Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pygtrie.py: 35%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

599 statements  

1# -*- coding: utf-8 -*- 

2"""Pure Python implementation of a trie data structure compatible with Python 

32.x and Python 3.x. 

4 

5`Trie data structure <http://en.wikipedia.org/wiki/Trie>`_, also known as radix 

6or prefix tree, is a tree associating keys to values where all the descendants 

7of a node have a common prefix (associated with that node). 

8 

9The trie module contains :class:`pygtrie.Trie`, :class:`pygtrie.CharTrie` and 

10:class:`pygtrie.StringTrie` classes each implementing a mutable mapping 

11interface, i.e. :class:`dict` interface. As such, in most circumstances, 

12:class:`pygtrie.Trie` could be used as a drop-in replacement for 

13a :class:`dict`, but the prefix nature of the data structure is trie’s real 

14strength. 

15 

16The module also contains :class:`pygtrie.PrefixSet` class which uses a trie to 

17store a set of prefixes such that a key is contained in the set if it or its 

18prefix is stored in the set. 

19 

20Features 

21-------- 

22 

23- A full mutable mapping implementation. 

24 

25- Supports iterating over as well as deleting of a branch of a trie 

26 (i.e. subtrie) 

27 

28- Supports prefix checking as well as shortest and longest prefix 

29 look-up. 

30 

31- Extensible for any kind of user-defined keys. 

32 

33- A PrefixSet supports “all keys starting with given prefix” logic. 

34 

35- Can store any value including None. 

36 

37For a few simple examples see ``example.py`` file. 

38""" 

39 

40from __future__ import absolute_import, division, print_function 

41 

42__author__ = 'Michal Nazarewicz <mina86@mina86.com>' 

43__copyright__ = ('Copyright 2014-2017 Google LLC', 

44 'Copyright 2018-2020 Michal Nazarewicz <mina86@mina86.com>') 

45__version__ = '2.5.0' 

46 

47 

48import copy as _copy 

49try: 

50 import collections.abc as _abc 

51except ImportError: # Python 2 compatibility 

52 import collections as _abc 

53 

54 

55class ShortKeyError(KeyError): 

56 """Raised when given key is a prefix of an existing longer key 

57 but does not have a value associated with itself.""" 

58 

59 

60class _NoChildren(object): 

61 """Collection representing lack of any children. 

62 

63 Also acts as an empty iterable and an empty iterator. This isn’t the 

64 cleanest designs but it makes various things more concise and avoids object 

65 allocations in a few places. 

66 

67 Don’t create objects of this type directly; instead use _EMPTY singleton. 

68 """ 

69 __slots__ = () 

70 

71 def __bool__(self): 

72 return False 

73 __nonzero__ = __bool__ 

74 def __len__(self): 

75 return 0 

76 def __iter__(self): 

77 return self 

78 iteritems = sorted_items = __iter__ 

79 def __next__(self): 

80 raise StopIteration() 

81 next = __next__ 

82 

83 def get(self, _step): 

84 return None 

85 

86 def add(self, parent, step): 

87 node = _Node() 

88 parent.children = _OneChild(step, node) 

89 return node 

90 

91 require = add 

92 

93 def copy(self, _make_copy, _queue): 

94 return self 

95 

96 def __deepcopy__(self, memo): 

97 return self 

98 

99 # delete is not implemented on purpose since it should never be called on 

100 # a node with no children. 

101 

102 

103_EMPTY = _NoChildren() 

104 

105 

106class _OneChild(object): 

107 """Children collection representing a single child.""" 

108 

109 __slots__ = ('step', 'node') 

110 

111 def __init__(self, step, node): 

112 self.step = step 

113 self.node = node 

114 

115 def __bool__(self): 

116 return True 

117 __nonzero__ = __bool__ 

118 def __len__(self): 

119 return 1 

120 

121 def sorted_items(self): 

122 return [(self.step, self.node)] 

123 

124 def iteritems(self): 

125 return iter(((self.step, self.node),)) 

126 

127 def get(self, step): 

128 return self.node if step == self.step else None 

129 

130 def add(self, parent, step): 

131 node = _Node() 

132 parent.children = _Children((self.step, self.node), (step, node)) 

133 return node 

134 

135 def require(self, parent, step): 

136 return self.node if self.step == step else self.add(parent, step) 

137 

138 def merge(self, other, queue): 

139 """Moves children from other into this object.""" 

140 if type(other) == _OneChild and other.step == self.step: 

141 queue.append((self.node, other.node)) 

142 return self 

143 else: 

144 children = _Children((self.step, self.node)) 

145 children.merge(other, queue) 

146 return children 

147 

148 def delete(self, parent, _step): 

149 parent.children = _EMPTY 

150 

151 def copy(self, make_copy, queue): 

152 cpy = _OneChild(make_copy(self.step), self.node.shallow_copy(make_copy)) 

153 queue.append((cpy.node,)) 

154 return cpy 

155 

156 

157class _Children(dict): 

158 """Children collection representing more than one child.""" 

159 

160 __slots__ = () 

161 

162 def __init__(self, *items): 

163 super(_Children, self).__init__(items) 

164 

165 if hasattr(dict, 'iteritems'): # Python 2 compatibility 

166 def sorted_items(self): 

167 items = self.items() 

168 items.sort() 

169 return items 

170 else: 

171 def sorted_items(self): 

172 return sorted(self.items()) 

173 

174 def iteritems(self): 

175 return iter(self.items()) 

176 

177 def add(self, _parent, step): 

178 self[step] = node = _Node() 

179 return node 

180 

181 def require(self, _parent, step): 

182 return self.setdefault(step, _Node()) 

183 

184 def merge(self, other, queue): 

185 """Moves children from other into this object.""" 

186 for step, other_node in other.iteritems(): 

187 node = self.setdefault(step, other_node) 

188 if node is not other_node: 

189 queue.append((node, other_node)) 

190 return self 

191 

192 def delete(self, parent, step): 

193 del self[step] 

194 if len(self) == 1: 

195 parent.children = _OneChild(*self.popitem()) 

196 

197 def copy(self, make_copy, queue): 

198 cpy = _Children() 

199 cpy.update((make_copy(step), node.shallow_copy(make_copy)) 

200 for step, node in self.items()) 

201 queue.append(cpy.values()) 

202 return cpy 

203 

204 

205class _Node(object): 

206 """A single node of a trie. 

207 

208 Stores value associated with the node and dictionary of children. 

209 """ 

210 __slots__ = ('children', 'value') 

211 

212 def __init__(self): 

213 self.children = _EMPTY 

214 self.value = _EMPTY 

215 

216 def merge(self, other, overwrite): 

217 """Move children from other node into this one. 

218 

219 Args: 

220 other: Other node to move children and value from. 

221 overwrite: Whether to overwrite existing node values. 

222 """ 

223 queue = [(self, other)] 

224 while queue: 

225 lhs, rhs = queue.pop() 

226 if lhs.value is _EMPTY or (overwrite and rhs.value is not _EMPTY): 

227 lhs.value = rhs.value 

228 if lhs.children is _EMPTY: 

229 lhs.children = rhs.children 

230 elif rhs.children is not _EMPTY: 

231 lhs.children = lhs.children.merge(rhs.children, queue) 

232 rhs.children = _EMPTY 

233 

234 def iterate(self, path, shallow, iteritems): 

235 """Yields all the nodes with values associated to them in the trie. 

236 

237 Args: 

238 path: Path leading to this node. Used to construct the key when 

239 returning value of this node and as a prefix for children. 

240 shallow: Perform a shallow traversal, i.e. do not yield nodes if 

241 their prefix has been yielded. 

242 iteritems: A callable taking ``node.children`` as sole argument and 

243 returning an iterable of children as ``(step, node)`` pair. The 

244 callable would typically call ``iteritems`` or ``sorted_items`` 

245 method on the argument depending on whether sorted output is 

246 desired. 

247 

248 Yields: 

249 ``(path, value)`` tuples. 

250 """ 

251 # Use iterative function with stack on the heap so we don't hit Python's 

252 # recursion depth limits. 

253 node = self 

254 stack = [] 

255 while True: 

256 if node.value is not _EMPTY: 

257 yield path, node.value 

258 

259 if (not shallow or node.value is _EMPTY) and node.children: 

260 stack.append(iter(iteritems(node.children))) 

261 path.append(None) 

262 

263 while True: 

264 try: 

265 step, node = next(stack[-1]) 

266 path[-1] = step 

267 break 

268 except StopIteration: 

269 stack.pop() 

270 path.pop() 

271 except IndexError: 

272 return 

273 

274 def traverse(self, node_factory, path_conv, path, iteritems): 

275 """Traverses the node and returns another type of node from factory. 

276 

277 Args: 

278 node_factory: Callable to construct return value. 

279 path_conv: Callable to convert node path to a key. 

280 path: Current path for this node. 

281 iteritems: A callable taking ``node.children`` as sole argument and 

282 returning an iterable of children as ``(step, node)`` pair. The 

283 callable would typically call ``iteritems`` or ``sorted_items`` 

284 method on the argument depending on whether sorted output is 

285 desired. 

286 

287 Returns: 

288 An object constructed by calling node_factory(path_conv, path, 

289 children, value=...), where children are constructed by node_factory 

290 from the children of this node. There doesn't need to be 1:1 

291 correspondence between original nodes in the trie and constructed 

292 nodes (see make_test_node_and_compress in test.py). 

293 """ 

294 children = self.children and ( 

295 node.traverse(node_factory, path_conv, path + [step], iteritems) 

296 for step, node in iteritems(self.children)) 

297 

298 value_maybe = () 

299 if self.value is not _EMPTY: 

300 value_maybe = (self.value,) 

301 

302 return node_factory(path_conv, tuple(path), children, *value_maybe) 

303 

304 def equals(self, other): 

305 """Returns whether this and other node are recursively equal.""" 

306 # Like iterate, we don't recurse so this works on deep tries. 

307 a, b = self, other 

308 stack = [] 

309 while True: 

310 if a.value != b.value or len(a.children) != len(b.children): 

311 return False 

312 if len(a.children) == 1: 

313 # We know a.children and b.children are both _OneChild objects 

314 # but pylint doesn’t recognise that: pylint: disable=no-member 

315 if a.children.step != b.children.step: 

316 return False 

317 a = a.children.node 

318 b = b.children.node 

319 continue 

320 if a.children: 

321 stack.append((a.children.iteritems(), b.children)) 

322 

323 while True: 

324 try: 

325 key, a = next(stack[-1][0]) 

326 b = stack[-1][1][key] 

327 break 

328 except StopIteration: 

329 stack.pop() 

330 except IndexError: 

331 return True 

332 except KeyError: 

333 return False 

334 

335 __bool__ = __nonzero__ = __hash__ = None 

336 

337 def shallow_copy(self, make_copy): 

338 """Returns a copy of the node which shares the children property.""" 

339 cpy = _Node() 

340 cpy.children = self.children 

341 cpy.value = make_copy(self.value) 

342 return cpy 

343 

344 def copy(self, make_copy): 

345 """Returns a copy of the node structure.""" 

346 cpy = self.shallow_copy(make_copy) 

347 queue = [(cpy,)] 

348 while queue: 

349 for node in queue.pop(): 

350 node.children = node.children.copy(make_copy, queue) 

351 return cpy 

352 

353 def __getstate__(self): 

354 """Get state used for pickling. 

355 

356 The state is encoded as a list of simple commands which consist of an 

357 integer and some command-dependent number of arguments. The commands 

358 modify what the current node is by navigating the trie up and down and 

359 setting node values. Possible commands are: 

360 

361 * [n, step0, step1, ..., stepn-1, value], for n >= 0, specifies step 

362 needed to reach the next current node as well as its new value. There 

363 is no way to create a child node without setting its (or its 

364 descendant's) value. 

365 

366 * [-n], for -n < 0, specifies to go up n steps in the trie. 

367 

368 When encoded as a state, the commands are flattened into a single list. 

369 

370 For example:: 

371 

372 [ 0, 'Root', 

373 2, 'Foo', 'Bar', 'Root/Foo/Bar Node', 

374 -1, 

375 1, 'Baz', 'Root/Foo/Baz Node', 

376 -2, 

377 1, 'Qux', 'Root/Qux Node' ] 

378 

379 Creates the following hierarchy:: 

380 

381 -* value: Root 

382 +-- Foo --* no value 

383 | +-- Bar -- * value: Root/Foo/Bar Node 

384 | +-- Baz -- * value: Root/Foo/Baz Node 

385 +-- Qux -- * value: Root/Qux Node 

386 

387 Returns: 

388 A pickable state which can be passed to :func:`_Node.__setstate__` 

389 to reconstruct the node and its full hierarchy. 

390 """ 

391 # Like iterate, we don't recurse so pickling works on deep tries. 

392 state = [] if self.value is _EMPTY else [0] 

393 last_cmd = 0 

394 node = self 

395 stack = [] 

396 while True: 

397 if node.value is not _EMPTY: 

398 last_cmd = 0 

399 state.append(node.value) 

400 stack.append(node.children.iteritems()) 

401 

402 while True: 

403 step, node = next(stack[-1], (None, None)) 

404 if node is not None: 

405 break 

406 

407 if last_cmd < 0: 

408 state[-1] -= 1 

409 else: 

410 last_cmd = -1 

411 state.append(-1) 

412 stack.pop() 

413 if not stack: 

414 state.pop() # Final -n command is not necessary 

415 return state 

416 

417 if last_cmd > 0: 

418 last_cmd += 1 

419 state[-last_cmd] += 1 

420 else: 

421 last_cmd = 1 

422 state.append(1) 

423 state.append(step) 

424 

425 def __setstate__(self, state): 

426 """Unpickles node. See :func:`_Node.__getstate__`.""" 

427 self.__init__() 

428 state = iter(state) 

429 stack = [self] 

430 for cmd in state: 

431 if cmd < 0: 

432 del stack[cmd:] 

433 else: 

434 while cmd > 0: 

435 parent = stack[-1] 

436 stack.append(parent.children.add(parent, next(state))) 

437 cmd -= 1 

438 stack[-1].value = next(state) 

439 

440 

441class Trie(_abc.MutableMapping): 

442 """A trie implementation with dict interface plus some extensions. 

443 

444 Keys used with the :class:`pygtrie.Trie` class must be iterable which each 

445 component being a hashable objects. In other words, for a given key, 

446 ``dict.fromkeys(key)`` must be valid expression. 

447 

448 In particular, strings work well as trie keys, however when getting them 

449 back (for example via :func:`Trie.iterkeys` method), instead of strings, 

450 tuples of characters are produced. For that reason, 

451 :class:`pygtrie.CharTrie` or :class:`pygtrie.StringTrie` classes may be 

452 preferred when using string keys. 

453 """ 

454 

455 def __init__(self, *args, **kwargs): 

456 """Initialises the trie. 

457 

458 Arguments are interpreted the same way :func:`Trie.update` interprets 

459 them. 

460 """ 

461 self._root = _Node() 

462 self._iteritems = self._ITERITEMS_CALLBACKS[0] 

463 self.update(*args, **kwargs) 

464 

465 _ITERITEMS_CALLBACKS = (lambda x: x.iteritems(), lambda x: x.sorted_items()) 

466 

467 def enable_sorting(self, enable=True): 

468 """Enables sorting of child nodes when iterating and traversing. 

469 

470 Normally, child nodes are not sorted when iterating or traversing over 

471 the trie (just like dict elements are not sorted). This method allows 

472 sorting to be enabled (which was the behaviour prior to pygtrie 2.0 

473 release). 

474 

475 For Trie class, enabling sorting of children is identical to simply 

476 sorting the list of items since Trie returns keys as tuples. However, 

477 for other implementations such as StringTrie the two may behave subtly 

478 different. For example, sorting items might produce:: 

479 

480 root/foo-bar 

481 root/foo/baz 

482 

483 even though foo comes before foo-bar. 

484 

485 Args: 

486 enable: Whether to enable sorting of child nodes. 

487 """ 

488 self._iteritems = self._ITERITEMS_CALLBACKS[bool(enable)] 

489 

490 def __getstate__(self): 

491 # encode self._iteritems as self._sorted when pickling 

492 state = self.__dict__.copy() 

493 callback = state.pop('_iteritems', None) 

494 state['_sorted'] = callback is self._ITERITEMS_CALLBACKS[1] 

495 return state 

496 

497 def __setstate__(self, state): 

498 # translate self._sorted back to _iteritems when unpickling 

499 self.__dict__ = state 

500 self.enable_sorting(state.pop('_sorted')) 

501 

502 def clear(self): 

503 """Removes all the values from the trie.""" 

504 self._root = _Node() 

505 

506 def update(self, *args, **kwargs): # pylint: disable=arguments-differ 

507 """Updates stored values. Works like :meth:`dict.update`.""" 

508 if len(args) > 1: 

509 raise ValueError('update() takes at most one positional argument, ' 

510 '%d given.' % len(args)) 

511 # We have this here instead of just letting MutableMapping.update() 

512 # handle things because it will iterate over keys and for each key 

513 # retrieve the value. With Trie, this may be expensive since the path 

514 # to the node would have to be walked twice. Instead, we have our own 

515 # implementation where iteritems() is used avoiding the unnecessary 

516 # value look-up. 

517 if args and isinstance(args[0], Trie): 

518 for key, value in args[0].items(): 

519 self[key] = value 

520 args = () 

521 super(Trie, self).update(*args, **kwargs) 

522 

523 def merge(self, other, overwrite=False): 

524 """Moves nodes from other trie into this one. 

525 

526 The merging happens at trie structure level and as such is different 

527 than iterating over items of one trie and setting them in the other 

528 trie. 

529 

530 The merging may happen between different types of tries resulting in 

531 different (key, value) pairs in the destination trie compared to the 

532 source. For example, merging two :class:`pygtrie.StringTrie` objects 

533 each using different separators will work as if the other trie had 

534 separator of this trie. Similarly, a :class:`pygtrie.CharTrie` may be 

535 merged into a :class:`pygtrie.StringTrie` but when keys are read those 

536 will be joined by the separator. For example: 

537 

538 >>> import pygtrie 

539 >>> st = pygtrie.StringTrie(separator='.') 

540 >>> st.merge(pygtrie.StringTrie({'foo/bar': 42})) 

541 >>> list(st.items()) 

542 [('foo.bar', 42)] 

543 >>> st.merge(pygtrie.CharTrie({'baz': 24})) 

544 >>> sorted(st.items()) 

545 [('b.a.z', 24), ('foo.bar', 42)] 

546 

547 Not all tries can be merged into other tries. For example, 

548 a :class:`pygtrie.StringTrie` may not be merged into 

549 a :class:`pygtrie.CharTrie` because the latter imposes a requirement for 

550 each component in the key to be exactly one character while in the 

551 former components may be arbitrary length. 

552 

553 Note that the other trie is cleared and any references or iterators over 

554 it are invalidated. To preserve other’s value it needs to be copied 

555 first. 

556 

557 Args: 

558 other: Other trie to move nodes from. 

559 overwrite: Whether to overwrite existing values in this trie. 

560 """ 

561 if isinstance(self, type(other)): 

562 self._merge_impl(self, other, overwrite=overwrite) 

563 else: 

564 other._merge_impl(self, other, overwrite=overwrite) # pylint: disable=protected-access 

565 other.clear() 

566 

567 @classmethod 

568 def _merge_impl(cls, dst, src, overwrite): 

569 # pylint: disable=protected-access 

570 dst._root.merge(src._root, overwrite=overwrite) 

571 

572 def copy(self, __make_copy=lambda x: x): 

573 """Returns a shallow copy of the object.""" 

574 # pylint: disable=protected-access 

575 cpy = self.__class__() 

576 cpy.__dict__ = self.__dict__.copy() 

577 cpy._root = self._root.copy(__make_copy) 

578 return cpy 

579 

580 def __copy__(self): 

581 return self.copy() 

582 

583 def __deepcopy__(self, memo): 

584 return self.copy(lambda x: _copy.deepcopy(x, memo)) 

585 

586 @classmethod 

587 def fromkeys(cls, keys, value=None): 

588 """Creates a new trie with given keys set. 

589 

590 This is roughly equivalent to calling the constructor with a ``(key, 

591 value) for key in keys`` generator. 

592 

593 Args: 

594 keys: An iterable of keys that should be set in the new trie. 

595 value: Value to associate with given keys. 

596 

597 Returns: 

598 A new trie where each key from ``keys`` has been set to the given 

599 value. 

600 """ 

601 trie = cls() 

602 for key in keys: 

603 trie[key] = value 

604 return trie 

605 

606 def _get_node(self, key): 

607 """Returns node for given key. Creates it if requested. 

608 

609 Args: 

610 key: A key to look for. 

611 

612 Returns: 

613 ``(node, trace)`` tuple where ``node`` is the node for given key and 

614 ``trace`` is a list specifying path to reach the node including all 

615 the encountered nodes. Each element of trace is a ``(step, node)`` 

616 tuple where ``step`` is a step from parent node to given node and 

617 ``node`` is node on the path. The first element of the path is 

618 always ``(None, self._root)``. 

619 

620 Raises: 

621 KeyError: If there is no node for the key. 

622 """ 

623 node = self._root 

624 trace = [(None, node)] 

625 for step in self.__path_from_key(key): 

626 # pylint thinks node.children is always _NoChildren and thus that 

627 # we’re assigning None here; pylint: disable=assignment-from-none 

628 node = node.children.get(step) 

629 if node is None: 

630 raise KeyError(key) 

631 trace.append((step, node)) 

632 return node, trace 

633 

634 def _set_node(self, key, value, only_if_missing=False): 

635 """Sets value for a given key. 

636 

637 Args: 

638 key: Key to set value of. 

639 value: Value to set to. 

640 only_if_missing: If true, value won't be changed if the key is 

641 already associated with a value. 

642 

643 Returns: 

644 The node. 

645 """ 

646 node = self._root 

647 for step in self.__path_from_key(key): 

648 node = node.children.require(node, step) 

649 if node.value is _EMPTY or not only_if_missing: 

650 node.value = value 

651 return node 

652 

653 def _set_node_if_no_prefix(self, key): 

654 """Sets given key to True but only if none of its prefixes are present. 

655 

656 If value is set, removes all ancestors of the node. 

657 

658 This is a method for exclusive use by PrefixSet. 

659 

660 Args: 

661 key: Key to set value of. 

662 """ 

663 steps = iter(self.__path_from_key(key)) 

664 node = self._root 

665 try: 

666 while node.value is _EMPTY: 

667 node = node.children.require(node, next(steps)) 

668 except StopIteration: 

669 node.value = True 

670 node.children = _EMPTY 

671 

672 def __iter__(self): 

673 return self.iterkeys() 

674 

675 # pylint: disable=arguments-differ 

676 

677 def iteritems(self, prefix=_EMPTY, shallow=False): 

678 """Yields all nodes with associated values with given prefix. 

679 

680 Only nodes with values are output. For example:: 

681 

682 >>> import pygtrie 

683 >>> t = pygtrie.StringTrie() 

684 >>> t['foo'] = 'Foo' 

685 >>> t['foo/bar/baz'] = 'Baz' 

686 >>> t['qux'] = 'Qux' 

687 >>> sorted(t.items()) 

688 [('foo', 'Foo'), ('foo/bar/baz', 'Baz'), ('qux', 'Qux')] 

689 

690 Items are generated in topological order (i.e. parents before child 

691 nodes) but the order of siblings is unspecified. At an expense of 

692 efficiency, :func:`Trie.enable_sorting` method can turn deterministic 

693 ordering of siblings. 

694 

695 With ``prefix`` argument, only items with specified prefix are generated 

696 (i.e. only given subtrie is traversed) as demonstrated by:: 

697 

698 >>> t.items(prefix='foo') 

699 [('foo', 'Foo'), ('foo/bar/baz', 'Baz')] 

700 

701 With ``shallow`` argument, if a node has value associated with it, it's 

702 children are not traversed even if they exist which can be seen in:: 

703 

704 >>> sorted(t.items(shallow=True)) 

705 [('foo', 'Foo'), ('qux', 'Qux')] 

706 

707 Args: 

708 prefix: Prefix to limit iteration to. 

709 shallow: Perform a shallow traversal, i.e. do not yield items if 

710 their prefix has been yielded. 

711 

712 Yields: 

713 ``(key, value)`` tuples. 

714 

715 Raises: 

716 KeyError: If ``prefix`` does not match any node. 

717 """ 

718 node, _ = self._get_node(prefix) 

719 for path, value in node.iterate(list(self.__path_from_key(prefix)), 

720 shallow, self._iteritems): 

721 yield (self._key_from_path(path), value) 

722 

723 def iterkeys(self, prefix=_EMPTY, shallow=False): 

724 """Yields all keys having associated values with given prefix. 

725 

726 This is equivalent to taking first element of tuples generated by 

727 :func:`Trie.iteritems` which see for more detailed documentation. 

728 

729 Args: 

730 prefix: Prefix to limit iteration to. 

731 shallow: Perform a shallow traversal, i.e. do not yield keys if 

732 their prefix has been yielded. 

733 

734 Yields: 

735 All the keys (with given prefix) with associated values in the trie. 

736 

737 Raises: 

738 KeyError: If ``prefix`` does not match any node. 

739 """ 

740 for key, _ in self.iteritems(prefix=prefix, shallow=shallow): 

741 yield key 

742 

743 def itervalues(self, prefix=_EMPTY, shallow=False): 

744 """Yields all values associated with keys with given prefix. 

745 

746 This is equivalent to taking second element of tuples generated by 

747 :func:`Trie.iteritems` which see for more detailed documentation. 

748 

749 Args: 

750 prefix: Prefix to limit iteration to. 

751 shallow: Perform a shallow traversal, i.e. do not yield values if 

752 their prefix has been yielded. 

753 

754 Yields: 

755 All the values associated with keys (with given prefix) in the trie. 

756 

757 Raises: 

758 KeyError: If ``prefix`` does not match any node. 

759 """ 

760 node, _ = self._get_node(prefix) 

761 for _, value in node.iterate(list(self.__path_from_key(prefix)), 

762 shallow, self._iteritems): 

763 yield value 

764 

765 def items(self, prefix=_EMPTY, shallow=False): 

766 """Returns a list of ``(key, value)`` pairs in given subtrie. 

767 

768 This is equivalent to constructing a list from generator returned by 

769 :func:`Trie.iteritems` which see for more detailed documentation. 

770 """ 

771 return list(self.iteritems(prefix=prefix, shallow=shallow)) 

772 

773 def keys(self, prefix=_EMPTY, shallow=False): 

774 """Returns a list of all the keys, with given prefix, in the trie. 

775 

776 This is equivalent to constructing a list from generator returned by 

777 :func:`Trie.iterkeys` which see for more detailed documentation. 

778 """ 

779 return list(self.iterkeys(prefix=prefix, shallow=shallow)) 

780 

781 def values(self, prefix=_EMPTY, shallow=False): 

782 """Returns a list of values in given subtrie. 

783 

784 This is equivalent to constructing a list from generator returned by 

785 :func:`Trie.itervalues` which see for more detailed documentation. 

786 """ 

787 return list(self.itervalues(prefix=prefix, shallow=shallow)) 

788 

789 def __len__(self): 

790 """Returns number of values in a trie. 

791 

792 Note that this method is expensive as it iterates over the whole trie. 

793 """ 

794 return sum(1 for _ in self.itervalues()) 

795 

796 def __bool__(self): 

797 return self._root.value is not _EMPTY or bool(self._root.children) 

798 

799 __nonzero__ = __bool__ 

800 __hash__ = None 

801 

802 HAS_VALUE = 1 

803 HAS_SUBTRIE = 2 

804 

805 def has_node(self, key): 

806 """Returns whether given node is in the trie. 

807 

808 Return value is a bitwise or of ``HAS_VALUE`` and ``HAS_SUBTRIE`` 

809 constants indicating node has a value associated with it and that it is 

810 a prefix of another existing key respectively. Both of those are 

811 independent of each other and all of the four combinations are possible. 

812 For example:: 

813 

814 >>> import pygtrie 

815 >>> t = pygtrie.StringTrie() 

816 >>> t['foo/bar'] = 'Bar' 

817 >>> t['foo/bar/baz'] = 'Baz' 

818 >>> t.has_node('qux') == 0 

819 True 

820 >>> t.has_node('foo/bar/baz') == pygtrie.Trie.HAS_VALUE 

821 True 

822 >>> t.has_node('foo') == pygtrie.Trie.HAS_SUBTRIE 

823 True 

824 >>> t.has_node('foo/bar') == (pygtrie.Trie.HAS_VALUE | 

825 ... pygtrie.Trie.HAS_SUBTRIE) 

826 True 

827 

828 There are two higher level methods built on top of this one which give 

829 easier interface for the information. :func:`Trie.has_key` returns 

830 whether node has a value associated with it and :func:`Trie.has_subtrie` 

831 checks whether node is a prefix. Continuing previous example:: 

832 

833 >>> t.has_key('qux'), t.has_subtrie('qux') 

834 (False, False) 

835 >>> t.has_key('foo/bar/baz'), t.has_subtrie('foo/bar/baz') 

836 (True, False) 

837 >>> t.has_key('foo'), t.has_subtrie('foo') 

838 (False, True) 

839 >>> t.has_key('foo/bar'), t.has_subtrie('foo/bar') 

840 (True, True) 

841 

842 Args: 

843 key: A key to look for. 

844 

845 Returns: 

846 Non-zero if node exists and if it does a bit-field denoting whether 

847 it has a value associated with it and whether it has a subtrie. 

848 """ 

849 try: 

850 node, _ = self._get_node(key) 

851 except KeyError: 

852 return 0 

853 return ((self.HAS_VALUE * (node.value is not _EMPTY)) | 

854 (self.HAS_SUBTRIE * bool(node.children))) 

855 

856 def has_key(self, key): 

857 """Indicates whether given key has value associated with it. 

858 

859 See :func:`Trie.has_node` for more detailed documentation. 

860 """ 

861 return bool(self.has_node(key) & self.HAS_VALUE) 

862 

863 def has_subtrie(self, key): 

864 """Returns whether given key is a prefix of another key in the trie. 

865 

866 See :func:`Trie.has_node` for more detailed documentation. 

867 """ 

868 return bool(self.has_node(key) & self.HAS_SUBTRIE) 

869 

870 @staticmethod 

871 def _slice_maybe(key_or_slice): 

872 """Checks whether argument is a slice or a plain key. 

873 

874 Args: 

875 key_or_slice: A key or a slice to test. 

876 

877 Returns: 

878 ``(key, is_slice)`` tuple. ``is_slice`` indicates whether 

879 ``key_or_slice`` is a slice and ``key`` is either ``key_or_slice`` 

880 itself (if it's not a slice) or slice's start position. 

881 

882 Raises: 

883 TypeError: If ``key_or_slice`` is a slice whose stop or step are not 

884 ``None`` In other words, only ``[key:]`` slices are valid. 

885 """ 

886 if isinstance(key_or_slice, slice): 

887 if key_or_slice.stop is not None or key_or_slice.step is not None: 

888 raise TypeError(key_or_slice) 

889 return key_or_slice.start, True 

890 return key_or_slice, False 

891 

892 def __getitem__(self, key_or_slice): 

893 """Returns value associated with given key or raises KeyError. 

894 

895 When argument is a single key, value for that key is returned (or 

896 :class:`KeyError` exception is thrown if the node does not exist or has 

897 no value associated with it). 

898 

899 When argument is a slice, it must be one with only `start` set in which 

900 case the access is identical to :func:`Trie.itervalues` invocation with 

901 prefix argument. 

902 

903 Example: 

904 

905 >>> import pygtrie 

906 >>> t = pygtrie.StringTrie() 

907 >>> t['foo/bar'] = 'Bar' 

908 >>> t['foo/baz'] = 'Baz' 

909 >>> t['qux'] = 'Qux' 

910 >>> t['foo/bar'] 

911 'Bar' 

912 >>> sorted(t['foo':]) 

913 ['Bar', 'Baz'] 

914 >>> t['foo'] # doctest: +IGNORE_EXCEPTION_DETAIL 

915 Traceback (most recent call last): 

916 ... 

917 ShortKeyError: 'foo' 

918 

919 Args: 

920 key_or_slice: A key or a slice to look for. 

921 

922 Returns: 

923 If a single key is passed, a value associated with given key. If 

924 a slice is passed, a generator of values in specified subtrie. 

925 

926 Raises: 

927 ShortKeyError: If the key has no value associated with it but is 

928 a prefix of some key with a value. Note that 

929 :class:`ShortKeyError` is subclass of :class:`KeyError`. 

930 KeyError: If key has no value associated with it nor is a prefix of 

931 an existing key. 

932 TypeError: If ``key_or_slice`` is a slice but it's stop or step are 

933 not ``None``. 

934 """ 

935 if self._slice_maybe(key_or_slice)[1]: 

936 return self.itervalues(key_or_slice.start) 

937 node, _ = self._get_node(key_or_slice) 

938 if node.value is _EMPTY: 

939 raise ShortKeyError(key_or_slice) 

940 return node.value 

941 

942 def __setitem__(self, key_or_slice, value): 

943 """Sets value associated with given key. 

944 

945 If `key_or_slice` is a key, simply associate it with given value. If it 

946 is a slice (which must have `start` set only), it in addition clears any 

947 subtrie that might have been attached to particular key. For example:: 

948 

949 >>> import pygtrie 

950 >>> t = pygtrie.StringTrie() 

951 >>> t['foo/bar'] = 'Bar' 

952 >>> t['foo/baz'] = 'Baz' 

953 >>> sorted(t.keys()) 

954 ['foo/bar', 'foo/baz'] 

955 >>> t['foo':] = 'Foo' 

956 >>> t.keys() 

957 ['foo'] 

958 

959 Args: 

960 key_or_slice: A key to look for or a slice. If it is a slice, the 

961 whole subtrie (if present) will be replaced by a single node 

962 with given value set. 

963 value: Value to set. 

964 

965 Raises: 

966 TypeError: If key is a slice whose stop or step are not None. 

967 """ 

968 key, is_slice = self._slice_maybe(key_or_slice) 

969 node = self._set_node(key, value) 

970 if is_slice: 

971 node.children = _EMPTY 

972 

973 def setdefault(self, key, default=None): 

974 """Sets value of a given node if not set already. Also returns it. 

975 

976 In contrast to :func:`Trie.__setitem__`, this method does not accept 

977 slice as a key. 

978 """ 

979 return self._set_node(key, default, only_if_missing=True).value 

980 

981 @staticmethod 

982 def _pop_value(trace): 

983 """Removes value from given node and removes any empty nodes. 

984 

985 Args: 

986 trace: Trace to the node to cleanup as returned by 

987 :func:`Trie._get_node`. The last element of the trace denotes 

988 the node to get value of. 

989 

990 Returns: 

991 Value which was held in the node at the end of specified trace. 

992 This may be _EMPTY if the node didn’t have a value in the first 

993 place. 

994 """ 

995 i = len(trace) - 1 # len(path) >= 1 since root is always there 

996 step, node = trace[i] 

997 value, node.value = node.value, _EMPTY 

998 while i and node.value is _EMPTY and not node.children: 

999 i -= 1 

1000 parent_step, parent = trace[i] 

1001 parent.children.delete(parent, step) 

1002 step, node = parent_step, parent 

1003 return value 

1004 

1005 def pop(self, key, default=_EMPTY): 

1006 """Deletes value associated with given key and returns it. 

1007 

1008 Args: 

1009 key: A key to look for. 

1010 default: If specified, value that will be returned if given key has 

1011 no value associated with it. If not specified, method will 

1012 throw KeyError in such cases. 

1013 

1014 Returns: 

1015 Removed value, if key had value associated with it, or ``default`` 

1016 (if given). 

1017 

1018 Raises: 

1019 ShortKeyError: If ``default`` has not been specified and the key has 

1020 no value associated with it but is a prefix of some key with 

1021 a value. Note that :class:`ShortKeyError` is subclass of 

1022 :class:`KeyError`. 

1023 KeyError: If default has not been specified and key has no value 

1024 associated with it nor is a prefix of an existing key. 

1025 """ 

1026 try: 

1027 _, trace = self._get_node(key) 

1028 except KeyError: 

1029 if default is not _EMPTY: 

1030 return default 

1031 raise 

1032 value = self._pop_value(trace) 

1033 if value is not _EMPTY: 

1034 return value 

1035 if default is not _EMPTY: 

1036 return default 

1037 raise ShortKeyError() 

1038 

1039 def popitem(self): 

1040 """Deletes an arbitrary value from the trie and returns it. 

1041 

1042 There is no guarantee as to which item is deleted and returned. Neither 

1043 in respect to its lexicographical nor topological order. 

1044 

1045 Returns: 

1046 ``(key, value)`` tuple indicating deleted key. 

1047 

1048 Raises: 

1049 KeyError: If the trie is empty. 

1050 """ 

1051 if not self: 

1052 raise KeyError() 

1053 node = self._root 

1054 trace = [(None, node)] 

1055 while node.value is _EMPTY: 

1056 step, node = next(node.children.iteritems()) 

1057 trace.append((step, node)) 

1058 key = self._key_from_path((step for step, _ in trace[1:])) 

1059 return key, self._pop_value(trace) 

1060 

1061 def __delitem__(self, key_or_slice): 

1062 """Deletes value associated with given key or raises KeyError. 

1063 

1064 If argument is a key, value associated with it is deleted. If the key 

1065 is also a prefix, its descendents are not affected. On the other hand, 

1066 if the argument is a slice (in which case it must have only start set), 

1067 the whole subtrie is removed. For example:: 

1068 

1069 >>> import pygtrie 

1070 >>> t = pygtrie.StringTrie() 

1071 >>> t['foo'] = 'Foo' 

1072 >>> t['foo/bar'] = 'Bar' 

1073 >>> t['foo/bar/baz'] = 'Baz' 

1074 >>> del t['foo/bar'] 

1075 >>> t.keys() 

1076 ['foo', 'foo/bar/baz'] 

1077 >>> del t['foo':] 

1078 >>> t.keys() 

1079 [] 

1080 

1081 Args: 

1082 key_or_slice: A key to look for or a slice. If key is a slice, the 

1083 whole subtrie will be removed. 

1084 

1085 Raises: 

1086 ShortKeyError: If the key has no value associated with it but is 

1087 a prefix of some key with a value. This is not thrown if 

1088 key_or_slice is a slice -- in such cases, the whole subtrie is 

1089 removed. Note that :class:`ShortKeyError` is subclass of 

1090 :class:`KeyError`. 

1091 KeyError: If key has no value associated with it nor is a prefix of 

1092 an existing key. 

1093 TypeError: If key is a slice whose stop or step are not ``None``. 

1094 """ 

1095 key, is_slice = self._slice_maybe(key_or_slice) 

1096 node, trace = self._get_node(key) 

1097 if is_slice: 

1098 node.children = _EMPTY 

1099 elif node.value is _EMPTY: 

1100 raise ShortKeyError(key) 

1101 self._pop_value(trace) 

1102 

1103 class _NoneStep(object): 

1104 """Representation of a non-existent step towards non-existent node.""" 

1105 

1106 __slots__ = () 

1107 

1108 def __bool__(self): 

1109 return False 

1110 __nonzero__ = __bool__ 

1111 

1112 def get(self, default=None): 

1113 return default 

1114 

1115 is_set = has_subtrie = property(__bool__) 

1116 key = value = property(lambda self: None) 

1117 

1118 def __getitem__(self, index): 

1119 """Makes object appear like a (key, value) tuple. 

1120 

1121 This is deprecated and for backwards-compatibility only. Prefer 

1122 using ``key`` and ``value`` properties directly. 

1123 

1124 Args: 

1125 index: Element index to return. Zero for key, one for value. 

1126 

1127 Returns: 

1128 ``self.key`` if index is ``0``, ``self.value`` if it's ``1``. 

1129 Otherwise raises an IndexError exception. 

1130 

1131 Raises: 

1132 IndexError: if index is not 0 or 1. 

1133 KeyError: if index is 1 but node has no value assigned. 

1134 """ 

1135 if index == 0: 

1136 return self.key 

1137 if index == 1: 

1138 return self.value 

1139 raise IndexError('index out of range') 

1140 

1141 def __repr__(self): 

1142 return '(None Step)' 

1143 

1144 class _Step(_NoneStep): 

1145 """Representation of a single step on a path towards particular node.""" 

1146 

1147 __slots__ = ('_trie', '_path', '_pos', '_node', '__key') 

1148 

1149 def __init__(self, trie, path, pos, node): 

1150 self._trie = trie 

1151 self._path = path 

1152 self._pos = pos 

1153 self._node = node 

1154 

1155 def __bool__(self): 

1156 return True 

1157 __nonzero__ = __bool__ 

1158 

1159 @property 

1160 def is_set(self): 

1161 """Returns whether the node has value assigned to it.""" 

1162 return self._node.value is not _EMPTY 

1163 

1164 @property 

1165 def has_subtrie(self): 

1166 """Returns whether the node has any children.""" 

1167 return bool(self._node.children) 

1168 

1169 def get(self, default=None): 

1170 """Returns node's value or the default if value is not assigned.""" 

1171 v = self._node.value 

1172 return default if v is _EMPTY else v 

1173 

1174 def set(self, value): 

1175 """Deprecated. Use ``step.value = value`` instead.""" 

1176 self._node.value = value 

1177 

1178 def setdefault(self, value): 

1179 """Assigns value to the node if one is not set then returns it.""" 

1180 if self._node.value is _EMPTY: 

1181 self._node.value = value 

1182 return self._node.value 

1183 

1184 def __repr__(self): 

1185 return '(%r: %r)' % (self.key, self.value) 

1186 

1187 @property 

1188 def key(self): 

1189 """Returns key of the node.""" 

1190 if not hasattr(self, '_Step__key'): 

1191 # pylint:disable=protected-access,attribute-defined-outside-init 

1192 self.__key = self._trie._key_from_path(self._path[:self._pos]) 

1193 return self.__key 

1194 

1195 @property 

1196 def value(self): 

1197 """Returns node's value or raises KeyError.""" 

1198 v = self._node.value 

1199 if v is _EMPTY: 

1200 raise ShortKeyError(self.key) 

1201 return v 

1202 

1203 @value.setter 

1204 def value(self, value): 

1205 self._node.value = value 

1206 

1207 _NONE_STEP = _NoneStep() 

1208 

1209 def walk_towards(self, key): 

1210 """Yields nodes on the path to given node. 

1211 

1212 Args: 

1213 key: Key of the node to look for. 

1214 

1215 Yields: 

1216 :class:`pygtrie.Trie._Step` objects which can be used to extract or 

1217 set node's value as well as get node's key. 

1218 

1219 When representing nodes with assigned values, the objects can be 

1220 treated as ``(k, value)`` pairs denoting keys with associated values 

1221 encountered on the way towards the specified key. This is 

1222 deprecated, prefer using ``key`` and ``value`` properties or ``get`` 

1223 method of the object. 

1224 

1225 Raises: 

1226 KeyError: If node with given key does not exist. It's all right if 

1227 they value is not assigned to the node provided it has a child 

1228 node. Because the method is a generator, the exception is 

1229 raised only once a missing node is encountered. 

1230 """ 

1231 node = self._root 

1232 path = self.__path_from_key(key) 

1233 pos = 0 

1234 while True: 

1235 yield self._Step(self, path, pos, node) 

1236 if pos == len(path): 

1237 break 

1238 # pylint thinks node.children is always _NoChildren and thus that 

1239 # we’re assigning None here; pylint: disable=assignment-from-none 

1240 node = node.children.get(path[pos]) 

1241 if node is None: 

1242 raise KeyError(key) 

1243 pos += 1 

1244 

1245 def prefixes(self, key): 

1246 """Walks towards the node specified by key and yields all found items. 

1247 

1248 Example: 

1249 

1250 >>> import pygtrie 

1251 >>> t = pygtrie.StringTrie() 

1252 >>> t['foo'] = 'Foo' 

1253 >>> t['foo/bar/baz'] = 'Baz' 

1254 >>> list(t.prefixes('foo/bar/baz/qux')) 

1255 [('foo': 'Foo'), ('foo/bar/baz': 'Baz')] 

1256 >>> list(t.prefixes('does/not/exist')) 

1257 [] 

1258 

1259 Args: 

1260 key: Key to look for. 

1261 

1262 Yields: 

1263 :class:`pygtrie.Trie._Step` objects which can be used to extract or 

1264 set node's value as well as get node's key. 

1265 

1266 The objects can be treated as ``(k, value)`` pairs denoting keys 

1267 with associated values encountered on the way towards the specified 

1268 key. This is deprecated, prefer using ``key`` and ``value`` 

1269 properties of the object. 

1270 """ 

1271 try: 

1272 for step in self.walk_towards(key): 

1273 if step.is_set: 

1274 yield step 

1275 except KeyError: 

1276 pass 

1277 

1278 def shortest_prefix(self, key): 

1279 """Finds the shortest prefix of a key with a value. 

1280 

1281 This is roughly equivalent to taking the first object yielded by 

1282 :func:`Trie.prefixes` with additional handling for situations when no 

1283 prefixes are found. 

1284 

1285 Example: 

1286 

1287 >>> import pygtrie 

1288 >>> t = pygtrie.StringTrie() 

1289 >>> t['foo'] = 'Foo' 

1290 >>> t['foo/bar/baz'] = 'Baz' 

1291 >>> t.shortest_prefix('foo/bar/baz/qux') 

1292 ('foo': 'Foo') 

1293 >>> t.shortest_prefix('foo/bar/baz/qux').key 

1294 'foo' 

1295 >>> t.shortest_prefix('foo/bar/baz/qux').value 

1296 'Foo' 

1297 >>> t.shortest_prefix('does/not/exist') 

1298 (None Step) 

1299 >>> bool(t.shortest_prefix('does/not/exist')) 

1300 False 

1301 

1302 Args: 

1303 key: Key to look for. 

1304 

1305 Returns: 

1306 :class:`pygtrie.Trie._Step` object (which can be used to extract or 

1307 set node's value as well as get node's key), or 

1308 a :class:`pygtrie.Trie._NoneStep` object (which is falsy value 

1309 simulating a _Step with ``None`` key and value) if no prefix is 

1310 found. 

1311 

1312 The object can be treated as ``(key, value)`` pair denoting key with 

1313 associated value of the prefix. This is deprecated, prefer using 

1314 ``key`` and ``value`` properties of the object. 

1315 """ 

1316 return next(self.prefixes(key), self._NONE_STEP) 

1317 

1318 def longest_prefix(self, key): 

1319 """Finds the longest prefix of a key with a value. 

1320 

1321 This is roughly equivalent to taking the last object yielded by 

1322 :func:`Trie.prefixes` with additional handling for situations when no 

1323 prefixes are found. 

1324 

1325 Example: 

1326 

1327 >>> import pygtrie 

1328 >>> t = pygtrie.StringTrie() 

1329 >>> t['foo'] = 'Foo' 

1330 >>> t['foo/bar/baz'] = 'Baz' 

1331 >>> t.longest_prefix('foo/bar/baz/qux') 

1332 ('foo/bar/baz': 'Baz') 

1333 >>> t.longest_prefix('foo/bar/baz/qux').key 

1334 'foo/bar/baz' 

1335 >>> t.longest_prefix('foo/bar/baz/qux').value 

1336 'Baz' 

1337 >>> t.longest_prefix('does/not/exist') 

1338 (None Step) 

1339 >>> bool(t.longest_prefix('does/not/exist')) 

1340 False 

1341 

1342 Args: 

1343 key: Key to look for. 

1344 

1345 Returns: 

1346 :class:`pygtrie.Trie._Step` object (which can be used to extract or 

1347 set node's value as well as get node's key), or 

1348 a :class:`pygtrie.Trie._NoneStep` object (which is falsy value 

1349 simulating a _Step with ``None`` key and value) if no prefix is 

1350 found. 

1351 

1352 The object can be treated as ``(key, value)`` pair denoting key with 

1353 associated value of the prefix. This is deprecated, prefer using 

1354 ``key`` and ``value`` properties of the object. 

1355 """ 

1356 ret = self._NONE_STEP 

1357 for ret in self.prefixes(key): 

1358 pass 

1359 return ret 

1360 

1361 def strictly_equals(self, other): 

1362 """Checks whether tries are equal with the same structure. 

1363 

1364 This is stricter comparison than the one performed by equality operator. 

1365 It not only requires for keys and values to be equal but also for the 

1366 two tries to be of the same type and have the same structure. 

1367 

1368 For example, for two :class:`pygtrie.StringTrie` objects to be equal, 

1369 they need to have the same structure as well as the same separator as 

1370 seen below: 

1371 

1372 >>> import pygtrie 

1373 >>> t0 = StringTrie({'foo/bar': 42}, separator='/') 

1374 >>> t1 = StringTrie({'foo.bar': 42}, separator='.') 

1375 >>> t0.strictly_equals(t1) 

1376 False 

1377 

1378 >>> t0 = StringTrie({'foo/bar.baz': 42}, separator='/') 

1379 >>> t1 = StringTrie({'foo/bar.baz': 42}, separator='.') 

1380 >>> t0 == t1 

1381 True 

1382 >>> t0.strictly_equals(t1) 

1383 False 

1384 

1385 Args: 

1386 other: Other trie to compare to. 

1387 

1388 Returns: 

1389 Whether the two tries are the same type and have the same structure. 

1390 """ 

1391 if self is other: 

1392 return True 

1393 if type(self) != type(other): 

1394 return False 

1395 result = self._eq_impl(other) 

1396 if result is NotImplemented: 

1397 return False 

1398 else: 

1399 return result 

1400 

1401 def __eq__(self, other): 

1402 """Compares this trie’s mapping with another mapping. 

1403 

1404 Note that this method doesn’t take trie’s structure into consideration. 

1405 What matters is whether keys and values in both mappings are the same. 

1406 This may lead to unexpected results, for example: 

1407 

1408 >>> import pygtrie 

1409 >>> t0 = StringTrie({'foo/bar': 42}, separator='/') 

1410 >>> t1 = StringTrie({'foo.bar': 42}, separator='.') 

1411 >>> t0 == t1 

1412 False 

1413 

1414 >>> t0 = StringTrie({'foo/bar.baz': 42}, separator='/') 

1415 >>> t1 = StringTrie({'foo/bar.baz': 42}, separator='.') 

1416 >>> t0 == t1 

1417 True 

1418 

1419 >>> t0 = Trie({'foo': 42}) 

1420 >>> t1 = CharTrie({'foo': 42}) 

1421 >>> t0 == t1 

1422 False 

1423 

1424 This behaviour is required to maintain consistency with Mapping 

1425 interface and its __eq__ method. For example, this implementation 

1426 maintains transitivity of the comparison: 

1427 

1428 >>> t0 = StringTrie({'foo/bar.baz': 42}, separator='/') 

1429 >>> d = {'foo/bar.baz': 42} 

1430 >>> t1 = StringTrie({'foo/bar.baz': 42}, separator='.') 

1431 >>> t0 == d 

1432 True 

1433 >>> d == t1 

1434 True 

1435 >>> t0 == t1 

1436 True 

1437 

1438 >>> t0 = Trie({'foo': 42}) 

1439 >>> d = {'foo': 42} 

1440 >>> t1 = CharTrie({'foo': 42}) 

1441 >>> t0 == d 

1442 False 

1443 >>> d == t1 

1444 True 

1445 >>> t0 == t1 

1446 False 

1447 

1448 Args: 

1449 other: Other object to compare to. 

1450 

1451 Returns: 

1452 ``NotImplemented`` if this method does not know how to perform the 

1453 comparison or a ``bool`` denoting whether the two objects are equal 

1454 or not. 

1455 """ 

1456 if self is other: 

1457 return True 

1458 if type(other) == type(self): 

1459 result = self._eq_impl(other) 

1460 if result is not NotImplemented: 

1461 return result 

1462 return super(Trie, self).__eq__(other) 

1463 

1464 def _eq_impl(self, other): 

1465 return self._root.equals(other._root) # pylint: disable=protected-access 

1466 

1467 def __ne__(self, other): 

1468 return not self == other 

1469 

1470 def _str_items(self, fmt='%s: %s'): 

1471 return ', '.join(fmt % item for item in self.iteritems()) 

1472 

1473 def __str__(self): 

1474 return '%s(%s)' % (type(self).__name__, self._str_items()) 

1475 

1476 def __repr__(self): 

1477 return '%s([%s])' % (type(self).__name__, self._str_items('(%r, %r)')) 

1478 

1479 def __path_from_key(self, key): 

1480 """Converts a user visible key object to internal path representation. 

1481 

1482 Args: 

1483 key: User supplied key or ``_EMPTY``. 

1484 

1485 Returns: 

1486 An empty tuple if ``key`` was ``_EMPTY``, otherwise whatever 

1487 :func:`Trie._path_from_key` returns. 

1488 

1489 Raises: 

1490 TypeError: If ``key`` is of invalid type. 

1491 """ 

1492 return () if key is _EMPTY else self._path_from_key(key) 

1493 

1494 def _path_from_key(self, key): 

1495 """Converts a user visible key object to internal path representation. 

1496 

1497 The default implementation simply returns key. 

1498 

1499 Args: 

1500 key: User supplied key. 

1501 

1502 Returns: 

1503 A path, which is an iterable of steps. Each step must be hashable. 

1504 

1505 Raises: 

1506 TypeError: If key is of invalid type. 

1507 """ 

1508 return key 

1509 

1510 def _key_from_path(self, path): 

1511 """Converts an internal path into a user visible key object. 

1512 

1513 The default implementation creates a tuple from the path. 

1514 

1515 Args: 

1516 path: Internal path representation. 

1517 Returns: 

1518 A user visible key object. 

1519 """ 

1520 return tuple(path) 

1521 

1522 def traverse(self, node_factory, prefix=_EMPTY): 

1523 """Traverses the tree using node_factory object. 

1524 

1525 node_factory is a callable which accepts (path_conv, path, children, 

1526 value=...) arguments, where path_conv is a lambda converting path 

1527 representation to key, path is the path to this node, children is an 

1528 iterable of children nodes constructed by node_factory, optional value 

1529 is the value associated with the path. 

1530 

1531 node_factory's children argument is an iterator which has a few 

1532 consequences: 

1533 

1534 * To traverse into node's children, the object must be iterated over. 

1535 This can by accomplished by a simple ``children = list(children)`` 

1536 statement. 

1537 * Ignoring the argument allows node_factory to stop the traversal from 

1538 going into the children of the node. In other words, whole subtries 

1539 can be removed from traversal if node_factory chooses so. 

1540 * If children is stored as is (i.e. as a iterator) when it is iterated 

1541 over later on it may see an inconsistent state of the trie if it has 

1542 changed between invocation of this method and the iteration. 

1543 

1544 However, to allow constant-time determination whether the node has 

1545 children or not, the iterator implements bool conversion such that 

1546 ``has_children = bool(children)`` will tell whether node has children 

1547 without iterating over them. (Note that ``bool(children)`` will 

1548 continue returning ``True`` even if the iterator has been iterated 

1549 over). 

1550 

1551 :func:`Trie.traverse` has two advantages over :func:`Trie.iteritems` and 

1552 similar methods: 

1553 

1554 1. it allows subtries to be skipped completely when going through the 

1555 list of nodes based on the property of the parent node; and 

1556 

1557 2. it represents structure of the trie directly making it easy to 

1558 convert structure into a different representation. 

1559 

1560 For example, the below snippet prints all files in current directory 

1561 counting how many HTML files were found but ignores hidden files and 

1562 directories (i.e. those whose names start with a dot):: 

1563 

1564 import os 

1565 import pygtrie 

1566 

1567 t = pygtrie.StringTrie(separator=os.sep) 

1568 

1569 # Construct a trie with all files in current directory and all 

1570 # of its sub-directories. Files get set a True value. 

1571 # Directories are represented implicitly by being prefixes of 

1572 # files. 

1573 for root, _, files in os.walk('.'): 

1574 for name in files: t[os.path.join(root, name)] = True 

1575 

1576 def traverse_callback(path_conv, path, children, is_file=False): 

1577 if path and path[-1] != '.' and path[-1][0] == '.': 

1578 # Ignore hidden directory (but accept root node and '.') 

1579 return 0 

1580 elif is_file: 

1581 print path_conv(path) 

1582 return int(path[-1].endswith('.html')) 

1583 else: 

1584 # Otherwise, it's a directory. Traverse into children. 

1585 return sum(children) 

1586 

1587 print t.traverse(traverse_callback) 

1588 

1589 As documented, ignoring the children argument causes subtrie to be 

1590 omitted and not walked into. 

1591 

1592 In the next example, the trie is converted to a tree representation 

1593 where child nodes include a pointer to their parent. As before, hidden 

1594 files and directories are ignored:: 

1595 

1596 import os 

1597 import pygtrie 

1598 

1599 t = pygtrie.StringTrie(separator=os.sep) 

1600 for root, _, files in os.walk('.'): 

1601 for name in files: t[os.path.join(root, name)] = True 

1602 

1603 class File(object): 

1604 def __init__(self, name): 

1605 self.name = name 

1606 self.parent = None 

1607 

1608 class Directory(File): 

1609 def __init__(self, name, children): 

1610 super(Directory, self).__init__(name) 

1611 self._children = children 

1612 for child in children: 

1613 child.parent = self 

1614 

1615 def traverse_callback(path_conv, path, children, is_file=False): 

1616 if not path or path[-1] == '.' or path[-1][0] != '.': 

1617 if is_file: 

1618 return File(path[-1]) 

1619 children = filter(None, children) 

1620 return Directory(path[-1] if path else '', children) 

1621 

1622 root = t.traverse(traverse_callback) 

1623 

1624 Note: Unlike iterators, when used on a deep trie, traverse method is 

1625 prone to rising a RuntimeError exception when Python's maximum recursion 

1626 depth is reached. This can be addressed by not iterating over children 

1627 inside of the node_factory. For example, the below code converts a trie 

1628 into an undirected graph using adjacency list representation:: 

1629 

1630 def undirected_graph_from_trie(t): 

1631 '''Converts trie into a graph and returns its nodes.''' 

1632 

1633 Node = collections.namedtuple('Node', 'path neighbours') 

1634 

1635 class Builder(object): 

1636 def __init__(self, path_conv, path, children, _=None): 

1637 self.node = Node(path_conv(path), []) 

1638 self.children = children 

1639 self.parent = None 

1640 

1641 def build(self, queue): 

1642 for builder in self.children: 

1643 builder.parent = self.node 

1644 queue.append(builder) 

1645 if self.parent: 

1646 self.parent.neighbours.append(self.node) 

1647 self.node.neighbours.append(self.parent) 

1648 return self.node 

1649 

1650 nodes = [t.traverse(Builder)] 

1651 i = 0 

1652 while i < len(nodes): 

1653 nodes[i] = nodes[i].build(nodes) 

1654 i += 1 

1655 return nodes 

1656 

1657 Args: 

1658 node_factory: Makes opaque objects from the keys and values of the 

1659 trie. 

1660 prefix: Prefix for node to start traversal, by default starts at 

1661 root. 

1662 

1663 Returns: 

1664 Node object constructed by node_factory corresponding to the root 

1665 node. 

1666 """ 

1667 node, _ = self._get_node(prefix) 

1668 return node.traverse(node_factory, self._key_from_path, 

1669 list(self.__path_from_key(prefix)), 

1670 self._iteritems) 

1671 

1672 traverse.uses_bool_convertible_children = True 

1673 

1674class CharTrie(Trie): 

1675 """A variant of a :class:`pygtrie.Trie` which accepts strings as keys. 

1676 

1677 The only difference between :class:`pygtrie.CharTrie` and 

1678 :class:`pygtrie.Trie` is that when :class:`pygtrie.CharTrie` returns keys 

1679 back to the client (for instance when :func:`Trie.keys` method is called), 

1680 those keys are returned as strings. 

1681 

1682 Common example where this class can be used is a dictionary of words in 

1683 a natural language. For example:: 

1684 

1685 >>> import pygtrie 

1686 >>> t = pygtrie.CharTrie() 

1687 >>> t['wombat'] = True 

1688 >>> t['woman'] = True 

1689 >>> t['man'] = True 

1690 >>> t['manhole'] = True 

1691 >>> t.has_subtrie('wo') 

1692 True 

1693 >>> t.has_key('man') 

1694 True 

1695 >>> t.has_subtrie('man') 

1696 True 

1697 >>> t.has_subtrie('manhole') 

1698 False 

1699 """ 

1700 

1701 def _key_from_path(self, path): 

1702 return ''.join(path) 

1703 

1704 

1705class StringTrie(Trie): 

1706 """:class:`pygtrie.Trie` variant accepting strings with a separator as keys. 

1707 

1708 The trie accepts strings as keys which are split into components using 

1709 a separator specified during initialisation (forward slash, i.e. ``/``, by 

1710 default). 

1711 

1712 Common example where this class can be used is when keys are paths. For 

1713 example, it could map from a path to a request handler:: 

1714 

1715 import pygtrie 

1716 

1717 def handle_root(): pass 

1718 def handle_admin(): pass 

1719 def handle_admin_images(): pass 

1720 

1721 handlers = pygtrie.StringTrie() 

1722 handlers[''] = handle_root 

1723 handlers['/admin'] = handle_admin 

1724 handlers['/admin/images'] = handle_admin_images 

1725 

1726 request_path = '/admin/images/foo' 

1727 

1728 handler = handlers.longest_prefix(request_path) 

1729 """ 

1730 

1731 def __init__(self, *args, **kwargs): # pylint: disable=differing-param-doc 

1732 """Initialises the trie. 

1733 

1734 Except for a ``separator`` named argument, all other arguments are 

1735 interpreted the same way :func:`Trie.update` interprets them. 

1736 

1737 Args: 

1738 *args: Passed to super class initialiser. 

1739 **kwargs: Passed to super class initialiser. 

1740 separator: A separator to use when splitting keys into paths used by 

1741 the trie. "/" is used if this argument is not specified. This 

1742 named argument is not specified on the function's prototype 

1743 because of Python's limitations. 

1744 

1745 Raises: 

1746 TypeError: If ``separator`` is not a string. 

1747 ValueError: If ``separator`` is empty. 

1748 """ 

1749 separator = kwargs.pop('separator', '/') 

1750 if not isinstance(separator, getattr(__builtins__, 'basestring', str)): 

1751 raise TypeError('separator must be a string') 

1752 if not separator: 

1753 raise ValueError('separator can not be empty') 

1754 self._separator = separator 

1755 super(StringTrie, self).__init__(*args, **kwargs) 

1756 

1757 @classmethod 

1758 def fromkeys(cls, keys, value=None, separator='/'): # pylint: disable=arguments-differ 

1759 trie = cls(separator=separator) 

1760 for key in keys: 

1761 trie[key] = value 

1762 return trie 

1763 

1764 @classmethod 

1765 def _merge_impl(cls, dst, src, overwrite): 

1766 if not isinstance(dst, StringTrie): 

1767 raise TypeError('%s cannot be merged into a %s' % ( 

1768 type(src).__name__, type(dst).__name__)) 

1769 super(StringTrie, cls)._merge_impl(dst, src, overwrite=overwrite) 

1770 

1771 def __str__(self): 

1772 if not self: 

1773 return '%s(separator=%s)' % (type(self).__name__, self._separator) 

1774 return '%s(%s, separator=%s)' % ( 

1775 type(self).__name__, self._str_items(), self._separator) 

1776 

1777 def __repr__(self): 

1778 return '%s([%s], separator=%r)' % ( 

1779 type(self).__name__, self._str_items('(%r, %r)'), self._separator) 

1780 

1781 def _eq_impl(self, other): 

1782 # If separators differ, fall back to slow generic comparison. This is 

1783 # because we want StringTrie(foo/bar.baz: 42, separator=/) compare equal 

1784 # to StringTrie(foo/bar.baz: 42, separator=.) even though they have 

1785 # different trie structure. 

1786 if self._separator != other._separator: # pylint: disable=protected-access 

1787 return NotImplemented 

1788 return super(StringTrie, self)._eq_impl(other) 

1789 

1790 def _path_from_key(self, key): 

1791 return key.split(self._separator) 

1792 

1793 def _key_from_path(self, path): 

1794 return self._separator.join(path) 

1795 

1796 

1797class PrefixSet(_abc.MutableSet): 

1798 """A set of prefixes. 

1799 

1800 :class:`pygtrie.PrefixSet` works similar to a normal set except it is said 

1801 to contain a key if the key or it's prefix is stored in the set. For 

1802 instance, if "foo" is added to the set, the set contains "foo" as well as 

1803 "foobar". 

1804 

1805 The set supports addition of elements but does *not* support removal of 

1806 elements. This is because there's no obvious consistent and intuitive 

1807 behaviour for element deletion. 

1808 """ 

1809 

1810 def __init__(self, iterable=(), factory=Trie, **kwargs): 

1811 """Initialises the prefix set. 

1812 

1813 Args: 

1814 iterable: A sequence of keys to add to the set. 

1815 factory: A function used to create a trie used by the 

1816 :class:`pygtrie.PrefixSet`. 

1817 kwargs: Additional keyword arguments passed to the factory function. 

1818 """ 

1819 super(PrefixSet, self).__init__() 

1820 self._trie = factory(**kwargs) 

1821 for key in iterable: 

1822 self.add(key) 

1823 

1824 def copy(self): 

1825 """Returns a shallow copy of the object.""" 

1826 return self.__copy__() 

1827 

1828 def __copy__(self): 

1829 # pylint: disable=protected-access 

1830 cpy = self.__class__() 

1831 cpy.__dict__ = self.__dict__.copy() 

1832 cpy._trie = self._trie.__copy__() 

1833 return cpy 

1834 

1835 def __deepcopy__(self, memo): 

1836 # pylint: disable=protected-access 

1837 cpy = self.__class__() 

1838 cpy.__dict__ = self.__dict__.copy() 

1839 cpy._trie = self._trie.__deepcopy__(memo) 

1840 return cpy 

1841 

1842 def clear(self): 

1843 """Removes all keys from the set.""" 

1844 self._trie.clear() 

1845 

1846 def __contains__(self, key): 

1847 """Checks whether set contains key or its prefix.""" 

1848 return bool(self._trie.shortest_prefix(key)[1]) 

1849 

1850 def __iter__(self): 

1851 """Return iterator over all prefixes in the set. 

1852 

1853 See :func:`PrefixSet.iter` method for more info. 

1854 """ 

1855 return self._trie.iterkeys() 

1856 

1857 def iter(self, prefix=_EMPTY): 

1858 """Iterates over all keys in the set optionally starting with a prefix. 

1859 

1860 Since a key does not have to be explicitly added to the set to be an 

1861 element of the set, this method does not iterate over all possible keys 

1862 that the set contains, but only over the shortest set of prefixes of all 

1863 the keys the set contains. 

1864 

1865 For example, if "foo" has been added to the set, the set contains also 

1866 "foobar", but this method will *not* iterate over "foobar". 

1867 

1868 If ``prefix`` argument is given, method will iterate over keys with 

1869 given prefix only. The keys yielded from the function if prefix is 

1870 given does not have to be a subset (in mathematical sense) of the keys 

1871 yielded when there is not prefix. This happens, if the set contains 

1872 a prefix of the given prefix. 

1873 

1874 For example, if only "foo" has been added to the set, iter method called 

1875 with no arguments will yield "foo" only. However, when called with 

1876 "foobar" argument, it will yield "foobar" only. 

1877 """ 

1878 if prefix is _EMPTY: 

1879 return iter(self) 

1880 if self._trie.has_node(prefix): 

1881 return self._trie.iterkeys(prefix=prefix) 

1882 if prefix in self: 

1883 # Make sure the type of returned keys is consistent. 

1884 # pylint: disable=protected-access 

1885 return ( 

1886 self._trie._key_from_path(self._trie._path_from_key(prefix)),) 

1887 return () 

1888 

1889 def __len__(self): 

1890 """Returns number of keys stored in the set. 

1891 

1892 Since a key does not have to be explicitly added to the set to be an 

1893 element of the set, this method does not count over all possible keys 

1894 that the set contains (since that would be infinity), but only over the 

1895 shortest set of prefixes of all the keys the set contains. 

1896 

1897 For example, if "foo" has been added to the set, the set contains also 

1898 "foobar", but this method will *not* count "foobar". 

1899 

1900 """ 

1901 return len(self._trie) 

1902 

1903 def add(self, value): 

1904 """Adds given value to the set. 

1905 

1906 If the set already contains prefix of the value being added, this 

1907 operation has no effect. If the value being added is a prefix of some 

1908 existing values in the set, those values are deleted and replaced by 

1909 a single entry for the value being added. 

1910 

1911 For example, if the set contains value "foo" adding a value "foobar" 

1912 does not change anything. On the other hand, if the set contains values 

1913 "foobar" and "foobaz", adding a value "foo" will replace those two 

1914 values with a single value "foo". 

1915 

1916 This makes a difference when iterating over the values or counting 

1917 number of values. Counter intuitively, adding of a value can *decrease* 

1918 size of the set. 

1919 

1920 Args: 

1921 value: Value to add. 

1922 """ 

1923 # We're friends with Trie; pylint: disable=protected-access 

1924 self._trie._set_node_if_no_prefix(value) 

1925 

1926 def discard(self, value): 

1927 """Raises NotImplementedError.""" 

1928 raise NotImplementedError( 

1929 'Removing values from PrefixSet is not implemented.') 

1930 

1931 def remove(self, value): 

1932 """Raises NotImplementedError.""" 

1933 raise NotImplementedError( 

1934 'Removing values from PrefixSet is not implemented.') 

1935 

1936 def pop(self): 

1937 """Raises NotImplementedError.""" 

1938 raise NotImplementedError( 

1939 'Removing values from PrefixSet is not implemented.')