/src/bind9/lib/dns/keymgr.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (C) Internet Systems Consortium, Inc. ("ISC") |
3 | | * |
4 | | * SPDX-License-Identifier: MPL-2.0 |
5 | | * |
6 | | * This Source Code Form is subject to the terms of the Mozilla Public |
7 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
8 | | * file, you can obtain one at https://mozilla.org/MPL/2.0/. |
9 | | * |
10 | | * See the COPYRIGHT file distributed with this work for additional |
11 | | * information regarding copyright ownership. |
12 | | */ |
13 | | |
14 | | /*! \file */ |
15 | | |
16 | | #include <inttypes.h> |
17 | | #include <stdbool.h> |
18 | | #include <stdlib.h> |
19 | | #include <unistd.h> |
20 | | |
21 | | #include <isc/buffer.h> |
22 | | #include <isc/dir.h> |
23 | | #include <isc/log.h> |
24 | | #include <isc/mem.h> |
25 | | #include <isc/result.h> |
26 | | #include <isc/string.h> |
27 | | #include <isc/time.h> |
28 | | #include <isc/util.h> |
29 | | |
30 | | #include <dns/dnssec.h> |
31 | | #include <dns/kasp.h> |
32 | | #include <dns/keymgr.h> |
33 | | #include <dns/keyvalues.h> |
34 | | |
35 | | #include <dst/dst.h> |
36 | | |
37 | | #define RETERR(x) \ |
38 | 0 | do { \ |
39 | 0 | result = (x); \ |
40 | 0 | if (result != ISC_R_SUCCESS) \ |
41 | 0 | goto failure; \ |
42 | 0 | } while (0) |
43 | | |
44 | | /* |
45 | | * Set key state to `target` state and change last changed |
46 | | * to `time`, only if key state has not been set before. |
47 | | */ |
48 | | #define INITIALIZE_STATE(key, state, timing, target, time) \ |
49 | 0 | do { \ |
50 | 0 | dst_key_state_t s; \ |
51 | 0 | char keystr[DST_KEY_FORMATSIZE]; \ |
52 | 0 | if (dst_key_getstate((key), (state), &s) == ISC_R_NOTFOUND) { \ |
53 | 0 | dst_key_setstate((key), (state), (target)); \ |
54 | 0 | dst_key_settime((key), (timing), time); \ |
55 | 0 | \ |
56 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { \ |
57 | 0 | dst_key_format((key), keystr, sizeof(keystr)); \ |
58 | 0 | isc_log_write( \ |
59 | 0 | DNS_LOGCATEGORY_DNSSEC, \ |
60 | 0 | DNS_LOGMODULE_DNSSEC, \ |
61 | 0 | ISC_LOG_DEBUG(3), \ |
62 | 0 | "keymgr: DNSKEY %s (%s) initialize " \ |
63 | 0 | "%s state to %s (policy %s)", \ |
64 | 0 | keystr, keymgr_keyrole(key), \ |
65 | 0 | keystatetags[state], \ |
66 | 0 | keystatestrings[target], \ |
67 | 0 | dns_kasp_getname(kasp)); \ |
68 | 0 | } \ |
69 | 0 | } \ |
70 | 0 | } while (0) |
71 | | |
72 | | /* Shorter keywords for better readability. */ |
73 | 0 | #define HIDDEN DST_KEY_STATE_HIDDEN |
74 | 0 | #define RUMOURED DST_KEY_STATE_RUMOURED |
75 | 0 | #define OMNIPRESENT DST_KEY_STATE_OMNIPRESENT |
76 | 0 | #define UNRETENTIVE DST_KEY_STATE_UNRETENTIVE |
77 | 0 | #define NA DST_KEY_STATE_NA |
78 | | |
79 | | /* Quickly get key state timing metadata. */ |
80 | | static int keystatetimes[] = { DST_TIME_DNSKEY, DST_TIME_ZRRSIG, |
81 | | DST_TIME_KRRSIG, DST_TIME_DS }; |
82 | 0 | #define NUM_KEYSTATES (int)ARRAY_SIZE(keystatetimes) |
83 | | |
84 | | /* Readable key state types and values. */ |
85 | | static const char *keystatetags[NUM_KEYSTATES] = { "DNSKEY", "ZRRSIG", "KRRSIG", |
86 | | "DS" }; |
87 | | static const char *keystatestrings[] = { "HIDDEN", "RUMOURED", "OMNIPRESENT", |
88 | | "UNRETENTIVE" }; |
89 | | |
90 | | static void |
91 | 0 | log_key_overflow(dst_key_t *key, const char *what) { |
92 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
93 | 0 | dst_key_format(key, keystr, sizeof(keystr)); |
94 | 0 | isc_log_write( |
95 | 0 | DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING, |
96 | 0 | "keymgr: DNSKEY %s (%s) calculation overflowed", keystr, what); |
97 | 0 | } |
98 | | |
99 | | /* |
100 | | * Print key role. |
101 | | * |
102 | | */ |
103 | | static const char * |
104 | 0 | keymgr_keyrole(dst_key_t *key) { |
105 | 0 | bool ksk = false, zsk = false; |
106 | 0 | isc_result_t ret; |
107 | 0 | ret = dst_key_getbool(key, DST_BOOL_KSK, &ksk); |
108 | 0 | if (ret != ISC_R_SUCCESS) { |
109 | 0 | return "UNKNOWN"; |
110 | 0 | } |
111 | 0 | ret = dst_key_getbool(key, DST_BOOL_ZSK, &zsk); |
112 | 0 | if (ret != ISC_R_SUCCESS) { |
113 | 0 | return "UNKNOWN"; |
114 | 0 | } |
115 | 0 | if (ksk && zsk) { |
116 | 0 | return "CSK"; |
117 | 0 | } else if (ksk) { |
118 | 0 | return "KSK"; |
119 | 0 | } else if (zsk) { |
120 | 0 | return "ZSK"; |
121 | 0 | } |
122 | 0 | return "NOSIGN"; |
123 | 0 | } |
124 | | |
125 | | /* |
126 | | * Set the remove time on key given its retire time. |
127 | | * |
128 | | */ |
129 | | static void |
130 | 0 | keymgr_settime_remove(dns_dnsseckey_t *key, dns_kasp_t *kasp) { |
131 | 0 | isc_stdtime_t retire = 0, remove = 0, ksk_remove = 0, zsk_remove = 0; |
132 | 0 | bool zsk = false, ksk = false; |
133 | 0 | isc_result_t ret; |
134 | |
|
135 | 0 | REQUIRE(key != NULL); |
136 | 0 | REQUIRE(key->key != NULL); |
137 | |
|
138 | 0 | ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire); |
139 | 0 | if (ret != ISC_R_SUCCESS) { |
140 | 0 | return; |
141 | 0 | } |
142 | | |
143 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk); |
144 | 0 | if (ret == ISC_R_SUCCESS && zsk) { |
145 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
146 | | /* ZSK: Iret = Dsgn + Dprp + TTLsig */ |
147 | 0 | zsk_remove = |
148 | 0 | retire + ttlsig + dns_kasp_zonepropagationdelay(kasp) + |
149 | 0 | dns_kasp_retiresafety(kasp) + dns_kasp_signdelay(kasp); |
150 | 0 | } |
151 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk); |
152 | 0 | if (ret == ISC_R_SUCCESS && ksk) { |
153 | | /* KSK: Iret = DprpP + TTLds */ |
154 | 0 | ksk_remove = retire + dns_kasp_dsttl(kasp) + |
155 | 0 | dns_kasp_parentpropagationdelay(kasp) + |
156 | 0 | dns_kasp_retiresafety(kasp); |
157 | 0 | } |
158 | |
|
159 | 0 | remove = ISC_MAX(ksk_remove, zsk_remove); |
160 | 0 | dst_key_settime(key->key, DST_TIME_DELETE, remove); |
161 | 0 | } |
162 | | |
163 | | /* |
164 | | * Set the SyncPublish time (when the DS may be submitted to the parent). |
165 | | * |
166 | | */ |
167 | | void |
168 | 0 | dns_keymgr_settime_syncpublish(dst_key_t *key, dns_kasp_t *kasp, bool first) { |
169 | 0 | isc_stdtime_t published, syncpublish; |
170 | 0 | bool ksk = false; |
171 | 0 | isc_result_t ret; |
172 | |
|
173 | 0 | REQUIRE(key != NULL); |
174 | |
|
175 | 0 | ret = dst_key_gettime(key, DST_TIME_PUBLISH, &published); |
176 | 0 | if (ret != ISC_R_SUCCESS) { |
177 | 0 | return; |
178 | 0 | } |
179 | | |
180 | 0 | ret = dst_key_getbool(key, DST_BOOL_KSK, &ksk); |
181 | 0 | if (ret != ISC_R_SUCCESS || !ksk) { |
182 | 0 | return; |
183 | 0 | } |
184 | | |
185 | 0 | syncpublish = published + dst_key_getttl(key) + |
186 | 0 | dns_kasp_zonepropagationdelay(kasp) + |
187 | 0 | dns_kasp_publishsafety(kasp); |
188 | 0 | if (first) { |
189 | | /* Also need to wait until the signatures are omnipresent. */ |
190 | 0 | isc_stdtime_t zrrsig_present; |
191 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
192 | 0 | zrrsig_present = published + ttlsig + |
193 | 0 | dns_kasp_zonepropagationdelay(kasp); |
194 | 0 | if (zrrsig_present > syncpublish) { |
195 | 0 | syncpublish = zrrsig_present; |
196 | 0 | } |
197 | 0 | } |
198 | 0 | dst_key_settime(key, DST_TIME_SYNCPUBLISH, syncpublish); |
199 | |
|
200 | 0 | uint32_t lifetime = 0; |
201 | 0 | ret = dst_key_getnum(key, DST_NUM_LIFETIME, &lifetime); |
202 | 0 | if (ret == ISC_R_SUCCESS && lifetime > 0) { |
203 | 0 | dst_key_settime(key, DST_TIME_SYNCDELETE, |
204 | 0 | syncpublish + lifetime); |
205 | 0 | } |
206 | 0 | } |
207 | | |
208 | | /* |
209 | | * Calculate prepublication time of a successor key of 'key'. |
210 | | * This function can have side effects: |
211 | | * 1. If there is no active time set, which would be super weird, set it now. |
212 | | * 2. If there is no published time set, also super weird, set it now. |
213 | | * 3. If there is no syncpublished time set, set it now. |
214 | | * 4. If the lifetime is not set, it will be set now. |
215 | | * 5. If there should be a retire time and it is not set, it will be set now. |
216 | | * 6. The removed time is adjusted accordingly. |
217 | | * |
218 | | * This returns when the successor key needs to be published in the zone. |
219 | | * A special value of 0 means there is no need for a successor. |
220 | | * |
221 | | */ |
222 | | static isc_stdtime_t |
223 | | keymgr_prepublication_time(dns_dnsseckey_t *key, dns_kasp_t *kasp, |
224 | 0 | uint32_t lifetime, isc_stdtime_t now) { |
225 | 0 | isc_result_t ret; |
226 | 0 | isc_stdtime_t active, retire, pub, prepub; |
227 | 0 | bool zsk = false, ksk = false; |
228 | |
|
229 | 0 | REQUIRE(key != NULL); |
230 | 0 | REQUIRE(key->key != NULL); |
231 | |
|
232 | 0 | active = 0; |
233 | 0 | pub = 0; |
234 | 0 | retire = 0; |
235 | | |
236 | | /* |
237 | | * An active key must have publish and activate timing |
238 | | * metadata. |
239 | | */ |
240 | 0 | ret = dst_key_gettime(key->key, DST_TIME_ACTIVATE, &active); |
241 | 0 | if (ret != ISC_R_SUCCESS) { |
242 | | /* Super weird, but if it happens, set it to now. */ |
243 | 0 | dst_key_settime(key->key, DST_TIME_ACTIVATE, now); |
244 | 0 | active = now; |
245 | 0 | } |
246 | 0 | ret = dst_key_gettime(key->key, DST_TIME_PUBLISH, &pub); |
247 | 0 | if (ret != ISC_R_SUCCESS) { |
248 | | /* Super weird, but if it happens, set it to now. */ |
249 | 0 | dst_key_settime(key->key, DST_TIME_PUBLISH, now); |
250 | 0 | pub = now; |
251 | 0 | } |
252 | | |
253 | | /* |
254 | | * To calculate phase out times ("Retired", "Removed", ...), |
255 | | * the key lifetime is required. |
256 | | */ |
257 | 0 | uint32_t klifetime = 0; |
258 | 0 | ret = dst_key_getnum(key->key, DST_NUM_LIFETIME, &klifetime); |
259 | 0 | if (ret != ISC_R_SUCCESS) { |
260 | 0 | dst_key_setnum(key->key, DST_NUM_LIFETIME, lifetime); |
261 | 0 | klifetime = lifetime; |
262 | 0 | } |
263 | | |
264 | | /* |
265 | | * Calculate prepublication time. |
266 | | */ |
267 | 0 | prepub = dst_key_getttl(key->key) + dns_kasp_publishsafety(kasp) + |
268 | 0 | dns_kasp_zonepropagationdelay(kasp); |
269 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk); |
270 | 0 | if (ret == ISC_R_SUCCESS && ksk) { |
271 | 0 | isc_stdtime_t syncpub; |
272 | | |
273 | | /* |
274 | | * Set PublishCDS if not set. |
275 | | */ |
276 | 0 | ret = dst_key_gettime(key->key, DST_TIME_SYNCPUBLISH, &syncpub); |
277 | 0 | if (ret != ISC_R_SUCCESS) { |
278 | 0 | uint32_t tag; |
279 | 0 | isc_stdtime_t syncpub1, syncpub2; |
280 | |
|
281 | 0 | syncpub1 = pub + prepub; |
282 | 0 | syncpub2 = 0; |
283 | 0 | ret = dst_key_getnum(key->key, DST_NUM_PREDECESSOR, |
284 | 0 | &tag); |
285 | 0 | if (ret != ISC_R_SUCCESS) { |
286 | | /* |
287 | | * No predecessor, wait for zone to be |
288 | | * completely signed. |
289 | | */ |
290 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, |
291 | 0 | true); |
292 | 0 | syncpub2 = pub + ttlsig + |
293 | 0 | dns_kasp_zonepropagationdelay(kasp); |
294 | 0 | } |
295 | |
|
296 | 0 | syncpub = ISC_MAX(syncpub1, syncpub2); |
297 | 0 | dst_key_settime(key->key, DST_TIME_SYNCPUBLISH, |
298 | 0 | syncpub); |
299 | 0 | if (klifetime > 0) { |
300 | 0 | dst_key_settime(key->key, DST_TIME_SYNCDELETE, |
301 | 0 | syncpub + klifetime); |
302 | 0 | } |
303 | 0 | } |
304 | 0 | } |
305 | | |
306 | | /* |
307 | | * Not sure what to do when dst_key_getbool() fails here. Extending |
308 | | * the prepublication time anyway is arguably the safest thing to do, |
309 | | * so ignore the result code. |
310 | | */ |
311 | 0 | (void)dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk); |
312 | |
|
313 | 0 | ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire); |
314 | 0 | if (ret != ISC_R_SUCCESS) { |
315 | 0 | if (klifetime == 0) { |
316 | | /* |
317 | | * No inactive time and no lifetime, |
318 | | * so no need to start a rollover. |
319 | | */ |
320 | 0 | return 0; |
321 | 0 | } |
322 | | |
323 | 0 | if (ckd_add(&retire, active, klifetime)) { |
324 | 0 | log_key_overflow(key->key, "retire"); |
325 | 0 | retire = UINT32_MAX; |
326 | 0 | } |
327 | 0 | dst_key_settime(key->key, DST_TIME_INACTIVE, retire); |
328 | 0 | } |
329 | | |
330 | | /* |
331 | | * Update remove time. |
332 | | */ |
333 | 0 | keymgr_settime_remove(key, kasp); |
334 | | |
335 | | /* |
336 | | * Publish successor 'prepub' time before the 'retire' time of 'key'. |
337 | | */ |
338 | 0 | if (prepub > retire) { |
339 | | /* We should have already prepublished the new key. */ |
340 | 0 | return now; |
341 | 0 | } |
342 | 0 | return retire - prepub; |
343 | 0 | } |
344 | | |
345 | | static void |
346 | | keymgr_key_retire(dns_dnsseckey_t *key, dns_kasp_t *kasp, uint8_t opts, |
347 | 0 | isc_stdtime_t now) { |
348 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
349 | 0 | isc_result_t ret; |
350 | 0 | isc_stdtime_t retire; |
351 | 0 | dst_key_state_t s; |
352 | 0 | bool ksk = false, zsk = false; |
353 | |
|
354 | 0 | REQUIRE(key != NULL); |
355 | 0 | REQUIRE(key->key != NULL); |
356 | |
|
357 | 0 | dst_key_format(key->key, keystr, sizeof(keystr)); |
358 | |
|
359 | 0 | ret = dst_key_getstate(key->key, DST_KEY_GOAL, &s); |
360 | 0 | INSIST(ret == ISC_R_SUCCESS); |
361 | |
|
362 | 0 | if (dns_kasp_manualmode(kasp) && |
363 | 0 | (opts & DNS_KEYMGRATTR_FORCESTEP) == 0 && s != HIDDEN) |
364 | 0 | { |
365 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
366 | 0 | ISC_LOG_INFO, |
367 | 0 | "keymgr-manual-mode: block retire DNSKEY " |
368 | 0 | "%s (%s)", |
369 | 0 | keystr, keymgr_keyrole(key->key)); |
370 | 0 | return; |
371 | 0 | } else { |
372 | | /* This key wants to retire and hide in a corner. */ |
373 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
374 | 0 | ISC_LOG_INFO, "keymgr: retire DNSKEY %s (%s)", |
375 | 0 | keystr, keymgr_keyrole(key->key)); |
376 | |
|
377 | 0 | dst_key_setstate(key->key, DST_KEY_GOAL, HIDDEN); |
378 | 0 | } |
379 | | |
380 | | /* |
381 | | * This key may not have key states set yet. Pretend as if they are |
382 | | * in the OMNIPRESENT state. |
383 | | */ |
384 | 0 | ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire); |
385 | 0 | if (ret != ISC_R_SUCCESS || (retire > now)) { |
386 | 0 | dst_key_settime(key->key, DST_TIME_INACTIVE, now); |
387 | 0 | } |
388 | 0 | keymgr_settime_remove(key, kasp); |
389 | |
|
390 | 0 | if (dst_key_getstate(key->key, DST_KEY_DNSKEY, &s) != ISC_R_SUCCESS) { |
391 | 0 | dst_key_setstate(key->key, DST_KEY_DNSKEY, OMNIPRESENT); |
392 | 0 | dst_key_settime(key->key, DST_TIME_DNSKEY, now); |
393 | 0 | } |
394 | |
|
395 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk); |
396 | 0 | if (ret == ISC_R_SUCCESS && ksk) { |
397 | 0 | if (dst_key_getstate(key->key, DST_KEY_KRRSIG, &s) != |
398 | 0 | ISC_R_SUCCESS) |
399 | 0 | { |
400 | 0 | dst_key_setstate(key->key, DST_KEY_KRRSIG, OMNIPRESENT); |
401 | 0 | dst_key_settime(key->key, DST_TIME_KRRSIG, now); |
402 | 0 | } |
403 | 0 | if (dst_key_getstate(key->key, DST_KEY_DS, &s) != ISC_R_SUCCESS) |
404 | 0 | { |
405 | 0 | dst_key_setstate(key->key, DST_KEY_DS, OMNIPRESENT); |
406 | 0 | dst_key_settime(key->key, DST_TIME_DS, now); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk); |
410 | 0 | if (ret == ISC_R_SUCCESS && zsk) { |
411 | 0 | if (dst_key_getstate(key->key, DST_KEY_ZRRSIG, &s) != |
412 | 0 | ISC_R_SUCCESS) |
413 | 0 | { |
414 | 0 | dst_key_setstate(key->key, DST_KEY_ZRRSIG, OMNIPRESENT); |
415 | 0 | dst_key_settime(key->key, DST_TIME_ZRRSIG, now); |
416 | 0 | } |
417 | 0 | } |
418 | 0 | } |
419 | | |
420 | | /* Update lifetime and retire and remove time accordingly. */ |
421 | | static void |
422 | | keymgr_key_update_lifetime(dns_dnsseckey_t *key, dns_kasp_t *kasp, |
423 | 0 | isc_stdtime_t now, uint32_t lifetime) { |
424 | 0 | uint32_t l; |
425 | 0 | dst_key_state_t g = HIDDEN; |
426 | 0 | isc_result_t r; |
427 | |
|
428 | 0 | (void)dst_key_getstate(key->key, DST_KEY_GOAL, &g); |
429 | 0 | r = dst_key_getnum(key->key, DST_NUM_LIFETIME, &l); |
430 | | /* Initialize lifetime. */ |
431 | 0 | if (r != ISC_R_SUCCESS) { |
432 | 0 | dst_key_setnum(key->key, DST_NUM_LIFETIME, lifetime); |
433 | 0 | l = lifetime - 1; |
434 | 0 | } |
435 | | /* Skip keys that are still hidden or already retiring. */ |
436 | 0 | if (g != OMNIPRESENT) { |
437 | 0 | return; |
438 | 0 | } |
439 | | /* Update lifetime and timing metadata. */ |
440 | 0 | if (l != lifetime) { |
441 | 0 | dst_key_setnum(key->key, DST_NUM_LIFETIME, lifetime); |
442 | 0 | if (lifetime > 0) { |
443 | 0 | uint32_t a = now; |
444 | 0 | uint32_t inactive; |
445 | 0 | (void)dst_key_gettime(key->key, DST_TIME_ACTIVATE, &a); |
446 | 0 | if (ckd_add(&inactive, a, lifetime)) { |
447 | 0 | log_key_overflow(key->key, "inactive"); |
448 | 0 | inactive = UINT32_MAX; |
449 | 0 | } |
450 | 0 | dst_key_settime(key->key, DST_TIME_INACTIVE, inactive); |
451 | 0 | keymgr_settime_remove(key, kasp); |
452 | 0 | } else { |
453 | 0 | dst_key_unsettime(key->key, DST_TIME_INACTIVE); |
454 | 0 | dst_key_unsettime(key->key, DST_TIME_DELETE); |
455 | 0 | dst_key_unsettime(key->key, DST_TIME_SYNCDELETE); |
456 | 0 | } |
457 | 0 | } |
458 | 0 | } |
459 | | |
460 | | static bool |
461 | | keymgr_keyid_conflict(dst_key_t *newkey, uint16_t min, uint16_t max, |
462 | 0 | dns_dnsseckeylist_t *keys) { |
463 | 0 | uint16_t id = dst_key_id(newkey); |
464 | 0 | uint32_t rid = dst_key_rid(newkey); |
465 | 0 | uint32_t alg = dst_key_alg(newkey); |
466 | |
|
467 | 0 | if (id < min || id > max) { |
468 | 0 | return true; |
469 | 0 | } |
470 | 0 | if (rid < min || rid > max) { |
471 | 0 | return true; |
472 | 0 | } |
473 | | |
474 | 0 | ISC_LIST_FOREACH(*keys, dkey, link) { |
475 | 0 | if (dst_key_alg(dkey->key) != alg) { |
476 | 0 | continue; |
477 | 0 | } |
478 | 0 | if (dst_key_id(dkey->key) == id || |
479 | 0 | dst_key_rid(dkey->key) == id || |
480 | 0 | dst_key_id(dkey->key) == rid || |
481 | 0 | dst_key_rid(dkey->key) == rid) |
482 | 0 | { |
483 | 0 | return true; |
484 | 0 | } |
485 | 0 | } |
486 | 0 | return false; |
487 | 0 | } |
488 | | |
489 | | /* |
490 | | * Create a new key for 'origin' given the kasp key configuration 'kkey'. |
491 | | * This will check for key id collisions with keys in 'keylist'. |
492 | | * The created key will be stored in 'dst_key'. |
493 | | * |
494 | | */ |
495 | | static isc_result_t |
496 | | keymgr_createkey(dns_kasp_key_t *kkey, const dns_name_t *origin, |
497 | | dns_kasp_t *kasp, dns_rdataclass_t rdclass, isc_mem_t *mctx, |
498 | | const char *keydir, dns_dnsseckeylist_t *keylist, |
499 | | isc_stdtime_t now, dns_dnsseckeylist_t *newkeys, |
500 | 0 | dst_key_t **dst_key) { |
501 | 0 | isc_result_t result = ISC_R_SUCCESS; |
502 | 0 | bool conflict = false; |
503 | 0 | int flags = DNS_KEYOWNER_ZONE; |
504 | 0 | dst_key_t *newkey = NULL; |
505 | 0 | uint32_t alg = dns_kasp_key_algorithm(kkey); |
506 | 0 | dns_keystore_t *keystore = dns_kasp_key_keystore(kkey); |
507 | 0 | const char *dir = NULL; |
508 | 0 | int size = dns_kasp_key_size(kkey); |
509 | 0 | dns_dnsseckeylist_t keykeys; |
510 | |
|
511 | 0 | ISC_LIST_INIT(keykeys); |
512 | |
|
513 | 0 | if (dns_kasp_key_ksk(kkey)) { |
514 | 0 | flags |= DNS_KEYFLAG_KSK; |
515 | 0 | } |
516 | | |
517 | | /* |
518 | | * We also need to check against K* files for KEYs. |
519 | | */ |
520 | 0 | result = dns_dnssec_findmatchingkeys(origin, NULL, keydir, NULL, now, |
521 | 0 | true, mctx, &keykeys); |
522 | 0 | if (result != ISC_R_SUCCESS && result != ISC_R_NOTFOUND) { |
523 | 0 | goto failure; |
524 | 0 | } |
525 | | |
526 | 0 | do { |
527 | 0 | if (keystore == NULL) { |
528 | 0 | RETERR(dst_key_generate(origin, alg, size, 0, flags, |
529 | 0 | DNS_KEYPROTO_DNSSEC, rdclass, |
530 | 0 | NULL, mctx, &newkey, NULL)); |
531 | 0 | } else { |
532 | 0 | RETERR(dns_keystore_keygen( |
533 | 0 | keystore, origin, dns_kasp_getname(kasp), |
534 | 0 | rdclass, mctx, alg, size, flags, &newkey)); |
535 | 0 | } |
536 | | |
537 | | /* Key collision? */ |
538 | 0 | conflict = keymgr_keyid_conflict(newkey, kkey->tag_min, |
539 | 0 | kkey->tag_max, keylist); |
540 | 0 | if (!conflict) { |
541 | 0 | conflict = keymgr_keyid_conflict( |
542 | 0 | newkey, kkey->tag_min, kkey->tag_max, &keykeys); |
543 | 0 | } |
544 | 0 | if (!conflict) { |
545 | 0 | conflict = keymgr_keyid_conflict( |
546 | 0 | newkey, kkey->tag_min, kkey->tag_max, newkeys); |
547 | 0 | } |
548 | 0 | if (conflict) { |
549 | | /* Try again. */ |
550 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
551 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING, |
552 | 0 | "keymgr: key collision id %d", |
553 | 0 | dst_key_id(newkey)); |
554 | 0 | dst_key_free(&newkey); |
555 | 0 | } |
556 | 0 | } while (conflict); |
557 | | |
558 | 0 | INSIST(!conflict); |
559 | 0 | dst_key_setnum(newkey, DST_NUM_LIFETIME, dns_kasp_key_lifetime(kkey)); |
560 | 0 | dst_key_setbool(newkey, DST_BOOL_KSK, dns_kasp_key_ksk(kkey)); |
561 | 0 | dst_key_setbool(newkey, DST_BOOL_ZSK, dns_kasp_key_zsk(kkey)); |
562 | |
|
563 | 0 | dir = dns_keystore_directory(keystore, keydir); |
564 | 0 | if (dir != NULL) { |
565 | 0 | dst_key_setdirectory(newkey, dir); |
566 | 0 | } |
567 | 0 | *dst_key = newkey; |
568 | 0 | result = ISC_R_SUCCESS; |
569 | |
|
570 | 0 | failure: |
571 | 0 | while (!ISC_LIST_EMPTY(keykeys)) { |
572 | 0 | dns_dnsseckey_t *key = ISC_LIST_HEAD(keykeys); |
573 | 0 | ISC_LIST_UNLINK(keykeys, key, link); |
574 | 0 | dns_dnsseckey_destroy(mctx, &key); |
575 | 0 | } |
576 | 0 | return result; |
577 | 0 | } |
578 | | |
579 | | /* |
580 | | * Return the desired state for this record 'type'. The desired state depends |
581 | | * on whether the key wants to be active, or wants to retire. This implements |
582 | | * the edges of our state machine: |
583 | | * |
584 | | * ----> OMNIPRESENT ---- |
585 | | * | | |
586 | | * | \|/ |
587 | | * |
588 | | * RUMOURED <----> UNRETENTIVE |
589 | | * |
590 | | * /|\ | |
591 | | * | | |
592 | | * ---- HIDDEN <---- |
593 | | * |
594 | | * A key that wants to be active eventually wants to have its record types |
595 | | * in the OMNIPRESENT state (that is, all resolvers that know about these |
596 | | * type of records know about these records specifically). |
597 | | * |
598 | | * A key that wants to be retired eventually wants to have its record types |
599 | | * in the HIDDEN state (that is, all resolvers that know about these type |
600 | | * of records specifically don't know about these records). |
601 | | * |
602 | | */ |
603 | | static dst_key_state_t |
604 | 0 | keymgr_desiredstate(dns_dnsseckey_t *key, dst_key_state_t state) { |
605 | 0 | dst_key_state_t goal; |
606 | |
|
607 | 0 | if (dst_key_getstate(key->key, DST_KEY_GOAL, &goal) != ISC_R_SUCCESS) { |
608 | | /* No goal? No movement. */ |
609 | 0 | return state; |
610 | 0 | } |
611 | | |
612 | 0 | if (goal == HIDDEN) { |
613 | 0 | switch (state) { |
614 | 0 | case RUMOURED: |
615 | 0 | case OMNIPRESENT: |
616 | 0 | return UNRETENTIVE; |
617 | 0 | case HIDDEN: |
618 | 0 | case UNRETENTIVE: |
619 | 0 | return HIDDEN; |
620 | 0 | default: |
621 | 0 | return state; |
622 | 0 | } |
623 | 0 | } else if (goal == OMNIPRESENT) { |
624 | 0 | switch (state) { |
625 | 0 | case RUMOURED: |
626 | 0 | case OMNIPRESENT: |
627 | 0 | return OMNIPRESENT; |
628 | 0 | case HIDDEN: |
629 | 0 | case UNRETENTIVE: |
630 | 0 | return RUMOURED; |
631 | 0 | default: |
632 | 0 | return state; |
633 | 0 | } |
634 | 0 | } |
635 | | |
636 | | /* Unknown goal. */ |
637 | 0 | return state; |
638 | 0 | } |
639 | | |
640 | | /* |
641 | | * Check if 'key' matches specific 'states'. |
642 | | * A state in 'states' that is NA matches any state. |
643 | | * A state in 'states' that is HIDDEN also matches if the state is not set. |
644 | | * If 'next_state' is set (not NA), we are pretending as if record 'type' of |
645 | | * 'subject' key already transitioned to the 'next state'. |
646 | | * |
647 | | */ |
648 | | static bool |
649 | | keymgr_key_match_state(const dst_key_t *key, const dst_key_t *subject, int type, |
650 | | dst_key_state_t next_state, |
651 | 0 | dst_key_state_t states[NUM_KEYSTATES]) { |
652 | 0 | REQUIRE(key != NULL); |
653 | |
|
654 | 0 | for (int i = 0; i < NUM_KEYSTATES; i++) { |
655 | 0 | dst_key_state_t state; |
656 | 0 | if (states[i] == NA) { |
657 | 0 | continue; |
658 | 0 | } |
659 | 0 | if (next_state != NA && i == type && |
660 | 0 | dst_key_alg(key) == dst_key_alg(subject) && |
661 | 0 | dst_key_id(key) == dst_key_id(subject)) |
662 | 0 | { |
663 | | /* Check next state rather than current state. */ |
664 | 0 | state = next_state; |
665 | 0 | } else if (dst_key_getstate(key, i, &state) != ISC_R_SUCCESS) { |
666 | | /* This is fine only if expected state is HIDDEN. */ |
667 | 0 | if (states[i] != HIDDEN) { |
668 | 0 | return false; |
669 | 0 | } |
670 | 0 | continue; |
671 | 0 | } |
672 | 0 | if (state != states[i]) { |
673 | 0 | return false; |
674 | 0 | } |
675 | 0 | } |
676 | | /* Match. */ |
677 | 0 | return true; |
678 | 0 | } |
679 | | |
680 | | /* |
681 | | * Key d directly depends on k if d is the direct predecessor of k. |
682 | | */ |
683 | | static bool |
684 | 0 | keymgr_direct_dep(dst_key_t *d, dst_key_t *k) { |
685 | 0 | uint32_t s, p; |
686 | |
|
687 | 0 | if (dst_key_getnum(d, DST_NUM_SUCCESSOR, &s) != ISC_R_SUCCESS) { |
688 | 0 | return false; |
689 | 0 | } |
690 | 0 | if (dst_key_getnum(k, DST_NUM_PREDECESSOR, &p) != ISC_R_SUCCESS) { |
691 | 0 | return false; |
692 | 0 | } |
693 | 0 | return dst_key_id(d) == p && dst_key_id(k) == s; |
694 | 0 | } |
695 | | |
696 | | /* |
697 | | * Determine which key (if any) has a dependency on k. |
698 | | */ |
699 | | static bool |
700 | 0 | keymgr_dep(dst_key_t *k, dns_dnsseckeylist_t *keyring, uint32_t *dep) { |
701 | 0 | ISC_LIST_FOREACH(*keyring, d, link) { |
702 | | /* |
703 | | * Check if k is a direct successor of d, e.g. d depends on k. |
704 | | */ |
705 | 0 | if (keymgr_direct_dep(d->key, k)) { |
706 | 0 | dst_key_state_t hidden[NUM_KEYSTATES] = { |
707 | 0 | HIDDEN, HIDDEN, HIDDEN, HIDDEN |
708 | 0 | }; |
709 | 0 | if (keymgr_key_match_state(d->key, k, NA, NA, hidden)) { |
710 | 0 | continue; |
711 | 0 | } |
712 | | |
713 | 0 | SET_IF_NOT_NULL(dep, dst_key_id(d->key)); |
714 | 0 | return true; |
715 | 0 | } |
716 | 0 | } |
717 | 0 | return false; |
718 | 0 | } |
719 | | |
720 | | /* |
721 | | * Check if a 'z' is a successor of 'x'. |
722 | | * This implements Equation(2) of "Flexible and Robust Key Rollover". |
723 | | */ |
724 | | static bool |
725 | | keymgr_key_is_successor(dst_key_t *x, dst_key_t *z, dst_key_t *key, int type, |
726 | | dst_key_state_t next_state, |
727 | 0 | dns_dnsseckeylist_t *keyring) { |
728 | 0 | uint32_t dep_x; |
729 | 0 | uint32_t dep_z; |
730 | | |
731 | | /* |
732 | | * The successor relation requires that the predecessor key must not |
733 | | * have any other keys relying on it. In other words, there must be |
734 | | * nothing depending on x. |
735 | | */ |
736 | 0 | if (keymgr_dep(x, keyring, &dep_x)) { |
737 | 0 | return false; |
738 | 0 | } |
739 | | |
740 | | /* |
741 | | * If there is no keys relying on key z, then z is not a successor. |
742 | | */ |
743 | 0 | if (!keymgr_dep(z, keyring, &dep_z)) { |
744 | 0 | return false; |
745 | 0 | } |
746 | | |
747 | | /* |
748 | | * x depends on z, thus key z is a direct successor of key x. |
749 | | */ |
750 | 0 | if (dst_key_id(x) == dep_z) { |
751 | 0 | return true; |
752 | 0 | } |
753 | | |
754 | | /* |
755 | | * It is possible to roll keys faster than the time required to finish |
756 | | * the rollover procedure. For example, consider the keys x, y, z. |
757 | | * Key x is currently published and is going to be replaced by y. The |
758 | | * DNSKEY for x is removed from the zone and at the same moment the |
759 | | * DNSKEY for y is introduced. Key y is a direct dependency for key x |
760 | | * and is therefore the successor of x. However, before the new DNSKEY |
761 | | * has been propagated, key z will replace key y. The DNSKEY for y is |
762 | | * removed and moves into the same state as key x. Key y now directly |
763 | | * depends on key z, and key z will be a new successor key for x. |
764 | | */ |
765 | 0 | dst_key_state_t zst[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
766 | 0 | for (int i = 0; i < NUM_KEYSTATES; i++) { |
767 | 0 | dst_key_state_t state; |
768 | 0 | if (dst_key_getstate(z, i, &state) != ISC_R_SUCCESS) { |
769 | 0 | continue; |
770 | 0 | } |
771 | 0 | zst[i] = state; |
772 | 0 | } |
773 | |
|
774 | 0 | ISC_LIST_FOREACH(*keyring, y, link) { |
775 | 0 | if (dst_key_id(y->key) == dst_key_id(z)) { |
776 | 0 | continue; |
777 | 0 | } |
778 | | |
779 | 0 | if (dst_key_id(y->key) != dep_z) { |
780 | 0 | continue; |
781 | 0 | } |
782 | | /* |
783 | | * This is another key y, that depends on key z. It may be |
784 | | * part of the successor relation if the key states match |
785 | | * those of key z. |
786 | | */ |
787 | | |
788 | 0 | if (keymgr_key_match_state(y->key, key, type, next_state, zst)) |
789 | 0 | { |
790 | | /* |
791 | | * If y is a successor of x, then z is also a |
792 | | * successor of x. |
793 | | */ |
794 | 0 | return keymgr_key_is_successor(x, y->key, key, type, |
795 | 0 | next_state, keyring); |
796 | 0 | } |
797 | 0 | } |
798 | | |
799 | 0 | return false; |
800 | 0 | } |
801 | | |
802 | | /* |
803 | | * Check if a key exists in 'keyring' that matches 'states'. |
804 | | * |
805 | | * If 'match_algorithms', the key must also match the algorithm of 'key'. |
806 | | * If 'next_state' is not NA, we are actually looking for a key as if |
807 | | * 'key' already transitioned to the next state. |
808 | | * If 'check_successor', we also want to make sure there is a successor |
809 | | * relationship with the found key that matches 'states2'. |
810 | | */ |
811 | | static bool |
812 | | keymgr_key_exists_with_state(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, |
813 | | int type, dst_key_state_t next_state, |
814 | | dst_key_state_t states[NUM_KEYSTATES], |
815 | | dst_key_state_t states2[NUM_KEYSTATES], |
816 | 0 | bool check_successor, bool match_algorithms) { |
817 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
818 | 0 | if (match_algorithms && |
819 | 0 | (dst_key_alg(dkey->key) != dst_key_alg(key->key))) |
820 | 0 | { |
821 | 0 | continue; |
822 | 0 | } |
823 | | |
824 | 0 | if (!keymgr_key_match_state(dkey->key, key->key, type, |
825 | 0 | next_state, states)) |
826 | 0 | { |
827 | 0 | continue; |
828 | 0 | } |
829 | | |
830 | | /* Found a match. */ |
831 | 0 | if (!check_successor) { |
832 | 0 | return true; |
833 | 0 | } |
834 | | |
835 | | /* |
836 | | * We have to make sure that the key we are checking, also |
837 | | * has a successor relationship with another key. |
838 | | */ |
839 | 0 | ISC_LIST_FOREACH(*keyring, skey, link) { |
840 | 0 | if (skey == dkey) { |
841 | 0 | continue; |
842 | 0 | } |
843 | | |
844 | 0 | if (!keymgr_key_match_state(skey->key, key->key, type, |
845 | 0 | next_state, states2)) |
846 | 0 | { |
847 | 0 | continue; |
848 | 0 | } |
849 | | |
850 | | /* |
851 | | * Found a possible successor, check. |
852 | | */ |
853 | 0 | if (keymgr_key_is_successor(dkey->key, skey->key, |
854 | 0 | key->key, type, next_state, |
855 | 0 | keyring)) |
856 | 0 | { |
857 | 0 | return true; |
858 | 0 | } |
859 | 0 | } |
860 | 0 | } |
861 | | /* No match. */ |
862 | 0 | return false; |
863 | 0 | } |
864 | | |
865 | | /* |
866 | | * Check if a key has a successor. |
867 | | */ |
868 | | static bool |
869 | | keymgr_key_has_successor(dns_dnsseckey_t *predecessor, |
870 | 0 | dns_dnsseckeylist_t *keyring) { |
871 | 0 | ISC_LIST_FOREACH(*keyring, successor, link) { |
872 | 0 | if (keymgr_direct_dep(predecessor->key, successor->key)) { |
873 | 0 | return true; |
874 | 0 | } |
875 | 0 | } |
876 | 0 | return false; |
877 | 0 | } |
878 | | |
879 | | /* |
880 | | * Check if all keys have their DS hidden. If not, then there must be at |
881 | | * least one key with an OMNIPRESENT DNSKEY. |
882 | | * |
883 | | * If 'next_state' is not NA, we are actually looking for a key as if |
884 | | * 'key' already transitioned to the next state. |
885 | | * If 'match_algorithms', only consider keys with same algorithm of 'key'. |
886 | | * |
887 | | */ |
888 | | static bool |
889 | | keymgr_ds_hidden_or_chained(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, |
890 | | int type, dst_key_state_t next_state, |
891 | 0 | bool match_algorithms, bool must_be_hidden) { |
892 | | /* (3e) */ |
893 | 0 | dst_key_state_t dnskey_chained[NUM_KEYSTATES] = { OMNIPRESENT, NA, |
894 | 0 | OMNIPRESENT, NA }; |
895 | 0 | dst_key_state_t ds_hidden[NUM_KEYSTATES] = { NA, NA, NA, HIDDEN }; |
896 | | /* successor n/a */ |
897 | 0 | dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
898 | |
|
899 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
900 | 0 | if (match_algorithms && |
901 | 0 | (dst_key_alg(dkey->key) != dst_key_alg(key->key))) |
902 | 0 | { |
903 | 0 | continue; |
904 | 0 | } |
905 | | |
906 | 0 | if (keymgr_key_match_state(dkey->key, key->key, type, |
907 | 0 | next_state, ds_hidden)) |
908 | 0 | { |
909 | | /* This key has its DS hidden. */ |
910 | 0 | continue; |
911 | 0 | } |
912 | | |
913 | 0 | if (must_be_hidden) { |
914 | 0 | return false; |
915 | 0 | } |
916 | | |
917 | | /* |
918 | | * This key does not have its DS hidden. There must be at |
919 | | * least one key with the same algorithm that provides a |
920 | | * chain of trust (can be this key). |
921 | | */ |
922 | 0 | if (keymgr_key_match_state(dkey->key, key->key, type, |
923 | 0 | next_state, dnskey_chained)) |
924 | 0 | { |
925 | | /* This DNSKEY and KRRSIG are OMNIPRESENT. */ |
926 | 0 | continue; |
927 | 0 | } |
928 | | |
929 | | /* |
930 | | * Perhaps another key provides a chain of trust. |
931 | | */ |
932 | 0 | dnskey_chained[DST_KEY_DS] = OMNIPRESENT; |
933 | 0 | if (!keymgr_key_exists_with_state(keyring, key, type, |
934 | 0 | next_state, dnskey_chained, |
935 | 0 | na, false, match_algorithms)) |
936 | 0 | { |
937 | | /* There is no chain of trust. */ |
938 | 0 | return false; |
939 | 0 | } |
940 | 0 | } |
941 | | /* All good. */ |
942 | 0 | return true; |
943 | 0 | } |
944 | | |
945 | | /* |
946 | | * Check if all keys have their DNSKEY hidden. If not, then there must be at |
947 | | * least one key with an OMNIPRESENT ZRRSIG. |
948 | | * |
949 | | * If 'next_state' is not NA, we are actually looking for a key as if |
950 | | * 'key' already transitioned to the next state. |
951 | | * If 'match_algorithms', only consider keys with same algorithm of 'key'. |
952 | | * |
953 | | */ |
954 | | static bool |
955 | | keymgr_dnskey_hidden_or_chained(dns_dnsseckeylist_t *keyring, |
956 | | dns_dnsseckey_t *key, int type, |
957 | | dst_key_state_t next_state, |
958 | 0 | bool match_algorithms) { |
959 | | /* (3i) */ |
960 | 0 | dst_key_state_t rrsig_chained[NUM_KEYSTATES] = { OMNIPRESENT, |
961 | 0 | OMNIPRESENT, NA, NA }; |
962 | 0 | dst_key_state_t dnskey_hidden[NUM_KEYSTATES] = { HIDDEN, NA, NA, NA }; |
963 | | /* successor n/a */ |
964 | 0 | dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
965 | |
|
966 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
967 | 0 | if (match_algorithms && |
968 | 0 | (dst_key_alg(dkey->key) != dst_key_alg(key->key))) |
969 | 0 | { |
970 | 0 | continue; |
971 | 0 | } |
972 | | |
973 | 0 | if (keymgr_key_match_state(dkey->key, key->key, type, |
974 | 0 | next_state, dnskey_hidden)) |
975 | 0 | { |
976 | | /* This key has its DNSKEY hidden. */ |
977 | 0 | continue; |
978 | 0 | } |
979 | | |
980 | | /* |
981 | | * This key does not have its DNSKEY hidden. There must be at |
982 | | * least one key with the same algorithm that has its RRSIG |
983 | | * records OMNIPRESENT. |
984 | | */ |
985 | 0 | (void)dst_key_getstate(dkey->key, DST_KEY_DNSKEY, |
986 | 0 | &rrsig_chained[DST_KEY_DNSKEY]); |
987 | 0 | if (!keymgr_key_exists_with_state(keyring, key, type, |
988 | 0 | next_state, rrsig_chained, na, |
989 | 0 | false, match_algorithms)) |
990 | 0 | { |
991 | | /* There is no chain of trust. */ |
992 | 0 | return false; |
993 | 0 | } |
994 | 0 | } |
995 | | /* All good. */ |
996 | 0 | return true; |
997 | 0 | } |
998 | | |
999 | | /* |
1000 | | * Check for existence of DS. |
1001 | | * |
1002 | | */ |
1003 | | static bool |
1004 | | keymgr_have_ds(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, int type, |
1005 | 0 | dst_key_state_t next_state, uint8_t opts) { |
1006 | | /* (3a) */ |
1007 | 0 | dst_key_state_t states[2][NUM_KEYSTATES] = { |
1008 | | /* DNSKEY, ZRRSIG, KRRSIG, DS */ |
1009 | 0 | { NA, NA, NA, OMNIPRESENT }, /* DS present */ |
1010 | 0 | { NA, NA, NA, RUMOURED } /* DS introducing */ |
1011 | 0 | }; |
1012 | | /* successor n/a */ |
1013 | 0 | dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
1014 | | |
1015 | | /* |
1016 | | * Equation (3a): |
1017 | | * There is a key with the DS in either RUMOURD or OMNIPRESENT state. |
1018 | | */ |
1019 | 0 | return keymgr_key_exists_with_state(keyring, key, type, next_state, |
1020 | 0 | states[0], na, false, false) || |
1021 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1022 | 0 | states[1], na, false, false) || |
1023 | 0 | ((opts & DNS_KEYMGRATTR_S2I) != 0 && |
1024 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, na, |
1025 | 0 | na, false, false)); |
1026 | 0 | } |
1027 | | |
1028 | | /* |
1029 | | * Check for existence of DNSKEY, or at least a good DNSKEY state. |
1030 | | * See equations what are good DNSKEY states. |
1031 | | * |
1032 | | */ |
1033 | | static bool |
1034 | | keymgr_have_dnskey(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, int type, |
1035 | 0 | dst_key_state_t next_state) { |
1036 | 0 | dst_key_state_t states[9][NUM_KEYSTATES] = { |
1037 | | /* DNSKEY, ZRRSIG, KRRSIG, DS */ |
1038 | 0 | { OMNIPRESENT, NA, OMNIPRESENT, OMNIPRESENT }, /* (3b) */ |
1039 | |
|
1040 | 0 | { OMNIPRESENT, NA, OMNIPRESENT, UNRETENTIVE }, /* (3c)p */ |
1041 | 0 | { OMNIPRESENT, NA, OMNIPRESENT, RUMOURED }, /* (3c)s */ |
1042 | |
|
1043 | 0 | { UNRETENTIVE, NA, UNRETENTIVE, OMNIPRESENT }, /* (3d)p */ |
1044 | 0 | { OMNIPRESENT, NA, UNRETENTIVE, OMNIPRESENT }, /* (3d)p */ |
1045 | 0 | { UNRETENTIVE, NA, OMNIPRESENT, OMNIPRESENT }, /* (3d)p */ |
1046 | 0 | { RUMOURED, NA, RUMOURED, OMNIPRESENT }, /* (3d)s */ |
1047 | 0 | { OMNIPRESENT, NA, RUMOURED, OMNIPRESENT }, /* (3d)s */ |
1048 | 0 | { RUMOURED, NA, OMNIPRESENT, OMNIPRESENT }, /* (3d)s */ |
1049 | 0 | }; |
1050 | | /* successor n/a */ |
1051 | 0 | dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
1052 | |
|
1053 | 0 | return |
1054 | | /* |
1055 | | * Equation (3b): |
1056 | | * There is a key with the same algorithm with its DNSKEY, |
1057 | | * KRRSIG and DS records in OMNIPRESENT state. |
1058 | | */ |
1059 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1060 | 0 | states[0], na, false, true) || |
1061 | | /* |
1062 | | * Equation (3c): |
1063 | | * There are two or more keys with an OMNIPRESENT DNSKEY and |
1064 | | * the DS records get swapped. These keys must be in a |
1065 | | * successor relation. |
1066 | | */ |
1067 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1068 | 0 | states[1], states[2], true, |
1069 | 0 | true) || |
1070 | | /* |
1071 | | * Equation (3d): |
1072 | | * There are two or more keys with an OMNIPRESENT DS and |
1073 | | * the DNSKEY records and its KRRSIG records get swapped. |
1074 | | * These keys must be in a successor relation. Since the |
1075 | | * state for DNSKEY and KRRSIG move independently, we have |
1076 | | * to check all combinations for DNSKEY and KRRSIG in |
1077 | | * OMNIPRESENT/UNRETENTIVE state for the predecessor, and |
1078 | | * OMNIPRESENT/RUMOURED state for the successor. |
1079 | | */ |
1080 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1081 | 0 | states[3], states[6], true, |
1082 | 0 | true) || |
1083 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1084 | 0 | states[3], states[7], true, |
1085 | 0 | true) || |
1086 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1087 | 0 | states[3], states[8], true, |
1088 | 0 | true) || |
1089 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1090 | 0 | states[4], states[6], true, |
1091 | 0 | true) || |
1092 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1093 | 0 | states[4], states[7], true, |
1094 | 0 | true) || |
1095 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1096 | 0 | states[4], states[8], true, |
1097 | 0 | true) || |
1098 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1099 | 0 | states[5], states[6], true, |
1100 | 0 | true) || |
1101 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1102 | 0 | states[5], states[7], true, |
1103 | 0 | true) || |
1104 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1105 | 0 | states[5], states[8], true, |
1106 | 0 | true) || |
1107 | | /* |
1108 | | * Equation (3e): |
1109 | | * The key may be in any state as long as all keys have their |
1110 | | * DS HIDDEN, or when their DS is not HIDDEN, there must be a |
1111 | | * key with its DS in the same state and its DNSKEY omnipresent. |
1112 | | * In other words, if a DS record for the same algorithm is |
1113 | | * is still available to some validators, there must be a |
1114 | | * chain of trust for those validators. |
1115 | | */ |
1116 | 0 | keymgr_ds_hidden_or_chained(keyring, key, type, next_state, |
1117 | 0 | true, false); |
1118 | 0 | } |
1119 | | |
1120 | | /* |
1121 | | * Check for existence of RRSIG (zsk), or a good RRSIG state. |
1122 | | * See equations what are good RRSIG states. |
1123 | | * |
1124 | | */ |
1125 | | static bool |
1126 | | keymgr_have_rrsig(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, int type, |
1127 | 0 | dst_key_state_t next_state) { |
1128 | 0 | dst_key_state_t states[11][NUM_KEYSTATES] = { |
1129 | | /* DNSKEY, ZRRSIG, KRRSIG, DS */ |
1130 | 0 | { OMNIPRESENT, OMNIPRESENT, NA, NA }, /* (3f) */ |
1131 | 0 | { UNRETENTIVE, OMNIPRESENT, NA, NA }, /* (3g)p */ |
1132 | 0 | { RUMOURED, OMNIPRESENT, NA, NA }, /* (3g)s */ |
1133 | 0 | { OMNIPRESENT, UNRETENTIVE, NA, NA }, /* (3h)p */ |
1134 | 0 | { OMNIPRESENT, RUMOURED, NA, NA }, /* (3h)s */ |
1135 | 0 | }; |
1136 | | /* successor n/a */ |
1137 | 0 | dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
1138 | |
|
1139 | 0 | return |
1140 | | /* |
1141 | | * If all DS records are hidden than this rule can be ignored. |
1142 | | */ |
1143 | 0 | keymgr_ds_hidden_or_chained(keyring, key, type, next_state, |
1144 | 0 | true, true) || |
1145 | | /* |
1146 | | * Equation (3f): |
1147 | | * There is a key with the same algorithm with its DNSKEY and |
1148 | | * ZRRSIG records in OMNIPRESENT state. |
1149 | | */ |
1150 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1151 | 0 | states[0], na, false, true) || |
1152 | | /* |
1153 | | * Equation (3g): |
1154 | | * There are two or more keys with OMNIPRESENT ZRRSIG |
1155 | | * records and the DNSKEY records get swapped. These keys |
1156 | | * must be in a successor relation. |
1157 | | */ |
1158 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1159 | 0 | states[1], states[2], true, |
1160 | 0 | true) || |
1161 | | /* |
1162 | | * Equation (3h): |
1163 | | * There are two or more keys with an OMNIPRESENT DNSKEY |
1164 | | * and the ZRRSIG records get swapped. These keys must be in |
1165 | | * a successor relation. |
1166 | | */ |
1167 | 0 | keymgr_key_exists_with_state(keyring, key, type, next_state, |
1168 | 0 | states[3], states[4], true, |
1169 | 0 | true) || |
1170 | | /* |
1171 | | * Equation (3i): |
1172 | | * If no DNSKEYs are published, the state of the signatures is |
1173 | | * irrelevant. In case a DNSKEY is published however, there |
1174 | | * must be a path that can be validated from there. |
1175 | | */ |
1176 | 0 | keymgr_dnskey_hidden_or_chained(keyring, key, type, next_state, |
1177 | 0 | true); |
1178 | 0 | } |
1179 | | |
1180 | | /* |
1181 | | * Check if a transition in the state machine is allowed by the policy. |
1182 | | * This means when we do rollovers, we want to follow the rules of the |
1183 | | * 1. Pre-publish rollover method (in case of a ZSK) |
1184 | | * - First introduce the DNSKEY record. |
1185 | | * - Only if the DNSKEY record is OMNIPRESENT, introduce ZRRSIG records. |
1186 | | * |
1187 | | * 2. Double-KSK rollover method (in case of a KSK) |
1188 | | * - First introduce the DNSKEY record, as well as the KRRSIG records. |
1189 | | * - Only if the DNSKEY record is OMNIPRESENT, suggest to introduce the DS. |
1190 | | */ |
1191 | | static bool |
1192 | | keymgr_policy_approval(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, |
1193 | 0 | int type, dst_key_state_t next) { |
1194 | 0 | dst_key_state_t dnskeystate = HIDDEN; |
1195 | 0 | dst_key_state_t ksk_present[NUM_KEYSTATES] = { OMNIPRESENT, NA, |
1196 | 0 | OMNIPRESENT, |
1197 | 0 | OMNIPRESENT }; |
1198 | 0 | dst_key_state_t ds_rumoured[NUM_KEYSTATES] = { OMNIPRESENT, NA, |
1199 | 0 | OMNIPRESENT, RUMOURED }; |
1200 | 0 | dst_key_state_t ds_retired[NUM_KEYSTATES] = { OMNIPRESENT, NA, |
1201 | 0 | OMNIPRESENT, |
1202 | 0 | UNRETENTIVE }; |
1203 | 0 | dst_key_state_t ksk_rumoured[NUM_KEYSTATES] = { RUMOURED, NA, NA, |
1204 | 0 | OMNIPRESENT }; |
1205 | 0 | dst_key_state_t ksk_retired[NUM_KEYSTATES] = { UNRETENTIVE, NA, NA, |
1206 | 0 | OMNIPRESENT }; |
1207 | | /* successor n/a */ |
1208 | 0 | dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA }; |
1209 | |
|
1210 | 0 | if (next != RUMOURED) { |
1211 | | /* |
1212 | | * Local policy only adds an extra barrier on transitions to |
1213 | | * the RUMOURED state. |
1214 | | */ |
1215 | 0 | return true; |
1216 | 0 | } |
1217 | | |
1218 | 0 | switch (type) { |
1219 | 0 | case DST_KEY_DNSKEY: |
1220 | | /* No restrictions. */ |
1221 | 0 | return true; |
1222 | 0 | case DST_KEY_ZRRSIG: |
1223 | | /* Make sure the DNSKEY record is OMNIPRESENT. */ |
1224 | 0 | (void)dst_key_getstate(key->key, DST_KEY_DNSKEY, &dnskeystate); |
1225 | 0 | if (dnskeystate == OMNIPRESENT) { |
1226 | 0 | return true; |
1227 | 0 | } |
1228 | | /* |
1229 | | * Or are we introducing a new key for this algorithm? Because |
1230 | | * in that case allow publishing the RRSIG records before the |
1231 | | * DNSKEY. |
1232 | | */ |
1233 | 0 | return !(keymgr_key_exists_with_state(keyring, key, type, next, |
1234 | 0 | ksk_present, na, false, |
1235 | 0 | true) || |
1236 | 0 | keymgr_key_exists_with_state(keyring, key, type, next, |
1237 | 0 | ds_retired, ds_rumoured, |
1238 | 0 | true, true) || |
1239 | 0 | keymgr_key_exists_with_state(keyring, key, type, next, |
1240 | 0 | ksk_retired, ksk_rumoured, |
1241 | 0 | true, true)); |
1242 | 0 | case DST_KEY_KRRSIG: |
1243 | | /* Only introduce if the DNSKEY is also introduced. */ |
1244 | 0 | (void)dst_key_getstate(key->key, DST_KEY_DNSKEY, &dnskeystate); |
1245 | 0 | return dnskeystate != HIDDEN; |
1246 | 0 | case DST_KEY_DS: |
1247 | | /* Make sure the DNSKEY record is OMNIPRESENT. */ |
1248 | 0 | (void)dst_key_getstate(key->key, DST_KEY_DNSKEY, &dnskeystate); |
1249 | 0 | return dnskeystate == OMNIPRESENT; |
1250 | 0 | default: |
1251 | 0 | return false; |
1252 | 0 | } |
1253 | 0 | } |
1254 | | |
1255 | | /* |
1256 | | * Check if a transition in the state machine is DNSSEC safe. |
1257 | | * This implements Equation(1) of "Flexible and Robust Key Rollover". |
1258 | | * |
1259 | | */ |
1260 | | static bool |
1261 | | keymgr_transition_allowed(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, |
1262 | 0 | int type, dst_key_state_t next_state, uint8_t opts) { |
1263 | | /* Debug logging. */ |
1264 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
1265 | 0 | bool rule1a, rule1b, rule2a, rule2b, rule3a, rule3b; |
1266 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
1267 | 0 | dst_key_format(key->key, keystr, sizeof(keystr)); |
1268 | 0 | rule1a = keymgr_have_ds(keyring, key, type, NA, opts); |
1269 | 0 | rule1b = keymgr_have_ds(keyring, key, type, next_state, opts); |
1270 | 0 | rule2a = keymgr_have_dnskey(keyring, key, type, NA); |
1271 | 0 | rule2b = keymgr_have_dnskey(keyring, key, type, next_state); |
1272 | 0 | rule3a = keymgr_have_rrsig(keyring, key, type, NA); |
1273 | 0 | rule3b = keymgr_have_rrsig(keyring, key, type, next_state); |
1274 | 0 | isc_log_write( |
1275 | 0 | DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
1276 | 0 | ISC_LOG_DEBUG(1), |
1277 | 0 | "keymgr: dnssec evaluation of %s %s record %s: " |
1278 | 0 | "rule1=(~%s or %s) rule2=(~%s or %s) " |
1279 | 0 | "rule3=(~%s or %s)", |
1280 | 0 | keymgr_keyrole(key->key), keystr, keystatetags[type], |
1281 | 0 | rule1a ? "true" : "false", rule1b ? "true" : "false", |
1282 | 0 | rule2a ? "true" : "false", rule2b ? "true" : "false", |
1283 | 0 | rule3a ? "true" : "false", rule3b ? "true" : "false"); |
1284 | 0 | } |
1285 | |
|
1286 | 0 | return |
1287 | | /* |
1288 | | * Rule 1: There must be a DS at all times. |
1289 | | * First check the current situation: if the rule check fails, |
1290 | | * we allow the transition to attempt to move us out of the |
1291 | | * invalid state. If the rule check passes, also check if |
1292 | | * the next state is also still a valid situation. |
1293 | | */ |
1294 | 0 | (!keymgr_have_ds(keyring, key, type, NA, opts) || |
1295 | 0 | keymgr_have_ds(keyring, key, type, next_state, opts)) && |
1296 | | /* |
1297 | | * Rule 2: There must be a DNSKEY at all times. Again, first |
1298 | | * check the current situation, then assess the next state. |
1299 | | */ |
1300 | 0 | (!keymgr_have_dnskey(keyring, key, type, NA) || |
1301 | 0 | keymgr_have_dnskey(keyring, key, type, next_state)) && |
1302 | | /* |
1303 | | * Rule 3: There must be RRSIG records at all times. Again, |
1304 | | * first check the current situation, then assess the next |
1305 | | * state. |
1306 | | */ |
1307 | 0 | (!keymgr_have_rrsig(keyring, key, type, NA) || |
1308 | 0 | keymgr_have_rrsig(keyring, key, type, next_state)); |
1309 | 0 | } |
1310 | | |
1311 | | /* |
1312 | | * Calculate the time when it is safe to do the next transition. |
1313 | | * |
1314 | | */ |
1315 | | static void |
1316 | | keymgr_transition_time(dns_dnsseckey_t *key, int type, |
1317 | | dst_key_state_t next_state, dns_kasp_t *kasp, |
1318 | 0 | isc_stdtime_t now, isc_stdtime_t *when) { |
1319 | 0 | isc_result_t ret; |
1320 | 0 | isc_stdtime_t lastchange, dstime, sigtime, nexttime = now; |
1321 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
1322 | 0 | uint32_t dsstate, sigstate, signdelay = 0; |
1323 | | |
1324 | | /* |
1325 | | * No need to wait if we move things into an uncertain state. |
1326 | | */ |
1327 | 0 | if (next_state == RUMOURED || next_state == UNRETENTIVE) { |
1328 | 0 | *when = now; |
1329 | 0 | return; |
1330 | 0 | } |
1331 | | |
1332 | 0 | ret = dst_key_gettime(key->key, keystatetimes[type], &lastchange); |
1333 | 0 | if (ret != ISC_R_SUCCESS) { |
1334 | | /* No last change, for safety purposes let's set it to now. */ |
1335 | 0 | dst_key_settime(key->key, keystatetimes[type], now); |
1336 | 0 | lastchange = now; |
1337 | 0 | } |
1338 | |
|
1339 | 0 | switch (type) { |
1340 | 0 | case DST_KEY_DNSKEY: |
1341 | 0 | case DST_KEY_KRRSIG: |
1342 | 0 | switch (next_state) { |
1343 | 0 | case OMNIPRESENT: |
1344 | | /* |
1345 | | * RFC 7583: The publication interval (Ipub) is the |
1346 | | * amount of time that must elapse after the |
1347 | | * publication of a DNSKEY (plus RRSIG (KSK)) before |
1348 | | * it can be assumed that any resolvers that have the |
1349 | | * relevant RRset cached have a copy of the new |
1350 | | * information. This is the sum of the propagation |
1351 | | * delay (Dprp) and the DNSKEY TTL (TTLkey). This |
1352 | | * translates to zone-propagation-delay + dnskey-ttl. |
1353 | | * We will also add the publish-safety interval. |
1354 | | */ |
1355 | 0 | nexttime = lastchange + dst_key_getttl(key->key) + |
1356 | 0 | dns_kasp_zonepropagationdelay(kasp) + |
1357 | 0 | dns_kasp_publishsafety(kasp); |
1358 | 0 | break; |
1359 | 0 | case HIDDEN: |
1360 | | /* |
1361 | | * Same as OMNIPRESENT but without the publish-safety |
1362 | | * interval. |
1363 | | */ |
1364 | 0 | nexttime = lastchange + dst_key_getttl(key->key) + |
1365 | 0 | dns_kasp_zonepropagationdelay(kasp); |
1366 | 0 | break; |
1367 | 0 | default: |
1368 | 0 | nexttime = now; |
1369 | 0 | break; |
1370 | 0 | } |
1371 | 0 | break; |
1372 | 0 | case DST_KEY_ZRRSIG: |
1373 | 0 | switch (next_state) { |
1374 | 0 | case OMNIPRESENT: |
1375 | 0 | case HIDDEN: |
1376 | | /* Was there a full sign? */ |
1377 | 0 | sigstate = (next_state == HIDDEN) ? DST_TIME_SIGDELETE |
1378 | 0 | : DST_TIME_SIGPUBLISH; |
1379 | 0 | ret = dst_key_gettime(key->key, sigstate, &sigtime); |
1380 | 0 | if (ret == ISC_R_SUCCESS && sigtime <= now) { |
1381 | 0 | signdelay = 0; |
1382 | 0 | } else { |
1383 | 0 | sigtime = lastchange; |
1384 | 0 | signdelay = dns_kasp_signdelay(kasp); |
1385 | 0 | } |
1386 | | |
1387 | | /* |
1388 | | * RFC 7583: The retire interval (Iret) is the amount |
1389 | | * of time that must elapse after a DNSKEY or |
1390 | | * associated data enters the retire state for any |
1391 | | * dependent information (RRSIG ZSK) to be purged from |
1392 | | * validating resolver caches. This is defined as: |
1393 | | * |
1394 | | * Iret = Dsgn + Dprp + TTLsig |
1395 | | * |
1396 | | * Where Dsgn is the Dsgn is the delay needed to |
1397 | | * ensure that all existing RRsets have been re-signed |
1398 | | * with the new key, Dprp is the propagation delay and |
1399 | | * TTLsig is the maximum TTL of all zone RRSIG |
1400 | | * records. This translates to: |
1401 | | * |
1402 | | * Dsgn + zone-propagation-delay + max-zone-ttl. |
1403 | | */ |
1404 | 0 | nexttime = sigtime + ttlsig + |
1405 | 0 | dns_kasp_zonepropagationdelay(kasp); |
1406 | | /* |
1407 | | * Only add the sign delay Dsgn and retire-safety if |
1408 | | * there is an actual predecessor or successor key. |
1409 | | */ |
1410 | 0 | uint32_t tag; |
1411 | 0 | ret = dst_key_getnum(key->key, DST_NUM_PREDECESSOR, |
1412 | 0 | &tag); |
1413 | 0 | if (ret != ISC_R_SUCCESS) { |
1414 | 0 | ret = dst_key_getnum(key->key, |
1415 | 0 | DST_NUM_SUCCESSOR, &tag); |
1416 | 0 | } |
1417 | 0 | if (ret == ISC_R_SUCCESS) { |
1418 | 0 | nexttime += signdelay + |
1419 | 0 | dns_kasp_retiresafety(kasp); |
1420 | 0 | } |
1421 | 0 | break; |
1422 | 0 | default: |
1423 | 0 | nexttime = now; |
1424 | 0 | break; |
1425 | 0 | } |
1426 | 0 | break; |
1427 | 0 | case DST_KEY_DS: |
1428 | 0 | switch (next_state) { |
1429 | | /* |
1430 | | * RFC 7583: The successor DS record is published in |
1431 | | * the parent zone and after the registration delay |
1432 | | * (Dreg), the time taken after the DS record has been |
1433 | | * submitted to the parent zone manager for it to be |
1434 | | * placed in the zone. Key N (the predecessor) must |
1435 | | * remain in the zone until any caches that contain a |
1436 | | * copy of the DS RRset have a copy containing the new |
1437 | | * DS record. This interval is the retire interval |
1438 | | * (Iret), given by: |
1439 | | * |
1440 | | * Iret = DprpP + TTLds |
1441 | | * |
1442 | | * This translates to: |
1443 | | * |
1444 | | * parent-propagation-delay + parent-ds-ttl. |
1445 | | */ |
1446 | 0 | case OMNIPRESENT: |
1447 | 0 | case HIDDEN: |
1448 | | /* Make sure DS has been seen in/withdrawn from the |
1449 | | * parent. */ |
1450 | 0 | dsstate = next_state == HIDDEN ? DST_TIME_DSDELETE |
1451 | 0 | : DST_TIME_DSPUBLISH; |
1452 | 0 | ret = dst_key_gettime(key->key, dsstate, &dstime); |
1453 | 0 | if (ret != ISC_R_SUCCESS || dstime > now) { |
1454 | | /* Not yet, try again in an hour. */ |
1455 | 0 | nexttime = now + 3600; |
1456 | 0 | } else { |
1457 | 0 | nexttime = |
1458 | 0 | dstime + dns_kasp_dsttl(kasp) + |
1459 | 0 | dns_kasp_parentpropagationdelay(kasp); |
1460 | | /* |
1461 | | * Only add the retire-safety if there is an |
1462 | | * actual predecessor or successor key. |
1463 | | */ |
1464 | 0 | uint32_t tag; |
1465 | 0 | ret = dst_key_getnum(key->key, |
1466 | 0 | DST_NUM_PREDECESSOR, &tag); |
1467 | 0 | if (ret != ISC_R_SUCCESS) { |
1468 | 0 | ret = dst_key_getnum(key->key, |
1469 | 0 | DST_NUM_SUCCESSOR, |
1470 | 0 | &tag); |
1471 | 0 | } |
1472 | 0 | if (ret == ISC_R_SUCCESS) { |
1473 | 0 | nexttime += dns_kasp_retiresafety(kasp); |
1474 | 0 | } |
1475 | 0 | } |
1476 | 0 | break; |
1477 | 0 | default: |
1478 | 0 | nexttime = now; |
1479 | 0 | break; |
1480 | 0 | } |
1481 | 0 | break; |
1482 | 0 | default: |
1483 | 0 | UNREACHABLE(); |
1484 | 0 | break; |
1485 | 0 | } |
1486 | | |
1487 | 0 | *when = nexttime; |
1488 | 0 | } |
1489 | | |
1490 | | /* |
1491 | | * Update keys. |
1492 | | * This implements Algorithm (1) of "Flexible and Robust Key Rollover". |
1493 | | * |
1494 | | */ |
1495 | | static isc_result_t |
1496 | | keymgr_update(dns_dnsseckeylist_t *keyring, dns_kasp_t *kasp, isc_stdtime_t now, |
1497 | 0 | isc_stdtime_t *nexttime, uint8_t opts) { |
1498 | 0 | isc_result_t result = DNS_R_UNCHANGED; |
1499 | 0 | bool changed; |
1500 | 0 | bool force = ((opts & DNS_KEYMGRATTR_FORCESTEP) != 0); |
1501 | | |
1502 | | /* Repeat until nothing changed. */ |
1503 | 0 | transition: |
1504 | 0 | changed = false; |
1505 | | |
1506 | | /* For all keys in the zone. */ |
1507 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
1508 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
1509 | 0 | dst_key_format(dkey->key, keystr, sizeof(keystr)); |
1510 | |
|
1511 | 0 | if (dkey->purge) { |
1512 | | /* Skip purged keys. */ |
1513 | 0 | continue; |
1514 | 0 | } |
1515 | | |
1516 | | /* For all records related to this key. */ |
1517 | 0 | for (int i = 0; i < NUM_KEYSTATES; i++) { |
1518 | 0 | isc_result_t ret; |
1519 | 0 | isc_stdtime_t when; |
1520 | 0 | dst_key_state_t state, next_state; |
1521 | |
|
1522 | 0 | ret = dst_key_getstate(dkey->key, i, &state); |
1523 | 0 | if (ret == ISC_R_NOTFOUND) { |
1524 | | /* |
1525 | | * This record type is not applicable for this |
1526 | | * key, continue to the next record type. |
1527 | | */ |
1528 | 0 | continue; |
1529 | 0 | } |
1530 | | |
1531 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1532 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1533 | 0 | "keymgr: examine %s %s type %s " |
1534 | 0 | "in state %s", |
1535 | 0 | keymgr_keyrole(dkey->key), keystr, |
1536 | 0 | keystatetags[i], keystatestrings[state]); |
1537 | | |
1538 | | /* Get the desired next state. */ |
1539 | 0 | next_state = keymgr_desiredstate(dkey, state); |
1540 | 0 | if (state == next_state) { |
1541 | | /* |
1542 | | * This record is in a stable state. |
1543 | | * No change needed, continue with the next |
1544 | | * record type. |
1545 | | */ |
1546 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1547 | 0 | DNS_LOGMODULE_DNSSEC, |
1548 | 0 | ISC_LOG_DEBUG(1), |
1549 | 0 | "keymgr: %s %s type %s in " |
1550 | 0 | "stable state %s", |
1551 | 0 | keymgr_keyrole(dkey->key), keystr, |
1552 | 0 | keystatetags[i], |
1553 | 0 | keystatestrings[state]); |
1554 | 0 | continue; |
1555 | 0 | } |
1556 | | |
1557 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1558 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1559 | 0 | "keymgr: can we transition %s %s type %s " |
1560 | 0 | "state %s to state %s?", |
1561 | 0 | keymgr_keyrole(dkey->key), keystr, |
1562 | 0 | keystatetags[i], keystatestrings[state], |
1563 | 0 | keystatestrings[next_state]); |
1564 | | |
1565 | | /* Is the transition allowed according to policy? */ |
1566 | 0 | if (!keymgr_policy_approval(keyring, dkey, i, |
1567 | 0 | next_state)) |
1568 | 0 | { |
1569 | | /* No, please respect rollover methods. */ |
1570 | 0 | isc_log_write( |
1571 | 0 | DNS_LOGCATEGORY_DNSSEC, |
1572 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1573 | 0 | "keymgr: policy says no to %s %s type " |
1574 | 0 | "%s " |
1575 | 0 | "state %s to state %s", |
1576 | 0 | keymgr_keyrole(dkey->key), keystr, |
1577 | 0 | keystatetags[i], keystatestrings[state], |
1578 | 0 | keystatestrings[next_state]); |
1579 | |
|
1580 | 0 | continue; |
1581 | 0 | } |
1582 | | |
1583 | | /* Is the transition DNSSEC safe? */ |
1584 | 0 | if (!keymgr_transition_allowed(keyring, dkey, i, |
1585 | 0 | next_state, opts)) |
1586 | 0 | { |
1587 | | /* No, this would make the zone bogus. */ |
1588 | 0 | isc_log_write( |
1589 | 0 | DNS_LOGCATEGORY_DNSSEC, |
1590 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1591 | 0 | "keymgr: dnssec says no to %s %s type " |
1592 | 0 | "%s " |
1593 | 0 | "state %s to state %s", |
1594 | 0 | keymgr_keyrole(dkey->key), keystr, |
1595 | 0 | keystatetags[i], keystatestrings[state], |
1596 | 0 | keystatestrings[next_state]); |
1597 | 0 | continue; |
1598 | 0 | } |
1599 | | |
1600 | | /* Is it time to make the transition? */ |
1601 | 0 | when = now; |
1602 | 0 | keymgr_transition_time(dkey, i, next_state, kasp, now, |
1603 | 0 | &when); |
1604 | 0 | if (when > now) { |
1605 | | /* Not yet. */ |
1606 | 0 | isc_log_write( |
1607 | 0 | DNS_LOGCATEGORY_DNSSEC, |
1608 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1609 | 0 | "keymgr: time says no to %s %s type %s " |
1610 | 0 | "state %s to state %s (wait %u " |
1611 | 0 | "seconds)", |
1612 | 0 | keymgr_keyrole(dkey->key), keystr, |
1613 | 0 | keystatetags[i], keystatestrings[state], |
1614 | 0 | keystatestrings[next_state], |
1615 | 0 | when - now); |
1616 | 0 | if (*nexttime == 0 || *nexttime > when) { |
1617 | 0 | *nexttime = when; |
1618 | 0 | } |
1619 | 0 | continue; |
1620 | 0 | } |
1621 | | |
1622 | | /* |
1623 | | * Are we allowed to make the transition automatically? |
1624 | | */ |
1625 | 0 | if (next_state != OMNIPRESENT && next_state != HIDDEN) { |
1626 | 0 | if (dns_kasp_manualmode(kasp) && !force) { |
1627 | 0 | isc_log_write( |
1628 | 0 | DNS_LOGCATEGORY_DNSSEC, |
1629 | 0 | DNS_LOGMODULE_DNSSEC, |
1630 | 0 | ISC_LOG_INFO, |
1631 | 0 | "keymgr-manual-mode: block " |
1632 | 0 | "transition " |
1633 | 0 | "%s %s type %s " |
1634 | 0 | "state %s to state %s", |
1635 | 0 | keymgr_keyrole(dkey->key), |
1636 | 0 | keystr, keystatetags[i], |
1637 | 0 | keystatestrings[state], |
1638 | 0 | keystatestrings[next_state]); |
1639 | 0 | continue; |
1640 | 0 | } |
1641 | 0 | } |
1642 | | |
1643 | | /* It is safe to make the transition. */ |
1644 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1645 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1646 | 0 | "keymgr: transition %s %s type %s " |
1647 | 0 | "state %s to state %s!", |
1648 | 0 | keymgr_keyrole(dkey->key), keystr, |
1649 | 0 | keystatetags[i], keystatestrings[state], |
1650 | 0 | keystatestrings[next_state]); |
1651 | |
|
1652 | 0 | dst_key_setstate(dkey->key, i, next_state); |
1653 | 0 | dst_key_settime(dkey->key, keystatetimes[i], now); |
1654 | 0 | INSIST(dst_key_ismodified(dkey->key)); |
1655 | 0 | changed = true; |
1656 | 0 | } |
1657 | 0 | } |
1658 | | |
1659 | | /* We changed something, continue processing. */ |
1660 | 0 | if (changed) { |
1661 | 0 | result = ISC_R_SUCCESS; |
1662 | | /* No longer force for the next run */ |
1663 | 0 | force = false; |
1664 | 0 | goto transition; |
1665 | 0 | } |
1666 | | |
1667 | 0 | return result; |
1668 | 0 | } |
1669 | | |
1670 | | void |
1671 | | dns_keymgr_key_init(dns_dnsseckey_t *key, dns_kasp_t *kasp, isc_stdtime_t now, |
1672 | 0 | bool csk) { |
1673 | 0 | bool ksk, zsk; |
1674 | 0 | isc_result_t ret; |
1675 | 0 | isc_stdtime_t active = 0, pub = 0, syncpub = 0, retire = 0, remove = 0; |
1676 | 0 | dst_key_state_t dnskey_state = HIDDEN; |
1677 | 0 | dst_key_state_t ds_state = HIDDEN; |
1678 | 0 | dst_key_state_t zrrsig_state = HIDDEN; |
1679 | 0 | dst_key_state_t goal_state = HIDDEN; |
1680 | |
|
1681 | 0 | REQUIRE(key != NULL); |
1682 | 0 | REQUIRE(key->key != NULL); |
1683 | | |
1684 | | /* Initialize role. */ |
1685 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk); |
1686 | 0 | if (ret != ISC_R_SUCCESS) { |
1687 | 0 | ksk = ((dst_key_flags(key->key) & DNS_KEYFLAG_KSK) != 0); |
1688 | 0 | dst_key_setbool(key->key, DST_BOOL_KSK, ksk || csk); |
1689 | 0 | } |
1690 | 0 | ret = dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk); |
1691 | 0 | if (ret != ISC_R_SUCCESS) { |
1692 | 0 | zsk = ((dst_key_flags(key->key) & DNS_KEYFLAG_KSK) == 0); |
1693 | 0 | dst_key_setbool(key->key, DST_BOOL_ZSK, zsk || csk); |
1694 | 0 | } |
1695 | | |
1696 | | /* Get time metadata. */ |
1697 | 0 | ret = dst_key_gettime(key->key, DST_TIME_ACTIVATE, &active); |
1698 | 0 | if (active <= now && ret == ISC_R_SUCCESS) { |
1699 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
1700 | 0 | ttlsig += dns_kasp_zonepropagationdelay(kasp); |
1701 | 0 | if ((active + ttlsig) <= now) { |
1702 | 0 | zrrsig_state = OMNIPRESENT; |
1703 | 0 | } else { |
1704 | 0 | zrrsig_state = RUMOURED; |
1705 | 0 | } |
1706 | 0 | goal_state = OMNIPRESENT; |
1707 | 0 | } |
1708 | 0 | ret = dst_key_gettime(key->key, DST_TIME_PUBLISH, &pub); |
1709 | 0 | if (pub <= now && ret == ISC_R_SUCCESS) { |
1710 | 0 | dns_ttl_t key_ttl = dst_key_getttl(key->key); |
1711 | 0 | key_ttl += dns_kasp_zonepropagationdelay(kasp); |
1712 | 0 | if ((pub + key_ttl) <= now) { |
1713 | 0 | dnskey_state = OMNIPRESENT; |
1714 | 0 | } else { |
1715 | 0 | dnskey_state = RUMOURED; |
1716 | 0 | } |
1717 | 0 | goal_state = OMNIPRESENT; |
1718 | 0 | } |
1719 | 0 | ret = dst_key_gettime(key->key, DST_TIME_SYNCPUBLISH, &syncpub); |
1720 | 0 | if (syncpub <= now && ret == ISC_R_SUCCESS) { |
1721 | 0 | dns_ttl_t ds_ttl = dns_kasp_dsttl(kasp); |
1722 | 0 | ds_ttl += dns_kasp_parentpropagationdelay(kasp); |
1723 | 0 | if ((syncpub + ds_ttl) <= now) { |
1724 | 0 | ds_state = OMNIPRESENT; |
1725 | 0 | } else { |
1726 | 0 | ds_state = RUMOURED; |
1727 | 0 | } |
1728 | 0 | goal_state = OMNIPRESENT; |
1729 | 0 | } |
1730 | 0 | ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire); |
1731 | 0 | if (retire <= now && ret == ISC_R_SUCCESS) { |
1732 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
1733 | 0 | ttlsig += dns_kasp_zonepropagationdelay(kasp); |
1734 | 0 | if ((retire + ttlsig) <= now) { |
1735 | 0 | zrrsig_state = HIDDEN; |
1736 | 0 | } else { |
1737 | 0 | zrrsig_state = UNRETENTIVE; |
1738 | 0 | } |
1739 | 0 | ds_state = UNRETENTIVE; |
1740 | 0 | goal_state = HIDDEN; |
1741 | 0 | } |
1742 | 0 | ret = dst_key_gettime(key->key, DST_TIME_DELETE, &remove); |
1743 | 0 | if (remove <= now && ret == ISC_R_SUCCESS) { |
1744 | 0 | dns_ttl_t key_ttl = dst_key_getttl(key->key); |
1745 | 0 | key_ttl += dns_kasp_zonepropagationdelay(kasp); |
1746 | 0 | if ((remove + key_ttl) <= now) { |
1747 | 0 | dnskey_state = HIDDEN; |
1748 | 0 | } else { |
1749 | 0 | dnskey_state = UNRETENTIVE; |
1750 | 0 | } |
1751 | 0 | zrrsig_state = HIDDEN; |
1752 | 0 | ds_state = HIDDEN; |
1753 | 0 | goal_state = HIDDEN; |
1754 | 0 | } |
1755 | | |
1756 | | /* Set goal if not already set. */ |
1757 | 0 | if (dst_key_getstate(key->key, DST_KEY_GOAL, &goal_state) != |
1758 | 0 | ISC_R_SUCCESS) |
1759 | 0 | { |
1760 | 0 | dst_key_setstate(key->key, DST_KEY_GOAL, goal_state); |
1761 | 0 | } |
1762 | | |
1763 | | /* Set key states for all keys that do not have them. */ |
1764 | 0 | INITIALIZE_STATE(key->key, DST_KEY_DNSKEY, DST_TIME_DNSKEY, |
1765 | 0 | dnskey_state, now); |
1766 | 0 | if (ksk || csk) { |
1767 | 0 | INITIALIZE_STATE(key->key, DST_KEY_KRRSIG, DST_TIME_KRRSIG, |
1768 | 0 | dnskey_state, now); |
1769 | 0 | INITIALIZE_STATE(key->key, DST_KEY_DS, DST_TIME_DS, ds_state, |
1770 | 0 | now); |
1771 | 0 | } |
1772 | 0 | if (zsk || csk) { |
1773 | 0 | INITIALIZE_STATE(key->key, DST_KEY_ZRRSIG, DST_TIME_ZRRSIG, |
1774 | 0 | zrrsig_state, now); |
1775 | 0 | } |
1776 | 0 | } |
1777 | | |
1778 | | static isc_result_t |
1779 | | keymgr_key_rollover(dns_kasp_key_t *kaspkey, dns_dnsseckey_t *active_key, |
1780 | | dns_dnsseckeylist_t *keyring, dns_dnsseckeylist_t *newkeys, |
1781 | | const dns_name_t *origin, dns_rdataclass_t rdclass, |
1782 | | dns_kasp_t *kasp, const char *keydir, uint32_t lifetime, |
1783 | | uint8_t opts, isc_stdtime_t now, isc_stdtime_t *nexttime, |
1784 | 0 | isc_mem_t *mctx) { |
1785 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
1786 | 0 | char namestr[DNS_NAME_FORMATSIZE]; |
1787 | 0 | isc_stdtime_t retire = 0, active = 0, prepub = 0; |
1788 | 0 | dns_dnsseckey_t *new_key = NULL; |
1789 | 0 | dst_key_t *dst_key = NULL; |
1790 | 0 | bool keycreated = false; |
1791 | | |
1792 | | /* Do we need to create a successor for the active key? */ |
1793 | 0 | if (active_key != NULL) { |
1794 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
1795 | 0 | dst_key_format(active_key->key, keystr, sizeof(keystr)); |
1796 | 0 | isc_log_write( |
1797 | 0 | DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
1798 | 0 | ISC_LOG_DEBUG(1), |
1799 | 0 | "keymgr: DNSKEY %s (%s) is active in policy %s", |
1800 | 0 | keystr, keymgr_keyrole(active_key->key), |
1801 | 0 | dns_kasp_getname(kasp)); |
1802 | 0 | } |
1803 | | |
1804 | | /* |
1805 | | * Calculate when the successor needs to be published |
1806 | | * in the zone. |
1807 | | */ |
1808 | 0 | prepub = keymgr_prepublication_time(active_key, kasp, lifetime, |
1809 | 0 | now); |
1810 | 0 | if (prepub > now) { |
1811 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
1812 | 0 | dst_key_format(active_key->key, keystr, |
1813 | 0 | sizeof(keystr)); |
1814 | 0 | isc_log_write( |
1815 | 0 | DNS_LOGCATEGORY_DNSSEC, |
1816 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1817 | 0 | "keymgr: new successor needed for " |
1818 | 0 | "DNSKEY %s (%s) (policy %s) in %u " |
1819 | 0 | "seconds", |
1820 | 0 | keystr, keymgr_keyrole(active_key->key), |
1821 | 0 | dns_kasp_getname(kasp), prepub - now); |
1822 | 0 | } |
1823 | 0 | } |
1824 | 0 | if (prepub == 0 || prepub > now) { |
1825 | | /* No need to start rollover now. */ |
1826 | 0 | if (*nexttime == 0 || prepub < *nexttime) { |
1827 | 0 | if (prepub > 0) { |
1828 | 0 | *nexttime = prepub; |
1829 | 0 | } |
1830 | 0 | } |
1831 | 0 | return ISC_R_SUCCESS; |
1832 | 0 | } |
1833 | | |
1834 | 0 | if (keymgr_key_has_successor(active_key, keyring)) { |
1835 | | /* Key already has successor. */ |
1836 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
1837 | 0 | dst_key_format(active_key->key, keystr, |
1838 | 0 | sizeof(keystr)); |
1839 | 0 | isc_log_write( |
1840 | 0 | DNS_LOGCATEGORY_DNSSEC, |
1841 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1842 | 0 | "keymgr: key DNSKEY %s (%s) (policy " |
1843 | 0 | "%s) already has successor", |
1844 | 0 | keystr, keymgr_keyrole(active_key->key), |
1845 | 0 | dns_kasp_getname(kasp)); |
1846 | 0 | } |
1847 | 0 | return ISC_R_SUCCESS; |
1848 | 0 | } |
1849 | | |
1850 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
1851 | 0 | dst_key_format(active_key->key, keystr, sizeof(keystr)); |
1852 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1853 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
1854 | 0 | "keymgr: need successor for DNSKEY %s " |
1855 | 0 | "(%s) (policy %s)", |
1856 | 0 | keystr, keymgr_keyrole(active_key->key), |
1857 | 0 | dns_kasp_getname(kasp)); |
1858 | 0 | } |
1859 | | |
1860 | | /* |
1861 | | * If rollover is not allowed, warn. |
1862 | | */ |
1863 | 0 | if ((opts & DNS_KEYMGRATTR_NOROLL) != 0) { |
1864 | 0 | dst_key_format(active_key->key, keystr, sizeof(keystr)); |
1865 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1866 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING, |
1867 | 0 | "keymgr: DNSKEY %s (%s) is offline in " |
1868 | 0 | "policy %s, cannot start rollover", |
1869 | 0 | keystr, keymgr_keyrole(active_key->key), |
1870 | 0 | dns_kasp_getname(kasp)); |
1871 | 0 | return ISC_R_SUCCESS; |
1872 | 0 | } |
1873 | 0 | } else if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
1874 | 0 | dns_name_format(origin, namestr, sizeof(namestr)); |
1875 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
1876 | 0 | ISC_LOG_DEBUG(1), |
1877 | 0 | "keymgr: no active key found for %s (policy %s)", |
1878 | 0 | namestr, dns_kasp_getname(kasp)); |
1879 | 0 | } |
1880 | | |
1881 | | /* It is time to do key rollover, we need a new key. */ |
1882 | | |
1883 | | /* |
1884 | | * Check if there is a key available in pool because keys |
1885 | | * may have been pregenerated with dnssec-keygen. |
1886 | | */ |
1887 | 0 | ISC_LIST_FOREACH(*keyring, candidate, link) { |
1888 | 0 | if (dns_kasp_key_match(kaspkey, candidate) && |
1889 | 0 | dst_key_is_unused(candidate->key)) |
1890 | 0 | { |
1891 | | /* Found a candidate in keyring. */ |
1892 | 0 | new_key = candidate; |
1893 | 0 | break; |
1894 | 0 | } |
1895 | 0 | } |
1896 | |
|
1897 | 0 | if (dns_kasp_manualmode(kasp) && (opts & DNS_KEYMGRATTR_FORCESTEP) == 0) |
1898 | 0 | { |
1899 | 0 | if (active_key != NULL && new_key != NULL) { |
1900 | 0 | char keystr2[DST_KEY_FORMATSIZE]; |
1901 | 0 | dst_key_format(active_key->key, keystr, sizeof(keystr)); |
1902 | 0 | dst_key_format(new_key->key, keystr2, sizeof(keystr2)); |
1903 | 0 | dns_name_format(origin, namestr, sizeof(namestr)); |
1904 | 0 | isc_log_write( |
1905 | 0 | DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
1906 | 0 | ISC_LOG_INFO, |
1907 | 0 | "keymgr-manual-mode: block %s rollover for key " |
1908 | 0 | "%s to key %s (policy %s)", |
1909 | 0 | keymgr_keyrole(active_key->key), keystr, |
1910 | 0 | keystr2, dns_kasp_getname(kasp)); |
1911 | 0 | } else if (active_key != NULL) { |
1912 | 0 | dst_key_format(active_key->key, keystr, sizeof(keystr)); |
1913 | 0 | dns_name_format(origin, namestr, sizeof(namestr)); |
1914 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1915 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_INFO, |
1916 | 0 | "keymgr-manual-mode: block %s rollover " |
1917 | 0 | "for key %s (policy %s)", |
1918 | 0 | keymgr_keyrole(active_key->key), keystr, |
1919 | 0 | dns_kasp_getname(kasp)); |
1920 | 0 | } else if (new_key != NULL) { |
1921 | 0 | dst_key_format(new_key->key, keystr, sizeof(keystr)); |
1922 | 0 | dns_name_format(origin, namestr, sizeof(namestr)); |
1923 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1924 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_INFO, |
1925 | 0 | "keymgr-manual-mode: block %s " |
1926 | 0 | "introduction %s (policy %s)", |
1927 | 0 | keymgr_keyrole(new_key->key), keystr, |
1928 | 0 | dns_kasp_getname(kasp)); |
1929 | 0 | } else { |
1930 | 0 | dns_name_format(origin, namestr, sizeof(namestr)); |
1931 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
1932 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_INFO, |
1933 | 0 | "keymgr-manual-mode: block new key " |
1934 | 0 | "generation for zone %s (policy %s)", |
1935 | 0 | namestr, dns_kasp_getname(kasp)); |
1936 | 0 | } |
1937 | 0 | return ISC_R_SUCCESS; |
1938 | 0 | } |
1939 | | |
1940 | 0 | if (new_key == NULL) { |
1941 | | /* No key available in keyring, create a new one. */ |
1942 | 0 | bool csk = (dns_kasp_key_ksk(kaspkey) && |
1943 | 0 | dns_kasp_key_zsk(kaspkey)); |
1944 | |
|
1945 | 0 | isc_result_t result = keymgr_createkey( |
1946 | 0 | kaspkey, origin, kasp, rdclass, mctx, keydir, keyring, |
1947 | 0 | now, newkeys, &dst_key); |
1948 | 0 | if (result != ISC_R_SUCCESS) { |
1949 | 0 | return result; |
1950 | 0 | } |
1951 | 0 | dst_key_setttl(dst_key, dns_kasp_dnskeyttl(kasp)); |
1952 | 0 | dst_key_settime(dst_key, DST_TIME_CREATED, now); |
1953 | 0 | dns_dnsseckey_create(mctx, &dst_key, &new_key); |
1954 | 0 | dns_keymgr_key_init(new_key, kasp, now, csk); |
1955 | 0 | keycreated = true; |
1956 | 0 | } |
1957 | 0 | dst_key_setnum(new_key->key, DST_NUM_LIFETIME, lifetime); |
1958 | | |
1959 | | /* Got a key. */ |
1960 | 0 | if (active_key == NULL) { |
1961 | | /* |
1962 | | * If there is no active key found yet for this kasp |
1963 | | * key configuration, immediately make this key active. |
1964 | | */ |
1965 | 0 | dst_key_settime(new_key->key, DST_TIME_PUBLISH, now); |
1966 | 0 | dst_key_settime(new_key->key, DST_TIME_ACTIVATE, now); |
1967 | 0 | dns_keymgr_settime_syncpublish(new_key->key, kasp, true); |
1968 | 0 | active = now; |
1969 | 0 | } else { |
1970 | | /* |
1971 | | * This is a successor. Mark the relationship. |
1972 | | */ |
1973 | 0 | isc_stdtime_t created; |
1974 | 0 | (void)dst_key_gettime(new_key->key, DST_TIME_CREATED, &created); |
1975 | |
|
1976 | 0 | dst_key_setnum(new_key->key, DST_NUM_PREDECESSOR, |
1977 | 0 | dst_key_id(active_key->key)); |
1978 | 0 | dst_key_setnum(active_key->key, DST_NUM_SUCCESSOR, |
1979 | 0 | dst_key_id(new_key->key)); |
1980 | 0 | (void)dst_key_gettime(active_key->key, DST_TIME_INACTIVE, |
1981 | 0 | &retire); |
1982 | 0 | active = retire; |
1983 | | |
1984 | | /* |
1985 | | * If prepublication time and/or retire time are |
1986 | | * in the past (before the new key was created), use |
1987 | | * creation time as published and active time, |
1988 | | * effectively immediately making the key active. |
1989 | | */ |
1990 | 0 | if (prepub < created) { |
1991 | 0 | active += (created - prepub); |
1992 | 0 | prepub = created; |
1993 | 0 | } |
1994 | 0 | if (active < created) { |
1995 | 0 | active = created; |
1996 | 0 | } |
1997 | 0 | dst_key_settime(new_key->key, DST_TIME_PUBLISH, prepub); |
1998 | 0 | dst_key_settime(new_key->key, DST_TIME_ACTIVATE, active); |
1999 | 0 | dns_keymgr_settime_syncpublish(new_key->key, kasp, false); |
2000 | | |
2001 | | /* |
2002 | | * Retire predecessor. |
2003 | | */ |
2004 | 0 | dst_key_setstate(active_key->key, DST_KEY_GOAL, HIDDEN); |
2005 | 0 | } |
2006 | | |
2007 | | /* This key wants to be present. */ |
2008 | 0 | dst_key_setstate(new_key->key, DST_KEY_GOAL, OMNIPRESENT); |
2009 | | |
2010 | | /* Do we need to set retire time? */ |
2011 | 0 | if (lifetime > 0) { |
2012 | 0 | uint32_t inactive; |
2013 | |
|
2014 | 0 | if (ckd_add(&inactive, active, lifetime)) { |
2015 | 0 | log_key_overflow(new_key->key, "inactive"); |
2016 | 0 | inactive = UINT32_MAX; |
2017 | 0 | } |
2018 | 0 | dst_key_settime(new_key->key, DST_TIME_INACTIVE, inactive); |
2019 | 0 | keymgr_settime_remove(new_key, kasp); |
2020 | 0 | } |
2021 | | |
2022 | | /* Append dnsseckey to list of new keys. */ |
2023 | 0 | dns_dnssec_get_hints(new_key, now); |
2024 | 0 | new_key->source = dns_keysource_repository; |
2025 | 0 | INSIST(!new_key->legacy); |
2026 | 0 | if (keycreated) { |
2027 | 0 | ISC_LIST_APPEND(*newkeys, new_key, link); |
2028 | 0 | } |
2029 | | |
2030 | | /* Logging. */ |
2031 | 0 | dst_key_format(new_key->key, keystr, sizeof(keystr)); |
2032 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
2033 | 0 | ISC_LOG_INFO, "keymgr: DNSKEY %s (%s) %s for policy %s", |
2034 | 0 | keystr, keymgr_keyrole(new_key->key), |
2035 | 0 | keycreated ? "created" : "selected", |
2036 | 0 | dns_kasp_getname(kasp)); |
2037 | 0 | return ISC_R_SUCCESS; |
2038 | 0 | } |
2039 | | |
2040 | | bool |
2041 | | dns_keymgr_key_may_be_purged(const dst_key_t *key, uint32_t after, |
2042 | 0 | isc_stdtime_t now) { |
2043 | 0 | bool ksk = false; |
2044 | 0 | bool zsk = false; |
2045 | 0 | dst_key_state_t hidden[NUM_KEYSTATES] = { HIDDEN, NA, NA, NA }; |
2046 | 0 | isc_stdtime_t lastchange = 0; |
2047 | |
|
2048 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
2049 | 0 | dst_key_format(key, keystr, sizeof(keystr)); |
2050 | | |
2051 | | /* If 'purge-keys' is disabled, always retain keys. */ |
2052 | 0 | if (after == 0) { |
2053 | 0 | return false; |
2054 | 0 | } |
2055 | | |
2056 | | /* Don't purge keys with goal OMNIPRESENT */ |
2057 | 0 | if (dst_key_goal(key) == OMNIPRESENT) { |
2058 | 0 | return false; |
2059 | 0 | } |
2060 | | |
2061 | | /* Don't purge unused keys. */ |
2062 | 0 | if (dst_key_is_unused(key)) { |
2063 | 0 | return false; |
2064 | 0 | } |
2065 | | |
2066 | | /* If this key is completely HIDDEN it may be purged. */ |
2067 | 0 | (void)dst_key_getbool(key, DST_BOOL_KSK, &ksk); |
2068 | 0 | (void)dst_key_getbool(key, DST_BOOL_ZSK, &zsk); |
2069 | 0 | if (ksk) { |
2070 | 0 | hidden[DST_KEY_KRRSIG] = HIDDEN; |
2071 | 0 | hidden[DST_KEY_DS] = HIDDEN; |
2072 | 0 | } |
2073 | 0 | if (zsk) { |
2074 | 0 | hidden[DST_KEY_ZRRSIG] = HIDDEN; |
2075 | 0 | } |
2076 | 0 | if (!keymgr_key_match_state(key, key, 0, NA, hidden)) { |
2077 | 0 | return false; |
2078 | 0 | } |
2079 | | |
2080 | | /* |
2081 | | * Check 'purge-keys' interval. If the interval has passed since |
2082 | | * the last key change, it may be purged. |
2083 | | */ |
2084 | 0 | for (int i = 0; i < NUM_KEYSTATES; i++) { |
2085 | 0 | isc_stdtime_t change = 0; |
2086 | 0 | (void)dst_key_gettime(key, keystatetimes[i], &change); |
2087 | 0 | if (change > lastchange) { |
2088 | 0 | lastchange = change; |
2089 | 0 | } |
2090 | 0 | } |
2091 | |
|
2092 | 0 | return (lastchange + after) < now; |
2093 | 0 | } |
2094 | | |
2095 | | static void |
2096 | 0 | keymgr_purge_keyfile(dst_key_t *key, int type) { |
2097 | 0 | isc_result_t ret; |
2098 | 0 | isc_buffer_t fileb; |
2099 | 0 | char filename[NAME_MAX]; |
2100 | | |
2101 | | /* |
2102 | | * Make the filename. |
2103 | | */ |
2104 | 0 | isc_buffer_init(&fileb, filename, sizeof(filename)); |
2105 | 0 | ret = dst_key_buildfilename(key, type, dst_key_directory(key), &fileb); |
2106 | 0 | if (ret != ISC_R_SUCCESS) { |
2107 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
2108 | 0 | dst_key_format(key, keystr, sizeof(keystr)); |
2109 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
2110 | 0 | ISC_LOG_WARNING, |
2111 | 0 | "keymgr: failed to purge DNSKEY %s (%s): cannot " |
2112 | 0 | "build filename (%s)", |
2113 | 0 | keystr, keymgr_keyrole(key), |
2114 | 0 | isc_result_totext(ret)); |
2115 | 0 | return; |
2116 | 0 | } |
2117 | | |
2118 | 0 | if (unlink(filename) < 0) { |
2119 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
2120 | 0 | dst_key_format(key, keystr, sizeof(keystr)); |
2121 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
2122 | 0 | ISC_LOG_WARNING, |
2123 | 0 | "keymgr: failed to purge DNSKEY %s (%s): unlink " |
2124 | 0 | "'%s' failed", |
2125 | 0 | keystr, keymgr_keyrole(key), filename); |
2126 | 0 | } |
2127 | 0 | } |
2128 | | |
2129 | | static bool |
2130 | 0 | dst_key_doublematch(dns_dnsseckey_t *key, dns_kasp_t *kasp) { |
2131 | 0 | int matches = 0; |
2132 | |
|
2133 | 0 | ISC_LIST_FOREACH(dns_kasp_keys(kasp), kkey, link) { |
2134 | 0 | if (dns_kasp_key_match(kkey, key)) { |
2135 | 0 | matches++; |
2136 | 0 | } |
2137 | 0 | } |
2138 | 0 | return matches > 1; |
2139 | 0 | } |
2140 | | |
2141 | | static void |
2142 | 0 | keymgr_zrrsig(dns_dnsseckeylist_t *keyring, isc_stdtime_t now) { |
2143 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2144 | 0 | isc_result_t ret; |
2145 | 0 | bool zsk = false; |
2146 | |
|
2147 | 0 | ret = dst_key_getbool(dkey->key, DST_BOOL_ZSK, &zsk); |
2148 | 0 | if (ret == ISC_R_SUCCESS && zsk) { |
2149 | 0 | dst_key_state_t state; |
2150 | 0 | isc_result_t result = dst_key_getstate( |
2151 | 0 | dkey->key, DST_KEY_ZRRSIG, &state); |
2152 | 0 | if (result == ISC_R_SUCCESS) { |
2153 | 0 | if (state == RUMOURED) { |
2154 | 0 | dst_key_settime(dkey->key, |
2155 | 0 | DST_TIME_SIGPUBLISH, |
2156 | 0 | now); |
2157 | 0 | } else if (state == UNRETENTIVE) { |
2158 | 0 | dst_key_settime(dkey->key, |
2159 | 0 | DST_TIME_SIGDELETE, |
2160 | 0 | now); |
2161 | 0 | } |
2162 | 0 | } |
2163 | 0 | } |
2164 | 0 | } |
2165 | 0 | } |
2166 | | |
2167 | | /* |
2168 | | * Examine 'keys' and match 'kasp' policy. |
2169 | | * |
2170 | | */ |
2171 | | isc_result_t |
2172 | | dns_keymgr_run(const dns_name_t *origin, dns_rdataclass_t rdclass, |
2173 | | isc_mem_t *mctx, dns_dnsseckeylist_t *keyring, |
2174 | | dns_dnsseckeylist_t *dnskeys, const char *keydir, |
2175 | | dns_kasp_t *kasp, uint8_t opts, isc_stdtime_t now, |
2176 | 0 | isc_stdtime_t *nexttime) { |
2177 | 0 | isc_result_t result = DNS_R_UNCHANGED; |
2178 | 0 | dns_dnsseckeylist_t newkeys; |
2179 | 0 | int numkeys = 0; |
2180 | 0 | int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE); |
2181 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
2182 | |
|
2183 | 0 | REQUIRE(dns_name_isvalid(origin)); |
2184 | 0 | REQUIRE(mctx != NULL); |
2185 | 0 | REQUIRE(keyring != NULL); |
2186 | 0 | REQUIRE(DNS_KASP_VALID(kasp)); |
2187 | |
|
2188 | 0 | ISC_LIST_INIT(newkeys); |
2189 | |
|
2190 | 0 | *nexttime = 0; |
2191 | | |
2192 | | /* Debug logging: what keys are available in the keyring? */ |
2193 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(1))) { |
2194 | 0 | if (ISC_LIST_EMPTY(*keyring)) { |
2195 | 0 | char namebuf[DNS_NAME_FORMATSIZE]; |
2196 | 0 | dns_name_format(origin, namebuf, sizeof(namebuf)); |
2197 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2198 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
2199 | 0 | "keymgr: keyring empty (zone %s policy " |
2200 | 0 | "%s)", |
2201 | 0 | namebuf, dns_kasp_getname(kasp)); |
2202 | 0 | } |
2203 | |
|
2204 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2205 | 0 | dst_key_format(dkey->key, keystr, sizeof(keystr)); |
2206 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2207 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
2208 | 0 | "keymgr: keyring: %s (policy %s)", keystr, |
2209 | 0 | dns_kasp_getname(kasp)); |
2210 | 0 | } |
2211 | 0 | ISC_LIST_FOREACH(*dnskeys, dkey, link) { |
2212 | 0 | dst_key_format(dkey->key, keystr, sizeof(keystr)); |
2213 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2214 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1), |
2215 | 0 | "keymgr: dnskeys: %s (policy %s)", keystr, |
2216 | 0 | dns_kasp_getname(kasp)); |
2217 | 0 | } |
2218 | 0 | } |
2219 | |
|
2220 | 0 | ISC_LIST_FOREACH(*dnskeys, dkey, link) { |
2221 | 0 | numkeys++; |
2222 | 0 | } |
2223 | | |
2224 | | /* Do we need to remove keys? */ |
2225 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2226 | 0 | bool found_match = false; |
2227 | |
|
2228 | 0 | dns_keymgr_key_init(dkey, kasp, now, numkeys == 1); |
2229 | |
|
2230 | 0 | ISC_LIST_FOREACH(dns_kasp_keys(kasp), kkey, link) { |
2231 | 0 | if (dns_kasp_key_match(kkey, dkey)) { |
2232 | 0 | found_match = true; |
2233 | 0 | break; |
2234 | 0 | } |
2235 | 0 | } |
2236 | | |
2237 | | /* No match, so retire unwanted retire key. */ |
2238 | 0 | if (!found_match) { |
2239 | 0 | keymgr_key_retire(dkey, kasp, opts, now); |
2240 | 0 | } |
2241 | | |
2242 | | /* Check purge-keys interval. */ |
2243 | 0 | if (dns_keymgr_key_may_be_purged(dkey->key, |
2244 | 0 | dns_kasp_purgekeys(kasp), now)) |
2245 | 0 | { |
2246 | 0 | dst_key_format(dkey->key, keystr, sizeof(keystr)); |
2247 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2248 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_INFO, |
2249 | 0 | "keymgr: purge DNSKEY %s (%s) according " |
2250 | 0 | "to policy %s", |
2251 | 0 | keystr, keymgr_keyrole(dkey->key), |
2252 | 0 | dns_kasp_getname(kasp)); |
2253 | |
|
2254 | 0 | keymgr_purge_keyfile(dkey->key, DST_TYPE_PUBLIC); |
2255 | 0 | keymgr_purge_keyfile(dkey->key, DST_TYPE_PRIVATE); |
2256 | 0 | keymgr_purge_keyfile(dkey->key, DST_TYPE_STATE); |
2257 | 0 | dkey->purge = true; |
2258 | 0 | } |
2259 | 0 | } |
2260 | | |
2261 | | /* Create keys according to the policy, if come in short. */ |
2262 | 0 | ISC_LIST_FOREACH(dns_kasp_keys(kasp), kkey, link) { |
2263 | 0 | uint32_t lifetime = dns_kasp_key_lifetime(kkey); |
2264 | 0 | dns_dnsseckey_t *active_key = NULL; |
2265 | | |
2266 | | /* Do we have keys available for this kasp key? */ |
2267 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2268 | 0 | if (dns_kasp_key_match(kkey, dkey)) { |
2269 | | /* Found a match. */ |
2270 | 0 | dst_key_format(dkey->key, keystr, |
2271 | 0 | sizeof(keystr)); |
2272 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2273 | 0 | DNS_LOGMODULE_DNSSEC, |
2274 | 0 | ISC_LOG_DEBUG(1), |
2275 | 0 | "keymgr: DNSKEY %s (%s) matches " |
2276 | 0 | "policy %s", |
2277 | 0 | keystr, keymgr_keyrole(dkey->key), |
2278 | 0 | dns_kasp_getname(kasp)); |
2279 | | |
2280 | | /* Update lifetime if changed. */ |
2281 | 0 | keymgr_key_update_lifetime(dkey, kasp, now, |
2282 | 0 | lifetime); |
2283 | |
|
2284 | 0 | if (active_key) { |
2285 | | /* We already have an active key that |
2286 | | * matches the kasp policy. |
2287 | | */ |
2288 | 0 | if (!dst_key_is_unused(dkey->key) && |
2289 | 0 | !dst_key_doublematch(dkey, kasp) && |
2290 | 0 | (dst_key_goal(dkey->key) == |
2291 | 0 | OMNIPRESENT) && |
2292 | 0 | !keymgr_dep(dkey->key, keyring, |
2293 | 0 | NULL) && |
2294 | 0 | !keymgr_dep(active_key->key, |
2295 | 0 | keyring, NULL)) |
2296 | 0 | { |
2297 | | /* |
2298 | | * Multiple signing keys match |
2299 | | * the kasp key configuration. |
2300 | | * Retire excess keys in use. |
2301 | | */ |
2302 | 0 | keymgr_key_retire(dkey, kasp, |
2303 | 0 | opts, now); |
2304 | 0 | } |
2305 | 0 | continue; |
2306 | 0 | } |
2307 | | |
2308 | | /* |
2309 | | * Save the matched key only if it is active |
2310 | | * or desires to be active. |
2311 | | */ |
2312 | 0 | if (dst_key_goal(dkey->key) == OMNIPRESENT || |
2313 | 0 | dst_key_is_active(dkey->key, now)) |
2314 | 0 | { |
2315 | 0 | active_key = dkey; |
2316 | 0 | } |
2317 | 0 | } |
2318 | 0 | } |
2319 | |
|
2320 | 0 | if (active_key == NULL) { |
2321 | | /* |
2322 | | * We didn't found an active key, perhaps the .private |
2323 | | * key file is offline. If so, we don't want to create |
2324 | | * a successor key. Check if we have an appropriate |
2325 | | * state file. |
2326 | | */ |
2327 | 0 | ISC_LIST_FOREACH(*dnskeys, dnskey, link) { |
2328 | 0 | if (dns_kasp_key_match(kkey, dnskey)) { |
2329 | | /* Found a match. */ |
2330 | 0 | dst_key_format(dnskey->key, keystr, |
2331 | 0 | sizeof(keystr)); |
2332 | 0 | isc_log_write( |
2333 | 0 | DNS_LOGCATEGORY_DNSSEC, |
2334 | 0 | DNS_LOGMODULE_DNSSEC, |
2335 | 0 | ISC_LOG_DEBUG(1), |
2336 | 0 | "keymgr: DNSKEY %s (%s) " |
2337 | 0 | "offline, policy %s", |
2338 | 0 | keystr, |
2339 | 0 | keymgr_keyrole(dnskey->key), |
2340 | 0 | dns_kasp_getname(kasp)); |
2341 | 0 | opts |= DNS_KEYMGRATTR_NOROLL; |
2342 | 0 | active_key = dnskey; |
2343 | 0 | break; |
2344 | 0 | } |
2345 | 0 | } |
2346 | 0 | } |
2347 | | |
2348 | | /* See if this key requires a rollover. */ |
2349 | 0 | RETERR(keymgr_key_rollover( |
2350 | 0 | kkey, active_key, keyring, &newkeys, origin, rdclass, |
2351 | 0 | kasp, keydir, lifetime, opts, now, nexttime, mctx)); |
2352 | | |
2353 | 0 | opts &= ~DNS_KEYMGRATTR_NOROLL; |
2354 | 0 | } |
2355 | | |
2356 | | /* Walked all kasp key configurations. Append new keys. */ |
2357 | 0 | if (!ISC_LIST_EMPTY(newkeys)) { |
2358 | 0 | ISC_LIST_APPENDLIST(*keyring, newkeys, link); |
2359 | 0 | } |
2360 | | |
2361 | | /* |
2362 | | * If the policy has an empty key list, this means the zone is going |
2363 | | * back to unsigned. |
2364 | | */ |
2365 | 0 | if (dns_kasp_keylist_empty(kasp)) { |
2366 | 0 | opts |= DNS_KEYMGRATTR_S2I; |
2367 | 0 | } |
2368 | | |
2369 | | /* In case of a full sign, store ZRRSIGPublish/ZRRSIGDelete. */ |
2370 | 0 | if ((opts & DNS_KEYMGRATTR_FULLSIGN) != 0) { |
2371 | 0 | keymgr_zrrsig(keyring, now); |
2372 | 0 | } |
2373 | | |
2374 | | /* Read to update key states. */ |
2375 | 0 | isc_result_t retval = keymgr_update(keyring, kasp, now, nexttime, opts); |
2376 | | |
2377 | | /* Store key states and update hints. */ |
2378 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2379 | 0 | bool modified = dst_key_ismodified(dkey->key); |
2380 | 0 | if (dst_key_getttl(dkey->key) != dns_kasp_dnskeyttl(kasp)) { |
2381 | 0 | dst_key_setttl(dkey->key, dns_kasp_dnskeyttl(kasp)); |
2382 | 0 | modified = true; |
2383 | 0 | retval = ISC_R_SUCCESS; |
2384 | 0 | } |
2385 | 0 | if (modified && !dkey->purge) { |
2386 | 0 | const char *directory = dst_key_directory(dkey->key); |
2387 | 0 | if (directory == NULL) { |
2388 | 0 | directory = "."; |
2389 | 0 | } |
2390 | |
|
2391 | 0 | dns_dnssec_get_hints(dkey, now); |
2392 | 0 | RETERR(dst_key_tofile(dkey->key, options, directory)); |
2393 | 0 | dst_key_setmodified(dkey->key, false); |
2394 | |
|
2395 | 0 | if (!isc_log_wouldlog(ISC_LOG_DEBUG(3))) { |
2396 | 0 | continue; |
2397 | 0 | } |
2398 | 0 | dst_key_format(dkey->key, keystr, sizeof(keystr)); |
2399 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2400 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(3), |
2401 | 0 | "keymgr: DNSKEY %s (%s) " |
2402 | 0 | "saved to directory %s, policy %s", |
2403 | 0 | keystr, keymgr_keyrole(dkey->key), |
2404 | 0 | directory, dns_kasp_getname(kasp)); |
2405 | 0 | } |
2406 | 0 | dst_key_setmodified(dkey->key, false); |
2407 | 0 | } |
2408 | | |
2409 | 0 | result = retval; |
2410 | 0 | failure: |
2411 | 0 | if (result != ISC_R_SUCCESS && result != DNS_R_UNCHANGED) { |
2412 | 0 | ISC_LIST_FOREACH(newkeys, newkey, link) { |
2413 | 0 | ISC_LIST_UNLINK(newkeys, newkey, link); |
2414 | 0 | INSIST(newkey->key != NULL); |
2415 | 0 | dst_key_free(&newkey->key); |
2416 | 0 | dns_dnsseckey_destroy(mctx, &newkey); |
2417 | 0 | } |
2418 | 0 | } |
2419 | |
|
2420 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(3))) { |
2421 | 0 | char namebuf[DNS_NAME_FORMATSIZE]; |
2422 | 0 | dns_name_format(origin, namebuf, sizeof(namebuf)); |
2423 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
2424 | 0 | ISC_LOG_DEBUG(3), "keymgr: %s done", namebuf); |
2425 | 0 | } |
2426 | 0 | return result; |
2427 | 0 | } |
2428 | | |
2429 | | static isc_result_t |
2430 | | keymgr_checkds(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring, |
2431 | | isc_stdtime_t now, isc_stdtime_t when, bool dspublish, |
2432 | 0 | dns_keytag_t id, unsigned int alg, bool check_id) { |
2433 | 0 | int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE); |
2434 | 0 | const char *directory = NULL; |
2435 | 0 | isc_result_t result; |
2436 | 0 | dns_dnsseckey_t *ksk_key = NULL; |
2437 | |
|
2438 | 0 | REQUIRE(DNS_KASP_VALID(kasp)); |
2439 | 0 | REQUIRE(keyring != NULL); |
2440 | |
|
2441 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2442 | 0 | isc_result_t ret; |
2443 | 0 | bool ksk = false; |
2444 | |
|
2445 | 0 | ret = dst_key_getbool(dkey->key, DST_BOOL_KSK, &ksk); |
2446 | 0 | if (ret == ISC_R_SUCCESS && ksk) { |
2447 | 0 | if (check_id && dst_key_id(dkey->key) != id) { |
2448 | 0 | continue; |
2449 | 0 | } |
2450 | 0 | if (alg > 0 && dst_key_alg(dkey->key) != alg) { |
2451 | 0 | continue; |
2452 | 0 | } |
2453 | | |
2454 | 0 | if (ksk_key != NULL) { |
2455 | | /* |
2456 | | * Only checkds for one key at a time. |
2457 | | */ |
2458 | 0 | return DNS_R_TOOMANYKEYS; |
2459 | 0 | } |
2460 | | |
2461 | 0 | ksk_key = dkey; |
2462 | 0 | } |
2463 | 0 | } |
2464 | | |
2465 | 0 | if (ksk_key == NULL) { |
2466 | 0 | return DNS_R_NOKEYMATCH; |
2467 | 0 | } |
2468 | | |
2469 | 0 | if (dspublish) { |
2470 | 0 | dst_key_state_t s; |
2471 | 0 | dst_key_settime(ksk_key->key, DST_TIME_DSPUBLISH, when); |
2472 | 0 | result = dst_key_getstate(ksk_key->key, DST_KEY_DS, &s); |
2473 | 0 | if (result != ISC_R_SUCCESS || s != RUMOURED) { |
2474 | 0 | dst_key_setstate(ksk_key->key, DST_KEY_DS, RUMOURED); |
2475 | 0 | } |
2476 | 0 | } else { |
2477 | 0 | dst_key_state_t s; |
2478 | 0 | dst_key_settime(ksk_key->key, DST_TIME_DSDELETE, when); |
2479 | 0 | result = dst_key_getstate(ksk_key->key, DST_KEY_DS, &s); |
2480 | 0 | if (result != ISC_R_SUCCESS || s != UNRETENTIVE) { |
2481 | 0 | dst_key_setstate(ksk_key->key, DST_KEY_DS, UNRETENTIVE); |
2482 | 0 | } |
2483 | 0 | } |
2484 | |
|
2485 | 0 | if (isc_log_wouldlog(ISC_LOG_NOTICE)) { |
2486 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
2487 | 0 | char timestr[26]; /* Minimal buf as per ctime_r() spec. */ |
2488 | |
|
2489 | 0 | dst_key_format(ksk_key->key, keystr, sizeof(keystr)); |
2490 | 0 | isc_stdtime_tostring(when, timestr, sizeof(timestr)); |
2491 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
2492 | 0 | ISC_LOG_NOTICE, |
2493 | 0 | "keymgr: checkds DS for key %s seen %s at %s", |
2494 | 0 | keystr, dspublish ? "published" : "withdrawn", |
2495 | 0 | timestr); |
2496 | 0 | } |
2497 | | |
2498 | | /* Store key state and update hints. */ |
2499 | 0 | directory = dst_key_directory(ksk_key->key); |
2500 | 0 | if (directory == NULL) { |
2501 | 0 | directory = "."; |
2502 | 0 | } |
2503 | |
|
2504 | 0 | dns_dnssec_get_hints(ksk_key, now); |
2505 | 0 | result = dst_key_tofile(ksk_key->key, options, directory); |
2506 | 0 | if (result == ISC_R_SUCCESS) { |
2507 | 0 | dst_key_setmodified(ksk_key->key, false); |
2508 | 0 | } |
2509 | |
|
2510 | 0 | return result; |
2511 | 0 | } |
2512 | | |
2513 | | isc_result_t |
2514 | | dns_keymgr_checkds(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring, |
2515 | 0 | isc_stdtime_t now, isc_stdtime_t when, bool dspublish) { |
2516 | 0 | return keymgr_checkds(kasp, keyring, now, when, dspublish, 0, 0, false); |
2517 | 0 | } |
2518 | | |
2519 | | isc_result_t |
2520 | | dns_keymgr_checkds_id(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring, |
2521 | | isc_stdtime_t now, isc_stdtime_t when, bool dspublish, |
2522 | 0 | dns_keytag_t id, unsigned int alg) { |
2523 | 0 | return keymgr_checkds(kasp, keyring, now, when, dspublish, id, alg, |
2524 | 0 | true); |
2525 | 0 | } |
2526 | | |
2527 | | static isc_result_t |
2528 | | keytime_status(dst_key_t *key, isc_stdtime_t now, isc_buffer_t *buf, |
2529 | 0 | const char *pre, int ks, int kt) { |
2530 | 0 | char timestr[26]; /* Minimal buf as per ctime_r() spec. */ |
2531 | 0 | isc_result_t result = ISC_R_SUCCESS; |
2532 | 0 | isc_stdtime_t when = 0; |
2533 | 0 | dst_key_state_t state = NA; |
2534 | |
|
2535 | 0 | RETERR(isc_buffer_printf(buf, "%s", pre)); |
2536 | 0 | (void)dst_key_getstate(key, ks, &state); |
2537 | 0 | isc_result_t r = dst_key_gettime(key, kt, &when); |
2538 | 0 | if (state == RUMOURED || state == OMNIPRESENT) { |
2539 | 0 | RETERR(isc_buffer_printf(buf, "yes - since ")); |
2540 | 0 | } else if (now < when) { |
2541 | 0 | RETERR(isc_buffer_printf(buf, "no - scheduled ")); |
2542 | 0 | } else { |
2543 | 0 | return isc_buffer_printf(buf, "no\n"); |
2544 | 0 | } |
2545 | 0 | if (r == ISC_R_SUCCESS) { |
2546 | 0 | isc_stdtime_tostring(when, timestr, sizeof(timestr)); |
2547 | 0 | RETERR(isc_buffer_printf(buf, "%s\n", timestr)); |
2548 | 0 | } |
2549 | | |
2550 | 0 | failure: |
2551 | 0 | return result; |
2552 | 0 | } |
2553 | | |
2554 | | static isc_result_t |
2555 | | rollover_status(dns_dnsseckey_t *dkey, dns_kasp_t *kasp, isc_stdtime_t now, |
2556 | 0 | isc_buffer_t *buf, bool zsk) { |
2557 | 0 | char timestr[26]; /* Minimal buf as per ctime_r() spec. */ |
2558 | 0 | isc_result_t result = ISC_R_SUCCESS; |
2559 | 0 | isc_stdtime_t active_time = 0; |
2560 | 0 | dst_key_state_t state = NA, goal = NA; |
2561 | 0 | int rrsig, active, retire; |
2562 | 0 | dst_key_t *key = dkey->key; |
2563 | |
|
2564 | 0 | if (zsk) { |
2565 | 0 | rrsig = DST_KEY_ZRRSIG; |
2566 | 0 | active = DST_TIME_ACTIVATE; |
2567 | 0 | retire = DST_TIME_INACTIVE; |
2568 | 0 | } else { |
2569 | 0 | rrsig = DST_KEY_KRRSIG; |
2570 | 0 | active = DST_TIME_PUBLISH; |
2571 | 0 | retire = DST_TIME_DELETE; |
2572 | 0 | } |
2573 | |
|
2574 | 0 | RETERR(isc_buffer_printf(buf, "\n")); |
2575 | | |
2576 | 0 | (void)dst_key_getstate(key, DST_KEY_GOAL, &goal); |
2577 | 0 | (void)dst_key_getstate(key, rrsig, &state); |
2578 | 0 | (void)dst_key_gettime(key, active, &active_time); |
2579 | 0 | if (active_time == 0) { |
2580 | | // only interested in keys that were once active. |
2581 | 0 | return ISC_R_SUCCESS; |
2582 | 0 | } |
2583 | | |
2584 | 0 | if (goal == HIDDEN && (state == UNRETENTIVE || state == HIDDEN)) { |
2585 | 0 | isc_stdtime_t remove_time = 0; |
2586 | | // is the key removed yet? |
2587 | 0 | state = NA; |
2588 | 0 | (void)dst_key_getstate(key, DST_KEY_DNSKEY, &state); |
2589 | 0 | if (state == RUMOURED || state == OMNIPRESENT) { |
2590 | 0 | result = dst_key_gettime(key, DST_TIME_DELETE, |
2591 | 0 | &remove_time); |
2592 | 0 | if (result == ISC_R_SUCCESS) { |
2593 | 0 | RETERR(isc_buffer_printf( |
2594 | 0 | buf, " Key is retired, will be " |
2595 | 0 | "removed on ")); |
2596 | 0 | isc_stdtime_tostring(remove_time, timestr, |
2597 | 0 | sizeof(timestr)); |
2598 | 0 | RETERR(isc_buffer_printf(buf, "%s", timestr)); |
2599 | 0 | } |
2600 | 0 | } else { |
2601 | 0 | RETERR(isc_buffer_printf(buf, " Key has been removed " |
2602 | 0 | "from the zone")); |
2603 | 0 | } |
2604 | 0 | } else { |
2605 | 0 | isc_stdtime_t retire_time = 0; |
2606 | 0 | result = dst_key_gettime(key, retire, &retire_time); |
2607 | 0 | if (result == ISC_R_SUCCESS) { |
2608 | 0 | if (now < retire_time) { |
2609 | 0 | if (goal == OMNIPRESENT) { |
2610 | 0 | RETERR(isc_buffer_printf( |
2611 | 0 | buf, " Next rollover " |
2612 | 0 | "scheduled on ")); |
2613 | 0 | retire_time = keymgr_prepublication_time( |
2614 | 0 | dkey, kasp, |
2615 | 0 | retire_time - active_time, now); |
2616 | 0 | } else { |
2617 | 0 | RETERR(isc_buffer_printf( |
2618 | 0 | buf, " Key will retire on ")); |
2619 | 0 | } |
2620 | 0 | } else { |
2621 | 0 | RETERR(isc_buffer_printf(buf, " Rollover is " |
2622 | 0 | "due since ")); |
2623 | 0 | } |
2624 | 0 | isc_stdtime_tostring(retire_time, timestr, |
2625 | 0 | sizeof(timestr)); |
2626 | 0 | RETERR(isc_buffer_printf(buf, "%s", timestr)); |
2627 | 0 | } else { |
2628 | 0 | RETERR(isc_buffer_printf(buf, |
2629 | 0 | " No rollover scheduled")); |
2630 | 0 | } |
2631 | 0 | } |
2632 | 0 | RETERR(isc_buffer_printf(buf, "\n")); |
2633 | | |
2634 | 0 | failure: |
2635 | 0 | return result; |
2636 | 0 | } |
2637 | | |
2638 | | static isc_result_t |
2639 | 0 | keystate_status(dst_key_t *key, isc_buffer_t *buf, const char *pre, int ks) { |
2640 | 0 | dst_key_state_t state = NA; |
2641 | 0 | isc_result_t result = ISC_R_SUCCESS; |
2642 | |
|
2643 | 0 | (void)dst_key_getstate(key, ks, &state); |
2644 | 0 | switch (state) { |
2645 | 0 | case HIDDEN: |
2646 | 0 | RETERR(isc_buffer_printf(buf, " - %shidden\n", pre)); |
2647 | 0 | break; |
2648 | 0 | case RUMOURED: |
2649 | 0 | RETERR(isc_buffer_printf(buf, " - %srumoured\n", pre)); |
2650 | 0 | break; |
2651 | 0 | case OMNIPRESENT: |
2652 | 0 | RETERR(isc_buffer_printf(buf, " - %somnipresent\n", pre)); |
2653 | 0 | break; |
2654 | 0 | case UNRETENTIVE: |
2655 | 0 | RETERR(isc_buffer_printf(buf, " - %sunretentive\n", pre)); |
2656 | 0 | break; |
2657 | 0 | case NA: |
2658 | 0 | default: |
2659 | | /* print nothing */ |
2660 | 0 | break; |
2661 | 0 | } |
2662 | | |
2663 | 0 | failure: |
2664 | 0 | return result; |
2665 | 0 | } |
2666 | | |
2667 | | isc_result_t |
2668 | | dns_keymgr_status(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring, |
2669 | 0 | isc_stdtime_t now, char *out, size_t out_len) { |
2670 | 0 | isc_buffer_t buf; |
2671 | 0 | isc_result_t result = ISC_R_SUCCESS; |
2672 | 0 | char timestr[26]; /* Minimal buf as per ctime_r() spec. */ |
2673 | |
|
2674 | 0 | REQUIRE(DNS_KASP_VALID(kasp)); |
2675 | 0 | REQUIRE(keyring != NULL); |
2676 | 0 | REQUIRE(out != NULL); |
2677 | |
|
2678 | 0 | isc_buffer_init(&buf, out, out_len); |
2679 | | |
2680 | | // policy name |
2681 | 0 | RETERR(isc_buffer_printf(&buf, "dnssec-policy: %s\n", |
2682 | 0 | dns_kasp_getname(kasp))); |
2683 | 0 | RETERR(isc_buffer_printf(&buf, "current time: ")); |
2684 | 0 | isc_stdtime_tostring(now, timestr, sizeof(timestr)); |
2685 | 0 | RETERR(isc_buffer_printf(&buf, "%s\n", timestr)); |
2686 | | |
2687 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2688 | 0 | char algstr[DNS_NAME_FORMATSIZE]; |
2689 | 0 | bool ksk = false, zsk = false; |
2690 | |
|
2691 | 0 | if (dst_key_is_unused(dkey->key)) { |
2692 | 0 | continue; |
2693 | 0 | } |
2694 | | |
2695 | | // key data |
2696 | 0 | dns_secalg_format((dns_secalg_t)dst_key_alg(dkey->key), algstr, |
2697 | 0 | sizeof(algstr)); |
2698 | 0 | RETERR(isc_buffer_printf(&buf, "\nkey: %d (%s), %s\n", |
2699 | 0 | dst_key_id(dkey->key), algstr, |
2700 | 0 | keymgr_keyrole(dkey->key))); |
2701 | | |
2702 | | // publish status |
2703 | 0 | RETERR(keytime_status(dkey->key, now, &buf, |
2704 | 0 | " published: ", DST_KEY_DNSKEY, |
2705 | 0 | DST_TIME_PUBLISH)); |
2706 | | |
2707 | | // signing status |
2708 | 0 | result = dst_key_getbool(dkey->key, DST_BOOL_KSK, &ksk); |
2709 | 0 | if (result == ISC_R_SUCCESS && ksk) { |
2710 | 0 | RETERR(keytime_status( |
2711 | 0 | dkey->key, now, &buf, " key signing: ", |
2712 | 0 | DST_KEY_KRRSIG, DST_TIME_PUBLISH)); |
2713 | 0 | } |
2714 | 0 | result = dst_key_getbool(dkey->key, DST_BOOL_ZSK, &zsk); |
2715 | 0 | if (result == ISC_R_SUCCESS && zsk) { |
2716 | 0 | RETERR(keytime_status( |
2717 | 0 | dkey->key, now, &buf, " zone signing: ", |
2718 | 0 | DST_KEY_ZRRSIG, DST_TIME_ACTIVATE)); |
2719 | 0 | } |
2720 | | |
2721 | | // rollover status |
2722 | 0 | RETERR(rollover_status(dkey, kasp, now, &buf, zsk)); |
2723 | | |
2724 | | // key states |
2725 | 0 | RETERR(keystate_status(dkey->key, &buf, |
2726 | 0 | "goal: ", DST_KEY_GOAL)); |
2727 | 0 | RETERR(keystate_status(dkey->key, &buf, |
2728 | 0 | "dnskey: ", DST_KEY_DNSKEY)); |
2729 | 0 | RETERR(keystate_status(dkey->key, &buf, |
2730 | 0 | "ds: ", DST_KEY_DS)); |
2731 | 0 | RETERR(keystate_status(dkey->key, &buf, |
2732 | 0 | "zone rrsig: ", DST_KEY_ZRRSIG)); |
2733 | 0 | RETERR(keystate_status(dkey->key, &buf, |
2734 | 0 | "key rrsig: ", DST_KEY_KRRSIG)); |
2735 | 0 | } |
2736 | | |
2737 | 0 | failure: |
2738 | |
|
2739 | 0 | return result; |
2740 | 0 | } |
2741 | | |
2742 | | isc_result_t |
2743 | | dns_keymgr_rollover(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring, |
2744 | | isc_stdtime_t now, isc_stdtime_t when, dns_keytag_t id, |
2745 | 0 | unsigned int algorithm) { |
2746 | 0 | int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE); |
2747 | 0 | const char *directory = NULL; |
2748 | 0 | isc_result_t result; |
2749 | 0 | dns_dnsseckey_t *key = NULL; |
2750 | 0 | isc_stdtime_t active, retire, prepub; |
2751 | |
|
2752 | 0 | REQUIRE(DNS_KASP_VALID(kasp)); |
2753 | 0 | REQUIRE(keyring != NULL); |
2754 | |
|
2755 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2756 | 0 | if (dst_key_id(dkey->key) != id) { |
2757 | 0 | continue; |
2758 | 0 | } |
2759 | 0 | if (algorithm > 0 && dst_key_alg(dkey->key) != algorithm) { |
2760 | 0 | continue; |
2761 | 0 | } |
2762 | 0 | if (key != NULL) { |
2763 | | /* |
2764 | | * Only rollover for one key at a time. |
2765 | | */ |
2766 | 0 | return DNS_R_TOOMANYKEYS; |
2767 | 0 | } |
2768 | 0 | key = dkey; |
2769 | 0 | } |
2770 | | |
2771 | 0 | if (key == NULL) { |
2772 | 0 | return DNS_R_NOKEYMATCH; |
2773 | 0 | } |
2774 | | |
2775 | 0 | result = dst_key_gettime(key->key, DST_TIME_ACTIVATE, &active); |
2776 | 0 | if (result != ISC_R_SUCCESS || active > now) { |
2777 | 0 | return DNS_R_KEYNOTACTIVE; |
2778 | 0 | } |
2779 | | |
2780 | 0 | result = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire); |
2781 | 0 | if (result != ISC_R_SUCCESS) { |
2782 | | /** |
2783 | | * Default to as if this key was not scheduled to |
2784 | | * become retired, as if it had unlimited lifetime. |
2785 | | */ |
2786 | 0 | retire = 0; |
2787 | 0 | } |
2788 | | |
2789 | | /** |
2790 | | * Usually when is set to now, which is before the scheduled |
2791 | | * prepublication time, meaning we reduce the lifetime of the |
2792 | | * key. But in some cases, the lifetime can also be extended. |
2793 | | * We accept it, but we can return an error here if that |
2794 | | * turns out to be unintuitive behavior. |
2795 | | */ |
2796 | 0 | prepub = dst_key_getttl(key->key) + dns_kasp_publishsafety(kasp) + |
2797 | 0 | dns_kasp_zonepropagationdelay(kasp); |
2798 | 0 | retire = when + prepub; |
2799 | |
|
2800 | 0 | dst_key_settime(key->key, DST_TIME_INACTIVE, retire); |
2801 | | |
2802 | | /* Store key state and update hints. */ |
2803 | 0 | directory = dst_key_directory(key->key); |
2804 | 0 | if (directory == NULL) { |
2805 | 0 | directory = "."; |
2806 | 0 | } |
2807 | |
|
2808 | 0 | dns_dnssec_get_hints(key, now); |
2809 | 0 | result = dst_key_tofile(key->key, options, directory); |
2810 | 0 | if (result == ISC_R_SUCCESS) { |
2811 | 0 | dst_key_setmodified(key->key, false); |
2812 | 0 | } |
2813 | |
|
2814 | 0 | return result; |
2815 | 0 | } |
2816 | | |
2817 | | isc_result_t |
2818 | | dns_keymgr_offline(const dns_name_t *origin, dns_dnsseckeylist_t *keyring, |
2819 | | dns_kasp_t *kasp, isc_stdtime_t now, |
2820 | 0 | isc_stdtime_t *nexttime) { |
2821 | 0 | isc_result_t result = ISC_R_SUCCESS; |
2822 | 0 | int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE); |
2823 | 0 | char keystr[DST_KEY_FORMATSIZE]; |
2824 | |
|
2825 | 0 | *nexttime = 0; |
2826 | | |
2827 | | /* Store key states and update hints. */ |
2828 | 0 | ISC_LIST_FOREACH(*keyring, dkey, link) { |
2829 | 0 | bool modified; |
2830 | 0 | bool ksk = false, zsk = false; |
2831 | 0 | isc_stdtime_t active = 0, published = 0, inactive = 0, |
2832 | 0 | remove = 0; |
2833 | 0 | isc_stdtime_t lastchange = 0, nextchange = 0; |
2834 | 0 | dst_key_state_t dnskey_state = HIDDEN, zrrsig_state = HIDDEN, |
2835 | 0 | goal_state = HIDDEN; |
2836 | 0 | dst_key_state_t current_dnskey = HIDDEN, |
2837 | 0 | current_zrrsig = HIDDEN, current_goal = HIDDEN; |
2838 | |
|
2839 | 0 | (void)dst_key_role(dkey->key, &ksk, &zsk); |
2840 | 0 | if (ksk || !zsk) { |
2841 | 0 | continue; |
2842 | 0 | } |
2843 | | |
2844 | 0 | dns_keymgr_key_init(dkey, kasp, now, false); |
2845 | | |
2846 | | /* Get current metadata */ |
2847 | 0 | RETERR(dst_key_getstate(dkey->key, DST_KEY_DNSKEY, |
2848 | 0 | ¤t_dnskey)); |
2849 | 0 | RETERR(dst_key_getstate(dkey->key, DST_KEY_ZRRSIG, |
2850 | 0 | ¤t_zrrsig)); |
2851 | 0 | RETERR(dst_key_getstate(dkey->key, DST_KEY_GOAL, |
2852 | 0 | ¤t_goal)); |
2853 | 0 | RETERR(dst_key_gettime(dkey->key, DST_TIME_PUBLISH, |
2854 | 0 | &published)); |
2855 | 0 | RETERR(dst_key_gettime(dkey->key, DST_TIME_ACTIVATE, &active)); |
2856 | 0 | (void)dst_key_gettime(dkey->key, DST_TIME_INACTIVE, &inactive); |
2857 | 0 | (void)dst_key_gettime(dkey->key, DST_TIME_DELETE, &remove); |
2858 | | |
2859 | | /* Determine key states from the metadata. */ |
2860 | 0 | if (active <= now) { |
2861 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
2862 | 0 | ttlsig += dns_kasp_zonepropagationdelay(kasp); |
2863 | 0 | if ((active + ttlsig) <= now) { |
2864 | 0 | zrrsig_state = OMNIPRESENT; |
2865 | 0 | } else { |
2866 | 0 | zrrsig_state = RUMOURED; |
2867 | 0 | (void)dst_key_gettime(dkey->key, |
2868 | 0 | DST_TIME_ZRRSIG, |
2869 | 0 | &lastchange); |
2870 | 0 | nextchange = lastchange + ttlsig + |
2871 | 0 | dns_kasp_retiresafety(kasp); |
2872 | 0 | } |
2873 | 0 | goal_state = OMNIPRESENT; |
2874 | 0 | } |
2875 | |
|
2876 | 0 | if (published <= now) { |
2877 | 0 | dns_ttl_t key_ttl = dst_key_getttl(dkey->key); |
2878 | 0 | key_ttl += dns_kasp_zonepropagationdelay(kasp); |
2879 | 0 | if ((published + key_ttl) <= now) { |
2880 | 0 | dnskey_state = OMNIPRESENT; |
2881 | 0 | } else { |
2882 | 0 | dnskey_state = RUMOURED; |
2883 | 0 | (void)dst_key_gettime(dkey->key, |
2884 | 0 | DST_TIME_DNSKEY, |
2885 | 0 | &lastchange); |
2886 | 0 | nextchange = lastchange + key_ttl + |
2887 | 0 | dns_kasp_publishsafety(kasp); |
2888 | 0 | } |
2889 | 0 | goal_state = OMNIPRESENT; |
2890 | 0 | } |
2891 | |
|
2892 | 0 | if (inactive > 0 && inactive <= now) { |
2893 | 0 | dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true); |
2894 | 0 | ttlsig += dns_kasp_zonepropagationdelay(kasp); |
2895 | 0 | if ((inactive + ttlsig) <= now) { |
2896 | 0 | zrrsig_state = HIDDEN; |
2897 | 0 | } else { |
2898 | 0 | zrrsig_state = UNRETENTIVE; |
2899 | 0 | (void)dst_key_gettime(dkey->key, |
2900 | 0 | DST_TIME_ZRRSIG, |
2901 | 0 | &lastchange); |
2902 | 0 | nextchange = lastchange + ttlsig + |
2903 | 0 | dns_kasp_retiresafety(kasp); |
2904 | 0 | } |
2905 | 0 | goal_state = HIDDEN; |
2906 | 0 | } |
2907 | |
|
2908 | 0 | if (remove > 0 && remove <= now) { |
2909 | 0 | dns_ttl_t key_ttl = dst_key_getttl(dkey->key); |
2910 | 0 | key_ttl += dns_kasp_zonepropagationdelay(kasp); |
2911 | 0 | if ((remove + key_ttl) <= now) { |
2912 | 0 | dnskey_state = HIDDEN; |
2913 | 0 | } else { |
2914 | 0 | dnskey_state = UNRETENTIVE; |
2915 | 0 | (void)dst_key_gettime(dkey->key, |
2916 | 0 | DST_TIME_DNSKEY, |
2917 | 0 | &lastchange); |
2918 | 0 | nextchange = |
2919 | 0 | lastchange + key_ttl + |
2920 | 0 | dns_kasp_zonepropagationdelay(kasp); |
2921 | 0 | } |
2922 | 0 | zrrsig_state = HIDDEN; |
2923 | 0 | goal_state = HIDDEN; |
2924 | 0 | } |
2925 | |
|
2926 | 0 | if ((*nexttime == 0 || *nexttime > nextchange) && |
2927 | 0 | nextchange > 0) |
2928 | 0 | { |
2929 | 0 | *nexttime = nextchange; |
2930 | 0 | } |
2931 | | |
2932 | | /* Update key states if necessary. */ |
2933 | 0 | if (goal_state != current_goal) { |
2934 | 0 | dst_key_setstate(dkey->key, DST_KEY_GOAL, goal_state); |
2935 | 0 | } |
2936 | 0 | if (dnskey_state != current_dnskey) { |
2937 | 0 | dst_key_setstate(dkey->key, DST_KEY_DNSKEY, |
2938 | 0 | dnskey_state); |
2939 | 0 | dst_key_settime(dkey->key, DST_TIME_DNSKEY, now); |
2940 | 0 | } |
2941 | 0 | if (zrrsig_state != current_zrrsig) { |
2942 | 0 | dst_key_setstate(dkey->key, DST_KEY_ZRRSIG, |
2943 | 0 | zrrsig_state); |
2944 | 0 | dst_key_settime(dkey->key, DST_TIME_ZRRSIG, now); |
2945 | 0 | if (zrrsig_state == RUMOURED) { |
2946 | 0 | dkey->first_sign = true; |
2947 | 0 | } |
2948 | 0 | } |
2949 | 0 | modified = dst_key_ismodified(dkey->key); |
2950 | |
|
2951 | 0 | if (modified) { |
2952 | 0 | const char *directory = dst_key_directory(dkey->key); |
2953 | 0 | if (directory == NULL) { |
2954 | 0 | directory = "."; |
2955 | 0 | } |
2956 | |
|
2957 | 0 | dns_dnssec_get_hints(dkey, now); |
2958 | |
|
2959 | 0 | RETERR(dst_key_tofile(dkey->key, options, directory)); |
2960 | 0 | dst_key_setmodified(dkey->key, false); |
2961 | |
|
2962 | 0 | if (!isc_log_wouldlog(ISC_LOG_DEBUG(3))) { |
2963 | 0 | continue; |
2964 | 0 | } |
2965 | 0 | dst_key_format(dkey->key, keystr, sizeof(keystr)); |
2966 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, |
2967 | 0 | DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(3), |
2968 | 0 | "keymgr: DNSKEY %s (%s) " |
2969 | 0 | "saved to directory %s, policy %s", |
2970 | 0 | keystr, keymgr_keyrole(dkey->key), |
2971 | 0 | directory, dns_kasp_getname(kasp)); |
2972 | 0 | } |
2973 | 0 | dst_key_setmodified(dkey->key, false); |
2974 | 0 | } |
2975 | | |
2976 | 0 | result = ISC_R_SUCCESS; |
2977 | |
|
2978 | 0 | failure: |
2979 | 0 | if (isc_log_wouldlog(ISC_LOG_DEBUG(3))) { |
2980 | 0 | char namebuf[DNS_NAME_FORMATSIZE]; |
2981 | 0 | dns_name_format(origin, namebuf, sizeof(namebuf)); |
2982 | 0 | isc_log_write(DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC, |
2983 | 0 | ISC_LOG_DEBUG(3), "keymgr: %s (offline-ksk) done", |
2984 | 0 | namebuf); |
2985 | 0 | } |
2986 | 0 | return result; |
2987 | 0 | } |