Coverage Report

Created: 2023-03-26 06:28

/src/httpd/srclib/apr/crypto/apr_md5.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * This is work is derived from material Copyright RSA Data Security, Inc.
3
 *
4
 * The RSA copyright statement and Licence for that original material is
5
 * included below. This is followed by the Apache copyright statement and
6
 * licence for the modifications made to that material.
7
 */
8
9
/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
10
 */
11
12
/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
13
   rights reserved.
14
15
   License to copy and use this software is granted provided that it
16
   is identified as the "RSA Data Security, Inc. MD5 Message-Digest
17
   Algorithm" in all material mentioning or referencing this software
18
   or this function.
19
20
   License is also granted to make and use derivative works provided
21
   that such works are identified as "derived from the RSA Data
22
   Security, Inc. MD5 Message-Digest Algorithm" in all material
23
   mentioning or referencing the derived work.
24
25
   RSA Data Security, Inc. makes no representations concerning either
26
   the merchantability of this software or the suitability of this
27
   software for any particular purpose. It is provided "as is"
28
   without express or implied warranty of any kind.
29
30
   These notices must be retained in any copies of any part of this
31
   documentation and/or software.
32
 */
33
34
/* Licensed to the Apache Software Foundation (ASF) under one or more
35
 * contributor license agreements.  See the NOTICE file distributed with
36
 * this work for additional information regarding copyright ownership.
37
 * The ASF licenses this file to You under the Apache License, Version 2.0
38
 * (the "License"); you may not use this file except in compliance with
39
 * the License.  You may obtain a copy of the License at
40
 *
41
 *     http://www.apache.org/licenses/LICENSE-2.0
42
 *
43
 * Unless required by applicable law or agreed to in writing, software
44
 * distributed under the License is distributed on an "AS IS" BASIS,
45
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
46
 * See the License for the specific language governing permissions and
47
 * limitations under the License.
48
 */
49
50
/*
51
 * The apr_md5_encode() routine uses much code obtained from the FreeBSD 3.0
52
 * MD5 crypt() function, which is licenced as follows:
53
 * ----------------------------------------------------------------------------
54
 * "THE BEER-WARE LICENSE" (Revision 42):
55
 * <phk@login.dknet.dk> wrote this file.  As long as you retain this notice you
56
 * can do whatever you want with this stuff. If we meet some day, and you think
57
 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
58
 * ----------------------------------------------------------------------------
59
 */
60
#include "apr_strings.h"
61
#include "apr_md5.h"
62
#include "apr_lib.h"
63
#include "apr_private.h"
64
65
#if APR_HAVE_STRING_H
66
#include <string.h>
67
#endif
68
69
/* Constants for MD5Transform routine.
70
 */
71
72
#define S11 7
73
#define S12 12
74
#define S13 17
75
#define S14 22
76
#define S21 5
77
#define S22 9
78
#define S23 14
79
#define S24 20
80
#define S31 4
81
#define S32 11
82
#define S33 16
83
#define S34 23
84
#define S41 6
85
#define S42 10
86
#define S43 15
87
#define S44 21
88
89
static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64]);
90
static void Encode(unsigned char *output, const apr_uint32_t *input,
91
                   unsigned int len);
92
static void Decode(apr_uint32_t *output, const unsigned char *input,
93
                   unsigned int len);
94
95
static const unsigned char PADDING[64] =
96
{
97
    0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
98
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
99
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
100
};
101
102
#if APR_CHARSET_EBCDIC
103
static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md5_encode() */
104
#endif
105
0
#define DO_XLATE 0
106
0
#define SKIP_XLATE 1
107
108
/* F, G, H and I are basic MD5 functions.
109
 */
110
0
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
111
0
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
112
0
#define H(x, y, z) ((x) ^ (y) ^ (z))
113
0
#define I(x, y, z) ((y) ^ ((x) | (~z)))
114
115
/* ROTATE_LEFT rotates x left n bits.
116
 */
117
0
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
118
119
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
120
 * Rotation is separate from addition to prevent recomputation.
121
 */
122
0
#define FF(a, b, c, d, x, s, ac) { \
123
0
 (a) += F ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
124
0
 (a) = ROTATE_LEFT ((a), (s)); \
125
0
 (a) += (b); \
126
0
  }
127
0
#define GG(a, b, c, d, x, s, ac) { \
128
0
 (a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
129
0
 (a) = ROTATE_LEFT ((a), (s)); \
130
0
 (a) += (b); \
131
0
  }
132
0
#define HH(a, b, c, d, x, s, ac) { \
133
0
 (a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
134
0
 (a) = ROTATE_LEFT ((a), (s)); \
135
0
 (a) += (b); \
136
0
  }
137
0
#define II(a, b, c, d, x, s, ac) { \
138
0
 (a) += I ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
139
0
 (a) = ROTATE_LEFT ((a), (s)); \
140
0
 (a) += (b); \
141
0
  }
142
143
/* MD5 initialization. Begins an MD5 operation, writing a new context.
144
 */
145
APR_DECLARE(apr_status_t) apr_md5_init(apr_md5_ctx_t *context)
146
0
{
147
0
    context->count[0] = context->count[1] = 0;
148
149
    /* Load magic initialization constants. */
150
0
    context->state[0] = 0x67452301;
151
0
    context->state[1] = 0xefcdab89;
152
0
    context->state[2] = 0x98badcfe;
153
0
    context->state[3] = 0x10325476;
154
0
    context->xlate = NULL;
155
156
0
    return APR_SUCCESS;
157
0
}
158
159
/* MD5 translation setup.  Provides the APR translation handle
160
 * to be used for translating the content before calculating the
161
 * digest.
162
 */
163
APR_DECLARE(apr_status_t) apr_md5_set_xlate(apr_md5_ctx_t *context,
164
                                            apr_xlate_t *xlate)
165
0
{
166
0
#if APR_HAS_XLATE
167
0
    apr_status_t rv;
168
0
    int is_sb;
169
170
    /* TODO: remove the single-byte-only restriction from this code
171
     */
172
0
    rv = apr_xlate_sb_get(xlate, &is_sb);
173
0
    if (rv != APR_SUCCESS) {
174
0
        return rv;
175
0
    }
176
0
    if (!is_sb) {
177
0
        return APR_EINVAL;
178
0
    }
179
0
    context->xlate = xlate;
180
0
    return APR_SUCCESS;
181
#else
182
    return APR_ENOTIMPL;
183
#endif /* APR_HAS_XLATE */
184
0
}
185
186
/* MD5 block update operation. Continues an MD5 message-digest
187
 * operation, processing another message block, and updating the
188
 * context.
189
 */
190
static apr_status_t md5_update_buffer(apr_md5_ctx_t *context,
191
                                      const void *vinput,
192
                                      apr_size_t inputLen,
193
                                      int xlate_buffer)
194
0
{
195
0
    const unsigned char *input = vinput;
196
0
    unsigned int i, idx, partLen;
197
0
#if APR_HAS_XLATE
198
0
    apr_size_t inbytes_left, outbytes_left;
199
0
#endif
200
201
    /* Compute number of bytes mod 64 */
202
0
    idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
203
204
    /* Update number of bits */
205
0
    if ((context->count[0] += ((apr_uint32_t)inputLen << 3))
206
0
            < ((apr_uint32_t)inputLen << 3))
207
0
        context->count[1]++;
208
0
    context->count[1] += (apr_uint32_t)inputLen >> 29;
209
210
0
    partLen = 64 - idx;
211
212
    /* Transform as many times as possible. */
213
#if !APR_HAS_XLATE
214
    if (inputLen >= partLen) {
215
        memcpy(&context->buffer[idx], input, partLen);
216
        MD5Transform(context->state, context->buffer);
217
218
        for (i = partLen; i + 63 < inputLen; i += 64)
219
            MD5Transform(context->state, &input[i]);
220
221
        idx = 0;
222
    }
223
    else
224
        i = 0;
225
226
    /* Buffer remaining input */
227
    memcpy(&context->buffer[idx], &input[i], inputLen - i);
228
#else /*APR_HAS_XLATE*/
229
0
    if (inputLen >= partLen) {
230
0
        if (context->xlate && (xlate_buffer == DO_XLATE)) {
231
0
            inbytes_left = outbytes_left = partLen;
232
0
            apr_xlate_conv_buffer(context->xlate, (const char *)input,
233
0
                                  &inbytes_left,
234
0
                                  (char *)&context->buffer[idx],
235
0
                                  &outbytes_left);
236
0
        }
237
0
        else {
238
0
            memcpy(&context->buffer[idx], input, partLen);
239
0
        }
240
0
        MD5Transform(context->state, context->buffer);
241
242
0
        for (i = partLen; i + 63 < inputLen; i += 64) {
243
0
            if (context->xlate && (xlate_buffer == DO_XLATE)) {
244
0
                unsigned char inp_tmp[64];
245
0
                inbytes_left = outbytes_left = 64;
246
0
                apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
247
0
                                      &inbytes_left, (char *)inp_tmp,
248
0
                                      &outbytes_left);
249
0
                MD5Transform(context->state, inp_tmp);
250
0
            }
251
0
            else {
252
0
                MD5Transform(context->state, &input[i]);
253
0
            }
254
0
        }
255
256
0
        idx = 0;
257
0
    }
258
0
    else
259
0
        i = 0;
260
261
    /* Buffer remaining input */
262
0
    if (context->xlate && (xlate_buffer == DO_XLATE)) {
263
0
        inbytes_left = outbytes_left = inputLen - i;
264
0
        apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
265
0
                              &inbytes_left, (char *)&context->buffer[idx],
266
0
                              &outbytes_left);
267
0
    }
268
0
    else {
269
0
        memcpy(&context->buffer[idx], &input[i], inputLen - i);
270
0
    }
271
0
#endif /*APR_HAS_XLATE*/
272
0
    return APR_SUCCESS;
273
0
}
274
275
/* MD5 block update operation. API with the default setting
276
 * for EBCDIC translations
277
 */
278
APR_DECLARE(apr_status_t) apr_md5_update(apr_md5_ctx_t *context,
279
                                         const void *input,
280
                                         apr_size_t inputLen)
281
0
{
282
0
    return md5_update_buffer(context, input, inputLen, DO_XLATE);
283
0
}
284
285
/* MD5 finalization. Ends an MD5 message-digest operation, writing the
286
 * the message digest and zeroizing the context.
287
 */
288
APR_DECLARE(apr_status_t) apr_md5_final(unsigned char digest[APR_MD5_DIGESTSIZE],
289
                                        apr_md5_ctx_t *context)
290
0
{
291
0
    unsigned char bits[8];
292
0
    unsigned int idx, padLen;
293
294
    /* Save number of bits */
295
0
    Encode(bits, context->count, 8);
296
297
0
#if APR_HAS_XLATE
298
    /* apr_md5_update() should not translate for this final round. */
299
0
    context->xlate = NULL;
300
0
#endif /*APR_HAS_XLATE*/
301
302
    /* Pad out to 56 mod 64. */
303
0
    idx = (unsigned int)((context->count[0] >> 3) & 0x3f);
304
0
    padLen = (idx < 56) ? (56 - idx) : (120 - idx);
305
0
    apr_md5_update(context, PADDING, padLen);
306
307
    /* Append length (before padding) */
308
0
    apr_md5_update(context, bits, 8);
309
310
    /* Store state in digest */
311
0
    Encode(digest, context->state, APR_MD5_DIGESTSIZE);
312
313
    /* Zeroize sensitive information. */
314
0
    memset(context, 0, sizeof(*context));
315
316
0
    return APR_SUCCESS;
317
0
}
318
319
/* MD5 in one step (init, update, final)
320
 */
321
APR_DECLARE(apr_status_t) apr_md5(unsigned char digest[APR_MD5_DIGESTSIZE],
322
                                  const void *_input,
323
                                  apr_size_t inputLen)
324
0
{
325
0
    const unsigned char *input = _input;
326
0
    apr_md5_ctx_t ctx;
327
0
    apr_status_t rv;
328
329
0
    apr_md5_init(&ctx);
330
331
0
    if ((rv = apr_md5_update(&ctx, input, inputLen)) != APR_SUCCESS)
332
0
        return rv;
333
334
0
    return apr_md5_final(digest, &ctx);
335
0
}
336
337
/* MD5 basic transformation. Transforms state based on block. */
338
static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64])
339
0
{
340
0
    apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3],
341
0
                 tmpbuf[APR_MD5_DIGESTSIZE];
342
0
    const apr_uint32_t *x;
343
344
0
#if !APR_IS_BIGENDIAN
345
0
    if ((apr_uintptr_t)block % sizeof(apr_uint32_t) == 0) {
346
0
        x = (apr_uint32_t *)block;
347
0
    } else
348
0
#endif
349
0
    {
350
0
        Decode(tmpbuf, block, 64);
351
0
  x = tmpbuf;
352
0
    }
353
354
    /* Round 1 */
355
0
    FF(a, b, c, d, x[0],  S11, 0xd76aa478); /* 1 */
356
0
    FF(d, a, b, c, x[1],  S12, 0xe8c7b756); /* 2 */
357
0
    FF(c, d, a, b, x[2],  S13, 0x242070db); /* 3 */
358
0
    FF(b, c, d, a, x[3],  S14, 0xc1bdceee); /* 4 */
359
0
    FF(a, b, c, d, x[4],  S11, 0xf57c0faf); /* 5 */
360
0
    FF(d, a, b, c, x[5],  S12, 0x4787c62a); /* 6 */
361
0
    FF(c, d, a, b, x[6],  S13, 0xa8304613); /* 7 */
362
0
    FF(b, c, d, a, x[7],  S14, 0xfd469501); /* 8 */
363
0
    FF(a, b, c, d, x[8],  S11, 0x698098d8); /* 9 */
364
0
    FF(d, a, b, c, x[9],  S12, 0x8b44f7af); /* 10 */
365
0
    FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
366
0
    FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
367
0
    FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
368
0
    FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
369
0
    FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
370
0
    FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
371
372
    /* Round 2 */
373
0
    GG(a, b, c, d, x[1],  S21, 0xf61e2562); /* 17 */
374
0
    GG(d, a, b, c, x[6],  S22, 0xc040b340); /* 18 */
375
0
    GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
376
0
    GG(b, c, d, a, x[0],  S24, 0xe9b6c7aa); /* 20 */
377
0
    GG(a, b, c, d, x[5],  S21, 0xd62f105d); /* 21 */
378
0
    GG(d, a, b, c, x[10], S22, 0x2441453);  /* 22 */
379
0
    GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
380
0
    GG(b, c, d, a, x[4],  S24, 0xe7d3fbc8); /* 24 */
381
0
    GG(a, b, c, d, x[9],  S21, 0x21e1cde6); /* 25 */
382
0
    GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
383
0
    GG(c, d, a, b, x[3],  S23, 0xf4d50d87); /* 27 */
384
0
    GG(b, c, d, a, x[8],  S24, 0x455a14ed); /* 28 */
385
0
    GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
386
0
    GG(d, a, b, c, x[2],  S22, 0xfcefa3f8); /* 30 */
387
0
    GG(c, d, a, b, x[7],  S23, 0x676f02d9); /* 31 */
388
0
    GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
389
390
    /* Round 3 */
391
0
    HH(a, b, c, d, x[5],  S31, 0xfffa3942); /* 33 */
392
0
    HH(d, a, b, c, x[8],  S32, 0x8771f681); /* 34 */
393
0
    HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
394
0
    HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
395
0
    HH(a, b, c, d, x[1],  S31, 0xa4beea44); /* 37 */
396
0
    HH(d, a, b, c, x[4],  S32, 0x4bdecfa9); /* 38 */
397
0
    HH(c, d, a, b, x[7],  S33, 0xf6bb4b60); /* 39 */
398
0
    HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
399
0
    HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
400
0
    HH(d, a, b, c, x[0],  S32, 0xeaa127fa); /* 42 */
401
0
    HH(c, d, a, b, x[3],  S33, 0xd4ef3085); /* 43 */
402
0
    HH(b, c, d, a, x[6],  S34, 0x4881d05);  /* 44 */
403
0
    HH(a, b, c, d, x[9],  S31, 0xd9d4d039); /* 45 */
404
0
    HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
405
0
    HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
406
0
    HH(b, c, d, a, x[2],  S34, 0xc4ac5665); /* 48 */
407
408
    /* Round 4 */
409
0
    II(a, b, c, d, x[0],  S41, 0xf4292244); /* 49 */
410
0
    II(d, a, b, c, x[7],  S42, 0x432aff97); /* 50 */
411
0
    II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
412
0
    II(b, c, d, a, x[5],  S44, 0xfc93a039); /* 52 */
413
0
    II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
414
0
    II(d, a, b, c, x[3],  S42, 0x8f0ccc92); /* 54 */
415
0
    II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
416
0
    II(b, c, d, a, x[1],  S44, 0x85845dd1); /* 56 */
417
0
    II(a, b, c, d, x[8],  S41, 0x6fa87e4f); /* 57 */
418
0
    II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
419
0
    II(c, d, a, b, x[6],  S43, 0xa3014314); /* 59 */
420
0
    II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
421
0
    II(a, b, c, d, x[4],  S41, 0xf7537e82); /* 61 */
422
0
    II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
423
0
    II(c, d, a, b, x[2],  S43, 0x2ad7d2bb); /* 63 */
424
0
    II(b, c, d, a, x[9],  S44, 0xeb86d391); /* 64 */
425
426
0
    state[0] += a;
427
0
    state[1] += b;
428
0
    state[2] += c;
429
0
    state[3] += d;
430
431
0
#if !APR_IS_BIGENDIAN
432
0
    if (x == tmpbuf)
433
0
#endif
434
0
    {
435
        /* Zeroize sensitive information. */
436
0
        memset(tmpbuf, 0, sizeof(tmpbuf));
437
0
    }
438
0
}
439
440
/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is
441
 * a multiple of 4.
442
 */
443
static void Encode(unsigned char *output, const apr_uint32_t *input,
444
                   unsigned int len)
445
0
{
446
0
    unsigned int i, j;
447
0
    apr_uint32_t k;
448
449
0
    for (i = 0, j = 0; j < len; i++, j += 4) {
450
0
        k = input[i];
451
0
        output[j]     = (unsigned char)(k & 0xff);
452
0
        output[j + 1] = (unsigned char)((k >> 8) & 0xff);
453
0
        output[j + 2] = (unsigned char)((k >> 16) & 0xff);
454
0
        output[j + 3] = (unsigned char)((k >> 24) & 0xff);
455
0
    }
456
0
}
457
458
/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is
459
 * a multiple of 4.
460
 */
461
static void Decode(apr_uint32_t *output, const unsigned char *input,
462
                   unsigned int len)
463
0
{
464
0
    unsigned int i, j;
465
466
0
    for (i = 0, j = 0; j < len; i++, j += 4)
467
0
        output[i] = ((apr_uint32_t)input[j])             |
468
0
                    (((apr_uint32_t)input[j + 1]) << 8)  |
469
0
                    (((apr_uint32_t)input[j + 2]) << 16) |
470
0
                    (((apr_uint32_t)input[j + 3]) << 24);
471
0
}
472
473
#if APR_CHARSET_EBCDIC
474
APR_DECLARE(apr_status_t) apr_MD5InitEBCDIC(apr_xlate_t *xlate)
475
{
476
    xlate_ebcdic_to_ascii = xlate;
477
    return APR_SUCCESS;
478
}
479
#endif
480
481
/*
482
 * Define the Magic String prefix that identifies a password as being
483
 * hashed using our algorithm.
484
 */
485
static const char * const apr1_id = "$apr1$";
486
487
/*
488
 * The following MD5 password encryption code was largely borrowed from
489
 * the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is
490
 * licenced as stated at the top of this file.
491
 */
492
493
static void to64(char *s, unsigned long v, int n)
494
0
{
495
0
    static unsigned char itoa64[] =         /* 0 ... 63 => ASCII - 64 */
496
0
        "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
497
498
0
    while (--n >= 0) {
499
0
        *s++ = itoa64[v&0x3f];
500
0
        v >>= 6;
501
0
    }
502
0
}
503
504
APR_DECLARE(apr_status_t) apr_md5_encode(const char *pw, const char *salt,
505
                             char *result, apr_size_t nbytes)
506
0
{
507
    /*
508
     * Minimum size is 8 bytes for salt, plus 1 for the trailing NUL,
509
     * plus 4 for the '$' separators, plus the password hash itself.
510
     * Let's leave a goodly amount of leeway.
511
     */
512
513
0
    char passwd[120], *p;
514
0
    const char *sp, *ep;
515
0
    unsigned char final[APR_MD5_DIGESTSIZE];
516
0
    apr_ssize_t sl, pl, i;
517
0
    apr_md5_ctx_t ctx, ctx1;
518
0
    unsigned long l;
519
520
    /*
521
     * Refine the salt first.  It's possible we were given an already-hashed
522
     * string as the salt argument, so extract the actual salt value from it
523
     * if so.  Otherwise just use the string up to the first '$' as the salt.
524
     */
525
0
    sp = salt;
526
527
    /*
528
     * If it starts with the magic string, then skip that.
529
     */
530
0
    if (!strncmp(sp, apr1_id, strlen(apr1_id))) {
531
0
        sp += strlen(apr1_id);
532
0
    }
533
534
    /*
535
     * It stops at the first '$' or 8 chars, whichever comes first
536
     */
537
0
    for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) {
538
0
        continue;
539
0
    }
540
541
    /*
542
     * Get the length of the true salt
543
     */
544
0
    sl = ep - sp;
545
546
    /*
547
     * 'Time to make the doughnuts..'
548
     */
549
0
    apr_md5_init(&ctx);
550
#if APR_CHARSET_EBCDIC
551
    apr_md5_set_xlate(&ctx, xlate_ebcdic_to_ascii);
552
#endif
553
554
    /*
555
     * The password first, since that is what is most unknown
556
     */
557
0
    apr_md5_update(&ctx, pw, strlen(pw));
558
559
    /*
560
     * Then our magic string
561
     */
562
0
    apr_md5_update(&ctx, apr1_id, strlen(apr1_id));
563
564
    /*
565
     * Then the raw salt
566
     */
567
0
    apr_md5_update(&ctx, sp, sl);
568
569
    /*
570
     * Then just as many characters of the MD5(pw, salt, pw)
571
     */
572
0
    apr_md5_init(&ctx1);
573
#if APR_CHARSET_EBCDIC
574
    apr_md5_set_xlate(&ctx1, xlate_ebcdic_to_ascii);
575
#endif
576
0
    apr_md5_update(&ctx1, pw, strlen(pw));
577
0
    apr_md5_update(&ctx1, sp, sl);
578
0
    apr_md5_update(&ctx1, pw, strlen(pw));
579
0
    apr_md5_final(final, &ctx1);
580
0
    for (pl = strlen(pw); pl > 0; pl -= APR_MD5_DIGESTSIZE) {
581
0
        md5_update_buffer(&ctx, final,
582
0
                      (pl > APR_MD5_DIGESTSIZE) ? APR_MD5_DIGESTSIZE : pl, SKIP_XLATE);
583
0
    }
584
585
    /*
586
     * Don't leave anything around in vm they could use.
587
     */
588
0
    memset(final, 0, sizeof(final));
589
590
    /*
591
     * Then something really weird...
592
     */
593
0
    for (i = strlen(pw); i != 0; i >>= 1) {
594
0
        if (i & 1) {
595
0
            md5_update_buffer(&ctx, final, 1, SKIP_XLATE);
596
0
        }
597
0
        else {
598
0
            apr_md5_update(&ctx, pw, 1);
599
0
        }
600
0
    }
601
602
    /*
603
     * Now make the output string.  We know our limitations, so we
604
     * can use the string routines without bounds checking.
605
     */
606
0
    strcpy(passwd, apr1_id);
607
0
    strncat(passwd, sp, sl);
608
0
    strcat(passwd, "$");
609
610
0
    apr_md5_final(final, &ctx);
611
612
    /*
613
     * And now, just to make sure things don't run too fast..
614
     * On a 60 Mhz Pentium this takes 34 msec, so you would
615
     * need 30 seconds to build a 1000 entry dictionary...
616
     */
617
0
    for (i = 0; i < 1000; i++) {
618
0
        apr_md5_init(&ctx1);
619
         /*
620
          * apr_md5_final clears out ctx1.xlate at the end of each loop,
621
          * so need to to set it each time through
622
          */
623
#if APR_CHARSET_EBCDIC
624
        apr_md5_set_xlate(&ctx1, xlate_ebcdic_to_ascii);
625
#endif
626
0
        if (i & 1) {
627
0
            apr_md5_update(&ctx1, pw, strlen(pw));
628
0
        }
629
0
        else {
630
0
            md5_update_buffer(&ctx1, final, APR_MD5_DIGESTSIZE, SKIP_XLATE);
631
0
        }
632
0
        if (i % 3) {
633
0
            apr_md5_update(&ctx1, sp, sl);
634
0
        }
635
636
0
        if (i % 7) {
637
0
            apr_md5_update(&ctx1, pw, strlen(pw));
638
0
        }
639
640
0
        if (i & 1) {
641
0
            md5_update_buffer(&ctx1, final, APR_MD5_DIGESTSIZE, SKIP_XLATE);
642
0
        }
643
0
        else {
644
0
            apr_md5_update(&ctx1, pw, strlen(pw));
645
0
        }
646
0
        apr_md5_final(final,&ctx1);
647
0
    }
648
649
0
    p = passwd + strlen(passwd);
650
651
0
    l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p, l, 4); p += 4;
652
0
    l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p, l, 4); p += 4;
653
0
    l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p, l, 4); p += 4;
654
0
    l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p, l, 4); p += 4;
655
0
    l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p, l, 4); p += 4;
656
0
    l =                    final[11]                ; to64(p, l, 2); p += 2;
657
0
    *p = '\0';
658
659
    /*
660
     * Don't leave anything around in vm they could use.
661
     */
662
0
    memset(final, 0, sizeof(final));
663
664
0
    apr_cpystrn(result, passwd, nbytes - 1);
665
0
    return APR_SUCCESS;
666
0
}