/src/assimp/code/PostProcessing/TextureTransform.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | Open Asset Import Library (assimp) |
3 | | ---------------------------------------------------------------------- |
4 | | |
5 | | Copyright (c) 2006-2024, assimp team |
6 | | |
7 | | All rights reserved. |
8 | | |
9 | | Redistribution and use of this software in source and binary forms, |
10 | | with or without modification, are permitted provided that the |
11 | | following conditions are met: |
12 | | |
13 | | * Redistributions of source code must retain the above |
14 | | copyright notice, this list of conditions and the |
15 | | following disclaimer. |
16 | | |
17 | | * Redistributions in binary form must reproduce the above |
18 | | copyright notice, this list of conditions and the |
19 | | following disclaimer in the documentation and/or other |
20 | | materials provided with the distribution. |
21 | | |
22 | | * Neither the name of the assimp team, nor the names of its |
23 | | contributors may be used to endorse or promote products |
24 | | derived from this software without specific prior |
25 | | written permission of the assimp team. |
26 | | |
27 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
28 | | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
29 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
30 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
31 | | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
32 | | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
33 | | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
34 | | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
35 | | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
36 | | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
37 | | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
38 | | |
39 | | ---------------------------------------------------------------------- |
40 | | */ |
41 | | |
42 | | /** @file A helper class that processes texture transformations */ |
43 | | |
44 | | #include <assimp/Importer.hpp> |
45 | | #include <assimp/postprocess.h> |
46 | | #include <assimp/DefaultLogger.hpp> |
47 | | #include <assimp/scene.h> |
48 | | |
49 | | #include "TextureTransform.h" |
50 | | #include <assimp/StringUtils.h> |
51 | | |
52 | | using namespace Assimp; |
53 | | |
54 | | // ------------------------------------------------------------------------------------------------ |
55 | | // Constructor to be privately used by Importer |
56 | 33 | TextureTransformStep::TextureTransformStep() : configFlags() { |
57 | | // nothing to do here |
58 | 33 | } |
59 | | |
60 | | // ------------------------------------------------------------------------------------------------ |
61 | | // Returns whether the processing step is present in the given flag field. |
62 | 2 | bool TextureTransformStep::IsActive( unsigned int pFlags) const { |
63 | 2 | return (pFlags & aiProcess_TransformUVCoords) != 0; |
64 | 2 | } |
65 | | |
66 | | // ------------------------------------------------------------------------------------------------ |
67 | | // Setup properties |
68 | 0 | void TextureTransformStep::SetupProperties(const Importer* pImp) { |
69 | 0 | configFlags = pImp->GetPropertyInteger(AI_CONFIG_PP_TUV_EVALUATE,AI_UVTRAFO_ALL); |
70 | 0 | } |
71 | | |
72 | | // ------------------------------------------------------------------------------------------------ |
73 | 0 | void TextureTransformStep::PreProcessUVTransform(STransformVecInfo& info) { |
74 | | /* This function tries to simplify the input UV transformation. |
75 | | * That's very important as it allows us to reduce the number |
76 | | * of output UV channels. The order in which the transformations |
77 | | * are applied is - as always - scaling, rotation, translation. |
78 | | */ |
79 | |
|
80 | 0 | int rounded; |
81 | 0 | char szTemp[512] = {}; |
82 | | |
83 | | /* Optimize the rotation angle. That's slightly difficult as |
84 | | * we have an inprecise floating-point number (when comparing |
85 | | * UV transformations we'll take that into account by using |
86 | | * an epsilon of 5 degrees). If there is a rotation value, we can't |
87 | | * perform any further optimizations. |
88 | | */ |
89 | 0 | if (info.mRotation) { |
90 | 0 | float out = info.mRotation; |
91 | 0 | rounded = static_cast<int>((info.mRotation / static_cast<float>(AI_MATH_TWO_PI))); |
92 | 0 | if (rounded) { |
93 | 0 | out -= rounded * static_cast<float>(AI_MATH_PI); |
94 | 0 | ASSIMP_LOG_INFO("Texture coordinate rotation ", info.mRotation, " can be simplified to ", out); |
95 | 0 | } |
96 | | |
97 | | // Next step - convert negative rotation angles to positives |
98 | 0 | if (out < 0.f) |
99 | 0 | out = (float)AI_MATH_TWO_PI * 2 + out; |
100 | |
|
101 | 0 | info.mRotation = out; |
102 | 0 | return; |
103 | 0 | } |
104 | | |
105 | | |
106 | | /* Optimize UV translation in the U direction. To determine whether |
107 | | * or not we can optimize we need to look at the requested mapping |
108 | | * type (e.g. if mirroring is active there IS a difference between |
109 | | * offset 2 and 3) |
110 | | */ |
111 | 0 | rounded = (int)info.mTranslation.x; |
112 | 0 | if (rounded) { |
113 | 0 | float out = 0.0f; |
114 | 0 | szTemp[0] = 0; |
115 | 0 | if (aiTextureMapMode_Wrap == info.mapU) { |
116 | | // Wrap - simple take the fraction of the field |
117 | 0 | out = info.mTranslation.x-(float)rounded; |
118 | 0 | ai_snprintf(szTemp, 512, "[w] UV U offset %f can be simplified to %f", info.mTranslation.x, out); |
119 | 0 | } |
120 | 0 | else if (aiTextureMapMode_Mirror == info.mapU && 1 != rounded) { |
121 | | // Mirror |
122 | 0 | if (rounded % 2) |
123 | 0 | rounded--; |
124 | 0 | out = info.mTranslation.x-(float)rounded; |
125 | |
|
126 | 0 | ai_snprintf(szTemp,512,"[m/d] UV U offset %f can be simplified to %f",info.mTranslation.x,out); |
127 | 0 | } |
128 | 0 | else if (aiTextureMapMode_Clamp == info.mapU || aiTextureMapMode_Decal == info.mapU) { |
129 | | // Clamp - translations beyond 1,1 are senseless |
130 | 0 | ai_snprintf(szTemp,512,"[c] UV U offset %f can be clamped to 1.0f",info.mTranslation.x); |
131 | |
|
132 | 0 | out = 1.f; |
133 | 0 | } |
134 | 0 | if (szTemp[0]) { |
135 | 0 | ASSIMP_LOG_INFO(szTemp); |
136 | 0 | info.mTranslation.x = out; |
137 | 0 | } |
138 | 0 | } |
139 | | |
140 | | /* Optimize UV translation in the V direction. To determine whether |
141 | | * or not we can optimize we need to look at the requested mapping |
142 | | * type (e.g. if mirroring is active there IS a difference between |
143 | | * offset 2 and 3) |
144 | | */ |
145 | 0 | rounded = (int)info.mTranslation.y; |
146 | 0 | if (rounded) { |
147 | 0 | float out = 0.0f; |
148 | 0 | szTemp[0] = 0; |
149 | 0 | if (aiTextureMapMode_Wrap == info.mapV) { |
150 | | // Wrap - simple take the fraction of the field |
151 | 0 | out = info.mTranslation.y-(float)rounded; |
152 | 0 | ::ai_snprintf(szTemp,512,"[w] UV V offset %f can be simplified to %f",info.mTranslation.y,out); |
153 | 0 | } |
154 | 0 | else if (aiTextureMapMode_Mirror == info.mapV && 1 != rounded) { |
155 | | // Mirror |
156 | 0 | if (rounded % 2) |
157 | 0 | rounded--; |
158 | 0 | out = info.mTranslation.x-(float)rounded; |
159 | |
|
160 | 0 | ::ai_snprintf(szTemp,512,"[m/d] UV V offset %f can be simplified to %f",info.mTranslation.y,out); |
161 | 0 | } |
162 | 0 | else if (aiTextureMapMode_Clamp == info.mapV || aiTextureMapMode_Decal == info.mapV) { |
163 | | // Clamp - translations beyond 1,1 are senseless |
164 | 0 | ::ai_snprintf(szTemp,512,"[c] UV V offset %f can be clamped to 1.0f",info.mTranslation.y); |
165 | |
|
166 | 0 | out = 1.f; |
167 | 0 | } |
168 | 0 | if (szTemp[0]) { |
169 | 0 | ASSIMP_LOG_INFO(szTemp); |
170 | 0 | info.mTranslation.y = out; |
171 | 0 | } |
172 | 0 | } |
173 | 0 | } |
174 | | |
175 | | // ------------------------------------------------------------------------------------------------ |
176 | 0 | void UpdateUVIndex(const std::list<TTUpdateInfo>& l, unsigned int n) { |
177 | | // Don't set if == 0 && wasn't set before |
178 | 0 | for (std::list<TTUpdateInfo>::const_iterator it = l.begin();it != l.end(); ++it) { |
179 | 0 | const TTUpdateInfo& info = *it; |
180 | |
|
181 | 0 | if (info.directShortcut) |
182 | 0 | *info.directShortcut = n; |
183 | 0 | else if (!n) |
184 | 0 | { |
185 | 0 | info.mat->AddProperty<int>((int*)&n,1,AI_MATKEY_UVWSRC(info.semantic,info.index)); |
186 | 0 | } |
187 | 0 | } |
188 | 0 | } |
189 | | |
190 | | // ------------------------------------------------------------------------------------------------ |
191 | 0 | inline static const char* MappingModeToChar(aiTextureMapMode map) { |
192 | 0 | if (aiTextureMapMode_Wrap == map) |
193 | 0 | return "-w"; |
194 | | |
195 | 0 | if (aiTextureMapMode_Mirror == map) |
196 | 0 | return "-m"; |
197 | | |
198 | 0 | return "-c"; |
199 | 0 | } |
200 | | |
201 | | // ------------------------------------------------------------------------------------------------ |
202 | 0 | void TextureTransformStep::Execute( aiScene* pScene) { |
203 | 0 | ASSIMP_LOG_DEBUG("TransformUVCoordsProcess begin"); |
204 | | |
205 | | |
206 | | /* We build a per-mesh list of texture transformations we'll need |
207 | | * to apply. To achieve this, we iterate through all materials, |
208 | | * find all textures and get their transformations and UV indices. |
209 | | * Then we search for all meshes using this material. |
210 | | */ |
211 | 0 | typedef std::list<STransformVecInfo> MeshTrafoList; |
212 | 0 | std::vector<MeshTrafoList> meshLists(pScene->mNumMeshes); |
213 | |
|
214 | 0 | for (unsigned int i = 0; i < pScene->mNumMaterials;++i) { |
215 | |
|
216 | 0 | aiMaterial* mat = pScene->mMaterials[i]; |
217 | 0 | for (unsigned int a = 0; a < mat->mNumProperties;++a) { |
218 | |
|
219 | 0 | aiMaterialProperty* prop = mat->mProperties[a]; |
220 | 0 | if (!::strcmp( prop->mKey.data, "$tex.file")) { |
221 | 0 | STransformVecInfo info; |
222 | | |
223 | | // Setup a shortcut structure to allow for a fast updating |
224 | | // of the UV index later |
225 | 0 | TTUpdateInfo update; |
226 | 0 | update.mat = (aiMaterial*) mat; |
227 | 0 | update.semantic = prop->mSemantic; |
228 | 0 | update.index = prop->mIndex; |
229 | | |
230 | | // Get textured properties and transform |
231 | 0 | for (unsigned int a2 = 0; a2 < mat->mNumProperties;++a2) { |
232 | 0 | aiMaterialProperty* prop2 = mat->mProperties[a2]; |
233 | 0 | if (prop2->mSemantic != prop->mSemantic || prop2->mIndex != prop->mIndex) { |
234 | 0 | continue; |
235 | 0 | } |
236 | | |
237 | 0 | if ( !::strcmp( prop2->mKey.data, "$tex.uvwsrc")) { |
238 | 0 | info.uvIndex = *((int*)prop2->mData); |
239 | | |
240 | | // Store a direct pointer for later use |
241 | 0 | update.directShortcut = (unsigned int*) prop2->mData; |
242 | 0 | } |
243 | | |
244 | 0 | else if ( !::strcmp( prop2->mKey.data, "$tex.mapmodeu")) { |
245 | 0 | info.mapU = *((aiTextureMapMode*)prop2->mData); |
246 | 0 | } |
247 | 0 | else if ( !::strcmp( prop2->mKey.data, "$tex.mapmodev")) { |
248 | 0 | info.mapV = *((aiTextureMapMode*)prop2->mData); |
249 | 0 | } |
250 | 0 | else if ( !::strcmp( prop2->mKey.data, "$tex.uvtrafo")) { |
251 | | // ValidateDS should check this |
252 | 0 | ai_assert(prop2->mDataLength >= 20); |
253 | 0 | ::memcpy(&info.mTranslation.x,prop2->mData,sizeof(float)*5); |
254 | | |
255 | | // Directly remove this property from the list |
256 | 0 | mat->mNumProperties--; |
257 | 0 | for (unsigned int a3 = a2; a3 < mat->mNumProperties;++a3) { |
258 | 0 | mat->mProperties[a3] = mat->mProperties[a3+1]; |
259 | 0 | } |
260 | |
|
261 | 0 | delete prop2; |
262 | | |
263 | | // Warn: could be an underflow, but this does not invoke undefined behaviour |
264 | 0 | --a2; |
265 | 0 | } |
266 | 0 | } |
267 | | |
268 | | // Find out which transformations are to be evaluated |
269 | 0 | if (!(configFlags & AI_UVTRAFO_ROTATION)) { |
270 | 0 | info.mRotation = 0.f; |
271 | 0 | } |
272 | 0 | if (!(configFlags & AI_UVTRAFO_SCALING)) { |
273 | 0 | info.mScaling = aiVector2D(1.f,1.f); |
274 | 0 | } |
275 | 0 | if (!(configFlags & AI_UVTRAFO_TRANSLATION)) { |
276 | 0 | info.mTranslation = aiVector2D(0.f,0.f); |
277 | 0 | } |
278 | | |
279 | | // Do some preprocessing |
280 | 0 | PreProcessUVTransform(info); |
281 | 0 | info.uvIndex = std::min(info.uvIndex,AI_MAX_NUMBER_OF_TEXTURECOORDS -1u); |
282 | | |
283 | | // Find out whether this material is used by more than |
284 | | // one mesh. This will make our task much, much more difficult! |
285 | 0 | unsigned int cnt = 0; |
286 | 0 | for (unsigned int n = 0; n < pScene->mNumMeshes;++n) { |
287 | 0 | if (pScene->mMeshes[n]->mMaterialIndex == i) |
288 | 0 | ++cnt; |
289 | 0 | } |
290 | |
|
291 | 0 | if (!cnt) |
292 | 0 | continue; |
293 | 0 | else if (1 != cnt) { |
294 | | // This material is referenced by more than one mesh! |
295 | | // So we need to make sure the UV index for the texture |
296 | | // is identical for each of it ... |
297 | 0 | info.lockedPos = AI_TT_UV_IDX_LOCK_TBD; |
298 | 0 | } |
299 | | |
300 | | // Get all corresponding meshes |
301 | 0 | for (unsigned int n = 0; n < pScene->mNumMeshes;++n) { |
302 | 0 | aiMesh* mesh = pScene->mMeshes[n]; |
303 | 0 | if (mesh->mMaterialIndex != i || !mesh->mTextureCoords[0]) |
304 | 0 | continue; |
305 | | |
306 | 0 | unsigned int uv = info.uvIndex; |
307 | 0 | if (!mesh->mTextureCoords[uv]) { |
308 | | // If the requested UV index is not available, take the first one instead. |
309 | 0 | uv = 0; |
310 | 0 | } |
311 | |
|
312 | 0 | if (mesh->mNumUVComponents[info.uvIndex] >= 3){ |
313 | 0 | ASSIMP_LOG_WARN("UV transformations on 3D mapping channels are not supported"); |
314 | 0 | continue; |
315 | 0 | } |
316 | | |
317 | 0 | MeshTrafoList::iterator it; |
318 | | |
319 | | // Check whether we have this transform setup already |
320 | 0 | for (it = meshLists[n].begin();it != meshLists[n].end(); ++it) { |
321 | |
|
322 | 0 | if ((*it) == info && (*it).uvIndex == uv) { |
323 | 0 | (*it).updateList.push_back(update); |
324 | 0 | break; |
325 | 0 | } |
326 | 0 | } |
327 | |
|
328 | 0 | if (it == meshLists[n].end()) { |
329 | 0 | meshLists[n].push_back(info); |
330 | 0 | meshLists[n].back().uvIndex = uv; |
331 | 0 | meshLists[n].back().updateList.push_back(update); |
332 | 0 | } |
333 | 0 | } |
334 | 0 | } |
335 | 0 | } |
336 | 0 | } |
337 | |
|
338 | 0 | char buffer[1024]; // should be sufficiently large |
339 | 0 | unsigned int outChannels = 0, inChannels = 0, transformedChannels = 0; |
340 | | |
341 | | // Now process all meshes. Important: we don't remove unreferenced UV channels. |
342 | | // This is a job for the RemoveUnreferencedData-Step. |
343 | 0 | for (unsigned int q = 0; q < pScene->mNumMeshes;++q) { |
344 | |
|
345 | 0 | aiMesh* mesh = pScene->mMeshes[q]; |
346 | 0 | MeshTrafoList& trafo = meshLists[q]; |
347 | |
|
348 | 0 | inChannels += mesh->GetNumUVChannels(); |
349 | |
|
350 | 0 | if (!mesh->mTextureCoords[0] || trafo.empty() || (trafo.size() == 1 && trafo.begin()->IsUntransformed())) { |
351 | 0 | outChannels += mesh->GetNumUVChannels(); |
352 | 0 | continue; |
353 | 0 | } |
354 | | |
355 | | // Move untransformed UV channels to the first position in the list .... |
356 | | // except if we need a new locked index which should be as small as possible |
357 | 0 | bool veto = false, need = false; |
358 | 0 | unsigned int cnt = 0; |
359 | 0 | unsigned int untransformed = 0; |
360 | |
|
361 | 0 | MeshTrafoList::iterator it,it2; |
362 | 0 | for (it = trafo.begin();it != trafo.end(); ++it,++cnt) { |
363 | |
|
364 | 0 | if (!(*it).IsUntransformed()) { |
365 | 0 | need = true; |
366 | 0 | } |
367 | |
|
368 | 0 | if ((*it).lockedPos == AI_TT_UV_IDX_LOCK_TBD) { |
369 | | // Lock this index and make sure it won't be changed |
370 | 0 | (*it).lockedPos = cnt; |
371 | 0 | veto = true; |
372 | 0 | continue; |
373 | 0 | } |
374 | | |
375 | 0 | if (!veto && it != trafo.begin() && (*it).IsUntransformed()) { |
376 | 0 | for (it2 = trafo.begin();it2 != it; ++it2) { |
377 | 0 | if (!(*it2).IsUntransformed()) |
378 | 0 | break; |
379 | 0 | } |
380 | 0 | trafo.insert(it2,*it); |
381 | 0 | trafo.erase(it); |
382 | 0 | break; |
383 | 0 | } |
384 | 0 | } |
385 | 0 | if (!need) |
386 | 0 | continue; |
387 | | |
388 | | // Find all that are not at their 'locked' position and move them to it. |
389 | | // Conflicts are possible but quite unlikely. |
390 | 0 | cnt = 0; |
391 | 0 | for (it = trafo.begin();it != trafo.end(); ++it,++cnt) { |
392 | 0 | if ((*it).lockedPos != AI_TT_UV_IDX_LOCK_NONE && (*it).lockedPos != cnt) { |
393 | 0 | it2 = trafo.begin(); |
394 | 0 | while ((*it2).lockedPos != (*it).lockedPos) |
395 | 0 | ++it2; |
396 | |
|
397 | 0 | if ((*it2).lockedPos != AI_TT_UV_IDX_LOCK_NONE) { |
398 | 0 | ASSIMP_LOG_ERROR("Channel mismatch, can't compute all transformations properly [design bug]"); |
399 | 0 | continue; |
400 | 0 | } |
401 | | |
402 | 0 | std::swap(*it2,*it); |
403 | 0 | if ((*it).lockedPos == untransformed) |
404 | 0 | untransformed = cnt; |
405 | 0 | } |
406 | 0 | } |
407 | | |
408 | | // ... and add dummies for all unreferenced channels |
409 | | // at the end of the list |
410 | 0 | bool ref[AI_MAX_NUMBER_OF_TEXTURECOORDS]; |
411 | 0 | for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) |
412 | 0 | ref[n] = !mesh->mTextureCoords[n]; |
413 | |
|
414 | 0 | for (it = trafo.begin();it != trafo.end(); ++it) |
415 | 0 | ref[(*it).uvIndex] = true; |
416 | |
|
417 | 0 | for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { |
418 | 0 | if (ref[n]) |
419 | 0 | continue; |
420 | 0 | trafo.emplace_back(); |
421 | 0 | trafo.back().uvIndex = n; |
422 | 0 | } |
423 | | |
424 | | // Then check whether this list breaks the channel limit. |
425 | | // The unimportant ones are at the end of the list, so |
426 | | // it shouldn't be too worse if we remove them. |
427 | 0 | unsigned int size = (unsigned int)trafo.size(); |
428 | 0 | if (size > AI_MAX_NUMBER_OF_TEXTURECOORDS) { |
429 | |
|
430 | 0 | if (!DefaultLogger::isNullLogger()) { |
431 | 0 | ASSIMP_LOG_ERROR(static_cast<unsigned int>(trafo.size()), " UV channels required but just ", |
432 | 0 | AI_MAX_NUMBER_OF_TEXTURECOORDS, " available"); |
433 | 0 | } |
434 | 0 | size = AI_MAX_NUMBER_OF_TEXTURECOORDS; |
435 | 0 | } |
436 | | |
437 | |
|
438 | 0 | aiVector3D* old[AI_MAX_NUMBER_OF_TEXTURECOORDS]; |
439 | 0 | for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) |
440 | 0 | old[n] = mesh->mTextureCoords[n]; |
441 | | |
442 | | // Now continue and generate the output channels. Channels |
443 | | // that we're not going to need later can be overridden. |
444 | 0 | it = trafo.begin(); |
445 | 0 | for (unsigned int n = 0; n < trafo.size();++n,++it) { |
446 | |
|
447 | 0 | if (n >= size) { |
448 | | // Try to use an untransformed channel for all channels we threw over board |
449 | 0 | UpdateUVIndex((*it).updateList,untransformed); |
450 | 0 | continue; |
451 | 0 | } |
452 | | |
453 | 0 | outChannels++; |
454 | | |
455 | | // Write to the log |
456 | 0 | if (!DefaultLogger::isNullLogger()) { |
457 | 0 | ::ai_snprintf(buffer,1024,"Mesh %u, channel %u: t(%.3f,%.3f), s(%.3f,%.3f), r(%.3f), %s%s", |
458 | 0 | q,n, |
459 | 0 | (*it).mTranslation.x, |
460 | 0 | (*it).mTranslation.y, |
461 | 0 | (*it).mScaling.x, |
462 | 0 | (*it).mScaling.y, |
463 | 0 | AI_RAD_TO_DEG( (*it).mRotation), |
464 | 0 | MappingModeToChar ((*it).mapU), |
465 | 0 | MappingModeToChar ((*it).mapV)); |
466 | |
|
467 | 0 | ASSIMP_LOG_INFO(buffer); |
468 | 0 | } |
469 | | |
470 | | // Check whether we need a new buffer here |
471 | 0 | if (mesh->mTextureCoords[n]) { |
472 | |
|
473 | 0 | it2 = it;++it2; |
474 | 0 | for (unsigned int m = n+1; m < size;++m, ++it2) { |
475 | |
|
476 | 0 | if ((*it2).uvIndex == n){ |
477 | 0 | it2 = trafo.begin(); |
478 | 0 | break; |
479 | 0 | } |
480 | 0 | } |
481 | 0 | if (it2 == trafo.begin()){ |
482 | 0 | mesh->mTextureCoords[n] = new aiVector3D[mesh->mNumVertices]; |
483 | 0 | } |
484 | 0 | } |
485 | 0 | else mesh->mTextureCoords[n] = new aiVector3D[mesh->mNumVertices]; |
486 | |
|
487 | 0 | aiVector3D* src = old[(*it).uvIndex]; |
488 | 0 | aiVector3D* dest, *end; |
489 | 0 | dest = mesh->mTextureCoords[n]; |
490 | |
|
491 | 0 | ai_assert(nullptr != src); |
492 | | |
493 | | // Copy the data to the destination array |
494 | 0 | if (dest != src) { |
495 | 0 | ::memcpy(dest,src,sizeof(aiVector3D)*mesh->mNumVertices); |
496 | 0 | } |
497 | |
|
498 | 0 | end = dest + mesh->mNumVertices; |
499 | | |
500 | | // Build a transformation matrix and transform all UV coords with it |
501 | 0 | if (!(*it).IsUntransformed()) { |
502 | 0 | const aiVector2D& trl = (*it).mTranslation; |
503 | 0 | const aiVector2D& scl = (*it).mScaling; |
504 | | |
505 | | // fixme: simplify .. |
506 | 0 | ++transformedChannels; |
507 | 0 | aiMatrix3x3 matrix; |
508 | |
|
509 | 0 | aiMatrix3x3 m2,m3,m4,m5; |
510 | |
|
511 | 0 | m4.a1 = scl.x; |
512 | 0 | m4.b2 = scl.y; |
513 | |
|
514 | 0 | m2.a3 = m2.b3 = 0.5f; |
515 | 0 | m3.a3 = m3.b3 = -0.5f; |
516 | |
|
517 | 0 | if ((*it).mRotation > AI_TT_ROTATION_EPSILON ) |
518 | 0 | aiMatrix3x3::RotationZ((*it).mRotation,matrix); |
519 | |
|
520 | 0 | m5.a3 += trl.x; m5.b3 += trl.y; |
521 | 0 | matrix = m2 * m4 * matrix * m3 * m5; |
522 | |
|
523 | 0 | for (src = dest; src != end; ++src) { /* manual homogeneous divide */ |
524 | 0 | src->z = 1.f; |
525 | 0 | *src = matrix * *src; |
526 | 0 | src->x /= src->z; |
527 | 0 | src->y /= src->z; |
528 | 0 | src->z = 0.f; |
529 | 0 | } |
530 | 0 | } |
531 | | |
532 | | // Update all UV indices |
533 | 0 | UpdateUVIndex((*it).updateList,n); |
534 | 0 | } |
535 | 0 | } |
536 | | |
537 | | // Print some detailed statistics into the log |
538 | 0 | if (!DefaultLogger::isNullLogger()) { |
539 | |
|
540 | 0 | if (transformedChannels) { |
541 | 0 | ASSIMP_LOG_INFO("TransformUVCoordsProcess end: ", outChannels, " output channels (in: ", inChannels, ", modified: ", transformedChannels,")"); |
542 | 0 | } else { |
543 | 0 | ASSIMP_LOG_DEBUG("TransformUVCoordsProcess finished"); |
544 | 0 | } |
545 | 0 | } |
546 | 0 | } |
547 | | |
548 | | |