Coverage Report

Created: 2023-09-25 06:10

/usr/local/include/OpenEXR/ImathMatrixAlgo.h
Line
Count
Source (jump to first uncovered line)
1
///////////////////////////////////////////////////////////////////////////
2
//
3
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
4
// Digital Ltd. LLC
5
// 
6
// All rights reserved.
7
// 
8
// Redistribution and use in source and binary forms, with or without
9
// modification, are permitted provided that the following conditions are
10
// met:
11
// *       Redistributions of source code must retain the above copyright
12
// notice, this list of conditions and the following disclaimer.
13
// *       Redistributions in binary form must reproduce the above
14
// copyright notice, this list of conditions and the following disclaimer
15
// in the documentation and/or other materials provided with the
16
// distribution.
17
// *       Neither the name of Industrial Light & Magic nor the names of
18
// its contributors may be used to endorse or promote products derived
19
// from this software without specific prior written permission. 
20
// 
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
//
33
///////////////////////////////////////////////////////////////////////////
34
35
36
#ifndef INCLUDED_IMATHMATRIXALGO_H
37
#define INCLUDED_IMATHMATRIXALGO_H
38
39
//-------------------------------------------------------------------------
40
//
41
//  This file contains algorithms applied to or in conjunction with
42
//  transformation matrices (Imath::Matrix33 and Imath::Matrix44).
43
//  The assumption made is that these functions are called much less
44
//  often than the basic point functions or these functions require
45
//  more support classes.
46
//
47
//  This file also defines a few predefined constant matrices.
48
//
49
//-------------------------------------------------------------------------
50
51
#include "ImathExport.h"
52
#include "ImathMatrix.h"
53
#include "ImathQuat.h"
54
#include "ImathEuler.h"
55
#include "ImathExc.h"
56
#include "ImathVec.h"
57
#include "ImathLimits.h"
58
#include "ImathNamespace.h"
59
#include <math.h>
60
61
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
62
63
//------------------
64
// Identity matrices
65
//------------------
66
67
IMATH_EXPORT_CONST M33f identity33f;
68
IMATH_EXPORT_CONST M44f identity44f;
69
IMATH_EXPORT_CONST M33d identity33d;
70
IMATH_EXPORT_CONST M44d identity44d;
71
72
//----------------------------------------------------------------------
73
// Extract scale, shear, rotation, and translation values from a matrix:
74
// 
75
// Notes:
76
//
77
// This implementation follows the technique described in the paper by
78
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a 
79
// Matrix into Simple Transformations", p. 320.
80
//
81
// - Some of the functions below have an optional exc parameter
82
//   that determines the functions' behavior when the matrix'
83
//   scaling is very close to zero:
84
//
85
//   If exc is true, the functions throw an Imath::ZeroScale exception.
86
//
87
//   If exc is false:
88
//
89
//      extractScaling (m, s)            returns false, s is invalid
90
//  sansScaling (m)            returns m
91
//  removeScaling (m)          returns false, m is unchanged
92
//      sansScalingAndShear (m)          returns m
93
//      removeScalingAndShear (m)        returns false, m is unchanged
94
//      extractAndRemoveScalingAndShear (m, s, h)  
95
//                                       returns false, m is unchanged, 
96
//                                                      (sh) are invalid
97
//      checkForZeroScaleInRow ()        returns false
98
//  extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
99
//
100
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX() 
101
//   assume that the matrix does not include shear or non-uniform scaling, 
102
//   but they do not examine the matrix to verify this assumption.  
103
//   Matrices with shear or non-uniform scaling are likely to produce 
104
//   meaningless results.  Therefore, you should use the 
105
//   removeScalingAndShear() routine, if necessary, prior to calling
106
//   extractEuler...() .
107
//
108
// - All functions assume that the matrix does not include perspective
109
//   transformation(s), but they do not examine the matrix to verify 
110
//   this assumption.  Matrices with perspective transformations are 
111
//   likely to produce meaningless results.
112
//
113
//----------------------------------------------------------------------
114
115
116
//
117
// Declarations for 4x4 matrix.
118
//
119
120
template <class T>  bool        extractScaling 
121
                                            (const Matrix44<T> &mat,
122
               Vec3<T> &scl,
123
               bool exc = true);
124
  
125
template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat, 
126
               bool exc = true);
127
128
template <class T>  bool        removeScaling 
129
                                            (Matrix44<T> &mat, 
130
               bool exc = true);
131
132
template <class T>  bool        extractScalingAndShear 
133
                                            (const Matrix44<T> &mat,
134
               Vec3<T> &scl,
135
               Vec3<T> &shr,
136
               bool exc = true);
137
  
138
template <class T>  Matrix44<T> sansScalingAndShear 
139
                                            (const Matrix44<T> &mat, 
140
               bool exc = true);
141
142
template <class T>  void        sansScalingAndShear 
143
                                            (Matrix44<T> &result,
144
                                             const Matrix44<T> &mat, 
145
               bool exc = true);
146
147
template <class T>  bool        removeScalingAndShear 
148
                                            (Matrix44<T> &mat,
149
               bool exc = true);
150
151
template <class T>  bool        extractAndRemoveScalingAndShear
152
                                            (Matrix44<T> &mat,
153
               Vec3<T>     &scl,
154
               Vec3<T>     &shr,
155
               bool exc = true);
156
157
template <class T>  void  extractEulerXYZ 
158
                                            (const Matrix44<T> &mat,
159
               Vec3<T> &rot);
160
161
template <class T>  void  extractEulerZYX 
162
                                            (const Matrix44<T> &mat,
163
               Vec3<T> &rot);
164
165
template <class T>  Quat<T> extractQuat (const Matrix44<T> &mat);
166
167
template <class T>  bool  extractSHRT 
168
                                    (const Matrix44<T> &mat,
169
             Vec3<T> &s,
170
             Vec3<T> &h,
171
             Vec3<T> &r,
172
             Vec3<T> &t,
173
             bool exc /*= true*/,
174
             typename Euler<T>::Order rOrder);
175
176
template <class T>  bool  extractSHRT 
177
                                    (const Matrix44<T> &mat,
178
             Vec3<T> &s,
179
             Vec3<T> &h,
180
             Vec3<T> &r,
181
             Vec3<T> &t,
182
             bool exc = true);
183
184
template <class T>  bool  extractSHRT 
185
                                    (const Matrix44<T> &mat,
186
             Vec3<T> &s,
187
             Vec3<T> &h,
188
             Euler<T> &r,
189
             Vec3<T> &t,
190
             bool exc = true);
191
192
//
193
// Internal utility function.
194
//
195
196
template <class T>  bool  checkForZeroScaleInRow
197
                                            (const T       &scl, 
198
               const Vec3<T> &row,
199
               bool exc = true);
200
201
template <class T>  Matrix44<T> outerProduct
202
                                            ( const Vec4<T> &a,
203
                                              const Vec4<T> &b);
204
205
206
//
207
// Returns a matrix that rotates "fromDirection" vector to "toDirection"
208
// vector.
209
//
210
211
template <class T> Matrix44<T>  rotationMatrix (const Vec3<T> &fromDirection,
212
            const Vec3<T> &toDirection);
213
214
215
216
//
217
// Returns a matrix that rotates the "fromDir" vector 
218
// so that it points towards "toDir".  You may also 
219
// specify that you want the up vector to be pointing 
220
// in a certain direction "upDir".
221
//
222
223
template <class T> Matrix44<T>  rotationMatrixWithUpDir 
224
                                            (const Vec3<T> &fromDir,
225
               const Vec3<T> &toDir,
226
               const Vec3<T> &upDir);
227
228
229
//
230
// Constructs a matrix that rotates the z-axis so that it 
231
// points towards "targetDir".  You must also specify 
232
// that you want the up vector to be pointing in a 
233
// certain direction "upDir".
234
//
235
// Notes: The following degenerate cases are handled:
236
//        (a) when the directions given by "toDir" and "upDir" 
237
//            are parallel or opposite;
238
//            (the direction vectors must have a non-zero cross product)
239
//        (b) when any of the given direction vectors have zero length
240
//
241
242
template <class T> void alignZAxisWithTargetDir 
243
                                            (Matrix44<T> &result,
244
                                             Vec3<T>      targetDir, 
245
               Vec3<T>      upDir);
246
247
248
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
249
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
250
// Inputs are : 
251
//     -the position of the frame
252
//     -the x axis direction of the frame
253
//     -a normal to the y axis of the frame
254
// Return is the orthonormal frame
255
template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
256
                                                  const Vec3<T>& xDir,
257
                                                  const Vec3<T>& normal);
258
259
// Add a translate/rotate/scale offset to an input frame
260
// and put it in another frame of reference
261
// Inputs are :
262
//     - input frame
263
//     - translate offset
264
//     - rotate    offset in degrees
265
//     - scale     offset
266
//     - frame of reference
267
// Output is the offsetted frame
268
template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
269
                                          const Vec3<T>&     tOffset,
270
                                          const Vec3<T>&     rOffset,
271
                                          const Vec3<T>&     sOffset,
272
                                          const Vec3<T>&     ref);
273
274
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
275
// Inputs are :
276
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
277
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
278
//      -Matrix A
279
//      -Matrix B
280
// Return Matrix A with tweaked rotation/scale
281
template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
282
                                                bool               keepScaleA, 
283
                                                const Matrix44<T>& A,
284
                                                const Matrix44<T>& B);
285
286
287
//----------------------------------------------------------------------
288
289
290
// 
291
// Declarations for 3x3 matrix.
292
//
293
294
 
295
template <class T>  bool        extractScaling 
296
                                            (const Matrix33<T> &mat,
297
               Vec2<T> &scl,
298
               bool exc = true);
299
  
300
template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat, 
301
               bool exc = true);
302
303
template <class T>  bool        removeScaling 
304
                                            (Matrix33<T> &mat, 
305
               bool exc = true);
306
307
template <class T>  bool        extractScalingAndShear 
308
                                            (const Matrix33<T> &mat,
309
               Vec2<T> &scl,
310
               T &h,
311
               bool exc = true);
312
  
313
template <class T>  Matrix33<T> sansScalingAndShear 
314
                                            (const Matrix33<T> &mat, 
315
               bool exc = true);
316
317
template <class T>  bool        removeScalingAndShear 
318
                                            (Matrix33<T> &mat,
319
               bool exc = true);
320
321
template <class T>  bool        extractAndRemoveScalingAndShear
322
                                            (Matrix33<T> &mat,
323
               Vec2<T>     &scl,
324
               T           &shr,
325
               bool exc = true);
326
327
template <class T>  void  extractEuler
328
                                            (const Matrix33<T> &mat,
329
               T       &rot);
330
331
template <class T>  bool  extractSHRT (const Matrix33<T> &mat,
332
               Vec2<T> &s,
333
               T       &h,
334
               T       &r,
335
               Vec2<T> &t,
336
               bool exc = true);
337
338
template <class T>  bool  checkForZeroScaleInRow
339
                                            (const T       &scl, 
340
               const Vec2<T> &row,
341
               bool exc = true);
342
343
template <class T>  Matrix33<T> outerProduct
344
                                            ( const Vec3<T> &a,
345
                                              const Vec3<T> &b);
346
347
348
//-----------------------------------------------------------------------------
349
// Implementation for 4x4 Matrix
350
//------------------------------
351
352
353
template <class T>
354
bool
355
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
356
0
{
357
0
    Vec3<T> shr;
358
0
    Matrix44<T> M (mat);
359
360
0
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
361
0
  return false;
362
    
363
0
    return true;
364
0
}
365
366
367
template <class T>
368
Matrix44<T>
369
sansScaling (const Matrix44<T> &mat, bool exc)
370
{
371
    Vec3<T> scl;
372
    Vec3<T> shr;
373
    Vec3<T> rot;
374
    Vec3<T> tran;
375
376
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
377
  return mat;
378
379
    Matrix44<T> M;
380
    
381
    M.translate (tran);
382
    M.rotate (rot);
383
    M.shear (shr);
384
385
    return M;
386
}
387
388
389
template <class T>
390
bool
391
removeScaling (Matrix44<T> &mat, bool exc)
392
{
393
    Vec3<T> scl;
394
    Vec3<T> shr;
395
    Vec3<T> rot;
396
    Vec3<T> tran;
397
398
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
399
  return false;
400
401
    mat.makeIdentity ();
402
    mat.translate (tran);
403
    mat.rotate (rot);
404
    mat.shear (shr);
405
406
    return true;
407
}
408
409
410
template <class T>
411
bool
412
extractScalingAndShear (const Matrix44<T> &mat, 
413
      Vec3<T> &scl, Vec3<T> &shr, bool exc)
414
{
415
    Matrix44<T> M (mat);
416
417
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
418
  return false;
419
    
420
    return true;
421
}
422
423
424
template <class T>
425
Matrix44<T>
426
sansScalingAndShear (const Matrix44<T> &mat, bool exc)
427
{
428
    Vec3<T> scl;
429
    Vec3<T> shr;
430
    Matrix44<T> M (mat);
431
432
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
433
  return mat;
434
    
435
    return M;
436
}
437
438
439
template <class T>
440
void
441
sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
442
{
443
    Vec3<T> scl;
444
    Vec3<T> shr;
445
446
    if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
447
  result = mat;
448
}
449
450
451
template <class T>
452
bool
453
removeScalingAndShear (Matrix44<T> &mat, bool exc)
454
{
455
    Vec3<T> scl;
456
    Vec3<T> shr;
457
458
    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
459
  return false;
460
    
461
    return true;
462
}
463
464
465
template <class T>
466
bool
467
extractAndRemoveScalingAndShear (Matrix44<T> &mat, 
468
         Vec3<T> &scl, Vec3<T> &shr, bool exc)
469
0
{
470
    //
471
    // This implementation follows the technique described in the paper by
472
    // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a 
473
    // Matrix into Simple Transformations", p. 320.
474
    //
475
476
0
    Vec3<T> row[3];
477
478
0
    row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
479
0
    row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
480
0
    row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
481
    
482
0
    T maxVal = 0;
483
0
    for (int i=0; i < 3; i++)
484
0
  for (int j=0; j < 3; j++)
485
0
      if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
486
0
    maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);
487
488
    //
489
    // We normalize the 3x3 matrix here.
490
    // It was noticed that this can improve numerical stability significantly,
491
    // especially when many of the upper 3x3 matrix's coefficients are very
492
    // close to zero; we correct for this step at the end by multiplying the 
493
    // scaling factors by maxVal at the end (shear and rotation are not 
494
    // affected by the normalization).
495
496
0
    if (maxVal != 0)
497
0
    {
498
0
  for (int i=0; i < 3; i++)
499
0
      if (! checkForZeroScaleInRow (maxVal, row[i], exc))
500
0
    return false;
501
0
      else
502
0
    row[i] /= maxVal;
503
0
    }
504
505
    // Compute X scale factor. 
506
0
    scl.x = row[0].length ();
507
0
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
508
0
  return false;
509
510
    // Normalize first row.
511
0
    row[0] /= scl.x;
512
513
    // An XY shear factor will shear the X coord. as the Y coord. changes.
514
    // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
515
    // extract the first 3 because we can effect the last 3 by shearing in
516
    // XY, XZ, YZ combined rotations and scales.
517
    //
518
    // shear matrix <   1,  YX,  ZX,  0,
519
    //                 XY,   1,  ZY,  0,
520
    //                 XZ,  YZ,   1,  0,
521
    //                  0,   0,   0,  1 >
522
523
    // Compute XY shear factor and make 2nd row orthogonal to 1st.
524
0
    shr[0]  = row[0].dot (row[1]);
525
0
    row[1] -= shr[0] * row[0];
526
527
    // Now, compute Y scale.
528
0
    scl.y = row[1].length ();
529
0
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
530
0
  return false;
531
532
    // Normalize 2nd row and correct the XY shear factor for Y scaling.
533
0
    row[1] /= scl.y; 
534
0
    shr[0] /= scl.y;
535
536
    // Compute XZ and YZ shears, orthogonalize 3rd row.
537
0
    shr[1]  = row[0].dot (row[2]);
538
0
    row[2] -= shr[1] * row[0];
539
0
    shr[2]  = row[1].dot (row[2]);
540
0
    row[2] -= shr[2] * row[1];
541
542
    // Next, get Z scale.
543
0
    scl.z = row[2].length ();
544
0
    if (! checkForZeroScaleInRow (scl.z, row[2], exc))
545
0
  return false;
546
547
    // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
548
0
    row[2] /= scl.z;
549
0
    shr[1] /= scl.z;
550
0
    shr[2] /= scl.z;
551
552
    // At this point, the upper 3x3 matrix in mat is orthonormal.
553
    // Check for a coordinate system flip. If the determinant
554
    // is less than zero, then negate the matrix and the scaling factors.
555
0
    if (row[0].dot (row[1].cross (row[2])) < 0)
556
0
  for (int  i=0; i < 3; i++)
557
0
  {
558
0
      scl[i] *= -1;
559
0
      row[i] *= -1;
560
0
  }
561
562
    // Copy over the orthonormal rows into the returned matrix.
563
    // The upper 3x3 matrix in mat is now a rotation matrix.
564
0
    for (int i=0; i < 3; i++)
565
0
    {
566
0
  mat[i][0] = row[i][0]; 
567
0
  mat[i][1] = row[i][1]; 
568
0
  mat[i][2] = row[i][2];
569
0
    }
570
571
    // Correct the scaling factors for the normalization step that we 
572
    // performed above; shear and rotation are not affected by the 
573
    // normalization.
574
0
    scl *= maxVal;
575
576
0
    return true;
577
0
}
578
579
580
template <class T>
581
void
582
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
583
0
{
584
    //
585
    // Normalize the local x, y and z axes to remove scaling.
586
    //
587
588
0
    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
589
0
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
590
0
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
591
592
0
    i.normalize();
593
0
    j.normalize();
594
0
    k.normalize();
595
596
0
    Matrix44<T> M (i[0], i[1], i[2], 0, 
597
0
       j[0], j[1], j[2], 0, 
598
0
       k[0], k[1], k[2], 0, 
599
0
       0,    0,    0,    1);
600
601
    //
602
    // Extract the first angle, rot.x.
603
    // 
604
605
0
    rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
606
607
    //
608
    // Remove the rot.x rotation from M, so that the remaining
609
    // rotation, N, is only around two axes, and gimbal lock
610
    // cannot occur.
611
    //
612
613
0
    Matrix44<T> N;
614
0
    N.rotate (Vec3<T> (-rot.x, 0, 0));
615
0
    N = N * M;
616
617
    //
618
    // Extract the other two angles, rot.y and rot.z, from N.
619
    //
620
621
0
    T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
622
0
    rot.y = Math<T>::atan2 (-N[0][2], cy);
623
0
    rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
624
0
}
625
626
627
template <class T>
628
void
629
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
630
{
631
    //
632
    // Normalize the local x, y and z axes to remove scaling.
633
    //
634
635
    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
636
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
637
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
638
639
    i.normalize();
640
    j.normalize();
641
    k.normalize();
642
643
    Matrix44<T> M (i[0], i[1], i[2], 0, 
644
       j[0], j[1], j[2], 0, 
645
       k[0], k[1], k[2], 0, 
646
       0,    0,    0,    1);
647
648
    //
649
    // Extract the first angle, rot.x.
650
    // 
651
652
    rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
653
654
    //
655
    // Remove the x rotation from M, so that the remaining
656
    // rotation, N, is only around two axes, and gimbal lock
657
    // cannot occur.
658
    //
659
660
    Matrix44<T> N;
661
    N.rotate (Vec3<T> (0, 0, -rot.x));
662
    N = N * M;
663
664
    //
665
    // Extract the other two angles, rot.y and rot.z, from N.
666
    //
667
668
    T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
669
    rot.y = -Math<T>::atan2 (-N[2][0], cy);
670
    rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
671
}
672
673
674
template <class T>
675
Quat<T>
676
extractQuat (const Matrix44<T> &mat)
677
0
{
678
0
  Matrix44<T> rot;
679
680
0
  T        tr, s;
681
0
  T         q[4];
682
0
  int    i, j, k;
683
0
  Quat<T>   quat;
684
685
0
  int nxt[3] = {1, 2, 0};
686
0
  tr = mat[0][0] + mat[1][1] + mat[2][2];
687
688
  // check the diagonal
689
0
  if (tr > 0.0) {
690
0
     s = Math<T>::sqrt (tr + T(1.0));
691
0
     quat.r = s / T(2.0);
692
0
     s = T(0.5) / s;
693
694
0
     quat.v.x = (mat[1][2] - mat[2][1]) * s;
695
0
     quat.v.y = (mat[2][0] - mat[0][2]) * s;
696
0
     quat.v.z = (mat[0][1] - mat[1][0]) * s;
697
0
  } 
698
0
  else {      
699
     // diagonal is negative
700
0
     i = 0;
701
0
     if (mat[1][1] > mat[0][0]) 
702
0
        i=1;
703
0
     if (mat[2][2] > mat[i][i]) 
704
0
        i=2;
705
    
706
0
     j = nxt[i];
707
0
     k = nxt[j];
708
0
     s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
709
      
710
0
     q[i] = s * T(0.5);
711
0
     if (s != T(0.0)) 
712
0
        s = T(0.5) / s;
713
714
0
     q[3] = (mat[j][k] - mat[k][j]) * s;
715
0
     q[j] = (mat[i][j] + mat[j][i]) * s;
716
0
     q[k] = (mat[i][k] + mat[k][i]) * s;
717
718
0
     quat.v.x = q[0];
719
0
     quat.v.y = q[1];
720
0
     quat.v.z = q[2];
721
0
     quat.r = q[3];
722
0
 }
723
724
0
  return quat;
725
0
}
726
727
template <class T>
728
bool 
729
extractSHRT (const Matrix44<T> &mat,
730
       Vec3<T> &s,
731
       Vec3<T> &h,
732
       Vec3<T> &r,
733
       Vec3<T> &t,
734
       bool exc /* = true */ ,
735
       typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
736
{
737
    Matrix44<T> rot;
738
739
    rot = mat;
740
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
741
  return false;
742
743
    extractEulerXYZ (rot, r);
744
745
    t.x = mat[3][0];
746
    t.y = mat[3][1];
747
    t.z = mat[3][2];
748
749
    if (rOrder != Euler<T>::XYZ)
750
    {
751
  IMATH_INTERNAL_NAMESPACE::Euler<T> eXYZ (r, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
752
  IMATH_INTERNAL_NAMESPACE::Euler<T> e (eXYZ, rOrder);
753
  r = e.toXYZVector ();
754
    }
755
756
    return true;
757
}
758
759
template <class T>
760
bool 
761
extractSHRT (const Matrix44<T> &mat,
762
       Vec3<T> &s,
763
       Vec3<T> &h,
764
       Vec3<T> &r,
765
       Vec3<T> &t,
766
       bool exc)
767
{
768
    return extractSHRT(mat, s, h, r, t, exc, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
769
}
770
771
template <class T>
772
bool 
773
extractSHRT (const Matrix44<T> &mat,
774
       Vec3<T> &s,
775
       Vec3<T> &h,
776
       Euler<T> &r,
777
       Vec3<T> &t,
778
       bool exc /* = true */)
779
{
780
    return extractSHRT (mat, s, h, r, t, exc, r.order ());
781
}
782
783
784
template <class T> 
785
bool    
786
checkForZeroScaleInRow (const T& scl, 
787
      const Vec3<T> &row,
788
      bool exc /* = true */ )
789
0
{
790
0
    for (int i = 0; i < 3; i++)
791
0
    {
792
0
  if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
793
0
  {
794
0
      if (exc)
795
0
    throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc ("Cannot remove zero scaling "
796
0
             "from matrix.");
797
0
      else
798
0
    return false;
799
0
  }
800
0
    }
801
802
0
    return true;
803
0
}
804
805
template <class T>
806
Matrix44<T>
807
outerProduct (const Vec4<T> &a, const Vec4<T> &b )
808
{
809
    return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
810
                        a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
811
                        a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
812
                        a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
813
}
814
815
template <class T>
816
Matrix44<T>
817
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
818
{
819
    Quat<T> q;
820
    q.setRotation(from, to);
821
    return q.toMatrix44();
822
}
823
824
825
template <class T>
826
Matrix44<T> 
827
rotationMatrixWithUpDir (const Vec3<T> &fromDir,
828
       const Vec3<T> &toDir,
829
       const Vec3<T> &upDir)
830
{
831
    //
832
    // The goal is to obtain a rotation matrix that takes 
833
    // "fromDir" to "toDir".  We do this in two steps and 
834
    // compose the resulting rotation matrices; 
835
    //    (a) rotate "fromDir" into the z-axis
836
    //    (b) rotate the z-axis into "toDir"
837
    //
838
839
    // The from direction must be non-zero; but we allow zero to and up dirs.
840
    if (fromDir.length () == 0)
841
  return Matrix44<T> ();
842
843
    else
844
    {
845
  Matrix44<T> zAxis2FromDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
846
  alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
847
848
  Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
849
  
850
  Matrix44<T> zAxis2ToDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
851
  alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
852
853
  return fromDir2zAxis * zAxis2ToDir;
854
    }
855
}
856
857
858
template <class T>
859
void
860
alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
861
{
862
    //
863
    // Ensure that the target direction is non-zero.
864
    //
865
866
    if ( targetDir.length () == 0 )
867
  targetDir = Vec3<T> (0, 0, 1);
868
869
    //
870
    // Ensure that the up direction is non-zero.
871
    //
872
873
    if ( upDir.length () == 0 )
874
  upDir = Vec3<T> (0, 1, 0);
875
876
    //
877
    // Check for degeneracies.  If the upDir and targetDir are parallel 
878
    // or opposite, then compute a new, arbitrary up direction that is
879
    // not parallel or opposite to the targetDir.
880
    //
881
882
    if (upDir.cross (targetDir).length () == 0)
883
    {
884
  upDir = targetDir.cross (Vec3<T> (1, 0, 0));
885
  if (upDir.length() == 0)
886
      upDir = targetDir.cross(Vec3<T> (0, 0, 1));
887
    }
888
889
    //
890
    // Compute the x-, y-, and z-axis vectors of the new coordinate system.
891
    //
892
893
    Vec3<T> targetPerpDir = upDir.cross (targetDir);    
894
    Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
895
    
896
    //
897
    // Rotate the x-axis into targetPerpDir (row 0),
898
    // rotate the y-axis into targetUpDir   (row 1),
899
    // rotate the z-axis into targetDir     (row 2).
900
    //
901
    
902
    Vec3<T> row[3];
903
    row[0] = targetPerpDir.normalized ();
904
    row[1] = targetUpDir  .normalized ();
905
    row[2] = targetDir    .normalized ();
906
    
907
    result.x[0][0] = row[0][0];
908
    result.x[0][1] = row[0][1];
909
    result.x[0][2] = row[0][2];
910
    result.x[0][3] = (T)0;
911
 
912
    result.x[1][0] = row[1][0];
913
    result.x[1][1] = row[1][1];
914
    result.x[1][2] = row[1][2];
915
    result.x[1][3] = (T)0;
916
 
917
    result.x[2][0] = row[2][0];
918
    result.x[2][1] = row[2][1];
919
    result.x[2][2] = row[2][2];
920
    result.x[2][3] = (T)0;
921
 
922
    result.x[3][0] = (T)0;
923
    result.x[3][1] = (T)0;
924
    result.x[3][2] = (T)0;
925
    result.x[3][3] = (T)1;
926
}
927
928
929
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
930
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
931
// Inputs are : 
932
//     -the position of the frame
933
//     -the x axis direction of the frame
934
//     -a normal to the y axis of the frame
935
// Return is the orthonormal frame
936
template <class T>
937
Matrix44<T>
938
computeLocalFrame( const Vec3<T>& p,
939
                   const Vec3<T>& xDir,
940
                   const Vec3<T>& normal)
941
{
942
    Vec3<T> _xDir(xDir);
943
    Vec3<T> x = _xDir.normalize();
944
    Vec3<T> y = (normal % x).normalize();
945
    Vec3<T> z = (x % y).normalize();
946
947
    Matrix44<T> L;
948
    L[0][0] = x[0];
949
    L[0][1] = x[1];
950
    L[0][2] = x[2];
951
    L[0][3] = 0.0;
952
953
    L[1][0] = y[0];
954
    L[1][1] = y[1];
955
    L[1][2] = y[2];
956
    L[1][3] = 0.0;
957
958
    L[2][0] = z[0];
959
    L[2][1] = z[1];
960
    L[2][2] = z[2];
961
    L[2][3] = 0.0;
962
963
    L[3][0] = p[0];
964
    L[3][1] = p[1];
965
    L[3][2] = p[2];
966
    L[3][3] = 1.0;
967
    
968
    return L;
969
}
970
971
// Add a translate/rotate/scale offset to an input frame
972
// and put it in another frame of reference
973
// Inputs are :
974
//     - input frame
975
//     - translate offset
976
//     - rotate    offset in degrees
977
//     - scale     offset
978
//     - frame of reference
979
// Output is the offsetted frame
980
template <class T>
981
Matrix44<T>
982
addOffset( const Matrix44<T>& inMat,
983
           const Vec3<T>&     tOffset,
984
           const Vec3<T>&     rOffset,
985
           const Vec3<T>&     sOffset,
986
           const Matrix44<T>& ref)
987
{
988
    Matrix44<T> O;
989
990
    Vec3<T> _rOffset(rOffset);
991
    _rOffset *= M_PI / 180.0;
992
    O.rotate (_rOffset);
993
994
    O[3][0] = tOffset[0];
995
    O[3][1] = tOffset[1];
996
    O[3][2] = tOffset[2];
997
998
    Matrix44<T> S;
999
    S.scale (sOffset);
1000
1001
    Matrix44<T> X = S * O * inMat * ref;
1002
1003
    return X;
1004
}
1005
1006
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
1007
// Inputs are :
1008
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
1009
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
1010
//      -Matrix A
1011
//      -Matrix B
1012
// Return Matrix A with tweaked rotation/scale
1013
template <class T>
1014
Matrix44<T>
1015
computeRSMatrix( bool               keepRotateA,
1016
                 bool               keepScaleA, 
1017
                 const Matrix44<T>& A, 
1018
                 const Matrix44<T>& B)
1019
{
1020
    Vec3<T> as, ah, ar, at;
1021
    extractSHRT (A, as, ah, ar, at);
1022
    
1023
    Vec3<T> bs, bh, br, bt;
1024
    extractSHRT (B, bs, bh, br, bt);
1025
1026
    if (!keepRotateA)
1027
        ar = br;
1028
1029
    if (!keepScaleA)
1030
        as = bs;
1031
1032
    Matrix44<T> mat;
1033
    mat.makeIdentity();
1034
    mat.translate (at);
1035
    mat.rotate (ar);
1036
    mat.scale (as);
1037
    
1038
    return mat;
1039
}
1040
1041
1042
1043
//-----------------------------------------------------------------------------
1044
// Implementation for 3x3 Matrix
1045
//------------------------------
1046
1047
1048
template <class T>
1049
bool
1050
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
1051
{
1052
    T shr;
1053
    Matrix33<T> M (mat);
1054
1055
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1056
  return false;
1057
1058
    return true;
1059
}
1060
1061
1062
template <class T>
1063
Matrix33<T>
1064
sansScaling (const Matrix33<T> &mat, bool exc)
1065
{
1066
    Vec2<T> scl;
1067
    T shr;
1068
    T rot;
1069
    Vec2<T> tran;
1070
1071
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1072
  return mat;
1073
1074
    Matrix33<T> M;
1075
    
1076
    M.translate (tran);
1077
    M.rotate (rot);
1078
    M.shear (shr);
1079
1080
    return M;
1081
}
1082
1083
1084
template <class T>
1085
bool
1086
removeScaling (Matrix33<T> &mat, bool exc)
1087
{
1088
    Vec2<T> scl;
1089
    T shr;
1090
    T rot;
1091
    Vec2<T> tran;
1092
1093
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1094
  return false;
1095
1096
    mat.makeIdentity ();
1097
    mat.translate (tran);
1098
    mat.rotate (rot);
1099
    mat.shear (shr);
1100
1101
    return true;
1102
}
1103
1104
1105
template <class T>
1106
bool
1107
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
1108
{
1109
    Matrix33<T> M (mat);
1110
1111
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1112
  return false;
1113
1114
    return true;
1115
}
1116
1117
1118
template <class T>
1119
Matrix33<T>
1120
sansScalingAndShear (const Matrix33<T> &mat, bool exc)
1121
{
1122
    Vec2<T> scl;
1123
    T shr;
1124
    Matrix33<T> M (mat);
1125
1126
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1127
  return mat;
1128
    
1129
    return M;
1130
}
1131
1132
1133
template <class T>
1134
bool
1135
removeScalingAndShear (Matrix33<T> &mat, bool exc)
1136
{
1137
    Vec2<T> scl;
1138
    T shr;
1139
1140
    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
1141
  return false;
1142
    
1143
    return true;
1144
}
1145
1146
template <class T>
1147
bool
1148
extractAndRemoveScalingAndShear (Matrix33<T> &mat, 
1149
         Vec2<T> &scl, T &shr, bool exc)
1150
{
1151
    Vec2<T> row[2];
1152
1153
    row[0] = Vec2<T> (mat[0][0], mat[0][1]);
1154
    row[1] = Vec2<T> (mat[1][0], mat[1][1]);
1155
    
1156
    T maxVal = 0;
1157
    for (int i=0; i < 2; i++)
1158
  for (int j=0; j < 2; j++)
1159
      if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
1160
    maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);
1161
1162
    //
1163
    // We normalize the 2x2 matrix here.
1164
    // It was noticed that this can improve numerical stability significantly,
1165
    // especially when many of the upper 2x2 matrix's coefficients are very
1166
    // close to zero; we correct for this step at the end by multiplying the 
1167
    // scaling factors by maxVal at the end (shear and rotation are not 
1168
    // affected by the normalization).
1169
1170
    if (maxVal != 0)
1171
    {
1172
  for (int i=0; i < 2; i++)
1173
      if (! checkForZeroScaleInRow (maxVal, row[i], exc))
1174
    return false;
1175
      else
1176
    row[i] /= maxVal;
1177
    }
1178
1179
    // Compute X scale factor. 
1180
    scl.x = row[0].length ();
1181
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
1182
  return false;
1183
1184
    // Normalize first row.
1185
    row[0] /= scl.x;
1186
1187
    // An XY shear factor will shear the X coord. as the Y coord. changes.
1188
    // There are 2 combinations (XY, YX), although we only extract the XY 
1189
    // shear factor because we can effect the an YX shear factor by 
1190
    // shearing in XY combined with rotations and scales.
1191
    //
1192
    // shear matrix <   1,  YX,  0,
1193
    //                 XY,   1,  0,
1194
    //                  0,   0,  1 >
1195
1196
    // Compute XY shear factor and make 2nd row orthogonal to 1st.
1197
    shr     = row[0].dot (row[1]);
1198
    row[1] -= shr * row[0];
1199
1200
    // Now, compute Y scale.
1201
    scl.y = row[1].length ();
1202
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
1203
  return false;
1204
1205
    // Normalize 2nd row and correct the XY shear factor for Y scaling.
1206
    row[1] /= scl.y; 
1207
    shr    /= scl.y;
1208
1209
    // At this point, the upper 2x2 matrix in mat is orthonormal.
1210
    // Check for a coordinate system flip. If the determinant
1211
    // is -1, then flip the rotation matrix and adjust the scale(Y) 
1212
    // and shear(XY) factors to compensate.
1213
    if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
1214
    {
1215
  row[1][0] *= -1;
1216
  row[1][1] *= -1;
1217
  scl[1] *= -1;
1218
  shr *= -1;
1219
    }
1220
1221
    // Copy over the orthonormal rows into the returned matrix.
1222
    // The upper 2x2 matrix in mat is now a rotation matrix.
1223
    for (int i=0; i < 2; i++)
1224
    {
1225
  mat[i][0] = row[i][0]; 
1226
  mat[i][1] = row[i][1]; 
1227
    }
1228
1229
    scl *= maxVal;
1230
1231
    return true;
1232
}
1233
1234
1235
template <class T>
1236
void
1237
extractEuler (const Matrix33<T> &mat, T &rot)
1238
{
1239
    //
1240
    // Normalize the local x and y axes to remove scaling.
1241
    //
1242
1243
    Vec2<T> i (mat[0][0], mat[0][1]);
1244
    Vec2<T> j (mat[1][0], mat[1][1]);
1245
1246
    i.normalize();
1247
    j.normalize();
1248
1249
    //
1250
    // Extract the angle, rot.
1251
    // 
1252
1253
    rot = - Math<T>::atan2 (j[0], i[0]);
1254
}
1255
1256
1257
template <class T>
1258
bool 
1259
extractSHRT (const Matrix33<T> &mat,
1260
       Vec2<T> &s,
1261
       T       &h,
1262
       T       &r,
1263
       Vec2<T> &t,
1264
       bool    exc)
1265
{
1266
    Matrix33<T> rot;
1267
1268
    rot = mat;
1269
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
1270
  return false;
1271
1272
    extractEuler (rot, r);
1273
1274
    t.x = mat[2][0];
1275
    t.y = mat[2][1];
1276
1277
    return true;
1278
}
1279
1280
1281
template <class T> 
1282
bool    
1283
checkForZeroScaleInRow (const T& scl, 
1284
                        const Vec2<T> &row,
1285
                        bool exc /* = true */ )
1286
{
1287
    for (int i = 0; i < 2; i++)
1288
    {
1289
        if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
1290
        {
1291
            if (exc)
1292
                throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc (
1293
                        "Cannot remove zero scaling from matrix.");
1294
            else
1295
                return false;
1296
        }
1297
    }
1298
1299
    return true;
1300
}
1301
1302
1303
template <class T>
1304
Matrix33<T>
1305
outerProduct (const Vec3<T> &a, const Vec3<T> &b )
1306
{
1307
    return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
1308
                        a.y*b.x, a.y*b.y, a.y*b.z,
1309
                        a.z*b.x, a.z*b.y, a.z*b.z );
1310
}
1311
1312
1313
// Computes the translation and rotation that brings the 'from' points
1314
// as close as possible to the 'to' points under the Frobenius norm.  
1315
// To be more specific, let x be the matrix of 'from' points and y be
1316
// the matrix of 'to' points, we want to find the matrix A of the form
1317
//    [ R t ]
1318
//    [ 0 1 ]
1319
// that minimizes
1320
//     || (A*x - y)^T * W * (A*x - y) ||_F
1321
// If doScaling is true, then a uniform scale is allowed also.
1322
template <typename T>
1323
IMATH_INTERNAL_NAMESPACE::M44d
1324
procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A,  // From these
1325
                                  const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B,  // To these
1326
                                  const T* weights, 
1327
                                  const size_t numPoints,
1328
                                  const bool doScaling = false);
1329
1330
// Unweighted:
1331
template <typename T>
1332
IMATH_INTERNAL_NAMESPACE::M44d
1333
procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A, 
1334
                                  const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B, 
1335
                                  const size_t numPoints,
1336
                                  const bool doScaling = false);
1337
1338
// Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
1339
// should be quite accurate (competitive with LAPACK) even for poorly
1340
// conditioned matrices, and because it has been written specifically for the
1341
// 3x3/4x4 case it is much faster than calling out to LAPACK.  
1342
//
1343
// The SVD of a 3x3/4x4 matrix A is defined as follows:
1344
//     A = U * S * V^T
1345
// where S is the diagonal matrix of singular values and both U and V are
1346
// orthonormal.  By convention, the entries S are all positive and sorted from
1347
// the largest to the smallest.  However, some uses of this function may
1348
// require that the matrix U*V^T have positive determinant; in this case, we
1349
// may make the smallest singular value negative to ensure that this is
1350
// satisfied.  
1351
//
1352
// Currently only available for single- and double-precision matrices.
1353
template <typename T>
1354
void
1355
jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
1356
           IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
1357
           IMATH_INTERNAL_NAMESPACE::Vec3<T>& S,
1358
           IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
1359
           const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
1360
           const bool forcePositiveDeterminant = false);
1361
1362
template <typename T>
1363
void
1364
jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
1365
           IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
1366
           IMATH_INTERNAL_NAMESPACE::Vec4<T>& S,
1367
           IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
1368
           const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
1369
           const bool forcePositiveDeterminant = false);
1370
1371
// Compute the eigenvalues (S) and the eigenvectors (V) of
1372
// a real symmetric matrix using Jacobi transformation.
1373
//
1374
// Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
1375
//  A = V * S * V^T
1376
// where V is orthonormal and S is the diagonal matrix of eigenvalues.
1377
// Input matrix A must be symmetric. A is also modified during
1378
// the computation so that upper diagonal entries of A become zero. 
1379
//
1380
template <typename T>
1381
void
1382
jacobiEigenSolver (Matrix33<T>& A,
1383
                   Vec3<T>& S,
1384
                   Matrix33<T>& V,
1385
                   const T tol);
1386
1387
template <typename T>
1388
inline
1389
void
1390
jacobiEigenSolver (Matrix33<T>& A,
1391
                   Vec3<T>& S,
1392
                   Matrix33<T>& V)
1393
{
1394
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
1395
}
1396
1397
template <typename T>
1398
void
1399
jacobiEigenSolver (Matrix44<T>& A,
1400
                   Vec4<T>& S,
1401
                   Matrix44<T>& V,
1402
                   const T tol);
1403
1404
template <typename T>
1405
inline
1406
void
1407
jacobiEigenSolver (Matrix44<T>& A,
1408
                   Vec4<T>& S,
1409
                   Matrix44<T>& V)
1410
{
1411
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
1412
}
1413
1414
// Compute a eigenvector corresponding to the abs max/min eigenvalue
1415
// of a real symmetric matrix using Jacobi transformation.
1416
template <typename TM, typename TV>
1417
void
1418
maxEigenVector (TM& A, TV& S);
1419
template <typename TM, typename TV>
1420
void
1421
minEigenVector (TM& A, TV& S);
1422
1423
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
1424
1425
#endif // INCLUDED_IMATHMATRIXALGO_H