus for c*10**e close to 1, f = 0
5785 l = len(str(c))
5786 f = e+l - (e+l >= 1)
5788 if p > 0:
5789 M = 10**p
5790 k = e+p-f
5791 if k >= 0:
5792 c *= 10**k
5793 else:
5794 c = _div_nearest(c, 10**-k)
5796 log_d = _ilog(c, M) # error < 5 + 22 = 27
5797 log_10 = _log10_digits(p) # error < 1
5798 log_d = _div_nearest(log_d*M, log_10)
5799 log_tenpower = f*M # exact
5800 else:
5801 log_d = 0 # error < 2.31
5802 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5804 return _div_nearest(log_tenpower+log_d, 100)
5806def _dlog(c, e, p):
5807 """Given integers c, e and p with c > 0, compute an integer
5808 approximation to 10**p * log(c*10**e), with an absolute error of
5809 at most 1. Assumes that c*10**e is not exactly 1."""
5811 # Increase precision by 2. The precision increase is compensated
5812 # for at the end with a division by 100.
5813 p += 2
5815 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5816 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
5817 # as 10**p * log(d) + 10**p*f * log(10).
5818 l = len(str(c))
5819 f = e+l - (e+l >= 1)
5821 # compute approximation to 10**p*log(d), with error < 27
5822 if p > 0:
5823 k = e+p-f
5824 if k >= 0:
5825 c *= 10**k
5826 else:
5827 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
5829 # _ilog magnifies existing error in c by a factor of at most 10
5830 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5831 else:
5832 # p <= 0: just approximate the whole thing by 0; error < 2.31
5833 log_d = 0
5835 # compute approximation to f*10**p*log(10), with error < 11.
5836 if f:
5837 extra = len(str(abs(f)))-1
5838 if p + extra >= 0:
5839 # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5840 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5841 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5842 else:
5843 f_log_ten = 0
5844 else:
5845 f_log_ten = 0
5847 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5848 return _div_nearest(f_log_ten + log_d, 100)
5850class _Log10Memoize(object):
5851 """Class to compute, store, and allow retrieval of, digits of the
5852 constant log(10) = 2.302585.... This constant is needed by
5853 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5854 def __init__(self):
5855 self.digits = "23025850929940456840179914546843642076011014886"
5857 def getdigits(self, p):
5858 """Given an integer p >= 0, return floor(10**p)*log(10).
5860 For example, self.getdigits(3) returns 2302.
5861 """
5862 # digits are stored as a string, for quick conversion to
5863 # integer in the case that we've already computed enough
5864 # digits; the stored digits should always be correct
5865 # (truncated, not rounded to nearest).
5866 if p < 0:
5867 raise ValueError("p should be nonnegative")
5869 if p >= len(self.digits):
5870 # compute p+3, p+6, p+9, ... digits; continue until at
5871 # least one of the extra digits is nonzero
5872 extra = 3
5873 while True:
5874 # compute p+extra digits, correct to within 1ulp
5875 M = 10**(p+extra+2)
5876 digits = str(_div_nearest(_ilog(10*M, M), 100))
5877 if digits[-extra:] != '0'*extra:
5878 break
5879 extra += 3
5880 # keep all reliable digits so far; remove trailing zeros
5881 # and next nonzero digit
5882 self.digits = digits.rstrip('0')[:-1]
5883 return int(self.digits[:p+1])
5885_log10_digits = _Log10Memoize().getdigits
5887def _iexp(x, M, L=8):
5888 """Given integers x and M, M > 0, such that x/M is small in absolute
5889 value, compute an integer approximation to M*exp(x/M). For 0 <=
5890 x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5891 is usually much smaller)."""
5893 # Algorithm: to compute exp(z) for a real number z, first divide z
5894 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
5895 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5896 # series
5897 #
5898 # expm1(x) = x + x**2/2! + x**3/3! + ...
5899 #
5900 # Now use the identity
5901 #
5902 # expm1(2x) = expm1(x)*(expm1(x)+2)
5903 #
5904 # R times to compute the sequence expm1(z/2**R),
5905 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5907 # Find R such that x/2**R/M <= 2**-L
5908 R = _nbits((x<<L)//M)
5910 # Taylor series. (2**L)**T > M
5911 T = -int(-10*len(str(M))//(3*L))
5912 y = _div_nearest(x, T)
5913 Mshift = M<<R
5914 for i in range(T-1, 0, -1):
5915 y = _div_nearest(x*(Mshift + y), Mshift * i)
5917 # Expansion
5918 for k in range(R-1, -1, -1):
5919 Mshift = M<<(k+2)
5920 y = _div_nearest(y*(y+Mshift), Mshift)
5922 return M+y
5924def _dexp(c, e, p):
5925 """Compute an approximation to exp(c*10**e), with p decimal places of
5926 precision.
5928 Returns integers d, f such that:
5930 10**(p-1) <= d <= 10**p, and
5931 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5933 In other words, d*10**f is an approximation to exp(c*10**e) with p
5934 digits of precision, and with an error in d of at most 1. This is
5935 almost, but not quite, the same as the error being < 1ulp: when d
5936 = 10**(p-1) the error could be up to 10 ulp."""
5938 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5939 p += 2
5941 # compute log(10) with extra precision = adjusted exponent of c*10**e
5942 extra = max(0, e + len(str(c)) - 1)
5943 q = p + extra
5945 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5946 # rounding down
5947 shift = e+q
5948 if shift >= 0:
5949 cshift = c*10**shift
5950 else:
5951 cshift = c//10**-shift
5952 quot, rem = divmod(cshift, _log10_digits(q))
5954 # reduce remainder back to original precision
5955 rem = _div_nearest(rem, 10**extra)
5957 # error in result of _iexp < 120; error after division < 0.62
5958 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5960def _dpower(xc, xe, yc, ye, p):
5961 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5962 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
5964 10**(p-1) <= c <= 10**p, and
5965 (c-1)*10**e < x**y < (c+1)*10**e
5967 in other words, c*10**e is an approximation to x**y with p digits
5968 of precision, and with an error in c of at most 1. (This is
5969 almost, but not quite, the same as the error being < 1ulp: when c
5970 == 10**(p-1) we can only guarantee error < 10ulp.)
5972 We assume that: x is positive and not equal to 1, and y is nonzero.
5973 """
5975 # Find b such that 10**(b-1) <= |y| <= 10**b
5976 b = len(str(abs(yc))) + ye
5978 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5979 lxc = _dlog(xc, xe, p+b+1)
5981 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5982 shift = ye-b
5983 if shift >= 0:
5984 pc = lxc*yc*10**shift
5985 else:
5986 pc = _div_nearest(lxc*yc, 10**-shift)
5988 if pc == 0:
5989 # we prefer a result that isn't exactly 1; this makes it
5990 # easier to compute a correctly rounded result in __pow__
5991 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5992 coeff, exp = 10**(p-1)+1, 1-p
5993 else:
5994 coeff, exp = 10**p-1, -p
5995 else:
5996 coeff, exp = _dexp(pc, -(p+1), p+1)
5997 coeff = _div_nearest(coeff, 10)
5998 exp += 1
6000 return coeff, exp
6002def _log10_lb(c, correction = {
6003 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
6004 '6': 23, '7': 16, '8': 10, '9': 5}):
6005 """Compute a lower bound for 100*log10(c) for a positive integer c."""
6006 if c <= 0:
6007 raise ValueError("The argument to _log10_lb should be nonnegative.")
6008 str_c = str(c)
6009 return 100*len(str_c) - correction[str_c[0]]
6011##### Helper Functions ####################################################
6013def _convert_other(other, raiseit=False, allow_float=False):
6014 """Convert other to Decimal.
6016 Verifies that it's ok to use in an implicit construction.
6017 If allow_float is true, allow conversion from float; this
6018 is used in the comparison methods (__eq__ and friends).
6020 """
6021 if isinstance(other, Decimal):
6022 return other
6023 if isinstance(other, int):
6024 return Decimal(other)
6025 if allow_float and isinstance(other, float):
6026 return Decimal.from_float(other)
6028 if raiseit:
6029 raise TypeError("Unable to convert %s to Decimal" % other)
6030 return NotImplemented
6032def _convert_for_comparison(self, other, equality_op=False):
6033 """Given a Decimal instance self and a Python object other, return
6034 a pair (s, o) of Decimal instances such that "s op o" is
6035 equivalent to "self op other" for any of the 6 comparison
6036 operators "op".
6038 """
6039 if isinstance(other, Decimal):
6040 return self, other
6042 # Comparison with a Rational instance (also includes integers):
6043 # self op n/d <=> self*d op n (for n and d integers, d positive).
6044 # A NaN or infinity can be left unchanged without affecting the
6045 # comparison result.
6046 if isinstance(other, _numbers.Rational):
6047 if not self._is_special:
6048 self = _dec_from_triple(self._sign,
6049 str(int(self._int) * other.denominator),
6050 self._exp)
6051 return self, Decimal(other.numerator)
6053 # Comparisons with float and complex types. == and != comparisons
6054 # with complex numbers should succeed, returning either True or False
6055 # as appropriate. Other comparisons return NotImplemented.
6056 if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0:
6057 other = other.real
6058 if isinstance(other, float):
6059 context = getcontext()
6060 if equality_op:
6061 context.flags[FloatOperation] = 1
6062 else:
6063 context._raise_error(FloatOperation,
6064 "strict semantics for mixing floats and Decimals are enabled")
6065 return self, Decimal.from_float(other)
6066 return NotImplemented, NotImplemented
6069##### Setup Specific Contexts ############################################
6071# The default context prototype used by Context()
6072# Is mutable, so that new contexts can have different default values
6074DefaultContext = Context(
6075 prec=28, rounding=ROUND_HALF_EVEN,
6076 traps=[DivisionByZero, Overflow, InvalidOperation],
6077 flags=[],
6078 Emax=999999,
6079 Emin=-999999,
6080 capitals=1,
6081 clamp=0
6082)
6084# Pre-made alternate contexts offered by the specification
6085# Don't change these; the user should be able to select these
6086# contexts and be able to reproduce results from other implementations
6087# of the spec.
6089BasicContext = Context(
6090 prec=9, rounding=ROUND_HALF_UP,
6091 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
6092 flags=[],
6093)
6095ExtendedContext = Context(
6096 prec=9, rounding=ROUND_HALF_EVEN,
6097 traps=[],
6098 flags=[],
6099)
6102##### crud for parsing strings #############################################
6103#
6104# Regular expression used for parsing numeric strings. Additional
6105# comments:
6106#
6107# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
6108# whitespace. But note that the specification disallows whitespace in
6109# a numeric string.
6110#
6111# 2. For finite numbers (not infinities and NaNs) the body of the
6112# number between the optional sign and the optional exponent must have
6113# at least one decimal digit, possibly after the decimal point. The
6114# lookahead expression '(?=\d|\.\d)' checks this.
6116import re
6117_parser = re.compile(r""" # A numeric string consists of:
6118# \s*
6119 (?P<sign>[-+])? # an optional sign, followed by either...
6120 (
6121 (?=\d|\.\d) # ...a number (with at least one digit)
6122 (?P<int>\d*) # having a (possibly empty) integer part
6123 (\.(?P<frac>\d*))? # followed by an optional fractional part
6124 (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
6125 |
6126 Inf(inity)? # ...an infinity, or...
6127 |
6128 (?P<signal>s)? # ...an (optionally signaling)
6129 NaN # NaN
6130 (?P<diag>\d*) # with (possibly empty) diagnostic info.
6131 )
6132# \s*
6133 \Z
6134""", re.VERBOSE | re.IGNORECASE).match
6136_all_zeros = re.compile('0*$').match
6137_exact_half = re.compile('50*$').match
6139##### PEP3101 support functions ##############################################
6140# The functions in this section have little to do with the Decimal
6141# class, and could potentially be reused or adapted for other pure
6142# Python numeric classes that want to implement __format__
6143#
6144# A format specifier for Decimal looks like:
6145#
6146# [[fill]align][sign][#][0][minimumwidth][,][.precision][type]
6148_parse_format_specifier_regex = re.compile(r"""\A
6149(?:
6150 (?P<fill>.)?
6151 (?P<align>[<>=^])
6152)?
6153(?P<sign>[-+ ])?
6154(?P<alt>\#)?
6155(?P<zeropad>0)?
6156(?P<minimumwidth>(?!0)\d+)?
6157(?P<thousands_sep>,)?
6158(?:\.(?P<precision>0|(?!0)\d+))?
6159(?P<type>[eEfFgGn%])?
6160\Z
6161""", re.VERBOSE|re.DOTALL)
6163del re
6165# The locale module is only needed for the 'n' format specifier. The
6166# rest of the PEP 3101 code functions quite happily without it, so we
6167# don't care too much if locale isn't present.
6168try:
6169 import locale as _locale
6170except ImportError:
6171 pass
6173def _parse_format_specifier(format_spec, _localeconv=None):
6174 """Parse and validate a format specifier.
6176 Turns a standard numeric format specifier into a dict, with the
6177 following entries:
6179 fill: fill character to pad field to minimum width
6180 align: alignment type, either '<', '>', '=' or '^'
6181 sign: either '+', '-' or ' '
6182 minimumwidth: nonnegative integer giving minimum width
6183 zeropad: boolean, indicating whether to pad with zeros
6184 thousands_sep: string to use as thousands separator, or ''
6185 grouping: grouping for thousands separators, in format
6186 used by localeconv
6187 decimal_point: string to use for decimal point
6188 precision: nonnegative integer giving precision, or None
6189 type: one of the characters 'eEfFgG%', or None
6191 """
6192 m = _parse_format_specifier_regex.match(format_spec)
6193 if m is None:
6194 raise ValueError("Invalid format specifier: " + format_spec)
6196 # get the dictionary
6197 format_dict = m.groupdict()
6199 # zeropad; defaults for fill and alignment. If zero padding
6200 # is requested, the fill and align fields should be absent.
6201 fill = format_dict['fill']
6202 align = format_dict['align']
6203 format_dict['zeropad'] = (format_dict['zeropad'] is not None)
6204 if format_dict['zeropad']:
6205 if fill is not None:
6206 raise ValueError("Fill character conflicts with '0'"
6207 " in format specifier: " + format_spec)
6208 if align is not None:
6209 raise ValueError("Alignment conflicts with '0' in "
6210 "format specifier: " + format_spec)
6211 format_dict['fill'] = fill or ' '
6212 # PEP 3101 originally specified that the default alignment should
6213 # be left; it was later agreed that right-aligned makes more sense
6214 # for numeric types. See http://bugs.python.org/issue6857.
6215 format_dict['align'] = align or '>'
6217 # default sign handling: '-' for negative, '' for positive
6218 if format_dict['sign'] is None:
6219 format_dict['sign'] = '-'
6221 # minimumwidth defaults to 0; precision remains None if not given
6222 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
6223 if format_dict['precision'] is not None:
6224 format_dict['precision'] = int(format_dict['precision'])
6226 # if format type is 'g' or 'G' then a precision of 0 makes little
6227 # sense; convert it to 1. Same if format type is unspecified.
6228 if format_dict['precision'] == 0:
6229 if format_dict['type'] is None or format_dict['type'] in 'gGn':
6230 format_dict['precision'] = 1
6232 # determine thousands separator, grouping, and decimal separator, and
6233 # add appropriate entries to format_dict
6234 if format_dict['type'] == 'n':
6235 # apart from separators, 'n' behaves just like 'g'
6236 format_dict['type'] = 'g'
6237 if _localeconv is None:
6238 _localeconv = _locale.localeconv()
6239 if format_dict['thousands_sep'] is not None:
6240 raise ValueError("Explicit thousands separator conflicts with "
6241 "'n' type in format specifier: " + format_spec)
6242 format_dict['thousands_sep'] = _localeconv['thousands_sep']
6243 format_dict['grouping'] = _localeconv['grouping']
6244 format_dict['decimal_point'] = _localeconv['decimal_point']
6245 else:
6246 if format_dict['thousands_sep'] is None:
6247 format_dict['thousands_sep'] = ''
6248 format_dict['grouping'] = [3, 0]
6249 format_dict['decimal_point'] = '.'
6251 return format_dict
6253def _format_align(sign, body, spec):
6254 """Given an unpadded, non-aligned numeric string 'body' and sign
6255 string 'sign', add padding and alignment conforming to the given
6256 format specifier dictionary 'spec' (as produced by
6257 parse_format_specifier).
6259 """
6260 # how much extra space do we have to play with?
6261 minimumwidth = spec['minimumwidth']
6262 fill = spec['fill']
6263 padding = fill*(minimumwidth - len(sign) - len(body))
6265 align = spec['align']
6266 if align == '<':
6267 result = sign + body + padding
6268 elif align == '>':
6269 result = padding + sign + body
6270 elif align == '=':
6271 result = sign + padding + body
6272 elif align == '^':
6273 half = len(padding)//2
6274 result = padding[:half] + sign + body + padding[half:]
6275 else:
6276 raise ValueError('Unrecognised alignment field')
6278 return result
6280def _group_lengths(grouping):
6281 """Convert a localeconv-style grouping into a (possibly infinite)
6282 iterable of integers representing group lengths.
6284 """
6285 # The result from localeconv()['grouping'], and the input to this
6286 # function, should be a list of integers in one of the
6287 # following three forms:
6288 #
6289 # (1) an empty list, or
6290 # (2) nonempty list of positive integers + [0]
6291 # (3) list of positive integers + [locale.CHAR_MAX], or
6293 from itertools import chain, repeat
6294 if not grouping:
6295 return []
6296 elif grouping[-1] == 0 and len(grouping) >= 2:
6297 return chain(grouping[:-1], repeat(grouping[-2]))
6298 elif grouping[-1] == _locale.CHAR_MAX:
6299 return grouping[:-1]
6300 else:
6301 raise ValueError('unrecognised format for grouping')
6303def _insert_thousands_sep(digits, spec, min_width=1):
6304 """Insert thousands separators into a digit string.
6306 spec is a dictionary whose keys should include 'thousands_sep' and
6307 'grouping'; typically it's the result of parsing the format
6308 specifier using _parse_format_specifier.
6310 The min_width keyword argument gives the minimum length of the
6311 result, which will be padded on the left with zeros if necessary.
6313 If necessary, the zero padding adds an extra '0' on the left to
6314 avoid a leading thousands separator. For example, inserting
6315 commas every three digits in '123456', with min_width=8, gives
6316 '0,123,456', even though that has length 9.
6318 """
6320 sep = spec['thousands_sep']
6321 grouping = spec['grouping']
6323 groups = []
6324 for l in _group_lengths(grouping):
6325 if l <= 0:
6326 raise ValueError("group length should be positive")
6327 # max(..., 1) forces at least 1 digit to the left of a separator
6328 l = min(max(len(digits), min_width, 1), l)
6329 groups.append('0'*(l - len(digits)) + digits[-l:])
6330 digits = digits[:-l]
6331 min_width -= l
6332 if not digits and min_width <= 0:
6333 break
6334 min_width -= len(sep)
6335 else:
6336 l = max(len(digits), min_width, 1)
6337 groups.append('0'*(l - len(digits)) + digits[-l:])
6338 return sep.join(reversed(groups))
6340def _format_sign(is_negative, spec):
6341 """Determine sign character."""
6343 if is_negative:
6344 return '-'
6345 elif spec['sign'] in ' +':
6346 return spec['sign']
6347 else:
6348 return ''
6350def _format_number(is_negative, intpart, fracpart, exp, spec):
6351 """Format a number, given the following data:
6353 is_negative: true if the number is negative, else false
6354 intpart: string of digits that must appear before the decimal point
6355 fracpart: string of digits that must come after the point
6356 exp: exponent, as an integer
6357 spec: dictionary resulting from parsing the format specifier
6359 This function uses the information in spec to:
6360 insert separators (decimal separator and thousands separators)
6361 format the sign
6362 format the exponent
6363 add trailing '%' for the '%' type
6364 zero-pad if necessary
6365 fill and align if necessary
6366 """
6368 sign = _format_sign(is_negative, spec)
6370 if fracpart or spec['alt']:
6371 fracpart = spec['decimal_point'] + fracpart
6373 if exp != 0 or spec['type'] in 'eE':
6374 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
6375 fracpart += "{0}{1:+}".format(echar, exp)
6376 if spec['type'] == '%':
6377 fracpart += '%'
6379 if spec['zeropad']:
6380 min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
6381 else:
6382 min_width = 0
6383 intpart = _insert_thousands_sep(intpart, spec, min_width)
6385 return _format_align(sign, intpart+fracpart, spec)
6388##### Useful Constants (internal use only) ################################
6390# Reusable defaults
6391_Infinity = Decimal('Inf')
6392_NegativeInfinity = Decimal('-Inf')
6393_NaN = Decimal('NaN')
6394_Zero = Decimal(0)
6395_One = Decimal(1)
6396_NegativeOne = Decimal(-1)
6398# _SignedInfinity[sign] is infinity w/ that sign
6399_SignedInfinity = (_Infinity, _NegativeInfinity)
6401# Constants related to the hash implementation; hash(x) is based
6402# on the reduction of x modulo _PyHASH_MODULUS
6403_PyHASH_MODULUS = sys.hash_info.modulus
6404# hash values to use for positive and negative infinities, and nans
6405_PyHASH_INF = sys.hash_info.inf
6406_PyHASH_NAN = sys.hash_info.nan
6408# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
6409_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
6410del sys