Coverage Report

Created: 2024-11-21 06:47

/src/libgmp/mpn/toom_eval_pm2exp.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_toom_eval_pm2exp -- Evaluate a polynomial in +2^k and -2^k
2
3
   Contributed to the GNU project by Niels Möller
4
5
   THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
6
   SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
7
   GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
8
9
Copyright 2009 Free Software Foundation, Inc.
10
11
This file is part of the GNU MP Library.
12
13
The GNU MP Library is free software; you can redistribute it and/or modify
14
it under the terms of either:
15
16
  * the GNU Lesser General Public License as published by the Free
17
    Software Foundation; either version 3 of the License, or (at your
18
    option) any later version.
19
20
or
21
22
  * the GNU General Public License as published by the Free Software
23
    Foundation; either version 2 of the License, or (at your option) any
24
    later version.
25
26
or both in parallel, as here.
27
28
The GNU MP Library is distributed in the hope that it will be useful, but
29
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
30
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
31
for more details.
32
33
You should have received copies of the GNU General Public License and the
34
GNU Lesser General Public License along with the GNU MP Library.  If not,
35
see https://www.gnu.org/licenses/.  */
36
37
38
#include "gmp-impl.h"
39
40
/* Evaluates a polynomial of degree k > 2, in the points +2^shift and -2^shift. */
41
/* It returns 0 or ~0, depending on the sign of the result xm2. */
42
unsigned
43
mpn_toom_eval_pm2exp (mp_ptr xp2, mp_ptr xm2, unsigned k,
44
          mp_srcptr xp, mp_size_t n, mp_size_t hn, unsigned shift,
45
          mp_ptr tp)
46
0
{
47
0
  unsigned i;
48
0
  unsigned neg;
49
0
#if HAVE_NATIVE_mpn_addlsh_n
50
0
  mp_limb_t cy;
51
0
#endif
52
53
0
  ASSERT (k >= 3);
54
0
  ASSERT (shift*k < GMP_NUMB_BITS);
55
56
0
  ASSERT (hn > 0);
57
0
  ASSERT (hn <= n);
58
59
  /* The degree k is also the number of full-size coefficients, so
60
   * that last coefficient, of size hn, starts at xp + k*n. */
61
62
0
#if HAVE_NATIVE_mpn_addlsh_n
63
0
  xp2[n] = mpn_addlsh_n (xp2, xp, xp + 2*n, n, 2*shift);
64
0
  for (i = 4; i < k; i += 2)
65
0
    xp2[n] += mpn_addlsh_n (xp2, xp2, xp + i*n, n, i*shift);
66
67
0
  tp[n] = mpn_lshift (tp, xp+n, n, shift);
68
0
  for (i = 3; i < k; i+= 2)
69
0
    tp[n] += mpn_addlsh_n (tp, tp, xp+i*n, n, i*shift);
70
71
0
  if (k & 1)
72
0
    {
73
0
      cy = mpn_addlsh_n (tp, tp, xp+k*n, hn, k*shift);
74
0
      MPN_INCR_U (tp + hn, n+1 - hn, cy);
75
0
    }
76
0
  else
77
0
    {
78
0
      cy = mpn_addlsh_n (xp2, xp2, xp+k*n, hn, k*shift);
79
0
      MPN_INCR_U (xp2 + hn, n+1 - hn, cy);
80
0
    }
81
82
#else /* !HAVE_NATIVE_mpn_addlsh_n */
83
  xp2[n] = mpn_lshift (tp, xp+2*n, n, 2*shift);
84
  xp2[n] += mpn_add_n (xp2, xp, tp, n);
85
  for (i = 4; i < k; i += 2)
86
    {
87
      xp2[n] += mpn_lshift (tp, xp + i*n, n, i*shift);
88
      xp2[n] += mpn_add_n (xp2, xp2, tp, n);
89
    }
90
91
  tp[n] = mpn_lshift (tp, xp+n, n, shift);
92
  for (i = 3; i < k; i+= 2)
93
    {
94
      tp[n] += mpn_lshift (xm2, xp + i*n, n, i*shift);
95
      tp[n] += mpn_add_n (tp, tp, xm2, n);
96
    }
97
98
  xm2[hn] = mpn_lshift (xm2, xp + k*n, hn, k*shift);
99
  if (k & 1)
100
    mpn_add (tp, tp, n+1, xm2, hn+1);
101
  else
102
    mpn_add (xp2, xp2, n+1, xm2, hn+1);
103
#endif /* !HAVE_NATIVE_mpn_addlsh_n */
104
105
0
  neg = - (unsigned) (mpn_cmp (xp2, tp, n + 1) < 0);
106
107
#if HAVE_NATIVE_mpn_add_n_sub_n
108
  if (neg)
109
    mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1);
110
  else
111
    mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1);
112
#else /* !HAVE_NATIVE_mpn_add_n_sub_n */
113
0
  if (neg)
114
0
    mpn_sub_n (xm2, tp, xp2, n + 1);
115
0
  else
116
0
    mpn_sub_n (xm2, xp2, tp, n + 1);
117
118
0
  mpn_add_n (xp2, xp2, tp, n + 1);
119
0
#endif /* !HAVE_NATIVE_mpn_add_n_sub_n */
120
121
  /* FIXME: the following asserts are useless if (k+1)*shift >= GMP_LIMB_BITS */
122
0
  ASSERT ((k+1)*shift >= GMP_LIMB_BITS ||
123
0
    xp2[n] < ((CNST_LIMB(1)<<((k+1)*shift))-1)/((CNST_LIMB(1)<<shift)-1));
124
0
  ASSERT ((k+2)*shift >= GMP_LIMB_BITS ||
125
0
    xm2[n] < ((CNST_LIMB(1)<<((k+2)*shift))-((k&1)?(CNST_LIMB(1)<<shift):1))/((CNST_LIMB(1)<<(2*shift))-1));
126
127
0
  return neg;
128
0
}