Coverage Report

Created: 2025-11-11 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/assimp/code/AssetLib/IFC/IFCBoolean.cpp
Line
Count
Source
1
/*
2
Open Asset Import Library (assimp)
3
----------------------------------------------------------------------
4
5
Copyright (c) 2006-2025, assimp team
6
All rights reserved.
7
8
Redistribution and use of this software in source and binary forms,
9
with or without modification, are permitted provided that the
10
following conditions are met:
11
12
* Redistributions of source code must retain the above
13
  copyright notice, this list of conditions and the
14
  following disclaimer.
15
16
* Redistributions in binary form must reproduce the above
17
  copyright notice, this list of conditions and the
18
  following disclaimer in the documentation and/or other
19
  materials provided with the distribution.
20
21
* Neither the name of the assimp team, nor the names of its
22
  contributors may be used to endorse or promote products
23
  derived from this software without specific prior
24
  written permission of the assimp team.
25
26
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
38
----------------------------------------------------------------------
39
*/
40
41
/// @file  IFCBoolean.cpp
42
/// @brief Implements a subset of Ifc boolean operations
43
44
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
45
46
#include "IFCUtil.h"
47
#include "Common/PolyTools.h"
48
#include "PostProcessing/ProcessHelper.h"
49
50
#include <iterator>
51
#include <tuple>
52
#include <utility>
53
54
namespace Assimp {
55
namespace IFC {
56
57
// ------------------------------------------------------------------------------------------------
58
// Calculates intersection between line segment and plane. To catch corner cases, specify which side you prefer.
59
// The function then generates a hit only if the end is beyond a certain margin in that direction, filtering out
60
// "very close to plane" ghost hits as long as start and end stay directly on or within the given plane side.
61
bool IntersectSegmentPlane(const IfcVector3 &p, const IfcVector3 &n, const IfcVector3 &e0,
62
0
        const IfcVector3 &e1, bool assumeStartOnWhiteSide, IfcVector3 &out) {
63
0
    const IfcVector3 pdelta = e0 - p, seg = e1 - e0;
64
0
    const IfcFloat dotOne = n * seg, dotTwo = -(n * pdelta);
65
66
    // if segment ends on plane, do not report a hit. We stay on that side until a following segment starting at this
67
    // point leaves the plane through the other side
68
0
    if (std::abs(dotOne + dotTwo) < ai_epsilon) {
69
0
        return false;
70
0
    }
71
72
    // if segment starts on the plane, report a hit only if the end lies on the *other* side
73
0
    if (std::abs(dotTwo) < ai_epsilon) {
74
0
        if ((assumeStartOnWhiteSide && dotOne + dotTwo < ai_epsilon) || (!assumeStartOnWhiteSide && dotOne + dotTwo > -ai_epsilon)) {
75
0
            out = e0;
76
0
            return true;
77
0
        } else {
78
0
            return false;
79
0
        }
80
0
    }
81
82
    // ignore if segment is parallel to plane and far away from it on either side
83
    // Warning: if there's a few thousand of such segments which slowly accumulate beyond the epsilon, no hit would be registered
84
0
    if (std::abs(dotOne) < ai_epsilon) {
85
0
        return false;
86
0
    }
87
88
    // t must be in [0..1] if the intersection point is within the given segment
89
0
    const IfcFloat t = dotTwo / dotOne;
90
0
    if (t > 1.0 || t < 0.0) {
91
0
        return false;
92
0
    }
93
94
0
    out = e0 + t * seg;
95
0
    return true;
96
0
}
97
98
// ------------------------------------------------------------------------------------------------
99
0
void FilterPolygon(std::vector<IfcVector3> &resultpoly) {
100
0
    if (resultpoly.size() < 3) {
101
0
        resultpoly.clear();
102
0
        return;
103
0
    }
104
105
0
    IfcVector3 vmin, vmax;
106
0
    ArrayBounds(resultpoly.data(), static_cast<unsigned int>(resultpoly.size()), vmin, vmax);
107
108
    // filter our IfcFloat points - those may happen if a point lies
109
    // directly on the intersection line or directly on the clipping plane
110
0
    const IfcFloat epsilon = (vmax - vmin).SquareLength() / 1e6f;
111
0
    FuzzyVectorCompare fz(epsilon);
112
0
    std::vector<IfcVector3>::iterator e = std::unique(resultpoly.begin(), resultpoly.end(), fz);
113
114
0
    if (e != resultpoly.end()) {
115
0
        resultpoly.erase(e, resultpoly.end());
116
0
    }
117
118
0
    if (!resultpoly.empty() && fz(resultpoly.front(), resultpoly.back())) {
119
0
        resultpoly.pop_back();
120
0
    }
121
0
}
122
123
// ------------------------------------------------------------------------------------------------
124
0
void WritePolygon(std::vector<IfcVector3> &resultpoly, TempMesh &result) {
125
0
    FilterPolygon(resultpoly);
126
127
0
    if (resultpoly.size() > 2) {
128
0
        result.mVerts.insert(result.mVerts.end(), resultpoly.begin(), resultpoly.end());
129
0
        result.mVertcnt.push_back(static_cast<unsigned int>(resultpoly.size()));
130
0
    }
131
0
}
132
133
// ------------------------------------------------------------------------------------------------
134
void ProcessBooleanHalfSpaceDifference(const Schema_2x3::IfcHalfSpaceSolid *hs, TempMesh &result,
135
        const TempMesh &first_operand,
136
0
        ConversionData & /*conv*/) {
137
0
    ai_assert(hs != nullptr);
138
139
0
    const Schema_2x3::IfcPlane *const plane = hs->BaseSurface->ToPtr<Schema_2x3::IfcPlane>();
140
0
    if (!plane) {
141
0
        IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
142
0
        return;
143
0
    }
144
145
    // extract plane base position vector and normal vector
146
0
    IfcVector3 p, n(0.f, 0.f, 1.f);
147
0
    if (plane->Position->Axis) {
148
0
        ConvertDirection(n, plane->Position->Axis.Get());
149
0
    }
150
0
    ConvertCartesianPoint(p, plane->Position->Location);
151
152
0
    if (!IsTrue(hs->AgreementFlag)) {
153
0
        n *= -1.f;
154
0
    }
155
156
    // clip the current contents of `meshout` against the plane we obtained from the second operand
157
0
    const std::vector<IfcVector3> &in = first_operand.mVerts;
158
0
    std::vector<IfcVector3> &outvert = result.mVerts;
159
160
0
    std::vector<unsigned int>::const_iterator begin = first_operand.mVertcnt.begin(),
161
0
                                              end = first_operand.mVertcnt.end(), iit;
162
163
0
    outvert.reserve(in.size());
164
0
    result.mVertcnt.reserve(first_operand.mVertcnt.size());
165
166
0
    unsigned int vidx = 0;
167
0
    for (iit = begin; iit != end; vidx += *iit++) {
168
169
0
        unsigned int newcount = 0;
170
0
        bool isAtWhiteSide = (in[vidx] - p) * n > -ai_epsilon;
171
0
        for (unsigned int i = 0; i < *iit; ++i) {
172
0
            const IfcVector3 &e0 = in[vidx + i], e1 = in[vidx + (i + 1) % *iit];
173
174
            // does the next segment intersect the plane?
175
0
            IfcVector3 isectpos;
176
0
            if (IntersectSegmentPlane(p, n, e0, e1, isAtWhiteSide, isectpos)) {
177
0
                if (isAtWhiteSide) {
178
                    // e0 is on the right side, so keep it
179
0
                    outvert.push_back(e0);
180
0
                    outvert.push_back(isectpos);
181
0
                    newcount += 2;
182
0
                } else {
183
                    // e0 is on the wrong side, so drop it and keep e1 instead
184
0
                    outvert.push_back(isectpos);
185
0
                    ++newcount;
186
0
                }
187
0
                isAtWhiteSide = !isAtWhiteSide;
188
0
            } else {
189
0
                if (isAtWhiteSide) {
190
0
                    outvert.push_back(e0);
191
0
                    ++newcount;
192
0
                }
193
0
            }
194
0
        }
195
196
0
        if (!newcount) {
197
0
            continue;
198
0
        }
199
200
0
        IfcVector3 vmin, vmax;
201
0
        ArrayBounds(&*(outvert.end() - newcount), newcount, vmin, vmax);
202
203
        // filter our IfcFloat points - those may happen if a point lies
204
        // directly on the intersection line. However, due to IfcFloat
205
        // precision a bitwise comparison is not feasible to detect
206
        // this case.
207
0
        const IfcFloat epsilon = (vmax - vmin).SquareLength() / 1e6f;
208
0
        FuzzyVectorCompare fz(epsilon);
209
210
0
        std::vector<IfcVector3>::iterator e = std::unique(outvert.end() - newcount, outvert.end(), fz);
211
212
0
        if (e != outvert.end()) {
213
0
            newcount -= static_cast<unsigned int>(std::distance(e, outvert.end()));
214
0
            outvert.erase(e, outvert.end());
215
0
        }
216
0
        if (fz(*(outvert.end() - newcount), outvert.back())) {
217
0
            outvert.pop_back();
218
0
            --newcount;
219
0
        }
220
0
        if (newcount > 2) {
221
0
            result.mVertcnt.push_back(newcount);
222
0
        } else
223
0
            while (newcount-- > 0) {
224
0
                result.mVerts.pop_back();
225
0
            }
226
0
    }
227
0
    IFCImporter::LogVerboseDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
228
0
}
229
230
// ------------------------------------------------------------------------------------------------
231
// Check if e0-e1 intersects a sub-segment of the given boundary line.
232
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
233
// New version takes the supposed inside/outside state as a parameter and treats corner cases as if
234
// the line stays on that side. This should make corner cases more stable.
235
// Two million assumptions! Boundary should have all z at 0.0, will be treated as closed, should not have
236
// segments with length <1e-6, self-intersecting might break the corner case handling... just don't go there, ok?
237
bool IntersectsBoundaryProfile(const IfcVector3 &e0, const IfcVector3 &e1, const std::vector<IfcVector3> &boundary,
238
        const bool isStartAssumedInside, std::vector<std::pair<size_t, IfcVector3>> &intersect_results,
239
0
        const bool halfOpen = false) {
240
0
    ai_assert(intersect_results.empty());
241
242
    // determine winding order - necessary to detect segments going "inwards" or "outwards" from a point directly on the border
243
    // positive sum of angles means clockwise order when looking down the -Z axis
244
0
    IfcFloat windingOrder = 0.0;
245
0
    for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
246
0
        IfcVector3 b01 = boundary[(i + 1) % bcount] - boundary[i];
247
0
        IfcVector3 b12 = boundary[(i + 2) % bcount] - boundary[(i + 1) % bcount];
248
0
        IfcVector3 b1_side = IfcVector3(b01.y, -b01.x, 0.0); // rotated 90° clockwise in Z plane
249
        // Warning: rough estimate only. A concave poly with lots of small segments each featuring a small counter rotation
250
        // could fool the accumulation. Correct implementation would be sum( acos( b01 * b2) * sign( b12 * b1_side))
251
0
        windingOrder += (b1_side.x * b12.x + b1_side.y * b12.y);
252
0
    }
253
0
    windingOrder = windingOrder > 0.0 ? 1.0 : -1.0;
254
255
0
    const IfcVector3 e = e1 - e0;
256
257
0
    for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
258
        // boundary segment i: b0-b1
259
0
        const IfcVector3 &b0 = boundary[i];
260
0
        const IfcVector3 &b1 = boundary[(i + 1) % bcount];
261
0
        IfcVector3 b = b1 - b0;
262
263
        // segment-segment intersection
264
        // solve b0 + b*s = e0 + e*t for (s,t)
265
0
        const IfcFloat det = (-b.x * e.y + e.x * b.y);
266
0
        if (std::abs(det) < ai_epsilon) {
267
            // no solutions (parallel lines)
268
0
            continue;
269
0
        }
270
0
        IfcFloat b_sqlen_inv = 1.0 / b.SquareLength();
271
272
0
        const IfcFloat x = b0.x - e0.x;
273
0
        const IfcFloat y = b0.y - e0.y;
274
0
        const IfcFloat s = (x * e.y - e.x * y) / det; // scale along boundary edge
275
0
        const IfcFloat t = (x * b.y - b.x * y) / det; // scale along given segment
276
0
        const IfcVector3 p = e0 + e * t;
277
0
#ifdef ASSIMP_BUILD_DEBUG
278
0
        const IfcVector3 check = b0 + b * s - p;
279
0
        ai_assert((IfcVector2(check.x, check.y)).SquareLength() < 1e-5);
280
0
#endif
281
282
        // also calculate the distance of e0 and e1 to the segment. We need to detect the "starts directly on segment"
283
        // and "ends directly at segment" cases
284
0
        bool startsAtSegment, endsAtSegment;
285
0
        {
286
            // calculate closest point to each end on the segment, clamp that point to the segment's length, then check
287
            // distance to that point. This approach is like testing if e0 is inside a capped cylinder.
288
0
            IfcFloat et0 = (b.x * (e0.x - b0.x) + b.y * (e0.y - b0.y)) * b_sqlen_inv;
289
0
            IfcVector3 closestPosToE0OnBoundary = b0 + std::max(IfcFloat(0.0), std::min(IfcFloat(1.0), et0)) * b;
290
0
            startsAtSegment = (closestPosToE0OnBoundary - IfcVector3(e0.x, e0.y, 0.0)).SquareLength() < 1e-12;
291
0
            IfcFloat et1 = (b.x * (e1.x - b0.x) + b.y * (e1.y - b0.y)) * b_sqlen_inv;
292
0
            IfcVector3 closestPosToE1OnBoundary = b0 + std::max(IfcFloat(0.0), std::min(IfcFloat(1.0), et1)) * b;
293
0
            endsAtSegment = (closestPosToE1OnBoundary - IfcVector3(e1.x, e1.y, 0.0)).SquareLength() < 1e-12;
294
0
        }
295
296
        // Line segment ends at boundary -> ignore any hit, it will be handled by possibly following segments
297
0
        if (endsAtSegment && !halfOpen) {
298
0
            continue;
299
0
        }
300
301
        // Line segment starts at boundary -> generate a hit only if following that line would change the INSIDE/OUTSIDE
302
        // state. This should catch the case where a connected set of segments has a point directly on the boundary,
303
        // one segment not hitting it because it ends there and the next segment not hitting it because it starts there
304
        // Should NOT generate a hit if the segment only touches the boundary but turns around and stays inside.
305
0
        if (startsAtSegment) {
306
0
            IfcVector3 inside_dir = IfcVector3(b.y, -b.x, 0.0) * windingOrder;
307
0
            bool isGoingInside = (inside_dir * e) > 0.0;
308
0
            if (isGoingInside == isStartAssumedInside) {
309
0
                continue;
310
0
            }
311
312
            // only insert the point into the list if it is sufficiently far away from the previous intersection point.
313
            // This way, we avoid duplicate detection if the intersection is directly on the vertex between two segments.
314
0
            if (!intersect_results.empty() && intersect_results.back().first == i - 1) {
315
0
                const IfcVector3 diff = intersect_results.back().second - e0;
316
0
                if (IfcVector2(diff.x, diff.y).SquareLength() < 1e-10) {
317
0
                    continue;
318
0
                }
319
0
            }
320
0
            intersect_results.emplace_back(i, e0);
321
0
            continue;
322
0
        }
323
324
        // for a valid intersection, s and t should be in range [0,1]. Including a bit of epsilon on s, potential double
325
        // hits on two consecutive boundary segments are filtered
326
0
        if (s >= -ai_epsilon * b_sqlen_inv && s <= 1.0 + ai_epsilon * b_sqlen_inv && t >= 0.0 && (t <= 1.0 || halfOpen)) {
327
            // only insert the point into the list if it is sufficiently far away from the previous intersection point.
328
            // This way, we avoid duplicate detection if the intersection is directly on the vertex between two segments.
329
0
            if (!intersect_results.empty() && intersect_results.back().first == i - 1) {
330
0
                const IfcVector3 diff = intersect_results.back().second - p;
331
0
                if (IfcVector2(diff.x, diff.y).SquareLength() < 1e-10) {
332
0
                    continue;
333
0
                }
334
0
            }
335
0
            intersect_results.emplace_back(i, p);
336
0
        }
337
0
    }
338
339
0
    return !intersect_results.empty();
340
0
}
341
342
// ------------------------------------------------------------------------------------------------
343
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
344
0
bool PointInPoly(const IfcVector3 &p, const std::vector<IfcVector3> &boundary) {
345
    // even-odd algorithm: take a random vector that extends from p to infinite
346
    // and counts how many times it intersects edges of the boundary.
347
    // because checking for segment intersections is prone to numeric inaccuracies
348
    // or double detections (i.e. when hitting multiple adjacent segments at their
349
    // shared vertices) we do it thrice with different rays and vote on it.
350
351
    // the even-odd algorithm doesn't work for points which lie directly on
352
    // the border of the polygon. If any of our attempts produces this result,
353
    // we return false immediately.
354
355
0
    std::vector<std::pair<size_t, IfcVector3>> intersected_boundary;
356
0
    size_t votes = 0;
357
358
0
    IntersectsBoundaryProfile(p, p + IfcVector3(1.0, 0, 0), boundary, true, intersected_boundary, true);
359
0
    votes += intersected_boundary.size() % 2;
360
361
0
    intersected_boundary.clear();
362
0
    IntersectsBoundaryProfile(p, p + IfcVector3(0, 1.0, 0), boundary, true, intersected_boundary, true);
363
0
    votes += intersected_boundary.size() % 2;
364
365
0
    intersected_boundary.clear();
366
0
    IntersectsBoundaryProfile(p, p + IfcVector3(0.6, -0.6, 0.0), boundary, true, intersected_boundary, true);
367
0
    votes += intersected_boundary.size() % 2;
368
369
0
    return votes > 1;
370
0
}
371
372
// ------------------------------------------------------------------------------------------------
373
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const Schema_2x3::IfcPolygonalBoundedHalfSpace *hs, TempMesh &result,
374
        const TempMesh &first_operand,
375
0
        ConversionData &conv) {
376
0
    ai_assert(hs != nullptr);
377
378
0
    const Schema_2x3::IfcPlane *const plane = hs->BaseSurface->ToPtr<Schema_2x3::IfcPlane>();
379
0
    if (!plane) {
380
0
        IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
381
0
        return;
382
0
    }
383
384
    // extract plane base position vector and normal vector
385
0
    IfcVector3 p, n(0.f, 0.f, 1.f);
386
0
    if (plane->Position->Axis) {
387
0
        ConvertDirection(n, plane->Position->Axis.Get());
388
0
    }
389
0
    ConvertCartesianPoint(p, plane->Position->Location);
390
391
0
    if (!IsTrue(hs->AgreementFlag)) {
392
0
        n *= -1.f;
393
0
    }
394
395
0
    n.Normalize();
396
397
    // obtain the polygonal bounding volume
398
0
    std::shared_ptr<TempMesh> profile = std::make_shared<TempMesh>();
399
0
    if (!ProcessCurve(hs->PolygonalBoundary, *profile, conv)) {
400
0
        IFCImporter::LogError("expected valid polyline for boundary of boolean halfspace");
401
0
        return;
402
0
    }
403
404
    // determine winding order by calculating the normal.
405
0
    IfcVector3 profileNormal = TempMesh::ComputePolygonNormal(profile->mVerts.data(), profile->mVerts.size());
406
407
0
    IfcMatrix4 proj_inv;
408
0
    ConvertAxisPlacement(proj_inv, hs->Position);
409
410
    // and map everything into a plane coordinate space so all intersection
411
    // tests can be done in 2D space.
412
0
    IfcMatrix4 proj = proj_inv;
413
0
    proj.Inverse();
414
415
    // clip the current contents of `meshout` against the plane we obtained from the second operand
416
0
    const std::vector<IfcVector3> &in = first_operand.mVerts;
417
0
    std::vector<IfcVector3> &outvert = result.mVerts;
418
0
    std::vector<unsigned int> &outvertcnt = result.mVertcnt;
419
420
0
    outvert.reserve(in.size());
421
0
    outvertcnt.reserve(first_operand.mVertcnt.size());
422
423
0
    unsigned int vidx = 0;
424
0
    std::vector<unsigned int>::const_iterator begin = first_operand.mVertcnt.begin();
425
0
    std::vector<unsigned int>::const_iterator end = first_operand.mVertcnt.end();
426
0
    std::vector<unsigned int>::const_iterator iit;
427
0
    for (iit = begin; iit != end; vidx += *iit++) {
428
        // Our new approach: we cut the poly along the plane, then we intersect the part on the black side of the plane
429
        // against the bounding polygon. All the white parts, and the black part outside the boundary polygon, are kept.
430
0
        std::vector<IfcVector3> whiteside, blackside;
431
432
0
        {
433
0
            const IfcVector3 *srcVertices = &in[vidx];
434
0
            const size_t srcVtxCount = *iit;
435
0
            if (srcVtxCount == 0)
436
0
                continue;
437
438
0
            IfcVector3 polyNormal = TempMesh::ComputePolygonNormal(srcVertices, srcVtxCount, true);
439
440
            // if the poly is parallel to the plane, put it completely on the black or white side
441
0
            if (std::abs(polyNormal * n) > 0.9999) {
442
0
                bool isOnWhiteSide = (srcVertices[0] - p) * n > -ai_epsilon;
443
0
                std::vector<IfcVector3> &targetSide = isOnWhiteSide ? whiteside : blackside;
444
0
                targetSide.insert(targetSide.end(), srcVertices, srcVertices + srcVtxCount);
445
0
            } else {
446
                // otherwise start building one polygon for each side. Whenever the current line segment intersects the plane
447
                // we put a point there as an end of the current segment. Then we switch to the other side, put a point there, too,
448
                // as a beginning of the current segment, and simply continue accumulating vertices.
449
0
                bool isCurrentlyOnWhiteSide = ((srcVertices[0]) - p) * n > -ai_epsilon;
450
0
                for (size_t a = 0; a < srcVtxCount; ++a) {
451
0
                    IfcVector3 e0 = srcVertices[a];
452
0
                    IfcVector3 e1 = srcVertices[(a + 1) % srcVtxCount];
453
0
                    IfcVector3 ei;
454
455
                    // put starting point to the current mesh
456
0
                    std::vector<IfcVector3> &trgt = isCurrentlyOnWhiteSide ? whiteside : blackside;
457
0
                    trgt.push_back(srcVertices[a]);
458
459
                    // if there's an intersection, put an end vertex there, switch to the other side's mesh,
460
                    // and add a starting vertex there, too
461
0
                    bool isPlaneHit = IntersectSegmentPlane(p, n, e0, e1, isCurrentlyOnWhiteSide, ei);
462
0
                    if (isPlaneHit) {
463
0
                        if (trgt.empty() || (trgt.back() - ei).SquareLength() > 1e-12)
464
0
                            trgt.push_back(ei);
465
0
                        isCurrentlyOnWhiteSide = !isCurrentlyOnWhiteSide;
466
0
                        std::vector<IfcVector3> &newtrgt = isCurrentlyOnWhiteSide ? whiteside : blackside;
467
0
                        newtrgt.push_back(ei);
468
0
                    }
469
0
                }
470
0
            }
471
0
        }
472
473
        // the part on the white side can be written into the target mesh right away
474
0
        WritePolygon(whiteside, result);
475
476
        // The black part is the piece we need to get rid of, but only the part of it within the boundary polygon.
477
        // So we now need to construct all the polygons that result from BlackSidePoly minus BoundaryPoly.
478
0
        FilterPolygon(blackside);
479
480
        // Complicated, II. We run along the polygon. a) When we're inside the boundary, we run on until we hit an
481
        // intersection, which means we're leaving it. We then start a new out poly there. b) When we're outside the
482
        // boundary, we start collecting vertices until we hit an intersection, then we run along the boundary until we hit
483
        // an intersection, then we switch back to the poly and run on on this one again, and so on until we got a closed
484
        // loop. Then we continue with the path we left to catch potential additional polys on the other side of the
485
        // boundary as described in a)
486
0
        if (!blackside.empty()) {
487
            // poly edge index, intersection point, edge index in boundary poly
488
0
            std::vector<std::tuple<size_t, IfcVector3, size_t>> intersections;
489
0
            bool startedInside = PointInPoly(proj * blackside.front(), profile->mVerts);
490
0
            bool isCurrentlyInside = startedInside;
491
492
0
            std::vector<std::pair<size_t, IfcVector3>> intersected_boundary;
493
494
0
            for (size_t a = 0; a < blackside.size(); ++a) {
495
0
                const IfcVector3 e0 = proj * blackside[a];
496
0
                const IfcVector3 e1 = proj * blackside[(a + 1) % blackside.size()];
497
498
0
                intersected_boundary.clear();
499
0
                IntersectsBoundaryProfile(e0, e1, profile->mVerts, isCurrentlyInside, intersected_boundary);
500
                // sort the hits by distance from e0 to get the correct in/out/in sequence. Manually :-( I miss you, C++11.
501
0
                if (intersected_boundary.size() > 1) {
502
0
                    bool keepSorting = true;
503
0
                    while (keepSorting) {
504
0
                        keepSorting = false;
505
0
                        for (size_t b = 0; b < intersected_boundary.size() - 1; ++b) {
506
0
                            if ((intersected_boundary[b + 1].second - e0).SquareLength() < (intersected_boundary[b].second - e0).SquareLength()) {
507
0
                                keepSorting = true;
508
0
                                std::swap(intersected_boundary[b + 1], intersected_boundary[b]);
509
0
                            }
510
0
                        }
511
0
                    }
512
0
                }
513
                // now add them to the list of intersections
514
0
                for (size_t b = 0; b < intersected_boundary.size(); ++b)
515
0
                    intersections.emplace_back(a, proj_inv * intersected_boundary[b].second, intersected_boundary[b].first);
516
517
                // and calculate our new inside/outside state
518
0
                if (intersected_boundary.size() & 1)
519
0
                    isCurrentlyInside = !isCurrentlyInside;
520
0
            }
521
522
            // we got a list of in-out-combinations of intersections. That should be an even number of intersections, or
523
            // we are facing a non-recoverable error.
524
0
            if ((intersections.size() & 1) != 0) {
525
0
                IFCImporter::LogWarn("Odd number of intersections, can't work with that. Omitting half space boundary check.");
526
0
                continue;
527
0
            }
528
529
0
            if (intersections.size() > 1) {
530
                // If we started outside, the first intersection is a out->in intersection. Cycle them so that it
531
                // starts with an intersection leaving the boundary
532
0
                if (!startedInside)
533
0
                    for (size_t b = 0; b < intersections.size() - 1; ++b)
534
0
                        std::swap(intersections[b], intersections[(b + intersections.size() - 1) % intersections.size()]);
535
536
                // Filter pairs of out->in->out that lie too close to each other.
537
0
                for (size_t a = 0; intersections.size() > 0 && a < intersections.size() - 1; /**/) {
538
0
                    if ((std::get<1>(intersections[a]) - std::get<1>(intersections[(a + 1) % intersections.size()])).SquareLength() < 1e-10)
539
0
                        intersections.erase(intersections.begin() + a, intersections.begin() + a + 2);
540
0
                    else
541
0
                        a++;
542
0
                }
543
0
                if (intersections.size() > 1 && (std::get<1>(intersections.back()) - std::get<1>(intersections.front())).SquareLength() < 1e-10) {
544
0
                    intersections.pop_back();
545
0
                    intersections.erase(intersections.begin());
546
0
                }
547
0
            }
548
549
            // no intersections at all: either completely inside the boundary, so everything gets discarded, or completely outside.
550
            // in the latter case we're implementional lost. I'm simply going to ignore this, so a large poly will not get any
551
            // holes if the boundary is smaller and does not touch it anywhere.
552
0
            if (intersections.empty()) {
553
                // starting point was outside -> everything is outside the boundary -> nothing is clipped -> add black side
554
                // to result mesh unchanged
555
0
                if (!startedInside) {
556
0
                    outvertcnt.push_back(static_cast<unsigned int>(blackside.size()));
557
0
                    outvert.insert(outvert.end(), blackside.begin(), blackside.end());
558
0
                    continue;
559
0
                } else {
560
                    // starting point was inside the boundary -> everything is inside the boundary -> nothing is spared from the
561
                    // clipping -> nothing left to add to the result mesh
562
0
                    continue;
563
0
                }
564
0
            }
565
566
            // determine the direction in which we're marching along the boundary polygon. If the src poly is faced upwards
567
            // and the boundary is also winded this way, we need to march *backwards* on the boundary.
568
0
            const IfcVector3 polyNormal = IfcMatrix3(proj) * TempMesh::ComputePolygonNormal(blackside.data(), blackside.size());
569
0
            bool marchBackwardsOnBoundary = (profileNormal * polyNormal) >= 0.0;
570
571
            // Build closed loops from these intersections. Starting from an intersection leaving the boundary we
572
            // walk along the polygon to the next intersection (which should be an IS entering the boundary poly).
573
            // From there we walk along the boundary until we hit another intersection leaving the boundary,
574
            // walk along the poly to the next IS and so on until we're back at the starting point.
575
            // We remove every intersection we "used up", so any remaining intersection is the start of a new loop.
576
0
            while (!intersections.empty()) {
577
0
                std::vector<IfcVector3> resultpoly;
578
0
                size_t currentIntersecIdx = 0;
579
580
0
                while (true) {
581
0
                    ai_assert(intersections.size() > currentIntersecIdx + 1);
582
0
                    std::tuple<size_t, IfcVector3, size_t> currintsec = intersections[currentIntersecIdx + 0];
583
0
                    std::tuple<size_t, IfcVector3, size_t> nextintsec = intersections[currentIntersecIdx + 1];
584
0
                    intersections.erase(intersections.begin() + currentIntersecIdx, intersections.begin() + currentIntersecIdx + 2);
585
586
                    // we start with an in->out intersection
587
0
                    resultpoly.push_back(std::get<1>(currintsec));
588
                    // climb along the polygon to the next intersection, which should be an out->in
589
0
                    size_t numPolyPoints = (std::get<0>(currintsec) > std::get<0>(nextintsec) ? blackside.size() : 0) + std::get<0>(nextintsec) - std::get<0>(currintsec);
590
0
                    for (size_t a = 1; a <= numPolyPoints; ++a)
591
0
                        resultpoly.push_back(blackside[(std::get<0>(currintsec) + a) % blackside.size()]);
592
                    // put the out->in intersection
593
0
                    resultpoly.push_back(std::get<1>(nextintsec));
594
595
                    // generate segments along the boundary polygon that lie in the poly's plane until we hit another intersection
596
0
                    IfcVector3 startingPoint = proj * std::get<1>(nextintsec);
597
0
                    size_t currentBoundaryEdgeIdx = (std::get<2>(nextintsec) + (marchBackwardsOnBoundary ? 1 : 0)) % profile->mVerts.size();
598
0
                    size_t nextIntsecIdx = SIZE_MAX;
599
0
                    while (nextIntsecIdx == SIZE_MAX) {
600
0
                        IfcFloat t = 1e10;
601
602
0
                        size_t nextBoundaryEdgeIdx = marchBackwardsOnBoundary ? (currentBoundaryEdgeIdx + profile->mVerts.size() - 1) : currentBoundaryEdgeIdx + 1;
603
0
                        nextBoundaryEdgeIdx %= profile->mVerts.size();
604
                        // vertices of the current boundary segments
605
0
                        IfcVector3 currBoundaryPoint = profile->mVerts[currentBoundaryEdgeIdx];
606
0
                        IfcVector3 nextBoundaryPoint = profile->mVerts[nextBoundaryEdgeIdx];
607
                        // project the two onto the polygon
608
0
                        if (std::abs(polyNormal.z) > 1e-5) {
609
0
                            currBoundaryPoint.z = startingPoint.z + (currBoundaryPoint.x - startingPoint.x) * polyNormal.x / polyNormal.z + (currBoundaryPoint.y - startingPoint.y) * polyNormal.y / polyNormal.z;
610
0
                            nextBoundaryPoint.z = startingPoint.z + (nextBoundaryPoint.x - startingPoint.x) * polyNormal.x / polyNormal.z + (nextBoundaryPoint.y - startingPoint.y) * polyNormal.y / polyNormal.z;
611
0
                        }
612
613
                        // build a direction that goes along the boundary border but lies in the poly plane
614
0
                        IfcVector3 boundaryPlaneNormal = ((nextBoundaryPoint - currBoundaryPoint) ^ profileNormal).Normalize();
615
0
                        IfcVector3 dirAtPolyPlane = (boundaryPlaneNormal ^ polyNormal).Normalize() * (marchBackwardsOnBoundary ? -1.0 : 1.0);
616
                        // if we can project the direction to the plane, we can calculate a maximum marching distance along that dir
617
                        // until we finish that boundary segment and continue on the next
618
0
                        if (std::abs(polyNormal.z) > 1e-5) {
619
0
                            t = std::min(t, (nextBoundaryPoint - startingPoint).Length());
620
0
                        }
621
622
                        // check if the direction hits the loop start - if yes, we got a poly to output
623
0
                        IfcVector3 dirToThatPoint = proj * resultpoly.front() - startingPoint;
624
0
                        IfcFloat tpt = dirToThatPoint * dirAtPolyPlane;
625
0
                        if (tpt > -1e-6 && tpt <= t && (dirToThatPoint - tpt * dirAtPolyPlane).SquareLength() < 1e-10) {
626
0
                            nextIntsecIdx = intersections.size(); // dirty hack to end marching along the boundary and signal the end of the loop
627
0
                            t = tpt;
628
0
                        }
629
630
                        // also check if the direction hits any in->out intersections earlier. If we hit one, we can switch back
631
                        // to marching along the poly border from that intersection point
632
0
                        for (size_t a = 0; a < intersections.size(); a += 2) {
633
0
                            dirToThatPoint = proj * std::get<1>(intersections[a]) - startingPoint;
634
0
                            tpt = dirToThatPoint * dirAtPolyPlane;
635
0
                            if (tpt > -1e-6 && tpt <= t && (dirToThatPoint - tpt * dirAtPolyPlane).SquareLength() < 1e-10) {
636
0
                                nextIntsecIdx = a; // switch back to poly and march on from this in->out intersection
637
0
                                t = tpt;
638
0
                            }
639
0
                        }
640
641
                        // if we keep marching on the boundary, put the segment end point to the result poly and well... keep marching
642
0
                        if (nextIntsecIdx == SIZE_MAX) {
643
0
                            resultpoly.push_back(proj_inv * nextBoundaryPoint);
644
0
                            currentBoundaryEdgeIdx = nextBoundaryEdgeIdx;
645
0
                            startingPoint = nextBoundaryPoint;
646
0
                        }
647
648
                        // quick endless loop check
649
0
                        if (resultpoly.size() > blackside.size() + profile->mVerts.size()) {
650
0
                            IFCImporter::LogError("Encountered endless loop while clipping polygon against poly-bounded half space.");
651
0
                            break;
652
0
                        }
653
0
                    }
654
655
                    // we're back on the poly - if this is the intersection we started from, we got a closed loop.
656
0
                    if (nextIntsecIdx >= intersections.size()) {
657
0
                        break;
658
0
                    }
659
660
                    // otherwise it's another intersection. Continue marching from there.
661
0
                    currentIntersecIdx = nextIntsecIdx;
662
0
                }
663
664
0
                WritePolygon(resultpoly, result);
665
0
            }
666
0
        }
667
0
    }
668
0
    IFCImporter::LogVerboseDebug("generating CSG geometry by plane clipping with polygonal bounding (IfcBooleanClippingResult)");
669
0
}
670
671
// ------------------------------------------------------------------------------------------------
672
void ProcessBooleanExtrudedAreaSolidDifference(const Schema_2x3::IfcExtrudedAreaSolid *as,
673
        TempMesh &result,
674
        const TempMesh &first_operand,
675
0
        ConversionData &conv) {
676
0
    ai_assert(as != nullptr);
677
678
    // This case is handled by reduction to an instance of the quadrify() algorithm.
679
    // Obviously, this won't work for arbitrarily complex cases. In fact, the first
680
    // operand should be near-planar. Luckily, this is usually the case in Ifc
681
    // buildings.
682
683
0
    std::shared_ptr<TempMesh> meshtmp = std::make_shared<TempMesh>();
684
0
    ProcessExtrudedAreaSolid(*as, *meshtmp, conv, false);
685
686
0
    std::vector<TempOpening> openings(1, TempOpening(as, IfcVector3(0, 0, 0), std::move(meshtmp), std::shared_ptr<TempMesh>()));
687
688
0
    result = first_operand;
689
690
0
    TempMesh temp;
691
692
0
    std::vector<IfcVector3>::const_iterator vit = first_operand.mVerts.begin();
693
0
    for (unsigned int pcount : first_operand.mVertcnt) {
694
0
        temp.Clear();
695
696
0
        temp.mVerts.insert(temp.mVerts.end(), vit, vit + pcount);
697
0
        temp.mVertcnt.push_back(pcount);
698
699
        // The algorithms used to generate mesh geometry sometimes
700
        // spit out lines or other degenerates which must be
701
        // filtered to avoid running into assertions later on.
702
703
        // ComputePolygonNormal returns the Newell normal, so the
704
        // length of the normal is the area of the polygon.
705
0
        const IfcVector3 &normal = temp.ComputeLastPolygonNormal(false);
706
0
        if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
707
0
            IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
708
0
            continue;
709
0
        }
710
711
0
        GenerateOpenings(openings, temp, false, true);
712
0
        result.Append(temp);
713
714
0
        vit += pcount;
715
0
    }
716
717
0
    IFCImporter::LogVerboseDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
718
0
}
719
720
// ------------------------------------------------------------------------------------------------
721
0
void ProcessBoolean(const Schema_2x3::IfcBooleanResult &boolean, TempMesh &result, ConversionData &conv) {
722
    // supported CSG operations:
723
    //   DIFFERENCE
724
0
    if (const Schema_2x3::IfcBooleanResult *const clip = boolean.ToPtr<Schema_2x3::IfcBooleanResult>()) {
725
0
        if (clip->Operator != "DIFFERENCE") {
726
0
            IFCImporter::LogWarn("encountered unsupported boolean operator: ", (std::string)clip->Operator);
727
0
            return;
728
0
        }
729
730
        // supported cases (1st operand):
731
        //  IfcBooleanResult -- call ProcessBoolean recursively
732
        //  IfcSweptAreaSolid -- obtain polygonal geometry first
733
734
        // supported cases (2nd operand):
735
        //  IfcHalfSpaceSolid -- easy, clip against plane
736
        //  IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
737
738
0
        const Schema_2x3::IfcHalfSpaceSolid *const hs = clip->SecondOperand->ResolveSelectPtr<Schema_2x3::IfcHalfSpaceSolid>(conv.db);
739
0
        const Schema_2x3::IfcExtrudedAreaSolid *const as = clip->SecondOperand->ResolveSelectPtr<Schema_2x3::IfcExtrudedAreaSolid>(conv.db);
740
0
        if (!hs && !as) {
741
0
            IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
742
0
            return;
743
0
        }
744
745
0
        TempMesh first_operand;
746
0
        if (const Schema_2x3::IfcBooleanResult *const op0 = clip->FirstOperand->ResolveSelectPtr<Schema_2x3::IfcBooleanResult>(conv.db)) {
747
0
            ProcessBoolean(*op0, first_operand, conv);
748
0
        } else if (const Schema_2x3::IfcSweptAreaSolid *const swept = clip->FirstOperand->ResolveSelectPtr<Schema_2x3::IfcSweptAreaSolid>(conv.db)) {
749
0
            ProcessSweptAreaSolid(*swept, first_operand, conv);
750
0
        } else {
751
0
            IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
752
0
            return;
753
0
        }
754
755
0
        if (hs) {
756
757
0
            const Schema_2x3::IfcPolygonalBoundedHalfSpace *const hs_bounded = clip->SecondOperand->ResolveSelectPtr<Schema_2x3::IfcPolygonalBoundedHalfSpace>(conv.db);
758
0
            if (hs_bounded) {
759
0
                ProcessPolygonalBoundedBooleanHalfSpaceDifference(hs_bounded, result, first_operand, conv);
760
0
            } else {
761
0
                ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
762
0
            }
763
0
        } else {
764
0
            ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
765
0
        }
766
0
    } else {
767
0
        IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is ", boolean.GetClassName());
768
0
    }
769
0
}
770
771
} // namespace IFC
772
} // namespace Assimp
773
774
#endif // ASSIMP_BUILD_NO_IFC_IMPORTER