Coverage Report

Created: 2025-11-24 06:38

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/alembic/lib/Alembic/Util/SpookyV2.h
Line
Count
Source
1
//-*****************************************************************************
2
//
3
// Copyright (c) 2013-2015,
4
//  Sony Pictures Imageworks Inc. and
5
//  Industrial Light & Magic, a division of Lucasfilm Entertainment Company Ltd.
6
//
7
// All rights reserved.
8
//
9
// Redistribution and use in source and binary forms, with or without
10
// modification, are permitted provided that the following conditions are
11
// met:
12
// *       Redistributions of source code must retain the above copyright
13
// notice, this list of conditions and the following disclaimer.
14
// *       Redistributions in binary form must reproduce the above
15
// copyright notice, this list of conditions and the following disclaimer
16
// in the documentation and/or other materials provided with the
17
// distribution.
18
// *       Neither the name of Industrial Light & Magic nor the names of
19
// its contributors may be used to endorse or promote products derived
20
// from this software without specific prior written permission.
21
//
22
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
//
34
//-*****************************************************************************
35
36
//
37
// SpookyHash: a 128-bit noncryptographic hash function
38
// By Bob Jenkins, public domain
39
//   Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
40
//   Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
41
//   Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
42
//   Feb  2 2012: production, same bits as beta
43
//   Feb  5 2012: adjusted definitions of uint* to be more portable
44
//   Mar 30 2012: 3 bytes/cycle, not 4.  Alpha was 4 but wasn't thorough enough.
45
//   August 5 2012: SpookyV2 (different results)
46
//
47
// Up to 3 bytes/cycle for long messages.  Reasonably fast for short messages.
48
// All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
49
//
50
// This was developed for and tested on 64-bit x86-compatible processors.
51
// It assumes the processor is little-endian.  There is a macro
52
// controlling whether unaligned reads are allowed (by default they are).
53
// This should be an equally good hash on big-endian machines, but it will
54
// compute different results on them than on little-endian machines.
55
//
56
// Google's CityHash has similar specs to SpookyHash, and CityHash is faster
57
// on new Intel boxes.  MD4 and MD5 also have similar specs, but they are orders
58
// of magnitude slower.  CRCs are two or more times slower, but unlike
59
// SpookyHash, they have nice math for combining the CRCs of pieces to form
60
// the CRCs of wholes.  There are also cryptographic hashes, but those are even
61
// slower than MD5.
62
//
63
64
#ifndef Alembic_Util_SpookyV2_h
65
#define Alembic_Util_SpookyV2_h
66
67
#include <Alembic/Util/Export.h>
68
#include <Alembic/Util/PlainOldDataType.h>
69
70
namespace Alembic {
71
namespace Util {
72
namespace ALEMBIC_VERSION_NS {
73
74
class ALEMBIC_EXPORT SpookyHash
75
{
76
public:
77
    //
78
    // SpookyHash: hash a single message in one call, produce 128-bit output
79
    //
80
    static void Hash128(
81
        const void *message,  // message to hash
82
        size_t length,        // length of message in bytes
83
        uint64_t *hash1,      // in/out: in seed 1, out hash value 1
84
        uint64_t *hash2);     // in/out: in seed 2, out hash value 2
85
86
    //
87
    // Hash64: hash a single message in one call, return 64-bit output
88
    //
89
    static uint64_t Hash64(
90
        const void *message,  // message to hash
91
        size_t length,        // length of message in bytes
92
        uint64_t seed)        // seed
93
0
    {
94
0
        uint64_t hash1 = seed;
95
0
        Hash128(message, length, &hash1, &seed);
96
0
        return hash1;
97
0
    }
98
99
    //
100
    // Hash32: hash a single message in one call, produce 32-bit output
101
    //
102
    static uint32_t Hash32(
103
        const void *message,  // message to hash
104
        size_t length,        // length of message in bytes
105
        uint32_t seed)        // seed
106
0
    {
107
0
        uint64_t hash1 = seed, hash2 = seed;
108
0
        Hash128(message, length, &hash1, &hash2);
109
0
        return (uint32_t)hash1;
110
0
    }
111
112
    //
113
    // Init: initialize the context of a SpookyHash
114
    //
115
    void Init(
116
        uint64_t seed1,       // any 64-bit value will do, including 0
117
        uint64_t seed2);      // different seeds produce independent hashes
118
119
    //
120
    // Update: add a piece of a message to a SpookyHash state
121
    //
122
    void Update(
123
        const void *message,  // message fragment
124
        size_t length);       // length of message fragment in bytes
125
126
127
    //
128
    // Final: compute the hash for the current SpookyHash state
129
    //
130
    // This does not modify the state; you can keep updating it afterward
131
    //
132
    // The result is the same as if SpookyHash() had been called with
133
    // all the pieces concatenated into one message.
134
    //
135
    void Final(
136
        uint64_t *hash1,    // out only: first 64 bits of hash value.
137
        uint64_t *hash2);   // out only: second 64 bits of hash value.
138
139
    //
140
    // left rotate a 64-bit value by k bytes
141
    //
142
    static inline uint64_t Rot64(uint64_t x, int k)
143
0
    {
144
0
        return (x << k) | (x >> (64 - k));
145
0
    }
146
147
    //
148
    // This is used if the input is 96 bytes long or longer.
149
    //
150
    // The internal state is fully overwritten every 96 bytes.
151
    // Every input bit appears to cause at least 128 bits of entropy
152
    // before 96 other bytes are combined, when run forward or backward
153
    //   For every input bit,
154
    //   Two inputs differing in just that input bit
155
    //   Where "differ" means xor or subtraction
156
    //   And the base value is random
157
    //   When run forward or backwards one Mix
158
    // I tried 3 pairs of each; they all differed by at least 212 bits.
159
    //
160
    static inline void Mix(
161
        const uint64_t *data,
162
        uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3,
163
        uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7,
164
        uint64_t &s8, uint64_t &s9, uint64_t &s10,uint64_t &s11)
165
0
    {
166
0
      s0 += data[0];    s2 ^= s10;    s11 ^= s0;    s0 = Rot64(s0,11);    s11 += s1;
167
0
      s1 += data[1];    s3 ^= s11;    s0 ^= s1;    s1 = Rot64(s1,32);    s0 += s2;
168
0
      s2 += data[2];    s4 ^= s0;    s1 ^= s2;    s2 = Rot64(s2,43);    s1 += s3;
169
0
      s3 += data[3];    s5 ^= s1;    s2 ^= s3;    s3 = Rot64(s3,31);    s2 += s4;
170
0
      s4 += data[4];    s6 ^= s2;    s3 ^= s4;    s4 = Rot64(s4,17);    s3 += s5;
171
0
      s5 += data[5];    s7 ^= s3;    s4 ^= s5;    s5 = Rot64(s5,28);    s4 += s6;
172
0
      s6 += data[6];    s8 ^= s4;    s5 ^= s6;    s6 = Rot64(s6,39);    s5 += s7;
173
0
      s7 += data[7];    s9 ^= s5;    s6 ^= s7;    s7 = Rot64(s7,57);    s6 += s8;
174
0
      s8 += data[8];    s10 ^= s6;    s7 ^= s8;    s8 = Rot64(s8,55);    s7 += s9;
175
0
      s9 += data[9];    s11 ^= s7;    s8 ^= s9;    s9 = Rot64(s9,54);    s8 += s10;
176
0
      s10 += data[10];    s0 ^= s8;    s9 ^= s10;    s10 = Rot64(s10,22);    s9 += s11;
177
0
      s11 += data[11];    s1 ^= s9;    s10 ^= s11;    s11 = Rot64(s11,46);    s10 += s0;
178
0
    }
179
180
    //
181
    // Mix all 12 inputs together so that h0, h1 are a hash of them all.
182
    //
183
    // For two inputs differing in just the input bits
184
    // Where "differ" means xor or subtraction
185
    // And the base value is random, or a counting value starting at that bit
186
    // The final result will have each bit of h0, h1 flip
187
    // For every input bit,
188
    // with probability 50 +- .3%
189
    // For every pair of input bits,
190
    // with probability 50 +- 3%
191
    //
192
    // This does not rely on the last Mix() call having already mixed some.
193
    // Two iterations was almost good enough for a 64-bit result, but a
194
    // 128-bit result is reported, so End() does three iterations.
195
    //
196
    static inline void EndPartial(
197
        uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
198
        uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
199
        uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
200
0
    {
201
0
        h11+= h1;    h2 ^= h11;   h1 = Rot64(h1,44);
202
0
        h0 += h2;    h3 ^= h0;    h2 = Rot64(h2,15);
203
0
        h1 += h3;    h4 ^= h1;    h3 = Rot64(h3,34);
204
0
        h2 += h4;    h5 ^= h2;    h4 = Rot64(h4,21);
205
0
        h3 += h5;    h6 ^= h3;    h5 = Rot64(h5,38);
206
0
        h4 += h6;    h7 ^= h4;    h6 = Rot64(h6,33);
207
0
        h5 += h7;    h8 ^= h5;    h7 = Rot64(h7,10);
208
0
        h6 += h8;    h9 ^= h6;    h8 = Rot64(h8,13);
209
0
        h7 += h9;    h10^= h7;    h9 = Rot64(h9,38);
210
0
        h8 += h10;   h11^= h8;    h10= Rot64(h10,53);
211
0
        h9 += h11;   h0 ^= h9;    h11= Rot64(h11,42);
212
0
        h10+= h0;    h1 ^= h10;   h0 = Rot64(h0,54);
213
0
    }
214
215
    static inline void End(
216
        const uint64_t *data,
217
        uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
218
        uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
219
        uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
220
0
    {
221
0
        h0 += data[0];   h1 += data[1];   h2 += data[2];   h3 += data[3];
222
0
        h4 += data[4];   h5 += data[5];   h6 += data[6];   h7 += data[7];
223
0
        h8 += data[8];   h9 += data[9];   h10 += data[10]; h11 += data[11];
224
0
        EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
225
0
        EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
226
0
        EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
227
0
    }
228
229
    //
230
    // The goal is for each bit of the input to expand into 128 bits of
231
    //   apparent entropy before it is fully overwritten.
232
    // n trials both set and cleared at least m bits of h0 h1 h2 h3
233
    //   n: 2   m: 29
234
    //   n: 3   m: 46
235
    //   n: 4   m: 57
236
    //   n: 5   m: 107
237
    //   n: 6   m: 146
238
    //   n: 7   m: 152
239
    // when run forwards or backwards
240
    // for all 1-bit and 2-bit diffs
241
    // with diffs defined by either xor or subtraction
242
    // with a base of all zeros plus a counter, or plus another bit, or random
243
    //
244
    static inline void ShortMix(
245
        uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
246
0
    {
247
0
        h2 = Rot64(h2,50);  h2 += h3;  h0 ^= h2;
248
0
        h3 = Rot64(h3,52);  h3 += h0;  h1 ^= h3;
249
0
        h0 = Rot64(h0,30);  h0 += h1;  h2 ^= h0;
250
0
        h1 = Rot64(h1,41);  h1 += h2;  h3 ^= h1;
251
0
        h2 = Rot64(h2,54);  h2 += h3;  h0 ^= h2;
252
0
        h3 = Rot64(h3,48);  h3 += h0;  h1 ^= h3;
253
0
        h0 = Rot64(h0,38);  h0 += h1;  h2 ^= h0;
254
0
        h1 = Rot64(h1,37);  h1 += h2;  h3 ^= h1;
255
0
        h2 = Rot64(h2,62);  h2 += h3;  h0 ^= h2;
256
0
        h3 = Rot64(h3,34);  h3 += h0;  h1 ^= h3;
257
0
        h0 = Rot64(h0,5);   h0 += h1;  h2 ^= h0;
258
0
        h1 = Rot64(h1,36);  h1 += h2;  h3 ^= h1;
259
0
    }
260
261
    //
262
    // Mix all 4 inputs together so that h0, h1 are a hash of them all.
263
    //
264
    // For two inputs differing in just the input bits
265
    // Where "differ" means xor or subtraction
266
    // And the base value is random, or a counting value starting at that bit
267
    // The final result will have each bit of h0, h1 flip
268
    // For every input bit,
269
    // with probability 50 +- .3% (it is probably better than that)
270
    // For every pair of input bits,
271
    // with probability 50 +- .75% (the worst case is approximately that)
272
    //
273
    static inline void ShortEnd(
274
        uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
275
0
    {
276
0
        h3 ^= h2;  h2 = Rot64(h2,15);  h3 += h2;
277
0
        h0 ^= h3;  h3 = Rot64(h3,52);  h0 += h3;
278
0
        h1 ^= h0;  h0 = Rot64(h0,26);  h1 += h0;
279
0
        h2 ^= h1;  h1 = Rot64(h1,51);  h2 += h1;
280
0
        h3 ^= h2;  h2 = Rot64(h2,28);  h3 += h2;
281
0
        h0 ^= h3;  h3 = Rot64(h3,9);   h0 += h3;
282
0
        h1 ^= h0;  h0 = Rot64(h0,47);  h1 += h0;
283
0
        h2 ^= h1;  h1 = Rot64(h1,54);  h2 += h1;
284
0
        h3 ^= h2;  h2 = Rot64(h2,32);  h3 += h2;
285
0
        h0 ^= h3;  h3 = Rot64(h3,25);  h0 += h3;
286
0
        h1 ^= h0;  h0 = Rot64(h0,63);  h1 += h0;
287
0
    }
288
289
private:
290
291
    //
292
    // Short is used for messages under 192 bytes in length
293
    // Short has a low startup cost, the normal mode is good for long
294
    // keys, the cost crossover is at about 192 bytes.  The two modes were
295
    // held to the same quality bar.
296
    //
297
    static void Short(
298
        const void *message,  // message (array of bytes, not necessarily aligned)
299
        size_t length,        // length of message (in bytes)
300
        uint64_t *hash1,        // in/out: in the seed, out the hash value
301
        uint64_t *hash2);       // in/out: in the seed, out the hash value
302
303
    // number of uint64's in internal state
304
    static const size_t sc_numVars = 12;
305
306
    // size of the internal state
307
    static const size_t sc_blockSize = sc_numVars*8;
308
309
    // size of buffer of unhashed data, in bytes
310
    static const size_t sc_bufSize = 2*sc_blockSize;
311
312
    //
313
    // sc_const: a constant which:
314
    //  * is not zero
315
    //  * is odd
316
    //  * is a not-very-regular mix of 1's and 0's
317
    //  * does not need any other special mathematical properties
318
    //
319
    static const uint64_t sc_const = 0xdeadbeefdeadbeefLL;
320
321
    uint64_t m_data[2*sc_numVars]; // unhashed data, for partial messages
322
    uint64_t m_state[sc_numVars];  // internal state of the hash
323
    size_t m_length;               // total length of the input so far
324
    uint8_t  m_remainder;          // length of unhashed data stashed in m_data
325
};
326
327
328
} // End namespace ALEMBIC_VERSION_NS
329
330
using namespace ALEMBIC_VERSION_NS;
331
332
} // End namespace Util
333
} // End namespace Alembic
334
335
#endif
336