Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * lens.c: |
3 | | * |
4 | | * Copyright (C) 2007-2016 David Lutterkort |
5 | | * |
6 | | * This library is free software; you can redistribute it and/or |
7 | | * modify it under the terms of the GNU Lesser General Public |
8 | | * License as published by the Free Software Foundation; either |
9 | | * version 2.1 of the License, or (at your option) any later version. |
10 | | * |
11 | | * This library is distributed in the hope that it will be useful, |
12 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | | * Lesser General Public License for more details. |
15 | | * |
16 | | * You should have received a copy of the GNU Lesser General Public |
17 | | * License along with this library; if not, write to the Free Software |
18 | | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 | | * |
20 | | * Author: David Lutterkort <dlutter@redhat.com> |
21 | | */ |
22 | | |
23 | | #include <config.h> |
24 | | #include <stddef.h> |
25 | | |
26 | | #include "lens.h" |
27 | | #include "memory.h" |
28 | | #include "errcode.h" |
29 | | #include "internal.h" |
30 | | |
31 | | /* This enum must be kept in sync with type_offs and ntypes */ |
32 | | enum lens_type { |
33 | | CTYPE, ATYPE, KTYPE, VTYPE |
34 | | }; |
35 | | |
36 | | static const int type_offs[] = { |
37 | | offsetof(struct lens, ctype), |
38 | | offsetof(struct lens, atype), |
39 | | offsetof(struct lens, ktype), |
40 | | offsetof(struct lens, vtype) |
41 | | }; |
42 | | static const int ntypes = sizeof(type_offs)/sizeof(type_offs[0]); |
43 | | |
44 | | static const char *lens_type_names[] = |
45 | | { "ctype", "atype", "ktype", "vtype" }; |
46 | | |
47 | 0 | #define ltype(lns, t) *((struct regexp **) ((char *) lns + type_offs[t])) |
48 | | |
49 | | static struct value * typecheck_union(struct info *, |
50 | | struct lens *l1, struct lens *l2); |
51 | | static struct value *typecheck_concat(struct info *, |
52 | | struct lens *l1, struct lens *l2); |
53 | | static struct value *typecheck_square(struct info *, |
54 | | struct lens *l1, struct lens *l2); |
55 | | static struct value *typecheck_iter(struct info *info, struct lens *l); |
56 | | static struct value *typecheck_maybe(struct info *info, struct lens *l); |
57 | | |
58 | | /* Lens names for pretty printing */ |
59 | | /* keep order in sync with enum type */ |
60 | | static const char *const tags[] = { |
61 | | "del", "store", "value", "key", "label", "seq", "counter", |
62 | | "concat", "union", |
63 | | "subtree", "star", "maybe", "rec", "square" |
64 | | }; |
65 | | |
66 | 0 | #define ltag(lens) (tags[lens->tag - L_DEL]) |
67 | | |
68 | | static const struct string digits_string = { |
69 | | .ref = REF_MAX, .str = (char *) "[0123456789]+" |
70 | | }; |
71 | | static const struct string *const digits_pat = &digits_string; |
72 | | |
73 | 0 | char *format_lens(struct lens *l) { |
74 | 0 | if (l == NULL) { |
75 | 0 | return strdup("(no lens)"); |
76 | 0 | } |
77 | | |
78 | 0 | char *inf = format_info(l->info); |
79 | 0 | char *result; |
80 | |
|
81 | 0 | xasprintf(&result, "%s[%s]%s", tags[l->tag - L_DEL], inf, |
82 | 0 | l->recursive ? "R" : "r"); |
83 | 0 | free(inf); |
84 | 0 | return result; |
85 | 0 | } |
86 | | |
87 | 0 | #define BUG_LENS_TAG(lns) bug_lens_tag(lns, __FILE__, __LINE__) |
88 | | |
89 | 0 | static void bug_lens_tag(struct lens *lens, const char *file, int lineno) { |
90 | 0 | if (lens != NULL && lens->info != NULL && lens->info->error != NULL) { |
91 | 0 | char *s = format_lens(lens); |
92 | 0 | bug_on(lens->info->error, file, lineno, "Unexpected lens tag %s", s); |
93 | 0 | free(s); |
94 | 0 | } else { |
95 | | /* We are really screwed */ |
96 | 0 | assert(0); |
97 | 0 | } |
98 | 0 | return; |
99 | 0 | } |
100 | | |
101 | | /* Construct a finite automaton from REGEXP and return it in *FA. |
102 | | * |
103 | | * Return NULL if REGEXP is valid, if the regexp REGEXP has syntax errors, |
104 | | * return an exception. |
105 | | */ |
106 | | static struct value *str_to_fa(struct info *info, const char *pattern, |
107 | 0 | struct fa **fa, int nocase) { |
108 | 0 | int error; |
109 | 0 | struct value *exn = NULL; |
110 | 0 | size_t re_err_len; |
111 | 0 | char *re_str = NULL, *re_err = NULL; |
112 | |
|
113 | 0 | *fa = NULL; |
114 | 0 | error = fa_compile(pattern, strlen(pattern), fa); |
115 | 0 | if (error == REG_NOERROR) { |
116 | 0 | if (nocase) { |
117 | 0 | error = fa_nocase(*fa); |
118 | 0 | ERR_NOMEM(error < 0, info); |
119 | 0 | } |
120 | 0 | return NULL; |
121 | 0 | } |
122 | | |
123 | 0 | re_str = escape(pattern, -1, RX_ESCAPES); |
124 | 0 | ERR_NOMEM(re_str == NULL, info); |
125 | |
|
126 | 0 | exn = make_exn_value(info, "Invalid regular expression /%s/", re_str); |
127 | |
|
128 | 0 | re_err_len = regerror(error, NULL, NULL, 0); |
129 | 0 | error = ALLOC_N(re_err, re_err_len); |
130 | 0 | ERR_NOMEM(error < 0, info); |
131 | |
|
132 | 0 | regerror(error, NULL, re_err, re_err_len); |
133 | 0 | exn_printf_line(exn, "%s", re_err); |
134 | |
|
135 | 0 | done: |
136 | 0 | free(re_str); |
137 | 0 | free(re_err); |
138 | 0 | return exn; |
139 | 0 | error: |
140 | 0 | fa_free(*fa); |
141 | 0 | *fa = NULL; |
142 | 0 | exn = info->error->exn; |
143 | 0 | goto done; |
144 | 0 | } |
145 | | |
146 | 0 | static struct value *regexp_to_fa(struct regexp *regexp, struct fa **fa) { |
147 | 0 | return str_to_fa(regexp->info, regexp->pattern->str, fa, regexp->nocase); |
148 | 0 | } |
149 | | |
150 | 0 | static struct lens *make_lens(enum lens_tag tag, struct info *info) { |
151 | 0 | struct lens *lens; |
152 | 0 | make_ref(lens); |
153 | 0 | lens->tag = tag; |
154 | 0 | lens->info = info; |
155 | |
|
156 | 0 | return lens; |
157 | 0 | } |
158 | | |
159 | | static struct lens *make_lens_unop(enum lens_tag tag, struct info *info, |
160 | 0 | struct lens *child) { |
161 | 0 | struct lens *lens = make_lens(tag, info); |
162 | 0 | lens->child = child; |
163 | 0 | lens->value = child->value; |
164 | 0 | lens->key = child->key; |
165 | 0 | return lens; |
166 | 0 | } |
167 | | |
168 | | typedef struct regexp *regexp_combinator(struct info *, int, struct regexp **); |
169 | | |
170 | | static struct lens *make_lens_binop(enum lens_tag tag, struct info *info, |
171 | | struct lens *l1, struct lens *l2, |
172 | 0 | regexp_combinator *combinator) { |
173 | 0 | struct lens *lens = make_lens(tag, info); |
174 | 0 | int n1 = (l1->tag == tag) ? l1->nchildren : 1; |
175 | 0 | struct regexp **types = NULL; |
176 | |
|
177 | 0 | if (lens == NULL) |
178 | 0 | goto error; |
179 | | |
180 | 0 | lens->nchildren = n1; |
181 | 0 | lens->nchildren += (l2->tag == tag) ? l2->nchildren : 1; |
182 | |
|
183 | 0 | lens->recursive = l1->recursive || l2->recursive; |
184 | 0 | lens->rec_internal = l1->rec_internal || l2->rec_internal; |
185 | |
|
186 | 0 | if (ALLOC_N(lens->children, lens->nchildren) < 0) { |
187 | 0 | lens->nchildren = 0; |
188 | 0 | goto error; |
189 | 0 | } |
190 | | |
191 | 0 | if (l1->tag == tag) { |
192 | 0 | for (int i=0; i < l1->nchildren; i++) |
193 | 0 | lens->children[i] = ref(l1->children[i]); |
194 | 0 | unref(l1, lens); |
195 | 0 | } else { |
196 | 0 | lens->children[0] = l1; |
197 | 0 | } |
198 | | |
199 | 0 | if (l2->tag == tag) { |
200 | 0 | for (int i=0; i < l2->nchildren; i++) |
201 | 0 | lens->children[n1 + i] = ref(l2->children[i]); |
202 | 0 | unref(l2, lens); |
203 | 0 | } else { |
204 | 0 | lens->children[n1] = l2; |
205 | 0 | } |
206 | | |
207 | 0 | for (int i=0; i < lens->nchildren; i++) { |
208 | 0 | lens->value = lens->value || lens->children[i]->value; |
209 | 0 | lens->key = lens->key || lens->children[i]->key; |
210 | 0 | } |
211 | |
|
212 | 0 | if (ALLOC_N(types, lens->nchildren) < 0) |
213 | 0 | goto error; |
214 | | |
215 | 0 | if (! lens->rec_internal) { |
216 | | /* Inside a recursive lens, we assign types with lns_check_rec |
217 | | * once we know the entire lens */ |
218 | 0 | for (int t=0; t < ntypes; t++) { |
219 | 0 | if (lens->recursive && t == CTYPE) |
220 | 0 | continue; |
221 | 0 | for (int i=0; i < lens->nchildren; i++) |
222 | 0 | types[i] = ltype(lens->children[i], t); |
223 | 0 | ltype(lens, t) = (*combinator)(info, lens->nchildren, types); |
224 | 0 | } |
225 | 0 | } |
226 | 0 | FREE(types); |
227 | |
|
228 | 0 | for (int i=0; i < lens->nchildren; i++) |
229 | 0 | ensure(tag != lens->children[i]->tag, lens->info); |
230 | |
|
231 | 0 | return lens; |
232 | 0 | error: |
233 | 0 | unref(lens, lens); |
234 | 0 | FREE(types); |
235 | 0 | return NULL; |
236 | 0 | } |
237 | | |
238 | 0 | static struct value *make_lens_value(struct lens *lens) { |
239 | 0 | struct value *v; |
240 | 0 | v = make_value(V_LENS, ref(lens->info)); |
241 | 0 | v->lens = lens; |
242 | 0 | return v; |
243 | 0 | } |
244 | | |
245 | | struct value *lns_make_union(struct info *info, |
246 | 0 | struct lens *l1, struct lens *l2, int check) { |
247 | 0 | struct lens *lens = NULL; |
248 | 0 | int consumes_value = l1->consumes_value && l2->consumes_value; |
249 | 0 | int recursive = l1->recursive || l2->recursive; |
250 | 0 | int ctype_nullable = l1->ctype_nullable || l2->ctype_nullable; |
251 | |
|
252 | 0 | if (check) { |
253 | 0 | struct value *exn = typecheck_union(info, l1, l2); |
254 | 0 | if (exn != NULL) |
255 | 0 | return exn; |
256 | 0 | } |
257 | | |
258 | 0 | lens = make_lens_binop(L_UNION, info, l1, l2, regexp_union_n); |
259 | 0 | lens->consumes_value = consumes_value; |
260 | 0 | if (! recursive) |
261 | 0 | lens->ctype_nullable = ctype_nullable; |
262 | 0 | return make_lens_value(lens); |
263 | 0 | } |
264 | | |
265 | | struct value *lns_make_concat(struct info *info, |
266 | 0 | struct lens *l1, struct lens *l2, int check) { |
267 | 0 | struct lens *lens = NULL; |
268 | 0 | int consumes_value = l1->consumes_value || l2->consumes_value; |
269 | 0 | int recursive = l1->recursive || l2->recursive; |
270 | 0 | int ctype_nullable = l1->ctype_nullable && l2->ctype_nullable; |
271 | |
|
272 | 0 | if (check) { |
273 | 0 | struct value *exn = typecheck_concat(info, l1, l2); |
274 | 0 | if (exn != NULL) |
275 | 0 | return exn; |
276 | 0 | } |
277 | 0 | if (l1->value && l2->value) { |
278 | 0 | return make_exn_value(info, "Multiple stores in concat"); |
279 | 0 | } |
280 | 0 | if (l1->key && l2->key) { |
281 | 0 | return make_exn_value(info, "Multiple keys/labels in concat"); |
282 | 0 | } |
283 | | |
284 | 0 | lens = make_lens_binop(L_CONCAT, info, l1, l2, regexp_concat_n); |
285 | 0 | lens->consumes_value = consumes_value; |
286 | 0 | if (! recursive) |
287 | 0 | lens->ctype_nullable = ctype_nullable; |
288 | 0 | return make_lens_value(lens); |
289 | 0 | } |
290 | | |
291 | | static struct regexp *subtree_atype(struct info *info, |
292 | | struct regexp *ktype, |
293 | 0 | struct regexp *vtype) { |
294 | 0 | const char *kpat = (ktype == NULL) ? ENC_NULL : ktype->pattern->str; |
295 | 0 | const char *vpat = (vtype == NULL) ? ENC_NULL : vtype->pattern->str; |
296 | 0 | char *pat; |
297 | 0 | struct regexp *result = NULL; |
298 | 0 | char *ks = NULL, *vs = NULL; |
299 | 0 | int nocase; |
300 | |
|
301 | 0 | if (ktype != NULL && vtype != NULL && ktype->nocase != vtype->nocase) { |
302 | 0 | ks = regexp_expand_nocase(ktype); |
303 | 0 | vs = regexp_expand_nocase(vtype); |
304 | 0 | ERR_NOMEM(ks == NULL || vs == NULL, info); |
305 | 0 | if (asprintf(&pat, "(%s)%s(%s)%s", ks, ENC_EQ, vs, ENC_SLASH) < 0) |
306 | 0 | ERR_NOMEM(true, info); |
307 | 0 | nocase = 0; |
308 | 0 | } else { |
309 | 0 | if (asprintf(&pat, "(%s)%s(%s)%s", kpat, ENC_EQ, vpat, ENC_SLASH) < 0) |
310 | 0 | ERR_NOMEM(pat == NULL, info); |
311 | |
|
312 | 0 | nocase = 0; |
313 | 0 | if (ktype != NULL) |
314 | 0 | nocase = ktype->nocase; |
315 | 0 | else if (vtype != NULL) |
316 | 0 | nocase = vtype->nocase; |
317 | 0 | } |
318 | 0 | result = make_regexp(info, pat, nocase); |
319 | 0 | error: |
320 | 0 | free(ks); |
321 | 0 | free(vs); |
322 | 0 | return result; |
323 | 0 | } |
324 | | |
325 | | /* |
326 | | * A subtree lens l1 = [ l ] |
327 | | * |
328 | | * Types are assigned as follows: |
329 | | * |
330 | | * l1->ctype = l->ctype |
331 | | * l1->atype = encode(l->ktype, l->vtype) |
332 | | * l1->ktype = NULL |
333 | | * l1->vtype = NULL |
334 | | */ |
335 | 0 | struct value *lns_make_subtree(struct info *info, struct lens *l) { |
336 | 0 | struct lens *lens; |
337 | |
|
338 | 0 | lens = make_lens_unop(L_SUBTREE, info, l); |
339 | 0 | lens->ctype = ref(l->ctype); |
340 | 0 | if (! l->recursive) |
341 | 0 | lens->atype = subtree_atype(info, l->ktype, l->vtype); |
342 | 0 | lens->value = lens->key = 0; |
343 | 0 | lens->recursive = l->recursive; |
344 | 0 | lens->rec_internal = l->rec_internal; |
345 | 0 | if (! l->recursive) |
346 | 0 | lens->ctype_nullable = l->ctype_nullable; |
347 | 0 | return make_lens_value(lens); |
348 | 0 | } |
349 | | |
350 | 0 | struct value *lns_make_star(struct info *info, struct lens *l, int check) { |
351 | 0 | struct lens *lens; |
352 | |
|
353 | 0 | if (check) { |
354 | 0 | struct value *exn = typecheck_iter(info, l); |
355 | 0 | if (exn != NULL) |
356 | 0 | return exn; |
357 | 0 | } |
358 | 0 | if (l->value) { |
359 | 0 | return make_exn_value(info, "Multiple stores in iteration"); |
360 | 0 | } |
361 | 0 | if (l->key) { |
362 | 0 | return make_exn_value(info, "Multiple keys/labels in iteration"); |
363 | 0 | } |
364 | | |
365 | 0 | lens = make_lens_unop(L_STAR, info, l); |
366 | 0 | for (int t = 0; t < ntypes; t++) { |
367 | 0 | ltype(lens, t) = regexp_iter(info, ltype(l, t), 0, -1); |
368 | 0 | } |
369 | 0 | lens->recursive = l->recursive; |
370 | 0 | lens->rec_internal = l->rec_internal; |
371 | 0 | lens->ctype_nullable = 1; |
372 | 0 | return make_lens_value(lens); |
373 | 0 | } |
374 | | |
375 | 0 | struct value *lns_make_plus(struct info *info, struct lens *l, int check) { |
376 | 0 | struct value *star, *conc; |
377 | |
|
378 | 0 | star = lns_make_star(info, l, check); |
379 | 0 | if (EXN(star)) |
380 | 0 | return star; |
381 | | |
382 | 0 | conc = lns_make_concat(ref(info), ref(l), ref(star->lens), check); |
383 | 0 | unref(star, value); |
384 | 0 | return conc; |
385 | 0 | } |
386 | | |
387 | 0 | struct value *lns_make_maybe(struct info *info, struct lens *l, int check) { |
388 | 0 | struct lens *lens; |
389 | |
|
390 | 0 | if (check) { |
391 | 0 | struct value *exn = typecheck_maybe(info, l); |
392 | 0 | if (exn != NULL) |
393 | 0 | return exn; |
394 | 0 | } |
395 | 0 | lens = make_lens_unop(L_MAYBE, info, l); |
396 | 0 | for (int t=0; t < ntypes; t++) |
397 | 0 | ltype(lens, t) = regexp_maybe(info, ltype(l, t)); |
398 | 0 | lens->value = l->value; |
399 | 0 | lens->key = l->key; |
400 | 0 | lens->recursive = l->recursive; |
401 | 0 | lens->rec_internal = l->rec_internal; |
402 | 0 | lens->ctype_nullable = 1; |
403 | 0 | return make_lens_value(lens); |
404 | 0 | } |
405 | | |
406 | | /* The ctype of SQR is a regular approximation of the true ctype of SQR |
407 | | * at this point. In some situations, for example in processing quoted |
408 | | * strings this leads to false typecheck errors; to lower the chances |
409 | | * of these, we try to construct the precise ctype of SQR if the |
410 | | * language of L1 is finite (and has a small number of words) |
411 | | */ |
412 | | static void square_precise_type(struct info *info, |
413 | | struct regexp **sqr, |
414 | | struct regexp *left, |
415 | 0 | struct regexp *body) { |
416 | |
|
417 | 0 | char **words = NULL; |
418 | 0 | int nwords = 0, r; |
419 | 0 | struct fa *fa = NULL; |
420 | 0 | struct value *exn = NULL; |
421 | 0 | struct regexp **u = NULL, *c[3], *w = NULL; |
422 | |
|
423 | 0 | exn = str_to_fa(info, left->pattern->str, &fa, left->nocase); |
424 | 0 | if (exn != NULL) |
425 | 0 | goto error; |
426 | | |
427 | 0 | nwords = fa_enumerate(fa, 10, &words); /* The limit of 10 is arbitrary */ |
428 | 0 | if (nwords < 0) |
429 | 0 | goto error; |
430 | | |
431 | 0 | r = ALLOC_N(u, nwords); |
432 | 0 | ERR_NOMEM(r < 0, info); |
433 | |
|
434 | 0 | c[1] = body; |
435 | 0 | for (int i=0; i < nwords; i++) { |
436 | 0 | w = make_regexp_literal(left->info, words[i]); |
437 | 0 | ERR_NOMEM(w == NULL, info); |
438 | 0 | w->nocase = left->nocase; |
439 | |
|
440 | 0 | c[0] = c[2] = w; |
441 | 0 | u[i] = regexp_concat_n(info, 3, c); |
442 | |
|
443 | 0 | unref(w, regexp); |
444 | 0 | ERR_NOMEM(u[i] == NULL, info); |
445 | 0 | } |
446 | 0 | w = regexp_union_n(info, nwords, u); |
447 | 0 | if (w != NULL) { |
448 | 0 | unref(*sqr, regexp); |
449 | 0 | *sqr = w; |
450 | 0 | w = NULL; |
451 | 0 | } |
452 | | |
453 | 0 | error: |
454 | 0 | unref(w, regexp); |
455 | 0 | for (int i=0; i < nwords; i++) { |
456 | 0 | free(words[i]); |
457 | 0 | if (u != NULL) |
458 | 0 | unref(u[i], regexp); |
459 | 0 | } |
460 | 0 | free(words); |
461 | 0 | free(u); |
462 | 0 | fa_free(fa); |
463 | 0 | unref(exn, value); |
464 | 0 | } |
465 | | |
466 | | /* Build a square lens as |
467 | | * left . body . right |
468 | | * where left and right accepts the same language and |
469 | | * captured strings must match. The inability to express this with other |
470 | | * lenses makes the square primitive necessary. |
471 | | */ |
472 | | struct value * lns_make_square(struct info *info, struct lens *l1, |
473 | 0 | struct lens *l2, struct lens *l3, int check) { |
474 | 0 | struct value *cnt1 = NULL, *cnt2 = NULL, *res = NULL; |
475 | 0 | struct lens *sqr = NULL; |
476 | | |
477 | | /* supported types: L_KEY . body . L_DEL or L_DEL . body . L_DEL */ |
478 | 0 | if (l3->tag != L_DEL || (l1->tag != L_DEL && l1->tag != L_KEY)) |
479 | 0 | return make_exn_value(info, "Supported types: (key lns del) or (del lns del)"); |
480 | | |
481 | 0 | res = typecheck_square(info, l1, l3); |
482 | 0 | if (res != NULL) |
483 | 0 | goto error; |
484 | | |
485 | 0 | res = lns_make_concat(ref(info), ref(l1), ref(l2), check); |
486 | 0 | if (EXN(res)) |
487 | 0 | goto error; |
488 | 0 | cnt1 = res; |
489 | 0 | res = lns_make_concat(ref(info), ref(cnt1->lens), ref(l3), check); |
490 | 0 | if (EXN(res)) |
491 | 0 | goto error; |
492 | 0 | cnt2 = res; |
493 | |
|
494 | 0 | sqr = make_lens_unop(L_SQUARE, ref(info), ref(cnt2->lens)); |
495 | 0 | ERR_NOMEM(sqr == NULL, info); |
496 | |
|
497 | 0 | for (int t=0; t < ntypes; t++) |
498 | 0 | ltype(sqr, t) = ref(ltype(cnt2->lens, t)); |
499 | |
|
500 | 0 | square_precise_type(info, &(sqr->ctype), l1->ctype, l2->ctype); |
501 | |
|
502 | 0 | sqr->recursive = cnt2->lens->recursive; |
503 | 0 | sqr->rec_internal = cnt2->lens->rec_internal; |
504 | 0 | sqr->consumes_value = cnt2->lens->consumes_value; |
505 | |
|
506 | 0 | res = make_lens_value(sqr); |
507 | 0 | ERR_NOMEM(res == NULL, info); |
508 | 0 | sqr = NULL; |
509 | |
|
510 | 0 | error: |
511 | 0 | unref(info, info); |
512 | 0 | unref(l1, lens); |
513 | 0 | unref(l2, lens); |
514 | 0 | unref(l3, lens); |
515 | 0 | unref(cnt1, value); |
516 | 0 | unref(cnt2, value); |
517 | 0 | unref(sqr, lens); |
518 | 0 | return res; |
519 | 0 | } |
520 | | |
521 | | /* |
522 | | * Lens primitives |
523 | | */ |
524 | | |
525 | | static struct regexp *make_regexp_from_string(struct info *info, |
526 | 0 | struct string *string) { |
527 | 0 | struct regexp *r; |
528 | 0 | make_ref(r); |
529 | 0 | if (r != NULL) { |
530 | 0 | r->info = ref(info); |
531 | 0 | r->pattern = ref(string); |
532 | 0 | r->nocase = 0; |
533 | 0 | } |
534 | 0 | return r; |
535 | 0 | } |
536 | | |
537 | 0 | static struct regexp *restrict_regexp(struct regexp *r) { |
538 | 0 | char *nre = NULL; |
539 | 0 | struct regexp *result = NULL; |
540 | 0 | size_t nre_len; |
541 | 0 | int ret; |
542 | |
|
543 | 0 | ret = fa_restrict_alphabet(r->pattern->str, strlen(r->pattern->str), |
544 | 0 | &nre, &nre_len, |
545 | 0 | RESERVED_FROM_CH, RESERVED_TO_CH); |
546 | 0 | ERR_NOMEM(ret == REG_ESPACE || ret < 0, r->info); |
547 | 0 | BUG_ON(ret != 0, r->info, NULL); |
548 | 0 | ensure(nre_len == strlen(nre), r->info); |
549 | |
|
550 | 0 | ret = regexp_c_locale(&nre, &nre_len); |
551 | 0 | ERR_NOMEM(ret < 0, r->info); |
552 | |
|
553 | 0 | result = make_regexp(r->info, nre, r->nocase); |
554 | 0 | nre = NULL; |
555 | 0 | BUG_ON(regexp_compile(result) != 0, r->info, |
556 | 0 | "Could not compile restricted regexp"); |
557 | 0 | done: |
558 | 0 | free(nre); |
559 | 0 | return result; |
560 | 0 | error: |
561 | 0 | unref(result, regexp); |
562 | 0 | goto done; |
563 | 0 | } |
564 | | |
565 | | static struct value * |
566 | | typecheck_prim(enum lens_tag tag, struct info *info, |
567 | 0 | struct regexp *regexp, struct string *string) { |
568 | 0 | struct fa *fa_slash = NULL; |
569 | 0 | struct fa *fa_key = NULL; |
570 | 0 | struct fa *fa_isect = NULL; |
571 | 0 | struct value *exn = NULL; |
572 | | |
573 | | /* Typecheck */ |
574 | 0 | if (tag == L_DEL && string != NULL) { |
575 | 0 | int cnt; |
576 | 0 | const char *dflt = string->str; |
577 | 0 | cnt = regexp_match(regexp, dflt, strlen(dflt), 0, NULL); |
578 | 0 | if (cnt != strlen(dflt)) { |
579 | 0 | char *s = escape(dflt, -1, RX_ESCAPES); |
580 | 0 | char *r = regexp_escape(regexp); |
581 | 0 | exn = make_exn_value(info, |
582 | 0 | "del: the default value '%s' does not match /%s/", s, r); |
583 | 0 | FREE(s); |
584 | 0 | FREE(r); |
585 | 0 | goto error; |
586 | 0 | } |
587 | 0 | } |
588 | | |
589 | 0 | error: |
590 | 0 | fa_free(fa_isect); |
591 | 0 | fa_free(fa_key); |
592 | 0 | fa_free(fa_slash); |
593 | 0 | return exn; |
594 | 0 | } |
595 | | |
596 | | struct value *lns_make_prim(enum lens_tag tag, struct info *info, |
597 | 0 | struct regexp *regexp, struct string *string) { |
598 | 0 | struct lens *lens = NULL; |
599 | 0 | struct value *exn = NULL; |
600 | |
|
601 | 0 | if (typecheck_p(info)) { |
602 | 0 | exn = typecheck_prim(tag, info, regexp, string); |
603 | 0 | if (exn != NULL) |
604 | 0 | goto error; |
605 | 0 | } |
606 | | |
607 | | /* Build the actual lens */ |
608 | 0 | lens = make_lens(tag, info); |
609 | 0 | lens->regexp = regexp; |
610 | 0 | lens->string = string; |
611 | 0 | lens->key = (tag == L_KEY || tag == L_LABEL || tag == L_SEQ); |
612 | 0 | lens->value = (tag == L_STORE || tag == L_VALUE); |
613 | 0 | lens->consumes_value = (tag == L_STORE || tag == L_VALUE); |
614 | 0 | lens->atype = regexp_make_empty(info); |
615 | | /* Set the ctype */ |
616 | 0 | if (tag == L_DEL || tag == L_STORE || tag == L_KEY) { |
617 | 0 | lens->ctype = ref(regexp); |
618 | 0 | lens->ctype_nullable = regexp_matches_empty(lens->ctype); |
619 | 0 | } else if (tag == L_LABEL || tag == L_VALUE |
620 | 0 | || tag == L_SEQ || tag == L_COUNTER) { |
621 | 0 | lens->ctype = regexp_make_empty(info); |
622 | 0 | lens->ctype_nullable = 1; |
623 | 0 | } else { |
624 | 0 | BUG_LENS_TAG(lens); |
625 | 0 | goto error; |
626 | 0 | } |
627 | | |
628 | | |
629 | | /* Set the ktype */ |
630 | 0 | if (tag == L_SEQ) { |
631 | 0 | lens->ktype = |
632 | 0 | make_regexp_from_string(info, (struct string *) digits_pat); |
633 | 0 | if (lens->ktype == NULL) |
634 | 0 | goto error; |
635 | 0 | } else if (tag == L_KEY) { |
636 | 0 | lens->ktype = restrict_regexp(lens->regexp); |
637 | 0 | } else if (tag == L_LABEL) { |
638 | 0 | lens->ktype = make_regexp_literal(info, lens->string->str); |
639 | 0 | if (lens->ktype == NULL) |
640 | 0 | goto error; |
641 | 0 | } |
642 | | |
643 | | /* Set the vtype */ |
644 | 0 | if (tag == L_STORE) { |
645 | 0 | lens->vtype = restrict_regexp(lens->regexp); |
646 | 0 | } else if (tag == L_VALUE) { |
647 | 0 | lens->vtype = make_regexp_literal(info, lens->string->str); |
648 | 0 | if (lens->vtype == NULL) |
649 | 0 | goto error; |
650 | 0 | } |
651 | | |
652 | 0 | return make_lens_value(lens); |
653 | 0 | error: |
654 | 0 | return exn; |
655 | 0 | } |
656 | | |
657 | | /* |
658 | | * Typechecking of lenses |
659 | | */ |
660 | | static struct value *disjoint_check(struct info *info, bool is_get, |
661 | 0 | struct regexp *r1, struct regexp *r2) { |
662 | 0 | struct fa *fa1 = NULL; |
663 | 0 | struct fa *fa2 = NULL; |
664 | 0 | struct fa *fa = NULL; |
665 | 0 | struct value *exn = NULL; |
666 | 0 | const char *const msg = is_get ? "union.get" : "tree union.put"; |
667 | |
|
668 | 0 | if (r1 == NULL || r2 == NULL) |
669 | 0 | return NULL; |
670 | | |
671 | 0 | exn = regexp_to_fa(r1, &fa1); |
672 | 0 | if (exn != NULL) |
673 | 0 | goto done; |
674 | | |
675 | 0 | exn = regexp_to_fa(r2, &fa2); |
676 | 0 | if (exn != NULL) |
677 | 0 | goto done; |
678 | | |
679 | 0 | fa = fa_intersect(fa1, fa2); |
680 | 0 | if (! fa_is_basic(fa, FA_EMPTY)) { |
681 | 0 | size_t xmpl_len; |
682 | 0 | char *xmpl; |
683 | 0 | fa_example(fa, &xmpl, &xmpl_len); |
684 | 0 | if (! is_get) { |
685 | 0 | char *fmt = enc_format(xmpl, xmpl_len); |
686 | 0 | if (fmt != NULL) { |
687 | 0 | FREE(xmpl); |
688 | 0 | xmpl = fmt; |
689 | 0 | } |
690 | 0 | } |
691 | 0 | exn = make_exn_value(ref(info), |
692 | 0 | "overlapping lenses in %s", msg); |
693 | |
|
694 | 0 | if (is_get) |
695 | 0 | exn_printf_line(exn, "Example matched by both: '%s'", xmpl); |
696 | 0 | else |
697 | 0 | exn_printf_line(exn, "Example matched by both: %s", xmpl); |
698 | 0 | free(xmpl); |
699 | 0 | } |
700 | |
|
701 | 0 | done: |
702 | 0 | fa_free(fa); |
703 | 0 | fa_free(fa1); |
704 | 0 | fa_free(fa2); |
705 | |
|
706 | 0 | return exn; |
707 | 0 | } |
708 | | |
709 | | static struct value *typecheck_union(struct info *info, |
710 | 0 | struct lens *l1, struct lens *l2) { |
711 | 0 | struct value *exn = NULL; |
712 | |
|
713 | 0 | exn = disjoint_check(info, true, l1->ctype, l2->ctype); |
714 | 0 | if (exn == NULL) { |
715 | 0 | exn = disjoint_check(info, false, l1->atype, l2->atype); |
716 | 0 | } |
717 | 0 | if (exn != NULL) { |
718 | 0 | char *fi = format_info(l1->info); |
719 | 0 | exn_printf_line(exn, "First lens: %s", fi); |
720 | 0 | free(fi); |
721 | |
|
722 | 0 | fi = format_info(l2->info); |
723 | 0 | exn_printf_line(exn, "Second lens: %s", fi); |
724 | 0 | free(fi); |
725 | 0 | } |
726 | 0 | return exn; |
727 | 0 | } |
728 | | |
729 | | static struct value * |
730 | | ambig_check(struct info *info, struct fa *fa1, struct fa *fa2, |
731 | | enum lens_type typ, struct lens *l1, struct lens *l2, |
732 | 0 | const char *msg, bool iterated) { |
733 | 0 | char *upv, *pv, *v; |
734 | 0 | size_t upv_len; |
735 | 0 | struct value *exn = NULL; |
736 | 0 | int r; |
737 | |
|
738 | 0 | r = fa_ambig_example(fa1, fa2, &upv, &upv_len, &pv, &v); |
739 | 0 | if (r < 0) { |
740 | 0 | exn = make_exn_value(ref(info), "not enough memory"); |
741 | 0 | if (exn != NULL) { |
742 | 0 | return exn; |
743 | 0 | } else { |
744 | 0 | ERR_REPORT(info, AUG_ENOMEM, NULL); |
745 | 0 | return info->error->exn; |
746 | 0 | } |
747 | 0 | } |
748 | | |
749 | 0 | if (upv != NULL) { |
750 | 0 | char *e_u, *e_up, *e_upv, *e_pv, *e_v; |
751 | 0 | char *s1, *s2; |
752 | |
|
753 | 0 | if (typ == ATYPE) { |
754 | 0 | e_u = enc_format(upv, pv - upv); |
755 | 0 | e_up = enc_format(upv, v - upv); |
756 | 0 | e_upv = enc_format(upv, upv_len); |
757 | 0 | e_pv = enc_format(pv, strlen(pv)); |
758 | 0 | e_v = enc_format(v, strlen(v)); |
759 | 0 | lns_format_atype(l1, &s1); |
760 | 0 | lns_format_atype(l2, &s2); |
761 | 0 | } else { |
762 | 0 | e_u = escape(upv, pv - upv, RX_ESCAPES); |
763 | 0 | e_up = escape(upv, v - upv, RX_ESCAPES); |
764 | 0 | e_upv = escape(upv, -1, RX_ESCAPES); |
765 | 0 | e_pv = escape(pv, -1, RX_ESCAPES); |
766 | 0 | e_v = escape(v, -1, RX_ESCAPES); |
767 | 0 | s1 = regexp_escape(ltype(l1, typ)); |
768 | 0 | s2 = regexp_escape(ltype(l2, typ)); |
769 | 0 | } |
770 | 0 | exn = make_exn_value(ref(info), "%s", msg); |
771 | 0 | if (iterated) { |
772 | 0 | exn_printf_line(exn, " Iterated regexp: /%s/", s1); |
773 | 0 | } else { |
774 | 0 | exn_printf_line(exn, " First regexp: /%s/", s1); |
775 | 0 | exn_printf_line(exn, " Second regexp: /%s/", s2); |
776 | 0 | } |
777 | 0 | exn_printf_line(exn, " '%s' can be split into", e_upv); |
778 | 0 | exn_printf_line(exn, " '%s|=|%s'\n", e_u, e_pv); |
779 | 0 | exn_printf_line(exn, " and"); |
780 | 0 | exn_printf_line(exn, " '%s|=|%s'\n", e_up, e_v); |
781 | 0 | free(e_u); |
782 | 0 | free(e_up); |
783 | 0 | free(e_upv); |
784 | 0 | free(e_pv); |
785 | 0 | free(e_v); |
786 | 0 | free(s1); |
787 | 0 | free(s2); |
788 | 0 | } |
789 | 0 | free(upv); |
790 | 0 | return exn; |
791 | 0 | } |
792 | | |
793 | | static struct value * |
794 | | ambig_concat_check(struct info *info, const char *msg, |
795 | 0 | enum lens_type typ, struct lens *l1, struct lens *l2) { |
796 | 0 | struct fa *fa1 = NULL; |
797 | 0 | struct fa *fa2 = NULL; |
798 | 0 | struct value *result = NULL; |
799 | 0 | struct regexp *r1 = ltype(l1, typ); |
800 | 0 | struct regexp *r2 = ltype(l2, typ); |
801 | |
|
802 | 0 | if (r1 == NULL || r2 == NULL) |
803 | 0 | return NULL; |
804 | | |
805 | 0 | result = regexp_to_fa(r1, &fa1); |
806 | 0 | if (result != NULL) |
807 | 0 | goto done; |
808 | | |
809 | 0 | result = regexp_to_fa(r2, &fa2); |
810 | 0 | if (result != NULL) |
811 | 0 | goto done; |
812 | | |
813 | 0 | result = ambig_check(info, fa1, fa2, typ, l1, l2, msg, false); |
814 | 0 | done: |
815 | 0 | fa_free(fa1); |
816 | 0 | fa_free(fa2); |
817 | 0 | return result; |
818 | 0 | } |
819 | | |
820 | | static struct value *typecheck_concat(struct info *info, |
821 | 0 | struct lens *l1, struct lens *l2) { |
822 | 0 | struct value *result = NULL; |
823 | |
|
824 | 0 | result = ambig_concat_check(info, "ambiguous concatenation", |
825 | 0 | CTYPE, l1, l2); |
826 | 0 | if (result == NULL) { |
827 | 0 | result = ambig_concat_check(info, "ambiguous tree concatenation", |
828 | 0 | ATYPE, l1, l2); |
829 | 0 | } |
830 | 0 | if (result != NULL) { |
831 | 0 | char *fi = format_info(l1->info); |
832 | 0 | exn_printf_line(result, "First lens: %s", fi); |
833 | 0 | free(fi); |
834 | 0 | fi = format_info(l2->info); |
835 | 0 | exn_printf_line(result, "Second lens: %s", fi); |
836 | 0 | free(fi); |
837 | 0 | } |
838 | 0 | return result; |
839 | 0 | } |
840 | | |
841 | | static struct value *make_exn_square(struct info *info, struct lens *l1, |
842 | 0 | struct lens *l2, const char *msg) { |
843 | |
|
844 | 0 | char *fi; |
845 | 0 | struct value *exn = make_exn_value(ref(info), "%s", |
846 | 0 | "Inconsistency in lens square"); |
847 | 0 | exn_printf_line(exn, "%s", msg); |
848 | 0 | fi = format_info(l1->info); |
849 | 0 | exn_printf_line(exn, "Left lens: %s", fi); |
850 | 0 | free(fi); |
851 | 0 | fi = format_info(l2->info); |
852 | 0 | exn_printf_line(exn, "Right lens: %s", fi); |
853 | 0 | free(fi); |
854 | 0 | return exn; |
855 | 0 | } |
856 | | |
857 | | static struct value *typecheck_square(struct info *info, struct lens *l1, |
858 | 0 | struct lens *l2) { |
859 | 0 | int r; |
860 | 0 | struct value *exn = NULL; |
861 | 0 | struct fa *fa1 = NULL, *fa2 = NULL; |
862 | 0 | struct regexp *r1 = ltype(l1, CTYPE); |
863 | 0 | struct regexp *r2 = ltype(l2, CTYPE); |
864 | |
|
865 | 0 | if (r1 == NULL || r2 == NULL) |
866 | 0 | return NULL; |
867 | | |
868 | 0 | exn = regexp_to_fa(r1, &fa1); |
869 | 0 | if (exn != NULL) |
870 | 0 | goto done; |
871 | | |
872 | 0 | exn = regexp_to_fa(r2, &fa2); |
873 | 0 | if (exn != NULL) |
874 | 0 | goto done; |
875 | | |
876 | 0 | r = fa_equals(fa1, fa2); |
877 | |
|
878 | 0 | if (r < 0) { |
879 | 0 | exn = make_exn_value(ref(info), "not enough memory"); |
880 | 0 | if (exn != NULL) { |
881 | 0 | return exn; |
882 | 0 | } else { |
883 | 0 | ERR_REPORT(info, AUG_ENOMEM, NULL); |
884 | 0 | return info->error->exn;; |
885 | 0 | } |
886 | 0 | } |
887 | | |
888 | 0 | if (r == 0) { |
889 | 0 | exn = make_exn_square(info, l1, l2, |
890 | 0 | "Left and right lenses must accept the same language"); |
891 | 0 | goto done; |
892 | 0 | } |
893 | | |
894 | | /* check del create consistency */ |
895 | 0 | if (l1->tag == L_DEL && l2->tag == L_DEL) { |
896 | 0 | if (!STREQ(l1->string->str, l2->string->str)) { |
897 | 0 | exn = make_exn_square(info, l1, l2, |
898 | 0 | "Left and right lenses must have the same default value"); |
899 | 0 | goto done; |
900 | 0 | } |
901 | 0 | } |
902 | | |
903 | 0 | done: |
904 | 0 | fa_free(fa1); |
905 | 0 | fa_free(fa2); |
906 | 0 | return exn; |
907 | 0 | } |
908 | | |
909 | | static struct value * |
910 | | ambig_iter_check(struct info *info, const char *msg, |
911 | 0 | enum lens_type typ, struct lens *l) { |
912 | 0 | struct fa *fas = NULL, *fa = NULL; |
913 | 0 | struct value *result = NULL; |
914 | 0 | struct regexp *r = ltype(l, typ); |
915 | |
|
916 | 0 | if (r == NULL) |
917 | 0 | return NULL; |
918 | | |
919 | 0 | result = regexp_to_fa(r, &fa); |
920 | 0 | if (result != NULL) |
921 | 0 | goto done; |
922 | | |
923 | 0 | fas = fa_iter(fa, 0, -1); |
924 | |
|
925 | 0 | result = ambig_check(info, fa, fas, typ, l, l, msg, true); |
926 | |
|
927 | 0 | done: |
928 | 0 | fa_free(fa); |
929 | 0 | fa_free(fas); |
930 | 0 | return result; |
931 | 0 | } |
932 | | |
933 | 0 | static struct value *typecheck_iter(struct info *info, struct lens *l) { |
934 | 0 | struct value *result = NULL; |
935 | |
|
936 | 0 | result = ambig_iter_check(info, "ambiguous iteration", CTYPE, l); |
937 | 0 | if (result == NULL) { |
938 | 0 | result = ambig_iter_check(info, "ambiguous tree iteration", ATYPE, l); |
939 | 0 | } |
940 | 0 | if (result != NULL) { |
941 | 0 | char *fi = format_info(l->info); |
942 | 0 | exn_printf_line(result, "Iterated lens: %s", fi); |
943 | 0 | free(fi); |
944 | 0 | } |
945 | 0 | return result; |
946 | 0 | } |
947 | | |
948 | 0 | static struct value *typecheck_maybe(struct info *info, struct lens *l) { |
949 | | /* Check (r)? as (<e>|r) where <e> is the empty language */ |
950 | 0 | struct value *exn = NULL; |
951 | |
|
952 | 0 | if (l->ctype != NULL && regexp_matches_empty(l->ctype)) { |
953 | 0 | exn = make_exn_value(ref(info), |
954 | 0 | "illegal optional expression: /%s/ matches the empty word", |
955 | 0 | l->ctype->pattern->str); |
956 | 0 | } |
957 | | |
958 | | /* Typecheck the put direction; the check passes if |
959 | | (1) the atype does not match the empty string, because we can tell |
960 | | from looking at tree nodes whether L should be applied or not |
961 | | (2) L handles a value; with that, we know whether to apply L or not |
962 | | depending on whether the current node has a non NULL value or not |
963 | | */ |
964 | 0 | if (exn == NULL && ! l->consumes_value) { |
965 | 0 | if (l->atype != NULL && regexp_matches_empty(l->atype)) { |
966 | 0 | exn = make_exn_value(ref(info), |
967 | 0 | "optional expression matches the empty tree but does not consume a value"); |
968 | 0 | } |
969 | 0 | } |
970 | 0 | return exn; |
971 | 0 | } |
972 | | |
973 | 0 | void free_lens(struct lens *lens) { |
974 | 0 | if (lens == NULL) |
975 | 0 | return; |
976 | 0 | ensure(lens->ref == 0, lens->info); |
977 | |
|
978 | 0 | if (debugging("lenses")) |
979 | 0 | dump_lens_tree(lens); |
980 | 0 | switch (lens->tag) { |
981 | 0 | case L_DEL: |
982 | 0 | unref(lens->regexp, regexp); |
983 | 0 | unref(lens->string, string); |
984 | 0 | break; |
985 | 0 | case L_STORE: |
986 | 0 | case L_KEY: |
987 | 0 | unref(lens->regexp, regexp); |
988 | 0 | break; |
989 | 0 | case L_LABEL: |
990 | 0 | case L_SEQ: |
991 | 0 | case L_COUNTER: |
992 | 0 | case L_VALUE: |
993 | 0 | unref(lens->string, string); |
994 | 0 | break; |
995 | 0 | case L_SUBTREE: |
996 | 0 | case L_STAR: |
997 | 0 | case L_MAYBE: |
998 | 0 | case L_SQUARE: |
999 | 0 | unref(lens->child, lens); |
1000 | 0 | break; |
1001 | 0 | case L_CONCAT: |
1002 | 0 | case L_UNION: |
1003 | 0 | for (int i=0; i < lens->nchildren; i++) |
1004 | 0 | unref(lens->children[i], lens); |
1005 | 0 | free(lens->children); |
1006 | 0 | break; |
1007 | 0 | case L_REC: |
1008 | 0 | if (!lens->rec_internal) { |
1009 | 0 | unref(lens->body, lens); |
1010 | 0 | } |
1011 | 0 | break; |
1012 | 0 | default: |
1013 | 0 | BUG_LENS_TAG(lens); |
1014 | 0 | break; |
1015 | 0 | } |
1016 | | |
1017 | 0 | for (int t=0; t < ntypes; t++) |
1018 | 0 | unref(ltype(lens, t), regexp); |
1019 | | |
1020 | 0 | unref(lens->info, info); |
1021 | 0 | jmt_free(lens->jmt); |
1022 | 0 | free(lens); |
1023 | 0 | error: |
1024 | 0 | return; |
1025 | 0 | } |
1026 | | |
1027 | 0 | void lens_release(struct lens *lens) { |
1028 | 0 | if (lens == NULL) |
1029 | 0 | return; |
1030 | | |
1031 | 0 | for (int t=0; t < ntypes; t++) |
1032 | 0 | regexp_release(ltype(lens, t)); |
1033 | |
|
1034 | 0 | if (lens->tag == L_KEY || lens->tag == L_STORE) |
1035 | 0 | regexp_release(lens->regexp); |
1036 | |
|
1037 | 0 | if (lens->tag == L_SUBTREE || lens->tag == L_STAR |
1038 | 0 | || lens->tag == L_MAYBE || lens->tag == L_SQUARE) { |
1039 | 0 | lens_release(lens->child); |
1040 | 0 | } |
1041 | |
|
1042 | 0 | if (lens->tag == L_UNION || lens->tag == L_CONCAT) { |
1043 | 0 | for (int i=0; i < lens->nchildren; i++) { |
1044 | 0 | lens_release(lens->children[i]); |
1045 | 0 | } |
1046 | 0 | } |
1047 | |
|
1048 | 0 | if (lens->tag == L_REC && !lens->rec_internal) { |
1049 | 0 | lens_release(lens->body); |
1050 | 0 | } |
1051 | |
|
1052 | 0 | jmt_free(lens->jmt); |
1053 | 0 | lens->jmt = NULL; |
1054 | 0 | } |
1055 | | |
1056 | | /* |
1057 | | * Encoding of tree levels |
1058 | | */ |
1059 | 0 | char *enc_format(const char *e, size_t len) { |
1060 | 0 | return enc_format_indent(e, len, 0); |
1061 | 0 | } |
1062 | | |
1063 | 0 | char *enc_format_indent(const char *e, size_t len, int indent) { |
1064 | 0 | size_t size = 0; |
1065 | 0 | char *result = NULL, *r; |
1066 | 0 | const char *k = e; |
1067 | |
|
1068 | 0 | while (*k && k - e < len) { |
1069 | 0 | char *eq, *slash, *v; |
1070 | 0 | eq = strchr(k, ENC_EQ_CH); |
1071 | 0 | assert(eq != NULL); |
1072 | 0 | slash = strchr(eq, ENC_SLASH_CH); |
1073 | 0 | assert(slash != NULL); |
1074 | 0 | v = eq + 1; |
1075 | |
|
1076 | 0 | if (indent > 0) |
1077 | 0 | size += indent + 1; |
1078 | 0 | size += 6; /* Surrounding braces */ |
1079 | 0 | if (k != eq) |
1080 | 0 | size += 1 + (eq - k) + 1; |
1081 | 0 | if (v != slash) |
1082 | 0 | size += 4 + (slash - v) + 1; |
1083 | 0 | k = slash + 1; |
1084 | 0 | } |
1085 | 0 | if (ALLOC_N(result, size + 1) < 0) |
1086 | 0 | return NULL; |
1087 | | |
1088 | 0 | k = e; |
1089 | 0 | r = result; |
1090 | 0 | while (*k && k - e < len) { |
1091 | 0 | char *eq, *slash, *v; |
1092 | 0 | eq = strchr(k, ENC_EQ_CH); |
1093 | 0 | slash = strchr(eq, ENC_SLASH_CH); |
1094 | 0 | assert(eq != NULL && slash != NULL); |
1095 | 0 | v = eq + 1; |
1096 | |
|
1097 | 0 | for (int i=0; i < indent; i++) |
1098 | 0 | *r++ = ' '; |
1099 | 0 | r = stpcpy(r, " { "); |
1100 | 0 | if (k != eq) { |
1101 | 0 | r = stpcpy(r, "\""); |
1102 | 0 | r = stpncpy(r, k, eq - k); |
1103 | 0 | r = stpcpy(r, "\""); |
1104 | 0 | } |
1105 | 0 | if (v != slash) { |
1106 | 0 | r = stpcpy (r, " = \""); |
1107 | 0 | r = stpncpy(r, v, slash - v); |
1108 | 0 | r = stpcpy(r, "\""); |
1109 | 0 | } |
1110 | 0 | r = stpcpy(r, " }"); |
1111 | 0 | if (indent > 0) |
1112 | 0 | *r++ = '\n'; |
1113 | 0 | k = slash + 1; |
1114 | 0 | } |
1115 | 0 | return result; |
1116 | 0 | } |
1117 | | |
1118 | | static int format_atype(struct lens *l, char **buf, uint indent); |
1119 | | |
1120 | 0 | static int format_indent(char **buf, uint indent) { |
1121 | 0 | if (ALLOC_N(*buf, indent+1) < 0) |
1122 | 0 | return -1; |
1123 | 0 | memset(*buf, ' ', indent); |
1124 | 0 | return 0; |
1125 | 0 | } |
1126 | | |
1127 | 0 | static int format_subtree_atype(struct lens *l, char **buf, uint indent) { |
1128 | 0 | char *k = NULL, *v = NULL; |
1129 | 0 | const struct regexp *ktype = l->child->ktype; |
1130 | 0 | const struct regexp *vtype = l->child->vtype; |
1131 | 0 | int r, result = -1; |
1132 | 0 | char *si = NULL; |
1133 | |
|
1134 | 0 | if (format_indent(&si, indent) < 0) |
1135 | 0 | goto done; |
1136 | | |
1137 | 0 | if (ktype != NULL) { |
1138 | 0 | k = regexp_escape(ktype); |
1139 | 0 | if (k == NULL) |
1140 | 0 | goto done; |
1141 | 0 | } |
1142 | 0 | if (vtype != NULL) { |
1143 | 0 | v = regexp_escape(vtype); |
1144 | 0 | if (v == NULL) |
1145 | 0 | goto done; |
1146 | 0 | if (k == NULL) |
1147 | 0 | r = xasprintf(buf, "%s{ = /%s/ }", si, k, v); |
1148 | 0 | else |
1149 | 0 | r = xasprintf(buf, "%s{ /%s/ = /%s/ }", si, k, v); |
1150 | 0 | } else { |
1151 | 0 | if (k == NULL) |
1152 | 0 | r = xasprintf(buf, "%s{ }", si, k); |
1153 | 0 | else |
1154 | 0 | r = xasprintf(buf, "%s{ /%s/ }", si, k); |
1155 | 0 | } |
1156 | 0 | if (r < 0) |
1157 | 0 | goto done; |
1158 | | |
1159 | 0 | result = 0; |
1160 | 0 | done: |
1161 | 0 | FREE(si); |
1162 | 0 | FREE(v); |
1163 | 0 | FREE(k); |
1164 | 0 | return result; |
1165 | 0 | } |
1166 | | |
1167 | | static int format_rep_atype(struct lens *l, char **buf, |
1168 | 0 | uint indent, char quant) { |
1169 | 0 | char *a = NULL; |
1170 | 0 | int r, result = -1; |
1171 | |
|
1172 | 0 | r = format_atype(l->child, &a, indent); |
1173 | 0 | if (r < 0) |
1174 | 0 | goto done; |
1175 | 0 | if (strlen(a) == 0) { |
1176 | 0 | *buf = a; |
1177 | 0 | a = NULL; |
1178 | 0 | result = 0; |
1179 | 0 | goto done; |
1180 | 0 | } |
1181 | | |
1182 | 0 | if (l->child->tag == L_CONCAT || l->child->tag == L_UNION) |
1183 | 0 | r = xasprintf(buf, "(%s)%c", a, quant); |
1184 | 0 | else |
1185 | 0 | r = xasprintf(buf, "%s%c", a, quant); |
1186 | |
|
1187 | 0 | if (r < 0) |
1188 | 0 | goto done; |
1189 | | |
1190 | 0 | result = 0; |
1191 | 0 | done: |
1192 | 0 | FREE(a); |
1193 | 0 | return result; |
1194 | 0 | } |
1195 | | |
1196 | 0 | static int format_concat_atype(struct lens *l, char **buf, uint indent) { |
1197 | 0 | char **c = NULL, *s = NULL, *p; |
1198 | 0 | int r, result = -1; |
1199 | 0 | size_t len = 0, nconc = 0; |
1200 | |
|
1201 | 0 | if (ALLOC_N(c, l->nchildren) < 0) |
1202 | 0 | goto done; |
1203 | | |
1204 | 0 | for (int i=0; i < l->nchildren; i++) { |
1205 | 0 | r = format_atype(l->children[i], c+i, indent); |
1206 | 0 | if (r < 0) |
1207 | 0 | goto done; |
1208 | 0 | len += strlen(c[i]) + 3; |
1209 | 0 | if (strlen(c[i]) > 0) |
1210 | 0 | nconc += 1; |
1211 | 0 | if (l->children[i]->tag == L_UNION) |
1212 | 0 | len += 2; |
1213 | 0 | } |
1214 | | |
1215 | 0 | if (ALLOC_N(s, len+1) < 0) |
1216 | 0 | goto done; |
1217 | 0 | p = s; |
1218 | 0 | for (int i=0; i < l->nchildren; i++) { |
1219 | 0 | bool needs_parens = nconc > 1 && l->children[i]->tag == L_UNION; |
1220 | 0 | if (strlen(c[i]) == 0) |
1221 | 0 | continue; |
1222 | 0 | if (i > 0) |
1223 | 0 | *p++ = '\n'; |
1224 | 0 | char *t = c[i]; |
1225 | 0 | if (needs_parens) { |
1226 | 0 | for (int j=0; j < indent; j++) |
1227 | 0 | *p++ = *t++; |
1228 | 0 | *p++ = '('; |
1229 | 0 | } |
1230 | 0 | p = stpcpy(p, t); |
1231 | 0 | if (needs_parens) |
1232 | 0 | *p++ = ')'; |
1233 | 0 | } |
1234 | |
|
1235 | 0 | *buf = s; |
1236 | 0 | s = NULL; |
1237 | 0 | result = 0; |
1238 | 0 | done: |
1239 | 0 | if (c != NULL) |
1240 | 0 | for (int i=0; i < l->nchildren; i++) |
1241 | 0 | FREE(c[i]); |
1242 | 0 | FREE(c); |
1243 | 0 | FREE(s); |
1244 | 0 | return result; |
1245 | 0 | } |
1246 | | |
1247 | 0 | static int format_union_atype(struct lens *l, char **buf, uint indent) { |
1248 | 0 | char **c = NULL, *s = NULL, *p; |
1249 | 0 | int r, result = -1; |
1250 | 0 | size_t len = 0; |
1251 | |
|
1252 | 0 | if (ALLOC_N(c, l->nchildren) < 0) |
1253 | 0 | goto done; |
1254 | | |
1255 | | /* Estimate the length of the string we will build. The calculation |
1256 | | overestimates that length so that the logic is a little simpler than |
1257 | | in the loop where we actually build the string */ |
1258 | 0 | for (int i=0; i < l->nchildren; i++) { |
1259 | 0 | r = format_atype(l->children[i], c+i, indent + 2); |
1260 | 0 | if (r < 0) |
1261 | 0 | goto done; |
1262 | | /* We will add c[i] and some fixed characters */ |
1263 | 0 | len += strlen(c[i]) + strlen("\n| ()"); |
1264 | 0 | if (strlen(c[i]) < indent+2) { |
1265 | | /* We will add indent+2 whitespace */ |
1266 | 0 | len += indent+2; |
1267 | 0 | } |
1268 | 0 | } |
1269 | | |
1270 | 0 | if (ALLOC_N(s, len+1) < 0) |
1271 | 0 | goto done; |
1272 | | |
1273 | 0 | p = s; |
1274 | 0 | for (int i=0; i < l->nchildren; i++) { |
1275 | 0 | char *t = c[i]; |
1276 | 0 | if (i > 0) { |
1277 | 0 | *p++ = '\n'; |
1278 | 0 | if (strlen(t) >= indent+2) { |
1279 | | /* c[i] is not just whitespace */ |
1280 | 0 | p = stpncpy(p, t, indent+2); |
1281 | 0 | t += indent+2; |
1282 | 0 | } else { |
1283 | | /* c[i] is just whitespace, make sure we indent the |
1284 | | '|' appropriately */ |
1285 | 0 | memset(p, ' ', indent+2); |
1286 | 0 | p += indent+2; |
1287 | 0 | } |
1288 | 0 | p = stpcpy(p, "| "); |
1289 | 0 | } else { |
1290 | | /* Skip additional indent */ |
1291 | 0 | t += 2; |
1292 | 0 | } |
1293 | 0 | if (strlen(t) == 0) |
1294 | 0 | p = stpcpy(p, "()"); |
1295 | 0 | else |
1296 | 0 | p = stpcpy(p, t); |
1297 | 0 | } |
1298 | 0 | *buf = s; |
1299 | 0 | s = NULL; |
1300 | 0 | result = 0; |
1301 | 0 | done: |
1302 | 0 | if (c != NULL) |
1303 | 0 | for (int i=0; i < l->nchildren; i++) |
1304 | 0 | FREE(c[i]); |
1305 | 0 | FREE(c); |
1306 | 0 | FREE(s); |
1307 | 0 | return result; |
1308 | 0 | } |
1309 | | |
1310 | 0 | static int format_rec_atype(struct lens *l, char **buf, uint indent) { |
1311 | 0 | int r; |
1312 | |
|
1313 | 0 | if (l->rec_internal) { |
1314 | 0 | *buf = strdup("<<rec>>"); |
1315 | 0 | return (*buf == NULL) ? -1 : 0; |
1316 | 0 | } |
1317 | | |
1318 | 0 | char *c = NULL; |
1319 | 0 | r = format_atype(l->body, &c, indent); |
1320 | 0 | if (r < 0) |
1321 | 0 | return -1; |
1322 | 0 | r = xasprintf(buf, "<<rec:%s>>", c); |
1323 | 0 | free(c); |
1324 | 0 | return (r < 0) ? -1 : 0; |
1325 | 0 | } |
1326 | | |
1327 | 0 | static int format_atype(struct lens *l, char **buf, uint indent) { |
1328 | 0 | *buf = NULL; |
1329 | |
|
1330 | 0 | switch(l->tag) { |
1331 | 0 | case L_DEL: |
1332 | 0 | case L_STORE: |
1333 | 0 | case L_KEY: |
1334 | 0 | case L_LABEL: |
1335 | 0 | case L_VALUE: |
1336 | 0 | case L_SEQ: |
1337 | 0 | case L_COUNTER: |
1338 | 0 | *buf = strdup(""); |
1339 | 0 | return (*buf == NULL) ? -1 : 0; |
1340 | 0 | break; |
1341 | 0 | case L_SUBTREE: |
1342 | 0 | return format_subtree_atype(l, buf, indent); |
1343 | 0 | break; |
1344 | 0 | case L_STAR: |
1345 | 0 | return format_rep_atype(l, buf, indent, '*'); |
1346 | 0 | break; |
1347 | 0 | case L_MAYBE: |
1348 | 0 | return format_rep_atype(l, buf, indent, '?'); |
1349 | 0 | break; |
1350 | 0 | case L_CONCAT: |
1351 | 0 | return format_concat_atype(l, buf, indent); |
1352 | 0 | break; |
1353 | 0 | case L_UNION: |
1354 | 0 | return format_union_atype(l, buf, indent); |
1355 | 0 | break; |
1356 | 0 | case L_REC: |
1357 | 0 | return format_rec_atype(l, buf, indent); |
1358 | 0 | break; |
1359 | 0 | case L_SQUARE: |
1360 | 0 | return format_concat_atype(l->child, buf, indent); |
1361 | 0 | break; |
1362 | 0 | default: |
1363 | 0 | BUG_LENS_TAG(l); |
1364 | 0 | break; |
1365 | 0 | }; |
1366 | 0 | return -1; |
1367 | 0 | } |
1368 | | |
1369 | 0 | int lns_format_atype(struct lens *l, char **buf) { |
1370 | 0 | int r = 0; |
1371 | 0 | r = format_atype(l, buf, 4); |
1372 | 0 | return r; |
1373 | 0 | } |
1374 | | |
1375 | | /* |
1376 | | * Recursive lenses |
1377 | | */ |
1378 | 0 | struct value *lns_make_rec(struct info *info) { |
1379 | 0 | struct lens *l = make_lens(L_REC, info); |
1380 | 0 | l->recursive = 1; |
1381 | 0 | l->rec_internal = 1; |
1382 | |
|
1383 | 0 | return make_lens_value(l); |
1384 | 0 | } |
1385 | | |
1386 | | /* Transform a recursive lens into a recursive transition network |
1387 | | * |
1388 | | * First, we transform the lens into context free grammar, considering any |
1389 | | * nonrecursive lens as a terminal |
1390 | | * |
1391 | | * cfg: lens -> nonterminal -> production list |
1392 | | * |
1393 | | * cfg(primitive, N) -> N := regexp(primitive) |
1394 | | * cfg(l1 . l2, N) -> N := N1 . N2 + cfg(l1, N1) + cfg(l2, N2) |
1395 | | * cfg(l1 | l2, N) -> N := N1 | N2 + cfg(l1, N1) + cfg(l2, N2) |
1396 | | * cfg(l*, N) -> N := N . N' | eps + cfg(l, N') |
1397 | | * cfg([ l ], N) -> N := N' + cfg(l, N') |
1398 | | * |
1399 | | * We use the lenses as nonterminals themselves; this also means that our |
1400 | | * productions are normalized such that the RHS is either a terminal |
1401 | | * (regexp) or entirely consists of nonterminals |
1402 | | * |
1403 | | * In a few places, we need to know that a nonterminal corresponds to a |
1404 | | * subtree combinator ([ l ]); this is the main reason that the rule (cfg[ |
1405 | | * l ], N) introduces a useless production N := N'. |
1406 | | * |
1407 | | * Computing the types for a recursive lens r is (fairly) straightforward, |
1408 | | * given the above grammar, which we convert to an automaton following |
1409 | | * http://arxiv.org/abs/cs/9910022; the only complication arises from the |
1410 | | * subtree combinator, since it can be used in recursive lenses to |
1411 | | * construct trees of arbitrary depth, but we need to approximate the types |
1412 | | * of r in a way that fits with our top-down tree automaton in put.c. |
1413 | | * |
1414 | | * To handle subtree combinators, remember that the type rules for a lens |
1415 | | * m = [ l ] are: |
1416 | | * |
1417 | | * m.ktype = NULL |
1418 | | * m.vtype = NULL |
1419 | | * m.ctype = l.ctype |
1420 | | * m.atype = enc(l.ktype, l.vtype) |
1421 | | * ( enc is a function regexp -> regexp -> regexp) |
1422 | | * |
1423 | | * We compute types for r by modifying its automaton according to |
1424 | | * Nederhof's paper and reducing it to a regular expression of lenses. This |
1425 | | * has to happen in the following steps: |
1426 | | * r.ktype : approximate by using [ .. ].ktype = NULL |
1427 | | * r.vtype : same as r.ktype |
1428 | | * r.ctype : approximate by treating [ l ] as l |
1429 | | * r.atype : approximate by using r.ktype and r.vtype from above |
1430 | | * in lens expressions [ f(r) ] |
1431 | | */ |
1432 | | |
1433 | | /* Transitions go to a state and are labeled with a lens. For epsilon |
1434 | | * transitions, lens may be NULL. When lens is a simple (nonrecursive |
1435 | | * lens), PROD will be NULL. When we modify the automaton to splice |
1436 | | * nonterminals in, we remember the production for the nonterminal in PROD. |
1437 | | */ |
1438 | | struct trans { |
1439 | | struct state *to; |
1440 | | struct lens *lens; |
1441 | | struct regexp *re; |
1442 | | }; |
1443 | | |
1444 | | struct state { |
1445 | | struct state *next; /* Linked list for memory management */ |
1446 | | size_t ntrans; |
1447 | | struct trans *trans; |
1448 | | }; |
1449 | | |
1450 | | /* Productions for lens LENS. Start state START and end state END. If we |
1451 | | start with START, END is the only accepting state. */ |
1452 | | struct prod { |
1453 | | struct lens *lens; |
1454 | | struct state *start; |
1455 | | struct state *end; |
1456 | | }; |
1457 | | |
1458 | | /* A recursive transition network used to compute regular approximations |
1459 | | * to the types */ |
1460 | | struct rtn { |
1461 | | struct info *info; |
1462 | | size_t nprod; |
1463 | | struct prod **prod; |
1464 | | struct state *states; /* Linked list through next of all states in all |
1465 | | prods; the states for each production are on |
1466 | | the part of the list from prod->start to |
1467 | | prod->end */ |
1468 | | struct value *exn; |
1469 | | enum lens_type lens_type; |
1470 | | unsigned int check : 1; |
1471 | | }; |
1472 | | |
1473 | 0 | #define RTN_BAIL(rtn) if ((rtn)->exn != NULL || \ |
1474 | 0 | (rtn)->info->error->code != AUG_NOERROR) \ |
1475 | 0 | goto error; |
1476 | | |
1477 | 0 | static void free_prod(struct prod *prod) { |
1478 | 0 | if (prod == NULL) |
1479 | 0 | return; |
1480 | 0 | unref(prod->lens, lens); |
1481 | 0 | free(prod); |
1482 | 0 | } |
1483 | | |
1484 | 0 | static void free_rtn(struct rtn *rtn) { |
1485 | 0 | if (rtn == NULL) |
1486 | 0 | return; |
1487 | 0 | for (int i=0; i < rtn->nprod; i++) |
1488 | 0 | free_prod(rtn->prod[i]); |
1489 | 0 | free(rtn->prod); |
1490 | 0 | list_for_each(s, rtn->states) { |
1491 | 0 | for (int i=0; i < s->ntrans; i++) { |
1492 | 0 | unref(s->trans[i].lens, lens); |
1493 | 0 | unref(s->trans[i].re, regexp); |
1494 | 0 | } |
1495 | 0 | free(s->trans); |
1496 | 0 | } |
1497 | 0 | list_free(rtn->states); |
1498 | 0 | unref(rtn->info, info); |
1499 | 0 | unref(rtn->exn, value); |
1500 | 0 | free(rtn); |
1501 | 0 | } |
1502 | | |
1503 | 0 | static struct state *add_state(struct prod *prod) { |
1504 | 0 | struct state *result = NULL; |
1505 | 0 | int r; |
1506 | |
|
1507 | 0 | r = ALLOC(result); |
1508 | 0 | ERR_NOMEM(r < 0, prod->lens->info); |
1509 | |
|
1510 | 0 | list_cons(prod->start->next, result); |
1511 | 0 | error: |
1512 | 0 | return result; |
1513 | 0 | } |
1514 | | |
1515 | | static struct trans *add_trans(struct rtn *rtn, struct state *state, |
1516 | 0 | struct state *to, struct lens *l) { |
1517 | 0 | int r; |
1518 | 0 | struct trans *result = NULL; |
1519 | |
|
1520 | 0 | for (int i=0; i < state->ntrans; i++) |
1521 | 0 | if (state->trans[i].to == to && state->trans[i].lens == l) |
1522 | 0 | return state->trans + i; |
1523 | | |
1524 | 0 | r = REALLOC_N(state->trans, state->ntrans+1); |
1525 | 0 | ERR_NOMEM(r < 0, rtn->info); |
1526 | |
|
1527 | 0 | result = state->trans + state->ntrans; |
1528 | 0 | state->ntrans += 1; |
1529 | |
|
1530 | 0 | MEMZERO(result, 1); |
1531 | 0 | result->to = to; |
1532 | 0 | if (l != NULL) { |
1533 | 0 | result->lens = ref(l); |
1534 | 0 | result->re = ref(ltype(l, rtn->lens_type)); |
1535 | 0 | } |
1536 | 0 | error: |
1537 | 0 | return result; |
1538 | 0 | } |
1539 | | |
1540 | 0 | static struct prod *make_prod(struct rtn *rtn, struct lens *l) { |
1541 | 0 | struct prod *result = NULL; |
1542 | 0 | int r; |
1543 | |
|
1544 | 0 | r = ALLOC(result); |
1545 | 0 | ERR_NOMEM(r < 0, l->info); |
1546 | |
|
1547 | 0 | result->lens = ref(l); |
1548 | 0 | r = ALLOC(result->start); |
1549 | 0 | ERR_NOMEM(r < 0, l->info); |
1550 | |
|
1551 | 0 | result->end = add_state(result); |
1552 | 0 | ERR_BAIL(l->info); |
1553 | |
|
1554 | 0 | result->end->next = rtn->states; |
1555 | 0 | rtn->states = result->start; |
1556 | |
|
1557 | 0 | return result; |
1558 | 0 | error: |
1559 | 0 | free_prod(result); |
1560 | 0 | return NULL; |
1561 | 0 | } |
1562 | | |
1563 | 0 | static struct prod *prod_for_lens(struct rtn *rtn, struct lens *l) { |
1564 | 0 | if (l == NULL) |
1565 | 0 | return NULL; |
1566 | 0 | for (int i=0; i < rtn->nprod; i++) { |
1567 | 0 | if (rtn->prod[i]->lens == l) |
1568 | 0 | return rtn->prod[i]; |
1569 | 0 | } |
1570 | 0 | return NULL; |
1571 | 0 | } |
1572 | | |
1573 | 0 | static void rtn_dot(struct rtn *rtn, const char *stage) { |
1574 | 0 | FILE *fp; |
1575 | 0 | int r = 0; |
1576 | |
|
1577 | 0 | fp = debug_fopen("rtn_%s_%s.dot", stage, lens_type_names[rtn->lens_type]); |
1578 | 0 | if (fp == NULL) |
1579 | 0 | return; |
1580 | | |
1581 | 0 | fprintf(fp, "digraph \"l1\" {\n rankdir=LR;\n"); |
1582 | 0 | list_for_each(s, rtn->states) { |
1583 | 0 | char *label = NULL; |
1584 | 0 | for (int p=0; p < rtn->nprod; p++) { |
1585 | 0 | if (s == rtn->prod[p]->start) { |
1586 | 0 | r = xasprintf(&label, "s%d", p); |
1587 | 0 | } else if (s == rtn->prod[p]->end) { |
1588 | 0 | r = xasprintf(&label, "e%d", p); |
1589 | 0 | } |
1590 | 0 | ERR_NOMEM(r < 0, rtn->info); |
1591 | 0 | } |
1592 | 0 | if (label == NULL) { |
1593 | 0 | r = xasprintf(&label, "%p", s); |
1594 | 0 | ERR_NOMEM(r < 0, rtn->info); |
1595 | 0 | } |
1596 | 0 | fprintf(fp, " n%p [label = \"%s\"];\n", s, label == NULL ? "" : label); |
1597 | 0 | FREE(label); |
1598 | 0 | for (int i=0; i < s->ntrans; i++) { |
1599 | 0 | fprintf(fp, " n%p -> n%p", s, s->trans[i].to); |
1600 | 0 | if (s->trans[i].re != NULL) { |
1601 | 0 | label = regexp_escape(s->trans[i].re); |
1602 | 0 | for (char *t = label; *t; t++) |
1603 | 0 | if (*t == '\\') |
1604 | 0 | *t = '~'; |
1605 | 0 | fprintf(fp, " [ label = \"%s\" ]", label); |
1606 | 0 | FREE(label); |
1607 | 0 | } |
1608 | 0 | fprintf(fp, ";\n"); |
1609 | 0 | } |
1610 | 0 | } |
1611 | 0 | error: |
1612 | 0 | fprintf(fp, "}\n"); |
1613 | 0 | fclose(fp); |
1614 | 0 | } |
1615 | | |
1616 | | /* Add transitions to RTN corresponding to cfg(l, N) */ |
1617 | 0 | static void rtn_rules(struct rtn *rtn, struct lens *l) { |
1618 | 0 | if (! l->recursive) |
1619 | 0 | return; |
1620 | | |
1621 | 0 | struct prod *prod = prod_for_lens(rtn, l); |
1622 | 0 | if (prod != NULL) |
1623 | 0 | return; |
1624 | | |
1625 | 0 | int r = REALLOC_N(rtn->prod, rtn->nprod+1); |
1626 | 0 | ERR_NOMEM(r < 0, l->info); |
1627 | |
|
1628 | 0 | prod = make_prod(rtn, l); |
1629 | 0 | rtn->prod[rtn->nprod] = prod; |
1630 | 0 | RTN_BAIL(rtn); |
1631 | 0 | rtn->nprod += 1; |
1632 | |
|
1633 | 0 | struct state *start = prod->start; |
1634 | |
|
1635 | 0 | switch (l->tag) { |
1636 | 0 | case L_UNION: |
1637 | | /* cfg(l1|..|ln, N) -> N := N1 | N2 | ... | Nn */ |
1638 | 0 | for (int i=0; i < l->nchildren; i++) { |
1639 | 0 | add_trans(rtn, start, prod->end, l->children[i]); |
1640 | 0 | RTN_BAIL(rtn); |
1641 | 0 | rtn_rules(rtn, l->children[i]); |
1642 | 0 | RTN_BAIL(rtn); |
1643 | 0 | } |
1644 | 0 | break; |
1645 | 0 | case L_CONCAT: |
1646 | | /* cfg(l1 . l2 ... ln, N) -> N := N1 . N2 ... Nn */ |
1647 | 0 | for (int i=0; i < l->nchildren-1; i++) { |
1648 | 0 | struct state *s = add_state(prod); |
1649 | 0 | RTN_BAIL(rtn); |
1650 | 0 | add_trans(rtn, start, s, l->children[i]); |
1651 | 0 | RTN_BAIL(rtn); |
1652 | 0 | start = s; |
1653 | 0 | rtn_rules(rtn, l->children[i]); |
1654 | 0 | RTN_BAIL(rtn); |
1655 | 0 | } |
1656 | 0 | { |
1657 | 0 | struct lens *c = l->children[l->nchildren - 1]; |
1658 | 0 | add_trans(rtn, start, prod->end, c); |
1659 | 0 | RTN_BAIL(rtn); |
1660 | 0 | rtn_rules(rtn, c); |
1661 | 0 | RTN_BAIL(rtn); |
1662 | 0 | } |
1663 | 0 | break; |
1664 | 0 | case L_STAR: { |
1665 | | /* cfg(l*, N) -> N := N . N' | eps */ |
1666 | 0 | struct state *s = add_state(prod); |
1667 | 0 | RTN_BAIL(rtn); |
1668 | 0 | add_trans(rtn, start, s, l); |
1669 | 0 | RTN_BAIL(rtn); |
1670 | 0 | add_trans(rtn, s, prod->end, l->child); |
1671 | 0 | RTN_BAIL(rtn); |
1672 | 0 | add_trans(rtn, start, prod->end, NULL); |
1673 | 0 | RTN_BAIL(rtn); |
1674 | 0 | rtn_rules(rtn, l->child); |
1675 | 0 | RTN_BAIL(rtn); |
1676 | 0 | break; |
1677 | 0 | } |
1678 | 0 | case L_SUBTREE: |
1679 | 0 | switch (rtn->lens_type) { |
1680 | 0 | case KTYPE: |
1681 | 0 | case VTYPE: |
1682 | | /* cfg([ l ], N) -> N := eps */ |
1683 | 0 | add_trans(rtn, start, prod->end, NULL); |
1684 | 0 | break; |
1685 | 0 | case CTYPE: |
1686 | | /* cfg([ l ], N) -> N := N' plus cfg(l, N') */ |
1687 | 0 | add_trans(rtn, start, prod->end, l->child); |
1688 | 0 | RTN_BAIL(rtn); |
1689 | 0 | rtn_rules(rtn, l->child); |
1690 | 0 | RTN_BAIL(rtn); |
1691 | 0 | break; |
1692 | 0 | case ATYPE: { |
1693 | | /* At this point, we have propagated ktype and vtype */ |
1694 | | /* cfg([ l ], N) -> N := enc(l->ktype, l->vtype) */ |
1695 | 0 | struct trans *t = add_trans(rtn, start, prod->end, NULL); |
1696 | 0 | RTN_BAIL(rtn); |
1697 | 0 | t->re = subtree_atype(l->info, l->child->ktype, l->child->vtype); |
1698 | 0 | break; |
1699 | 0 | } |
1700 | 0 | default: |
1701 | 0 | BUG_ON(true, rtn->info, "Unexpected lens type %d", rtn->lens_type); |
1702 | 0 | break; |
1703 | 0 | } |
1704 | 0 | break; |
1705 | 0 | case L_MAYBE: |
1706 | | /* cfg(l?, N) -> N := N' | eps plus cfg(l, N') */ |
1707 | 0 | add_trans(rtn, start, prod->end, l->child); |
1708 | 0 | RTN_BAIL(rtn); |
1709 | 0 | add_trans(rtn, start, prod->end, NULL); |
1710 | 0 | RTN_BAIL(rtn); |
1711 | 0 | rtn_rules(rtn, l->child); |
1712 | 0 | RTN_BAIL(rtn); |
1713 | 0 | break; |
1714 | 0 | case L_REC: |
1715 | | /* cfg(l, N) -> N := N' plus cfg(l->body, N') */ |
1716 | 0 | add_trans(rtn, start, prod->end, l->body); |
1717 | 0 | RTN_BAIL(rtn); |
1718 | 0 | rtn_rules(rtn, l->body); |
1719 | 0 | RTN_BAIL(rtn); |
1720 | 0 | break; |
1721 | 0 | case L_SQUARE: |
1722 | 0 | add_trans(rtn, start, prod->end, l->child); |
1723 | 0 | RTN_BAIL(rtn); |
1724 | 0 | break; |
1725 | 0 | default: |
1726 | 0 | BUG_LENS_TAG(l); |
1727 | 0 | break; |
1728 | 0 | } |
1729 | 0 | error: |
1730 | 0 | return; |
1731 | 0 | } |
1732 | | |
1733 | | /* Replace transition t with two epsilon transitions s => p->start and |
1734 | | * p->end => s->trans[i].to where s is the start of t. Instead of adding |
1735 | | * epsilon transitions, we expand the epsilon transitions. |
1736 | | */ |
1737 | | static void prod_splice(struct rtn *rtn, |
1738 | 0 | struct prod *from, struct prod *to, struct trans *t) { |
1739 | |
|
1740 | 0 | add_trans(rtn, to->end, t->to, NULL); |
1741 | 0 | ERR_BAIL(from->lens->info); |
1742 | 0 | t->to = to->start; |
1743 | 0 | unref(t->re, regexp); |
1744 | | |
1745 | 0 | error: |
1746 | 0 | return; |
1747 | 0 | } |
1748 | | |
1749 | 0 | static void rtn_splice(struct rtn *rtn, struct prod *prod) { |
1750 | 0 | for (struct state *s = prod->start; s != prod->end; s = s->next) { |
1751 | 0 | for (int i=0; i < s->ntrans; i++) { |
1752 | 0 | struct prod *p = prod_for_lens(rtn, s->trans[i].lens); |
1753 | 0 | if (p != NULL) { |
1754 | 0 | prod_splice(rtn, prod, p, s->trans+i); |
1755 | 0 | RTN_BAIL(rtn); |
1756 | 0 | } |
1757 | 0 | } |
1758 | 0 | } |
1759 | 0 | error: |
1760 | 0 | return; |
1761 | 0 | } |
1762 | | |
1763 | 0 | static struct rtn *rtn_build(struct lens *rec, enum lens_type lt) { |
1764 | 0 | int r; |
1765 | 0 | struct rtn *rtn; |
1766 | |
|
1767 | 0 | r = ALLOC(rtn); |
1768 | 0 | ERR_NOMEM(r < 0, rec->info); |
1769 | |
|
1770 | 0 | rtn->info = ref(rec->info); |
1771 | 0 | rtn->lens_type = lt; |
1772 | |
|
1773 | 0 | rtn_rules(rtn, rec); |
1774 | 0 | RTN_BAIL(rtn); |
1775 | 0 | if (debugging("cf.approx")) |
1776 | 0 | rtn_dot(rtn, "10-rules"); |
1777 | |
|
1778 | 0 | for (int i=0; i < rtn->nprod; i++) { |
1779 | 0 | rtn_splice(rtn, rtn->prod[i]); |
1780 | 0 | RTN_BAIL(rtn); |
1781 | 0 | } |
1782 | 0 | if (debugging("cf.approx")) |
1783 | 0 | rtn_dot(rtn, "11-splice"); |
1784 | |
|
1785 | 0 | error: |
1786 | 0 | return rtn; |
1787 | 0 | } |
1788 | | |
1789 | | /* Compare transitions lexicographically by (to, lens) */ |
1790 | 0 | static int trans_to_cmp(const void *v1, const void *v2) { |
1791 | 0 | const struct trans *t1 = v1; |
1792 | 0 | const struct trans *t2 = v2; |
1793 | |
|
1794 | 0 | if (t1->to != t2->to) |
1795 | 0 | return (t1->to < t2->to) ? -1 : 1; |
1796 | | |
1797 | 0 | if (t1->lens == t2->lens) |
1798 | 0 | return 0; |
1799 | 0 | return (t1->lens < t2->lens) ? -1 : 1; |
1800 | 0 | } |
1801 | | |
1802 | | /* Collapse a transition S1 -> S -> S2 by adding a transition S1 -> S2 with |
1803 | | * lens R1 . (LOOP)* . R2 | R3 where R3 is the regexp on the possibly |
1804 | | * existing transition S1 -> S2. If LOOP is NULL or R3 does not exist, |
1805 | | * label the transition with a simplified regexp by treating NULL as |
1806 | | * epsilon */ |
1807 | | static void collapse_trans(struct rtn *rtn, |
1808 | | struct state *s1, struct state *s2, |
1809 | | struct regexp *r1, struct regexp *loop, |
1810 | 0 | struct regexp *r2) { |
1811 | |
|
1812 | 0 | struct trans *t = NULL; |
1813 | 0 | struct regexp *r = NULL; |
1814 | |
|
1815 | 0 | for (int i=0; i < s1->ntrans; i++) { |
1816 | 0 | if (s1->trans[i].to == s2) { |
1817 | 0 | t = s1->trans + i; |
1818 | 0 | break; |
1819 | 0 | } |
1820 | 0 | } |
1821 | | |
1822 | | /* Set R = R1 . (LOOP)* . R2, treating NULL's as epsilon */ |
1823 | 0 | if (loop == NULL) { |
1824 | 0 | if (r1 == NULL) |
1825 | 0 | r = ref(r2); |
1826 | 0 | else if (r2 == NULL) |
1827 | 0 | r = ref(r1); |
1828 | 0 | else |
1829 | 0 | r = regexp_concat(rtn->info, r1, r2); |
1830 | 0 | } else { |
1831 | 0 | struct regexp *s = regexp_iter(rtn->info, loop, 0, -1); |
1832 | 0 | ERR_NOMEM(s == NULL, rtn->info); |
1833 | 0 | struct regexp *c = NULL; |
1834 | 0 | if (r1 == NULL) { |
1835 | 0 | c = s; |
1836 | 0 | s = NULL; |
1837 | 0 | } else { |
1838 | 0 | c = regexp_concat(rtn->info, r1, s); |
1839 | 0 | unref(s, regexp); |
1840 | 0 | ERR_NOMEM(c == NULL, rtn->info); |
1841 | 0 | } |
1842 | 0 | if (r2 == NULL) { |
1843 | 0 | r = c; |
1844 | 0 | c = NULL; |
1845 | 0 | } else { |
1846 | 0 | r = regexp_concat(rtn->info, c, r2); |
1847 | 0 | unref(c, regexp); |
1848 | 0 | ERR_NOMEM(r == NULL, rtn->info); |
1849 | 0 | } |
1850 | 0 | } |
1851 | | |
1852 | 0 | if (t == NULL) { |
1853 | 0 | t = add_trans(rtn, s1, s2, NULL); |
1854 | 0 | ERR_NOMEM(t == NULL, rtn->info); |
1855 | 0 | t->re = r; |
1856 | 0 | } else if (t->re == NULL) { |
1857 | 0 | if (r == NULL || regexp_matches_empty(r)) |
1858 | 0 | t->re = r; |
1859 | 0 | else { |
1860 | 0 | t->re = regexp_maybe(rtn->info, r); |
1861 | 0 | unref(r, regexp); |
1862 | 0 | ERR_NOMEM(t->re == NULL, rtn->info); |
1863 | 0 | } |
1864 | 0 | } else if (r == NULL) { |
1865 | 0 | if (!regexp_matches_empty(t->re)) { |
1866 | 0 | r = regexp_maybe(rtn->info, t->re); |
1867 | 0 | unref(t->re, regexp); |
1868 | 0 | t->re = r; |
1869 | 0 | ERR_NOMEM(r == NULL, rtn->info); |
1870 | 0 | } |
1871 | 0 | } else { |
1872 | 0 | struct regexp *u = regexp_union(rtn->info, r, t->re); |
1873 | 0 | unref(r, regexp); |
1874 | 0 | unref(t->re, regexp); |
1875 | 0 | t->re = u; |
1876 | 0 | ERR_NOMEM(u == NULL, rtn->info); |
1877 | 0 | } |
1878 | | |
1879 | 0 | return; |
1880 | 0 | error: |
1881 | 0 | rtn->exn = rtn->info->error->exn; |
1882 | 0 | return; |
1883 | 0 | } |
1884 | | |
1885 | | /* Reduce the automaton with start state rprod->start and only accepting |
1886 | | * state rprod->end so that we have a single transition rprod->start => |
1887 | | * rprod->end labelled with the overall approximating regexp for the |
1888 | | * automaton. |
1889 | | * |
1890 | | * This is the same algorithm as fa_as_regexp in fa.c |
1891 | | */ |
1892 | 0 | static struct regexp *rtn_reduce(struct rtn *rtn, struct lens *rec) { |
1893 | 0 | struct prod *prod = prod_for_lens(rtn, rec); |
1894 | 0 | int r; |
1895 | |
|
1896 | 0 | ERR_THROW(prod == NULL, rtn->info, AUG_EINTERNAL, |
1897 | 0 | "No production for recursive lens"); |
1898 | | |
1899 | | /* Eliminate epsilon transitions and turn transitions between the same |
1900 | | * two states into a regexp union */ |
1901 | 0 | list_for_each(s, rtn->states) { |
1902 | 0 | qsort(s->trans, s->ntrans, sizeof(*s->trans), trans_to_cmp); |
1903 | 0 | for (int i=0; i < s->ntrans; i++) { |
1904 | 0 | int j = i+1; |
1905 | 0 | for (;j < s->ntrans && s->trans[i].to == s->trans[j].to; |
1906 | 0 | j++); |
1907 | 0 | if (j > i+1) { |
1908 | 0 | struct regexp *u, **v; |
1909 | 0 | r = ALLOC_N(v, j - i); |
1910 | 0 | ERR_NOMEM(r < 0, rtn->info); |
1911 | 0 | for (int k=i; k < j; k++) |
1912 | 0 | v[k-i] = s->trans[k].re; |
1913 | 0 | u = regexp_union_n(rtn->info, j - i, v); |
1914 | 0 | if (u == NULL) { |
1915 | | // FIXME: The calling convention for regexp_union_n |
1916 | | // is bad, since we can't distinguish between alloc |
1917 | | // failure and unioning all NULL's |
1918 | 0 | for (int k=0; k < j-i; k++) |
1919 | 0 | if (v[k] != NULL) { |
1920 | 0 | FREE(v); |
1921 | 0 | ERR_NOMEM(true, rtn->info); |
1922 | 0 | } |
1923 | 0 | } |
1924 | 0 | FREE(v); |
1925 | 0 | for (int k=i; k < j; k++) { |
1926 | 0 | unref(s->trans[k].lens, lens); |
1927 | 0 | unref(s->trans[k].re, regexp); |
1928 | 0 | } |
1929 | 0 | s->trans[i].re = u; |
1930 | 0 | MEMMOVE(s->trans + (i+1), |
1931 | 0 | s->trans + j, |
1932 | 0 | s->ntrans - j); |
1933 | 0 | s->ntrans -= j - (i + 1); |
1934 | 0 | } |
1935 | 0 | } |
1936 | 0 | } |
1937 | | |
1938 | | /* Introduce new start and end states with epsilon transitions to/from |
1939 | | * the old start and end states */ |
1940 | 0 | struct state *end = NULL; |
1941 | 0 | struct state *start = NULL; |
1942 | 0 | if (ALLOC(start) < 0 || ALLOC(end) < 0) { |
1943 | 0 | FREE(start); |
1944 | 0 | FREE(end); |
1945 | 0 | ERR_NOMEM(true, rtn->info); |
1946 | 0 | } |
1947 | 0 | list_insert_before(start, prod->start, rtn->states); |
1948 | 0 | end->next = prod->end->next; |
1949 | 0 | prod->end->next = end; |
1950 | |
|
1951 | 0 | add_trans(rtn, start, prod->start, NULL); |
1952 | 0 | RTN_BAIL(rtn); |
1953 | 0 | add_trans(rtn, prod->end, end, NULL); |
1954 | 0 | RTN_BAIL(rtn); |
1955 | |
|
1956 | 0 | prod->start = start; |
1957 | 0 | prod->end = end; |
1958 | | |
1959 | | /* Eliminate states S (except for INI and FIN) one by one: |
1960 | | * Let LOOP the regexp for the transition S -> S if it exists, epsilon |
1961 | | * otherwise. |
1962 | | * For all S1, S2 different from S with S1 -> S -> S2 |
1963 | | * Let R1 the regexp of S1 -> S |
1964 | | * R2 the regexp of S -> S2 |
1965 | | * R3 the regexp of S1 -> S2 (or the regexp matching nothing |
1966 | | * if no such transition) |
1967 | | * set the regexp on the transition S1 -> S2 to |
1968 | | * R1 . (LOOP)* . R2 | R3 */ |
1969 | | // FIXME: This does not go over all states |
1970 | 0 | list_for_each(s, rtn->states) { |
1971 | 0 | if (s == prod->end || s == prod->start) |
1972 | 0 | continue; |
1973 | 0 | struct regexp *loop = NULL; |
1974 | 0 | for (int i=0; i < s->ntrans; i++) { |
1975 | 0 | if (s == s->trans[i].to) { |
1976 | 0 | ensure(loop == NULL, rtn->info); |
1977 | 0 | loop = s->trans[i].re; |
1978 | 0 | } |
1979 | 0 | } |
1980 | 0 | list_for_each(s1, rtn->states) { |
1981 | 0 | if (s == s1) |
1982 | 0 | continue; |
1983 | 0 | for (int t1=0; t1 < s1->ntrans; t1++) { |
1984 | 0 | if (s == s1->trans[t1].to) { |
1985 | 0 | for (int t2=0; t2 < s->ntrans; t2++) { |
1986 | 0 | struct state *s2 = s->trans[t2].to; |
1987 | 0 | if (s2 == s) |
1988 | 0 | continue; |
1989 | 0 | collapse_trans(rtn, s1, s2, |
1990 | 0 | s1->trans[t1].re, loop, |
1991 | 0 | s->trans[t2].re); |
1992 | 0 | RTN_BAIL(rtn); |
1993 | 0 | } |
1994 | 0 | } |
1995 | 0 | } |
1996 | 0 | } |
1997 | 0 | } |
1998 | | |
1999 | | /* Find the overall regexp */ |
2000 | 0 | struct regexp *result = NULL; |
2001 | 0 | for (int i=0; i < prod->start->ntrans; i++) { |
2002 | 0 | if (prod->start->trans[i].to == prod->end) { |
2003 | 0 | ensure(result == NULL, rtn->info); |
2004 | 0 | result = ref(prod->start->trans[i].re); |
2005 | 0 | } |
2006 | 0 | } |
2007 | 0 | return result; |
2008 | 0 | error: |
2009 | 0 | return NULL; |
2010 | 0 | } |
2011 | | |
2012 | 0 | static void propagate_type(struct lens *l, enum lens_type lt) { |
2013 | 0 | struct regexp **types = NULL; |
2014 | 0 | int r; |
2015 | |
|
2016 | 0 | if (! l->recursive || ltype(l, lt) != NULL) |
2017 | 0 | return; |
2018 | | |
2019 | 0 | switch(l->tag) { |
2020 | 0 | case L_CONCAT: |
2021 | 0 | r = ALLOC_N(types, l->nchildren); |
2022 | 0 | ERR_NOMEM(r < 0, l->info); |
2023 | 0 | for (int i=0; i < l->nchildren; i++) { |
2024 | 0 | propagate_type(l->children[i], lt); |
2025 | 0 | types[i] = ltype(l->children[i], lt); |
2026 | 0 | } |
2027 | 0 | ltype(l, lt) = regexp_concat_n(l->info, l->nchildren, types); |
2028 | 0 | FREE(types); |
2029 | 0 | break; |
2030 | 0 | case L_UNION: |
2031 | 0 | r = ALLOC_N(types, l->nchildren); |
2032 | 0 | ERR_NOMEM(r < 0, l->info); |
2033 | 0 | for (int i=0; i < l->nchildren; i++) { |
2034 | 0 | propagate_type(l->children[i], lt); |
2035 | 0 | types[i] = ltype(l->children[i], lt); |
2036 | 0 | } |
2037 | 0 | ltype(l, lt) = regexp_union_n(l->info, l->nchildren, types); |
2038 | 0 | FREE(types); |
2039 | 0 | break; |
2040 | 0 | case L_SUBTREE: |
2041 | 0 | propagate_type(l->child, lt); |
2042 | 0 | if (lt == ATYPE) |
2043 | 0 | l->atype = subtree_atype(l->info, l->child->ktype, l->child->vtype); |
2044 | 0 | if (lt == CTYPE) |
2045 | 0 | l->ctype = ref(l->child->ctype); |
2046 | 0 | break; |
2047 | 0 | case L_STAR: |
2048 | 0 | propagate_type(l->child, lt); |
2049 | 0 | ltype(l, lt) = regexp_iter(l->info, ltype(l->child, lt), 0, -1); |
2050 | 0 | break; |
2051 | 0 | case L_MAYBE: |
2052 | 0 | propagate_type(l->child, lt); |
2053 | 0 | ltype(l, lt) = regexp_maybe(l->info, ltype(l->child, lt)); |
2054 | 0 | break; |
2055 | 0 | case L_REC: |
2056 | | /* Nothing to do */ |
2057 | 0 | break; |
2058 | 0 | case L_SQUARE: |
2059 | 0 | propagate_type(l->child, lt); |
2060 | 0 | ltype(l, lt) = ref(ltype(l->child, lt)); |
2061 | 0 | break; |
2062 | 0 | default: |
2063 | 0 | BUG_LENS_TAG(l); |
2064 | 0 | break; |
2065 | 0 | } |
2066 | | |
2067 | 0 | error: |
2068 | 0 | FREE(types); |
2069 | 0 | } |
2070 | | |
2071 | | static struct value *typecheck(struct lens *l, int check); |
2072 | | |
2073 | | typedef struct value *typecheck_n_make(struct info *, |
2074 | | struct lens *, struct lens *, int); |
2075 | | |
2076 | 0 | static struct info *merge_info(struct info *i1, struct info *i2) { |
2077 | 0 | struct info *info; |
2078 | 0 | make_ref(info); |
2079 | 0 | ERR_NOMEM(info == NULL, i1); |
2080 | |
|
2081 | 0 | info->filename = ref(i1->filename); |
2082 | 0 | info->first_line = i1->first_line; |
2083 | 0 | info->first_column = i1->first_column; |
2084 | 0 | info->last_line = i2->last_line; |
2085 | 0 | info->last_column = i2->last_column; |
2086 | 0 | info->error = i1->error; |
2087 | 0 | return info; |
2088 | | |
2089 | 0 | error: |
2090 | 0 | unref(info, info); |
2091 | 0 | return NULL; |
2092 | 0 | } |
2093 | | |
2094 | | static struct value *typecheck_n(struct lens *l, |
2095 | 0 | typecheck_n_make *make, int check) { |
2096 | 0 | struct value *exn = NULL; |
2097 | 0 | struct lens *acc = NULL; |
2098 | |
|
2099 | 0 | ensure(l->tag == L_CONCAT || l->tag == L_UNION, l->info); |
2100 | 0 | for (int i=0; i < l->nchildren; i++) { |
2101 | 0 | exn = typecheck(l->children[i], check); |
2102 | 0 | if (exn != NULL) |
2103 | 0 | goto error; |
2104 | 0 | } |
2105 | 0 | acc = ref(l->children[0]); |
2106 | 0 | for (int i=1; i < l->nchildren; i++) { |
2107 | 0 | struct info *info = merge_info(acc->info, l->children[i]->info); |
2108 | 0 | ERR_NOMEM(info == NULL, acc->info); |
2109 | 0 | exn = (*make)(info, acc, ref(l->children[i]), check); |
2110 | 0 | if (EXN(exn)) |
2111 | 0 | goto error; |
2112 | 0 | ensure(exn->tag == V_LENS, l->info); |
2113 | 0 | acc = ref(exn->lens); |
2114 | 0 | unref(exn, value); |
2115 | 0 | } |
2116 | 0 | l->value = acc->value; |
2117 | 0 | l->key = acc->key; |
2118 | 0 | error: |
2119 | 0 | unref(acc, lens); |
2120 | 0 | return exn; |
2121 | 0 | } |
2122 | | |
2123 | 0 | static struct value *typecheck(struct lens *l, int check) { |
2124 | 0 | struct value *exn = NULL; |
2125 | | |
2126 | | /* Nonrecursive lenses are typechecked at build time */ |
2127 | 0 | if (! l->recursive) |
2128 | 0 | return NULL; |
2129 | | |
2130 | 0 | switch(l->tag) { |
2131 | 0 | case L_CONCAT: |
2132 | 0 | exn = typecheck_n(l, lns_make_concat, check); |
2133 | 0 | break; |
2134 | 0 | case L_UNION: |
2135 | 0 | exn = typecheck_n(l, lns_make_union, check); |
2136 | 0 | break; |
2137 | 0 | case L_SUBTREE: |
2138 | 0 | case L_SQUARE: |
2139 | 0 | exn = typecheck(l->child, check); |
2140 | 0 | break; |
2141 | 0 | case L_STAR: |
2142 | 0 | if (check) |
2143 | 0 | exn = typecheck_iter(l->info, l->child); |
2144 | 0 | if (exn == NULL && l->value) |
2145 | 0 | exn = make_exn_value(l->info, "Multiple stores in iteration"); |
2146 | 0 | if (exn == NULL && l->key) |
2147 | 0 | exn = make_exn_value(l->info, "Multiple keys/labels in iteration"); |
2148 | 0 | break; |
2149 | 0 | case L_MAYBE: |
2150 | 0 | if (check) |
2151 | 0 | exn = typecheck_maybe(l->info, l->child); |
2152 | 0 | l->key = l->child->key; |
2153 | 0 | l->value = l->child->value; |
2154 | 0 | break; |
2155 | 0 | case L_REC: |
2156 | | /* Nothing to do */ |
2157 | 0 | break; |
2158 | 0 | default: |
2159 | 0 | BUG_LENS_TAG(l); |
2160 | 0 | break; |
2161 | 0 | } |
2162 | | |
2163 | 0 | return exn; |
2164 | 0 | } |
2165 | | |
2166 | 0 | static struct value *rtn_approx(struct lens *rec, enum lens_type lt) { |
2167 | 0 | struct rtn *rtn = NULL; |
2168 | 0 | struct value *result = NULL; |
2169 | |
|
2170 | 0 | rtn = rtn_build(rec, lt); |
2171 | 0 | RTN_BAIL(rtn); |
2172 | 0 | ltype(rec, lt) = rtn_reduce(rtn, rec); |
2173 | 0 | RTN_BAIL(rtn); |
2174 | 0 | if (debugging("cf.approx")) |
2175 | 0 | rtn_dot(rtn, "50-reduce"); |
2176 | |
|
2177 | 0 | propagate_type(rec->body, lt); |
2178 | 0 | ERR_BAIL(rec->info); |
2179 | |
|
2180 | 0 | done: |
2181 | 0 | free_rtn(rtn); |
2182 | |
|
2183 | 0 | if (debugging("cf.approx")) { |
2184 | 0 | printf("approx %s => ", lens_type_names[lt]); |
2185 | 0 | print_regexp(stdout, ltype(rec, lt)); |
2186 | 0 | printf("\n"); |
2187 | 0 | } |
2188 | |
|
2189 | 0 | return result; |
2190 | 0 | error: |
2191 | 0 | if (rtn->exn == NULL) |
2192 | 0 | result = rec->info->error->exn; |
2193 | 0 | else |
2194 | 0 | result = ref(rtn->exn); |
2195 | 0 | goto done; |
2196 | 0 | } |
2197 | | |
2198 | | static struct value * |
2199 | | exn_multiple_epsilons(struct lens *lens, |
2200 | 0 | struct lens *l1, struct lens *l2) { |
2201 | 0 | char *fi = NULL; |
2202 | 0 | struct value *exn = NULL; |
2203 | |
|
2204 | 0 | exn = make_exn_value(ref(lens->info), |
2205 | 0 | "more than one nullable branch in a union"); |
2206 | 0 | fi = format_info(l1->info); |
2207 | 0 | exn_printf_line(exn, "First nullable lens: %s", fi); |
2208 | 0 | FREE(fi); |
2209 | |
|
2210 | 0 | fi = format_info(l2->info); |
2211 | 0 | exn_printf_line(exn, "Second nullable lens: %s", fi); |
2212 | 0 | FREE(fi); |
2213 | |
|
2214 | 0 | return exn; |
2215 | 0 | } |
2216 | | |
2217 | | /* Update lens->ctype_nullable and return 1 if there was a change, |
2218 | | * 0 if there was none */ |
2219 | 0 | static int ctype_nullable(struct lens *lens, struct value **exn) { |
2220 | 0 | int nullable = 0; |
2221 | 0 | int ret = 0; |
2222 | 0 | struct lens *null_lens = NULL; |
2223 | |
|
2224 | 0 | if (! lens->recursive) |
2225 | 0 | return 0; |
2226 | | |
2227 | 0 | switch(lens->tag) { |
2228 | 0 | case L_CONCAT: |
2229 | 0 | nullable = 1; |
2230 | 0 | for (int i=0; i < lens->nchildren; i++) { |
2231 | 0 | if (ctype_nullable(lens->children[i], exn)) |
2232 | 0 | ret = 1; |
2233 | 0 | if (! lens->children[i]->ctype_nullable) |
2234 | 0 | nullable = 0; |
2235 | 0 | } |
2236 | 0 | break; |
2237 | 0 | case L_UNION: |
2238 | 0 | for (int i=0; i < lens->nchildren; i++) { |
2239 | 0 | if (ctype_nullable(lens->children[i], exn)) |
2240 | 0 | ret = 1; |
2241 | 0 | if (lens->children[i]->ctype_nullable) { |
2242 | 0 | if (nullable) { |
2243 | 0 | *exn = exn_multiple_epsilons(lens, null_lens, |
2244 | 0 | lens->children[i]); |
2245 | 0 | return 0; |
2246 | 0 | } |
2247 | 0 | nullable = 1; |
2248 | 0 | null_lens = lens->children[i]; |
2249 | 0 | } |
2250 | 0 | } |
2251 | 0 | break; |
2252 | 0 | case L_SUBTREE: |
2253 | 0 | case L_SQUARE: |
2254 | 0 | ret = ctype_nullable(lens->child, exn); |
2255 | 0 | nullable = lens->child->ctype_nullable; |
2256 | 0 | break; |
2257 | 0 | case L_STAR: |
2258 | 0 | case L_MAYBE: |
2259 | 0 | nullable = 1; |
2260 | 0 | break; |
2261 | 0 | case L_REC: |
2262 | 0 | nullable = lens->body->ctype_nullable; |
2263 | 0 | break; |
2264 | 0 | default: |
2265 | 0 | BUG_LENS_TAG(lens); |
2266 | 0 | break; |
2267 | 0 | } |
2268 | 0 | if (*exn != NULL) |
2269 | 0 | return 0; |
2270 | 0 | if (nullable != lens->ctype_nullable) { |
2271 | 0 | ret = 1; |
2272 | 0 | lens->ctype_nullable = nullable; |
2273 | 0 | } |
2274 | 0 | return ret; |
2275 | 0 | } |
2276 | | |
2277 | | struct value *lns_check_rec(struct info *info, |
2278 | | struct lens *body, struct lens *rec, |
2279 | 0 | int check) { |
2280 | | /* The types in the order of approximation */ |
2281 | 0 | static const enum lens_type types[] = { KTYPE, VTYPE, ATYPE }; |
2282 | 0 | struct value *result = NULL; |
2283 | |
|
2284 | 0 | ensure(rec->tag == L_REC, info); |
2285 | 0 | ensure(rec->rec_internal, info); |
2286 | | |
2287 | | /* The user might have written down a regular lens with 'let rec' */ |
2288 | 0 | if (! body->recursive) { |
2289 | 0 | result = make_lens_value(ref(body)); |
2290 | 0 | ERR_NOMEM(result == NULL, info); |
2291 | 0 | return result; |
2292 | 0 | } |
2293 | | |
2294 | | /* To help memory management, we avoid the cycle inherent ina recursive |
2295 | | * lens by using two instances of an L_REC lens. One is marked with |
2296 | | * rec_internal, and used inside the body of the lens. The other is the |
2297 | | * "toplevel" which receives external references. |
2298 | | * |
2299 | | * The internal instance of the recursive lens is REC, the external one |
2300 | | * is TOP, constructed below |
2301 | | */ |
2302 | 0 | rec->body = body; /* REC does not own BODY */ |
2303 | |
|
2304 | 0 | for (int i=0; i < ARRAY_CARDINALITY(types); i++) { |
2305 | 0 | result = rtn_approx(rec, types[i]); |
2306 | 0 | ERR_BAIL(info); |
2307 | 0 | } |
2308 | | |
2309 | 0 | if (rec->atype == NULL) { |
2310 | 0 | result = make_exn_value(ref(rec->info), |
2311 | 0 | "recursive lens generates the empty language for its %s", |
2312 | 0 | rec->ctype == NULL ? "ctype" : "atype"); |
2313 | 0 | goto error; |
2314 | 0 | } |
2315 | | |
2316 | 0 | rec->key = rec->body->key; |
2317 | 0 | rec->value = rec->body->value; |
2318 | 0 | rec->consumes_value = rec->body->consumes_value; |
2319 | |
|
2320 | 0 | while(ctype_nullable(rec->body, &result)); |
2321 | 0 | if (result != NULL) |
2322 | 0 | goto error; |
2323 | 0 | rec->ctype_nullable = rec->body->ctype_nullable; |
2324 | |
|
2325 | 0 | result = typecheck(rec->body, check); |
2326 | 0 | if (result != NULL) |
2327 | 0 | goto error; |
2328 | | |
2329 | 0 | result = lns_make_rec(ref(rec->info)); |
2330 | 0 | struct lens *top = result->lens; |
2331 | 0 | for (int t=0; t < ntypes; t++) |
2332 | 0 | ltype(top, t) = ref(ltype(rec, t)); |
2333 | 0 | top->value = rec->value; |
2334 | 0 | top->key = rec->key; |
2335 | 0 | top->consumes_value = rec->consumes_value; |
2336 | 0 | top->ctype_nullable = rec->ctype_nullable; |
2337 | 0 | top->body = ref(body); |
2338 | 0 | top->alias = rec; |
2339 | 0 | top->rec_internal = 0; |
2340 | 0 | rec->alias = top; |
2341 | |
|
2342 | 0 | top->jmt = jmt_build(top); |
2343 | 0 | ERR_BAIL(info); |
2344 | |
|
2345 | 0 | return result; |
2346 | 0 | error: |
2347 | 0 | if (result != NULL && result->tag != V_EXN) |
2348 | 0 | unref(result, value); |
2349 | 0 | if (result == NULL) |
2350 | 0 | result = info->error->exn; |
2351 | 0 | return result; |
2352 | 0 | } |
2353 | | |
2354 | | #if ENABLE_DEBUG |
2355 | 0 | void dump_lens_tree(struct lens *lens){ |
2356 | 0 | static int count = 0; |
2357 | 0 | FILE *fp; |
2358 | |
|
2359 | 0 | fp = debug_fopen("lens_%02d_%s.dot", count++, ltag(lens)); |
2360 | 0 | if (fp == NULL) |
2361 | 0 | return; |
2362 | | |
2363 | 0 | fprintf(fp, "digraph \"%s\" {\n", "lens"); |
2364 | 0 | dump_lens(fp, lens); |
2365 | 0 | fprintf(fp, "}\n"); |
2366 | |
|
2367 | 0 | fclose(fp); |
2368 | 0 | } |
2369 | | |
2370 | 0 | void dump_lens(FILE *out, struct lens *lens){ |
2371 | 0 | int i = 0; |
2372 | 0 | struct regexp *re; |
2373 | |
|
2374 | 0 | fprintf(out, "\"%p\" [ shape = box, label = \"%s\\n", lens, ltag(lens)); |
2375 | |
|
2376 | 0 | for (int t=0; t < ntypes; t++) { |
2377 | 0 | re = ltype(lens, t); |
2378 | 0 | if (re == NULL) |
2379 | 0 | continue; |
2380 | 0 | fprintf(out, "%s=",lens_type_names[t]); |
2381 | 0 | print_regexp(out, re); |
2382 | 0 | fprintf(out, "\\n"); |
2383 | 0 | } |
2384 | |
|
2385 | 0 | fprintf(out, "recursive=%x\\n", lens->recursive); |
2386 | 0 | fprintf(out, "rec_internal=%x\\n", lens->rec_internal); |
2387 | 0 | fprintf(out, "consumes_value=%x\\n", lens->consumes_value); |
2388 | 0 | fprintf(out, "ctype_nullable=%x\\n", lens->ctype_nullable); |
2389 | 0 | fprintf(out, "\"];\n"); |
2390 | 0 | switch(lens->tag){ |
2391 | 0 | case L_DEL: |
2392 | 0 | break; |
2393 | 0 | case L_STORE: |
2394 | 0 | break; |
2395 | 0 | case L_VALUE: |
2396 | 0 | break; |
2397 | 0 | case L_KEY: |
2398 | 0 | break; |
2399 | 0 | case L_LABEL: |
2400 | 0 | break; |
2401 | 0 | case L_SEQ: |
2402 | 0 | break; |
2403 | 0 | case L_COUNTER: |
2404 | 0 | break; |
2405 | 0 | case L_CONCAT: |
2406 | 0 | for(i = 0; i<lens->nchildren;i++){ |
2407 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->children[i]); |
2408 | 0 | dump_lens(out, lens->children[i]); |
2409 | 0 | } |
2410 | 0 | break; |
2411 | 0 | case L_UNION: |
2412 | 0 | for(i = 0; i<lens->nchildren;i++){ |
2413 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->children[i]); |
2414 | 0 | dump_lens(out, lens->children[i]); |
2415 | 0 | } |
2416 | 0 | break; |
2417 | 0 | case L_SUBTREE: |
2418 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->child); |
2419 | 0 | dump_lens(out, lens->child); |
2420 | 0 | break; |
2421 | 0 | case L_STAR: |
2422 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->child); |
2423 | 0 | dump_lens(out, lens->child); |
2424 | |
|
2425 | 0 | break; |
2426 | 0 | case L_MAYBE: |
2427 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->child); |
2428 | 0 | dump_lens(out, lens->child); |
2429 | |
|
2430 | 0 | break; |
2431 | 0 | case L_REC: |
2432 | 0 | if (lens->rec_internal == 0){ |
2433 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->child); |
2434 | 0 | dump_lens(out, lens->body); |
2435 | 0 | } |
2436 | 0 | break; |
2437 | 0 | case L_SQUARE: |
2438 | 0 | fprintf(out, "\"%p\" -> \"%p\"\n", lens, lens->child); |
2439 | 0 | dump_lens(out, lens->child); |
2440 | 0 | break; |
2441 | 0 | default: |
2442 | 0 | fprintf(out, "ERROR\n"); |
2443 | 0 | break; |
2444 | 0 | } |
2445 | 0 | } |
2446 | | #endif |
2447 | | |
2448 | | /* |
2449 | | * Local variables: |
2450 | | * indent-tabs-mode: nil |
2451 | | * c-indent-level: 4 |
2452 | | * c-basic-offset: 4 |
2453 | | * tab-width: 4 |
2454 | | * End: |
2455 | | */ |