/src/assimp/code/PostProcessing/SplitByBoneCountProcess.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | Open Asset Import Library (assimp) |
3 | | ---------------------------------------------------------------------- |
4 | | |
5 | | Copyright (c) 2006-2025, assimp team |
6 | | |
7 | | All rights reserved. |
8 | | |
9 | | Redistribution and use of this software in source and binary forms, |
10 | | with or without modification, are permitted provided that the |
11 | | following conditions are met: |
12 | | |
13 | | * Redistributions of source code must retain the above |
14 | | copyright notice, this list of conditions and the |
15 | | following disclaimer. |
16 | | |
17 | | * Redistributions in binary form must reproduce the above |
18 | | copyright notice, this list of conditions and the |
19 | | following disclaimer in the documentation and/or other |
20 | | materials provided with the distribution. |
21 | | |
22 | | * Neither the name of the assimp team, nor the names of its |
23 | | contributors may be used to endorse or promote products |
24 | | derived from this software without specific prior |
25 | | written permission of the assimp team. |
26 | | |
27 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
28 | | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
29 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
30 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
31 | | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
32 | | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
33 | | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
34 | | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
35 | | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
36 | | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
37 | | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
38 | | |
39 | | ---------------------------------------------------------------------- |
40 | | */ |
41 | | |
42 | | /// @file SplitByBoneCountProcess.cpp |
43 | | /// Implementation of the SplitByBoneCount postprocessing step |
44 | | |
45 | | // internal headers of the post-processing framework |
46 | | #include "SplitByBoneCountProcess.h" |
47 | | #include <assimp/postprocess.h> |
48 | | #include <assimp/DefaultLogger.hpp> |
49 | | |
50 | | #include <limits> |
51 | | #include <assimp/TinyFormatter.h> |
52 | | #include <assimp/Exceptional.h> |
53 | | #include <set> |
54 | | |
55 | | using namespace Assimp; |
56 | | using namespace Assimp::Formatter; |
57 | | |
58 | | // ------------------------------------------------------------------------------------------------ |
59 | | // Constructor |
60 | 1.77k | SplitByBoneCountProcess::SplitByBoneCountProcess() : mMaxBoneCount(AI_SBBC_DEFAULT_MAX_BONES) {} |
61 | | |
62 | | // ------------------------------------------------------------------------------------------------ |
63 | | // Returns whether the processing step is present in the given flag. |
64 | 435 | bool SplitByBoneCountProcess::IsActive( unsigned int pFlags) const { |
65 | 435 | return !!(pFlags & aiProcess_SplitByBoneCount); |
66 | 435 | } |
67 | | |
68 | | // ------------------------------------------------------------------------------------------------ |
69 | | // Updates internal properties |
70 | 0 | void SplitByBoneCountProcess::SetupProperties(const Importer* pImp) { |
71 | 0 | mMaxBoneCount = pImp->GetPropertyInteger(AI_CONFIG_PP_SBBC_MAX_BONES,AI_SBBC_DEFAULT_MAX_BONES); |
72 | 0 | } |
73 | | |
74 | | // ------------------------------------------------------------------------------------------------ |
75 | | // Executes the post processing step on the given imported data. |
76 | 0 | void SplitByBoneCountProcess::Execute( aiScene* pScene) { |
77 | 0 | ASSIMP_LOG_DEBUG("SplitByBoneCountProcess begin"); |
78 | | |
79 | | // early out |
80 | 0 | bool isNecessary = false; |
81 | 0 | for( unsigned int a = 0; a < pScene->mNumMeshes; ++a) |
82 | 0 | if( pScene->mMeshes[a]->mNumBones > mMaxBoneCount ) { |
83 | 0 | isNecessary = true; |
84 | 0 | break; |
85 | 0 | } |
86 | |
|
87 | 0 | if( !isNecessary ) { |
88 | 0 | ASSIMP_LOG_DEBUG("SplitByBoneCountProcess early-out: no meshes with more than ", mMaxBoneCount, " bones." ); |
89 | 0 | return; |
90 | 0 | } |
91 | | |
92 | | // we need to do something. Let's go. |
93 | 0 | mSubMeshIndices.clear(); |
94 | 0 | mSubMeshIndices.resize( pScene->mNumMeshes); |
95 | | |
96 | | // build a new array of meshes for the scene |
97 | 0 | std::vector<aiMesh*> meshes; |
98 | |
|
99 | 0 | for( unsigned int a = 0; a < pScene->mNumMeshes; ++a) { |
100 | 0 | aiMesh* srcMesh = pScene->mMeshes[a]; |
101 | |
|
102 | 0 | std::vector<aiMesh*> newMeshes; |
103 | 0 | SplitMesh( pScene->mMeshes[a], newMeshes); |
104 | | |
105 | | // mesh was split |
106 | 0 | if( !newMeshes.empty() ) { |
107 | | // store new meshes and indices of the new meshes |
108 | 0 | for( unsigned int b = 0; b < newMeshes.size(); ++b) { |
109 | 0 | mSubMeshIndices[a].push_back( static_cast<unsigned int>(meshes.size())); |
110 | 0 | meshes.push_back( newMeshes[b]); |
111 | 0 | } |
112 | | |
113 | | // and destroy the source mesh. It should be completely contained inside the new submeshes |
114 | 0 | delete srcMesh; |
115 | 0 | } else { |
116 | | // Mesh is kept unchanged - store it's new place in the mesh array |
117 | 0 | mSubMeshIndices[a].push_back( static_cast<unsigned int>(meshes.size())); |
118 | 0 | meshes.push_back( srcMesh); |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | | // rebuild the scene's mesh array |
123 | 0 | pScene->mNumMeshes = static_cast<unsigned int>(meshes.size()); |
124 | 0 | delete [] pScene->mMeshes; |
125 | 0 | pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; |
126 | 0 | std::copy( meshes.begin(), meshes.end(), pScene->mMeshes); |
127 | | |
128 | | // recurse through all nodes and translate the node's mesh indices to fit the new mesh array |
129 | 0 | UpdateNode( pScene->mRootNode); |
130 | |
|
131 | 0 | ASSIMP_LOG_DEBUG( "SplitByBoneCountProcess end: split ", mSubMeshIndices.size(), " meshes into ", meshes.size(), " submeshes." ); |
132 | 0 | } |
133 | | |
134 | | // ------------------------------------------------------------------------------------------------ |
135 | | // Splits the given mesh by bone count. |
136 | 0 | void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh*>& poNewMeshes) const { |
137 | | // skip if not necessary |
138 | 0 | if( pMesh->mNumBones <= mMaxBoneCount ) { |
139 | 0 | return; |
140 | 0 | } |
141 | | |
142 | | // necessary optimisation: build a list of all affecting bones for each vertex |
143 | | // TODO: (thom) maybe add a custom allocator here to avoid allocating tens of thousands of small arrays |
144 | 0 | typedef std::pair<unsigned int, float> BoneWeight; |
145 | 0 | std::vector< std::vector<BoneWeight> > vertexBones( pMesh->mNumVertices); |
146 | 0 | for( unsigned int a = 0; a < pMesh->mNumBones; ++a) { |
147 | 0 | const aiBone* bone = pMesh->mBones[a]; |
148 | 0 | for( unsigned int b = 0; b < bone->mNumWeights; ++b) { |
149 | 0 | if (bone->mWeights[b].mWeight > 0.0f) { |
150 | 0 | int vertexId = bone->mWeights[b].mVertexId; |
151 | 0 | vertexBones[vertexId].emplace_back(a, bone->mWeights[b].mWeight); |
152 | 0 | if (vertexBones[vertexId].size() > mMaxBoneCount) { |
153 | 0 | throw DeadlyImportError("SplitByBoneCountProcess: Single face requires more bones than specified max bone count!"); |
154 | 0 | } |
155 | 0 | } |
156 | 0 | } |
157 | 0 | } |
158 | | |
159 | 0 | unsigned int numFacesHandled = 0; |
160 | 0 | std::vector<bool> isFaceHandled( pMesh->mNumFaces, false); |
161 | 0 | while( numFacesHandled < pMesh->mNumFaces ) { |
162 | | // which bones are used in the current submesh |
163 | 0 | unsigned int numBones = 0; |
164 | 0 | std::vector<bool> isBoneUsed( pMesh->mNumBones, false); |
165 | | // indices of the faces which are going to go into this submesh |
166 | 0 | IndexArray subMeshFaces; |
167 | 0 | subMeshFaces.reserve( pMesh->mNumFaces); |
168 | | // accumulated vertex count of all the faces in this submesh |
169 | 0 | unsigned int numSubMeshVertices = 0; |
170 | | |
171 | | // add faces to the new submesh as long as all bones affecting the faces' vertices fit in the limit |
172 | 0 | for( unsigned int a = 0; a < pMesh->mNumFaces; ++a) { |
173 | | // skip if the face is already stored in a submesh |
174 | 0 | if( isFaceHandled[a] ) { |
175 | 0 | continue; |
176 | 0 | } |
177 | | // a small local set of new bones for the current face. State of all used bones for that face |
178 | | // can only be updated AFTER the face is completely analysed. Thanks to imre for the fix. |
179 | 0 | std::set<unsigned int> newBonesAtCurrentFace; |
180 | |
|
181 | 0 | const aiFace& face = pMesh->mFaces[a]; |
182 | | // check every vertex if its bones would still fit into the current submesh |
183 | 0 | for( unsigned int b = 0; b < face.mNumIndices; ++b ) { |
184 | 0 | const std::vector<BoneWeight>& vb = vertexBones[face.mIndices[b]]; |
185 | 0 | for( unsigned int c = 0; c < vb.size(); ++c) { |
186 | 0 | unsigned int boneIndex = vb[c].first; |
187 | 0 | if( !isBoneUsed[boneIndex] ) { |
188 | 0 | newBonesAtCurrentFace.insert(boneIndex); |
189 | 0 | } |
190 | 0 | } |
191 | 0 | } |
192 | | |
193 | | // leave out the face if the new bones required for this face don't fit the bone count limit anymore |
194 | 0 | if( numBones + newBonesAtCurrentFace.size() > mMaxBoneCount ) { |
195 | 0 | continue; |
196 | 0 | } |
197 | | |
198 | | // mark all new bones as necessary |
199 | 0 | for (std::set<unsigned int>::iterator it = newBonesAtCurrentFace.begin(); it != newBonesAtCurrentFace.end(); ++it) { |
200 | 0 | if (!isBoneUsed[*it]) { |
201 | 0 | isBoneUsed[*it] = true; |
202 | 0 | ++numBones; |
203 | 0 | } |
204 | 0 | } |
205 | | |
206 | | // store the face index and the vertex count |
207 | 0 | subMeshFaces.push_back( a); |
208 | 0 | numSubMeshVertices += face.mNumIndices; |
209 | | |
210 | | // remember that this face is handled |
211 | 0 | isFaceHandled[a] = true; |
212 | 0 | ++numFacesHandled; |
213 | 0 | } |
214 | | |
215 | | // create a new mesh to hold this subset of the source mesh |
216 | 0 | aiMesh* newMesh = new aiMesh; |
217 | 0 | if( pMesh->mName.length > 0 ) { |
218 | 0 | newMesh->mName.Set( format() << pMesh->mName.data << "_sub" << poNewMeshes.size()); |
219 | 0 | } |
220 | 0 | newMesh->mMaterialIndex = pMesh->mMaterialIndex; |
221 | 0 | newMesh->mPrimitiveTypes = pMesh->mPrimitiveTypes; |
222 | 0 | poNewMeshes.emplace_back( newMesh); |
223 | | |
224 | | // create all the arrays for this mesh if the old mesh contained them |
225 | 0 | newMesh->mNumVertices = numSubMeshVertices; |
226 | 0 | newMesh->mNumFaces = static_cast<unsigned int>(subMeshFaces.size()); |
227 | 0 | newMesh->mVertices = new aiVector3D[newMesh->mNumVertices]; |
228 | 0 | if( pMesh->HasNormals() ) { |
229 | 0 | newMesh->mNormals = new aiVector3D[newMesh->mNumVertices]; |
230 | 0 | } |
231 | 0 | if( pMesh->HasTangentsAndBitangents() ) { |
232 | 0 | newMesh->mTangents = new aiVector3D[newMesh->mNumVertices]; |
233 | 0 | newMesh->mBitangents = new aiVector3D[newMesh->mNumVertices]; |
234 | 0 | } |
235 | 0 | for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a ) { |
236 | 0 | if( pMesh->HasTextureCoords( a) ) { |
237 | 0 | newMesh->mTextureCoords[a] = new aiVector3D[newMesh->mNumVertices]; |
238 | 0 | } |
239 | 0 | newMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a]; |
240 | 0 | } |
241 | 0 | for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a ) { |
242 | 0 | if( pMesh->HasVertexColors( a) ) { |
243 | 0 | newMesh->mColors[a] = new aiColor4D[newMesh->mNumVertices]; |
244 | 0 | } |
245 | 0 | } |
246 | | |
247 | | // and copy over the data, generating faces with linear indices along the way |
248 | 0 | newMesh->mFaces = new aiFace[subMeshFaces.size()]; |
249 | 0 | unsigned int nvi = 0; // next vertex index |
250 | 0 | IndexArray previousVertexIndices( numSubMeshVertices, std::numeric_limits<unsigned int>::max()); // per new vertex: its index in the source mesh |
251 | 0 | for( unsigned int a = 0; a < subMeshFaces.size(); ++a ) { |
252 | 0 | const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]]; |
253 | 0 | aiFace& dstFace = newMesh->mFaces[a]; |
254 | 0 | dstFace.mNumIndices = srcFace.mNumIndices; |
255 | 0 | dstFace.mIndices = new unsigned int[dstFace.mNumIndices]; |
256 | | |
257 | | // accumulate linearly all the vertices of the source face |
258 | 0 | for( unsigned int b = 0; b < dstFace.mNumIndices; ++b ) { |
259 | 0 | unsigned int srcIndex = srcFace.mIndices[b]; |
260 | 0 | dstFace.mIndices[b] = nvi; |
261 | 0 | previousVertexIndices[nvi] = srcIndex; |
262 | |
|
263 | 0 | newMesh->mVertices[nvi] = pMesh->mVertices[srcIndex]; |
264 | 0 | if( pMesh->HasNormals() ) { |
265 | 0 | newMesh->mNormals[nvi] = pMesh->mNormals[srcIndex]; |
266 | 0 | } |
267 | 0 | if( pMesh->HasTangentsAndBitangents() ) { |
268 | 0 | newMesh->mTangents[nvi] = pMesh->mTangents[srcIndex]; |
269 | 0 | newMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex]; |
270 | 0 | } |
271 | 0 | for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c ) { |
272 | 0 | if( pMesh->HasTextureCoords( c) ) { |
273 | 0 | newMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex]; |
274 | 0 | } |
275 | 0 | } |
276 | 0 | for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c ) { |
277 | 0 | if( pMesh->HasVertexColors( c) ) { |
278 | 0 | newMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex]; |
279 | 0 | } |
280 | 0 | } |
281 | |
|
282 | 0 | nvi++; |
283 | 0 | } |
284 | 0 | } |
285 | |
|
286 | 0 | ai_assert( nvi == numSubMeshVertices ); |
287 | | |
288 | | // Create the bones for the new submesh: first create the bone array |
289 | 0 | newMesh->mNumBones = 0; |
290 | 0 | newMesh->mBones = new aiBone*[numBones]; |
291 | |
|
292 | 0 | std::vector<unsigned int> mappedBoneIndex( pMesh->mNumBones, std::numeric_limits<unsigned int>::max()); |
293 | 0 | for( unsigned int a = 0; a < pMesh->mNumBones; ++a ) { |
294 | 0 | if( !isBoneUsed[a] ) { |
295 | 0 | continue; |
296 | 0 | } |
297 | | |
298 | | // create the new bone |
299 | 0 | const aiBone* srcBone = pMesh->mBones[a]; |
300 | 0 | aiBone* dstBone = new aiBone; |
301 | 0 | mappedBoneIndex[a] = newMesh->mNumBones; |
302 | 0 | newMesh->mBones[newMesh->mNumBones++] = dstBone; |
303 | 0 | dstBone->mName = srcBone->mName; |
304 | 0 | dstBone->mOffsetMatrix = srcBone->mOffsetMatrix; |
305 | 0 | dstBone->mNumWeights = 0; |
306 | 0 | } |
307 | |
|
308 | 0 | ai_assert( newMesh->mNumBones == numBones ); |
309 | | |
310 | | // iterate over all new vertices and count which bones affected its old vertex in the source mesh |
311 | 0 | for( unsigned int a = 0; a < numSubMeshVertices; ++a ) { |
312 | 0 | unsigned int oldIndex = previousVertexIndices[a]; |
313 | 0 | const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[oldIndex]; |
314 | |
|
315 | 0 | for( unsigned int b = 0; b < bonesOnThisVertex.size(); ++b ) { |
316 | 0 | unsigned int newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ]; |
317 | 0 | if( newBoneIndex != std::numeric_limits<unsigned int>::max() ) { |
318 | 0 | newMesh->mBones[newBoneIndex]->mNumWeights++; |
319 | 0 | } |
320 | 0 | } |
321 | 0 | } |
322 | | |
323 | | // allocate all bone weight arrays accordingly |
324 | 0 | for( unsigned int a = 0; a < newMesh->mNumBones; ++a ) { |
325 | 0 | aiBone* bone = newMesh->mBones[a]; |
326 | 0 | ai_assert( bone->mNumWeights > 0 ); |
327 | 0 | bone->mWeights = new aiVertexWeight[bone->mNumWeights]; |
328 | 0 | bone->mNumWeights = 0; // for counting up in the next step |
329 | 0 | } |
330 | | |
331 | | // now copy all the bone vertex weights for all the vertices which made it into the new submesh |
332 | 0 | for( unsigned int a = 0; a < numSubMeshVertices; ++a) { |
333 | | // find the source vertex for it in the source mesh |
334 | 0 | unsigned int previousIndex = previousVertexIndices[a]; |
335 | | // these bones were affecting it |
336 | 0 | const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[previousIndex]; |
337 | | // all of the bones affecting it should be present in the new submesh, or else |
338 | | // the face it comprises shouldn't be present |
339 | 0 | for( unsigned int b = 0; b < bonesOnThisVertex.size(); ++b) { |
340 | 0 | unsigned int newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ]; |
341 | 0 | ai_assert( newBoneIndex != std::numeric_limits<unsigned int>::max() ); |
342 | 0 | aiVertexWeight* dstWeight = newMesh->mBones[newBoneIndex]->mWeights + newMesh->mBones[newBoneIndex]->mNumWeights; |
343 | 0 | newMesh->mBones[newBoneIndex]->mNumWeights++; |
344 | |
|
345 | 0 | dstWeight->mVertexId = a; |
346 | 0 | dstWeight->mWeight = bonesOnThisVertex[b].second; |
347 | 0 | } |
348 | 0 | } |
349 | | |
350 | | // ... and copy all the morph targets for all the vertices which made it into the new submesh |
351 | 0 | if (pMesh->mNumAnimMeshes > 0) { |
352 | 0 | newMesh->mNumAnimMeshes = pMesh->mNumAnimMeshes; |
353 | 0 | newMesh->mAnimMeshes = new aiAnimMesh*[newMesh->mNumAnimMeshes]; |
354 | |
|
355 | 0 | for (unsigned int morphIdx = 0; morphIdx < newMesh->mNumAnimMeshes; ++morphIdx) { |
356 | 0 | aiAnimMesh* origTarget = pMesh->mAnimMeshes[morphIdx]; |
357 | 0 | aiAnimMesh* newTarget = new aiAnimMesh; |
358 | 0 | newTarget->mName = origTarget->mName; |
359 | 0 | newTarget->mWeight = origTarget->mWeight; |
360 | 0 | newTarget->mNumVertices = numSubMeshVertices; |
361 | 0 | newTarget->mVertices = new aiVector3D[numSubMeshVertices]; |
362 | 0 | newMesh->mAnimMeshes[morphIdx] = newTarget; |
363 | |
|
364 | 0 | if (origTarget->HasNormals()) { |
365 | 0 | newTarget->mNormals = new aiVector3D[numSubMeshVertices]; |
366 | 0 | } |
367 | |
|
368 | 0 | if (origTarget->HasTangentsAndBitangents()) { |
369 | 0 | newTarget->mTangents = new aiVector3D[numSubMeshVertices]; |
370 | 0 | newTarget->mBitangents = new aiVector3D[numSubMeshVertices]; |
371 | 0 | } |
372 | |
|
373 | 0 | for( unsigned int vi = 0; vi < numSubMeshVertices; ++vi) { |
374 | | // find the source vertex for it in the source mesh |
375 | 0 | unsigned int previousIndex = previousVertexIndices[vi]; |
376 | 0 | newTarget->mVertices[vi] = origTarget->mVertices[previousIndex]; |
377 | |
|
378 | 0 | if (newTarget->HasNormals()) { |
379 | 0 | newTarget->mNormals[vi] = origTarget->mNormals[previousIndex]; |
380 | 0 | } |
381 | 0 | if (newTarget->HasTangentsAndBitangents()) { |
382 | 0 | newTarget->mTangents[vi] = origTarget->mTangents[previousIndex]; |
383 | 0 | newTarget->mBitangents[vi] = origTarget->mBitangents[previousIndex]; |
384 | 0 | } |
385 | 0 | } |
386 | 0 | } |
387 | 0 | } |
388 | | |
389 | | // I have the strange feeling that this will break apart at some point in time... |
390 | 0 | } |
391 | 0 | } |
392 | | |
393 | | // ------------------------------------------------------------------------------------------------ |
394 | | // Recursively updates the node's mesh list to account for the changed mesh list |
395 | 0 | void SplitByBoneCountProcess::UpdateNode( aiNode* pNode) const { |
396 | | // rebuild the node's mesh index list |
397 | 0 | if( pNode->mNumMeshes != 0 ) { |
398 | 0 | IndexArray newMeshList; |
399 | 0 | for( unsigned int a = 0; a < pNode->mNumMeshes; ++a) { |
400 | 0 | unsigned int srcIndex = pNode->mMeshes[a]; |
401 | 0 | const IndexArray& replaceMeshes = mSubMeshIndices[srcIndex]; |
402 | 0 | newMeshList.insert( newMeshList.end(), replaceMeshes.begin(), replaceMeshes.end()); |
403 | 0 | } |
404 | |
|
405 | 0 | delete [] pNode->mMeshes; |
406 | 0 | pNode->mNumMeshes = static_cast<unsigned int>(newMeshList.size()); |
407 | 0 | pNode->mMeshes = new unsigned int[pNode->mNumMeshes]; |
408 | 0 | std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes); |
409 | 0 | } |
410 | | |
411 | | // do that also recursively for all children |
412 | 0 | for( unsigned int a = 0; a < pNode->mNumChildren; ++a ) { |
413 | 0 | UpdateNode( pNode->mChildren[a]); |
414 | 0 | } |
415 | 0 | } |