Coverage Report

Created: 2025-07-11 06:40

/src/httpd/srclib/apr/tables/apr_tables.c
Line
Count
Source (jump to first uncovered line)
1
/* Licensed to the Apache Software Foundation (ASF) under one or more
2
 * contributor license agreements.  See the NOTICE file distributed with
3
 * this work for additional information regarding copyright ownership.
4
 * The ASF licenses this file to You under the Apache License, Version 2.0
5
 * (the "License"); you may not use this file except in compliance with
6
 * the License.  You may obtain a copy of the License at
7
 *
8
 *     http://www.apache.org/licenses/LICENSE-2.0
9
 *
10
 * Unless required by applicable law or agreed to in writing, software
11
 * distributed under the License is distributed on an "AS IS" BASIS,
12
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
 * See the License for the specific language governing permissions and
14
 * limitations under the License.
15
 */
16
17
/*
18
 * Resource allocation code... the code here is responsible for making
19
 * sure that nothing leaks.
20
 *
21
 * rst --- 4/95 --- 6/95
22
 */
23
24
#include "apr_private.h"
25
26
#include "apr_general.h"
27
#include "apr_pools.h"
28
#include "apr_tables.h"
29
#include "apr_strings.h"
30
#include "apr_lib.h"
31
#if APR_HAVE_STDLIB_H
32
#include <stdlib.h>
33
#endif
34
#if APR_HAVE_STRING_H
35
#include <string.h>
36
#endif
37
#if APR_HAVE_STRINGS_H
38
#include <strings.h>
39
#endif
40
41
#ifndef APR_TABLE_POOL_DEBUG
42
#define APR_TABLE_POOL_DEBUG 0
43
#endif
44
45
#if (APR_TABLE_POOL_DEBUG || defined(MAKE_TABLE_PROFILE)) && APR_HAVE_STDIO_H
46
#include <stdio.h>
47
#endif
48
49
/*****************************************************************
50
 * This file contains array and apr_table_t functions only.
51
 */
52
53
/*****************************************************************
54
 *
55
 * The 'array' functions...
56
 */
57
58
static void make_array_core(apr_array_header_t *res, apr_pool_t *p,
59
          int nelts, int elt_size, int clear)
60
5.31k
{
61
    /*
62
     * Assure sanity if someone asks for
63
     * array of zero elts.
64
     */
65
5.31k
    if (nelts < 1) {
66
0
        nelts = 1;
67
0
    }
68
69
5.31k
    if (clear) {
70
654
        res->elts = apr_pcalloc(p, nelts * elt_size);
71
654
    }
72
4.66k
    else {
73
4.66k
        res->elts = apr_palloc(p, nelts * elt_size);
74
4.66k
    }
75
76
5.31k
    res->pool = p;
77
5.31k
    res->elt_size = elt_size;
78
5.31k
    res->nelts = 0;   /* No active elements yet... */
79
5.31k
    res->nalloc = nelts;  /* ...but this many allocated */
80
5.31k
}
81
82
APR_DECLARE(int) apr_is_empty_array(const apr_array_header_t *a)
83
0
{
84
0
    return ((a == NULL) || (a->nelts == 0));
85
0
}
86
87
APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
88
            int nelts, int elt_size)
89
654
{
90
654
    apr_array_header_t *res;
91
92
654
    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
93
654
    make_array_core(res, p, nelts, elt_size, 1);
94
654
    return res;
95
654
}
96
97
APR_DECLARE(void) apr_array_clear(apr_array_header_t *arr)
98
0
{
99
0
    arr->nelts = 0;
100
0
}
101
102
APR_DECLARE(void *) apr_array_pop(apr_array_header_t *arr)
103
0
{
104
0
    if (apr_is_empty_array(arr)) {
105
0
        return NULL;
106
0
    }
107
108
0
    return arr->elts + (arr->elt_size * (--arr->nelts));
109
0
}
110
111
APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr)
112
3.12k
{
113
3.12k
    if (arr->nelts == arr->nalloc) {
114
59
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
115
59
        char *new_data;
116
117
59
        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);
118
119
59
        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
120
59
        memset(new_data + arr->nalloc * arr->elt_size, 0,
121
59
               arr->elt_size * (new_size - arr->nalloc));
122
59
        arr->elts = new_data;
123
59
        arr->nalloc = new_size;
124
59
    }
125
126
3.12k
    ++arr->nelts;
127
3.12k
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
128
3.12k
}
129
130
static void *apr_array_push_noclear(apr_array_header_t *arr)
131
1.93k
{
132
1.93k
    if (arr->nelts == arr->nalloc) {
133
37
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
134
37
        char *new_data;
135
136
37
        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);
137
138
37
        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
139
37
        arr->elts = new_data;
140
37
        arr->nalloc = new_size;
141
37
    }
142
143
1.93k
    ++arr->nelts;
144
1.93k
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
145
1.93k
}
146
147
APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
148
             const apr_array_header_t *src)
149
0
{
150
0
    int elt_size = dst->elt_size;
151
152
0
    if (dst->nelts + src->nelts > dst->nalloc) {
153
0
  int new_size = (dst->nalloc <= 0) ? 1 : dst->nalloc * 2;
154
0
  char *new_data;
155
156
0
  while (dst->nelts + src->nelts > new_size) {
157
0
      new_size *= 2;
158
0
  }
159
160
0
  new_data = apr_pcalloc(dst->pool, elt_size * new_size);
161
0
  memcpy(new_data, dst->elts, dst->nalloc * elt_size);
162
163
0
  dst->elts = new_data;
164
0
  dst->nalloc = new_size;
165
0
    }
166
167
0
    memcpy(dst->elts + dst->nelts * elt_size, src->elts,
168
0
     elt_size * src->nelts);
169
0
    dst->nelts += src->nelts;
170
0
}
171
172
APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
173
            const apr_array_header_t *arr)
174
0
{
175
0
    apr_array_header_t *res =
176
0
        (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
177
0
    make_array_core(res, p, arr->nalloc, arr->elt_size, 0);
178
179
0
    memcpy(res->elts, arr->elts, arr->elt_size * arr->nelts);
180
0
    res->nelts = arr->nelts;
181
0
    memset(res->elts + res->elt_size * res->nelts, 0,
182
0
           res->elt_size * (res->nalloc - res->nelts));
183
0
    return res;
184
0
}
185
186
/* This cute function copies the array header *only*, but arranges
187
 * for the data section to be copied on the first push or arraycat.
188
 * It's useful when the elements of the array being copied are
189
 * read only, but new stuff *might* get added on the end; we have the
190
 * overhead of the full copy only where it is really needed.
191
 */
192
193
static APR_INLINE void copy_array_hdr_core(apr_array_header_t *res,
194
             const apr_array_header_t *arr)
195
0
{
196
0
    res->elts = arr->elts;
197
0
    res->elt_size = arr->elt_size;
198
0
    res->nelts = arr->nelts;
199
0
    res->nalloc = arr->nelts; /* Force overflow on push */
200
0
}
201
202
APR_DECLARE(apr_array_header_t *)
203
    apr_array_copy_hdr(apr_pool_t *p,
204
           const apr_array_header_t *arr)
205
0
{
206
0
    apr_array_header_t *res;
207
208
0
    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
209
0
    res->pool = p;
210
0
    copy_array_hdr_core(res, arr);
211
0
    return res;
212
0
}
213
214
/* The above is used here to avoid consing multiple new array bodies... */
215
216
APR_DECLARE(apr_array_header_t *)
217
    apr_array_append(apr_pool_t *p,
218
          const apr_array_header_t *first,
219
          const apr_array_header_t *second)
220
0
{
221
0
    apr_array_header_t *res = apr_array_copy_hdr(p, first);
222
223
0
    apr_array_cat(res, second);
224
0
    return res;
225
0
}
226
227
/* apr_array_pstrcat generates a new string from the apr_pool_t containing
228
 * the concatenated sequence of substrings referenced as elements within
229
 * the array.  The string will be empty if all substrings are empty or null,
230
 * or if there are no elements in the array.
231
 * If sep is non-NUL, it will be inserted between elements as a separator.
232
 */
233
APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
234
             const apr_array_header_t *arr,
235
             const char sep)
236
0
{
237
0
    char *cp, *res, **strpp;
238
0
    apr_size_t len;
239
0
    int i;
240
241
0
    if (arr->nelts <= 0 || arr->elts == NULL) {    /* Empty table? */
242
0
        return (char *) apr_pcalloc(p, 1);
243
0
    }
244
245
    /* Pass one --- find length of required string */
246
247
0
    len = 0;
248
0
    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
249
0
        if (strpp && *strpp != NULL) {
250
0
            len += strlen(*strpp);
251
0
        }
252
0
        if (++i >= arr->nelts) {
253
0
            break;
254
0
  }
255
0
        if (sep) {
256
0
            ++len;
257
0
  }
258
0
    }
259
260
    /* Allocate the required string */
261
262
0
    res = (char *) apr_palloc(p, len + 1);
263
0
    cp = res;
264
265
    /* Pass two --- copy the argument strings into the result space */
266
267
0
    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
268
0
        if (strpp && *strpp != NULL) {
269
0
            len = strlen(*strpp);
270
0
            memcpy(cp, *strpp, len);
271
0
            cp += len;
272
0
        }
273
0
        if (++i >= arr->nelts) {
274
0
            break;
275
0
  }
276
0
        if (sep) {
277
0
            *cp++ = sep;
278
0
  }
279
0
    }
280
281
0
    *cp = '\0';
282
283
    /* Return the result string */
284
285
0
    return res;
286
0
}
287
288
289
/*****************************************************************
290
 *
291
 * The "table" functions.
292
 */
293
294
#if APR_CHARSET_EBCDIC
295
#define CASE_MASK 0xbfbfbfbf
296
#else
297
3.47k
#define CASE_MASK 0xdfdfdfdf
298
#endif
299
300
0
#define TABLE_HASH_SIZE 32
301
3.97k
#define TABLE_INDEX_MASK 0x1f
302
3.97k
#define TABLE_HASH(key)  (TABLE_INDEX_MASK & *(unsigned char *)(key))
303
3.97k
#define TABLE_INDEX_IS_INITIALIZED(t, i) ((t)->index_initialized & (1u << (i)))
304
1.29k
#define TABLE_SET_INDEX_INITIALIZED(t, i) ((t)->index_initialized |= (1u << (i)))
305
306
/* Compute the "checksum" for a key, consisting of the first
307
 * 4 bytes, normalized for case-insensitivity and packed into
308
 * an int...this checksum allows us to do a single integer
309
 * comparison as a fast check to determine whether we can
310
 * skip a strcasecmp
311
 */
312
3.47k
#define COMPUTE_KEY_CHECKSUM(key, checksum)    \
313
3.47k
{                                              \
314
3.47k
    const char *k = (key);                     \
315
3.47k
    apr_uint32_t c = (apr_uint32_t)*k;         \
316
3.47k
    (checksum) = c;                            \
317
3.47k
    (checksum) <<= 8;                          \
318
3.47k
    if (c) {                                   \
319
3.32k
        c = (apr_uint32_t)*++k;                \
320
3.32k
        checksum |= c;                         \
321
3.32k
    }                                          \
322
3.47k
    (checksum) <<= 8;                          \
323
3.47k
    if (c) {                                   \
324
2.63k
        c = (apr_uint32_t)*++k;                \
325
2.63k
        checksum |= c;                         \
326
2.63k
    }                                          \
327
3.47k
    (checksum) <<= 8;                          \
328
3.47k
    if (c) {                                   \
329
2.39k
        c = (apr_uint32_t)*++k;                \
330
2.39k
        checksum |= c;                         \
331
2.39k
    }                                          \
332
3.47k
    checksum &= CASE_MASK;                     \
333
3.47k
}
334
335
/** The opaque string-content table type */
336
struct apr_table_t {
337
    /* This has to be first to promote backwards compatibility with
338
     * older modules which cast a apr_table_t * to an apr_array_header_t *...
339
     * they should use the apr_table_elts() function for most of the
340
     * cases they do this for.
341
     */
342
    /** The underlying array for the table */
343
    apr_array_header_t a;
344
#ifdef MAKE_TABLE_PROFILE
345
    /** Who created the array. */
346
    void *creator;
347
#endif
348
    /* An index to speed up table lookups.  The way this works is:
349
     *   - Hash the key into the index:
350
     *     - index_first[TABLE_HASH(key)] is the offset within
351
     *       the table of the first entry with that key
352
     *     - index_last[TABLE_HASH(key)] is the offset within
353
     *       the table of the last entry with that key
354
     *   - If (and only if) there is no entry in the table whose
355
     *     key hashes to index element i, then the i'th bit
356
     *     of index_initialized will be zero.  (Check this before
357
     *     trying to use index_first[i] or index_last[i]!)
358
     */
359
    apr_uint32_t index_initialized;
360
    int index_first[TABLE_HASH_SIZE];
361
    int index_last[TABLE_HASH_SIZE];
362
};
363
364
/* keep state for apr_table_getm() */
365
typedef struct
366
{
367
    apr_pool_t *p;
368
    const char *first;
369
    apr_array_header_t *merged;
370
} table_getm_t;
371
372
/*
373
 * NOTICE: if you tweak this you should look at is_empty_table()
374
 * and table_elts() in alloc.h
375
 */
376
#ifdef MAKE_TABLE_PROFILE
377
static apr_table_entry_t *do_table_push(const char *func, apr_table_t *t)
378
{
379
    if (t->a.nelts == t->a.nalloc) {
380
        fprintf(stderr, "%s: table created by %p hit limit of %u\n",
381
                func ? func : "table_push", t->creator, t->a.nalloc);
382
    }
383
    return (apr_table_entry_t *) apr_array_push_noclear(&t->a);
384
}
385
#if defined(__GNUC__) && __GNUC__ >= 2
386
#define table_push(t) do_table_push(__FUNCTION__, t)
387
#else
388
#define table_push(t) do_table_push(NULL, t)
389
#endif
390
#else /* MAKE_TABLE_PROFILE */
391
1.93k
#define table_push(t) ((apr_table_entry_t *) apr_array_push_noclear(&(t)->a))
392
#endif /* MAKE_TABLE_PROFILE */
393
394
APR_DECLARE(const apr_array_header_t *) apr_table_elts(const apr_table_t *t)
395
0
{
396
0
    return (const apr_array_header_t *)t;
397
0
}
398
399
APR_DECLARE(int) apr_is_empty_table(const apr_table_t *t)
400
0
{
401
0
    return ((t == NULL) || (t->a.nelts == 0));
402
0
}
403
404
APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts)
405
4.66k
{
406
4.66k
    apr_table_t *t = apr_palloc(p, sizeof(apr_table_t));
407
408
4.66k
    make_array_core(&t->a, p, nelts, sizeof(apr_table_entry_t), 0);
409
#ifdef MAKE_TABLE_PROFILE
410
    t->creator = __builtin_return_address(0);
411
#endif
412
4.66k
    t->index_initialized = 0;
413
4.66k
    return t;
414
4.66k
}
415
416
APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p, const apr_table_t *t)
417
0
{
418
0
    apr_table_t *new = apr_palloc(p, sizeof(apr_table_t));
419
420
#if APR_TABLE_POOL_DEBUG
421
    /* we don't copy keys and values, so it's necessary that t->a.pool
422
     * have a life span at least as long as p
423
     */
424
    if (!apr_pool_is_ancestor(t->a.pool, p)) {
425
  fprintf(stderr, "apr_table_copy: t's pool is not an ancestor of p\n");
426
  abort();
427
    }
428
#endif
429
0
    make_array_core(&new->a, p, t->a.nalloc, sizeof(apr_table_entry_t), 0);
430
0
    memcpy(new->a.elts, t->a.elts, t->a.nelts * sizeof(apr_table_entry_t));
431
0
    new->a.nelts = t->a.nelts;
432
0
    memcpy(new->index_first, t->index_first, sizeof(int) * TABLE_HASH_SIZE);
433
0
    memcpy(new->index_last, t->index_last, sizeof(int) * TABLE_HASH_SIZE);
434
0
    new->index_initialized = t->index_initialized;
435
0
    return new;
436
0
}
437
438
APR_DECLARE(apr_table_t *) apr_table_clone(apr_pool_t *p, const apr_table_t *t)
439
0
{
440
0
    const apr_array_header_t *array = apr_table_elts(t);
441
0
    apr_table_entry_t *elts = (apr_table_entry_t *) array->elts;
442
0
    apr_table_t *new = apr_table_make(p, array->nelts);
443
0
    int i;
444
445
0
    for (i = 0; i < array->nelts; i++) {
446
0
        apr_table_add(new, elts[i].key, elts[i].val);
447
0
    }
448
449
0
    return new;
450
0
}
451
452
static void table_reindex(apr_table_t *t)
453
0
{
454
0
    int i;
455
0
    int hash;
456
0
    apr_table_entry_t *next_elt = (apr_table_entry_t *) t->a.elts;
457
458
0
    t->index_initialized = 0;
459
0
    for (i = 0; i < t->a.nelts; i++, next_elt++) {
460
0
        hash = TABLE_HASH(next_elt->key);
461
0
        t->index_last[hash] = i;
462
0
        if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
463
0
            t->index_first[hash] = i;
464
0
            TABLE_SET_INDEX_INITIALIZED(t, hash);
465
0
        }
466
0
    }
467
0
}
468
469
APR_DECLARE(void) apr_table_clear(apr_table_t *t)
470
0
{
471
0
    t->a.nelts = 0;
472
0
    t->index_initialized = 0;
473
0
}
474
475
APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key)
476
2.03k
{
477
2.03k
    apr_table_entry_t *next_elt;
478
2.03k
    apr_table_entry_t *end_elt;
479
2.03k
    apr_uint32_t checksum;
480
2.03k
    int hash;
481
482
2.03k
    if (key == NULL) {
483
0
  return NULL;
484
0
    }
485
486
2.03k
    hash = TABLE_HASH(key);
487
2.03k
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
488
504
        return NULL;
489
504
    }
490
1.53k
    COMPUTE_KEY_CHECKSUM(key, checksum);
491
1.53k
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
492
1.53k
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
493
494
3.29k
    for (; next_elt <= end_elt; next_elt++) {
495
2.15k
  if ((checksum == next_elt->key_checksum) &&
496
2.15k
            !strcasecmp(next_elt->key, key)) {
497
397
      return next_elt->val;
498
397
  }
499
2.15k
    }
500
501
1.13k
    return NULL;
502
1.53k
}
503
504
APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
505
                                const char *val)
506
0
{
507
0
    apr_table_entry_t *next_elt;
508
0
    apr_table_entry_t *end_elt;
509
0
    apr_table_entry_t *table_end;
510
0
    apr_uint32_t checksum;
511
0
    int hash;
512
513
0
    COMPUTE_KEY_CHECKSUM(key, checksum);
514
0
    hash = TABLE_HASH(key);
515
0
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
516
0
        t->index_first[hash] = t->a.nelts;
517
0
        TABLE_SET_INDEX_INITIALIZED(t, hash);
518
0
        goto add_new_elt;
519
0
    }
520
0
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
521
0
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
522
0
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;
523
524
0
    for (; next_elt <= end_elt; next_elt++) {
525
0
  if ((checksum == next_elt->key_checksum) &&
526
0
            !strcasecmp(next_elt->key, key)) {
527
528
            /* Found an existing entry with the same key, so overwrite it */
529
530
0
            int must_reindex = 0;
531
0
            apr_table_entry_t *dst_elt = NULL;
532
533
0
            next_elt->val = apr_pstrdup(t->a.pool, val);
534
535
            /* Remove any other instances of this key */
536
0
            for (next_elt++; next_elt <= end_elt; next_elt++) {
537
0
                if ((checksum == next_elt->key_checksum) &&
538
0
                    !strcasecmp(next_elt->key, key)) {
539
0
                    t->a.nelts--;
540
0
                    if (!dst_elt) {
541
0
                        dst_elt = next_elt;
542
0
                    }
543
0
                }
544
0
                else if (dst_elt) {
545
0
                    *dst_elt++ = *next_elt;
546
0
                    must_reindex = 1;
547
0
                }
548
0
            }
549
550
            /* If we've removed anything, shift over the remainder
551
             * of the table (note that the previous loop didn't
552
             * run to the end of the table, just to the last match
553
             * for the index)
554
             */
555
0
            if (dst_elt) {
556
0
                for (; next_elt < table_end; next_elt++) {
557
0
                    *dst_elt++ = *next_elt;
558
0
                }
559
0
                must_reindex = 1;
560
0
            }
561
0
            if (must_reindex) {
562
0
                table_reindex(t);
563
0
            }
564
0
            return;
565
0
        }
566
0
    }
567
568
0
add_new_elt:
569
0
    t->index_last[hash] = t->a.nelts;
570
0
    next_elt = (apr_table_entry_t *) table_push(t);
571
0
    next_elt->key = apr_pstrdup(t->a.pool, key);
572
0
    next_elt->val = apr_pstrdup(t->a.pool, val);
573
0
    next_elt->key_checksum = checksum;
574
0
}
575
576
APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
577
                                 const char *val)
578
0
{
579
0
    apr_table_entry_t *next_elt;
580
0
    apr_table_entry_t *end_elt;
581
0
    apr_table_entry_t *table_end;
582
0
    apr_uint32_t checksum;
583
0
    int hash;
584
585
0
    COMPUTE_KEY_CHECKSUM(key, checksum);
586
0
    hash = TABLE_HASH(key);
587
0
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
588
0
        t->index_first[hash] = t->a.nelts;
589
0
        TABLE_SET_INDEX_INITIALIZED(t, hash);
590
0
        goto add_new_elt;
591
0
    }
592
0
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
593
0
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
594
0
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;
595
596
0
    for (; next_elt <= end_elt; next_elt++) {
597
0
  if ((checksum == next_elt->key_checksum) &&
598
0
            !strcasecmp(next_elt->key, key)) {
599
600
            /* Found an existing entry with the same key, so overwrite it */
601
602
0
            int must_reindex = 0;
603
0
            apr_table_entry_t *dst_elt = NULL;
604
605
0
            next_elt->val = (char *)val;
606
607
            /* Remove any other instances of this key */
608
0
            for (next_elt++; next_elt <= end_elt; next_elt++) {
609
0
                if ((checksum == next_elt->key_checksum) &&
610
0
                    !strcasecmp(next_elt->key, key)) {
611
0
                    t->a.nelts--;
612
0
                    if (!dst_elt) {
613
0
                        dst_elt = next_elt;
614
0
                    }
615
0
                }
616
0
                else if (dst_elt) {
617
0
                    *dst_elt++ = *next_elt;
618
0
                    must_reindex = 1;
619
0
                }
620
0
            }
621
622
            /* If we've removed anything, shift over the remainder
623
             * of the table (note that the previous loop didn't
624
             * run to the end of the table, just to the last match
625
             * for the index)
626
             */
627
0
            if (dst_elt) {
628
0
                for (; next_elt < table_end; next_elt++) {
629
0
                    *dst_elt++ = *next_elt;
630
0
                }
631
0
                must_reindex = 1;
632
0
            }
633
0
            if (must_reindex) {
634
0
                table_reindex(t);
635
0
            }
636
0
            return;
637
0
        }
638
0
    }
639
640
0
add_new_elt:
641
0
    t->index_last[hash] = t->a.nelts;
642
0
    next_elt = (apr_table_entry_t *) table_push(t);
643
0
    next_elt->key = (char *)key;
644
0
    next_elt->val = (char *)val;
645
0
    next_elt->key_checksum = checksum;
646
0
}
647
648
APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key)
649
0
{
650
0
    apr_table_entry_t *next_elt;
651
0
    apr_table_entry_t *end_elt;
652
0
    apr_table_entry_t *dst_elt;
653
0
    apr_uint32_t checksum;
654
0
    int hash;
655
0
    int must_reindex;
656
657
0
    hash = TABLE_HASH(key);
658
0
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
659
0
        return;
660
0
    }
661
0
    COMPUTE_KEY_CHECKSUM(key, checksum);
662
0
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
663
0
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
664
0
    must_reindex = 0;
665
0
    for (; next_elt <= end_elt; next_elt++) {
666
0
  if ((checksum == next_elt->key_checksum) &&
667
0
            !strcasecmp(next_elt->key, key)) {
668
669
            /* Found a match: remove this entry, plus any additional
670
             * matches for the same key that might follow
671
             */
672
0
            apr_table_entry_t *table_end = ((apr_table_entry_t *) t->a.elts) +
673
0
                t->a.nelts;
674
0
            t->a.nelts--;
675
0
            dst_elt = next_elt;
676
0
            for (next_elt++; next_elt <= end_elt; next_elt++) {
677
0
                if ((checksum == next_elt->key_checksum) &&
678
0
                    !strcasecmp(next_elt->key, key)) {
679
0
                    t->a.nelts--;
680
0
                }
681
0
                else {
682
0
                    *dst_elt++ = *next_elt;
683
0
                }
684
0
            }
685
686
            /* Shift over the remainder of the table (note that
687
             * the previous loop didn't run to the end of the table,
688
             * just to the last match for the index)
689
             */
690
0
            for (; next_elt < table_end; next_elt++) {
691
0
                *dst_elt++ = *next_elt;
692
0
            }
693
0
            must_reindex = 1;
694
0
            break;
695
0
        }
696
0
    }
697
0
    if (must_reindex) {
698
0
        table_reindex(t);
699
0
    }
700
0
}
701
702
APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
703
         const char *val)
704
0
{
705
0
    apr_table_entry_t *next_elt;
706
0
    apr_table_entry_t *end_elt;
707
0
    apr_uint32_t checksum;
708
0
    int hash;
709
710
0
    COMPUTE_KEY_CHECKSUM(key, checksum);
711
0
    hash = TABLE_HASH(key);
712
0
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
713
0
        t->index_first[hash] = t->a.nelts;
714
0
        TABLE_SET_INDEX_INITIALIZED(t, hash);
715
0
        goto add_new_elt;
716
0
    }
717
0
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
718
0
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
719
720
0
    for (; next_elt <= end_elt; next_elt++) {
721
0
  if ((checksum == next_elt->key_checksum) &&
722
0
            !strcasecmp(next_elt->key, key)) {
723
724
            /* Found an existing entry with the same key, so merge with it */
725
0
      next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
726
0
                                        val, NULL);
727
0
            return;
728
0
        }
729
0
    }
730
731
0
add_new_elt:
732
0
    t->index_last[hash] = t->a.nelts;
733
0
    next_elt = (apr_table_entry_t *) table_push(t);
734
0
    next_elt->key = apr_pstrdup(t->a.pool, key);
735
0
    next_elt->val = apr_pstrdup(t->a.pool, val);
736
0
    next_elt->key_checksum = checksum;
737
0
}
738
739
APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
740
          const char *val)
741
0
{
742
0
    apr_table_entry_t *next_elt;
743
0
    apr_table_entry_t *end_elt;
744
0
    apr_uint32_t checksum;
745
0
    int hash;
746
747
#if APR_TABLE_POOL_DEBUG
748
    {
749
  apr_pool_t *pool;
750
  pool = apr_pool_find(key);
751
  if ((pool != (apr_pool_t *)key)
752
            && (!apr_pool_is_ancestor(pool, t->a.pool))) {
753
      fprintf(stderr, "apr_table_mergen: key not in ancestor pool of t\n");
754
      abort();
755
  }
756
  pool = apr_pool_find(val);
757
  if ((pool != (apr_pool_t *)val)
758
            && (!apr_pool_is_ancestor(pool, t->a.pool))) {
759
      fprintf(stderr, "apr_table_mergen: val not in ancestor pool of t\n");
760
      abort();
761
  }
762
    }
763
#endif
764
765
0
    COMPUTE_KEY_CHECKSUM(key, checksum);
766
0
    hash = TABLE_HASH(key);
767
0
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
768
0
        t->index_first[hash] = t->a.nelts;
769
0
        TABLE_SET_INDEX_INITIALIZED(t, hash);
770
0
        goto add_new_elt;
771
0
    }
772
0
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
773
0
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
774
775
0
    for (; next_elt <= end_elt; next_elt++) {
776
0
  if ((checksum == next_elt->key_checksum) &&
777
0
            !strcasecmp(next_elt->key, key)) {
778
779
            /* Found an existing entry with the same key, so merge with it */
780
0
      next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
781
0
                                        val, NULL);
782
0
            return;
783
0
        }
784
0
    }
785
786
0
add_new_elt:
787
0
    t->index_last[hash] = t->a.nelts;
788
0
    next_elt = (apr_table_entry_t *) table_push(t);
789
0
    next_elt->key = (char *)key;
790
0
    next_elt->val = (char *)val;
791
0
    next_elt->key_checksum = checksum;
792
0
}
793
794
APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
795
             const char *val)
796
0
{
797
0
    apr_table_entry_t *elts;
798
0
    apr_uint32_t checksum;
799
0
    int hash;
800
801
0
    hash = TABLE_HASH(key);
802
0
    t->index_last[hash] = t->a.nelts;
803
0
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
804
0
        t->index_first[hash] = t->a.nelts;
805
0
        TABLE_SET_INDEX_INITIALIZED(t, hash);
806
0
    }
807
0
    COMPUTE_KEY_CHECKSUM(key, checksum);
808
0
    elts = (apr_table_entry_t *) table_push(t);
809
0
    elts->key = apr_pstrdup(t->a.pool, key);
810
0
    elts->val = apr_pstrdup(t->a.pool, val);
811
0
    elts->key_checksum = checksum;
812
0
}
813
814
APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
815
        const char *val)
816
1.93k
{
817
1.93k
    apr_table_entry_t *elts;
818
1.93k
    apr_uint32_t checksum;
819
1.93k
    int hash;
820
821
#if APR_TABLE_POOL_DEBUG
822
    {
823
  if (!apr_pool_is_ancestor(apr_pool_find(key), t->a.pool)) {
824
      fprintf(stderr, "apr_table_addn: key not in ancestor pool of t\n");
825
      abort();
826
  }
827
  if (!apr_pool_is_ancestor(apr_pool_find(val), t->a.pool)) {
828
      fprintf(stderr, "apr_table_addn: val not in ancestor pool of t\n");
829
      abort();
830
  }
831
    }
832
#endif
833
834
1.93k
    hash = TABLE_HASH(key);
835
1.93k
    t->index_last[hash] = t->a.nelts;
836
1.93k
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
837
1.29k
        t->index_first[hash] = t->a.nelts;
838
1.29k
        TABLE_SET_INDEX_INITIALIZED(t, hash);
839
1.29k
    }
840
1.93k
    COMPUTE_KEY_CHECKSUM(key, checksum);
841
1.93k
    elts = (apr_table_entry_t *) table_push(t);
842
1.93k
    elts->key = (char *)key;
843
1.93k
    elts->val = (char *)val;
844
1.93k
    elts->key_checksum = checksum;
845
1.93k
}
846
847
APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
848
               const apr_table_t *overlay,
849
               const apr_table_t *base)
850
0
{
851
0
    apr_table_t *res;
852
853
#if APR_TABLE_POOL_DEBUG
854
    /* we don't copy keys and values, so it's necessary that
855
     * overlay->a.pool and base->a.pool have a life span at least
856
     * as long as p
857
     */
858
    if (!apr_pool_is_ancestor(overlay->a.pool, p)) {
859
  fprintf(stderr,
860
    "apr_table_overlay: overlay's pool is not an ancestor of p\n");
861
  abort();
862
    }
863
    if (!apr_pool_is_ancestor(base->a.pool, p)) {
864
  fprintf(stderr,
865
    "apr_table_overlay: base's pool is not an ancestor of p\n");
866
  abort();
867
    }
868
#endif
869
870
0
    res = apr_palloc(p, sizeof(apr_table_t));
871
    /* behave like append_arrays */
872
0
    res->a.pool = p;
873
0
    copy_array_hdr_core(&res->a, &overlay->a);
874
0
    apr_array_cat(&res->a, &base->a);
875
0
    table_reindex(res);
876
0
    return res;
877
0
}
878
879
/* And now for something completely abstract ...
880
881
 * For each key value given as a vararg:
882
 *   run the function pointed to as
883
 *     int comp(void *r, char *key, char *value);
884
 *   on each valid key-value pair in the apr_table_t t that matches the vararg key,
885
 *   or once for every valid key-value pair if the vararg list is empty,
886
 *   until the function returns false (0) or we finish the table.
887
 *
888
 * Note that we restart the traversal for each vararg, which means that
889
 * duplicate varargs will result in multiple executions of the function
890
 * for each matching key.  Note also that if the vararg list is empty,
891
 * only one traversal will be made and will cut short if comp returns 0.
892
 *
893
 * Note that the table_get and table_merge functions assume that each key in
894
 * the apr_table_t is unique (i.e., no multiple entries with the same key).  This
895
 * function does not make that assumption, since it (unfortunately) isn't
896
 * true for some of Apache's tables.
897
 *
898
 * Note that rec is simply passed-on to the comp function, so that the
899
 * caller can pass additional info for the task.
900
 *
901
 * ADDENDUM for apr_table_vdo():
902
 *
903
 * The caching api will allow a user to walk the header values:
904
 *
905
 * apr_status_t apr_cache_el_header_walk(apr_cache_el *el,
906
 *    int (*comp)(void *, const char *, const char *), void *rec, ...);
907
 *
908
 * So it can be ..., however from there I use a  callback that use a va_list:
909
 *
910
 * apr_status_t (*cache_el_header_walk)(apr_cache_el *el,
911
 *    int (*comp)(void *, const char *, const char *), void *rec, va_list);
912
 *
913
 * To pass those ...'s on down to the actual module that will handle walking
914
 * their headers, in the file case this is actually just an apr_table - and
915
 * rather than reimplementing apr_table_do (which IMHO would be bad) I just
916
 * called it with the va_list. For mod_shmem_cache I don't need it since I
917
 * can't use apr_table's, but mod_file_cache should (though a good hash would
918
 * be better, but that's a different issue :).
919
 *
920
 * So to make mod_file_cache easier to maintain, it's a good thing
921
 */
922
APR_DECLARE_NONSTD(int) apr_table_do(apr_table_do_callback_fn_t *comp,
923
                                     void *rec, const apr_table_t *t, ...)
924
0
{
925
0
    int rv;
926
927
0
    va_list vp;
928
0
    va_start(vp, t);
929
0
    rv = apr_table_vdo(comp, rec, t, vp);
930
0
    va_end(vp);
931
932
0
    return rv;
933
0
}
934
935
/* XXX: do the semantics of this routine make any sense?  Right now,
936
 * if the caller passed in a non-empty va_list of keys to search for,
937
 * the "early termination" facility only terminates on *that* key; other
938
 * keys will continue to process.  Note that this only has any effect
939
 * at all if there are multiple entries in the table with the same key,
940
 * otherwise the called function can never effectively early-terminate
941
 * this function, as the zero return value is effectively ignored.
942
 *
943
 * Note also that this behavior is at odds with the behavior seen if an
944
 * empty va_list is passed in -- in that case, a zero return value terminates
945
 * the entire apr_table_vdo (which is what I think should happen in
946
 * both cases).
947
 *
948
 * If nobody objects soon, I'm going to change the order of the nested
949
 * loops in this function so that any zero return value from the (*comp)
950
 * function will cause a full termination of apr_table_vdo.  I'm hesitant
951
 * at the moment because these (funky) semantics have been around for a
952
 * very long time, and although Apache doesn't seem to use them at all,
953
 * some third-party vendor might.  I can only think of one possible reason
954
 * the existing semantics would make any sense, and it's very Apache-centric,
955
 * which is this: if (*comp) is looking for matches of a particular
956
 * substring in request headers (let's say it's looking for a particular
957
 * cookie name in the Set-Cookie headers), then maybe it wants to be
958
 * able to stop searching early as soon as it finds that one and move
959
 * on to the next key.  That's only an optimization of course, but changing
960
 * the behavior of this function would mean that any code that tried
961
 * to do that would stop working right.
962
 *
963
 * Sigh.  --JCW, 06/28/02
964
 */
965
APR_DECLARE(int) apr_table_vdo(apr_table_do_callback_fn_t *comp,
966
                               void *rec, const apr_table_t *t, va_list vp)
967
0
{
968
0
    char *argp;
969
0
    apr_table_entry_t *elts = (apr_table_entry_t *) t->a.elts;
970
0
    int vdorv = 1;
971
972
0
    argp = va_arg(vp, char *);
973
0
    do {
974
0
        int rv = 1, i;
975
0
        if (argp) {
976
            /* Scan for entries that match the next key */
977
0
            int hash = TABLE_HASH(argp);
978
0
            if (TABLE_INDEX_IS_INITIALIZED(t, hash)) {
979
0
                apr_uint32_t checksum;
980
0
                COMPUTE_KEY_CHECKSUM(argp, checksum);
981
0
                for (i = t->index_first[hash];
982
0
                     rv && (i <= t->index_last[hash]); ++i) {
983
0
                    if (elts[i].key && (checksum == elts[i].key_checksum) &&
984
0
                                        !strcasecmp(elts[i].key, argp)) {
985
0
                        rv = (*comp) (rec, elts[i].key, elts[i].val);
986
0
                    }
987
0
                }
988
0
            }
989
0
        }
990
0
        else {
991
            /* Scan the entire table */
992
0
            for (i = 0; rv && (i < t->a.nelts); ++i) {
993
0
                if (elts[i].key) {
994
0
                    rv = (*comp) (rec, elts[i].key, elts[i].val);
995
0
                }
996
0
            }
997
0
        }
998
0
        if (rv == 0) {
999
0
            vdorv = 0;
1000
0
        }
1001
0
    } while (argp && ((argp = va_arg(vp, char *)) != NULL));
1002
1003
0
    return vdorv;
1004
0
}
1005
1006
static apr_table_entry_t **table_mergesort(apr_pool_t *pool,
1007
                                           apr_table_entry_t **values,
1008
                                           apr_size_t n)
1009
0
{
1010
    /* Bottom-up mergesort, based on design in Sedgewick's "Algorithms
1011
     * in C," chapter 8
1012
     */
1013
0
    apr_table_entry_t **values_tmp =
1014
0
        (apr_table_entry_t **)apr_palloc(pool, n * sizeof(apr_table_entry_t*));
1015
0
    apr_size_t i;
1016
0
    apr_size_t blocksize;
1017
1018
    /* First pass: sort pairs of elements (blocksize=1) */
1019
0
    for (i = 0; i + 1 < n; i += 2) {
1020
0
        if (strcasecmp(values[i]->key, values[i + 1]->key) > 0) {
1021
0
            apr_table_entry_t *swap = values[i];
1022
0
            values[i] = values[i + 1];
1023
0
            values[i + 1] = swap;
1024
0
        }
1025
0
    }
1026
1027
    /* Merge successively larger blocks */
1028
0
    blocksize = 2;
1029
0
    while (blocksize < n) {
1030
0
        apr_table_entry_t **dst = values_tmp;
1031
0
        apr_size_t next_start;
1032
0
        apr_table_entry_t **swap;
1033
1034
        /* Merge consecutive pairs blocks of the next blocksize.
1035
         * Within a block, elements are in sorted order due to
1036
         * the previous iteration.
1037
         */
1038
0
        for (next_start = 0; next_start + blocksize < n;
1039
0
             next_start += (blocksize + blocksize)) {
1040
1041
0
            apr_size_t block1_start = next_start;
1042
0
            apr_size_t block2_start = block1_start + blocksize;
1043
0
            apr_size_t block1_end = block2_start;
1044
0
            apr_size_t block2_end = block2_start + blocksize;
1045
0
            if (block2_end > n) {
1046
                /* The last block may be smaller than blocksize */
1047
0
                block2_end = n;
1048
0
            }
1049
0
            for (;;) {
1050
1051
                /* Merge the next two blocks:
1052
                 * Pick the smaller of the next element from
1053
                 * block 1 and the next element from block 2.
1054
                 * Once either of the blocks is emptied, copy
1055
                 * over all the remaining elements from the
1056
                 * other block
1057
                 */
1058
0
                if (block1_start == block1_end) {
1059
0
                    for (; block2_start < block2_end; block2_start++) {
1060
0
                        *dst++ = values[block2_start];
1061
0
                    }
1062
0
                    break;
1063
0
                }
1064
0
                else if (block2_start == block2_end) {
1065
0
                    for (; block1_start < block1_end; block1_start++) {
1066
0
                        *dst++ = values[block1_start];
1067
0
                    }
1068
0
                    break;
1069
0
                }
1070
0
                if (strcasecmp(values[block1_start]->key,
1071
0
                               values[block2_start]->key) > 0) {
1072
0
                    *dst++ = values[block2_start++];
1073
0
                }
1074
0
                else {
1075
0
                    *dst++ = values[block1_start++];
1076
0
                }
1077
0
            }
1078
0
        }
1079
1080
        /* If n is not a multiple of 2*blocksize, some elements
1081
         * will be left over at the end of the array.
1082
         */
1083
0
        for (i = dst - values_tmp; i < n; i++) {
1084
0
            values_tmp[i] = values[i];
1085
0
        }
1086
1087
        /* The output array of this pass becomes the input
1088
         * array of the next pass, and vice versa
1089
         */
1090
0
        swap = values_tmp;
1091
0
        values_tmp = values;
1092
0
        values = swap;
1093
1094
0
        blocksize += blocksize;
1095
0
    }
1096
1097
0
    return values;
1098
0
}
1099
1100
APR_DECLARE(void) apr_table_compress(apr_table_t *t, unsigned flags)
1101
0
{
1102
0
    apr_table_entry_t **sort_array;
1103
0
    apr_table_entry_t **sort_next;
1104
0
    apr_table_entry_t **sort_end;
1105
0
    apr_table_entry_t *table_next;
1106
0
    apr_table_entry_t **last;
1107
0
    int i;
1108
0
    int dups_found;
1109
1110
0
    if (flags == APR_OVERLAP_TABLES_ADD) {
1111
0
        return;
1112
0
    }
1113
1114
0
    if (t->a.nelts <= 1) {
1115
0
        return;
1116
0
    }
1117
1118
    /* Copy pointers to all the table elements into an
1119
     * array and sort to allow for easy detection of
1120
     * duplicate keys
1121
     */
1122
0
    sort_array = (apr_table_entry_t **)
1123
0
        apr_palloc(t->a.pool, t->a.nelts * sizeof(apr_table_entry_t*));
1124
0
    sort_next = sort_array;
1125
0
    table_next = (apr_table_entry_t *)t->a.elts;
1126
0
    i = t->a.nelts;
1127
0
    do {
1128
0
        *sort_next++ = table_next++;
1129
0
    } while (--i);
1130
1131
    /* Note: the merge is done with mergesort instead of quicksort
1132
     * because mergesort is a stable sort and runs in n*log(n)
1133
     * time regardless of its inputs (quicksort is quadratic in
1134
     * the worst case)
1135
     */
1136
0
    sort_array = table_mergesort(t->a.pool, sort_array, t->a.nelts);
1137
1138
    /* Process any duplicate keys */
1139
0
    dups_found = 0;
1140
0
    sort_next = sort_array;
1141
0
    sort_end = sort_array + t->a.nelts;
1142
0
    last = sort_next++;
1143
0
    while (sort_next < sort_end) {
1144
0
        if (((*sort_next)->key_checksum == (*last)->key_checksum) &&
1145
0
            !strcasecmp((*sort_next)->key, (*last)->key)) {
1146
0
            apr_table_entry_t **dup_last = sort_next + 1;
1147
0
            dups_found = 1;
1148
0
            while ((dup_last < sort_end) &&
1149
0
                   ((*dup_last)->key_checksum == (*last)->key_checksum) &&
1150
0
                   !strcasecmp((*dup_last)->key, (*last)->key)) {
1151
0
                dup_last++;
1152
0
            }
1153
0
            dup_last--; /* Elements from last through dup_last, inclusive,
1154
                         * all have the same key
1155
                         */
1156
0
            if (flags == APR_OVERLAP_TABLES_MERGE) {
1157
0
                apr_size_t len = 0;
1158
0
                apr_table_entry_t **next = last;
1159
0
                char *new_val;
1160
0
                char *val_dst;
1161
0
                do {
1162
0
                    len += strlen((*next)->val);
1163
0
                    len += 2; /* for ", " or trailing null */
1164
0
                } while (++next <= dup_last);
1165
0
                new_val = (char *)apr_palloc(t->a.pool, len);
1166
0
                val_dst = new_val;
1167
0
                next = last;
1168
0
                for (;;) {
1169
0
                    strcpy(val_dst, (*next)->val);
1170
0
                    val_dst += strlen((*next)->val);
1171
0
                    next++;
1172
0
                    if (next > dup_last) {
1173
0
                        *val_dst = 0;
1174
0
                        break;
1175
0
                    }
1176
0
                    else {
1177
0
                        *val_dst++ = ',';
1178
0
                        *val_dst++ = ' ';
1179
0
                    }
1180
0
                }
1181
0
                (*last)->val = new_val;
1182
0
            }
1183
0
            else { /* overwrite */
1184
0
                (*last)->val = (*dup_last)->val;
1185
0
            }
1186
0
            do {
1187
0
                (*sort_next)->key = NULL;
1188
0
            } while (++sort_next <= dup_last);
1189
0
        }
1190
0
        else {
1191
0
            last = sort_next++;
1192
0
        }
1193
0
    }
1194
1195
    /* Shift elements to the left to fill holes left by removing duplicates */
1196
0
    if (dups_found) {
1197
0
        apr_table_entry_t *src = (apr_table_entry_t *)t->a.elts;
1198
0
        apr_table_entry_t *dst = (apr_table_entry_t *)t->a.elts;
1199
0
        apr_table_entry_t *last_elt = src + t->a.nelts;
1200
0
        do {
1201
0
            if (src->key) {
1202
0
                *dst++ = *src;
1203
0
            }
1204
0
        } while (++src < last_elt);
1205
0
        t->a.nelts -= (int)(last_elt - dst);
1206
0
    }
1207
1208
0
    table_reindex(t);
1209
0
}
1210
1211
static void apr_table_cat(apr_table_t *t, const apr_table_t *s)
1212
0
{
1213
0
    const int n = t->a.nelts;
1214
0
    register int idx;
1215
1216
0
    apr_array_cat(&t->a,&s->a);
1217
1218
0
    if (n == 0) {
1219
0
        memcpy(t->index_first,s->index_first,sizeof(int) * TABLE_HASH_SIZE);
1220
0
        memcpy(t->index_last, s->index_last, sizeof(int) * TABLE_HASH_SIZE);
1221
0
        t->index_initialized = s->index_initialized;
1222
0
        return;
1223
0
    }
1224
1225
0
    for (idx = 0; idx < TABLE_HASH_SIZE; ++idx) {
1226
0
        if (TABLE_INDEX_IS_INITIALIZED(s, idx)) {
1227
0
            t->index_last[idx] = s->index_last[idx] + n;
1228
0
            if (!TABLE_INDEX_IS_INITIALIZED(t, idx)) {
1229
0
                t->index_first[idx] = s->index_first[idx] + n;
1230
0
            }
1231
0
        }
1232
0
    }
1233
1234
0
    t->index_initialized |= s->index_initialized;
1235
0
}
1236
1237
APR_DECLARE(void) apr_table_overlap(apr_table_t *a, const apr_table_t *b,
1238
            unsigned flags)
1239
0
{
1240
0
    if (a->a.nelts + b->a.nelts == 0) {
1241
0
        return;
1242
0
    }
1243
1244
#if APR_TABLE_POOL_DEBUG
1245
    /* Since the keys and values are not copied, it's required that
1246
     * b->a.pool has a lifetime at least as long as a->a.pool. */
1247
    if (!apr_pool_is_ancestor(b->a.pool, a->a.pool)) {
1248
        fprintf(stderr, "apr_table_overlap: b's pool is not an ancestor of a's\n");
1249
        abort();
1250
    }
1251
#endif
1252
1253
0
    apr_table_cat(a, b);
1254
1255
0
    apr_table_compress(a, flags);
1256
0
}
1257
1258
static int table_getm_do(void *v, const char *key, const char *val)
1259
0
{
1260
0
    table_getm_t *state = (table_getm_t *) v;
1261
1262
0
    if (!state->first) {
1263
        /**
1264
         * The most common case is a single header, and this is covered by
1265
         * a fast path that doesn't allocate any memory. On the second and
1266
         * subsequent header, an array is created and the array concatenated
1267
         * together to form the final value.
1268
         */
1269
0
        state->first = val;
1270
0
    }
1271
0
    else {
1272
0
        const char **elt;
1273
0
        if (!state->merged) {
1274
0
            state->merged = apr_array_make(state->p, 10, sizeof(const char *));
1275
0
            elt = apr_array_push(state->merged);
1276
0
            *elt = state->first;
1277
0
        }
1278
0
        elt = apr_array_push(state->merged);
1279
0
        *elt = val;
1280
0
    }
1281
0
    return 1;
1282
0
}
1283
1284
APR_DECLARE(const char *) apr_table_getm(apr_pool_t *p, const apr_table_t *t,
1285
        const char *key)
1286
0
{
1287
0
    table_getm_t state;
1288
1289
0
    state.p = p;
1290
0
    state.first = NULL;
1291
0
    state.merged = NULL;
1292
1293
0
    apr_table_do(table_getm_do, &state, t, key, NULL);
1294
1295
0
    if (!state.first) {
1296
0
        return NULL;
1297
0
    }
1298
0
    else if (!state.merged) {
1299
0
        return state.first;
1300
0
    }
1301
0
    else {
1302
0
        return apr_array_pstrcat(p, state.merged, ',');
1303
0
    }
1304
0
}