/src/httpd/srclib/apr/buckets/apr_brigade.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Licensed to the Apache Software Foundation (ASF) under one or more |
2 | | * contributor license agreements. See the NOTICE file distributed with |
3 | | * this work for additional information regarding copyright ownership. |
4 | | * The ASF licenses this file to You under the Apache License, Version 2.0 |
5 | | * (the "License"); you may not use this file except in compliance with |
6 | | * the License. You may obtain a copy of the License at |
7 | | * |
8 | | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | | * |
10 | | * Unless required by applicable law or agreed to in writing, software |
11 | | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | | * See the License for the specific language governing permissions and |
14 | | * limitations under the License. |
15 | | */ |
16 | | |
17 | | #include "apr.h" |
18 | | #include "apr_lib.h" |
19 | | #include "apr_strings.h" |
20 | | #include "apr_pools.h" |
21 | | #include "apr_tables.h" |
22 | | #include "apr_buckets.h" |
23 | | #include "apr_errno.h" |
24 | | #define APR_WANT_MEMFUNC |
25 | | #define APR_WANT_STRFUNC |
26 | | #include "apr_want.h" |
27 | | |
28 | | #if APR_HAVE_SYS_UIO_H |
29 | | #include <sys/uio.h> |
30 | | #endif |
31 | | |
32 | | static apr_status_t brigade_cleanup(void *data) |
33 | 4.73k | { |
34 | 4.73k | return apr_brigade_cleanup(data); |
35 | 4.73k | } |
36 | | |
37 | | APR_DECLARE(apr_status_t) apr_brigade_cleanup(void *data) |
38 | 5.91k | { |
39 | 5.91k | apr_bucket_brigade *b = data; |
40 | | |
41 | 5.91k | #ifndef APR_BUCKET_DEBUG |
42 | 8.72k | while (!APR_BRIGADE_EMPTY(b)) { |
43 | 2.80k | apr_bucket_delete(APR_BRIGADE_FIRST(b)); |
44 | 2.80k | } |
45 | | #else |
46 | | /* Debugging version with checks which will only trigger if the |
47 | | * bucket list becomes corrupt. */ |
48 | | apr_bucket *e; |
49 | | apr_bucket *prev = NULL; |
50 | | |
51 | | APR_BRIGADE_CHECK_CONSISTENCY(b); |
52 | | |
53 | | while (!APR_BRIGADE_EMPTY(b)) { |
54 | | e = APR_BRIGADE_FIRST(b); |
55 | | assert(e != prev); |
56 | | prev = e; |
57 | | apr_bucket_delete(e); |
58 | | } |
59 | | #endif |
60 | | |
61 | | /* We don't need to free(bb) because it's allocated from a pool. */ |
62 | 5.91k | return APR_SUCCESS; |
63 | 5.91k | } |
64 | | |
65 | | APR_DECLARE(apr_status_t) apr_brigade_destroy(apr_bucket_brigade *b) |
66 | 0 | { |
67 | 0 | #ifndef APR_BUCKET_DEBUG |
68 | 0 | return apr_pool_cleanup_run(b->p, b, brigade_cleanup); |
69 | | #else |
70 | | apr_status_t rv; |
71 | | |
72 | | APR_BRIGADE_CHECK_CONSISTENCY(b); |
73 | | |
74 | | rv = apr_pool_cleanup_run(b->p, b, brigade_cleanup); |
75 | | |
76 | | /* Trigger consistency check failures if the brigade is |
77 | | * re-used. */ |
78 | | b->p = NULL; |
79 | | b->bucket_alloc = NULL; |
80 | | |
81 | | return rv; |
82 | | #endif |
83 | 0 | } |
84 | | |
85 | | APR_DECLARE(apr_bucket_brigade *) apr_brigade_create(apr_pool_t *p, |
86 | | apr_bucket_alloc_t *list) |
87 | 4.73k | { |
88 | 4.73k | apr_bucket_brigade *b; |
89 | | |
90 | 4.73k | b = apr_palloc(p, sizeof(*b)); |
91 | 4.73k | b->p = p; |
92 | 4.73k | b->bucket_alloc = list; |
93 | | |
94 | 4.73k | APR_RING_INIT(&b->list, apr_bucket, link); |
95 | | |
96 | 4.73k | apr_pool_cleanup_register(b->p, b, brigade_cleanup, apr_pool_cleanup_null); |
97 | 4.73k | return b; |
98 | 4.73k | } |
99 | | |
100 | | APR_DECLARE(apr_bucket_brigade *) apr_brigade_split_ex(apr_bucket_brigade *b, |
101 | | apr_bucket *e, |
102 | | apr_bucket_brigade *a) |
103 | 0 | { |
104 | 0 | apr_bucket *f; |
105 | |
|
106 | 0 | if (!a) { |
107 | 0 | a = apr_brigade_create(b->p, b->bucket_alloc); |
108 | 0 | } |
109 | 0 | else if (!APR_BRIGADE_EMPTY(a)) { |
110 | 0 | apr_brigade_cleanup(a); |
111 | 0 | } |
112 | | /* Return an empty brigade if there is nothing left in |
113 | | * the first brigade to split off |
114 | | */ |
115 | 0 | if (e != APR_BRIGADE_SENTINEL(b)) { |
116 | 0 | f = APR_RING_LAST(&b->list); |
117 | 0 | APR_RING_UNSPLICE(e, f, link); |
118 | 0 | APR_RING_SPLICE_HEAD(&a->list, e, f, apr_bucket, link); |
119 | 0 | } |
120 | |
|
121 | 0 | APR_BRIGADE_CHECK_CONSISTENCY(a); |
122 | 0 | APR_BRIGADE_CHECK_CONSISTENCY(b); |
123 | |
|
124 | 0 | return a; |
125 | 0 | } |
126 | | |
127 | | APR_DECLARE(apr_bucket_brigade *) apr_brigade_split(apr_bucket_brigade *b, |
128 | | apr_bucket *e) |
129 | 0 | { |
130 | 0 | return apr_brigade_split_ex(b, e, NULL); |
131 | 0 | } |
132 | | |
133 | | APR_DECLARE(apr_status_t) apr_brigade_partition(apr_bucket_brigade *b, |
134 | | apr_off_t point, |
135 | | apr_bucket **after_point) |
136 | 0 | { |
137 | 0 | apr_bucket *e; |
138 | 0 | const char *s; |
139 | 0 | apr_size_t len; |
140 | 0 | apr_uint64_t point64; |
141 | 0 | apr_status_t rv; |
142 | |
|
143 | 0 | if (point < 0) { |
144 | | /* this could cause weird (not necessarily SEGV) things to happen */ |
145 | 0 | return APR_EINVAL; |
146 | 0 | } |
147 | 0 | if (point == 0) { |
148 | 0 | *after_point = APR_BRIGADE_FIRST(b); |
149 | 0 | return APR_SUCCESS; |
150 | 0 | } |
151 | | |
152 | | /* |
153 | | * Try to reduce the following casting mess: We know that point will be |
154 | | * larger equal 0 now and forever and thus that point (apr_off_t) and |
155 | | * apr_size_t will fit into apr_uint64_t in any case. |
156 | | */ |
157 | 0 | point64 = (apr_uint64_t)point; |
158 | |
|
159 | 0 | APR_BRIGADE_CHECK_CONSISTENCY(b); |
160 | |
|
161 | 0 | for (e = APR_BRIGADE_FIRST(b); |
162 | 0 | e != APR_BRIGADE_SENTINEL(b); |
163 | 0 | e = APR_BUCKET_NEXT(e)) |
164 | 0 | { |
165 | | /* For an unknown length bucket, while 'point64' is beyond the possible |
166 | | * size contained in apr_size_t, read and continue... |
167 | | */ |
168 | 0 | if ((e->length == (apr_size_t)(-1)) |
169 | 0 | && (point64 > (apr_uint64_t)APR_SIZE_MAX)) { |
170 | | /* point64 is too far out to simply split this bucket, |
171 | | * we must fix this bucket's size and keep going... */ |
172 | 0 | rv = apr_bucket_read(e, &s, &len, APR_BLOCK_READ); |
173 | 0 | if (rv != APR_SUCCESS) { |
174 | 0 | *after_point = e; |
175 | 0 | return rv; |
176 | 0 | } |
177 | 0 | } |
178 | 0 | else if ((point64 < (apr_uint64_t)e->length) |
179 | 0 | || (e->length == (apr_size_t)(-1))) { |
180 | | /* We already consumed buckets where point64 is beyond |
181 | | * our interest ( point64 > APR_SIZE_MAX ), above. |
182 | | * Here point falls between 0 and APR_SIZE_MAX |
183 | | * and is within this bucket, or this bucket's len |
184 | | * is undefined, so now we are ready to split it. |
185 | | * First try to split the bucket natively... */ |
186 | 0 | if ((rv = apr_bucket_split(e, (apr_size_t)point64)) |
187 | 0 | != APR_ENOTIMPL) { |
188 | 0 | *after_point = APR_BUCKET_NEXT(e); |
189 | 0 | return rv; |
190 | 0 | } |
191 | | |
192 | | /* if the bucket cannot be split, we must read from it, |
193 | | * changing its type to one that can be split */ |
194 | 0 | rv = apr_bucket_read(e, &s, &len, APR_BLOCK_READ); |
195 | 0 | if (rv != APR_SUCCESS) { |
196 | 0 | *after_point = e; |
197 | 0 | return rv; |
198 | 0 | } |
199 | | |
200 | | /* this assumes that len == e->length, which is okay because e |
201 | | * might have been morphed by the apr_bucket_read() above, but |
202 | | * if it was, the length would have been adjusted appropriately */ |
203 | 0 | if (point64 < (apr_uint64_t)e->length) { |
204 | 0 | rv = apr_bucket_split(e, (apr_size_t)point64); |
205 | 0 | *after_point = APR_BUCKET_NEXT(e); |
206 | 0 | return rv; |
207 | 0 | } |
208 | 0 | } |
209 | 0 | if (point64 == (apr_uint64_t)e->length) { |
210 | 0 | *after_point = APR_BUCKET_NEXT(e); |
211 | 0 | return APR_SUCCESS; |
212 | 0 | } |
213 | 0 | point64 -= (apr_uint64_t)e->length; |
214 | 0 | } |
215 | 0 | *after_point = APR_BRIGADE_SENTINEL(b); |
216 | 0 | return APR_INCOMPLETE; |
217 | 0 | } |
218 | | |
219 | | APR_DECLARE(apr_status_t) apr_brigade_length(apr_bucket_brigade *bb, |
220 | | int read_all, apr_off_t *length) |
221 | 1.72k | { |
222 | 1.72k | apr_off_t total = 0; |
223 | 1.72k | apr_bucket *bkt; |
224 | 1.72k | apr_status_t status = APR_SUCCESS; |
225 | | |
226 | 1.72k | for (bkt = APR_BRIGADE_FIRST(bb); |
227 | 2.84k | bkt != APR_BRIGADE_SENTINEL(bb); |
228 | 1.72k | bkt = APR_BUCKET_NEXT(bkt)) |
229 | 1.12k | { |
230 | 1.12k | if (bkt->length == (apr_size_t)(-1)) { |
231 | 0 | const char *ignore; |
232 | 0 | apr_size_t len; |
233 | |
|
234 | 0 | if (!read_all) { |
235 | 0 | total = -1; |
236 | 0 | break; |
237 | 0 | } |
238 | | |
239 | 0 | if ((status = apr_bucket_read(bkt, &ignore, &len, |
240 | 0 | APR_BLOCK_READ)) != APR_SUCCESS) { |
241 | 0 | break; |
242 | 0 | } |
243 | 0 | } |
244 | | |
245 | 1.12k | total += bkt->length; |
246 | 1.12k | } |
247 | | |
248 | 1.72k | *length = total; |
249 | 1.72k | return status; |
250 | 1.72k | } |
251 | | |
252 | | APR_DECLARE(apr_status_t) apr_brigade_flatten(apr_bucket_brigade *bb, |
253 | | char *c, apr_size_t *len) |
254 | 621 | { |
255 | 621 | apr_size_t actual = 0; |
256 | 621 | apr_bucket *b; |
257 | | |
258 | 621 | for (b = APR_BRIGADE_FIRST(bb); |
259 | 629 | b != APR_BRIGADE_SENTINEL(bb); |
260 | 621 | b = APR_BUCKET_NEXT(b)) |
261 | 625 | { |
262 | 625 | const char *str; |
263 | 625 | apr_size_t str_len; |
264 | 625 | apr_status_t status; |
265 | | |
266 | 625 | status = apr_bucket_read(b, &str, &str_len, APR_BLOCK_READ); |
267 | 625 | if (status != APR_SUCCESS) { |
268 | 0 | return status; |
269 | 0 | } |
270 | | |
271 | | /* If we would overflow. */ |
272 | 625 | if (str_len + actual > *len) { |
273 | 0 | str_len = *len - actual; |
274 | 0 | } |
275 | | |
276 | | /* XXX: It appears that overflow of the final bucket |
277 | | * is DISCARDED without any warning to the caller. |
278 | | * |
279 | | * No, we only copy the data up to their requested size. -- jre |
280 | | */ |
281 | 625 | if (str_len) { |
282 | 625 | memcpy(c, str, str_len); |
283 | 625 | } |
284 | | |
285 | 625 | c += str_len; |
286 | 625 | actual += str_len; |
287 | | |
288 | | /* This could probably be actual == *len, but be safe from stray |
289 | | * photons. */ |
290 | 625 | if (actual >= *len) { |
291 | 617 | break; |
292 | 617 | } |
293 | 625 | } |
294 | | |
295 | 621 | *len = actual; |
296 | 621 | return APR_SUCCESS; |
297 | 621 | } |
298 | | |
299 | | APR_DECLARE(apr_status_t) apr_brigade_pflatten(apr_bucket_brigade *bb, |
300 | | char **c, |
301 | | apr_size_t *len, |
302 | | apr_pool_t *pool) |
303 | 566 | { |
304 | 566 | apr_off_t actual; |
305 | 566 | apr_size_t total; |
306 | 566 | apr_status_t rv; |
307 | | |
308 | 566 | apr_brigade_length(bb, 1, &actual); |
309 | | |
310 | | /* XXX: This is dangerous beyond belief. At least in the |
311 | | * apr_brigade_flatten case, the user explicitly stated their |
312 | | * buffer length - so we don't up and palloc 4GB for a single |
313 | | * file bucket. This API must grow a useful max boundry, |
314 | | * either compiled-in or preset via the *len value. |
315 | | * |
316 | | * Shouldn't both fn's grow an additional return value for |
317 | | * the case that the brigade couldn't be flattened into the |
318 | | * provided or allocated buffer (such as APR_EMOREDATA?) |
319 | | * Not a failure, simply an advisory result. |
320 | | */ |
321 | 566 | total = (apr_size_t)actual; |
322 | | |
323 | 566 | *c = apr_palloc(pool, total); |
324 | | |
325 | 566 | rv = apr_brigade_flatten(bb, *c, &total); |
326 | | |
327 | 566 | if (rv != APR_SUCCESS) { |
328 | 0 | return rv; |
329 | 0 | } |
330 | | |
331 | 566 | *len = total; |
332 | 566 | return APR_SUCCESS; |
333 | 566 | } |
334 | | |
335 | | APR_DECLARE(apr_status_t) apr_brigade_split_line(apr_bucket_brigade *bbOut, |
336 | | apr_bucket_brigade *bbIn, |
337 | | apr_read_type_e block, |
338 | | apr_off_t maxbytes) |
339 | 0 | { |
340 | 0 | apr_off_t readbytes = 0; |
341 | |
|
342 | 0 | APR_BRIGADE_CHECK_CONSISTENCY(bbIn); |
343 | |
|
344 | 0 | while (!APR_BRIGADE_EMPTY(bbIn)) { |
345 | 0 | const char *pos; |
346 | 0 | const char *str; |
347 | 0 | apr_size_t len; |
348 | 0 | apr_status_t rv; |
349 | 0 | apr_bucket *e; |
350 | |
|
351 | 0 | e = APR_BRIGADE_FIRST(bbIn); |
352 | 0 | rv = apr_bucket_read(e, &str, &len, block); |
353 | |
|
354 | 0 | if (rv != APR_SUCCESS) { |
355 | 0 | return rv; |
356 | 0 | } |
357 | | |
358 | 0 | if (len) { |
359 | 0 | pos = memchr(str, APR_ASCII_LF, len); |
360 | | /* We found a match. */ |
361 | 0 | if (pos != NULL) { |
362 | 0 | apr_size_t linelen = pos - str + 1; |
363 | | /* Split if the LF is not the last character in the bucket. */ |
364 | 0 | if (linelen < len) { |
365 | 0 | apr_bucket_split(e, linelen); |
366 | 0 | } |
367 | 0 | APR_BUCKET_REMOVE(e); |
368 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
369 | 0 | return APR_SUCCESS; |
370 | 0 | } |
371 | 0 | } |
372 | 0 | APR_BUCKET_REMOVE(e); |
373 | 0 | if (APR_BUCKET_IS_METADATA(e) || len > APR_BUCKET_BUFF_SIZE/4) { |
374 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
375 | 0 | } |
376 | 0 | else { |
377 | 0 | if (len > 0) { |
378 | 0 | rv = apr_brigade_write(bbOut, NULL, NULL, str, len); |
379 | 0 | if (rv != APR_SUCCESS) { |
380 | 0 | return rv; |
381 | 0 | } |
382 | 0 | } |
383 | 0 | apr_bucket_destroy(e); |
384 | 0 | } |
385 | 0 | readbytes += len; |
386 | | /* We didn't find an APR_ASCII_LF within the maximum line length. */ |
387 | 0 | if (readbytes >= maxbytes) { |
388 | 0 | break; |
389 | 0 | } |
390 | 0 | } |
391 | | |
392 | 0 | return APR_SUCCESS; |
393 | 0 | } |
394 | | |
395 | | #if !APR_HAVE_MEMMEM |
396 | | static const void * |
397 | | memmem(const void *_hay, size_t hay_len, const void *needle, size_t needle_len) |
398 | | { |
399 | | if (hay_len < needle_len || !needle_len || !hay_len) { |
400 | | return NULL; |
401 | | } |
402 | | else { |
403 | | apr_size_t len = hay_len - needle_len + 1; |
404 | | const apr_byte_t *hay = (apr_byte_t *)_hay; |
405 | | const apr_byte_t *end = hay + hay_len; |
406 | | |
407 | | while ((hay = memchr(hay, *(char *)needle, len))) { |
408 | | len = (apr_size_t)(end - hay) - needle_len + 1; |
409 | | |
410 | | if (memcmp(hay, needle, needle_len) == 0 ) { |
411 | | break; |
412 | | } |
413 | | |
414 | | --len; |
415 | | ++hay; |
416 | | } |
417 | | |
418 | | return hay; |
419 | | } |
420 | | } |
421 | | #endif |
422 | | |
423 | | APR_DECLARE(apr_status_t) apr_brigade_split_boundary(apr_bucket_brigade *bbOut, |
424 | | apr_bucket_brigade *bbIn, |
425 | | apr_read_type_e block, |
426 | | const char *boundary, |
427 | | apr_size_t boundary_len, |
428 | | apr_off_t maxbytes) |
429 | 0 | { |
430 | 0 | apr_off_t outbytes = 0; |
431 | 0 | apr_size_t ignore = 0; |
432 | |
|
433 | 0 | if (!boundary || !boundary[0]) { |
434 | 0 | return APR_EINVAL; |
435 | 0 | } |
436 | | |
437 | 0 | if (APR_BUCKETS_STRING == boundary_len) { |
438 | 0 | boundary_len = strlen(boundary); |
439 | 0 | } |
440 | | |
441 | | /* |
442 | | * While the call describes itself as searching for a boundary string, |
443 | | * what we actually do is search for anything that is definitely not |
444 | | * a boundary string, and allow that not-boundary data to pass through. |
445 | | * |
446 | | * If we find data that might be a boundary, we try read more data in |
447 | | * until we know for sure. |
448 | | */ |
449 | 0 | while (!APR_BRIGADE_EMPTY(bbIn)) { |
450 | |
|
451 | 0 | const char *pos; |
452 | 0 | const char *str; |
453 | 0 | apr_bucket *e, *next, *prev; |
454 | 0 | apr_size_t inbytes = 0; |
455 | 0 | apr_size_t len; |
456 | 0 | apr_status_t rv; |
457 | | |
458 | | /* We didn't find a boundary within the maximum line length. */ |
459 | 0 | if (outbytes >= maxbytes) { |
460 | 0 | return APR_INCOMPLETE; |
461 | 0 | } |
462 | | |
463 | 0 | e = APR_BRIGADE_FIRST(bbIn); |
464 | | |
465 | | /* We hit a metadata bucket, stop and let the caller handle it */ |
466 | 0 | if (APR_BUCKET_IS_METADATA(e)) { |
467 | 0 | return APR_INCOMPLETE; |
468 | 0 | } |
469 | | |
470 | 0 | rv = apr_bucket_read(e, &str, &len, block); |
471 | |
|
472 | 0 | if (rv != APR_SUCCESS) { |
473 | 0 | return rv; |
474 | 0 | } |
475 | | |
476 | 0 | inbytes += len; |
477 | | |
478 | | /* |
479 | | * Fast path. |
480 | | * |
481 | | * If we have at least one boundary worth of data, do an optimised |
482 | | * substring search for the boundary, and split quickly if found. |
483 | | */ |
484 | 0 | if ((len - ignore) >= boundary_len) { |
485 | |
|
486 | 0 | apr_size_t off; |
487 | 0 | apr_size_t leftover; |
488 | |
|
489 | 0 | pos = memmem(str + ignore, len - ignore, boundary, boundary_len); |
490 | | |
491 | | /* definitely found it, we leave */ |
492 | 0 | if (pos != NULL) { |
493 | |
|
494 | 0 | off = pos - str; |
495 | | |
496 | | /* everything up to the boundary */ |
497 | 0 | if (off) { |
498 | |
|
499 | 0 | apr_bucket_split(e, off); |
500 | 0 | APR_BUCKET_REMOVE(e); |
501 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
502 | |
|
503 | 0 | e = APR_BRIGADE_FIRST(bbIn); |
504 | 0 | } |
505 | | |
506 | | /* cut out the boundary */ |
507 | 0 | apr_bucket_split(e, boundary_len); |
508 | 0 | apr_bucket_delete(e); |
509 | |
|
510 | 0 | return APR_SUCCESS; |
511 | 0 | } |
512 | | |
513 | | /* any partial matches at the end? */ |
514 | 0 | leftover = boundary_len - 1; |
515 | 0 | off = (len - leftover); |
516 | |
|
517 | 0 | while (leftover) { |
518 | 0 | if (!memcmp(str + off, boundary, leftover)) { |
519 | |
|
520 | 0 | if (off) { |
521 | |
|
522 | 0 | apr_bucket_split(e, off); |
523 | 0 | APR_BUCKET_REMOVE(e); |
524 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
525 | 0 | ignore = 0; |
526 | |
|
527 | 0 | e = APR_BRIGADE_FIRST(bbIn); |
528 | 0 | } |
529 | |
|
530 | 0 | outbytes += off; |
531 | 0 | inbytes -= off; |
532 | |
|
533 | 0 | goto skip; |
534 | 0 | } |
535 | 0 | off++; |
536 | 0 | leftover--; |
537 | 0 | } |
538 | | |
539 | 0 | APR_BUCKET_REMOVE(e); |
540 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
541 | 0 | ignore = 0; |
542 | |
|
543 | 0 | outbytes += len; |
544 | |
|
545 | 0 | continue; |
546 | |
|
547 | 0 | } |
548 | | |
549 | | /* |
550 | | * Slow path. |
551 | | * |
552 | | * We need to read ahead at least one boundary worth of data so |
553 | | * we can search across the bucket edges. |
554 | | */ |
555 | 0 | else { |
556 | |
|
557 | 0 | apr_size_t off = ignore; |
558 | |
|
559 | 0 | len -= ignore; |
560 | | |
561 | | /* find all definite non matches */ |
562 | 0 | while (len) { |
563 | 0 | if (!memcmp(str + off, boundary, len)) { |
564 | |
|
565 | 0 | if (off) { |
566 | |
|
567 | 0 | apr_bucket_split(e, off); |
568 | 0 | APR_BUCKET_REMOVE(e); |
569 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
570 | 0 | ignore = 0; |
571 | |
|
572 | 0 | outbytes += off; |
573 | |
|
574 | 0 | e = APR_BRIGADE_FIRST(bbIn); |
575 | 0 | } |
576 | |
|
577 | 0 | inbytes -= off; |
578 | |
|
579 | 0 | goto skip; |
580 | 0 | } |
581 | 0 | off++; |
582 | 0 | len--; |
583 | 0 | } |
584 | | |
585 | 0 | APR_BUCKET_REMOVE(e); |
586 | 0 | APR_BRIGADE_INSERT_TAIL(bbOut, e); |
587 | 0 | ignore = 0; |
588 | |
|
589 | 0 | outbytes += off; |
590 | |
|
591 | 0 | continue; |
592 | |
|
593 | 0 | } |
594 | | |
595 | | /* |
596 | | * If we reach skip, it means the bucket in e is: |
597 | | * |
598 | | * - shorter than the boundary |
599 | | * - matches the boundary up to the bucket length |
600 | | * - might match more buckets |
601 | | * |
602 | | * Read further buckets and check whether the boundary matches all |
603 | | * the way to the end. If so, we have a match. If no match, shave off |
604 | | * one byte and continue round to try again. |
605 | | */ |
606 | 0 | skip: |
607 | |
|
608 | 0 | for (next = APR_BUCKET_NEXT(e); |
609 | 0 | inbytes < boundary_len && next != APR_BRIGADE_SENTINEL(bbIn); |
610 | 0 | next = APR_BUCKET_NEXT(next)) { |
611 | |
|
612 | 0 | const char *str; |
613 | 0 | apr_size_t off; |
614 | 0 | apr_size_t len; |
615 | |
|
616 | 0 | rv = apr_bucket_read(next, &str, &len, block); |
617 | |
|
618 | 0 | if (rv != APR_SUCCESS) { |
619 | 0 | return rv; |
620 | 0 | } |
621 | | |
622 | 0 | off = boundary_len - inbytes; |
623 | |
|
624 | 0 | if (len > off) { |
625 | | |
626 | | /* not a match, bail out */ |
627 | 0 | if (memcmp(str, boundary + inbytes, off)) { |
628 | 0 | break; |
629 | 0 | } |
630 | | |
631 | | /* a match! remove the boundary and return */ |
632 | 0 | apr_bucket_split(next, off); |
633 | |
|
634 | 0 | e = APR_BUCKET_NEXT(next); |
635 | |
|
636 | 0 | for (prev = APR_BRIGADE_FIRST(bbIn); |
637 | 0 | prev != e; |
638 | 0 | prev = APR_BRIGADE_FIRST(bbIn)) { |
639 | |
|
640 | 0 | apr_bucket_delete(prev); |
641 | |
|
642 | 0 | } |
643 | |
|
644 | 0 | return APR_SUCCESS; |
645 | |
|
646 | 0 | } |
647 | 0 | if (len == off) { |
648 | | |
649 | | /* not a match, bail out */ |
650 | 0 | if (memcmp(str, boundary + inbytes, off)) { |
651 | 0 | break; |
652 | 0 | } |
653 | | |
654 | | /* a match! remove the boundary and return */ |
655 | 0 | e = APR_BUCKET_NEXT(next); |
656 | |
|
657 | 0 | for (prev = APR_BRIGADE_FIRST(bbIn); |
658 | 0 | prev != e; |
659 | 0 | prev = APR_BRIGADE_FIRST(bbIn)) { |
660 | |
|
661 | 0 | apr_bucket_delete(prev); |
662 | |
|
663 | 0 | } |
664 | |
|
665 | 0 | return APR_SUCCESS; |
666 | |
|
667 | 0 | } |
668 | 0 | else if (len) { |
669 | | |
670 | | /* not a match, bail out */ |
671 | 0 | if (memcmp(str, boundary + inbytes, len)) { |
672 | 0 | break; |
673 | 0 | } |
674 | | |
675 | | /* still hope for a match */ |
676 | 0 | inbytes += len; |
677 | 0 | } |
678 | |
|
679 | 0 | } |
680 | | |
681 | | /* |
682 | | * If we reach this point, the bucket e did not match the boundary |
683 | | * in the subsequent buckets. |
684 | | * |
685 | | * Bump one byte off, and loop round to search again. |
686 | | */ |
687 | 0 | ignore++; |
688 | |
|
689 | 0 | } |
690 | | |
691 | 0 | return APR_INCOMPLETE; |
692 | 0 | } |
693 | | |
694 | | |
695 | | APR_DECLARE(apr_status_t) apr_brigade_to_iovec(apr_bucket_brigade *b, |
696 | | struct iovec *vec, int *nvec) |
697 | 0 | { |
698 | 0 | int left = *nvec; |
699 | 0 | apr_bucket *e; |
700 | 0 | struct iovec *orig; |
701 | 0 | apr_size_t iov_len; |
702 | 0 | const char *iov_base; |
703 | 0 | apr_status_t rv; |
704 | |
|
705 | 0 | orig = vec; |
706 | |
|
707 | 0 | for (e = APR_BRIGADE_FIRST(b); |
708 | 0 | e != APR_BRIGADE_SENTINEL(b); |
709 | 0 | e = APR_BUCKET_NEXT(e)) |
710 | 0 | { |
711 | | /* Skip metadata buckets. */ |
712 | 0 | if (APR_BUCKET_IS_METADATA(e)) continue; |
713 | | |
714 | 0 | if (left-- == 0) |
715 | 0 | break; |
716 | | |
717 | 0 | rv = apr_bucket_read(e, &iov_base, &iov_len, APR_NONBLOCK_READ); |
718 | 0 | if (rv != APR_SUCCESS) |
719 | 0 | return rv; |
720 | | /* Set indirectly since types differ: */ |
721 | 0 | vec->iov_len = iov_len; |
722 | 0 | vec->iov_base = (void *)iov_base; |
723 | 0 | ++vec; |
724 | 0 | } |
725 | | |
726 | 0 | *nvec = (int)(vec - orig); |
727 | 0 | return APR_SUCCESS; |
728 | 0 | } |
729 | | |
730 | | APR_DECLARE(apr_status_t) apr_brigade_vputstrs(apr_bucket_brigade *b, |
731 | | apr_brigade_flush flush, |
732 | | void *ctx, |
733 | | va_list va) |
734 | 0 | { |
735 | 0 | #define MAX_VECS 8 |
736 | 0 | struct iovec vec[MAX_VECS]; |
737 | 0 | apr_size_t i = 0; |
738 | |
|
739 | 0 | for (;;) { |
740 | 0 | char *str = va_arg(va, char *); |
741 | 0 | apr_status_t rv; |
742 | |
|
743 | 0 | if (str == NULL) |
744 | 0 | break; |
745 | | |
746 | 0 | vec[i].iov_base = str; |
747 | 0 | vec[i].iov_len = strlen(str); |
748 | 0 | i++; |
749 | |
|
750 | 0 | if (i == MAX_VECS) { |
751 | 0 | rv = apr_brigade_writev(b, flush, ctx, vec, i); |
752 | 0 | if (rv != APR_SUCCESS) |
753 | 0 | return rv; |
754 | 0 | i = 0; |
755 | 0 | } |
756 | 0 | } |
757 | 0 | if (i != 0) |
758 | 0 | return apr_brigade_writev(b, flush, ctx, vec, i); |
759 | | |
760 | 0 | return APR_SUCCESS; |
761 | 0 | } |
762 | | |
763 | | APR_DECLARE(apr_status_t) apr_brigade_putc(apr_bucket_brigade *b, |
764 | | apr_brigade_flush flush, void *ctx, |
765 | | const char c) |
766 | 0 | { |
767 | 0 | return apr_brigade_write(b, flush, ctx, &c, 1); |
768 | 0 | } |
769 | | |
770 | | APR_DECLARE(apr_status_t) apr_brigade_write(apr_bucket_brigade *b, |
771 | | apr_brigade_flush flush, |
772 | | void *ctx, |
773 | | const char *str, apr_size_t nbyte) |
774 | 1.05k | { |
775 | 1.05k | apr_bucket *e = APR_BRIGADE_LAST(b); |
776 | 1.05k | apr_size_t remaining = APR_BUCKET_BUFF_SIZE; |
777 | 1.05k | char *buf = NULL; |
778 | | |
779 | | /* |
780 | | * If the last bucket is a heap bucket and its buffer is not shared with |
781 | | * another bucket, we may write into that bucket. |
782 | | */ |
783 | 1.05k | if (!APR_BRIGADE_EMPTY(b) && APR_BUCKET_IS_HEAP(e) |
784 | 1.05k | && ((apr_bucket_heap *)(e->data))->refcount.refcount == 1) { |
785 | 0 | apr_bucket_heap *h = e->data; |
786 | | |
787 | | /* HEAP bucket start offsets are always in-memory, safe to cast */ |
788 | 0 | remaining = h->alloc_len - (e->length + (apr_size_t)e->start); |
789 | 0 | buf = h->base + e->start + e->length; |
790 | 0 | } |
791 | | |
792 | 1.05k | if (nbyte > remaining) { |
793 | | /* either a buffer bucket exists but is full, |
794 | | * or no buffer bucket exists and the data is too big |
795 | | * to buffer. In either case, we should flush. */ |
796 | 0 | if (flush) { |
797 | 0 | e = apr_bucket_transient_create(str, nbyte, b->bucket_alloc); |
798 | 0 | APR_BRIGADE_INSERT_TAIL(b, e); |
799 | 0 | return flush(b, ctx); |
800 | 0 | } |
801 | 0 | else { |
802 | 0 | e = apr_bucket_heap_create(str, nbyte, NULL, b->bucket_alloc); |
803 | 0 | APR_BRIGADE_INSERT_TAIL(b, e); |
804 | 0 | return APR_SUCCESS; |
805 | 0 | } |
806 | 0 | } |
807 | 1.05k | else if (!buf) { |
808 | | /* we don't have a buffer, but the data is small enough |
809 | | * that we don't mind making a new buffer */ |
810 | 1.05k | buf = apr_bucket_alloc(APR_BUCKET_BUFF_SIZE, b->bucket_alloc); |
811 | 1.05k | e = apr_bucket_heap_create(buf, APR_BUCKET_BUFF_SIZE, |
812 | 1.05k | apr_bucket_free, b->bucket_alloc); |
813 | 1.05k | APR_BRIGADE_INSERT_TAIL(b, e); |
814 | 1.05k | e->length = 0; /* We are writing into the brigade, and |
815 | | * allocating more memory than we need. This |
816 | | * ensures that the bucket thinks it is empty just |
817 | | * after we create it. We'll fix the length |
818 | | * once we put data in it below. |
819 | | */ |
820 | 1.05k | } |
821 | | |
822 | | /* there is a sufficiently big buffer bucket available now */ |
823 | 1.05k | memcpy(buf, str, nbyte); |
824 | 1.05k | e->length += nbyte; |
825 | | |
826 | 1.05k | return APR_SUCCESS; |
827 | 1.05k | } |
828 | | |
829 | | APR_DECLARE(apr_status_t) apr_brigade_writev(apr_bucket_brigade *b, |
830 | | apr_brigade_flush flush, |
831 | | void *ctx, |
832 | | const struct iovec *vec, |
833 | | apr_size_t nvec) |
834 | 0 | { |
835 | 0 | apr_bucket *e; |
836 | 0 | apr_size_t total_len; |
837 | 0 | apr_size_t i; |
838 | 0 | char *buf; |
839 | | |
840 | | /* Compute the total length of the data to be written. |
841 | | */ |
842 | 0 | total_len = 0; |
843 | 0 | for (i = 0; i < nvec; i++) { |
844 | 0 | total_len += vec[i].iov_len; |
845 | 0 | } |
846 | | |
847 | | /* If the data to be written is very large, try to convert |
848 | | * the iovec to transient buckets rather than copying. |
849 | | */ |
850 | 0 | if (total_len > APR_BUCKET_BUFF_SIZE) { |
851 | 0 | if (flush) { |
852 | 0 | for (i = 0; i < nvec; i++) { |
853 | 0 | e = apr_bucket_transient_create(vec[i].iov_base, |
854 | 0 | vec[i].iov_len, |
855 | 0 | b->bucket_alloc); |
856 | 0 | APR_BRIGADE_INSERT_TAIL(b, e); |
857 | 0 | } |
858 | 0 | return flush(b, ctx); |
859 | 0 | } |
860 | 0 | else { |
861 | 0 | for (i = 0; i < nvec; i++) { |
862 | 0 | e = apr_bucket_heap_create((const char *) vec[i].iov_base, |
863 | 0 | vec[i].iov_len, NULL, |
864 | 0 | b->bucket_alloc); |
865 | 0 | APR_BRIGADE_INSERT_TAIL(b, e); |
866 | 0 | } |
867 | 0 | return APR_SUCCESS; |
868 | 0 | } |
869 | 0 | } |
870 | | |
871 | 0 | i = 0; |
872 | | |
873 | | /* If there is a heap bucket at the end of the brigade |
874 | | * already, and its refcount is 1, copy into the existing bucket. |
875 | | */ |
876 | 0 | e = APR_BRIGADE_LAST(b); |
877 | 0 | if (!APR_BRIGADE_EMPTY(b) && APR_BUCKET_IS_HEAP(e) |
878 | 0 | && ((apr_bucket_heap *)(e->data))->refcount.refcount == 1) { |
879 | 0 | apr_bucket_heap *h = e->data; |
880 | 0 | apr_size_t remaining = h->alloc_len - |
881 | 0 | (e->length + (apr_size_t)e->start); |
882 | 0 | buf = h->base + e->start + e->length; |
883 | |
|
884 | 0 | if (remaining >= total_len) { |
885 | | /* Simple case: all the data will fit in the |
886 | | * existing heap bucket |
887 | | */ |
888 | 0 | for (; i < nvec; i++) { |
889 | 0 | apr_size_t len = vec[i].iov_len; |
890 | 0 | memcpy(buf, (const void *) vec[i].iov_base, len); |
891 | 0 | buf += len; |
892 | 0 | } |
893 | 0 | e->length += total_len; |
894 | 0 | return APR_SUCCESS; |
895 | 0 | } |
896 | 0 | else { |
897 | | /* More complicated case: not all of the data |
898 | | * will fit in the existing heap bucket. The |
899 | | * total data size is <= APR_BUCKET_BUFF_SIZE, |
900 | | * so we'll need only one additional bucket. |
901 | | */ |
902 | 0 | const char *start_buf = buf; |
903 | 0 | for (; i < nvec; i++) { |
904 | 0 | apr_size_t len = vec[i].iov_len; |
905 | 0 | if (len > remaining) { |
906 | 0 | break; |
907 | 0 | } |
908 | 0 | memcpy(buf, (const void *) vec[i].iov_base, len); |
909 | 0 | buf += len; |
910 | 0 | remaining -= len; |
911 | 0 | } |
912 | 0 | e->length += (buf - start_buf); |
913 | 0 | total_len -= (buf - start_buf); |
914 | |
|
915 | 0 | if (flush) { |
916 | 0 | apr_status_t rv = flush(b, ctx); |
917 | 0 | if (rv != APR_SUCCESS) { |
918 | 0 | return rv; |
919 | 0 | } |
920 | 0 | } |
921 | | |
922 | | /* Now fall through into the case below to |
923 | | * allocate another heap bucket and copy the |
924 | | * rest of the array. (Note that i is not |
925 | | * reset to zero here; it holds the index |
926 | | * of the first vector element to be |
927 | | * written to the new bucket.) |
928 | | */ |
929 | 0 | } |
930 | 0 | } |
931 | | |
932 | | /* Allocate a new heap bucket, and copy the data into it. |
933 | | * The checks above ensure that the amount of data to be |
934 | | * written here is no larger than APR_BUCKET_BUFF_SIZE. |
935 | | */ |
936 | 0 | buf = apr_bucket_alloc(APR_BUCKET_BUFF_SIZE, b->bucket_alloc); |
937 | 0 | e = apr_bucket_heap_create(buf, APR_BUCKET_BUFF_SIZE, |
938 | 0 | apr_bucket_free, b->bucket_alloc); |
939 | 0 | for (; i < nvec; i++) { |
940 | 0 | apr_size_t len = vec[i].iov_len; |
941 | 0 | memcpy(buf, (const void *) vec[i].iov_base, len); |
942 | 0 | buf += len; |
943 | 0 | } |
944 | 0 | e->length = total_len; |
945 | 0 | APR_BRIGADE_INSERT_TAIL(b, e); |
946 | |
|
947 | 0 | return APR_SUCCESS; |
948 | 0 | } |
949 | | |
950 | | APR_DECLARE(apr_status_t) apr_brigade_puts(apr_bucket_brigade *bb, |
951 | | apr_brigade_flush flush, void *ctx, |
952 | | const char *str) |
953 | 0 | { |
954 | 0 | return apr_brigade_write(bb, flush, ctx, str, strlen(str)); |
955 | 0 | } |
956 | | |
957 | | APR_DECLARE_NONSTD(apr_status_t) apr_brigade_putstrs(apr_bucket_brigade *b, |
958 | | apr_brigade_flush flush, |
959 | | void *ctx, ...) |
960 | 0 | { |
961 | 0 | va_list va; |
962 | 0 | apr_status_t rv; |
963 | |
|
964 | 0 | va_start(va, ctx); |
965 | 0 | rv = apr_brigade_vputstrs(b, flush, ctx, va); |
966 | 0 | va_end(va); |
967 | 0 | return rv; |
968 | 0 | } |
969 | | |
970 | | APR_DECLARE_NONSTD(apr_status_t) apr_brigade_printf(apr_bucket_brigade *b, |
971 | | apr_brigade_flush flush, |
972 | | void *ctx, |
973 | | const char *fmt, ...) |
974 | 0 | { |
975 | 0 | va_list ap; |
976 | 0 | apr_status_t rv; |
977 | |
|
978 | 0 | va_start(ap, fmt); |
979 | 0 | rv = apr_brigade_vprintf(b, flush, ctx, fmt, ap); |
980 | 0 | va_end(ap); |
981 | 0 | return rv; |
982 | 0 | } |
983 | | |
984 | | struct brigade_vprintf_data_t { |
985 | | apr_vformatter_buff_t vbuff; |
986 | | |
987 | | apr_bucket_brigade *b; /* associated brigade */ |
988 | | apr_brigade_flush *flusher; /* flushing function */ |
989 | | void *ctx; |
990 | | |
991 | | char *cbuff; /* buffer to flush from */ |
992 | | }; |
993 | | |
994 | | static apr_status_t brigade_flush(apr_vformatter_buff_t *buff) |
995 | 0 | { |
996 | | /* callback function passed to ap_vformatter to be |
997 | | * called when vformatter needs to buff and |
998 | | * buff.curpos > buff.endpos |
999 | | */ |
1000 | | |
1001 | | /* "downcast," have really passed a brigade_vprintf_data_t* */ |
1002 | 0 | struct brigade_vprintf_data_t *vd = (struct brigade_vprintf_data_t*)buff; |
1003 | 0 | apr_status_t res = APR_SUCCESS; |
1004 | |
|
1005 | 0 | res = apr_brigade_write(vd->b, *vd->flusher, vd->ctx, vd->cbuff, |
1006 | 0 | APR_BUCKET_BUFF_SIZE); |
1007 | |
|
1008 | 0 | if(res != APR_SUCCESS) { |
1009 | 0 | return -1; |
1010 | 0 | } |
1011 | | |
1012 | 0 | vd->vbuff.curpos = vd->cbuff; |
1013 | 0 | vd->vbuff.endpos = vd->cbuff + APR_BUCKET_BUFF_SIZE; |
1014 | |
|
1015 | 0 | return res; |
1016 | 0 | } |
1017 | | |
1018 | | APR_DECLARE(apr_status_t) apr_brigade_vprintf(apr_bucket_brigade *b, |
1019 | | apr_brigade_flush flush, |
1020 | | void *ctx, |
1021 | | const char *fmt, va_list va) |
1022 | 0 | { |
1023 | | /* the cast, in order of appearance */ |
1024 | 0 | struct brigade_vprintf_data_t vd; |
1025 | 0 | char buf[APR_BUCKET_BUFF_SIZE]; |
1026 | 0 | int written; |
1027 | |
|
1028 | 0 | vd.vbuff.curpos = buf; |
1029 | 0 | vd.vbuff.endpos = buf + APR_BUCKET_BUFF_SIZE; |
1030 | 0 | vd.b = b; |
1031 | 0 | vd.flusher = &flush; |
1032 | 0 | vd.ctx = ctx; |
1033 | 0 | vd.cbuff = buf; |
1034 | |
|
1035 | 0 | written = apr_vformatter(brigade_flush, &vd.vbuff, fmt, va); |
1036 | |
|
1037 | 0 | if (written == -1) { |
1038 | 0 | return -1; |
1039 | 0 | } |
1040 | | |
1041 | | /* write out what remains in the buffer */ |
1042 | 0 | return apr_brigade_write(b, flush, ctx, buf, vd.vbuff.curpos - buf); |
1043 | 0 | } |
1044 | | |
1045 | | /* A "safe" maximum bucket size, 1Gb */ |
1046 | 0 | #define MAX_BUCKET_SIZE (0x40000000) |
1047 | | |
1048 | | APR_DECLARE(apr_bucket *) apr_brigade_insert_file(apr_bucket_brigade *bb, |
1049 | | apr_file_t *f, |
1050 | | apr_off_t start, |
1051 | | apr_off_t length, |
1052 | | apr_pool_t *p) |
1053 | 0 | { |
1054 | 0 | apr_bucket *e; |
1055 | |
|
1056 | 0 | if (sizeof(apr_off_t) == sizeof(apr_size_t) || length < MAX_BUCKET_SIZE) { |
1057 | 0 | e = apr_bucket_file_create(f, start, (apr_size_t)length, p, |
1058 | 0 | bb->bucket_alloc); |
1059 | 0 | } |
1060 | 0 | else { |
1061 | | /* Several buckets are needed. */ |
1062 | 0 | e = apr_bucket_file_create(f, start, MAX_BUCKET_SIZE, p, |
1063 | 0 | bb->bucket_alloc); |
1064 | |
|
1065 | 0 | while (length > MAX_BUCKET_SIZE) { |
1066 | 0 | apr_bucket *ce; |
1067 | 0 | apr_bucket_copy(e, &ce); |
1068 | 0 | APR_BRIGADE_INSERT_TAIL(bb, ce); |
1069 | 0 | e->start += MAX_BUCKET_SIZE; |
1070 | 0 | length -= MAX_BUCKET_SIZE; |
1071 | 0 | } |
1072 | 0 | e->length = (apr_size_t)length; /* Resize just the last bucket */ |
1073 | 0 | } |
1074 | |
|
1075 | 0 | APR_BRIGADE_INSERT_TAIL(bb, e); |
1076 | 0 | return e; |
1077 | 0 | } |