Coverage Report

Created: 2023-03-26 07:07

/usr/local/include/OpenEXR/half.h
Line
Count
Source (jump to first uncovered line)
1
///////////////////////////////////////////////////////////////////////////
2
//
3
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4
// Digital Ltd. LLC
5
// 
6
// All rights reserved.
7
// 
8
// Redistribution and use in source and binary forms, with or without
9
// modification, are permitted provided that the following conditions are
10
// met:
11
// *       Redistributions of source code must retain the above copyright
12
// notice, this list of conditions and the following disclaimer.
13
// *       Redistributions in binary form must reproduce the above
14
// copyright notice, this list of conditions and the following disclaimer
15
// in the documentation and/or other materials provided with the
16
// distribution.
17
// *       Neither the name of Industrial Light & Magic nor the names of
18
// its contributors may be used to endorse or promote products derived
19
// from this software without specific prior written permission. 
20
// 
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
//
33
///////////////////////////////////////////////////////////////////////////
34
35
// Primary authors:
36
//     Florian Kainz <kainz@ilm.com>
37
//     Rod Bogart <rgb@ilm.com>
38
39
//---------------------------------------------------------------------------
40
//
41
//  half -- a 16-bit floating point number class:
42
//
43
//  Type half can represent positive and negative numbers whose
44
//  magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
45
//  error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
46
//  with an absolute error of 6.0e-8.  All integers from -2048 to
47
//  +2048 can be represented exactly.
48
//
49
//  Type half behaves (almost) like the built-in C++ floating point
50
//  types.  In arithmetic expressions, half, float and double can be
51
//  mixed freely.  Here are a few examples:
52
//
53
//      half a (3.5);
54
//      float b (a + sqrt (a));
55
//      a += b;
56
//      b += a;
57
//      b = a + 7;
58
//
59
//  Conversions from half to float are lossless; all half numbers
60
//  are exactly representable as floats.
61
//
62
//  Conversions from float to half may not preserve a float's value
63
//  exactly.  If a float is not representable as a half, then the
64
//  float value is rounded to the nearest representable half.  If a
65
//  float value is exactly in the middle between the two closest
66
//  representable half values, then the float value is rounded to
67
//  the closest half whose least significant bit is zero.
68
//
69
//  Overflows during float-to-half conversions cause arithmetic
70
//  exceptions.  An overflow occurs when the float value to be
71
//  converted is too large to be represented as a half, or if the
72
//  float value is an infinity or a NAN.
73
//
74
//  The implementation of type half makes the following assumptions
75
//  about the implementation of the built-in C++ types:
76
//
77
//      float is an IEEE 754 single-precision number
78
//      sizeof (float) == 4
79
//      sizeof (unsigned int) == sizeof (float)
80
//      alignof (unsigned int) == alignof (float)
81
//      sizeof (unsigned short) == 2
82
//
83
//---------------------------------------------------------------------------
84
85
#ifndef _HALF_H_
86
#define _HALF_H_
87
88
#include "halfExport.h"    // for definition of HALF_EXPORT
89
#include <iostream>
90
91
class half
92
{
93
  public:
94
95
    //-------------
96
    // Constructors
97
    //-------------
98
99
    half () = default;      // no initialization
100
    half (float f);
101
    // rule of 5
102
    ~half () = default;
103
    half (const half &) = default;
104
    half (half &&) noexcept = default;
105
106
    //--------------------
107
    // Conversion to float
108
    //--------------------
109
110
    operator    float () const;
111
112
113
    //------------
114
    // Unary minus
115
    //------------
116
117
    half    operator - () const;
118
119
120
    //-----------
121
    // Assignment
122
    //-----------
123
124
    half &    operator = (const half  &h) = default;
125
    half &    operator = (half  &&h) noexcept = default;
126
    half &    operator = (float f);
127
128
    half &    operator += (half  h);
129
    half &    operator += (float f);
130
131
    half &    operator -= (half  h);
132
    half &    operator -= (float f);
133
134
    half &    operator *= (half  h);
135
    half &    operator *= (float f);
136
137
    half &    operator /= (half  h);
138
    half &    operator /= (float f);
139
140
141
    //---------------------------------------------------------
142
    // Round to n-bit precision (n should be between 0 and 10).
143
    // After rounding, the significand's 10-n least significant
144
    // bits will be zero.
145
    //---------------------------------------------------------
146
147
    half    round (unsigned int n) const;
148
149
150
    //--------------------------------------------------------------------
151
    // Classification:
152
    //
153
    //  h.isFinite()    returns true if h is a normalized number,
154
    //        a denormalized number or zero
155
    //
156
    //  h.isNormalized()  returns true if h is a normalized number
157
    //
158
    //  h.isDenormalized()  returns true if h is a denormalized number
159
    //
160
    //  h.isZero()    returns true if h is zero
161
    //
162
    //  h.isNan()   returns true if h is a NAN
163
    //
164
    //  h.isInfinity()    returns true if h is a positive
165
    //        or a negative infinity
166
    //
167
    //  h.isNegative()    returns true if the sign bit of h
168
    //        is set (negative)
169
    //--------------------------------------------------------------------
170
171
    bool    isFinite () const;
172
    bool    isNormalized () const;
173
    bool    isDenormalized () const;
174
    bool    isZero () const;
175
    bool    isNan () const;
176
    bool    isInfinity () const;
177
    bool    isNegative () const;
178
179
180
    //--------------------------------------------
181
    // Special values
182
    //
183
    //  posInf()  returns +infinity
184
    //
185
    //  negInf()  returns -infinity
186
    //
187
    //  qNan()    returns a NAN with the bit
188
    //      pattern 0111111111111111
189
    //
190
    //  sNan()    returns a NAN with the bit
191
    //      pattern 0111110111111111
192
    //--------------------------------------------
193
194
    static half   posInf ();
195
    static half   negInf ();
196
    static half   qNan ();
197
    static half   sNan ();
198
199
200
    //--------------------------------------
201
    // Access to the internal representation
202
    //--------------------------------------
203
204
    HALF_EXPORT unsigned short  bits () const;
205
    HALF_EXPORT void    setBits (unsigned short bits);
206
207
208
  public:
209
210
    union uif
211
    {
212
  unsigned int  i;
213
  float   f;
214
    };
215
216
  private:
217
218
    HALF_EXPORT static short                  convert (int i);
219
    HALF_EXPORT static float                  overflow ();
220
221
    unsigned short                            _h;
222
223
    HALF_EXPORT static const uif              _toFloat[1 << 16];
224
    HALF_EXPORT static const unsigned short   _eLut[1 << 9];
225
};
226
227
228
229
//-----------
230
// Stream I/O
231
//-----------
232
233
HALF_EXPORT std::ostream &      operator << (std::ostream &os, half  h);
234
HALF_EXPORT std::istream &      operator >> (std::istream &is, half &h);
235
236
237
//----------
238
// Debugging
239
//----------
240
241
HALF_EXPORT void        printBits   (std::ostream &os, half  h);
242
HALF_EXPORT void        printBits   (std::ostream &os, float f);
243
HALF_EXPORT void        printBits   (char  c[19], half  h);
244
HALF_EXPORT void        printBits   (char  c[35], float f);
245
246
247
//-------------------------------------------------------------------------
248
// Limits
249
//
250
// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
251
// constants, but at least one other compiler (gcc 2.96) produces incorrect
252
// results if they are.
253
//-------------------------------------------------------------------------
254
255
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
256
257
  #define HALF_MIN  5.96046448e-08f // Smallest positive half
258
259
  #define HALF_NRM_MIN  6.10351562e-05f // Smallest positive normalized half
260
261
  #define HALF_MAX  65504.0f  // Largest positive half
262
263
  #define HALF_EPSILON  0.00097656f // Smallest positive e for which
264
          // half (1.0 + e) != half (1.0)
265
#else
266
267
  #define HALF_MIN  5.96046448e-08  // Smallest positive half
268
269
  #define HALF_NRM_MIN  6.10351562e-05  // Smallest positive normalized half
270
271
0
  #define HALF_MAX  65504.0    // Largest positive half
272
273
  #define HALF_EPSILON  0.00097656  // Smallest positive e for which
274
          // half (1.0 + e) != half (1.0)
275
#endif
276
277
278
#define HALF_MANT_DIG 11    // Number of digits in mantissa
279
          // (significand + hidden leading 1)
280
281
// 
282
// floor( (HALF_MANT_DIG - 1) * log10(2) ) => 3.01... -> 3
283
#define HALF_DIG  3   // Number of base 10 digits that
284
          // can be represented without change
285
286
// ceil(HALF_MANT_DIG * log10(2) + 1) => 4.31... -> 5
287
#define HALF_DECIMAL_DIG  5 // Number of base-10 digits that are
288
          // necessary to uniquely represent all
289
          // distinct values
290
291
#define HALF_RADIX  2   // Base of the exponent
292
293
#define HALF_MIN_EXP  -13   // Minimum negative integer such that
294
          // HALF_RADIX raised to the power of
295
          // one less than that integer is a
296
          // normalized half
297
298
#define HALF_MAX_EXP  16    // Maximum positive integer such that
299
          // HALF_RADIX raised to the power of
300
          // one less than that integer is a
301
          // normalized half
302
303
#define HALF_MIN_10_EXP -4    // Minimum positive integer such
304
          // that 10 raised to that power is
305
          // a normalized half
306
307
#define HALF_MAX_10_EXP 4   // Maximum positive integer such
308
          // that 10 raised to that power is
309
          // a normalized half
310
311
312
//---------------------------------------------------------------------------
313
//
314
// Implementation --
315
//
316
// Representation of a float:
317
//
318
//  We assume that a float, f, is an IEEE 754 single-precision
319
//  floating point number, whose bits are arranged as follows:
320
//
321
//      31 (msb)
322
//      | 
323
//      | 30     23
324
//      | |      | 
325
//      | |      | 22                    0 (lsb)
326
//      | |      | |                     |
327
//      X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
328
//
329
//      s e        m
330
//
331
//  S is the sign-bit, e is the exponent and m is the significand.
332
//
333
//  If e is between 1 and 254, f is a normalized number:
334
//
335
//              s    e-127
336
//      f = (-1)  * 2      * 1.m
337
//
338
//  If e is 0, and m is not zero, f is a denormalized number:
339
//
340
//              s    -126
341
//      f = (-1)  * 2      * 0.m
342
//
343
//  If e and m are both zero, f is zero:
344
//
345
//      f = 0.0
346
//
347
//  If e is 255, f is an "infinity" or "not a number" (NAN),
348
//  depending on whether m is zero or not.
349
//
350
//  Examples:
351
//
352
//      0 00000000 00000000000000000000000 = 0.0
353
//      0 01111110 00000000000000000000000 = 0.5
354
//      0 01111111 00000000000000000000000 = 1.0
355
//      0 10000000 00000000000000000000000 = 2.0
356
//      0 10000000 10000000000000000000000 = 3.0
357
//      1 10000101 11110000010000000000000 = -124.0625
358
//      0 11111111 00000000000000000000000 = +infinity
359
//      1 11111111 00000000000000000000000 = -infinity
360
//      0 11111111 10000000000000000000000 = NAN
361
//      1 11111111 11111111111111111111111 = NAN
362
//
363
// Representation of a half:
364
//
365
//  Here is the bit-layout for a half number, h:
366
//
367
//      15 (msb)
368
//      | 
369
//      | 14  10
370
//      | |   |
371
//      | |   | 9        0 (lsb)
372
//      | |   | |        |
373
//      X XXXXX XXXXXXXXXX
374
//
375
//      s e     m
376
//
377
//  S is the sign-bit, e is the exponent and m is the significand.
378
//
379
//  If e is between 1 and 30, h is a normalized number:
380
//
381
//              s    e-15
382
//      h = (-1)  * 2     * 1.m
383
//
384
//  If e is 0, and m is not zero, h is a denormalized number:
385
//
386
//              S    -14
387
//      h = (-1)  * 2     * 0.m
388
//
389
//  If e and m are both zero, h is zero:
390
//
391
//      h = 0.0
392
//
393
//  If e is 31, h is an "infinity" or "not a number" (NAN),
394
//  depending on whether m is zero or not.
395
//
396
//  Examples:
397
//
398
//      0 00000 0000000000 = 0.0
399
//      0 01110 0000000000 = 0.5
400
//      0 01111 0000000000 = 1.0
401
//      0 10000 0000000000 = 2.0
402
//      0 10000 1000000000 = 3.0
403
//      1 10101 1111000001 = -124.0625
404
//      0 11111 0000000000 = +infinity
405
//      1 11111 0000000000 = -infinity
406
//      0 11111 1000000000 = NAN
407
//      1 11111 1111111111 = NAN
408
//
409
// Conversion:
410
//
411
//  Converting from a float to a half requires some non-trivial bit
412
//  manipulations.  In some cases, this makes conversion relatively
413
//  slow, but the most common case is accelerated via table lookups.
414
//
415
//  Converting back from a half to a float is easier because we don't
416
//  have to do any rounding.  In addition, there are only 65536
417
//  different half numbers; we can convert each of those numbers once
418
//  and store the results in a table.  Later, all conversions can be
419
//  done using only simple table lookups.
420
//
421
//---------------------------------------------------------------------------
422
423
424
//----------------------------
425
// Half-from-float constructor
426
//----------------------------
427
428
inline
429
half::half (float f)
430
0
{
431
0
    uif x;
432
433
0
    x.f = f;
434
435
0
    if (f == 0)
436
0
    {
437
  //
438
  // Common special case - zero.
439
  // Preserve the zero's sign bit.
440
  //
441
442
0
  _h = (x.i >> 16);
443
0
    }
444
0
    else
445
0
    {
446
  //
447
  // We extract the combined sign and exponent, e, from our
448
  // floating-point number, f.  Then we convert e to the sign
449
  // and exponent of the half number via a table lookup.
450
  //
451
  // For the most common case, where a normalized half is produced,
452
  // the table lookup returns a non-zero value; in this case, all
453
  // we have to do is round f's significand to 10 bits and combine
454
  // the result with e.
455
  //
456
  // For all other cases (overflow, zeroes, denormalized numbers
457
  // resulting from underflow, infinities and NANs), the table
458
  // lookup returns zero, and we call a longer, non-inline function
459
  // to do the float-to-half conversion.
460
  //
461
462
0
  int e = (x.i >> 23) & 0x000001ff;
463
464
0
  e = _eLut[e];
465
466
0
  if (e)
467
0
  {
468
      //
469
      // Simple case - round the significand, m, to 10
470
      // bits and combine it with the sign and exponent.
471
      //
472
473
0
      int m = x.i & 0x007fffff;
474
0
      _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
475
0
  }
476
0
  else
477
0
  {
478
      //
479
      // Difficult case - call a function.
480
      //
481
482
0
      _h = convert (x.i);
483
0
  }
484
0
    }
485
0
}
486
487
488
//------------------------------------------
489
// Half-to-float conversion via table lookup
490
//------------------------------------------
491
492
inline
493
half::operator float () const
494
0
{
495
0
    return _toFloat[_h].f;
496
0
}
497
498
499
//-------------------------
500
// Round to n-bit precision
501
//-------------------------
502
503
inline half
504
half::round (unsigned int n) const
505
0
{
506
0
    //
507
0
    // Parameter check.
508
0
    //
509
0
510
0
    if (n >= 10)
511
0
  return *this;
512
0
513
0
    //
514
0
    // Disassemble h into the sign, s,
515
0
    // and the combined exponent and significand, e.
516
0
    //
517
0
518
0
    unsigned short s = _h & 0x8000;
519
0
    unsigned short e = _h & 0x7fff;
520
0
521
0
    //
522
0
    // Round the exponent and significand to the nearest value
523
0
    // where ones occur only in the (10-n) most significant bits.
524
0
    // Note that the exponent adjusts automatically if rounding
525
0
    // up causes the significand to overflow.
526
0
    //
527
0
528
0
    e >>= 9 - n;
529
0
    e  += e & 1;
530
0
    e <<= 9 - n;
531
0
532
0
    //
533
0
    // Check for exponent overflow.
534
0
    //
535
0
536
0
    if (e >= 0x7c00)
537
0
    {
538
0
  //
539
0
  // Overflow occurred -- truncate instead of rounding.
540
0
  //
541
0
542
0
  e = _h;
543
0
  e >>= 10 - n;
544
0
  e <<= 10 - n;
545
0
    }
546
0
547
0
    //
548
0
    // Put the original sign bit back.
549
0
    //
550
0
551
0
    half h;
552
0
    h._h = s | e;
553
0
554
0
    return h;
555
0
}
556
557
558
//-----------------------
559
// Other inline functions
560
//-----------------------
561
562
inline half 
563
half::operator - () const
564
0
{
565
0
    half h;
566
0
    h._h = _h ^ 0x8000;
567
0
    return h;
568
0
}
569
570
571
inline half &
572
half::operator = (float f)
573
0
{
574
0
    *this = half (f);
575
0
    return *this;
576
0
}
577
578
579
inline half &
580
half::operator += (half h)
581
0
{
582
0
    *this = half (float (*this) + float (h));
583
0
    return *this;
584
0
}
585
586
587
inline half &
588
half::operator += (float f)
589
0
{
590
0
    *this = half (float (*this) + f);
591
0
    return *this;
592
0
}
593
594
595
inline half &
596
half::operator -= (half h)
597
0
{
598
0
    *this = half (float (*this) - float (h));
599
0
    return *this;
600
0
}
601
602
603
inline half &
604
half::operator -= (float f)
605
0
{
606
0
    *this = half (float (*this) - f);
607
0
    return *this;
608
0
}
609
610
611
inline half &
612
half::operator *= (half h)
613
0
{
614
0
    *this = half (float (*this) * float (h));
615
0
    return *this;
616
0
}
617
618
619
inline half &
620
half::operator *= (float f)
621
0
{
622
0
    *this = half (float (*this) * f);
623
0
    return *this;
624
0
}
625
626
627
inline half &
628
half::operator /= (half h)
629
0
{
630
0
    *this = half (float (*this) / float (h));
631
0
    return *this;
632
0
}
633
634
635
inline half &
636
half::operator /= (float f)
637
0
{
638
0
    *this = half (float (*this) / f);
639
0
    return *this;
640
0
}
641
642
643
inline bool 
644
half::isFinite () const
645
0
{
646
0
    unsigned short e = (_h >> 10) & 0x001f;
647
0
    return e < 31;
648
0
}
649
650
651
inline bool
652
half::isNormalized () const
653
0
{
654
0
    unsigned short e = (_h >> 10) & 0x001f;
655
0
    return e > 0 && e < 31;
656
0
}
657
658
659
inline bool
660
half::isDenormalized () const
661
0
{
662
0
    unsigned short e = (_h >> 10) & 0x001f;
663
0
    unsigned short m =  _h & 0x3ff;
664
0
    return e == 0 && m != 0;
665
0
}
666
667
668
inline bool
669
half::isZero () const
670
0
{
671
0
    return (_h & 0x7fff) == 0;
672
0
}
673
674
675
inline bool
676
half::isNan () const
677
0
{
678
0
    unsigned short e = (_h >> 10) & 0x001f;
679
0
    unsigned short m =  _h & 0x3ff;
680
0
    return e == 31 && m != 0;
681
0
}
682
683
684
inline bool
685
half::isInfinity () const
686
0
{
687
0
    unsigned short e = (_h >> 10) & 0x001f;
688
0
    unsigned short m =  _h & 0x3ff;
689
0
    return e == 31 && m == 0;
690
0
}
691
692
693
inline bool 
694
half::isNegative () const
695
0
{
696
0
    return (_h & 0x8000) != 0;
697
0
}
698
699
700
inline half
701
half::posInf ()
702
0
{
703
0
    half h;
704
0
    h._h = 0x7c00;
705
0
    return h;
706
0
}
707
708
709
inline half
710
half::negInf ()
711
0
{
712
0
    half h;
713
0
    h._h = 0xfc00;
714
0
    return h;
715
0
}
716
717
718
inline half
719
half::qNan ()
720
0
{
721
0
    half h;
722
0
    h._h = 0x7fff;
723
0
    return h;
724
0
}
725
726
727
inline half
728
half::sNan ()
729
0
{
730
0
    half h;
731
0
    h._h = 0x7dff;
732
0
    return h;
733
0
}
734
735
736
inline unsigned short
737
half::bits () const
738
{
739
    return _h;
740
}
741
742
743
inline void
744
half::setBits (unsigned short bits)
745
0
{
746
0
    _h = bits;
747
0
}
748
749
#endif