Coverage Report

Created: 2023-12-08 07:15

/src/astc-encoder/Source/astcenc_internal.h
Line
Count
Source (jump to first uncovered line)
1
// SPDX-License-Identifier: Apache-2.0
2
// ----------------------------------------------------------------------------
3
// Copyright 2011-2023 Arm Limited
4
//
5
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
6
// use this file except in compliance with the License. You may obtain a copy
7
// of the License at:
8
//
9
//     http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing, software
12
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14
// License for the specific language governing permissions and limitations
15
// under the License.
16
// ----------------------------------------------------------------------------
17
18
/**
19
 * @brief Functions and data declarations.
20
 */
21
22
#ifndef ASTCENC_INTERNAL_INCLUDED
23
#define ASTCENC_INTERNAL_INCLUDED
24
25
#include <algorithm>
26
#include <cstddef>
27
#include <cstdint>
28
#if defined(ASTCENC_DIAGNOSTICS)
29
  #include <cstdio>
30
#endif
31
#include <cstdlib>
32
#include <limits>
33
34
#include "astcenc.h"
35
#include "astcenc_mathlib.h"
36
#include "astcenc_vecmathlib.h"
37
38
/**
39
 * @brief Make a promise to the compiler's optimizer.
40
 *
41
 * A promise is an expression that the optimizer is can assume is true for to help it generate
42
 * faster code. Common use cases for this are to promise that a for loop will iterate more than
43
 * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop
44
 * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer.
45
 */
46
#if defined(NDEBUG)
47
  #if !defined(__clang__) && defined(_MSC_VER)
48
    #define promise(cond) __assume(cond)
49
  #elif defined(__clang__)
50
    #if __has_builtin(__builtin_assume)
51
      #define promise(cond) __builtin_assume(cond)
52
    #elif __has_builtin(__builtin_unreachable)
53
      #define promise(cond) if (!(cond)) { __builtin_unreachable(); }
54
    #else
55
      #define promise(cond)
56
    #endif
57
  #else // Assume GCC
58
    #define promise(cond) if (!(cond)) { __builtin_unreachable(); }
59
  #endif
60
#else
61
756
  #define promise(cond) assert(cond)
62
#endif
63
64
/* ============================================================================
65
  Constants
66
============================================================================ */
67
#if !defined(ASTCENC_BLOCK_MAX_TEXELS)
68
8.15M
  #define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block
69
#endif
70
71
/** @brief The maximum number of texels a block can support (6x6x6 block). */
72
static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS };
73
74
/** @brief The maximum number of components a block can support. */
75
static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 };
76
77
/** @brief The maximum number of partitions a block can support. */
78
static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 };
79
80
/** @brief The number of partitionings, per partition count, suported by the ASTC format. */
81
static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 };
82
83
/** @brief The maximum number of texels used during partition selection for texel clustering. */
84
static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 };
85
86
/** @brief The maximum number of weights a block can support. */
87
static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 };
88
89
/** @brief The maximum number of weights a block can support per plane in 2 plane mode. */
90
static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 };
91
92
/** @brief The minimum number of weight bits a candidate encoding must encode. */
93
static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 };
94
95
/** @brief The maximum number of weight bits a candidate encoding can encode. */
96
static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 };
97
98
/** @brief The index indicating a bad (unused) block mode in the remap array. */
99
static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu };
100
101
/** @brief The index indicating a bad (unused) partitioning in the remap array. */
102
static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu };
103
104
/** @brief The number of partition index bits supported by the ASTC format . */
105
static constexpr unsigned int PARTITION_INDEX_BITS { 10 };
106
107
/** @brief The offset of the plane 2 weights in shared weight arrays. */
108
static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE };
109
110
/** @brief The sum of quantized weights for one texel. */
111
static constexpr float WEIGHTS_TEXEL_SUM { 16.0f };
112
113
/** @brief The number of block modes supported by the ASTC format. */
114
static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 };
115
116
/** @brief The number of weight grid decimation modes supported by the ASTC format. */
117
static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 };
118
119
/** @brief The high default error used to initialize error trackers. */
120
static constexpr float ERROR_CALC_DEFAULT { 1e30f };
121
122
/**
123
 * @brief The minimum tuning setting threshold for the one partition fast path.
124
 */
125
static constexpr float TUNE_MIN_SEARCH_MODE0 { 0.85f };
126
127
/**
128
 * @brief The maximum number of candidate encodings tested for each encoding mode.
129
 *
130
 * This can be dynamically reduced by the compression quality preset.
131
 */
132
static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 };
133
134
/**
135
 * @brief The maximum number of candidate partitionings tested for each encoding mode.
136
 *
137
 * This can be dynamically reduced by the compression quality preset.
138
 */
139
static constexpr unsigned int TUNE_MAX_PARTITIONING_CANDIDATES { 8 };
140
141
/**
142
 * @brief The maximum quant level using full angular endpoint search method.
143
 *
144
 * The angular endpoint search is used to find the min/max weight that should
145
 * be used for a given quantization level. It is effective but expensive, so
146
 * we only use it where it has the most value - low quant levels with wide
147
 * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we
148
 * assume the min weight is 0.0f, and the max weight is 1.0f.
149
 *
150
 * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills
151
 * one 8-wide vector. Decreasing by one doesn't buy much performance, and
152
 * increasing by one is disproportionately expensive.
153
 */
154
static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */
155
156
static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0,
157
              "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH");
158
159
static_assert(BLOCK_MAX_TEXELS <= 216,
160
              "BLOCK_MAX_TEXELS must not be greater than 216");
161
162
static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0,
163
              "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH");
164
165
static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0,
166
              "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH");
167
168
169
/* ============================================================================
170
  Commonly used data structures
171
============================================================================ */
172
173
/**
174
 * @brief The ASTC endpoint formats.
175
 *
176
 * Note, the values here are used directly in the encoding in the format so do not rearrange.
177
 */
178
enum endpoint_formats
179
{
180
  FMT_LUMINANCE = 0,
181
  FMT_LUMINANCE_DELTA = 1,
182
  FMT_HDR_LUMINANCE_LARGE_RANGE = 2,
183
  FMT_HDR_LUMINANCE_SMALL_RANGE = 3,
184
  FMT_LUMINANCE_ALPHA = 4,
185
  FMT_LUMINANCE_ALPHA_DELTA = 5,
186
  FMT_RGB_SCALE = 6,
187
  FMT_HDR_RGB_SCALE = 7,
188
  FMT_RGB = 8,
189
  FMT_RGB_DELTA = 9,
190
  FMT_RGB_SCALE_ALPHA = 10,
191
  FMT_HDR_RGB = 11,
192
  FMT_RGBA = 12,
193
  FMT_RGBA_DELTA = 13,
194
  FMT_HDR_RGB_LDR_ALPHA = 14,
195
  FMT_HDR_RGBA = 15
196
};
197
198
/**
199
 * @brief The ASTC quantization methods.
200
 *
201
 * Note, the values here are used directly in the encoding in the format so do not rearrange.
202
 */
203
enum quant_method
204
{
205
  QUANT_2 = 0,
206
  QUANT_3 = 1,
207
  QUANT_4 = 2,
208
  QUANT_5 = 3,
209
  QUANT_6 = 4,
210
  QUANT_8 = 5,
211
  QUANT_10 = 6,
212
  QUANT_12 = 7,
213
  QUANT_16 = 8,
214
  QUANT_20 = 9,
215
  QUANT_24 = 10,
216
  QUANT_32 = 11,
217
  QUANT_40 = 12,
218
  QUANT_48 = 13,
219
  QUANT_64 = 14,
220
  QUANT_80 = 15,
221
  QUANT_96 = 16,
222
  QUANT_128 = 17,
223
  QUANT_160 = 18,
224
  QUANT_192 = 19,
225
  QUANT_256 = 20
226
};
227
228
/**
229
 * @brief The number of levels use by an ASTC quantization method.
230
 *
231
 * @param method   The quantization method
232
 *
233
 * @return   The number of levels used by @c method.
234
 */
235
static inline unsigned int get_quant_level(quant_method method)
236
0
{
237
0
  switch (method)
238
0
  {
239
0
  case QUANT_2:   return   2;
240
0
  case QUANT_3:   return   3;
241
0
  case QUANT_4:   return   4;
242
0
  case QUANT_5:   return   5;
243
0
  case QUANT_6:   return   6;
244
0
  case QUANT_8:   return   8;
245
0
  case QUANT_10:  return  10;
246
0
  case QUANT_12:  return  12;
247
0
  case QUANT_16:  return  16;
248
0
  case QUANT_20:  return  20;
249
0
  case QUANT_24:  return  24;
250
0
  case QUANT_32:  return  32;
251
0
  case QUANT_40:  return  40;
252
0
  case QUANT_48:  return  48;
253
0
  case QUANT_64:  return  64;
254
0
  case QUANT_80:  return  80;
255
0
  case QUANT_96:  return  96;
256
0
  case QUANT_128: return 128;
257
0
  case QUANT_160: return 160;
258
0
  case QUANT_192: return 192;
259
0
  case QUANT_256: return 256;
260
0
  }
261
262
  // Unreachable - the enum is fully described
263
0
  return 0;
264
0
}
Unexecuted instantiation: fuzz_astc_physical_to_symbolic.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_block_sizes.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_integer_sequence.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_partition_tables.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_percentile_tables.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_symbolic_physical.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_weight_quant_xfer_tables.cpp:get_quant_level(quant_method)
Unexecuted instantiation: astcenc_quantization.cpp:get_quant_level(quant_method)
265
266
/**
267
 * @brief Computed metrics about a partition in a block.
268
 */
269
struct partition_metrics
270
{
271
  /** @brief The error-weighted average color in the partition. */
272
  vfloat4 avg;
273
274
  /** @brief The dominant error-weighted direction in the partition. */
275
  vfloat4 dir;
276
};
277
278
/**
279
 * @brief Computed lines for a a three component analysis.
280
 */
281
struct partition_lines3
282
{
283
  /** @brief Line for uncorrelated chroma. */
284
  line3 uncor_line;
285
286
  /** @brief Line for correlated chroma, passing though the origin. */
287
  line3 samec_line;
288
289
  /** @brief Post-processed line for uncorrelated chroma. */
290
  processed_line3 uncor_pline;
291
292
  /** @brief Post-processed line for correlated chroma, passing though the origin. */
293
  processed_line3 samec_pline;
294
295
  /**
296
   * @brief The length of the line for uncorrelated chroma.
297
   *
298
   * This is used for both the uncorrelated and same chroma lines - they are normally very similar
299
   * and only used for the relative ranking of partitionings against one another.
300
   */
301
  float line_length;
302
};
303
304
/**
305
 * @brief The partition information for a single partition.
306
 *
307
 * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this
308
 * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely
309
 * empty partitions. These are both valid encodings, but astcenc will skip both during compression
310
 * as they are not useful.
311
 */
312
struct partition_info
313
{
314
  /** @brief The number of partitions in this partitioning. */
315
  uint16_t partition_count;
316
317
  /** @brief The index (seed) of this partitioning. */
318
  uint16_t partition_index;
319
320
  /**
321
   * @brief The number of texels in each partition.
322
   *
323
   * Note that some seeds result in zero texels assigned to a partition. These are valid, but are
324
   * skipped by this compressor as there is no point spending bits encoding an unused endpoints.
325
   */
326
  uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS];
327
328
  /** @brief The partition of each texel in the block. */
329
  uint8_t partition_of_texel[BLOCK_MAX_TEXELS];
330
331
  /** @brief The list of texels in each partition. */
332
  uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS];
333
};
334
335
/**
336
 * @brief The weight grid information for a single decimation pattern.
337
 *
338
 * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids
339
 * that are interpolated during decompression to assign a with to a texel. Storing fewer weights
340
 * can free up a substantial amount of bits that we can then spend on more useful things, such as
341
 * more accurate endpoints and weights, or additional partitions.
342
 *
343
 * This data structure is used to store information about a single weight grid decimation pattern,
344
 * for a single block size.
345
 */
346
struct decimation_info
347
{
348
  /** @brief The total number of texels in the block. */
349
  uint8_t texel_count;
350
351
  /** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */
352
  uint8_t max_texel_weight_count;
353
354
  /** @brief The total number of weights stored. */
355
  uint8_t weight_count;
356
357
  /** @brief The number of stored weights in the X dimension. */
358
  uint8_t weight_x;
359
360
  /** @brief The number of stored weights in the Y dimension. */
361
  uint8_t weight_y;
362
363
  /** @brief The number of stored weights in the Z dimension. */
364
  uint8_t weight_z;
365
366
  /**
367
   * @brief The number of weights that contribute to each texel.
368
   * Value is between 1 and 4.
369
   */
370
  uint8_t texel_weight_count[BLOCK_MAX_TEXELS];
371
372
  /**
373
   * @brief The weight index of the N weights that are interpolated for each texel.
374
   * Stored transposed to improve vectorization.
375
   */
376
  uint8_t texel_weights_tr[4][BLOCK_MAX_TEXELS];
377
378
  /**
379
   * @brief The bilinear contribution of the N weights that are interpolated for each texel.
380
   * Value is between 0 and 16, stored transposed to improve vectorization.
381
   */
382
  uint8_t texel_weight_contribs_int_tr[4][BLOCK_MAX_TEXELS];
383
384
  /**
385
   * @brief The bilinear contribution of the N weights that are interpolated for each texel.
386
   * Value is between 0 and 1, stored transposed to improve vectorization.
387
   */
388
  alignas(ASTCENC_VECALIGN) float texel_weight_contribs_float_tr[4][BLOCK_MAX_TEXELS];
389
390
  /** @brief The number of texels that each stored weight contributes to. */
391
  uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS];
392
393
  /**
394
   * @brief The list of texels that use a specific weight index.
395
   * Stored transposed to improve vectorization.
396
   */
397
  uint8_t weight_texels_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
398
399
  /**
400
   * @brief The bilinear contribution to the N texels that use each weight.
401
   * Value is between 0 and 1, stored transposed to improve vectorization.
402
   */
403
  alignas(ASTCENC_VECALIGN) float weights_texel_contribs_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
404
405
  /**
406
   * @brief The bilinear contribution to the Nth texel that uses each weight.
407
   * Value is between 0 and 1, stored transposed to improve vectorization.
408
   */
409
  float texel_contrib_for_weight[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
410
};
411
412
/**
413
 * @brief Metadata for single block mode for a specific block size.
414
 */
415
struct block_mode
416
{
417
  /** @brief The block mode index in the ASTC encoded form. */
418
  uint16_t mode_index;
419
420
  /** @brief The decimation mode index in the compressor reindexed list. */
421
  uint8_t decimation_mode;
422
423
  /** @brief The weight quantization used by this block mode. */
424
  uint8_t quant_mode;
425
426
  /** @brief The weight quantization used by this block mode. */
427
  uint8_t weight_bits;
428
429
  /** @brief Is a dual weight plane used by this block mode? */
430
  uint8_t is_dual_plane : 1;
431
432
  /**
433
   * @brief Get the weight quantization used by this block mode.
434
   *
435
   * @return The quantization level.
436
   */
437
  inline quant_method get_weight_quant_mode() const
438
920
  {
439
920
    return static_cast<quant_method>(this->quant_mode);
440
920
  }
441
};
442
443
/**
444
 * @brief Metadata for single decimation mode for a specific block size.
445
 */
446
struct decimation_mode
447
{
448
  /** @brief The max weight precision for 1 plane, or -1 if not supported. */
449
  int8_t maxprec_1plane;
450
451
  /** @brief The max weight precision for 2 planes, or -1 if not supported. */
452
  int8_t maxprec_2planes;
453
454
  /**
455
   * @brief Bitvector indicating weight quant modes used by active 1 plane block modes.
456
   *
457
   * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
458
   */
459
  uint16_t refprec_1plane;
460
461
  /**
462
   * @brief Bitvector indicating weight quant methods used by active 2 plane block modes.
463
   *
464
   * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
465
   */
466
  uint16_t refprec_2planes;
467
468
  /**
469
   * @brief Set a 1 plane weight quant as active.
470
   *
471
   * @param weight_quant   The quant method to set.
472
   */
473
  void set_ref_1plane(quant_method weight_quant)
474
590
  {
475
590
    refprec_1plane |= (1 << weight_quant);
476
590
  }
477
478
  /**
479
   * @brief Test if this mode is active below a given 1 plane weight quant (inclusive).
480
   *
481
   * @param max_weight_quant   The max quant method to test.
482
   */
483
  bool is_ref_1plane(quant_method max_weight_quant) const
484
0
  {
485
0
    uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
486
0
    return (refprec_1plane & mask) != 0;
487
0
  }
488
489
  /**
490
   * @brief Set a 2 plane weight quant as active.
491
   *
492
   * @param weight_quant   The quant method to set.
493
   */
494
  void set_ref_2plane(quant_method weight_quant)
495
330
  {
496
330
    refprec_2planes |= static_cast<uint16_t>(1 << weight_quant);
497
330
  }
498
499
  /**
500
   * @brief Test if this mode is active below a given 2 plane weight quant (inclusive).
501
   *
502
   * @param max_weight_quant   The max quant method to test.
503
   */
504
  bool is_ref_2plane(quant_method max_weight_quant) const
505
0
  {
506
0
    uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
507
0
    return (refprec_2planes & mask) != 0;
508
0
  }
509
};
510
511
/**
512
 * @brief Data tables for a single block size.
513
 *
514
 * The decimation tables store the information to apply weight grid dimension reductions. We only
515
 * store the decimation modes that are actually needed by the current context; many of the possible
516
 * modes will be unused (too many weights for the current block size or disabled by heuristics). The
517
 * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and
518
 * @c decimation_tables arrays store the active modes contiguously at the start of the array. These
519
 * entries are not stored in any particular order.
520
 *
521
 * The block mode tables store the unpacked block mode settings. Block modes are stored in the
522
 * compressed block as an 11 bit field, but for any given block size and set of compressor
523
 * heuristics, only a subset of the block modes will be used. The actual number of block modes
524
 * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes
525
 * contiguously at the start of the array. These entries are stored in incrementing "packed" value
526
 * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data
527
 * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the
528
 * actual remapped array index.
529
 */
530
struct block_size_descriptor
531
{
532
  /** @brief The block X dimension, in texels. */
533
  uint8_t xdim;
534
535
  /** @brief The block Y dimension, in texels. */
536
  uint8_t ydim;
537
538
  /** @brief The block Z dimension, in texels. */
539
  uint8_t zdim;
540
541
  /** @brief The block total texel count. */
542
  uint8_t texel_count;
543
544
  /**
545
   * @brief The number of stored decimation modes which are "always" modes.
546
   *
547
   * Always modes are stored at the start of the decimation_modes list.
548
   */
549
  unsigned int decimation_mode_count_always;
550
551
  /** @brief The number of stored decimation modes for selected encodings. */
552
  unsigned int decimation_mode_count_selected;
553
554
  /** @brief The number of stored decimation modes for any encoding. */
555
  unsigned int decimation_mode_count_all;
556
557
  /**
558
   * @brief The number of stored block modes which are "always" modes.
559
   *
560
   * Always modes are stored at the start of the block_modes list.
561
   */
562
  unsigned int block_mode_count_1plane_always;
563
564
  /** @brief The number of stored block modes for active 1 plane encodings. */
565
  unsigned int block_mode_count_1plane_selected;
566
567
  /** @brief The number of stored block modes for active 1 and 2 plane encodings. */
568
  unsigned int block_mode_count_1plane_2plane_selected;
569
570
  /** @brief The number of stored block modes for any encoding. */
571
  unsigned int block_mode_count_all;
572
573
  /** @brief The number of selected partitionings for 1/2/3/4 partitionings. */
574
  unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS];
575
576
  /** @brief The number of partitionings for 1/2/3/4 partitionings. */
577
  unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS];
578
579
  /** @brief The active decimation modes, stored in low indices. */
580
  decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES];
581
582
  /** @brief The active decimation tables, stored in low indices. */
583
  alignas(ASTCENC_VECALIGN) decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES];
584
585
  /** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */
586
  uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES];
587
588
  /** @brief The active block modes, stored in low indices. */
589
  block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES];
590
591
  /** @brief The active partition tables, stored in low indices per-count. */
592
  partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1];
593
594
  /**
595
   * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active.
596
   *
597
   * Indexed by partition_count - 2, containing 2, 3 and 4 partitions.
598
   */
599
  uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS];
600
601
  /** @brief The active texels for k-means partition selection. */
602
  uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS];
603
604
  /**
605
   * @brief The canonical 2-partition coverage pattern used during block partition search.
606
   *
607
   * Indexed by remapped index, not physical index.
608
   */
609
  uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2];
610
611
  /**
612
   * @brief The canonical 3-partition coverage pattern used during block partition search.
613
   *
614
   * Indexed by remapped index, not physical index.
615
   */
616
  uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3];
617
618
  /**
619
   * @brief The canonical 4-partition coverage pattern used during block partition search.
620
   *
621
   * Indexed by remapped index, not physical index.
622
   */
623
  uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4];
624
625
  /**
626
   * @brief Get the block mode structure for index @c block_mode.
627
   *
628
   * This function can only return block modes that are enabled by the current compressor config.
629
   * Decompression from an arbitrary source should not use this without first checking that the
630
   * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE.
631
   *
632
   * @param block_mode   The packed block mode index.
633
   *
634
   * @return The block mode structure.
635
   */
636
  const block_mode& get_block_mode(unsigned int block_mode) const
637
48
  {
638
48
    unsigned int packed_index = this->block_mode_packed_index[block_mode];
639
48
    assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all);
640
0
    return this->block_modes[packed_index];
641
48
  }
642
643
  /**
644
   * @brief Get the decimation mode structure for index @c decimation_mode.
645
   *
646
   * This function can only return decimation modes that are enabled by the current compressor
647
   * config. The mode array is stored packed, but this is only ever indexed by the packed index
648
   * stored in the @c block_mode and never exists in an unpacked form.
649
   *
650
   * @param decimation_mode   The packed decimation mode index.
651
   *
652
   * @return The decimation mode structure.
653
   */
654
  const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const
655
0
  {
656
0
    return this->decimation_modes[decimation_mode];
657
0
  }
658
659
  /**
660
   * @brief Get the decimation info structure for index @c decimation_mode.
661
   *
662
   * This function can only return decimation modes that are enabled by the current compressor
663
   * config. The mode array is stored packed, but this is only ever indexed by the packed index
664
   * stored in the @c block_mode and never exists in an unpacked form.
665
   *
666
   * @param decimation_mode   The packed decimation mode index.
667
   *
668
   * @return The decimation info structure.
669
   */
670
  const decimation_info& get_decimation_info(unsigned int decimation_mode) const
671
48
  {
672
48
    return this->decimation_tables[decimation_mode];
673
48
  }
674
675
  /**
676
   * @brief Get the partition info table for a given partition count.
677
   *
678
   * @param partition_count   The number of partitions we want the table for.
679
   *
680
   * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part).
681
   */
682
  const partition_info* get_partition_table(unsigned int partition_count) const
683
0
  {
684
0
    if (partition_count == 1)
685
0
    {
686
0
      partition_count = 5;
687
0
    }
688
0
    unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS;
689
0
    return this->partitionings + index;
690
0
  }
691
692
  /**
693
   * @brief Get the partition info structure for a given partition count and seed.
694
   *
695
   * @param partition_count   The number of partitions we want the info for.
696
   * @param index             The partition seed (between 0 and 1023).
697
   *
698
   * @return The partition info structure.
699
   */
700
  const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const
701
0
  {
702
0
    unsigned int packed_index = 0;
703
0
    if (partition_count >= 2)
704
0
    {
705
0
      packed_index = this->partitioning_packed_index[partition_count - 2][index];
706
0
    }
707
0
708
0
    assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
709
0
    auto& result = get_partition_table(partition_count)[packed_index];
710
0
    assert(index == result.partition_index);
711
0
    return result;
712
0
  }
713
714
  /**
715
   * @brief Get the partition info structure for a given partition count and seed.
716
   *
717
   * @param partition_count   The number of partitions we want the info for.
718
   * @param packed_index      The raw array offset.
719
   *
720
   * @return The partition info structure.
721
   */
722
  const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const
723
0
  {
724
0
    assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
725
0
    auto& result = get_partition_table(partition_count)[packed_index];
726
0
    return result;
727
0
  }
728
};
729
730
/**
731
 * @brief The image data for a single block.
732
 *
733
 * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy
734
 * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR
735
 * data is stored as direct UNORM data, HDR data is stored as LNS data.
736
 *
737
 * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during
738
 * decompression. The current compressor will always use HDR endpoint formats when in HDR mode.
739
 */
740
struct image_block
741
{
742
  /** @brief The input (compress) or output (decompress) data for the red color component. */
743
  alignas(ASTCENC_VECALIGN) float data_r[BLOCK_MAX_TEXELS];
744
745
  /** @brief The input (compress) or output (decompress) data for the green color component. */
746
  alignas(ASTCENC_VECALIGN) float data_g[BLOCK_MAX_TEXELS];
747
748
  /** @brief The input (compress) or output (decompress) data for the blue color component. */
749
  alignas(ASTCENC_VECALIGN) float data_b[BLOCK_MAX_TEXELS];
750
751
  /** @brief The input (compress) or output (decompress) data for the alpha color component. */
752
  alignas(ASTCENC_VECALIGN) float data_a[BLOCK_MAX_TEXELS];
753
754
  /** @brief The number of texels in the block. */
755
  uint8_t texel_count;
756
757
  /** @brief The original data for texel 0 for constant color block encoding. */
758
  vfloat4 origin_texel;
759
760
  /** @brief The min component value of all texels in the block. */
761
  vfloat4 data_min;
762
763
  /** @brief The mean component value of all texels in the block. */
764
  vfloat4 data_mean;
765
766
  /** @brief The max component value of all texels in the block. */
767
  vfloat4 data_max;
768
769
  /** @brief The relative error significance of the color channels. */
770
  vfloat4 channel_weight;
771
772
  /** @brief Is this grayscale block where R == G == B for all texels? */
773
  bool grayscale;
774
775
  /** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */
776
  uint8_t rgb_lns[BLOCK_MAX_TEXELS];
777
778
  /** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */
779
  uint8_t alpha_lns[BLOCK_MAX_TEXELS];
780
781
  /** @brief The X position of this block in the input or output image. */
782
  unsigned int xpos;
783
784
  /** @brief The Y position of this block in the input or output image. */
785
  unsigned int ypos;
786
787
  /** @brief The Z position of this block in the input or output image. */
788
  unsigned int zpos;
789
790
  /**
791
   * @brief Get an RGBA texel value from the data.
792
   *
793
   * @param index   The texel index.
794
   *
795
   * @return The texel in RGBA component ordering.
796
   */
797
  inline vfloat4 texel(unsigned int index) const
798
0
  {
799
0
    return vfloat4(data_r[index],
800
0
                   data_g[index],
801
0
                   data_b[index],
802
0
                   data_a[index]);
803
0
  }
804
805
  /**
806
   * @brief Get an RGB texel value from the data.
807
   *
808
   * @param index   The texel index.
809
   *
810
   * @return The texel in RGB0 component ordering.
811
   */
812
  inline vfloat4 texel3(unsigned int index) const
813
0
  {
814
0
    return vfloat3(data_r[index],
815
0
                   data_g[index],
816
0
                   data_b[index]);
817
0
  }
818
819
  /**
820
   * @brief Get the default alpha value for endpoints that don't store it.
821
   *
822
   * The default depends on whether the alpha endpoint is LDR or HDR.
823
   *
824
   * @return The alpha value in the scaled range used by the compressor.
825
   */
826
  inline float get_default_alpha() const
827
0
  {
828
0
    return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF);
829
0
  }
830
831
  /**
832
   * @brief Test if a single color channel is constant across the block.
833
   *
834
   * Constant color channels are easier to compress as interpolating between two identical colors
835
   * always returns the same value, irrespective of the weight used. They therefore can be ignored
836
   * for the purposes of weight selection and use of a second weight plane.
837
   *
838
   * @return @c true if the channel is constant across the block, @c false otherwise.
839
   */
840
  inline bool is_constant_channel(int channel) const
841
0
  {
842
0
    vmask4 lane_mask = vint4::lane_id() == vint4(channel);
843
0
    vmask4 color_mask = this->data_min == this->data_max;
844
0
    return any(lane_mask & color_mask);
845
0
  }
846
847
  /**
848
   * @brief Test if this block is a luminance block with constant 1.0 alpha.
849
   *
850
   * @return @c true if the block is a luminance block , @c false otherwise.
851
   */
852
  inline bool is_luminance() const
853
0
  {
854
0
    float default_alpha = this->get_default_alpha();
855
0
    bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
856
0
                  (this->data_max.lane<3>() == default_alpha);
857
0
    return this->grayscale && alpha1;
858
0
  }
859
860
  /**
861
   * @brief Test if this block is a luminance block with variable alpha.
862
   *
863
   * @return @c true if the block is a luminance + alpha block , @c false otherwise.
864
   */
865
  inline bool is_luminancealpha() const
866
0
  {
867
0
    float default_alpha = this->get_default_alpha();
868
0
    bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
869
0
                  (this->data_max.lane<3>() == default_alpha);
870
0
    return this->grayscale && !alpha1;
871
0
  }
872
};
873
874
/**
875
 * @brief Data structure storing the color endpoints for a block.
876
 */
877
struct endpoints
878
{
879
  /** @brief The number of partition endpoints stored. */
880
  unsigned int partition_count;
881
882
  /** @brief The colors for endpoint 0. */
883
  vfloat4 endpt0[BLOCK_MAX_PARTITIONS];
884
885
  /** @brief The colors for endpoint 1. */
886
  vfloat4 endpt1[BLOCK_MAX_PARTITIONS];
887
};
888
889
/**
890
 * @brief Data structure storing the color endpoints and weights.
891
 */
892
struct endpoints_and_weights
893
{
894
  /** @brief True if all active values in weight_error_scale are the same. */
895
  bool is_constant_weight_error_scale;
896
897
  /** @brief The color endpoints. */
898
  endpoints ep;
899
900
  /** @brief The ideal weight for each texel; may be undecimated or decimated. */
901
  alignas(ASTCENC_VECALIGN) float weights[BLOCK_MAX_TEXELS];
902
903
  /** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */
904
  alignas(ASTCENC_VECALIGN) float weight_error_scale[BLOCK_MAX_TEXELS];
905
};
906
907
/**
908
 * @brief Utility storing estimated errors from choosing particular endpoint encodings.
909
 */
910
struct encoding_choice_errors
911
{
912
  /** @brief Error of using LDR RGB-scale instead of complete endpoints. */
913
  float rgb_scale_error;
914
915
  /** @brief Error of using HDR RGB-scale instead of complete endpoints. */
916
  float rgb_luma_error;
917
918
  /** @brief Error of using luminance instead of RGB. */
919
  float luminance_error;
920
921
  /** @brief Error of discarding alpha and using a constant 1.0 alpha. */
922
  float alpha_drop_error;
923
924
  /** @brief Can we use delta offset encoding? */
925
  bool can_offset_encode;
926
927
  /** @brief Can we use blue contraction encoding? */
928
  bool can_blue_contract;
929
};
930
931
/**
932
 * @brief Preallocated working buffers, allocated per thread during context creation.
933
 */
934
struct alignas(ASTCENC_VECALIGN) compression_working_buffers
935
{
936
  /** @brief Ideal endpoints and weights for plane 1. */
937
  endpoints_and_weights ei1;
938
939
  /** @brief Ideal endpoints and weights for plane 2. */
940
  endpoints_and_weights ei2;
941
942
  /**
943
   * @brief Decimated ideal weight values in the ~0-1 range.
944
   *
945
   * Note that values can be slightly below zero or higher than one due to
946
   * endpoint extents being inside the ideal color representation.
947
   *
948
   * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
949
   */
950
  alignas(ASTCENC_VECALIGN) float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS];
951
952
  /**
953
   * @brief Decimated quantized weight values in the unquantized 0-64 range.
954
   *
955
   * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
956
   */
957
  uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS];
958
959
  /** @brief Error of the best encoding combination for each block mode. */
960
  alignas(ASTCENC_VECALIGN) float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES];
961
962
  /** @brief The best color quant for each block mode. */
963
  uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES];
964
965
  /** @brief The best color quant for each block mode if modes are the same and we have spare bits. */
966
  uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES];
967
968
  /** @brief The best endpoint format for each partition. */
969
  uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS];
970
971
  /** @brief The total bit storage needed for quantized weights for each block mode. */
972
  int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES];
973
974
  /** @brief The cumulative error for quantized weights for each block mode. */
975
  float qwt_errors[WEIGHTS_MAX_BLOCK_MODES];
976
977
  /** @brief The low weight value in plane 1 for each block mode. */
978
  float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES];
979
980
  /** @brief The high weight value in plane 1 for each block mode. */
981
  float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES];
982
983
  /** @brief The low weight value in plane 1 for each quant level and decimation mode. */
984
  float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
985
986
  /** @brief The high weight value in plane 1 for each quant level and decimation mode. */
987
  float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
988
989
  /** @brief The low weight value in plane 2 for each block mode. */
990
  float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES];
991
992
  /** @brief The high weight value in plane 2 for each block mode. */
993
  float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES];
994
995
  /** @brief The low weight value in plane 2 for each quant level and decimation mode. */
996
  float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
997
998
  /** @brief The high weight value in plane 2 for each quant level and decimation mode. */
999
  float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1000
};
1001
1002
struct dt_init_working_buffers
1003
{
1004
  uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
1005
  uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
1006
  uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
1007
1008
  uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
1009
  uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1010
  uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1011
};
1012
1013
/**
1014
 * @brief Weight quantization transfer table.
1015
 *
1016
 * ASTC can store texel weights at many quantization levels, so for performance we store essential
1017
 * information about each level as a precomputed data structure. Unquantized weights are integers
1018
 * or floats in the range [0, 64].
1019
 *
1020
 * This structure provides a table, used to estimate the closest quantized weight for a given
1021
 * floating-point weight. For each quantized weight, the corresponding unquantized values. For each
1022
 * quantized weight, a previous-value and a next-value.
1023
*/
1024
struct quant_and_transfer_table
1025
{
1026
  /** @brief The unscrambled unquantized value. */
1027
  uint8_t quant_to_unquant[32];
1028
1029
  /** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */
1030
  uint8_t scramble_map[32];
1031
1032
  /** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */
1033
  uint8_t unscramble_and_unquant_map[32];
1034
1035
  /**
1036
   * @brief A table of previous-and-next weights, indexed by the current unquantized value.
1037
   *  * bits 7:0 = previous-index, unquantized
1038
   *  * bits 15:8 = next-index, unquantized
1039
   */
1040
  uint16_t prev_next_values[65];
1041
};
1042
1043
/** @brief The precomputed quant and transfer table. */
1044
extern const quant_and_transfer_table quant_and_xfer_tables[12];
1045
1046
/** @brief The block is an error block, and will return error color or NaN. */
1047
static constexpr uint8_t SYM_BTYPE_ERROR { 0 };
1048
1049
/** @brief The block is a constant color block using FP16 colors. */
1050
static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 };
1051
1052
/** @brief The block is a constant color block using UNORM16 colors. */
1053
static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 };
1054
1055
/** @brief The block is a normal non-constant color block. */
1056
static constexpr uint8_t SYM_BTYPE_NONCONST { 3 };
1057
1058
/**
1059
 * @brief A symbolic representation of a compressed block.
1060
 *
1061
 * The symbolic representation stores the unpacked content of a single
1062
 * physical compressed block, in a form which is much easier to access for
1063
 * the rest of the compressor code.
1064
 */
1065
struct symbolic_compressed_block
1066
{
1067
  /** @brief The block type, one of the @c SYM_BTYPE_* constants. */
1068
  uint8_t block_type;
1069
1070
  /** @brief The number of partitions; valid for @c NONCONST blocks. */
1071
  uint8_t partition_count;
1072
1073
  /** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */
1074
  uint8_t color_formats_matched;
1075
1076
  /** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */
1077
  int8_t plane2_component;
1078
1079
  /** @brief The block mode; valid for @c NONCONST blocks. */
1080
  uint16_t block_mode;
1081
1082
  /** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */
1083
  uint16_t partition_index;
1084
1085
  /** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */
1086
  uint8_t color_formats[BLOCK_MAX_PARTITIONS];
1087
1088
  /** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */
1089
  quant_method quant_mode;
1090
1091
  /** @brief The error of the current encoding; valid for @c NONCONST blocks. */
1092
  float errorval;
1093
1094
  // We can't have both of these at the same time
1095
  union {
1096
    /** @brief The constant color; valid for @c CONST blocks. */
1097
    int constant_color[BLOCK_MAX_COMPONENTS];
1098
1099
    /** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */
1100
    uint8_t color_values[BLOCK_MAX_PARTITIONS][8];
1101
  };
1102
1103
  /** @brief The quantized and decimated weights.
1104
   *
1105
   * Weights are stored in the 0-64 unpacked range allowing them to be used
1106
   * directly in encoding passes without per-use unpacking. Packing happens
1107
   * when converting to/from the physical bitstream encoding.
1108
   *
1109
   * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET].
1110
   */
1111
  uint8_t weights[BLOCK_MAX_WEIGHTS];
1112
1113
  /**
1114
   * @brief Get the weight quantization used by this block mode.
1115
   *
1116
   * @return The quantization level.
1117
   */
1118
  inline quant_method get_color_quant_mode() const
1119
0
  {
1120
0
    return this->quant_mode;
1121
0
  }
1122
};
1123
1124
/**
1125
 * @brief Parameter structure for @c compute_pixel_region_variance().
1126
 *
1127
 * This function takes a structure to avoid spilling arguments to the stack on every function
1128
 * invocation, as there are a lot of parameters.
1129
 */
1130
struct pixel_region_args
1131
{
1132
  /** @brief The image to analyze. */
1133
  const astcenc_image* img;
1134
1135
  /** @brief The component swizzle pattern. */
1136
  astcenc_swizzle swz;
1137
1138
  /** @brief Should the algorithm bother with Z axis processing? */
1139
  bool have_z;
1140
1141
  /** @brief The kernel radius for alpha processing. */
1142
  unsigned int alpha_kernel_radius;
1143
1144
  /** @brief The X dimension of the working data to process. */
1145
  unsigned int size_x;
1146
1147
  /** @brief The Y dimension of the working data to process. */
1148
  unsigned int size_y;
1149
1150
  /** @brief The Z dimension of the working data to process. */
1151
  unsigned int size_z;
1152
1153
  /** @brief The X position of first src and dst data in the data set. */
1154
  unsigned int offset_x;
1155
1156
  /** @brief The Y position of first src and dst data in the data set. */
1157
  unsigned int offset_y;
1158
1159
  /** @brief The Z position of first src and dst data in the data set. */
1160
  unsigned int offset_z;
1161
1162
  /** @brief The working memory buffer. */
1163
  vfloat4 *work_memory;
1164
};
1165
1166
/**
1167
 * @brief Parameter structure for @c compute_averages_proc().
1168
 */
1169
struct avg_args
1170
{
1171
  /** @brief The arguments for the nested variance computation. */
1172
  pixel_region_args arg;
1173
1174
  /** @brief The image X dimensions. */
1175
  unsigned int img_size_x;
1176
1177
  /** @brief The image Y dimensions. */
1178
  unsigned int img_size_y;
1179
1180
  /** @brief The image Z dimensions. */
1181
  unsigned int img_size_z;
1182
1183
  /** @brief The maximum working block dimensions in X and Y dimensions. */
1184
  unsigned int blk_size_xy;
1185
1186
  /** @brief The maximum working block dimensions in Z dimensions. */
1187
  unsigned int blk_size_z;
1188
1189
  /** @brief The working block memory size. */
1190
  unsigned int work_memory_size;
1191
};
1192
1193
#if defined(ASTCENC_DIAGNOSTICS)
1194
/* See astcenc_diagnostic_trace header for details. */
1195
class TraceLog;
1196
#endif
1197
1198
/**
1199
 * @brief The astcenc compression context.
1200
 */
1201
struct astcenc_contexti
1202
{
1203
  /** @brief The configuration this context was created with. */
1204
  astcenc_config config;
1205
1206
  /** @brief The thread count supported by this context. */
1207
  unsigned int thread_count;
1208
1209
  /** @brief The block size descriptor this context was created with. */
1210
  block_size_descriptor* bsd;
1211
1212
  /*
1213
   * Fields below here are not needed in a decompress-only build, but some remain as they are
1214
   * small and it avoids littering the code with #ifdefs. The most significant contributors to
1215
   * large structure size are omitted.
1216
   */
1217
1218
  /** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */
1219
  float* input_alpha_averages;
1220
1221
  /** @brief The scratch working buffers, one per thread (see @c thread_count). */
1222
  compression_working_buffers* working_buffers;
1223
1224
#if !defined(ASTCENC_DECOMPRESS_ONLY)
1225
  /** @brief The pixel region and variance worker arguments. */
1226
  avg_args avg_preprocess_args;
1227
#endif
1228
1229
#if defined(ASTCENC_DIAGNOSTICS)
1230
  /**
1231
   * @brief The diagnostic trace logger.
1232
   *
1233
   * Note that this is a singleton, so can only be used in single threaded mode. It only exists
1234
   * here so we have a reference to close the file at the end of the capture.
1235
   */
1236
  TraceLog* trace_log;
1237
#endif
1238
};
1239
1240
/* ============================================================================
1241
  Functionality for managing block sizes and partition tables.
1242
============================================================================ */
1243
1244
/**
1245
 * @brief Populate the block size descriptor for the target block size.
1246
 *
1247
 * This will also initialize the partition table metadata, which is stored as part of the BSD
1248
 * structure.
1249
 *
1250
 * @param      x_texels                 The number of texels in the block X dimension.
1251
 * @param      y_texels                 The number of texels in the block Y dimension.
1252
 * @param      z_texels                 The number of texels in the block Z dimension.
1253
 * @param      can_omit_modes           Can we discard modes and partitionings that astcenc won't use?
1254
 * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1255
 * @param      mode_cutoff              The block mode percentile cutoff [0-1].
1256
 * @param[out] bsd                      The descriptor to initialize.
1257
 */
1258
void init_block_size_descriptor(
1259
  unsigned int x_texels,
1260
  unsigned int y_texels,
1261
  unsigned int z_texels,
1262
  bool can_omit_modes,
1263
  unsigned int partition_count_cutoff,
1264
  float mode_cutoff,
1265
  block_size_descriptor& bsd);
1266
1267
/**
1268
 * @brief Populate the partition tables for the target block size.
1269
 *
1270
 * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before
1271
 * calling this function.
1272
 *
1273
 * @param[out] bsd                      The block size information structure to populate.
1274
 * @param      can_omit_partitionings   True if we can we drop partitionings that astcenc won't use.
1275
 * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1276
 */
1277
void init_partition_tables(
1278
  block_size_descriptor& bsd,
1279
  bool can_omit_partitionings,
1280
  unsigned int partition_count_cutoff);
1281
1282
/**
1283
 * @brief Get the percentile table for 2D block modes.
1284
 *
1285
 * This is an empirically determined prioritization of which block modes to use in the search in
1286
 * terms of their centile (lower centiles = more useful).
1287
 *
1288
 * Returns a dynamically allocated array; caller must free with delete[].
1289
 *
1290
 * @param xdim The block x size.
1291
 * @param ydim The block y size.
1292
 *
1293
 * @return The unpacked table.
1294
 */
1295
const float* get_2d_percentile_table(
1296
  unsigned int xdim,
1297
  unsigned int ydim);
1298
1299
/**
1300
 * @brief Query if a 2D block size is legal.
1301
 *
1302
 * @return True if legal, false otherwise.
1303
 */
1304
bool is_legal_2d_block_size(
1305
  unsigned int xdim,
1306
  unsigned int ydim);
1307
1308
/**
1309
 * @brief Query if a 3D block size is legal.
1310
 *
1311
 * @return True if legal, false otherwise.
1312
 */
1313
bool is_legal_3d_block_size(
1314
  unsigned int xdim,
1315
  unsigned int ydim,
1316
  unsigned int zdim);
1317
1318
/* ============================================================================
1319
  Functionality for managing BISE quantization and unquantization.
1320
============================================================================ */
1321
1322
/**
1323
 * @brief The precomputed table for quantizing color values.
1324
 *
1325
 * Converts unquant value in 0-255 range into quant value in 0-255 range.
1326
 * No BISE scrambling is applied at this stage.
1327
 *
1328
 * The BISE encoding results in ties where available quant<256> values are
1329
 * equidistant the available quant<BISE> values. This table stores two values
1330
 * for each input - one for use with a negative residual, and one for use with
1331
 * a positive residual.
1332
 *
1333
 * Indexed by [quant_mode - 4][data_value * 2 + residual].
1334
 */
1335
extern const uint8_t color_unquant_to_uquant_tables[17][512];
1336
1337
/**
1338
 * @brief The precomputed table for packing quantized color values.
1339
 *
1340
 * Converts quant value in 0-255 range into packed quant value in 0-N range,
1341
 * with BISE scrambling applied.
1342
 *
1343
 * Indexed by [quant_mode - 4][data_value].
1344
 */
1345
extern const uint8_t color_uquant_to_scrambled_pquant_tables[17][256];
1346
1347
/**
1348
 * @brief The precomputed table for unpacking color values.
1349
 *
1350
 * Converts quant value in 0-N range into unpacked value in 0-255 range,
1351
 * with BISE unscrambling applied.
1352
 *
1353
 * Indexed by [quant_mode - 4][data_value].
1354
 */
1355
extern const uint8_t* color_scrambled_pquant_to_uquant_tables[17];
1356
1357
/**
1358
 * @brief The precomputed quant mode storage table.
1359
 *
1360
 * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and
1361
 * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot
1362
 * ever fit in the supplied storage size.
1363
 */
1364
extern const int8_t quant_mode_table[10][128];
1365
1366
/**
1367
 * @brief Encode a packed string using BISE.
1368
 *
1369
 * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can
1370
 * start storing strings in a block at arbitrary bit offsets in the encoded data.
1371
 *
1372
 * @param         quant_level       The BISE alphabet size.
1373
 * @param         character_count   The number of characters in the string.
1374
 * @param         input_data        The unpacked string, one byte per character.
1375
 * @param[in,out] output_data       The output packed string.
1376
 * @param         bit_offset        The starting offset in the output storage.
1377
 */
1378
void encode_ise(
1379
  quant_method quant_level,
1380
  unsigned int character_count,
1381
  const uint8_t* input_data,
1382
  uint8_t* output_data,
1383
  unsigned int bit_offset);
1384
1385
/**
1386
 * @brief Decode a packed string using BISE.
1387
 *
1388
 * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start
1389
 * strings at arbitrary bit offsets in the encoded data.
1390
 *
1391
 * @param         quant_level       The BISE alphabet size.
1392
 * @param         character_count   The number of characters in the string.
1393
 * @param         input_data        The packed string.
1394
 * @param[in,out] output_data       The output storage, one byte per character.
1395
 * @param         bit_offset        The starting offset in the output storage.
1396
 */
1397
void decode_ise(
1398
  quant_method quant_level,
1399
  unsigned int character_count,
1400
  const uint8_t* input_data,
1401
  uint8_t* output_data,
1402
  unsigned int bit_offset);
1403
1404
/**
1405
 * @brief Return the number of bits needed to encode an ISE sequence.
1406
 *
1407
 * This implementation assumes that the @c quant level is untrusted, given it may come from random
1408
 * data being decompressed, so we return an arbitrary unencodable size if that is the case.
1409
 *
1410
 * @param character_count   The number of items in the sequence.
1411
 * @param quant_level       The desired quantization level.
1412
 *
1413
 * @return The number of bits needed to encode the BISE string.
1414
 */
1415
unsigned int get_ise_sequence_bitcount(
1416
  unsigned int character_count,
1417
  quant_method quant_level);
1418
1419
/* ============================================================================
1420
  Functionality for managing color partitioning.
1421
============================================================================ */
1422
1423
/**
1424
 * @brief Compute averages and dominant directions for each partition in a 2 component texture.
1425
 *
1426
 * @param      pi           The partition info for the current trial.
1427
 * @param      blk          The image block color data to be compressed.
1428
 * @param      component1   The first component included in the analysis.
1429
 * @param      component2   The second component included in the analysis.
1430
 * @param[out] pm           The output partition metrics.
1431
 *                          - Only pi.partition_count array entries actually get initialized.
1432
 *                          - Direction vectors @c pm.dir are not normalized.
1433
 */
1434
void compute_avgs_and_dirs_2_comp(
1435
  const partition_info& pi,
1436
  const image_block& blk,
1437
  unsigned int component1,
1438
  unsigned int component2,
1439
  partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1440
1441
/**
1442
 * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1443
 *
1444
 * @param      pi                  The partition info for the current trial.
1445
 * @param      blk                 The image block color data to be compressed.
1446
 * @param      omitted_component   The component excluded from the analysis.
1447
 * @param[out] pm                  The output partition metrics.
1448
 *                                 - Only pi.partition_count array entries actually get initialized.
1449
 *                                 - Direction vectors @c pm.dir are not normalized.
1450
 */
1451
void compute_avgs_and_dirs_3_comp(
1452
  const partition_info& pi,
1453
  const image_block& blk,
1454
  unsigned int omitted_component,
1455
  partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1456
1457
/**
1458
 * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1459
 *
1460
 * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is
1461
 * always alpha, a common case during partition search.
1462
 *
1463
 * @param      pi    The partition info for the current trial.
1464
 * @param      blk   The image block color data to be compressed.
1465
 * @param[out] pm    The output partition metrics.
1466
 *                   - Only pi.partition_count array entries actually get initialized.
1467
 *                   - Direction vectors @c pm.dir are not normalized.
1468
 */
1469
void compute_avgs_and_dirs_3_comp_rgb(
1470
  const partition_info& pi,
1471
  const image_block& blk,
1472
  partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1473
1474
/**
1475
 * @brief Compute averages and dominant directions for each partition in a 4 component texture.
1476
 *
1477
 * @param      pi    The partition info for the current trial.
1478
 * @param      blk   The image block color data to be compressed.
1479
 * @param[out] pm    The output partition metrics.
1480
 *                   - Only pi.partition_count array entries actually get initialized.
1481
 *                   - Direction vectors @c pm.dir are not normalized.
1482
 */
1483
void compute_avgs_and_dirs_4_comp(
1484
  const partition_info& pi,
1485
  const image_block& blk,
1486
  partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1487
1488
/**
1489
 * @brief Compute the RGB error for uncorrelated and same chroma projections.
1490
 *
1491
 * The output of compute averages and dirs is post processed to define two lines, both of which go
1492
 * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1493
 * is used to assess the error from using an uncorrelated color representation. The other line goes
1494
 * through (0,0,0) and is used to assess the error from using an RGBS color representation.
1495
 *
1496
 * This function computes the squared error when using these two representations.
1497
 *
1498
 * @param         pi            The partition info for the current trial.
1499
 * @param         blk           The image block color data to be compressed.
1500
 * @param[in,out] plines        Processed line inputs, and line length outputs.
1501
 * @param[out]    uncor_error   The cumulative error for using the uncorrelated line.
1502
 * @param[out]    samec_error   The cumulative error for using the same chroma line.
1503
 */
1504
void compute_error_squared_rgb(
1505
  const partition_info& pi,
1506
  const image_block& blk,
1507
  partition_lines3 plines[BLOCK_MAX_PARTITIONS],
1508
  float& uncor_error,
1509
  float& samec_error);
1510
1511
/**
1512
 * @brief Compute the RGBA error for uncorrelated and same chroma projections.
1513
 *
1514
 * The output of compute averages and dirs is post processed to define two lines, both of which go
1515
 * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1516
 * is used to assess the error from using an uncorrelated color representation. The other line goes
1517
 * through (0,0,0,1) and is used to assess the error from using an RGBS color representation.
1518
 *
1519
 * This function computes the squared error when using these two representations.
1520
 *
1521
 * @param      pi              The partition info for the current trial.
1522
 * @param      blk             The image block color data to be compressed.
1523
 * @param      uncor_plines    Processed uncorrelated partition lines for each partition.
1524
 * @param      samec_plines    Processed same chroma partition lines for each partition.
1525
 * @param[out] line_lengths    The length of each components deviation from the line.
1526
 * @param[out] uncor_error     The cumulative error for using the uncorrelated line.
1527
 * @param[out] samec_error     The cumulative error for using the same chroma line.
1528
 */
1529
void compute_error_squared_rgba(
1530
  const partition_info& pi,
1531
  const image_block& blk,
1532
  const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS],
1533
  const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS],
1534
  float line_lengths[BLOCK_MAX_PARTITIONS],
1535
  float& uncor_error,
1536
  float& samec_error);
1537
1538
/**
1539
 * @brief Find the best set of partitions to trial for a given block.
1540
 *
1541
 * On return the @c best_partitions list will contain the two best partition
1542
 * candidates; one assuming data has uncorrelated chroma and one assuming the
1543
 * data has correlated chroma. The best candidate is returned first in the list.
1544
 *
1545
 * @param      bsd                      The block size information.
1546
 * @param      blk                      The image block color data to compress.
1547
 * @param      partition_count          The number of partitions in the block.
1548
 * @param      partition_search_limit   The number of candidate partition encodings to trial.
1549
 * @param[out] best_partitions          The best partition candidates.
1550
 * @param      requested_candidates     The number of requested partitionings. May return fewer if
1551
 *                                      candidates are not available.
1552
 *
1553
 * @return The actual number of candidates returned.
1554
 */
1555
unsigned int find_best_partition_candidates(
1556
  const block_size_descriptor& bsd,
1557
  const image_block& blk,
1558
  unsigned int partition_count,
1559
  unsigned int partition_search_limit,
1560
  unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
1561
  unsigned int requested_candidates);
1562
1563
/* ============================================================================
1564
  Functionality for managing images and image related data.
1565
============================================================================ */
1566
1567
/**
1568
 * @brief Setup computation of regional averages in an image.
1569
 *
1570
 * This must be done by only a single thread per image, before any thread calls
1571
 * @c compute_averages().
1572
 *
1573
 * Results are written back into @c img->input_alpha_averages.
1574
 *
1575
 * @param      img                   The input image data, also holds output data.
1576
 * @param      alpha_kernel_radius   The kernel radius (in pixels) for alpha mods.
1577
 * @param      swz                   Input data component swizzle.
1578
 * @param[out] ag                    The average variance arguments to init.
1579
 *
1580
 * @return The number of tasks in the processing stage.
1581
 */
1582
unsigned int init_compute_averages(
1583
  const astcenc_image& img,
1584
  unsigned int alpha_kernel_radius,
1585
  const astcenc_swizzle& swz,
1586
  avg_args& ag);
1587
1588
/**
1589
 * @brief Compute averages for a pixel region.
1590
 *
1591
 * The routine computes both in a single pass, using a summed-area table to decouple the running
1592
 * time from the averaging/variance kernel size.
1593
 *
1594
 * @param[out] ctx   The compressor context storing the output data.
1595
 * @param      arg   The input parameter structure.
1596
 */
1597
void compute_pixel_region_variance(
1598
  astcenc_contexti& ctx,
1599
  const pixel_region_args& arg);
1600
/**
1601
 * @brief Load a single image block from the input image.
1602
 *
1603
 * @param      decode_mode   The compression color profile.
1604
 * @param      img           The input image data.
1605
 * @param[out] blk           The image block to populate.
1606
 * @param      bsd           The block size information.
1607
 * @param      xpos          The block X coordinate in the input image.
1608
 * @param      ypos          The block Y coordinate in the input image.
1609
 * @param      zpos          The block Z coordinate in the input image.
1610
 * @param      swz           The swizzle to apply on load.
1611
 */
1612
void load_image_block(
1613
  astcenc_profile decode_mode,
1614
  const astcenc_image& img,
1615
  image_block& blk,
1616
  const block_size_descriptor& bsd,
1617
  unsigned int xpos,
1618
  unsigned int ypos,
1619
  unsigned int zpos,
1620
  const astcenc_swizzle& swz);
1621
1622
/**
1623
 * @brief Load a single image block from the input image.
1624
 *
1625
 * This specialized variant can be used only if the block is 2D LDR U8 data,
1626
 * with no swizzle.
1627
 *
1628
 * @param      decode_mode   The compression color profile.
1629
 * @param      img           The input image data.
1630
 * @param[out] blk           The image block to populate.
1631
 * @param      bsd           The block size information.
1632
 * @param      xpos          The block X coordinate in the input image.
1633
 * @param      ypos          The block Y coordinate in the input image.
1634
 * @param      zpos          The block Z coordinate in the input image.
1635
 * @param      swz           The swizzle to apply on load.
1636
 */
1637
void load_image_block_fast_ldr(
1638
  astcenc_profile decode_mode,
1639
  const astcenc_image& img,
1640
  image_block& blk,
1641
  const block_size_descriptor& bsd,
1642
  unsigned int xpos,
1643
  unsigned int ypos,
1644
  unsigned int zpos,
1645
  const astcenc_swizzle& swz);
1646
1647
/**
1648
 * @brief Store a single image block to the output image.
1649
 *
1650
 * @param[out] img    The output image data.
1651
 * @param      blk    The image block to export.
1652
 * @param      bsd    The block size information.
1653
 * @param      xpos   The block X coordinate in the input image.
1654
 * @param      ypos   The block Y coordinate in the input image.
1655
 * @param      zpos   The block Z coordinate in the input image.
1656
 * @param      swz    The swizzle to apply on store.
1657
 */
1658
void store_image_block(
1659
  astcenc_image& img,
1660
  const image_block& blk,
1661
  const block_size_descriptor& bsd,
1662
  unsigned int xpos,
1663
  unsigned int ypos,
1664
  unsigned int zpos,
1665
  const astcenc_swizzle& swz);
1666
1667
/* ============================================================================
1668
  Functionality for computing endpoint colors and weights for a block.
1669
============================================================================ */
1670
1671
/**
1672
 * @brief Compute ideal endpoint colors and weights for 1 plane of weights.
1673
 *
1674
 * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1675
 * defines an exact position on the partition color line. We can then use these to assess the error
1676
 * introduced by removing and quantizing the weight grid.
1677
 *
1678
 * @param      blk   The image block color data to compress.
1679
 * @param      pi    The partition info for the current trial.
1680
 * @param[out] ei    The endpoint and weight values.
1681
 */
1682
void compute_ideal_colors_and_weights_1plane(
1683
  const image_block& blk,
1684
  const partition_info& pi,
1685
  endpoints_and_weights& ei);
1686
1687
/**
1688
 * @brief Compute ideal endpoint colors and weights for 2 planes of weights.
1689
 *
1690
 * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1691
 * defines an exact position on the partition color line. We can then use these to assess the error
1692
 * introduced by removing and quantizing the weight grid.
1693
 *
1694
 * @param      bsd                The block size information.
1695
 * @param      blk                The image block color data to compress.
1696
 * @param      plane2_component   The component assigned to plane 2.
1697
 * @param[out] ei1                The endpoint and weight values for plane 1.
1698
 * @param[out] ei2                The endpoint and weight values for plane 2.
1699
 */
1700
void compute_ideal_colors_and_weights_2planes(
1701
  const block_size_descriptor& bsd,
1702
  const image_block& blk,
1703
  unsigned int plane2_component,
1704
  endpoints_and_weights& ei1,
1705
  endpoints_and_weights& ei2);
1706
1707
/**
1708
 * @brief Compute the optimal unquantized weights for a decimation table.
1709
 *
1710
 * After computing ideal weights for the case for a complete weight grid, we we want to compute the
1711
 * ideal weights for the case where weights exist only for some texels. We do this with a
1712
 * steepest-descent grid solver which works as follows:
1713
 *
1714
 * First, for each actual weight, perform a weighted averaging of the texels affected by the weight.
1715
 * Then, set step size to <some initial value> and attempt one step towards the original ideal
1716
 * weight if it helps to reduce error.
1717
 *
1718
 * @param      ei                       The non-decimated endpoints and weights.
1719
 * @param      di                       The selected weight decimation.
1720
 * @param[out] dec_weight_ideal_value   The ideal values for the decimated weight set.
1721
 */
1722
void compute_ideal_weights_for_decimation(
1723
  const endpoints_and_weights& ei,
1724
  const decimation_info& di,
1725
  float* dec_weight_ideal_value);
1726
1727
/**
1728
 * @brief Compute the optimal quantized weights for a decimation table.
1729
 *
1730
 * We test the two closest weight indices in the allowed quantization range and keep the weight that
1731
 * is the closest match.
1732
 *
1733
 * @param      di                        The selected weight decimation.
1734
 * @param      low_bound                 The lowest weight allowed.
1735
 * @param      high_bound                The highest weight allowed.
1736
 * @param      dec_weight_ideal_value    The ideal weight set.
1737
 * @param[out] dec_weight_quant_uvalue   The output quantized weight as a float.
1738
 * @param[out] dec_weight_uquant         The output quantized weight as encoded int.
1739
 * @param      quant_level               The desired weight quant level.
1740
 */
1741
void compute_quantized_weights_for_decimation(
1742
  const decimation_info& di,
1743
  float low_bound,
1744
  float high_bound,
1745
  const float* dec_weight_ideal_value,
1746
  float* dec_weight_quant_uvalue,
1747
  uint8_t* dec_weight_uquant,
1748
  quant_method quant_level);
1749
1750
/**
1751
 * @brief Compute the error of a decimated weight set for 1 plane.
1752
 *
1753
 * After computing ideal weights for the case with one weight per texel, we want to compute the
1754
 * error for decimated weight grids where weights are stored at a lower resolution. This function
1755
 * computes the error of the reduced grid, compared to the full grid.
1756
 *
1757
 * @param eai                       The ideal weights for the full grid.
1758
 * @param di                        The selected weight decimation.
1759
 * @param dec_weight_quant_uvalue   The quantized weights for the decimated grid.
1760
 *
1761
 * @return The accumulated error.
1762
 */
1763
float compute_error_of_weight_set_1plane(
1764
  const endpoints_and_weights& eai,
1765
  const decimation_info& di,
1766
  const float* dec_weight_quant_uvalue);
1767
1768
/**
1769
 * @brief Compute the error of a decimated weight set for 2 planes.
1770
 *
1771
 * After computing ideal weights for the case with one weight per texel, we want to compute the
1772
 * error for decimated weight grids where weights are stored at a lower resolution. This function
1773
 * computes the error of the reduced grid, compared to the full grid.
1774
 *
1775
 * @param eai1                             The ideal weights for the full grid and plane 1.
1776
 * @param eai2                             The ideal weights for the full grid and plane 2.
1777
 * @param di                               The selected weight decimation.
1778
 * @param dec_weight_quant_uvalue_plane1   The quantized weights for the decimated grid plane 1.
1779
 * @param dec_weight_quant_uvalue_plane2   The quantized weights for the decimated grid plane 2.
1780
 *
1781
 * @return The accumulated error.
1782
 */
1783
float compute_error_of_weight_set_2planes(
1784
  const endpoints_and_weights& eai1,
1785
  const endpoints_and_weights& eai2,
1786
  const decimation_info& di,
1787
  const float* dec_weight_quant_uvalue_plane1,
1788
  const float* dec_weight_quant_uvalue_plane2);
1789
1790
/**
1791
 * @brief Pack a single pair of color endpoints as effectively as possible.
1792
 *
1793
 * The user requests a base color endpoint mode in @c format, but the quantizer may choose a
1794
 * delta-based representation. It will report back the format variant it actually used.
1795
 *
1796
 * @param      color0        The input unquantized color0 endpoint for absolute endpoint pairs.
1797
 * @param      color1        The input unquantized color1 endpoint for absolute endpoint pairs.
1798
 * @param      rgbs_color    The input unquantized RGBS variant endpoint for same chroma endpoints.
1799
 * @param      rgbo_color    The input unquantized RGBS variant endpoint for HDR endpoints.
1800
 * @param      format        The desired base format.
1801
 * @param[out] output        The output storage for the quantized colors/
1802
 * @param      quant_level   The quantization level requested.
1803
 *
1804
 * @return The actual endpoint mode used.
1805
 */
1806
uint8_t pack_color_endpoints(
1807
  vfloat4 color0,
1808
  vfloat4 color1,
1809
  vfloat4 rgbs_color,
1810
  vfloat4 rgbo_color,
1811
  int format,
1812
  uint8_t* output,
1813
  quant_method quant_level);
1814
1815
/**
1816
 * @brief Unpack a single pair of encoded endpoints.
1817
 *
1818
 * Endpoints must be unscrambled and converted into the 0-255 range before calling this functions.
1819
 *
1820
 * @param      decode_mode   The decode mode (LDR, HDR).
1821
 * @param      format        The color endpoint mode used.
1822
 * @param      input         The raw array of encoded input integers. The length of this array
1823
 *                           depends on @c format; it can be safely assumed to be large enough.
1824
 * @param[out] rgb_hdr       Is the endpoint using HDR for the RGB channels?
1825
 * @param[out] alpha_hdr     Is the endpoint using HDR for the A channel?
1826
 * @param[out] output0       The output color for endpoint 0.
1827
 * @param[out] output1       The output color for endpoint 1.
1828
 */
1829
void unpack_color_endpoints(
1830
  astcenc_profile decode_mode,
1831
  int format,
1832
  const uint8_t* input,
1833
  bool& rgb_hdr,
1834
  bool& alpha_hdr,
1835
  vint4& output0,
1836
  vint4& output1);
1837
1838
/**
1839
 * @brief Unpack an LDR RGBA color that uses delta encoding.
1840
 *
1841
 * @param      input0    The packed endpoint 0 color.
1842
 * @param      input1    The packed endpoint 1 color deltas.
1843
 * @param[out] output0   The unpacked endpoint 0 color.
1844
 * @param[out] output1   The unpacked endpoint 1 color.
1845
 */
1846
void rgba_delta_unpack(
1847
  vint4 input0,
1848
  vint4 input1,
1849
  vint4& output0,
1850
  vint4& output1);
1851
1852
/**
1853
 * @brief Unpack an LDR RGBA color that uses direct encoding.
1854
 *
1855
 * @param      input0    The packed endpoint 0 color.
1856
 * @param      input1    The packed endpoint 1 color.
1857
 * @param[out] output0   The unpacked endpoint 0 color.
1858
 * @param[out] output1   The unpacked endpoint 1 color.
1859
 */
1860
void rgba_unpack(
1861
  vint4 input0,
1862
  vint4 input1,
1863
  vint4& output0,
1864
  vint4& output1);
1865
1866
/**
1867
 * @brief Unpack a set of quantized and decimated weights.
1868
 *
1869
 * TODO: Can we skip this for non-decimated weights now that the @c scb is
1870
 * already storing unquantized weights?
1871
 *
1872
 * @param      bsd              The block size information.
1873
 * @param      scb              The symbolic compressed encoding.
1874
 * @param      di               The weight grid decimation table.
1875
 * @param      is_dual_plane    @c true if this is a dual plane block, @c false otherwise.
1876
 * @param[out] weights_plane1   The output array for storing the plane 1 weights.
1877
 * @param[out] weights_plane2   The output array for storing the plane 2 weights.
1878
 */
1879
void unpack_weights(
1880
  const block_size_descriptor& bsd,
1881
  const symbolic_compressed_block& scb,
1882
  const decimation_info& di,
1883
  bool is_dual_plane,
1884
  int weights_plane1[BLOCK_MAX_TEXELS],
1885
  int weights_plane2[BLOCK_MAX_TEXELS]);
1886
1887
/**
1888
 * @brief Identify, for each mode, which set of color endpoint produces the best result.
1889
 *
1890
 * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding
1891
 * combination for each. The modified quantization level can be used when all formats are the same,
1892
 * as this frees up two additional bits of storage.
1893
 *
1894
 * @param      pi                            The partition info for the current trial.
1895
 * @param      blk                           The image block color data to compress.
1896
 * @param      ep                            The ideal endpoints.
1897
 * @param      qwt_bitcounts                 Bit counts for different quantization methods.
1898
 * @param      qwt_errors                    Errors for different quantization methods.
1899
 * @param      tune_candidate_limit          The max number of candidates to return, may be less.
1900
 * @param      start_block_mode              The first block mode to inspect.
1901
 * @param      end_block_mode                The last block mode to inspect.
1902
 * @param[out] partition_format_specifiers   The best formats per partition.
1903
 * @param[out] block_mode                    The best packed block mode indexes.
1904
 * @param[out] quant_level                   The best color quant level.
1905
 * @param[out] quant_level_mod               The best color quant level if endpoints are the same.
1906
 * @param[out] tmpbuf                        Preallocated scratch buffers for the compressor.
1907
 *
1908
 * @return The actual number of candidate matches returned.
1909
 */
1910
unsigned int compute_ideal_endpoint_formats(
1911
  const partition_info& pi,
1912
  const image_block& blk,
1913
  const endpoints& ep,
1914
  const int8_t* qwt_bitcounts,
1915
  const float* qwt_errors,
1916
  unsigned int tune_candidate_limit,
1917
  unsigned int start_block_mode,
1918
  unsigned int end_block_mode,
1919
  uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
1920
  int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
1921
  quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
1922
  quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
1923
  compression_working_buffers& tmpbuf);
1924
1925
/**
1926
 * @brief For a given 1 plane weight set recompute the endpoint colors.
1927
 *
1928
 * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1929
 * recompute the ideal colors for a specific weight set.
1930
 *
1931
 * @param         blk                  The image block color data to compress.
1932
 * @param         pi                   The partition info for the current trial.
1933
 * @param         di                   The weight grid decimation table.
1934
 * @param         dec_weights_uquant   The quantized weight set.
1935
 * @param[in,out] ep                   The color endpoints (modifed in place).
1936
 * @param[out]    rgbs_vectors         The RGB+scale vectors for LDR blocks.
1937
 * @param[out]    rgbo_vectors         The RGB+offset vectors for HDR blocks.
1938
 */
1939
void recompute_ideal_colors_1plane(
1940
  const image_block& blk,
1941
  const partition_info& pi,
1942
  const decimation_info& di,
1943
  const uint8_t* dec_weights_uquant,
1944
  endpoints& ep,
1945
  vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
1946
  vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]);
1947
1948
/**
1949
 * @brief For a given 2 plane weight set recompute the endpoint colors.
1950
 *
1951
 * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1952
 * recompute the ideal colors for a specific weight set.
1953
 *
1954
 * @param         blk                         The image block color data to compress.
1955
 * @param         bsd                         The block_size descriptor.
1956
 * @param         di                          The weight grid decimation table.
1957
 * @param         dec_weights_uquant_plane1   The quantized weight set for plane 1.
1958
 * @param         dec_weights_uquant_plane2   The quantized weight set for plane 2.
1959
 * @param[in,out] ep                          The color endpoints (modifed in place).
1960
 * @param[out]    rgbs_vector                 The RGB+scale color for LDR blocks.
1961
 * @param[out]    rgbo_vector                 The RGB+offset color for HDR blocks.
1962
 * @param         plane2_component            The component assigned to plane 2.
1963
 */
1964
void recompute_ideal_colors_2planes(
1965
  const image_block& blk,
1966
  const block_size_descriptor& bsd,
1967
  const decimation_info& di,
1968
  const uint8_t* dec_weights_uquant_plane1,
1969
  const uint8_t* dec_weights_uquant_plane2,
1970
  endpoints& ep,
1971
  vfloat4& rgbs_vector,
1972
  vfloat4& rgbo_vector,
1973
  int plane2_component);
1974
1975
/**
1976
 * @brief Expand the angular tables needed for the alternative to PCA that we use.
1977
 */
1978
void prepare_angular_tables();
1979
1980
/**
1981
 * @brief Compute the angular endpoints for one plane for each block mode.
1982
 *
1983
 * @param      only_always              Only consider block modes that are always enabled.
1984
 * @param      bsd                      The block size descriptor for the current trial.
1985
 * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
1986
 * @param      max_weight_quant         The maximum block mode weight quantization allowed.
1987
 * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
1988
 */
1989
void compute_angular_endpoints_1plane(
1990
  bool only_always,
1991
  const block_size_descriptor& bsd,
1992
  const float* dec_weight_ideal_value,
1993
  unsigned int max_weight_quant,
1994
  compression_working_buffers& tmpbuf);
1995
1996
/**
1997
 * @brief Compute the angular endpoints for two planes for each block mode.
1998
 *
1999
 * @param      bsd                      The block size descriptor for the current trial.
2000
 * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
2001
 * @param      max_weight_quant         The maximum block mode weight quantization allowed.
2002
 * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
2003
 */
2004
void compute_angular_endpoints_2planes(
2005
  const block_size_descriptor& bsd,
2006
  const float* dec_weight_ideal_value,
2007
  unsigned int max_weight_quant,
2008
  compression_working_buffers& tmpbuf);
2009
2010
/* ============================================================================
2011
  Functionality for high level compression and decompression access.
2012
============================================================================ */
2013
2014
/**
2015
 * @brief Compress an image block into a physical block.
2016
 *
2017
 * @param      ctx      The compressor context and configuration.
2018
 * @param      blk      The image block color data to compress.
2019
 * @param[out] pcb      The physical compressed block output.
2020
 * @param[out] tmpbuf   Preallocated scratch buffers for the compressor.
2021
 */
2022
void compress_block(
2023
  const astcenc_contexti& ctx,
2024
  const image_block& blk,
2025
  uint8_t pcb[16],
2026
  compression_working_buffers& tmpbuf);
2027
2028
/**
2029
 * @brief Decompress a symbolic block in to an image block.
2030
 *
2031
 * @param      decode_mode   The decode mode (LDR, HDR, etc).
2032
 * @param      bsd           The block size information.
2033
 * @param      xpos          The X coordinate of the block in the overall image.
2034
 * @param      ypos          The Y coordinate of the block in the overall image.
2035
 * @param      zpos          The Z coordinate of the block in the overall image.
2036
 * @param[out] blk           The decompressed image block color data.
2037
 */
2038
void decompress_symbolic_block(
2039
  astcenc_profile decode_mode,
2040
  const block_size_descriptor& bsd,
2041
  int xpos,
2042
  int ypos,
2043
  int zpos,
2044
  const symbolic_compressed_block& scb,
2045
  image_block& blk);
2046
2047
/**
2048
 * @brief Compute the error between a symbolic block and the original input data.
2049
 *
2050
 * This function is specialized for 2 plane and 1 partition search.
2051
 *
2052
 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2053
 *
2054
 * @param config   The compressor config.
2055
 * @param bsd      The block size information.
2056
 * @param scb      The symbolic compressed encoding.
2057
 * @param blk      The original image block color data.
2058
 *
2059
 * @return Returns the computed error, or a negative value if the encoding
2060
 *         should be rejected for any reason.
2061
 */
2062
float compute_symbolic_block_difference_2plane(
2063
  const astcenc_config& config,
2064
  const block_size_descriptor& bsd,
2065
  const symbolic_compressed_block& scb,
2066
  const image_block& blk);
2067
2068
/**
2069
 * @brief Compute the error between a symbolic block and the original input data.
2070
 *
2071
 * This function is specialized for 1 plane and N partition search.
2072
 *
2073
 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2074
 *
2075
 * @param config   The compressor config.
2076
 * @param bsd      The block size information.
2077
 * @param scb      The symbolic compressed encoding.
2078
 * @param blk      The original image block color data.
2079
 *
2080
 * @return Returns the computed error, or a negative value if the encoding
2081
 *         should be rejected for any reason.
2082
 */
2083
float compute_symbolic_block_difference_1plane(
2084
  const astcenc_config& config,
2085
  const block_size_descriptor& bsd,
2086
  const symbolic_compressed_block& scb,
2087
  const image_block& blk);
2088
2089
/**
2090
 * @brief Compute the error between a symbolic block and the original input data.
2091
 *
2092
 * This function is specialized for 1 plane and 1 partition search.
2093
 *
2094
 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2095
 *
2096
 * @param config   The compressor config.
2097
 * @param bsd      The block size information.
2098
 * @param scb      The symbolic compressed encoding.
2099
 * @param blk      The original image block color data.
2100
 *
2101
 * @return Returns the computed error, or a negative value if the encoding
2102
 *         should be rejected for any reason.
2103
 */
2104
float compute_symbolic_block_difference_1plane_1partition(
2105
  const astcenc_config& config,
2106
  const block_size_descriptor& bsd,
2107
  const symbolic_compressed_block& scb,
2108
  const image_block& blk);
2109
2110
/**
2111
 * @brief Convert a symbolic representation into a binary physical encoding.
2112
 *
2113
 * It is assumed that the symbolic encoding is valid and encodable, or
2114
 * previously flagged as an error block if an error color it to be encoded.
2115
 *
2116
 * @param      bsd   The block size information.
2117
 * @param      scb   The symbolic representation.
2118
 * @param[out] pcb   The physical compressed block output.
2119
 */
2120
void symbolic_to_physical(
2121
  const block_size_descriptor& bsd,
2122
  const symbolic_compressed_block& scb,
2123
  uint8_t pcb[16]);
2124
2125
/**
2126
 * @brief Convert a binary physical encoding into a symbolic representation.
2127
 *
2128
 * This function can cope with arbitrary input data; output blocks will be
2129
 * flagged as an error block if the encoding is invalid.
2130
 *
2131
 * @param      bsd   The block size information.
2132
 * @param      pcb   The physical compresesd block input.
2133
 * @param[out] scb   The output symbolic representation.
2134
 */
2135
void physical_to_symbolic(
2136
  const block_size_descriptor& bsd,
2137
  const uint8_t pcb[16],
2138
  symbolic_compressed_block& scb);
2139
2140
/* ============================================================================
2141
Platform-specific functions.
2142
============================================================================ */
2143
/**
2144
 * @brief Allocate an aligned memory buffer.
2145
 *
2146
 * Allocated memory must be freed by aligned_free;
2147
 *
2148
 * @param size    The desired buffer size.
2149
 * @param align   The desired buffer alignment; must be 2^N.
2150
 *
2151
 * @return The memory buffer pointer or nullptr on allocation failure.
2152
 */
2153
template<typename T>
2154
T* aligned_malloc(size_t size, size_t align)
2155
{
2156
  void* ptr;
2157
  int error = 0;
2158
2159
#if defined(_WIN32)
2160
  ptr = _aligned_malloc(size, align);
2161
#else
2162
  error = posix_memalign(&ptr, align, size);
2163
#endif
2164
2165
  if (error || (!ptr))
2166
  {
2167
    return nullptr;
2168
  }
2169
2170
  return static_cast<T*>(ptr);
2171
}
2172
2173
/**
2174
 * @brief Free an aligned memory buffer.
2175
 *
2176
 * @param ptr   The buffer to free.
2177
 */
2178
template<typename T>
2179
void aligned_free(T* ptr)
2180
{
2181
#if defined(_WIN32)
2182
  _aligned_free(ptr);
2183
#else
2184
  free(ptr);
2185
#endif
2186
}
2187
2188
#endif