Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/airflow/sdk/definitions/dag.py: 26%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

736 statements  

1# 

2# Licensed to the Apache Software Foundation (ASF) under one 

3# or more contributor license agreements. See the NOTICE file 

4# distributed with this work for additional information 

5# regarding copyright ownership. The ASF licenses this file 

6# to you under the Apache License, Version 2.0 (the 

7# "License"); you may not use this file except in compliance 

8# with the License. You may obtain a copy of the License at 

9# 

10# http://www.apache.org/licenses/LICENSE-2.0 

11# 

12# Unless required by applicable law or agreed to in writing, 

13# software distributed under the License is distributed on an 

14# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 

15# KIND, either express or implied. See the License for the 

16# specific language governing permissions and limitations 

17# under the License. 

18from __future__ import annotations 

19 

20import copy 

21import functools 

22import itertools 

23import json 

24import logging 

25import os 

26import sys 

27import warnings 

28import weakref 

29from collections import abc, defaultdict, deque 

30from collections.abc import Callable, Collection, Iterable, MutableSet 

31from datetime import datetime, timedelta 

32from inspect import signature 

33from typing import TYPE_CHECKING, Any, ClassVar, TypeGuard, Union, cast, overload 

34from urllib.parse import urlsplit 

35from uuid import UUID 

36 

37import attrs 

38import jinja2 

39from dateutil.relativedelta import relativedelta 

40 

41from airflow import settings 

42from airflow.sdk import TaskInstanceState, TriggerRule 

43from airflow.sdk.bases.operator import BaseOperator 

44from airflow.sdk.bases.timetable import BaseTimetable 

45from airflow.sdk.definitions._internal.node import validate_key 

46from airflow.sdk.definitions._internal.types import NOTSET, ArgNotSet, is_arg_set 

47from airflow.sdk.definitions.asset import AssetAll, BaseAsset 

48from airflow.sdk.definitions.context import Context 

49from airflow.sdk.definitions.deadline import DeadlineAlert 

50from airflow.sdk.definitions.param import DagParam, ParamsDict 

51from airflow.sdk.definitions.timetables.assets import AssetTriggeredTimetable 

52from airflow.sdk.definitions.timetables.simple import ContinuousTimetable, NullTimetable, OnceTimetable 

53from airflow.sdk.exceptions import ( 

54 AirflowDagCycleException, 

55 DuplicateTaskIdFound, 

56 FailFastDagInvalidTriggerRule, 

57 ParamValidationError, 

58 RemovedInAirflow4Warning, 

59 TaskNotFound, 

60) 

61 

62if TYPE_CHECKING: 

63 from re import Pattern 

64 from typing import TypeAlias 

65 

66 from pendulum.tz.timezone import FixedTimezone, Timezone 

67 from typing_extensions import Self, TypeIs 

68 

69 from airflow.models.taskinstance import TaskInstance as SchedulerTaskInstance 

70 from airflow.sdk.definitions.decorators import TaskDecoratorCollection 

71 from airflow.sdk.definitions.edges import EdgeInfoType 

72 from airflow.sdk.definitions.mappedoperator import MappedOperator 

73 from airflow.sdk.definitions.taskgroup import TaskGroup 

74 from airflow.sdk.execution_time.supervisor import TaskRunResult 

75 from airflow.timetables.base import DataInterval, Timetable as CoreTimetable 

76 

77 Operator: TypeAlias = BaseOperator | MappedOperator 

78 

79log = logging.getLogger(__name__) 

80 

81TAG_MAX_LEN = 100 

82 

83__all__ = [ 

84 "DAG", 

85 "dag", 

86] 

87 

88FINISHED_STATES = frozenset( 

89 [ 

90 TaskInstanceState.SUCCESS, 

91 TaskInstanceState.FAILED, 

92 TaskInstanceState.SKIPPED, 

93 TaskInstanceState.UPSTREAM_FAILED, 

94 TaskInstanceState.REMOVED, 

95 ] 

96) 

97 

98DagStateChangeCallback = Callable[[Context], None] 

99ScheduleInterval = None | str | timedelta | relativedelta 

100 

101ScheduleArg = Union[ScheduleInterval, BaseTimetable, "CoreTimetable", BaseAsset, Collection[BaseAsset]] 

102 

103 

104_DAG_HASH_ATTRS = frozenset( 

105 { 

106 "dag_id", 

107 "task_ids", 

108 "start_date", 

109 "end_date", 

110 "fileloc", 

111 "template_searchpath", 

112 "last_loaded", 

113 "schedule", 

114 # TODO: Task-SDK: we should be hashing on timetable now, not schedule! 

115 # "timetable", 

116 } 

117) 

118 

119 

120def _is_core_timetable(schedule: ScheduleArg) -> TypeIs[CoreTimetable]: 

121 try: 

122 from airflow.timetables.base import Timetable 

123 except ImportError: 

124 return False 

125 return isinstance(schedule, Timetable) 

126 

127 

128def _create_timetable(interval: ScheduleInterval, timezone: Timezone | FixedTimezone) -> BaseTimetable: 

129 """Create a Timetable instance from a plain ``schedule`` value.""" 

130 from airflow.sdk.configuration import conf as airflow_conf 

131 from airflow.sdk.definitions.timetables.interval import ( 

132 CronDataIntervalTimetable, 

133 DeltaDataIntervalTimetable, 

134 ) 

135 from airflow.sdk.definitions.timetables.trigger import CronTriggerTimetable, DeltaTriggerTimetable 

136 

137 if interval is None: 

138 return NullTimetable() 

139 if interval == "@once": 

140 return OnceTimetable() 

141 if interval == "@continuous": 

142 return ContinuousTimetable() 

143 if isinstance(interval, timedelta | relativedelta): 

144 if airflow_conf.getboolean("scheduler", "create_cron_data_intervals"): 

145 return DeltaDataIntervalTimetable(interval) 

146 return DeltaTriggerTimetable(interval) 

147 if isinstance(interval, str): 

148 if airflow_conf.getboolean("scheduler", "create_cron_data_intervals"): 

149 return CronDataIntervalTimetable(interval, timezone) 

150 return CronTriggerTimetable(interval, timezone=timezone) 

151 raise ValueError(f"{interval!r} is not a valid schedule.") 

152 

153 

154def _config_bool_factory(section: str, key: str) -> Callable[[], bool]: 

155 from airflow.sdk.configuration import conf 

156 

157 return functools.partial(conf.getboolean, section, key) 

158 

159 

160def _config_int_factory(section: str, key: str) -> Callable[[], int]: 

161 from airflow.sdk.configuration import conf 

162 

163 return functools.partial(conf.getint, section, key) 

164 

165 

166def _convert_params(val: abc.MutableMapping | None, self_: DAG) -> ParamsDict: 

167 """ 

168 Convert the plain dict into a ParamsDict. 

169 

170 This will also merge in params from default_args 

171 """ 

172 val = val or {} 

173 

174 # merging potentially conflicting default_args['params'] into params 

175 if "params" in self_.default_args: 

176 val.update(self_.default_args["params"]) 

177 del self_.default_args["params"] 

178 

179 params = ParamsDict(val) 

180 object.__setattr__(self_, "params", params) 

181 

182 return params 

183 

184 

185def _convert_str_to_tuple(val: str | Iterable[str] | None) -> Iterable[str] | None: 

186 if isinstance(val, str): 

187 return (val,) 

188 return val 

189 

190 

191def _convert_tags(tags: Collection[str] | None) -> MutableSet[str]: 

192 return set(tags or []) 

193 

194 

195def _convert_access_control(access_control): 

196 if access_control is None: 

197 return None 

198 updated_access_control = {} 

199 for role, perms in access_control.items(): 

200 updated_access_control[role] = updated_access_control.get(role, {}) 

201 if isinstance(perms, set | list): 

202 # Support for old-style access_control where only the actions are specified 

203 updated_access_control[role]["DAGs"] = set(perms) 

204 else: 

205 updated_access_control[role] = perms 

206 return updated_access_control 

207 

208 

209def _convert_deadline(deadline: list[DeadlineAlert] | DeadlineAlert | None) -> list[DeadlineAlert] | None: 

210 """Convert deadline parameter to a list of DeadlineAlert objects.""" 

211 if deadline is None: 

212 return None 

213 if isinstance(deadline, DeadlineAlert): 

214 return [deadline] 

215 return list(deadline) 

216 

217 

218def _convert_doc_md(doc_md: str | None) -> str | None: 

219 if doc_md is None: 

220 return doc_md 

221 

222 if doc_md.endswith(".md"): 

223 try: 

224 with open(doc_md) as fh: 

225 return fh.read() 

226 except FileNotFoundError: 

227 return doc_md 

228 

229 return doc_md 

230 

231 

232def _all_after_dag_id_to_kw_only(cls, fields: list[attrs.Attribute]): 

233 i = iter(fields) 

234 f = next(i) 

235 if f.name != "dag_id": 

236 raise RuntimeError("dag_id was not the first field") 

237 yield f 

238 

239 for f in i: 

240 yield f.evolve(kw_only=True) 

241 

242 

243if TYPE_CHECKING: 

244 # Given this attrs field: 

245 # 

246 # default_args: dict[str, Any] = attrs.field(factory=dict, converter=copy.copy) 

247 # 

248 # mypy ignores the type of the attrs and works out the type as the converter function. However it doesn't 

249 # cope with generics properly and errors with 'incompatible type "dict[str, object]"; expected "_T"' 

250 # 

251 # https://github.com/python/mypy/issues/8625 

252 def dict_copy(_: dict[str, Any]) -> dict[str, Any]: ... 

253else: 

254 dict_copy = copy.copy 

255 

256 

257def _default_start_date(instance: DAG): 

258 # Find start date inside default_args for compat with Airflow 2. 

259 from airflow.sdk import timezone 

260 

261 if date := instance.default_args.get("start_date"): 

262 if not isinstance(date, datetime): 

263 date = timezone.parse(date) 

264 instance.default_args["start_date"] = date 

265 return date 

266 return None 

267 

268 

269def _default_dag_display_name(instance: DAG) -> str: 

270 return instance.dag_id 

271 

272 

273def _default_fileloc() -> str: 

274 # Skip over this frame, and the 'attrs generated init' 

275 back = sys._getframe().f_back 

276 if not back or not (back := back.f_back): 

277 # We expect two frames back, if not we don't know where we are 

278 return "" 

279 return back.f_code.co_filename if back else "" 

280 

281 

282def _default_task_group(instance: DAG) -> TaskGroup: 

283 from airflow.sdk.definitions.taskgroup import TaskGroup 

284 

285 return TaskGroup.create_root(dag=instance) 

286 

287 

288# TODO: Task-SDK: look at re-enabling slots after we remove pickling 

289@attrs.define(repr=False, field_transformer=_all_after_dag_id_to_kw_only, slots=False) 

290class DAG: 

291 """ 

292 A dag is a collection of tasks with directional dependencies. 

293 

294 A dag also has a schedule, a start date and an end date (optional). For each schedule, 

295 (say daily or hourly), the DAG needs to run each individual tasks as their dependencies 

296 are met. Certain tasks have the property of depending on their own past, meaning that 

297 they can't run until their previous schedule (and upstream tasks) are completed. 

298 

299 Dags essentially act as namespaces for tasks. A task_id can only be 

300 added once to a Dag. 

301 

302 Note that if you plan to use time zones all the dates provided should be pendulum 

303 dates. See :ref:`timezone_aware_dags`. 

304 

305 .. versionadded:: 2.4 

306 The *schedule* argument to specify either time-based scheduling logic 

307 (timetable), or dataset-driven triggers. 

308 

309 .. versionchanged:: 3.0 

310 The default value of *schedule* has been changed to *None* (no schedule). 

311 The previous default was ``timedelta(days=1)``. 

312 

313 :param dag_id: The id of the DAG; must consist exclusively of alphanumeric 

314 characters, dashes, dots and underscores (all ASCII) 

315 :param description: The description for the DAG to e.g. be shown on the webserver 

316 :param schedule: If provided, this defines the rules according to which DAG 

317 runs are scheduled. Possible values include a cron expression string, 

318 timedelta object, Timetable, or list of Asset objects. 

319 See also :external:doc:`howto/timetable`. 

320 :param start_date: The timestamp from which the scheduler will 

321 attempt to backfill. If this is not provided, backfilling must be done 

322 manually with an explicit time range. 

323 :param end_date: A date beyond which your DAG won't run, leave to None 

324 for open-ended scheduling. 

325 :param template_searchpath: This list of folders (non-relative) 

326 defines where jinja will look for your templates. Order matters. 

327 Note that jinja/airflow includes the path of your DAG file by 

328 default 

329 :param template_undefined: Template undefined type. 

330 :param user_defined_macros: a dictionary of macros that will be exposed 

331 in your jinja templates. For example, passing ``dict(foo='bar')`` 

332 to this argument allows you to ``{{ foo }}`` in all jinja 

333 templates related to this DAG. Note that you can pass any 

334 type of object here. 

335 :param user_defined_filters: a dictionary of filters that will be exposed 

336 in your jinja templates. For example, passing 

337 ``dict(hello=lambda name: 'Hello %s' % name)`` to this argument allows 

338 you to ``{{ 'world' | hello }}`` in all jinja templates related to 

339 this DAG. 

340 :param default_args: A dictionary of default parameters to be used 

341 as constructor keyword parameters when initialising operators. 

342 Note that operators have the same hook, and precede those defined 

343 here, meaning that if your dict contains `'depends_on_past': True` 

344 here and `'depends_on_past': False` in the operator's call 

345 `default_args`, the actual value will be `False`. 

346 :param params: a dictionary of DAG level parameters that are made 

347 accessible in templates, namespaced under `params`. These 

348 params can be overridden at the task level. 

349 :param max_active_tasks: the number of task instances allowed to run 

350 concurrently 

351 :param max_active_runs: maximum number of active DAG runs, beyond this 

352 number of DAG runs in a running state, the scheduler won't create 

353 new active DAG runs 

354 :param max_consecutive_failed_dag_runs: (experimental) maximum number of consecutive failed DAG runs, 

355 beyond this the scheduler will disable the DAG 

356 :param dagrun_timeout: Specify the duration a DagRun should be allowed to run before it times out or 

357 fails. Task instances that are running when a DagRun is timed out will be marked as skipped. 

358 :param sla_miss_callback: DEPRECATED - The SLA feature is removed in Airflow 3.0, to be replaced with DeadlineAlerts in 3.1 

359 :param deadline: An optional DeadlineAlert for the Dag. 

360 :param catchup: Perform scheduler catchup (or only run latest)? Defaults to False 

361 :param on_failure_callback: A function or list of functions to be called when a DagRun of this dag fails. 

362 A context dictionary is passed as a single parameter to this function. 

363 :param on_success_callback: Much like the ``on_failure_callback`` except 

364 that it is executed when the dag succeeds. 

365 :param access_control: Specify optional DAG-level actions, e.g., 

366 "{'role1': {'can_read'}, 'role2': {'can_read', 'can_edit', 'can_delete'}}" 

367 or it can specify the resource name if there is a DAGs Run resource, e.g., 

368 "{'role1': {'DAG Runs': {'can_create'}}, 'role2': {'DAGs': {'can_read', 'can_edit', 'can_delete'}}" 

369 :param is_paused_upon_creation: Specifies if the dag is paused when created for the first time. 

370 If the dag exists already, this flag will be ignored. If this optional parameter 

371 is not specified, the global config setting will be used. 

372 :param jinja_environment_kwargs: additional configuration options to be passed to Jinja 

373 ``Environment`` for template rendering 

374 

375 **Example**: to avoid Jinja from removing a trailing newline from template strings :: 

376 

377 DAG( 

378 dag_id="my-dag", 

379 jinja_environment_kwargs={ 

380 "keep_trailing_newline": True, 

381 # some other jinja2 Environment options here 

382 }, 

383 ) 

384 

385 **See**: `Jinja Environment documentation 

386 <https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Environment>`_ 

387 

388 :param render_template_as_native_obj: If True, uses a Jinja ``NativeEnvironment`` 

389 to render templates as native Python types. If False, a Jinja 

390 ``Environment`` is used to render templates as string values. 

391 :param tags: List of tags to help filtering Dags in the UI. 

392 :param owner_links: Dict of owners and their links, that will be clickable on the Dags view UI. 

393 Can be used as an HTTP link (for example the link to your Slack channel), or a mailto link. 

394 e.g: ``{"dag_owner": "https://airflow.apache.org/"}`` 

395 :param auto_register: Automatically register this DAG when it is used in a ``with`` block 

396 :param fail_fast: Fails currently running tasks when task in Dag fails. 

397 **Warning**: A fail stop dag can only have tasks with the default trigger rule ("all_success"). 

398 An exception will be thrown if any task in a fail stop dag has a non default trigger rule. 

399 :param dag_display_name: The display name of the Dag which appears on the UI. 

400 """ 

401 

402 __serialized_fields: ClassVar[frozenset[str]] 

403 

404 # Note: mypy gets very confused about the use of `@${attr}.default` for attrs without init=False -- and it 

405 # doesn't correctly track/notice that they have default values (it gives errors about `Missing positional 

406 # argument "description" in call to "DAG"`` etc), so for init=True args we use the `default=Factory()` 

407 # style 

408 

409 def __rich_repr__(self): 

410 yield "dag_id", self.dag_id 

411 yield "schedule", self.schedule 

412 yield "#tasks", len(self.tasks) 

413 

414 __rich_repr__.angular = True # type: ignore[attr-defined] 

415 

416 # NOTE: When updating arguments here, please also keep arguments in @dag() 

417 # below in sync. (Search for 'def dag(' in this file.) 

418 dag_id: str = attrs.field(kw_only=False, validator=lambda i, a, v: validate_key(v)) 

419 description: str | None = attrs.field( 

420 default=None, 

421 validator=attrs.validators.optional(attrs.validators.instance_of(str)), 

422 ) 

423 default_args: dict[str, Any] = attrs.field( 

424 factory=dict, validator=attrs.validators.instance_of(dict), converter=dict_copy 

425 ) 

426 start_date: datetime | None = attrs.field( 

427 default=attrs.Factory(_default_start_date, takes_self=True), 

428 ) 

429 

430 end_date: datetime | None = None 

431 timezone: FixedTimezone | Timezone = attrs.field(init=False) 

432 schedule: ScheduleArg = attrs.field(default=None, on_setattr=attrs.setters.frozen) 

433 timetable: BaseTimetable | CoreTimetable = attrs.field(init=False) 

434 template_searchpath: str | Iterable[str] | None = attrs.field( 

435 default=None, converter=_convert_str_to_tuple 

436 ) 

437 # TODO: Task-SDK: Work out how to not import jinj2 until we need it! It's expensive 

438 template_undefined: type[jinja2.StrictUndefined] = jinja2.StrictUndefined 

439 user_defined_macros: dict | None = None 

440 user_defined_filters: dict | None = None 

441 max_active_tasks: int = attrs.field( 

442 factory=_config_int_factory("core", "max_active_tasks_per_dag"), 

443 converter=attrs.converters.default_if_none( # type: ignore[misc] 

444 # attrs only supports named callables or lambdas, but partial works 

445 # OK here too. This is a false positive from attrs's Mypy plugin. 

446 factory=_config_int_factory("core", "max_active_tasks_per_dag"), 

447 ), 

448 validator=attrs.validators.instance_of(int), 

449 ) 

450 max_active_runs: int = attrs.field( 

451 factory=_config_int_factory("core", "max_active_runs_per_dag"), 

452 converter=attrs.converters.default_if_none( # type: ignore[misc] 

453 # attrs only supports named callables or lambdas, but partial works 

454 # OK here too. This is a false positive from attrs's Mypy plugin. 

455 factory=_config_int_factory("core", "max_active_runs_per_dag"), 

456 ), 

457 validator=attrs.validators.instance_of(int), 

458 ) 

459 max_consecutive_failed_dag_runs: int = attrs.field( 

460 factory=_config_int_factory("core", "max_consecutive_failed_dag_runs_per_dag"), 

461 converter=attrs.converters.default_if_none( # type: ignore[misc] 

462 # attrs only supports named callables or lambdas, but partial works 

463 # OK here too. This is a false positive from attrs's Mypy plugin. 

464 factory=_config_int_factory("core", "max_consecutive_failed_dag_runs_per_dag"), 

465 ), 

466 validator=attrs.validators.instance_of(int), 

467 ) 

468 dagrun_timeout: timedelta | None = attrs.field( 

469 default=None, 

470 validator=attrs.validators.optional(attrs.validators.instance_of(timedelta)), 

471 ) 

472 deadline: list[DeadlineAlert] | DeadlineAlert | None = attrs.field( 

473 default=None, 

474 converter=_convert_deadline, 

475 validator=attrs.validators.optional( 

476 attrs.validators.deep_iterable( 

477 member_validator=attrs.validators.instance_of(DeadlineAlert), 

478 iterable_validator=attrs.validators.instance_of(list), 

479 ) 

480 ), 

481 ) 

482 

483 sla_miss_callback: None = attrs.field(default=None) 

484 catchup: bool = attrs.field( 

485 factory=_config_bool_factory("scheduler", "catchup_by_default"), 

486 ) 

487 on_success_callback: None | DagStateChangeCallback | list[DagStateChangeCallback] = None 

488 on_failure_callback: None | DagStateChangeCallback | list[DagStateChangeCallback] = None 

489 doc_md: str | None = attrs.field(default=None, converter=_convert_doc_md) 

490 params: ParamsDict = attrs.field( 

491 # mypy doesn't really like passing the Converter object 

492 default=None, 

493 converter=attrs.Converter(_convert_params, takes_self=True), # type: ignore[misc, call-overload] 

494 ) 

495 access_control: dict[str, dict[str, Collection[str]]] | None = attrs.field( 

496 default=None, 

497 converter=attrs.Converter(_convert_access_control), # type: ignore[misc, call-overload] 

498 ) 

499 is_paused_upon_creation: bool | None = None 

500 jinja_environment_kwargs: dict | None = None 

501 render_template_as_native_obj: bool = attrs.field(default=False, converter=bool) 

502 tags: MutableSet[str] = attrs.field(factory=set, converter=_convert_tags) 

503 owner_links: dict[str, str] = attrs.field(factory=dict) 

504 auto_register: bool = attrs.field(default=True, converter=bool) 

505 fail_fast: bool = attrs.field(default=False, converter=bool) 

506 dag_display_name: str = attrs.field( 

507 default=attrs.Factory(_default_dag_display_name, takes_self=True), 

508 validator=attrs.validators.instance_of(str), 

509 ) 

510 

511 task_dict: dict[str, Operator] = attrs.field(factory=dict, init=False) 

512 

513 task_group: TaskGroup = attrs.field( 

514 on_setattr=attrs.setters.frozen, default=attrs.Factory(_default_task_group, takes_self=True) 

515 ) 

516 

517 fileloc: str = attrs.field(init=False, factory=_default_fileloc) 

518 relative_fileloc: str | None = attrs.field(init=False, default=None) 

519 partial: bool = attrs.field(init=False, default=False) 

520 

521 edge_info: dict[str, dict[str, EdgeInfoType]] = attrs.field(init=False, factory=dict) 

522 

523 has_on_success_callback: bool = attrs.field(init=False) 

524 has_on_failure_callback: bool = attrs.field(init=False) 

525 disable_bundle_versioning: bool = attrs.field( 

526 factory=_config_bool_factory("dag_processor", "disable_bundle_versioning") 

527 ) 

528 

529 # TODO (GH-52141): This is never used in the sdk dag (it only makes sense 

530 # after this goes through the dag processor), but various parts of the code 

531 # depends on its existence. We should remove this after completely splitting 

532 # DAG classes in the SDK and scheduler. 

533 last_loaded: datetime | None = attrs.field(init=False, default=None) 

534 

535 def __attrs_post_init__(self): 

536 from airflow.sdk import timezone 

537 

538 # Apply the timezone we settled on to start_date, end_date if it wasn't supplied 

539 if isinstance(_start_date := self.default_args.get("start_date"), str): 

540 self.default_args["start_date"] = timezone.parse(_start_date, timezone=self.timezone) 

541 if isinstance(_end_date := self.default_args.get("end_date"), str): 

542 self.default_args["end_date"] = timezone.parse(_end_date, timezone=self.timezone) 

543 

544 self.start_date = timezone.convert_to_utc(self.start_date) 

545 self.end_date = timezone.convert_to_utc(self.end_date) 

546 if start_date := self.default_args.get("start_date", None): 

547 self.default_args["start_date"] = timezone.convert_to_utc(start_date) 

548 if end_date := self.default_args.get("end_date", None): 

549 self.default_args["end_date"] = timezone.convert_to_utc(end_date) 

550 if self.access_control is not None: 

551 warnings.warn( 

552 "The airflow.security.permissions module is deprecated; please see https://airflow.apache.org/docs/apache-airflow/stable/security/deprecated_permissions.html", 

553 RemovedInAirflow4Warning, 

554 stacklevel=2, 

555 ) 

556 if ( 

557 active_runs_limit := self.timetable.active_runs_limit 

558 ) is not None and active_runs_limit < self.max_active_runs: 

559 raise ValueError( 

560 f"Invalid max_active_runs: {type(self.timetable)} " 

561 f"requires max_active_runs <= {active_runs_limit}" 

562 ) 

563 

564 @params.validator 

565 def _validate_params(self, _, params: ParamsDict): 

566 """ 

567 Validate Param values when the Dag has schedule defined. 

568 

569 Raise exception if there are any Params which can not be resolved by their schema definition. 

570 """ 

571 if not self.timetable or not self.timetable.can_be_scheduled: 

572 return 

573 

574 try: 

575 params.validate() 

576 except ParamValidationError as pverr: 

577 raise ValueError( 

578 f"Dag {self.dag_id!r} is not allowed to define a Schedule, " 

579 "as there are required params without default values, or the default values are not valid." 

580 ) from pverr 

581 

582 @catchup.validator 

583 def _validate_catchup(self, _, catchup: bool): 

584 requires_automatic_backfilling = self.timetable.can_be_scheduled and catchup 

585 if requires_automatic_backfilling and not ("start_date" in self.default_args or self.start_date): 

586 raise ValueError("start_date is required when catchup=True") 

587 

588 @tags.validator 

589 def _validate_tags(self, _, tags: Collection[str]): 

590 if tags and any(len(tag) > TAG_MAX_LEN for tag in tags): 

591 raise ValueError(f"tag cannot be longer than {TAG_MAX_LEN} characters") 

592 

593 @max_active_runs.validator 

594 def _validate_max_active_runs(self, _, max_active_runs): 

595 if self.timetable.active_runs_limit is not None: 

596 if self.timetable.active_runs_limit < self.max_active_runs: 

597 raise ValueError( 

598 f"Invalid max_active_runs: {type(self.timetable).__name__} " 

599 f"requires max_active_runs <= {self.timetable.active_runs_limit}" 

600 ) 

601 

602 @timetable.default 

603 def _default_timetable(instance: DAG) -> BaseTimetable | CoreTimetable: 

604 schedule = instance.schedule 

605 # TODO: Once 

606 # delattr(self, "schedule") 

607 if _is_core_timetable(schedule): 

608 return schedule 

609 if isinstance(schedule, BaseTimetable): 

610 return schedule 

611 if isinstance(schedule, BaseAsset): 

612 return AssetTriggeredTimetable(schedule) 

613 if isinstance(schedule, Collection) and not isinstance(schedule, str): 

614 if not all(isinstance(x, BaseAsset) for x in schedule): 

615 raise ValueError( 

616 "All elements in 'schedule' should be either assets, asset references, or asset aliases" 

617 ) 

618 return AssetTriggeredTimetable(AssetAll(*schedule)) 

619 return _create_timetable(schedule, instance.timezone) 

620 

621 @timezone.default 

622 def _extract_tz(instance): 

623 import pendulum 

624 

625 from airflow.sdk import timezone 

626 

627 start_date = instance.start_date or instance.default_args.get("start_date") 

628 

629 if start_date: 

630 if not isinstance(start_date, datetime): 

631 start_date = timezone.parse(start_date) 

632 tzinfo = start_date.tzinfo or settings.TIMEZONE 

633 tz = pendulum.instance(start_date, tz=tzinfo).timezone 

634 else: 

635 tz = settings.TIMEZONE 

636 

637 return tz 

638 

639 @has_on_success_callback.default 

640 def _has_on_success_callback(self) -> bool: 

641 return self.on_success_callback is not None 

642 

643 @has_on_failure_callback.default 

644 def _has_on_failure_callback(self) -> bool: 

645 return self.on_failure_callback is not None 

646 

647 @sla_miss_callback.validator 

648 def _validate_sla_miss_callback(self, _, value): 

649 if value is not None: 

650 warnings.warn( 

651 "The SLA feature is removed in Airflow 3.0, and replaced with a Deadline Alerts in >=3.1", 

652 stacklevel=2, 

653 ) 

654 return value 

655 

656 def __repr__(self): 

657 return f"<DAG: {self.dag_id}>" 

658 

659 def __eq__(self, other: Self | Any): 

660 # TODO: This subclassing behaviour seems wrong, but it's what Airflow has done for ~ever. 

661 if type(self) is not type(other): 

662 return False 

663 return all(getattr(self, c, None) == getattr(other, c, None) for c in _DAG_HASH_ATTRS) 

664 

665 def __ne__(self, other: Any): 

666 return not self == other 

667 

668 def __lt__(self, other): 

669 return self.dag_id < other.dag_id 

670 

671 def __hash__(self): 

672 hash_components: list[Any] = [type(self)] 

673 for c in _DAG_HASH_ATTRS: 

674 # If it is a list, convert to tuple because lists can't be hashed 

675 if isinstance(getattr(self, c, None), list): 

676 val = tuple(getattr(self, c)) 

677 else: 

678 val = getattr(self, c, None) 

679 try: 

680 hash(val) 

681 hash_components.append(val) 

682 except TypeError: 

683 hash_components.append(repr(val)) 

684 return hash(tuple(hash_components)) 

685 

686 def __enter__(self) -> Self: 

687 from airflow.sdk.definitions._internal.contextmanager import DagContext 

688 

689 DagContext.push(self) 

690 return self 

691 

692 def __exit__(self, _type, _value, _tb): 

693 from airflow.sdk.definitions._internal.contextmanager import DagContext 

694 

695 _ = DagContext.pop() 

696 

697 def validate(self): 

698 """ 

699 Validate the Dag has a coherent setup. 

700 

701 This is called by the Dag bag before bagging the Dag. 

702 """ 

703 self.timetable.validate() 

704 self.validate_setup_teardown() 

705 

706 # We validate owner links on set, but since it's a dict it could be mutated without calling the 

707 # setter. Validate again here 

708 self._validate_owner_links(None, self.owner_links) 

709 

710 def validate_setup_teardown(self): 

711 """ 

712 Validate that setup and teardown tasks are configured properly. 

713 

714 :meta private: 

715 """ 

716 for task in self.tasks: 

717 if task.is_setup: 

718 for down_task in task.downstream_list: 

719 if not down_task.is_teardown and down_task.trigger_rule != TriggerRule.ALL_SUCCESS: 

720 # todo: we can relax this to allow out-of-scope tasks to have other trigger rules 

721 # this is required to ensure consistent behavior of dag 

722 # when clearing an indirect setup 

723 raise ValueError("Setup tasks must be followed with trigger rule ALL_SUCCESS.") 

724 

725 def param(self, name: str, default: Any = NOTSET) -> DagParam: 

726 """ 

727 Return a DagParam object for current dag. 

728 

729 :param name: dag parameter name. 

730 :param default: fallback value for dag parameter. 

731 :return: DagParam instance for specified name and current dag. 

732 """ 

733 return DagParam(current_dag=self, name=name, default=default) 

734 

735 @property 

736 def tasks(self) -> list[Operator]: 

737 return list(self.task_dict.values()) 

738 

739 @tasks.setter 

740 def tasks(self, val): 

741 raise AttributeError("DAG.tasks can not be modified. Use dag.add_task() instead.") 

742 

743 @property 

744 def task_ids(self) -> list[str]: 

745 return list(self.task_dict) 

746 

747 @property 

748 def teardowns(self) -> list[Operator]: 

749 return [task for task in self.tasks if getattr(task, "is_teardown", None)] 

750 

751 @property 

752 def tasks_upstream_of_teardowns(self) -> list[Operator]: 

753 upstream_tasks = [t.upstream_list for t in self.teardowns] 

754 return [val for sublist in upstream_tasks for val in sublist if not getattr(val, "is_teardown", None)] 

755 

756 @property 

757 def folder(self) -> str: 

758 """Folder location of where the Dag object is instantiated.""" 

759 return os.path.dirname(self.fileloc) 

760 

761 @property 

762 def owner(self) -> str: 

763 """ 

764 Return list of all owners found in Dag tasks. 

765 

766 :return: Comma separated list of owners in Dag tasks 

767 """ 

768 return ", ".join({t.owner for t in self.tasks}) 

769 

770 def resolve_template_files(self): 

771 for t in self.tasks: 

772 # TODO: TaskSDK: move this on to BaseOperator and remove the check? 

773 if hasattr(t, "resolve_template_files"): 

774 t.resolve_template_files() 

775 

776 def get_template_env(self, *, force_sandboxed: bool = False) -> jinja2.Environment: 

777 """Build a Jinja2 environment.""" 

778 from airflow.sdk.definitions._internal.templater import create_template_env 

779 

780 # Collect directories to search for template files 

781 searchpath = [self.folder] 

782 if self.template_searchpath: 

783 searchpath += self.template_searchpath 

784 

785 use_native = self.render_template_as_native_obj and not force_sandboxed 

786 return create_template_env( 

787 native=use_native, 

788 searchpath=searchpath, 

789 template_undefined=self.template_undefined, 

790 jinja_environment_kwargs=self.jinja_environment_kwargs, 

791 user_defined_macros=self.user_defined_macros, 

792 user_defined_filters=self.user_defined_filters, 

793 ) 

794 

795 def set_dependency(self, upstream_task_id, downstream_task_id): 

796 """Set dependency between two tasks that already have been added to the Dag using add_task().""" 

797 self.get_task(upstream_task_id).set_downstream(self.get_task(downstream_task_id)) 

798 

799 @property 

800 def roots(self) -> list[Operator]: 

801 """Return nodes with no parents. These are first to execute and are called roots or root nodes.""" 

802 return [task for task in self.tasks if not task.upstream_list] 

803 

804 @property 

805 def leaves(self) -> list[Operator]: 

806 """Return nodes with no children. These are last to execute and are called leaves or leaf nodes.""" 

807 return [task for task in self.tasks if not task.downstream_list] 

808 

809 def topological_sort(self): 

810 """ 

811 Sorts tasks in topographical order, such that a task comes after any of its upstream dependencies. 

812 

813 Deprecated in place of ``task_group.topological_sort`` 

814 """ 

815 from airflow.sdk.definitions.taskgroup import TaskGroup 

816 

817 # TODO: Remove in RemovedInAirflow3Warning 

818 def nested_topo(group): 

819 for node in group.topological_sort(): 

820 if isinstance(node, TaskGroup): 

821 yield from nested_topo(node) 

822 else: 

823 yield node 

824 

825 return tuple(nested_topo(self.task_group)) 

826 

827 def __deepcopy__(self, memo: dict[int, Any]): 

828 # Switcharoo to go around deepcopying objects coming through the 

829 # backdoor 

830 cls = self.__class__ 

831 result = cls.__new__(cls) 

832 memo[id(self)] = result 

833 for k, v in self.__dict__.items(): 

834 if k not in ("user_defined_macros", "user_defined_filters", "_log"): 

835 object.__setattr__(result, k, copy.deepcopy(v, memo)) 

836 

837 result.user_defined_macros = self.user_defined_macros 

838 result.user_defined_filters = self.user_defined_filters 

839 if hasattr(self, "_log"): 

840 result._log = self._log # type: ignore[attr-defined] 

841 return result 

842 

843 def partial_subset( 

844 self, 

845 task_ids: str | Iterable[str], 

846 include_downstream=False, 

847 include_upstream=True, 

848 include_direct_upstream=False, 

849 depth: int | None = None, 

850 ): 

851 """ 

852 Return a subset of the current dag based on regex matching one or more tasks. 

853 

854 Returns a subset of the current dag as a deep copy of the current dag 

855 based on a regex that should match one or many tasks, and includes 

856 upstream and downstream neighbours based on the flag passed. 

857 

858 :param task_ids: Either a list of task_ids, or a string task_id 

859 :param include_downstream: Include all downstream tasks of matched 

860 tasks, in addition to matched tasks. 

861 :param include_upstream: Include all upstream tasks of matched tasks, 

862 in addition to matched tasks. 

863 :param include_direct_upstream: Include all tasks directly upstream of matched 

864 and downstream (if include_downstream = True) tasks 

865 :param depth: Maximum number of levels to traverse in the upstream/downstream 

866 direction. If None, traverses all levels. Must be non-negative. 

867 """ 

868 from airflow.sdk.definitions.mappedoperator import MappedOperator 

869 

870 def is_task(obj) -> TypeGuard[Operator]: 

871 return isinstance(obj, BaseOperator | MappedOperator) 

872 

873 # deep-copying self.task_dict and self.task_group takes a long time, and we don't want all 

874 # the tasks anyway, so we copy the tasks manually later 

875 memo = {id(self.task_dict): None, id(self.task_group): None} 

876 dag = copy.deepcopy(self, memo) 

877 

878 if isinstance(task_ids, str): 

879 matched_tasks = [t for t in self.tasks if task_ids in t.task_id] 

880 else: 

881 matched_tasks = [t for t in self.tasks if t.task_id in task_ids] 

882 

883 also_include_ids: set[str] = set() 

884 for t in matched_tasks: 

885 if include_downstream: 

886 for rel in t.get_flat_relatives(upstream=False, depth=depth): 

887 also_include_ids.add(rel.task_id) 

888 if rel not in matched_tasks: # if it's in there, we're already processing it 

889 # need to include setups and teardowns for tasks that are in multiple 

890 # non-collinear setup/teardown paths 

891 if not rel.is_setup and not rel.is_teardown: 

892 also_include_ids.update( 

893 x.task_id for x in rel.get_upstreams_only_setups_and_teardowns() 

894 ) 

895 if include_upstream: 

896 also_include_ids.update(x.task_id for x in t.get_upstreams_follow_setups(depth=depth)) 

897 else: 

898 if not t.is_setup and not t.is_teardown: 

899 also_include_ids.update(x.task_id for x in t.get_upstreams_only_setups_and_teardowns()) 

900 if t.is_setup and not include_downstream: 

901 also_include_ids.update(x.task_id for x in t.downstream_list if x.is_teardown) 

902 

903 also_include: list[Operator] = [self.task_dict[x] for x in also_include_ids] 

904 direct_upstreams: list[Operator] = [] 

905 if include_direct_upstream: 

906 for t in itertools.chain(matched_tasks, also_include): 

907 direct_upstreams.extend(u for u in t.upstream_list if is_task(u)) 

908 

909 # Make sure to not recursively deepcopy the dag or task_group while copying the task. 

910 # task_group is reset later 

911 def _deepcopy_task(t) -> Operator: 

912 memo.setdefault(id(t.task_group), None) 

913 return copy.deepcopy(t, memo) 

914 

915 # Compiling the unique list of tasks that made the cut 

916 dag.task_dict = { 

917 t.task_id: _deepcopy_task(t) 

918 for t in itertools.chain(matched_tasks, also_include, direct_upstreams) 

919 } 

920 

921 def filter_task_group(group, parent_group): 

922 """Exclude tasks not included in the partial dag from the given TaskGroup.""" 

923 # We want to deepcopy _most but not all_ attributes of the task group, so we create a shallow copy 

924 # and then manually deep copy the instances. (memo argument to deepcopy only works for instances 

925 # of classes, not "native" properties of an instance) 

926 copied = copy.copy(group) 

927 

928 memo[id(group.children)] = {} 

929 if parent_group: 

930 memo[id(group.parent_group)] = parent_group 

931 for attr in type(group).__slots__: 

932 value = getattr(group, attr) 

933 value = copy.deepcopy(value, memo) 

934 object.__setattr__(copied, attr, value) 

935 

936 proxy = weakref.proxy(copied) 

937 

938 for child in group.children.values(): 

939 if is_task(child): 

940 if child.task_id in dag.task_dict: 

941 task = copied.children[child.task_id] = dag.task_dict[child.task_id] 

942 task.task_group = proxy 

943 else: 

944 copied.used_group_ids.discard(child.task_id) 

945 else: 

946 filtered_child = filter_task_group(child, proxy) 

947 

948 # Only include this child TaskGroup if it is non-empty. 

949 if filtered_child.children: 

950 copied.children[child.group_id] = filtered_child 

951 

952 return copied 

953 

954 object.__setattr__(dag, "task_group", filter_task_group(self.task_group, None)) 

955 

956 # Removing upstream/downstream references to tasks and TaskGroups that did not make 

957 # the cut. 

958 groups = dag.task_group.get_task_group_dict() 

959 for g in groups.values(): 

960 g.upstream_group_ids.intersection_update(groups) 

961 g.downstream_group_ids.intersection_update(groups) 

962 g.upstream_task_ids.intersection_update(dag.task_dict) 

963 g.downstream_task_ids.intersection_update(dag.task_dict) 

964 

965 for t in dag.tasks: 

966 # Removing upstream/downstream references to tasks that did not 

967 # make the cut 

968 t.upstream_task_ids.intersection_update(dag.task_dict) 

969 t.downstream_task_ids.intersection_update(dag.task_dict) 

970 

971 dag.partial = len(dag.tasks) < len(self.tasks) 

972 

973 return dag 

974 

975 def has_task(self, task_id: str): 

976 return task_id in self.task_dict 

977 

978 def has_task_group(self, task_group_id: str) -> bool: 

979 return task_group_id in self.task_group_dict 

980 

981 @functools.cached_property 

982 def task_group_dict(self): 

983 return {k: v for k, v in self.task_group.get_task_group_dict().items() if k is not None} 

984 

985 def get_task(self, task_id: str) -> Operator: 

986 if task_id in self.task_dict: 

987 return self.task_dict[task_id] 

988 raise TaskNotFound(f"Task {task_id} not found") 

989 

990 @property 

991 def task(self) -> TaskDecoratorCollection: 

992 from airflow.sdk.definitions.decorators import task 

993 

994 return cast("TaskDecoratorCollection", functools.partial(task, dag=self)) 

995 

996 def add_task(self, task: Operator) -> None: 

997 """ 

998 Add a task to the Dag. 

999 

1000 :param task: the task you want to add 

1001 """ 

1002 # FailStopDagInvalidTriggerRule.check(dag=self, trigger_rule=task.trigger_rule) 

1003 

1004 from airflow.sdk.definitions._internal.contextmanager import TaskGroupContext 

1005 

1006 # if the task has no start date, assign it the same as the Dag 

1007 if not task.start_date: 

1008 task.start_date = self.start_date 

1009 # otherwise, the task will start on the later of its own start date and 

1010 # the Dag's start date 

1011 elif self.start_date: 

1012 task.start_date = max(task.start_date, self.start_date) 

1013 

1014 # if the task has no end date, assign it the same as the dag 

1015 if not task.end_date: 

1016 task.end_date = self.end_date 

1017 # otherwise, the task will end on the earlier of its own end date and 

1018 # the Dag's end date 

1019 elif task.end_date and self.end_date: 

1020 task.end_date = min(task.end_date, self.end_date) 

1021 

1022 task_id = task.node_id 

1023 if not task.task_group: 

1024 task_group = TaskGroupContext.get_current(self) 

1025 if task_group: 

1026 task_id = task_group.child_id(task_id) 

1027 task_group.add(task) 

1028 

1029 if ( 

1030 task_id in self.task_dict and self.task_dict[task_id] is not task 

1031 ) or task_id in self.task_group.used_group_ids: 

1032 raise DuplicateTaskIdFound(f"Task id '{task_id}' has already been added to the DAG") 

1033 self.task_dict[task_id] = task 

1034 

1035 task.dag = self 

1036 # Add task_id to used_group_ids to prevent group_id and task_id collisions. 

1037 self.task_group.used_group_ids.add(task_id) 

1038 

1039 FailFastDagInvalidTriggerRule.check(fail_fast=self.fail_fast, trigger_rule=task.trigger_rule) 

1040 

1041 def add_tasks(self, tasks: Iterable[Operator]) -> None: 

1042 """ 

1043 Add a list of tasks to the Dag. 

1044 

1045 :param tasks: a lit of tasks you want to add 

1046 """ 

1047 for task in tasks: 

1048 self.add_task(task) 

1049 

1050 def _remove_task(self, task_id: str) -> None: 

1051 # This is "private" as removing could leave a hole in dependencies if done incorrectly, and this 

1052 # doesn't guard against that 

1053 task = self.task_dict.pop(task_id) 

1054 tg = getattr(task, "task_group", None) 

1055 if tg: 

1056 tg._remove(task) 

1057 

1058 def check_cycle(self) -> None: 

1059 """ 

1060 Check to see if there are any cycles in the Dag. 

1061 

1062 :raises AirflowDagCycleException: If cycle is found in the Dag. 

1063 """ 

1064 # default of int is 0 which corresponds to CYCLE_NEW 

1065 CYCLE_NEW = 0 

1066 CYCLE_IN_PROGRESS = 1 

1067 CYCLE_DONE = 2 

1068 

1069 visited: dict[str, int] = defaultdict(int) 

1070 path_stack: deque[str] = deque() 

1071 task_dict = self.task_dict 

1072 

1073 def _check_adjacent_tasks(task_id, current_task): 

1074 """Return first untraversed child task, else None if all tasks traversed.""" 

1075 for adjacent_task in current_task.get_direct_relative_ids(): 

1076 if visited[adjacent_task] == CYCLE_IN_PROGRESS: 

1077 msg = f"Cycle detected in Dag: {self.dag_id}. Faulty task: {task_id}" 

1078 raise AirflowDagCycleException(msg) 

1079 if visited[adjacent_task] == CYCLE_NEW: 

1080 return adjacent_task 

1081 return None 

1082 

1083 for dag_task_id in self.task_dict.keys(): 

1084 if visited[dag_task_id] == CYCLE_DONE: 

1085 continue 

1086 path_stack.append(dag_task_id) 

1087 while path_stack: 

1088 current_task_id = path_stack[-1] 

1089 if visited[current_task_id] == CYCLE_NEW: 

1090 visited[current_task_id] = CYCLE_IN_PROGRESS 

1091 task = task_dict[current_task_id] 

1092 child_to_check = _check_adjacent_tasks(current_task_id, task) 

1093 if not child_to_check: 

1094 visited[current_task_id] = CYCLE_DONE 

1095 path_stack.pop() 

1096 else: 

1097 path_stack.append(child_to_check) 

1098 

1099 def cli(self): 

1100 """Exposes a CLI specific to this Dag.""" 

1101 self.check_cycle() 

1102 

1103 from airflow.cli import cli_parser 

1104 

1105 parser = cli_parser.get_parser(dag_parser=True) 

1106 args = parser.parse_args() 

1107 args.func(args, self) 

1108 

1109 @classmethod 

1110 def get_serialized_fields(cls): 

1111 """Stringified Dags and operators contain exactly these fields.""" 

1112 return cls.__serialized_fields 

1113 

1114 def get_edge_info(self, upstream_task_id: str, downstream_task_id: str) -> EdgeInfoType: 

1115 """Return edge information for the given pair of tasks or an empty edge if there is no information.""" 

1116 empty = cast("EdgeInfoType", {}) 

1117 if self.edge_info: 

1118 return self.edge_info.get(upstream_task_id, {}).get(downstream_task_id, empty) 

1119 return empty 

1120 

1121 def set_edge_info(self, upstream_task_id: str, downstream_task_id: str, info: EdgeInfoType): 

1122 """ 

1123 Set the given edge information on the Dag. 

1124 

1125 Note that this will overwrite, rather than merge with, existing info. 

1126 """ 

1127 self.edge_info.setdefault(upstream_task_id, {})[downstream_task_id] = info 

1128 

1129 @owner_links.validator 

1130 def _validate_owner_links(self, _, owner_links): 

1131 wrong_links = {} 

1132 

1133 for owner, link in owner_links.items(): 

1134 result = urlsplit(link) 

1135 if result.scheme == "mailto": 

1136 # netloc is not existing for 'mailto' link, so we are checking that the path is parsed 

1137 if not result.path: 

1138 wrong_links[result.path] = link 

1139 elif not result.scheme or not result.netloc: 

1140 wrong_links[owner] = link 

1141 if wrong_links: 

1142 raise ValueError( 

1143 "Wrong link format was used for the owner. Use a valid link \n" 

1144 f"Bad formatted links are: {wrong_links}" 

1145 ) 

1146 

1147 def test( 

1148 self, 

1149 run_after: datetime | None = None, 

1150 logical_date: datetime | None | ArgNotSet = NOTSET, 

1151 run_conf: dict[str, Any] | None = None, 

1152 conn_file_path: str | None = None, 

1153 variable_file_path: str | None = None, 

1154 use_executor: bool = False, 

1155 mark_success_pattern: Pattern | str | None = None, 

1156 ): 

1157 """ 

1158 Execute one single DagRun for a given Dag and logical date. 

1159 

1160 :param run_after: the datetime before which to Dag cannot run. 

1161 :param logical_date: logical date for the Dag run 

1162 :param run_conf: configuration to pass to newly created dagrun 

1163 :param conn_file_path: file path to a connection file in either yaml or json 

1164 :param variable_file_path: file path to a variable file in either yaml or json 

1165 :param use_executor: if set, uses an executor to test the Dag 

1166 :param mark_success_pattern: regex of task_ids to mark as success instead of running 

1167 """ 

1168 import re 

1169 import time 

1170 from contextlib import ExitStack 

1171 from unittest.mock import patch 

1172 

1173 from airflow import settings 

1174 from airflow.models.dagrun import DagRun, get_or_create_dagrun 

1175 from airflow.sdk import DagRunState, timezone 

1176 from airflow.serialization.definitions.dag import SerializedDAG 

1177 from airflow.serialization.encoders import coerce_to_core_timetable 

1178 from airflow.serialization.serialized_objects import DagSerialization 

1179 from airflow.utils.types import DagRunTriggeredByType, DagRunType 

1180 

1181 exit_stack = ExitStack() 

1182 

1183 if conn_file_path or variable_file_path: 

1184 backend_kwargs = {} 

1185 if conn_file_path: 

1186 backend_kwargs["connections_file_path"] = conn_file_path 

1187 if variable_file_path: 

1188 backend_kwargs["variables_file_path"] = variable_file_path 

1189 

1190 exit_stack.enter_context( 

1191 patch.dict( 

1192 os.environ, 

1193 { 

1194 "AIRFLOW__SECRETS__BACKEND": "airflow.secrets.local_filesystem.LocalFilesystemBackend", 

1195 "AIRFLOW__SECRETS__BACKEND_KWARGS": json.dumps(backend_kwargs), 

1196 }, 

1197 ) 

1198 ) 

1199 

1200 if settings.Session is None: 

1201 raise RuntimeError("Session not configured. Call configure_orm() first.") 

1202 session = settings.Session() 

1203 

1204 with exit_stack: 

1205 self.validate() 

1206 scheduler_dag = DagSerialization.deserialize_dag(DagSerialization.serialize_dag(self)) 

1207 

1208 # Allow users to explicitly pass None. If it isn't set, we default to current time. 

1209 logical_date = logical_date if is_arg_set(logical_date) else timezone.utcnow() 

1210 

1211 log.debug("Clearing existing task instances for logical date %s", logical_date) 

1212 # TODO: Replace with calling client.dag_run.clear in Execution API at some point 

1213 SerializedDAG.clear_dags( 

1214 dags=[scheduler_dag], 

1215 start_date=logical_date, 

1216 end_date=logical_date, 

1217 dag_run_state=False, 

1218 ) 

1219 

1220 log.debug("Getting dagrun for dag %s", self.dag_id) 

1221 logical_date = timezone.coerce_datetime(logical_date) 

1222 run_after = timezone.coerce_datetime(run_after) or timezone.coerce_datetime(timezone.utcnow()) 

1223 if logical_date is None: 

1224 data_interval: DataInterval | None = None 

1225 else: 

1226 timetable = coerce_to_core_timetable(self.timetable) 

1227 data_interval = timetable.infer_manual_data_interval(run_after=logical_date) 

1228 from airflow.models.dag_version import DagVersion 

1229 

1230 version = DagVersion.get_version(self.dag_id) 

1231 if not version: 

1232 from airflow.dag_processing.bundles.manager import DagBundlesManager 

1233 from airflow.dag_processing.dagbag import BundleDagBag, sync_bag_to_db 

1234 from airflow.sdk.definitions._internal.dag_parsing_context import ( 

1235 _airflow_parsing_context_manager, 

1236 ) 

1237 

1238 manager = DagBundlesManager() 

1239 manager.sync_bundles_to_db(session=session) 

1240 session.commit() 

1241 # sync all bundles? or use the dags-folder bundle? 

1242 # What if the test dag is in a different bundle? 

1243 for bundle in manager.get_all_dag_bundles(): 

1244 if not bundle.is_initialized: 

1245 bundle.initialize() 

1246 with _airflow_parsing_context_manager(dag_id=self.dag_id): 

1247 dagbag = BundleDagBag( 

1248 dag_folder=bundle.path, 

1249 bundle_path=bundle.path, 

1250 bundle_name=bundle.name, 

1251 ) 

1252 sync_bag_to_db(dagbag, bundle.name, bundle.version) 

1253 version = DagVersion.get_version(self.dag_id) 

1254 if version: 

1255 break 

1256 

1257 # Preserve callback functions from original Dag since they're lost during serialization 

1258 # and yes it is a hack for now! It is a tradeoff for code simplicity. 

1259 # Without it, we need "Scheduler Dag" (Serialized dag) for the scheduler bits 

1260 # -- dep check, scheduling tis 

1261 # and need real dag to get and run callbacks without having to load the dag model 

1262 

1263 # Scheduler DAG shouldn't have these attributes, but assigning them 

1264 # here is an easy hack to get this test() thing working. 

1265 scheduler_dag.on_success_callback = self.on_success_callback # type: ignore[attr-defined, union-attr] 

1266 scheduler_dag.on_failure_callback = self.on_failure_callback # type: ignore[attr-defined, union-attr] 

1267 

1268 dr: DagRun = get_or_create_dagrun( 

1269 dag=scheduler_dag, 

1270 start_date=logical_date or run_after, 

1271 logical_date=logical_date, 

1272 data_interval=data_interval, 

1273 run_after=run_after, 

1274 run_id=DagRun.generate_run_id( 

1275 run_type=DagRunType.MANUAL, 

1276 logical_date=logical_date, 

1277 run_after=run_after, 

1278 ), 

1279 session=session, 

1280 conf=run_conf, 

1281 triggered_by=DagRunTriggeredByType.TEST, 

1282 triggering_user_name="dag_test", 

1283 ) 

1284 # Start a mock span so that one is present and not started downstream. We 

1285 # don't care about otel in dag.test and starting the span during dagrun update 

1286 # is not functioning properly in this context anyway. 

1287 dr.start_dr_spans_if_needed(tis=[]) 

1288 

1289 log.debug("starting dagrun") 

1290 # Instead of starting a scheduler, we run the minimal loop possible to check 

1291 # for task readiness and dependency management. 

1292 # Instead of starting a scheduler, we run the minimal loop possible to check 

1293 # for task readiness and dependency management. 

1294 

1295 # ``Dag.test()`` works in two different modes depending on ``use_executor``: 

1296 # - if ``use_executor`` is False, runs the task locally with no executor using ``_run_task`` 

1297 # - if ``use_executor`` is True, sends workloads to the executor with 

1298 # ``BaseExecutor.queue_workload`` 

1299 if use_executor: 

1300 from airflow.executors.base_executor import ExecutorLoader 

1301 

1302 executor = ExecutorLoader.get_default_executor() 

1303 executor.start() 

1304 

1305 while dr.state == DagRunState.RUNNING: 

1306 session.expire_all() 

1307 schedulable_tis, _ = dr.update_state(session=session) 

1308 for s in schedulable_tis: 

1309 if s.state != TaskInstanceState.UP_FOR_RESCHEDULE: 

1310 s.try_number += 1 

1311 s.state = TaskInstanceState.SCHEDULED 

1312 s.scheduled_dttm = timezone.utcnow() 

1313 session.commit() 

1314 # triggerer may mark tasks scheduled so we read from DB 

1315 all_tis = set(dr.get_task_instances(session=session)) 

1316 scheduled_tis = {x for x in all_tis if x.state == TaskInstanceState.SCHEDULED} 

1317 ids_unrunnable = {x for x in all_tis if x.state not in FINISHED_STATES} - scheduled_tis 

1318 if not scheduled_tis and ids_unrunnable: 

1319 log.warning("No tasks to run. unrunnable tasks: %s", ids_unrunnable) 

1320 time.sleep(1) 

1321 

1322 for ti in scheduled_tis: 

1323 task = self.task_dict[ti.task_id] 

1324 

1325 mark_success = ( 

1326 re.compile(mark_success_pattern).fullmatch(ti.task_id) is not None 

1327 if mark_success_pattern is not None 

1328 else False 

1329 ) 

1330 

1331 if use_executor: 

1332 if executor.has_task(ti): 

1333 continue 

1334 

1335 from pathlib import Path 

1336 

1337 from airflow.executors import workloads 

1338 from airflow.executors.base_executor import ExecutorLoader 

1339 from airflow.executors.workloads import BundleInfo 

1340 

1341 workload = workloads.ExecuteTask.make( 

1342 ti, 

1343 dag_rel_path=Path(self.fileloc), 

1344 generator=executor.jwt_generator, 

1345 sentry_integration=executor.sentry_integration, 

1346 # For the system test/debug purpose, we use the default bundle which uses 

1347 # local file system. If it turns out to be a feature people want, we could 

1348 # plumb the Bundle to use as a parameter to dag.test 

1349 bundle_info=BundleInfo(name="dags-folder"), 

1350 ) 

1351 executor.queue_workload(workload, session=session) 

1352 ti.state = TaskInstanceState.QUEUED 

1353 session.commit() 

1354 else: 

1355 # Run the task locally 

1356 try: 

1357 if mark_success: 

1358 ti.set_state(TaskInstanceState.SUCCESS) 

1359 log.info("[DAG TEST] Marking success for %s on %s", task, ti.logical_date) 

1360 else: 

1361 _run_task(ti=ti, task=task, run_triggerer=True) 

1362 except Exception: 

1363 log.exception("Task failed; ti=%s", ti) 

1364 if use_executor: 

1365 executor.heartbeat() 

1366 session.expire_all() 

1367 

1368 from airflow.jobs.scheduler_job_runner import SchedulerJobRunner 

1369 from airflow.models.dagbag import DBDagBag 

1370 

1371 SchedulerJobRunner.process_executor_events( 

1372 executor=executor, job_id=None, scheduler_dag_bag=DBDagBag(), session=session 

1373 ) 

1374 if use_executor: 

1375 executor.end() 

1376 return dr 

1377 

1378 

1379def _run_task( 

1380 *, 

1381 ti: SchedulerTaskInstance, 

1382 task: Operator, 

1383 run_triggerer: bool = False, 

1384) -> TaskRunResult | None: 

1385 """ 

1386 Run a single task instance, and push result to Xcom for downstream tasks. 

1387 

1388 Bypasses a lot of extra steps used in `task.run` to keep our local running as fast as 

1389 possible. This function is only meant for the `dag.test` function as a helper function. 

1390 """ 

1391 from airflow.sdk._shared.module_loading import import_string 

1392 from airflow.sdk.serde import deserialize, serialize 

1393 from airflow.utils.session import create_session 

1394 

1395 taskrun_result: TaskRunResult | None 

1396 log.info("[DAG TEST] starting task_id=%s map_index=%s", ti.task_id, ti.map_index) 

1397 while True: 

1398 try: 

1399 log.info("[DAG TEST] running task %s", ti) 

1400 

1401 from airflow.sdk.api.datamodels._generated import TaskInstance as TaskInstanceSDK 

1402 from airflow.sdk.execution_time.comms import DeferTask 

1403 from airflow.sdk.execution_time.supervisor import run_task_in_process 

1404 from airflow.serialization.serialized_objects import create_scheduler_operator 

1405 

1406 # The API Server expects the task instance to be in QUEUED state before 

1407 # it is run. 

1408 ti.set_state(TaskInstanceState.QUEUED) 

1409 task_sdk_ti = TaskInstanceSDK( 

1410 id=UUID(str(ti.id)), 

1411 task_id=ti.task_id, 

1412 dag_id=ti.dag_id, 

1413 run_id=ti.run_id, 

1414 try_number=ti.try_number, 

1415 map_index=ti.map_index, 

1416 dag_version_id=UUID(str(ti.dag_version_id)), 

1417 ) 

1418 

1419 taskrun_result = run_task_in_process(ti=task_sdk_ti, task=task) 

1420 msg = taskrun_result.msg 

1421 ti.set_state(taskrun_result.ti.state) 

1422 ti.task = create_scheduler_operator(taskrun_result.ti.task) 

1423 

1424 if ti.state == TaskInstanceState.DEFERRED and isinstance(msg, DeferTask) and run_triggerer: 

1425 # API Server expects the task instance to be in QUEUED state before 

1426 # resuming from deferral. 

1427 ti.set_state(TaskInstanceState.QUEUED) 

1428 

1429 log.info("[DAG TEST] running trigger in line") 

1430 # trigger_kwargs need to be deserialized before passing to the 

1431 # trigger class since they are in serde encoded format. 

1432 # Ignore needed to convince mypy that trigger_kwargs is a dict 

1433 # or a str because its unable to infer JsonValue. 

1434 kwargs = deserialize(msg.trigger_kwargs) # type: ignore[type-var] 

1435 if TYPE_CHECKING: 

1436 assert isinstance(kwargs, dict) 

1437 trigger = import_string(msg.classpath)(**kwargs) 

1438 event = _run_inline_trigger(trigger, task_sdk_ti) 

1439 ti.next_method = msg.next_method 

1440 ti.next_kwargs = {"event": serialize(event.payload)} if event else msg.next_kwargs 

1441 log.info("[DAG TEST] Trigger completed") 

1442 

1443 # Set the state to SCHEDULED so that the task can be resumed. 

1444 with create_session() as session: 

1445 ti.state = TaskInstanceState.SCHEDULED 

1446 session.add(ti) 

1447 continue 

1448 

1449 break 

1450 except Exception: 

1451 log.exception("[DAG TEST] Error running task %s", ti) 

1452 if ti.state not in FINISHED_STATES: 

1453 ti.set_state(TaskInstanceState.FAILED) 

1454 taskrun_result = None 

1455 break 

1456 raise 

1457 

1458 log.info("[DAG TEST] end task task_id=%s map_index=%s", ti.task_id, ti.map_index) 

1459 return taskrun_result 

1460 

1461 

1462def _run_inline_trigger(trigger, task_sdk_ti): 

1463 from airflow.sdk.execution_time.supervisor import InProcessTestSupervisor 

1464 

1465 return InProcessTestSupervisor.run_trigger_in_process(trigger=trigger, ti=task_sdk_ti) 

1466 

1467 

1468# Since we define all the attributes of the class with attrs, we can compute this statically at parse time 

1469DAG._DAG__serialized_fields = frozenset(a.name for a in attrs.fields(DAG)) - { # type: ignore[attr-defined] 

1470 "schedule_asset_references", 

1471 "schedule_asset_alias_references", 

1472 "task_outlet_asset_references", 

1473 "_old_context_manager_dags", 

1474 "safe_dag_id", 

1475 "last_loaded", 

1476 "user_defined_filters", 

1477 "user_defined_macros", 

1478 "partial", 

1479 "params", 

1480 "_log", 

1481 "task_dict", 

1482 "template_searchpath", 

1483 "sla_miss_callback", 

1484 "on_success_callback", 

1485 "on_failure_callback", 

1486 "template_undefined", 

1487 "jinja_environment_kwargs", 

1488 # has_on_*_callback are only stored if the value is True, as the default is False 

1489 "has_on_success_callback", 

1490 "has_on_failure_callback", 

1491 "auto_register", 

1492 "schedule", 

1493} 

1494 

1495if TYPE_CHECKING: 

1496 # NOTE: Please keep the list of arguments in sync with DAG.__init__. 

1497 # Only exception: dag_id here should have a default value, but not in DAG. 

1498 @overload 

1499 def dag( 

1500 dag_id: str = "", 

1501 *, 

1502 description: str | None = None, 

1503 schedule: ScheduleArg = None, 

1504 start_date: datetime | None = None, 

1505 end_date: datetime | None = None, 

1506 template_searchpath: str | Iterable[str] | None = None, 

1507 template_undefined: type[jinja2.StrictUndefined] = jinja2.StrictUndefined, 

1508 user_defined_macros: dict | None = None, 

1509 user_defined_filters: dict | None = None, 

1510 default_args: dict[str, Any] | None = None, 

1511 max_active_tasks: int = ..., 

1512 max_active_runs: int = ..., 

1513 max_consecutive_failed_dag_runs: int = ..., 

1514 dagrun_timeout: timedelta | None = None, 

1515 catchup: bool = ..., 

1516 on_success_callback: None | DagStateChangeCallback | list[DagStateChangeCallback] = None, 

1517 on_failure_callback: None | DagStateChangeCallback | list[DagStateChangeCallback] = None, 

1518 deadline: list[DeadlineAlert] | DeadlineAlert | None = None, 

1519 doc_md: str | None = None, 

1520 params: ParamsDict | dict[str, Any] | None = None, 

1521 access_control: dict[str, dict[str, Collection[str]]] | dict[str, Collection[str]] | None = None, 

1522 is_paused_upon_creation: bool | None = None, 

1523 jinja_environment_kwargs: dict | None = None, 

1524 render_template_as_native_obj: bool = False, 

1525 tags: Collection[str] | None = None, 

1526 owner_links: dict[str, str] | None = None, 

1527 auto_register: bool = True, 

1528 fail_fast: bool = False, 

1529 dag_display_name: str | None = None, 

1530 disable_bundle_versioning: bool = False, 

1531 ) -> Callable[[Callable], Callable[..., DAG]]: 

1532 """ 

1533 Python dag decorator which wraps a function into an Airflow Dag. 

1534 

1535 Accepts kwargs for operator kwarg. Can be used to parameterize Dags. 

1536 

1537 :param dag_args: Arguments for DAG object 

1538 :param dag_kwargs: Kwargs for DAG object. 

1539 """ 

1540 

1541 @overload 

1542 def dag(func: Callable[..., DAG]) -> Callable[..., DAG]: 

1543 """Python dag decorator to use without any arguments.""" 

1544 

1545 

1546def dag(dag_id_or_func=None, __DAG_class=DAG, __warnings_stacklevel_delta=2, **decorator_kwargs): 

1547 from airflow.sdk.definitions._internal.decorators import fixup_decorator_warning_stack 

1548 

1549 # TODO: Task-SDK: remove __DAG_class 

1550 # __DAG_class is a temporary hack to allow the dag decorator in airflow.models.dag to continue to 

1551 # return SchedulerDag objects 

1552 DAG = __DAG_class 

1553 

1554 def wrapper(f: Callable) -> Callable[..., DAG]: 

1555 # Determine dag_id: prioritize keyword arg, then positional string, fallback to function name 

1556 if "dag_id" in decorator_kwargs: 

1557 dag_id = decorator_kwargs.pop("dag_id", "") 

1558 elif isinstance(dag_id_or_func, str) and dag_id_or_func.strip(): 

1559 dag_id = dag_id_or_func 

1560 else: 

1561 dag_id = f.__name__ 

1562 

1563 @functools.wraps(f) 

1564 def factory(*args, **kwargs): 

1565 # Generate signature for decorated function and bind the arguments when called 

1566 # we do this to extract parameters, so we can annotate them on the DAG object. 

1567 # In addition, this fails if we are missing any args/kwargs with TypeError as expected. 

1568 f_sig = signature(f).bind(*args, **kwargs) 

1569 # Apply defaults to capture default values if set. 

1570 f_sig.apply_defaults() 

1571 

1572 # Initialize Dag with bound arguments 

1573 with DAG(dag_id, **decorator_kwargs) as dag_obj: 

1574 # Set Dag documentation from function documentation if it exists and doc_md is not set. 

1575 if f.__doc__ and not dag_obj.doc_md: 

1576 dag_obj.doc_md = f.__doc__ 

1577 

1578 # Generate DAGParam for each function arg/kwarg and replace it for calling the function. 

1579 # All args/kwargs for function will be DAGParam object and replaced on execution time. 

1580 f_kwargs = {} 

1581 for name, value in f_sig.arguments.items(): 

1582 f_kwargs[name] = dag_obj.param(name, value) 

1583 

1584 # set file location to caller source path 

1585 back = sys._getframe().f_back 

1586 dag_obj.fileloc = back.f_code.co_filename if back else "" 

1587 

1588 # Invoke function to create operators in the Dag scope. 

1589 f(**f_kwargs) 

1590 

1591 # Return dag object such that it's accessible in Globals. 

1592 return dag_obj 

1593 

1594 # Ensure that warnings from inside DAG() are emitted from the caller, not here 

1595 fixup_decorator_warning_stack(factory) 

1596 return factory 

1597 

1598 if callable(dag_id_or_func) and not isinstance(dag_id_or_func, str): 

1599 return wrapper(dag_id_or_func) 

1600 

1601 return wrapper