/rust/registry/src/index.crates.io-1949cf8c6b5b557f/hyperdual-1.4.0/src/lib.rs
Line | Count | Source |
1 | | //! Dual Numbers |
2 | | //! |
3 | | //! Fully-featured Dual Number implementation with features for automatic differentiation of multivariate vectorial functions into gradients. |
4 | | //! |
5 | | //! ## Usage |
6 | | //! |
7 | | //! ```rust |
8 | | //! extern crate hyperdual; |
9 | | //! |
10 | | //! use hyperdual::{Dual, Hyperdual, Float, differentiate}; |
11 | | //! |
12 | | //! fn main() { |
13 | | //! // find partial derivative at x=4.0 |
14 | | //! let univariate = differentiate(4.0f64, |x| x.sqrt() + Dual::from_real(1.0)); |
15 | | //! assert!((univariate - 0.25).abs() < 1e-16, "wrong derivative"); |
16 | | //! |
17 | | //! // find the partial derivatives of a multivariate function |
18 | | //! let x: Hyperdual<f64, 3> = Hyperdual::from_slice(&[4.0, 1.0, 0.0]); |
19 | | //! let y: Hyperdual<f64, 3> = Hyperdual::from_slice(&[5.0, 0.0, 1.0]); |
20 | | //! |
21 | | //! let multivariate = x * x + (x * y).sin() + y.powi(3); |
22 | | //! assert!((multivariate[0] - 141.91294525072763).abs() < 1e-13, "f(4, 5) incorrect"); |
23 | | //! assert!((multivariate[1] - 10.04041030906696).abs() < 1e-13, "df/dx(4, 5) incorrect"); |
24 | | //! assert!((multivariate[2] - 76.63232824725357).abs() < 1e-13, "df/dy(4, 5) incorrect"); |
25 | | //! |
26 | | //! // You may also use the new Const approach (both U* and Const<*> use the const generics) |
27 | | //! let x: Hyperdual<f64, 3> = Hyperdual::from_slice(&[4.0, 1.0, 0.0]); |
28 | | //! let y: Hyperdual<f64, 3> = Hyperdual::from_slice(&[5.0, 0.0, 1.0]); |
29 | | //! |
30 | | //! let multivariate = x * x + (x * y).sin() + y.powi(3); |
31 | | //! assert!((multivariate[0] - 141.91294525072763).abs() < 1e-13, "f(4, 5) incorrect"); |
32 | | //! assert!((multivariate[1] - 10.04041030906696).abs() < 1e-13, "df/dx(4, 5) incorrect"); |
33 | | //! assert!((multivariate[2] - 76.63232824725357).abs() < 1e-13, "df/dy(4, 5) incorrect"); |
34 | | //! } |
35 | | //! ``` |
36 | | //! |
37 | | //! ##### Previous Work |
38 | | //! * [https://github.com/novacrazy/dual_num](https://github.com/novacrazy/dual_num) |
39 | | //! * [https://github.com/FreeFull/dual_numbers](https://github.com/FreeFull/dual_numbers) |
40 | | //! * [https://github.com/ibab/rust-ad](https://github.com/ibab/rust-ad) |
41 | | //! * [https://github.com/tesch1/cxxduals](https://github.com/tesch1/cxxduals) |
42 | | |
43 | | extern crate nalgebra as na; |
44 | | extern crate num_traits; |
45 | | |
46 | | use std::cmp::Ordering; |
47 | | use std::fmt::{Debug, Display, Formatter, LowerExp, Result as FmtResult}; |
48 | | use std::iter::{Product, Sum}; |
49 | | use std::num::FpCategory; |
50 | | use std::ops::{Add, AddAssign, Deref, DerefMut, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}; |
51 | | |
52 | | pub use num_traits::{Float, FloatConst, Num, One, Zero}; |
53 | | |
54 | | mod differentials; |
55 | | |
56 | | // Re-export the differential functions |
57 | | pub use differentials::*; |
58 | | |
59 | | pub mod linalg; |
60 | | |
61 | | use num_traits::{FromPrimitive, Inv, MulAdd, MulAddAssign, NumCast, Pow, Signed, ToPrimitive, Unsigned}; |
62 | | |
63 | | use na::{OVector, SVector, Scalar}; |
64 | | |
65 | | // Re-export traits useful for construction and extension of duals |
66 | | pub use na::allocator::Allocator; |
67 | | pub use na::dimension::*; |
68 | | pub use na::storage::Owned; |
69 | | pub use na::{DefaultAllocator, Dim, DimName}; |
70 | | |
71 | | /// Dual Number structure |
72 | | /// |
73 | | /// Although `Dual` does implement `PartialEq` and `PartialOrd`, |
74 | | /// it only compares the real part. |
75 | | /// |
76 | | /// Additionally, `min` and `max` only compare the real parts, and keep the dual parts. |
77 | | /// |
78 | | /// Lastly, the `Rem` remainder operator is not correctly or fully defined for `Dual`, and will panic. |
79 | | #[derive(Clone, Copy)] |
80 | | pub struct OHyperdual<T: Copy + Scalar, N: Dim + DimName>(OVector<T, N>) |
81 | | where |
82 | | DefaultAllocator: Allocator<N>, |
83 | | Owned<T, N>: Copy; |
84 | | |
85 | | pub type Hyperdual<T, const N: usize> = OHyperdual<T, Const<N>>; |
86 | | |
87 | | impl<T: Copy + Scalar, N: Dim + DimName> OHyperdual<T, N> |
88 | | where |
89 | | DefaultAllocator: Allocator<N>, |
90 | | Owned<T, N>: Copy, |
91 | | { |
92 | | /// Create a new dual number from its real and dual parts. |
93 | | #[inline] |
94 | 0 | pub fn from_slice(v: &[T]) -> Self { |
95 | 0 | Self(OVector::<T, N>::from_row_slice(v)) |
96 | 0 | } |
97 | | |
98 | | /// Create a new dual number from a real number. |
99 | | /// |
100 | | /// The dual part is set to zero. |
101 | | #[inline] |
102 | 0 | pub fn from_real(real: T) -> Self |
103 | 0 | where |
104 | 0 | T: Zero, |
105 | | { |
106 | 0 | let mut dual = OVector::<T, N>::zeros(); |
107 | 0 | dual[0] = real; |
108 | 0 | Self(dual) |
109 | 0 | } |
110 | | |
111 | | /// Returns the real part |
112 | | #[inline] |
113 | 0 | pub fn real(&self) -> T { |
114 | 0 | self[0] |
115 | 0 | } |
116 | | |
117 | | /// Returns a reference to the real part |
118 | | #[inline] |
119 | | pub fn real_ref(&self) -> &T { |
120 | | &self[0] |
121 | | } |
122 | | |
123 | | /// Returns a mutable reference to the real part |
124 | | pub fn real_mut(&mut self) -> &mut T { |
125 | | &mut self[0] |
126 | | } |
127 | | |
128 | | #[inline] |
129 | 0 | pub fn map_dual<F>(&self, r: T, f: F) -> Self |
130 | 0 | where |
131 | 0 | F: Fn(&T) -> T, |
132 | | { |
133 | | // TODO: improve, so the real does not get mapped |
134 | 0 | let mut v = self.map(|x| f(&x)); Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::to_degrees::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::to_radians::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::cos::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sin::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::acos::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::asin::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::powi::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sqrt::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::asinh::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sin_cos::{closure#0}>::{closure#0}Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sin_cos::{closure#1}>::{closure#0} |
135 | 0 | v[0] = r; |
136 | 0 | Self(v) |
137 | 0 | } Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::to_degrees::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::to_radians::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::cos::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sin::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::acos::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::asin::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::powi::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sqrt::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::asinh::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sin_cos::{closure#0}>Unexecuted instantiation: <hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>>>::map_dual::<<hyperdual::OHyperdual<f64, nalgebra::base::dimension::Const<7>> as num_traits::float::Float>::sin_cos::{closure#1}> |
138 | | |
139 | | /// Create a new dual number from a function |
140 | | #[inline] |
141 | | pub fn from_fn<F>(mut f: F) -> Self |
142 | | where |
143 | | F: FnMut(usize) -> T, |
144 | | { |
145 | | Self(OVector::<T, N>::from_fn(|i, _| f(i))) |
146 | | } |
147 | | } |
148 | | |
149 | | impl<T: Copy + Scalar, N: Dim + DimName> Debug for OHyperdual<T, N> |
150 | | where |
151 | | DefaultAllocator: Allocator<N>, |
152 | | Owned<T, N>: Copy, |
153 | | { |
154 | | fn fmt(&self, f: &mut Formatter) -> FmtResult { |
155 | | let mut a = f.debug_tuple("Dual"); |
156 | | for x in self.iter() { |
157 | | a.field(x); |
158 | | } |
159 | | a.finish() |
160 | | } |
161 | | } |
162 | | |
163 | | impl<T: Copy + Scalar + Num + Zero, N: Dim + DimName> Default for OHyperdual<T, N> |
164 | | where |
165 | | DefaultAllocator: Allocator<N>, |
166 | | Owned<T, N>: Copy, |
167 | | { |
168 | | #[inline] |
169 | | fn default() -> Self { |
170 | | Self::zero() |
171 | | } |
172 | | } |
173 | | |
174 | | impl<T: Copy + Scalar + Zero, N: Dim + DimName> From<T> for OHyperdual<T, N> |
175 | | where |
176 | | DefaultAllocator: Allocator<N>, |
177 | | Owned<T, N>: Copy, |
178 | | { |
179 | | #[inline] |
180 | 0 | fn from(real: T) -> Self { |
181 | 0 | Self::from_real(real) |
182 | 0 | } |
183 | | } |
184 | | |
185 | | impl<T: Copy + Scalar, N: Dim + DimName> Deref for OHyperdual<T, N> |
186 | | where |
187 | | DefaultAllocator: Allocator<N>, |
188 | | Owned<T, N>: Copy, |
189 | | { |
190 | | type Target = OVector<T, N>; |
191 | | |
192 | | #[inline] |
193 | 0 | fn deref(&self) -> &OVector<T, N> { |
194 | 0 | &self.0 |
195 | 0 | } |
196 | | } |
197 | | |
198 | | impl<T: Copy + Scalar, N: Dim + DimName> DerefMut for OHyperdual<T, N> |
199 | | where |
200 | | DefaultAllocator: Allocator<N>, |
201 | | Owned<T, N>: Copy, |
202 | | { |
203 | | #[inline] |
204 | | fn deref_mut(&mut self) -> &mut OVector<T, N> { |
205 | | &mut self.0 |
206 | | } |
207 | | } |
208 | | |
209 | | impl<T: Copy + Scalar, N: Dim + DimName> AsRef<OVector<T, N>> for OHyperdual<T, N> |
210 | | where |
211 | | DefaultAllocator: Allocator<N>, |
212 | | Owned<T, N>: Copy, |
213 | | { |
214 | | #[inline] |
215 | | fn as_ref(&self) -> &OVector<T, N> { |
216 | | &self.0 |
217 | | } |
218 | | } |
219 | | |
220 | | impl<T: Copy + Scalar, N: Dim + DimName> AsMut<OVector<T, N>> for OHyperdual<T, N> |
221 | | where |
222 | | DefaultAllocator: Allocator<N>, |
223 | | Owned<T, N>: Copy, |
224 | | { |
225 | | #[inline] |
226 | | fn as_mut(&mut self) -> &mut OVector<T, N> { |
227 | | &mut self.0 |
228 | | } |
229 | | } |
230 | | |
231 | | impl<T: Copy + Scalar + Neg<Output = T>, N: Dim + DimName> OHyperdual<T, N> |
232 | | where |
233 | | DefaultAllocator: Allocator<N>, |
234 | | Owned<T, N>: Copy, |
235 | | { |
236 | | /// Returns the conjugate of the dual number. |
237 | | #[inline] |
238 | | pub fn conjugate(self) -> Self { |
239 | | self.map_dual(self.real(), |x| x.neg()) |
240 | | } |
241 | | } |
242 | | |
243 | | impl<T: Copy + Scalar + Display, N: Dim + DimName> Display for OHyperdual<T, N> |
244 | | where |
245 | | DefaultAllocator: Allocator<N>, |
246 | | Owned<T, N>: Copy, |
247 | | { |
248 | 0 | fn fmt(&self, f: &mut Formatter) -> FmtResult { |
249 | 0 | let precision = f.precision().unwrap_or(4); |
250 | | |
251 | 0 | write!(f, "{:.p$}", self.real(), p = precision)?; |
252 | 0 | for (i, x) in self.iter().skip(1).enumerate() { |
253 | 0 | write!(f, " + {:.p$}\u{03B5}{}", x, i + 1, p = precision)?; |
254 | | } |
255 | | |
256 | 0 | Ok(()) |
257 | 0 | } |
258 | | } |
259 | | |
260 | | impl<T: Copy + Scalar + LowerExp, N: Dim + DimName> LowerExp for OHyperdual<T, N> |
261 | | where |
262 | | DefaultAllocator: Allocator<N>, |
263 | | Owned<T, N>: Copy, |
264 | | { |
265 | | fn fmt(&self, f: &mut Formatter) -> FmtResult { |
266 | | let precision = f.precision().unwrap_or(4); |
267 | | |
268 | | write!(f, "{:.p$e}", self.real(), p = precision)?; |
269 | | for (i, x) in self.iter().skip(1).enumerate() { |
270 | | write!(f, " + {:.p$e}\u{03B5}{}", x, i + 1, p = precision)?; |
271 | | } |
272 | | |
273 | | Ok(()) |
274 | | } |
275 | | } |
276 | | |
277 | | impl<T: Copy + Scalar + PartialEq, N: Dim + DimName> PartialEq<Self> for OHyperdual<T, N> |
278 | | where |
279 | | DefaultAllocator: Allocator<N>, |
280 | | Owned<T, N>: Copy, |
281 | | { |
282 | | #[inline] |
283 | | fn eq(&self, rhs: &Self) -> bool { |
284 | | self.0 == rhs.0 |
285 | | } |
286 | | } |
287 | | |
288 | | impl<T: Copy + Scalar + PartialOrd, N: Dim + DimName> PartialOrd<Self> for OHyperdual<T, N> |
289 | | where |
290 | | DefaultAllocator: Allocator<N>, |
291 | | Owned<T, N>: Copy, |
292 | | { |
293 | | #[inline] |
294 | | fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> { |
295 | | PartialOrd::partial_cmp(self.real_ref(), rhs.real_ref()) |
296 | | } |
297 | | |
298 | | #[inline] |
299 | | fn lt(&self, rhs: &Self) -> bool { |
300 | | self.real() < rhs.real() |
301 | | } |
302 | | |
303 | | #[inline] |
304 | | fn gt(&self, rhs: &Self) -> bool { |
305 | | self.real() > rhs.real() |
306 | | } |
307 | | } |
308 | | |
309 | | impl<T: Copy + Scalar + PartialEq, N: Dim + DimName> PartialEq<T> for OHyperdual<T, N> |
310 | | where |
311 | | DefaultAllocator: Allocator<N>, |
312 | | Owned<T, N>: Copy, |
313 | | { |
314 | | #[inline] |
315 | | fn eq(&self, rhs: &T) -> bool { |
316 | | *self.real_ref() == *rhs |
317 | | } |
318 | | } |
319 | | |
320 | | impl<T: Copy + Scalar + PartialOrd, N: Dim + DimName> PartialOrd<T> for OHyperdual<T, N> |
321 | | where |
322 | | DefaultAllocator: Allocator<N>, |
323 | | Owned<T, N>: Copy, |
324 | | { |
325 | | #[inline] |
326 | | fn partial_cmp(&self, rhs: &T) -> Option<Ordering> { |
327 | | PartialOrd::partial_cmp(self.real_ref(), rhs) |
328 | | } |
329 | | |
330 | | #[inline] |
331 | 0 | fn lt(&self, rhs: &T) -> bool { |
332 | 0 | self.real() < *rhs |
333 | 0 | } |
334 | | |
335 | | #[inline] |
336 | | fn gt(&self, rhs: &T) -> bool { |
337 | | self.real() > *rhs |
338 | | } |
339 | | } |
340 | | |
341 | | macro_rules! impl_to_primitive { |
342 | | ($($name:ident, $ty:ty),*) => { |
343 | | impl<T: Copy + Scalar + ToPrimitive, N: Dim + DimName> ToPrimitive for OHyperdual<T, N> |
344 | | where |
345 | | DefaultAllocator: Allocator<N>, |
346 | | Owned<T, N>: Copy, |
347 | | |
348 | | { |
349 | | $( |
350 | | #[inline] |
351 | | fn $name(&self) -> Option<$ty> { |
352 | | self.real_ref().$name() |
353 | | } |
354 | | )* |
355 | | } |
356 | | } |
357 | | } |
358 | | |
359 | | macro_rules! impl_from_primitive { |
360 | | ($($name:ident, $ty:ty),*) => { |
361 | | impl<T: Copy + Scalar + FromPrimitive, N: Dim + DimName> FromPrimitive for OHyperdual<T, N> |
362 | | where |
363 | | T: Zero, |
364 | | DefaultAllocator: Allocator<N>, |
365 | | Owned<T, N>: Copy, |
366 | | { |
367 | | $( |
368 | | #[inline] |
369 | | fn $name(n: $ty) -> Option<OHyperdual<T,N>> { |
370 | | T::$name(n).map(Self::from_real) |
371 | | } |
372 | | )* |
373 | | } |
374 | | } |
375 | | } |
376 | | |
377 | | macro_rules! impl_primitive_cast { |
378 | | ($($to:ident, $from:ident - $ty:ty),*) => { |
379 | | impl_to_primitive!($($to, $ty),*); |
380 | | impl_from_primitive!($($from, $ty),*); |
381 | | } |
382 | | } |
383 | | |
384 | | impl_primitive_cast! { |
385 | | to_isize, from_isize - isize, |
386 | | to_i8, from_i8 - i8, |
387 | | to_i16, from_i16 - i16, |
388 | | to_i32, from_i32 - i32, |
389 | | to_i64, from_i64 - i64, |
390 | | to_usize, from_usize - usize, |
391 | | to_u8, from_u8 - u8, |
392 | | to_u16, from_u16 - u16, |
393 | | to_u32, from_u32 - u32, |
394 | | to_u64, from_u64 - u64, |
395 | | to_f32, from_f32 - f32, |
396 | | to_f64, from_f64 - f64 |
397 | | } |
398 | | |
399 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Add<T> for OHyperdual<T, N> |
400 | | where |
401 | | DefaultAllocator: Allocator<N>, |
402 | | Owned<T, N>: Copy, |
403 | | { |
404 | | type Output = OHyperdual<T, N>; |
405 | | |
406 | | #[inline] |
407 | | fn add(self, rhs: T) -> Self { |
408 | | let mut d = self; |
409 | | d[0] = d[0] + rhs; |
410 | | d |
411 | | } |
412 | | } |
413 | | |
414 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> AddAssign<T> for OHyperdual<T, N> |
415 | | where |
416 | | DefaultAllocator: Allocator<N>, |
417 | | Owned<T, N>: Copy, |
418 | | { |
419 | | #[inline] |
420 | | fn add_assign(&mut self, rhs: T) { |
421 | | *self = (*self) + Self::from_real(rhs) |
422 | | } |
423 | | } |
424 | | |
425 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Sub<T> for OHyperdual<T, N> |
426 | | where |
427 | | DefaultAllocator: Allocator<N>, |
428 | | Owned<T, N>: Copy, |
429 | | { |
430 | | type Output = OHyperdual<T, N>; |
431 | | |
432 | | #[inline] |
433 | | fn sub(self, rhs: T) -> Self { |
434 | | let mut d = self; |
435 | | d[0] = d[0] - rhs; |
436 | | d |
437 | | } |
438 | | } |
439 | | |
440 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> SubAssign<T> for OHyperdual<T, N> |
441 | | where |
442 | | DefaultAllocator: Allocator<N>, |
443 | | Owned<T, N>: Copy, |
444 | | { |
445 | | #[inline] |
446 | | fn sub_assign(&mut self, rhs: T) { |
447 | | *self = (*self) - Self::from_real(rhs) |
448 | | } |
449 | | } |
450 | | |
451 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Mul<T> for OHyperdual<T, N> |
452 | | where |
453 | | DefaultAllocator: Allocator<N>, |
454 | | Owned<T, N>: Copy, |
455 | | { |
456 | | type Output = OHyperdual<T, N>; |
457 | | |
458 | | #[inline] |
459 | | fn mul(self, rhs: T) -> Self { |
460 | | self * Self::from_real(rhs) |
461 | | } |
462 | | } |
463 | | |
464 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> MulAssign<T> for OHyperdual<T, N> |
465 | | where |
466 | | DefaultAllocator: Allocator<N>, |
467 | | Owned<T, N>: Copy, |
468 | | { |
469 | | #[inline] |
470 | | fn mul_assign(&mut self, rhs: T) { |
471 | | *self = (*self) * Self::from_real(rhs) |
472 | | } |
473 | | } |
474 | | |
475 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Div<T> for OHyperdual<T, N> |
476 | | where |
477 | | DefaultAllocator: Allocator<N>, |
478 | | Owned<T, N>: Copy, |
479 | | { |
480 | | type Output = OHyperdual<T, N>; |
481 | | |
482 | | #[inline] |
483 | | fn div(self, rhs: T) -> Self { |
484 | | self / Self::from_real(rhs) |
485 | | } |
486 | | } |
487 | | |
488 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> DivAssign<T> for OHyperdual<T, N> |
489 | | where |
490 | | DefaultAllocator: Allocator<N>, |
491 | | Owned<T, N>: Copy, |
492 | | { |
493 | | #[inline] |
494 | | fn div_assign(&mut self, rhs: T) { |
495 | | *self = (*self) / Self::from_real(rhs) |
496 | | } |
497 | | } |
498 | | |
499 | | impl<T: Copy + Scalar + Signed, N: Dim + DimName> Neg for OHyperdual<T, N> |
500 | | where |
501 | | DefaultAllocator: Allocator<N>, |
502 | | Owned<T, N>: Copy, |
503 | | { |
504 | | type Output = Self; |
505 | | |
506 | | #[inline] |
507 | 0 | fn neg(self) -> Self { |
508 | 0 | Self(self.map(|x| x.neg())) |
509 | 0 | } |
510 | | } |
511 | | |
512 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Add<Self> for OHyperdual<T, N> |
513 | | where |
514 | | DefaultAllocator: Allocator<N>, |
515 | | Owned<T, N>: Copy, |
516 | | { |
517 | | type Output = Self; |
518 | | |
519 | | #[inline] |
520 | 0 | fn add(self, rhs: Self) -> Self { |
521 | 0 | Self(self.zip_map(&rhs, |x, y| x + y)) |
522 | 0 | } |
523 | | } |
524 | | |
525 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Add<&Self> for OHyperdual<T, N> |
526 | | where |
527 | | DefaultAllocator: Allocator<N>, |
528 | | Owned<T, N>: Copy, |
529 | | { |
530 | | type Output = Self; |
531 | | |
532 | | #[inline] |
533 | | fn add(self, rhs: &Self) -> Self { |
534 | | Self(self.zip_map(rhs, |x, y| x + y)) |
535 | | } |
536 | | } |
537 | | |
538 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> AddAssign<Self> for OHyperdual<T, N> |
539 | | where |
540 | | DefaultAllocator: Allocator<N>, |
541 | | Owned<T, N>: Copy, |
542 | | { |
543 | | #[inline] |
544 | 0 | fn add_assign(&mut self, rhs: Self) { |
545 | 0 | *self = (*self) + rhs |
546 | 0 | } |
547 | | } |
548 | | |
549 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Sub<Self> for OHyperdual<T, N> |
550 | | where |
551 | | DefaultAllocator: Allocator<N>, |
552 | | Owned<T, N>: Copy, |
553 | | { |
554 | | type Output = Self; |
555 | | |
556 | | #[inline] |
557 | 0 | fn sub(self, rhs: Self) -> Self { |
558 | 0 | Self(self.zip_map(&rhs, |x, y| x - y)) |
559 | 0 | } |
560 | | } |
561 | | |
562 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Sub<&Self> for OHyperdual<T, N> |
563 | | where |
564 | | DefaultAllocator: Allocator<N>, |
565 | | Owned<T, N>: Copy, |
566 | | { |
567 | | type Output = Self; |
568 | | |
569 | | #[inline] |
570 | | fn sub(self, rhs: &Self) -> Self { |
571 | | Self(self.zip_map(rhs, |x, y| x - y)) |
572 | | } |
573 | | } |
574 | | |
575 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> SubAssign<Self> for OHyperdual<T, N> |
576 | | where |
577 | | DefaultAllocator: Allocator<N>, |
578 | | Owned<T, N>: Copy, |
579 | | { |
580 | | #[inline] |
581 | | fn sub_assign(&mut self, rhs: Self) { |
582 | | *self = (*self) - rhs |
583 | | } |
584 | | } |
585 | | |
586 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Mul<Self> for OHyperdual<T, N> |
587 | | where |
588 | | DefaultAllocator: Allocator<N>, |
589 | | Owned<T, N>: Copy, |
590 | | { |
591 | | type Output = Self; |
592 | | |
593 | | #[allow(clippy::suspicious_arithmetic_impl)] |
594 | | #[inline] |
595 | 0 | fn mul(self, rhs: Self) -> Self { |
596 | 0 | let mut v = self.zip_map(&rhs, |x, y| rhs.real() * x + self.real() * y); |
597 | 0 | v[0] = self.real() * rhs.real(); |
598 | 0 | Self(v) |
599 | 0 | } |
600 | | } |
601 | | |
602 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Mul<&Self> for OHyperdual<T, N> |
603 | | where |
604 | | DefaultAllocator: Allocator<N>, |
605 | | Owned<T, N>: Copy, |
606 | | { |
607 | | type Output = Self; |
608 | | |
609 | | #[allow(clippy::suspicious_arithmetic_impl)] |
610 | | #[inline] |
611 | | fn mul(self, rhs: &Self) -> Self { |
612 | | let mut v = self.zip_map(rhs, |x, y| rhs.real() * x + self.real() * y); |
613 | | v[0] = self.real() * rhs.real(); |
614 | | Self(v) |
615 | | } |
616 | | } |
617 | | |
618 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> MulAssign<Self> for OHyperdual<T, N> |
619 | | where |
620 | | DefaultAllocator: Allocator<N>, |
621 | | Owned<T, N>: Copy, |
622 | | { |
623 | | #[inline] |
624 | | fn mul_assign(&mut self, rhs: Self) { |
625 | | *self = (*self) * rhs |
626 | | } |
627 | | } |
628 | | |
629 | | macro_rules! impl_mul_add { |
630 | | ($(<$a:ident, $b:ident>),*) => { |
631 | | $( |
632 | | impl<T: Copy + Scalar + Num + Mul + Add, N: Dim + DimName> MulAdd<$a, $b> for OHyperdual<T,N> |
633 | | where |
634 | | DefaultAllocator: Allocator<N>, |
635 | | Owned<T, N>: Copy, |
636 | | { |
637 | | type Output = OHyperdual<T,N>; |
638 | | |
639 | | #[inline] |
640 | | fn mul_add(self, a: $a, b: $b) -> Self { |
641 | | (self * a) + b |
642 | | } |
643 | | } |
644 | | |
645 | | impl<T: Copy + Scalar + Num + Mul + Add, N: Dim + DimName> MulAddAssign<$a, $b> for OHyperdual<T,N> |
646 | | where |
647 | | DefaultAllocator: Allocator<N>, |
648 | | Owned<T, N>: Copy, |
649 | | { |
650 | | #[inline] |
651 | | fn mul_add_assign(&mut self, a: $a, b: $b) { |
652 | | *self = (*self * a) + b; |
653 | | } |
654 | | } |
655 | | )* |
656 | | } |
657 | | } |
658 | | |
659 | | impl_mul_add! { |
660 | | <Self, Self>, |
661 | | <T, Self>, |
662 | | <Self, T>, |
663 | | <T, T> |
664 | | } |
665 | | |
666 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Div<Self> for OHyperdual<T, N> |
667 | | where |
668 | | DefaultAllocator: Allocator<N>, |
669 | | Owned<T, N>: Copy, |
670 | | { |
671 | | type Output = Self; |
672 | | |
673 | | #[inline] |
674 | | #[allow(clippy::suspicious_arithmetic_impl)] |
675 | 0 | fn div(self, rhs: Self) -> Self { |
676 | 0 | let d = rhs.real() * rhs.real(); |
677 | | |
678 | 0 | let mut v = self.zip_map(&rhs, |x, y| (rhs.real() * x - self.real() * y) / d); |
679 | 0 | v[0] = self.real() / rhs.real(); |
680 | 0 | Self(v) |
681 | 0 | } |
682 | | } |
683 | | |
684 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Div<&Self> for OHyperdual<T, N> |
685 | | where |
686 | | DefaultAllocator: Allocator<N>, |
687 | | Owned<T, N>: Copy, |
688 | | { |
689 | | type Output = Self; |
690 | | |
691 | | #[inline] |
692 | | #[allow(clippy::suspicious_arithmetic_impl)] |
693 | | fn div(self, rhs: &Self) -> Self { |
694 | | let d = rhs.real() * rhs.real(); |
695 | | |
696 | | let mut v = self.zip_map(rhs, |x, y| (rhs.real() * x - self.real() * y) / d); |
697 | | v[0] = self.real() / rhs.real(); |
698 | | Self(v) |
699 | | } |
700 | | } |
701 | | |
702 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> DivAssign<Self> for OHyperdual<T, N> |
703 | | where |
704 | | DefaultAllocator: Allocator<N>, |
705 | | Owned<T, N>: Copy, |
706 | | { |
707 | | #[inline] |
708 | | fn div_assign(&mut self, rhs: Self) { |
709 | | *self = (*self) / rhs |
710 | | } |
711 | | } |
712 | | |
713 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Rem<Self> for OHyperdual<T, N> |
714 | | where |
715 | | DefaultAllocator: Allocator<N>, |
716 | | Owned<T, N>: Copy, |
717 | | { |
718 | | type Output = Self; |
719 | | |
720 | | /// **UNIMPLEMENTED!!!** |
721 | | /// |
722 | | /// As far as I know, remainder is not a valid operation on dual numbers, |
723 | | /// but is required for the `Float` trait to be implemented. |
724 | | fn rem(self, _: Self) -> Self { |
725 | | unimplemented!() |
726 | | } |
727 | | } |
728 | | |
729 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Rem<&Self> for OHyperdual<T, N> |
730 | | where |
731 | | DefaultAllocator: Allocator<N>, |
732 | | Owned<T, N>: Copy, |
733 | | { |
734 | | type Output = Self; |
735 | | |
736 | | fn rem(self, _: &Self) -> Self { |
737 | | unimplemented!() |
738 | | } |
739 | | } |
740 | | |
741 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> RemAssign<Self> for OHyperdual<T, N> |
742 | | where |
743 | | DefaultAllocator: Allocator<N>, |
744 | | Owned<T, N>: Copy, |
745 | | { |
746 | | fn rem_assign(&mut self, _: Self) { |
747 | | unimplemented!() |
748 | | } |
749 | | } |
750 | | |
751 | | impl<T: Copy + Scalar, P: Into<OHyperdual<T, N>>, N: Dim + DimName> Pow<P> for OHyperdual<T, N> |
752 | | where |
753 | | OHyperdual<T, N>: Float, |
754 | | DefaultAllocator: Allocator<N>, |
755 | | Owned<T, N>: Copy, |
756 | | { |
757 | | type Output = Self; |
758 | | |
759 | | #[inline] |
760 | | fn pow(self, rhs: P) -> Self { |
761 | | self.powf(rhs.into()) |
762 | | } |
763 | | } |
764 | | |
765 | | impl<T: Copy + Scalar, N: Dim + DimName> Inv for OHyperdual<T, N> |
766 | | where |
767 | | Self: One + Div<Output = Self>, |
768 | | DefaultAllocator: Allocator<N>, |
769 | | Owned<T, N>: Copy, |
770 | | { |
771 | | type Output = Self; |
772 | | |
773 | | #[inline] |
774 | | fn inv(self) -> Self { |
775 | | Self::one() / self |
776 | | } |
777 | | } |
778 | | |
779 | | impl<T: Copy + Scalar, N: Dim + DimName> Signed for OHyperdual<T, N> |
780 | | where |
781 | | T: Signed + PartialOrd, |
782 | | DefaultAllocator: Allocator<N>, |
783 | | Owned<T, N>: Copy, |
784 | | { |
785 | | #[inline] |
786 | | fn abs(&self) -> Self { |
787 | | let s = self.real().signum(); |
788 | | Self(self.map(|x| x * s)) |
789 | | } |
790 | | |
791 | | #[inline] |
792 | | fn abs_sub(&self, rhs: &Self) -> Self { |
793 | | if self.real() > rhs.real() { |
794 | | self.sub(*rhs) |
795 | | } else { |
796 | | Self::zero() |
797 | | } |
798 | | } |
799 | | |
800 | | #[inline] |
801 | | fn signum(&self) -> Self { |
802 | | Self::from_real(self.real().signum()) |
803 | | } |
804 | | |
805 | | #[inline] |
806 | | fn is_positive(&self) -> bool { |
807 | | self.real().is_positive() |
808 | | } |
809 | | |
810 | | #[inline] |
811 | | fn is_negative(&self) -> bool { |
812 | | self.real().is_negative() |
813 | | } |
814 | | } |
815 | | |
816 | | impl<T: Copy + Scalar + Unsigned, N: Dim + DimName> Unsigned for OHyperdual<T, N> |
817 | | where |
818 | | Self: Num, |
819 | | DefaultAllocator: Allocator<N>, |
820 | | Owned<T, N>: Copy, |
821 | | { |
822 | | } |
823 | | |
824 | | impl<T: Copy + Scalar + Num + Zero, N: Dim + DimName> Zero for OHyperdual<T, N> |
825 | | where |
826 | | DefaultAllocator: Allocator<N>, |
827 | | Owned<T, N>: Copy, |
828 | | { |
829 | | #[inline] |
830 | 0 | fn zero() -> Self { |
831 | 0 | Self::from_real(T::zero()) |
832 | 0 | } |
833 | | |
834 | | #[inline] |
835 | | fn is_zero(&self) -> bool { |
836 | | self.iter().all(|x| x.is_zero()) |
837 | | } |
838 | | } |
839 | | |
840 | | impl<T: Copy + Scalar + Num + One, N: Dim + DimName> One for OHyperdual<T, N> |
841 | | where |
842 | | DefaultAllocator: Allocator<N>, |
843 | | Owned<T, N>: Copy, |
844 | | { |
845 | | #[inline] |
846 | | fn one() -> Self { |
847 | | Self::from_real(T::one()) |
848 | | } |
849 | | |
850 | | #[inline] |
851 | | fn is_one(&self) -> bool |
852 | | where |
853 | | Self: PartialEq, |
854 | | { |
855 | | self.real().is_one() |
856 | | } |
857 | | } |
858 | | |
859 | | impl<T: Copy + Scalar + Num, N: Dim + DimName> Num for OHyperdual<T, N> |
860 | | where |
861 | | DefaultAllocator: Allocator<N>, |
862 | | Owned<T, N>: Copy, |
863 | | { |
864 | | type FromStrRadixErr = <T as Num>::FromStrRadixErr; |
865 | | |
866 | | #[inline] |
867 | | fn from_str_radix(str: &str, radix: u32) -> Result<OHyperdual<T, N>, Self::FromStrRadixErr> { |
868 | | <T as Num>::from_str_radix(str, radix).map(Self::from_real) |
869 | | } |
870 | | } |
871 | | |
872 | | impl<T: Copy + Scalar + Float, N: Dim + DimName> NumCast for OHyperdual<T, N> |
873 | | where |
874 | | DefaultAllocator: Allocator<N>, |
875 | | Owned<T, N>: Copy, |
876 | | { |
877 | | #[inline] |
878 | | fn from<P: ToPrimitive>(n: P) -> Option<OHyperdual<T, N>> { |
879 | | <T as NumCast>::from(n).map(Self::from_real) |
880 | | } |
881 | | } |
882 | | |
883 | | macro_rules! impl_float_const { |
884 | | ($($c:ident),*) => { |
885 | | $( |
886 | | fn $c()-> Self { Self::from_real(T::$c()) } |
887 | | )* |
888 | | } |
889 | | } |
890 | | |
891 | | impl<T: Copy + Scalar + FloatConst + Zero, N: Dim + DimName> FloatConst for OHyperdual<T, N> |
892 | | where |
893 | | DefaultAllocator: Allocator<N>, |
894 | | Owned<T, N>: Copy, |
895 | | { |
896 | | impl_float_const!( |
897 | | E, |
898 | | FRAC_1_PI, |
899 | | FRAC_1_SQRT_2, |
900 | | FRAC_2_PI, |
901 | | FRAC_2_SQRT_PI, |
902 | | FRAC_PI_2, |
903 | | FRAC_PI_3, |
904 | | FRAC_PI_4, |
905 | | FRAC_PI_6, |
906 | | FRAC_PI_8, |
907 | | LN_10, |
908 | | LN_2, |
909 | | LOG10_E, |
910 | | LOG2_E, |
911 | | PI, |
912 | | SQRT_2 |
913 | | ); |
914 | | } |
915 | | |
916 | | macro_rules! impl_real_constant { |
917 | | ($($prop:ident),*) => { |
918 | | $( |
919 | | fn $prop() -> Self { Self::from_real(<T as Float>::$prop()) } |
920 | | )* |
921 | | } |
922 | | } |
923 | | |
924 | | macro_rules! impl_single_boolean_op { |
925 | | ($op:ident REAL) => { |
926 | | fn $op(self) -> bool { |
927 | | self.real().$op() |
928 | | } |
929 | | }; |
930 | | ($op:ident OR) => { |
931 | 0 | fn $op(self) -> bool { |
932 | 0 | let mut b = self.real().$op(); |
933 | 0 | for x in self.iter().skip(1) { |
934 | 0 | b |= x.$op(); |
935 | 0 | } |
936 | 0 | b |
937 | 0 | } |
938 | | }; |
939 | | ($op:ident AND) => { |
940 | | fn $op(self) -> bool { |
941 | | let mut b = self.real().$op(); |
942 | | for x in self.iter().skip(1) { |
943 | | b &= x.$op(); |
944 | | } |
945 | | b |
946 | | } |
947 | | }; |
948 | | } |
949 | | |
950 | | macro_rules! impl_boolean_op { |
951 | | ($($op:ident $t:tt),*) => { |
952 | | $(impl_single_boolean_op!($op $t);)* |
953 | | }; |
954 | | } |
955 | | |
956 | | macro_rules! impl_real_op { |
957 | | ($($op:ident),*) => { |
958 | | $( |
959 | | fn $op(self) -> Self { Self::from_real(self.real().$op()) } |
960 | | )* |
961 | | } |
962 | | } |
963 | | |
964 | | impl<T: Copy + Scalar + Num + Zero, N: Dim + DimName> Sum for OHyperdual<T, N> |
965 | | where |
966 | | DefaultAllocator: Allocator<N>, |
967 | | Owned<T, N>: Copy, |
968 | | { |
969 | | fn sum<I: Iterator<Item = OHyperdual<T, N>>>(iter: I) -> Self { |
970 | | iter.fold(Self::zero(), |a, b| a + b) |
971 | | } |
972 | | } |
973 | | |
974 | | impl<'a, T: Copy + Scalar + Num + Zero, N: Dim + DimName> Sum<&'a OHyperdual<T, N>> for OHyperdual<T, N> |
975 | | where |
976 | | DefaultAllocator: Allocator<N>, |
977 | | Owned<T, N>: Copy, |
978 | | { |
979 | | fn sum<I: Iterator<Item = &'a OHyperdual<T, N>>>(iter: I) -> Self { |
980 | | iter.fold(Self::zero(), |a, b| a + *b) |
981 | | } |
982 | | } |
983 | | |
984 | | impl<T: Copy + Scalar + Num + One, N: Dim + DimName> Product for OHyperdual<T, N> |
985 | | where |
986 | | DefaultAllocator: Allocator<N>, |
987 | | Owned<T, N>: Copy, |
988 | | { |
989 | | fn product<I: Iterator<Item = OHyperdual<T, N>>>(iter: I) -> Self { |
990 | | iter.fold(Self::one(), |a, b| a * b) |
991 | | } |
992 | | } |
993 | | |
994 | | impl<'a, T: Copy + Scalar + Num + One, N: Dim + DimName> Product<&'a OHyperdual<T, N>> for OHyperdual<T, N> |
995 | | where |
996 | | DefaultAllocator: Allocator<N>, |
997 | | Owned<T, N>: Copy, |
998 | | { |
999 | | fn product<I: Iterator<Item = &'a OHyperdual<T, N>>>(iter: I) -> Self { |
1000 | | iter.fold(Self::one(), |a, b| a * *b) |
1001 | | } |
1002 | | } |
1003 | | |
1004 | | impl<T: Copy + Scalar, N: Dim + DimName> Float for OHyperdual<T, N> |
1005 | | where |
1006 | | T: Float + Signed + FloatConst, |
1007 | | DefaultAllocator: Allocator<N>, |
1008 | | Owned<T, N>: Copy, |
1009 | | { |
1010 | | impl_real_constant!(nan, infinity, neg_infinity, neg_zero, min_positive_value, epsilon, min_value, max_value); |
1011 | | |
1012 | | impl_boolean_op!( |
1013 | | is_nan OR, |
1014 | | is_infinite OR, |
1015 | | is_finite AND, |
1016 | | is_normal AND, |
1017 | | is_sign_positive REAL, |
1018 | | is_sign_negative REAL |
1019 | | ); |
1020 | | |
1021 | | #[inline] |
1022 | | fn classify(self) -> FpCategory { |
1023 | | self.real().classify() |
1024 | | } |
1025 | | |
1026 | | impl_real_op!(floor, ceil, round, trunc); |
1027 | | |
1028 | | #[inline] |
1029 | | fn fract(self) -> Self { |
1030 | | let mut v = self; |
1031 | | v[0] = self.real().fract(); |
1032 | | v |
1033 | | } |
1034 | | |
1035 | | #[inline] |
1036 | | fn signum(self) -> Self { |
1037 | | Self::from_real(self.real().signum()) |
1038 | | } |
1039 | | |
1040 | | #[inline] |
1041 | 0 | fn abs(self) -> Self { |
1042 | 0 | let s = self.real().signum(); |
1043 | 0 | Self(self.map(|x| x * s)) |
1044 | 0 | } |
1045 | | |
1046 | | #[inline] |
1047 | | fn max(self, other: Self) -> Self { |
1048 | | if self.real() > other.real() { |
1049 | | self |
1050 | | } else { |
1051 | | other |
1052 | | } |
1053 | | } |
1054 | | |
1055 | | #[inline] |
1056 | | fn min(self, other: Self) -> Self { |
1057 | | if self.real() < other.real() { |
1058 | | self |
1059 | | } else { |
1060 | | other |
1061 | | } |
1062 | | } |
1063 | | |
1064 | | #[inline] |
1065 | | fn abs_sub(self, rhs: Self) -> Self { |
1066 | | if self.real() > rhs.real() { |
1067 | | self.sub(rhs) |
1068 | | } else { |
1069 | | Self::zero() |
1070 | | } |
1071 | | } |
1072 | | |
1073 | | #[inline] |
1074 | | fn mul_add(self, a: Self, b: Self) -> Self { |
1075 | | let mut dual = Self::from_real(self.real().mul_add(a.real(), b.real())); |
1076 | | |
1077 | | for x in 1..self.len() { |
1078 | | dual[x] = self[x] * a.real() + self.real() * a[x] + b[x]; |
1079 | | } |
1080 | | |
1081 | | dual |
1082 | | } |
1083 | | |
1084 | | #[inline] |
1085 | | fn recip(self) -> Self { |
1086 | | Self::one() / self |
1087 | | } |
1088 | | |
1089 | | #[inline] |
1090 | 0 | fn powi(self, n: i32) -> Self { |
1091 | 0 | let r = self.real().powi(n - 1); |
1092 | 0 | let nf = <T as NumCast>::from(n).expect("Invalid value") * r; |
1093 | | |
1094 | 0 | self.map_dual(self.real() * r, |x| nf * *x) |
1095 | 0 | } |
1096 | | |
1097 | | #[inline] |
1098 | | fn powf(self, n: Self) -> Self { |
1099 | | let real_part = self.real().powf(n.real()); |
1100 | | let a = n.real() * self.real().powf(n.real() - T::one()); |
1101 | | let b = real_part * self.real().ln(); |
1102 | | |
1103 | | let mut v = self.zip_map(&n, |x, y| a * x + b * y); |
1104 | | v[0] = real_part; |
1105 | | Self(v) |
1106 | | } |
1107 | | |
1108 | | #[inline] |
1109 | | fn exp(self) -> Self { |
1110 | | let real = self.real().exp(); |
1111 | | self.map_dual(real, |x| real * *x) |
1112 | | } |
1113 | | |
1114 | | #[inline] |
1115 | | fn exp2(self) -> Self { |
1116 | | let real = self.real().exp2(); |
1117 | | self.map_dual(real, |x| *x * T::LN_2() * real) |
1118 | | } |
1119 | | |
1120 | | #[inline] |
1121 | | fn ln(self) -> Self { |
1122 | | self.map_dual(self.real().ln(), |x| *x / self.real()) |
1123 | | } |
1124 | | |
1125 | | #[inline] |
1126 | | fn log(self, base: Self) -> Self { |
1127 | | self.ln() / base.ln() |
1128 | | } |
1129 | | |
1130 | | #[inline] |
1131 | | fn log2(self) -> Self { |
1132 | | self.map_dual(self.real().log2(), |x| *x / (self.real() * T::LN_2())) |
1133 | | } |
1134 | | |
1135 | | #[inline] |
1136 | | fn log10(self) -> Self { |
1137 | | self.map_dual(self.real().log10(), |x| *x / (self.real() * T::LN_10())) |
1138 | | } |
1139 | | |
1140 | | #[inline] |
1141 | 0 | fn sqrt(self) -> Self { |
1142 | 0 | let real = self.real().sqrt(); |
1143 | 0 | let d = T::from(1).unwrap() / (T::from(2).unwrap() * real); |
1144 | 0 | self.map_dual(real, |x| *x * d) |
1145 | 0 | } |
1146 | | |
1147 | | #[inline] |
1148 | | fn cbrt(self) -> Self { |
1149 | | let real = self.real().cbrt(); |
1150 | | self.map_dual(real, |x| *x / (T::from(3).unwrap() * real)) |
1151 | | } |
1152 | | |
1153 | | #[inline] |
1154 | | fn hypot(self, other: Self) -> Self { |
1155 | | let c = self.real().hypot(other.real()); |
1156 | | let mut v = self.zip_map(&other, |x, y| (self.real() * x + other.real() * y) / c); |
1157 | | v[0] = c; |
1158 | | Self(v) |
1159 | | } |
1160 | | |
1161 | | #[inline] |
1162 | 0 | fn sin(self) -> Self { |
1163 | 0 | let c = self.real().cos(); |
1164 | 0 | self.map_dual(self.real().sin(), |x| *x * c) |
1165 | 0 | } |
1166 | | |
1167 | | #[inline] |
1168 | 0 | fn cos(self) -> Self { |
1169 | 0 | let c = self.real().sin(); |
1170 | 0 | self.map_dual(self.real().cos(), |x| x.neg() * c) |
1171 | 0 | } |
1172 | | |
1173 | | #[inline] |
1174 | | fn tan(self) -> Self { |
1175 | | let t = self.real().tan(); |
1176 | | let c = t * t + T::one(); |
1177 | | self.map_dual(t, |x| *x * c) |
1178 | | } |
1179 | | |
1180 | | #[inline] |
1181 | 0 | fn asin(self) -> Self { |
1182 | | // TODO: implement inv |
1183 | 0 | let c = (T::one() - self.real().powi(2)).sqrt(); |
1184 | 0 | self.map_dual(self.real().asin(), |x| *x / c) |
1185 | 0 | } |
1186 | | |
1187 | | #[inline] |
1188 | 0 | fn acos(self) -> Self { |
1189 | | // TODO: implement inv |
1190 | 0 | let c = (T::one() - self.real().powi(2)).sqrt(); |
1191 | 0 | self.map_dual(self.real().acos(), |x| x.neg() / c) |
1192 | 0 | } |
1193 | | |
1194 | | #[inline] |
1195 | | fn atan(self) -> Self { |
1196 | | // TODO: implement inv |
1197 | | let c = T::one() + self.real().powi(2); |
1198 | | self.map_dual(self.real().atan(), |x| *x / c) |
1199 | | } |
1200 | | |
1201 | | #[inline] |
1202 | 0 | fn atan2(self, other: Self) -> Self { |
1203 | 0 | let c = self.real().powi(2) + other.real().powi(2); |
1204 | 0 | let mut v = self.zip_map(&other, |x, y| (other.real() * x - self.real() * y) / c); |
1205 | 0 | v[0] = self.real().atan2(other.real()); |
1206 | 0 | Self(v) |
1207 | 0 | } |
1208 | | |
1209 | | #[inline] |
1210 | 0 | fn sin_cos(self) -> (Self, Self) { |
1211 | 0 | let (s, c) = self.real().sin_cos(); |
1212 | 0 | let sn = self.map_dual(s, |x| *x * c); |
1213 | 0 | let cn = self.map_dual(c, |x| x.neg() * s); |
1214 | 0 | (sn, cn) |
1215 | 0 | } |
1216 | | |
1217 | | #[inline] |
1218 | | fn exp_m1(self) -> Self { |
1219 | | let c = self.real().exp(); |
1220 | | self.map_dual(self.real().exp_m1(), |x| *x * c) |
1221 | | } |
1222 | | |
1223 | | #[inline] |
1224 | | fn ln_1p(self) -> Self { |
1225 | | let c = self.real() + T::one(); |
1226 | | self.map_dual(self.real().ln_1p(), |x| *x / c) |
1227 | | } |
1228 | | |
1229 | | #[inline] |
1230 | | fn sinh(self) -> Self { |
1231 | | let c = self.real().cosh(); |
1232 | | self.map_dual(self.real().sinh(), |x| *x * c) |
1233 | | } |
1234 | | |
1235 | | #[inline] |
1236 | | fn cosh(self) -> Self { |
1237 | | let c = self.real().sinh(); |
1238 | | self.map_dual(self.real().cosh(), |x| *x * c) |
1239 | | } |
1240 | | |
1241 | | #[inline] |
1242 | | fn tanh(self) -> Self { |
1243 | | let real = self.real().tanh(); |
1244 | | let c = T::one() - real.powi(2); |
1245 | | self.map_dual(real, |x| *x * c) |
1246 | | } |
1247 | | |
1248 | | #[inline] |
1249 | 0 | fn asinh(self) -> Self { |
1250 | 0 | let c = (self.real().powi(2) + T::one()).sqrt(); |
1251 | 0 | self.map_dual(self.real().asinh(), |x| *x / c) |
1252 | 0 | } |
1253 | | |
1254 | | #[inline] |
1255 | | fn acosh(self) -> Self { |
1256 | | let c = (self.real() + T::one()).sqrt() * (self.real() - T::one()).sqrt(); |
1257 | | self.map_dual(self.real().acosh(), |x| *x / c) |
1258 | | } |
1259 | | |
1260 | | #[inline] |
1261 | | fn atanh(self) -> Self { |
1262 | | let c = T::one() - self.real().powi(2); |
1263 | | self.map_dual(self.real().atanh(), |x| *x / c) |
1264 | | } |
1265 | | |
1266 | | #[inline] |
1267 | | fn integer_decode(self) -> (u64, i16, i8) { |
1268 | | self.real().integer_decode() |
1269 | | } |
1270 | | |
1271 | | #[inline] |
1272 | 0 | fn to_degrees(self) -> Self { |
1273 | 0 | self.map_dual(self.real().to_degrees(), |x| x.to_degrees()) |
1274 | 0 | } |
1275 | | |
1276 | | #[inline] |
1277 | 0 | fn to_radians(self) -> Self { |
1278 | 0 | self.map_dual(self.real().to_radians(), |x| x.to_radians()) |
1279 | 0 | } |
1280 | | } |
1281 | | |
1282 | | pub type Dual<T> = Hyperdual<T, 2>; |
1283 | | |
1284 | | impl<T: Copy + Scalar> Dual<T> { |
1285 | | #[inline] |
1286 | | pub fn new(real: T, dual: T) -> Dual<T> { |
1287 | | Dual::from_slice(&[real, dual]) |
1288 | | } |
1289 | | |
1290 | | #[inline] |
1291 | | pub fn dual(&self) -> T { |
1292 | | self[1] |
1293 | | } |
1294 | | |
1295 | | /// Returns a reference to the dual part |
1296 | | #[inline] |
1297 | | pub fn dual_ref(&self) -> &T { |
1298 | | &self[1] |
1299 | | } |
1300 | | |
1301 | | /// Returns a mutable reference to the dual part |
1302 | | #[inline] |
1303 | | pub fn dual_mut(&mut self) -> &mut T { |
1304 | | &mut self[1] |
1305 | | } |
1306 | | } |
1307 | | |
1308 | | pub type DualN<T, const N: usize> = Hyperdual<T, N>; |
1309 | | |
1310 | | pub fn hyperspace_from_vector<T: Copy + Scalar + Num + Zero, const D: usize, const N: usize>(v: &SVector<T, N>) -> SVector<Hyperdual<T, D>, N> { |
1311 | | let mut space_slice = vec![Hyperdual::<T, D>::zero(); N]; |
1312 | | for i in 0..N { |
1313 | | space_slice[i] = Hyperdual::<T, D>::from_fn(|j| { |
1314 | | if j == 0 { |
1315 | | v[i] |
1316 | | } else if i + 1 == j { |
1317 | | T::one() |
1318 | | } else { |
1319 | | T::zero() |
1320 | | } |
1321 | | }); |
1322 | | } |
1323 | | SVector::<Hyperdual<T, D>, N>::from_row_slice(&space_slice) |
1324 | | } |
1325 | | |
1326 | | pub fn vector_from_hyperspace<T: Scalar + Zero + Float, const DIM_VECTOR: usize, const DIM_HYPER: usize>( |
1327 | | x_dual: &SVector<DualN<T, DIM_HYPER>, { DIM_VECTOR }>, |
1328 | | ) -> SVector<T, DIM_VECTOR> { |
1329 | | x_dual.map(|x| x.real()) |
1330 | | } |
1331 | | |
1332 | | pub fn hyperspace_from_ovector<T: Copy + Scalar + Num + Zero, D: Dim + DimName, N: Dim + DimName>(v: &OVector<T, N>) -> OVector<OHyperdual<T, D>, N> |
1333 | | where |
1334 | | DefaultAllocator: Allocator<D> + Allocator<N>, |
1335 | | Owned<T, D>: Copy, |
1336 | | { |
1337 | | let mut space_slice = vec![OHyperdual::<T, D>::zero(); N::dim()]; |
1338 | | for i in 0..N::dim() { |
1339 | | space_slice[i] = OHyperdual::<T, D>::from_fn(|j| { |
1340 | | if j == 0 { |
1341 | | v[i] |
1342 | | } else if i + 1 == j { |
1343 | | T::one() |
1344 | | } else { |
1345 | | T::zero() |
1346 | | } |
1347 | | }); |
1348 | | } |
1349 | | OVector::<OHyperdual<T, D>, N>::from_row_slice(&space_slice) |
1350 | | } |
1351 | | |
1352 | | pub fn ovector_from_hyperspace<T: Scalar + Zero + Float, DimVector: Dim + DimName, DimHyper: Dim + DimName>( |
1353 | | x_dual: &OVector<OHyperdual<T, DimHyper>, DimVector>, |
1354 | | ) -> OVector<T, DimVector> |
1355 | | where |
1356 | | DefaultAllocator: Allocator<DimVector> + Allocator<DimVector> + Allocator<DimHyper>, |
1357 | | <DefaultAllocator as Allocator<DimHyper>>::Buffer<T>: Copy, |
1358 | | { |
1359 | | x_dual.map(|x| x.real()) |
1360 | | } |