Coverage Report

Created: 2023-06-29 07:13

/src/binutils-gdb/bfd/coff-sh.c
Line
Count
Source (jump to first uncovered line)
1
/* BFD back-end for Renesas Super-H COFF binaries.
2
   Copyright (C) 1993-2023 Free Software Foundation, Inc.
3
   Contributed by Cygnus Support.
4
   Written by Steve Chamberlain, <sac@cygnus.com>.
5
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
6
7
   This file is part of BFD, the Binary File Descriptor library.
8
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
   MA 02110-1301, USA.  */
23
24
#include "sysdep.h"
25
#include "bfd.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "bfdlink.h"
29
#include "coff/sh.h"
30
#include "coff/internal.h"
31
32
#undef  bfd_pe_print_pdata
33
34
#ifdef COFF_WITH_PE
35
#include "coff/pe.h"
36
37
#ifndef COFF_IMAGE_WITH_PE
38
static bool sh_align_load_span
39
  (bfd *, asection *, bfd_byte *,
40
   bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41
   void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *);
42
43
0
#define _bfd_sh_align_load_span sh_align_load_span
44
#endif
45
46
#define bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata
47
48
#else
49
50
#define bfd_pe_print_pdata   NULL
51
52
#endif /* COFF_WITH_PE.  */
53
54
#include "libcoff.h"
55
56
/* Internal functions.  */
57
58
#ifdef COFF_WITH_PE
59
/* Can't build import tables with 2**4 alignment.  */
60
172k
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER  2
61
#else
62
/* Default section alignment to 2**4.  */
63
16.7M
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER  4
64
#endif
65
66
#ifdef COFF_IMAGE_WITH_PE
67
/* Align PE executables.  */
68
0
#define COFF_PAGE_SIZE 0x1000
69
#endif
70
71
/* Generate long file names.  */
72
#define COFF_LONG_FILENAMES
73
74
#ifdef COFF_WITH_PE
75
/* Return TRUE if this relocation should
76
   appear in the output .reloc section.  */
77
78
static bool
79
in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80
      reloc_howto_type * howto)
81
0
{
82
0
  return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
83
0
}
Unexecuted instantiation: pe-sh.c:in_reloc_p
Unexecuted instantiation: pei-sh.c:in_reloc_p
84
#endif
85
86
static bfd_reloc_status_type
87
sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88
static bool
89
sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90
         bfd_byte *, struct internal_reloc *,
91
         struct internal_syment *, asection **);
92
static bool
93
sh_align_loads (bfd *, asection *, struct internal_reloc *,
94
    bfd_byte *, bool *);
95
96
/* The supported relocations.  There are a lot of relocations defined
97
   in coff/internal.h which we do not expect to ever see.  */
98
static reloc_howto_type sh_coff_howtos[] =
99
{
100
  EMPTY_HOWTO (0),
101
  EMPTY_HOWTO (1),
102
#ifdef COFF_WITH_PE
103
  /* Windows CE */
104
  HOWTO (R_SH_IMM32CE,    /* type */
105
   0,     /* rightshift */
106
   4,     /* size */
107
   32,      /* bitsize */
108
   false,     /* pc_relative */
109
   0,     /* bitpos */
110
   complain_overflow_bitfield, /* complain_on_overflow */
111
   sh_reloc,    /* special_function */
112
   "r_imm32ce",   /* name */
113
   true,      /* partial_inplace */
114
   0xffffffff,    /* src_mask */
115
   0xffffffff,    /* dst_mask */
116
   false),    /* pcrel_offset */
117
#else
118
  EMPTY_HOWTO (2),
119
#endif
120
  EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121
  EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122
  EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123
  EMPTY_HOWTO (6), /* R_SH_IMM24 */
124
  EMPTY_HOWTO (7), /* R_SH_LOW16 */
125
  EMPTY_HOWTO (8),
126
  EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
127
128
  HOWTO (R_SH_PCDISP8BY2, /* type */
129
   1,     /* rightshift */
130
   2,     /* size */
131
   8,     /* bitsize */
132
   true,      /* pc_relative */
133
   0,     /* bitpos */
134
   complain_overflow_signed, /* complain_on_overflow */
135
   sh_reloc,    /* special_function */
136
   "r_pcdisp8by2",  /* name */
137
   true,      /* partial_inplace */
138
   0xff,      /* src_mask */
139
   0xff,      /* dst_mask */
140
   true),     /* pcrel_offset */
141
142
  EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
143
144
  HOWTO (R_SH_PCDISP,   /* type */
145
   1,     /* rightshift */
146
   2,     /* size */
147
   12,      /* bitsize */
148
   true,      /* pc_relative */
149
   0,     /* bitpos */
150
   complain_overflow_signed, /* complain_on_overflow */
151
   sh_reloc,    /* special_function */
152
   "r_pcdisp12by2", /* name */
153
   true,      /* partial_inplace */
154
   0xfff,     /* src_mask */
155
   0xfff,     /* dst_mask */
156
   true),     /* pcrel_offset */
157
158
  EMPTY_HOWTO (13),
159
160
  HOWTO (R_SH_IMM32,    /* type */
161
   0,     /* rightshift */
162
   4,     /* size */
163
   32,      /* bitsize */
164
   false,     /* pc_relative */
165
   0,     /* bitpos */
166
   complain_overflow_bitfield, /* complain_on_overflow */
167
   sh_reloc,    /* special_function */
168
   "r_imm32",   /* name */
169
   true,      /* partial_inplace */
170
   0xffffffff,    /* src_mask */
171
   0xffffffff,    /* dst_mask */
172
   false),    /* pcrel_offset */
173
174
  EMPTY_HOWTO (15),
175
#ifdef COFF_WITH_PE
176
  HOWTO (R_SH_IMAGEBASE,  /* type */
177
   0,     /* rightshift */
178
   4,     /* size */
179
   32,      /* bitsize */
180
   false,     /* pc_relative */
181
   0,     /* bitpos */
182
   complain_overflow_bitfield, /* complain_on_overflow */
183
   sh_reloc,    /* special_function */
184
   "rva32",   /* name */
185
   true,      /* partial_inplace */
186
   0xffffffff,    /* src_mask */
187
   0xffffffff,    /* dst_mask */
188
   false),    /* pcrel_offset */
189
#else
190
  EMPTY_HOWTO (16), /* R_SH_IMM8 */
191
#endif
192
  EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193
  EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194
  EMPTY_HOWTO (19), /* R_SH_IMM4 */
195
  EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196
  EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
197
198
  HOWTO (R_SH_PCRELIMM8BY2, /* type */
199
   1,     /* rightshift */
200
   2,     /* size */
201
   8,     /* bitsize */
202
   true,      /* pc_relative */
203
   0,     /* bitpos */
204
   complain_overflow_unsigned, /* complain_on_overflow */
205
   sh_reloc,    /* special_function */
206
   "r_pcrelimm8by2",  /* name */
207
   true,      /* partial_inplace */
208
   0xff,      /* src_mask */
209
   0xff,      /* dst_mask */
210
   true),     /* pcrel_offset */
211
212
  HOWTO (R_SH_PCRELIMM8BY4, /* type */
213
   2,     /* rightshift */
214
   2,     /* size */
215
   8,     /* bitsize */
216
   true,      /* pc_relative */
217
   0,     /* bitpos */
218
   complain_overflow_unsigned, /* complain_on_overflow */
219
   sh_reloc,    /* special_function */
220
   "r_pcrelimm8by4",  /* name */
221
   true,      /* partial_inplace */
222
   0xff,      /* src_mask */
223
   0xff,      /* dst_mask */
224
   true),     /* pcrel_offset */
225
226
  HOWTO (R_SH_IMM16,    /* type */
227
   0,     /* rightshift */
228
   2,     /* size */
229
   16,      /* bitsize */
230
   false,     /* pc_relative */
231
   0,     /* bitpos */
232
   complain_overflow_bitfield, /* complain_on_overflow */
233
   sh_reloc,    /* special_function */
234
   "r_imm16",   /* name */
235
   true,      /* partial_inplace */
236
   0xffff,    /* src_mask */
237
   0xffff,    /* dst_mask */
238
   false),    /* pcrel_offset */
239
240
  HOWTO (R_SH_SWITCH16,   /* type */
241
   0,     /* rightshift */
242
   2,     /* size */
243
   16,      /* bitsize */
244
   false,     /* pc_relative */
245
   0,     /* bitpos */
246
   complain_overflow_bitfield, /* complain_on_overflow */
247
   sh_reloc,    /* special_function */
248
   "r_switch16",    /* name */
249
   true,      /* partial_inplace */
250
   0xffff,    /* src_mask */
251
   0xffff,    /* dst_mask */
252
   false),    /* pcrel_offset */
253
254
  HOWTO (R_SH_SWITCH32,   /* type */
255
   0,     /* rightshift */
256
   4,     /* size */
257
   32,      /* bitsize */
258
   false,     /* pc_relative */
259
   0,     /* bitpos */
260
   complain_overflow_bitfield, /* complain_on_overflow */
261
   sh_reloc,    /* special_function */
262
   "r_switch32",    /* name */
263
   true,      /* partial_inplace */
264
   0xffffffff,    /* src_mask */
265
   0xffffffff,    /* dst_mask */
266
   false),    /* pcrel_offset */
267
268
  HOWTO (R_SH_USES,   /* type */
269
   0,     /* rightshift */
270
   2,     /* size */
271
   16,      /* bitsize */
272
   false,     /* pc_relative */
273
   0,     /* bitpos */
274
   complain_overflow_bitfield, /* complain_on_overflow */
275
   sh_reloc,    /* special_function */
276
   "r_uses",    /* name */
277
   true,      /* partial_inplace */
278
   0xffff,    /* src_mask */
279
   0xffff,    /* dst_mask */
280
   false),    /* pcrel_offset */
281
282
  HOWTO (R_SH_COUNT,    /* type */
283
   0,     /* rightshift */
284
   4,     /* size */
285
   32,      /* bitsize */
286
   false,     /* pc_relative */
287
   0,     /* bitpos */
288
   complain_overflow_bitfield, /* complain_on_overflow */
289
   sh_reloc,    /* special_function */
290
   "r_count",   /* name */
291
   true,      /* partial_inplace */
292
   0xffffffff,    /* src_mask */
293
   0xffffffff,    /* dst_mask */
294
   false),    /* pcrel_offset */
295
296
  HOWTO (R_SH_ALIGN,    /* type */
297
   0,     /* rightshift */
298
   4,     /* size */
299
   32,      /* bitsize */
300
   false,     /* pc_relative */
301
   0,     /* bitpos */
302
   complain_overflow_bitfield, /* complain_on_overflow */
303
   sh_reloc,    /* special_function */
304
   "r_align",   /* name */
305
   true,      /* partial_inplace */
306
   0xffffffff,    /* src_mask */
307
   0xffffffff,    /* dst_mask */
308
   false),    /* pcrel_offset */
309
310
  HOWTO (R_SH_CODE,   /* type */
311
   0,     /* rightshift */
312
   4,     /* size */
313
   32,      /* bitsize */
314
   false,     /* pc_relative */
315
   0,     /* bitpos */
316
   complain_overflow_bitfield, /* complain_on_overflow */
317
   sh_reloc,    /* special_function */
318
   "r_code",    /* name */
319
   true,      /* partial_inplace */
320
   0xffffffff,    /* src_mask */
321
   0xffffffff,    /* dst_mask */
322
   false),    /* pcrel_offset */
323
324
  HOWTO (R_SH_DATA,   /* type */
325
   0,     /* rightshift */
326
   4,     /* size */
327
   32,      /* bitsize */
328
   false,     /* pc_relative */
329
   0,     /* bitpos */
330
   complain_overflow_bitfield, /* complain_on_overflow */
331
   sh_reloc,    /* special_function */
332
   "r_data",    /* name */
333
   true,      /* partial_inplace */
334
   0xffffffff,    /* src_mask */
335
   0xffffffff,    /* dst_mask */
336
   false),    /* pcrel_offset */
337
338
  HOWTO (R_SH_LABEL,    /* type */
339
   0,     /* rightshift */
340
   4,     /* size */
341
   32,      /* bitsize */
342
   false,     /* pc_relative */
343
   0,     /* bitpos */
344
   complain_overflow_bitfield, /* complain_on_overflow */
345
   sh_reloc,    /* special_function */
346
   "r_label",   /* name */
347
   true,      /* partial_inplace */
348
   0xffffffff,    /* src_mask */
349
   0xffffffff,    /* dst_mask */
350
   false),    /* pcrel_offset */
351
352
  HOWTO (R_SH_SWITCH8,    /* type */
353
   0,     /* rightshift */
354
   1,     /* size */
355
   8,     /* bitsize */
356
   false,     /* pc_relative */
357
   0,     /* bitpos */
358
   complain_overflow_bitfield, /* complain_on_overflow */
359
   sh_reloc,    /* special_function */
360
   "r_switch8",   /* name */
361
   true,      /* partial_inplace */
362
   0xff,      /* src_mask */
363
   0xff,      /* dst_mask */
364
   false)     /* pcrel_offset */
365
};
366
367
0
#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
368
369
/* Check for a bad magic number.  */
370
3.09M
#define BADMAG(x) SHBADMAG(x)
371
372
/* Customize coffcode.h (this is not currently used).  */
373
#define SH 1
374
375
/* FIXME: This should not be set here.  */
376
#define __A_MAGIC_SET__
377
378
#ifndef COFF_WITH_PE
379
/* Swap the r_offset field in and out.  */
380
0
#define SWAP_IN_RELOC_OFFSET  H_GET_32
381
0
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
382
383
/* Swap out extra information in the reloc structure.  */
384
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)  \
385
0
  do            \
386
0
    {           \
387
0
      dst->r_stuff[0] = 'S';      \
388
0
      dst->r_stuff[1] = 'C';      \
389
0
    }            \
390
0
  while (0)
391
#endif
392
393
/* Get the value of a symbol, when performing a relocation.  */
394
395
static long
396
get_symbol_value (asymbol *symbol)
397
0
{
398
0
  bfd_vma relocation;
399
400
0
  if (bfd_is_com_section (symbol->section))
401
0
    relocation = 0;
402
0
  else
403
0
    relocation = (symbol->value +
404
0
      symbol->section->output_section->vma +
405
0
      symbol->section->output_offset);
406
407
0
  return relocation;
408
0
}
Unexecuted instantiation: coff-sh.c:get_symbol_value
Unexecuted instantiation: pe-sh.c:get_symbol_value
Unexecuted instantiation: pei-sh.c:get_symbol_value
409
410
#ifdef COFF_WITH_PE
411
/* Convert an rtype to howto for the COFF backend linker.
412
   Copied from coff-i386.  */
413
#define coff_rtype_to_howto coff_sh_rtype_to_howto
414
415
416
static reloc_howto_type *
417
coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418
      asection * sec,
419
      struct internal_reloc * rel,
420
      struct coff_link_hash_entry * h,
421
      struct internal_syment * sym,
422
      bfd_vma * addendp)
423
0
{
424
0
  reloc_howto_type * howto;
425
426
0
  howto = sh_coff_howtos + rel->r_type;
427
428
0
  *addendp = 0;
429
430
0
  if (howto->pc_relative)
431
0
    *addendp += sec->vma;
432
433
0
  if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
434
0
    {
435
      /* This is a common symbol.  The section contents include the
436
   size (sym->n_value) as an addend.  The relocate_section
437
   function will be adding in the final value of the symbol.  We
438
   need to subtract out the current size in order to get the
439
   correct result.  */
440
0
      BFD_ASSERT (h != NULL);
441
0
    }
442
443
0
  if (howto->pc_relative)
444
0
    {
445
0
      *addendp -= 4;
446
447
      /* If the symbol is defined, then the generic code is going to
448
   add back the symbol value in order to cancel out an
449
   adjustment it made to the addend.  However, we set the addend
450
   to 0 at the start of this function.  We need to adjust here,
451
   to avoid the adjustment the generic code will make.  FIXME:
452
   This is getting a bit hackish.  */
453
0
      if (sym != NULL && sym->n_scnum != 0)
454
0
  *addendp -= sym->n_value;
455
0
    }
456
457
0
  if (rel->r_type == R_SH_IMAGEBASE)
458
0
    *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
459
460
0
  return howto;
461
0
}
Unexecuted instantiation: pe-sh.c:coff_sh_rtype_to_howto
Unexecuted instantiation: pei-sh.c:coff_sh_rtype_to_howto
462
463
#endif /* COFF_WITH_PE */
464
465
/* This structure is used to map BFD reloc codes to SH PE relocs.  */
466
struct shcoff_reloc_map
467
{
468
  bfd_reloc_code_real_type bfd_reloc_val;
469
  unsigned char shcoff_reloc_val;
470
};
471
472
#ifdef COFF_WITH_PE
473
/* An array mapping BFD reloc codes to SH PE relocs.  */
474
static const struct shcoff_reloc_map sh_reloc_map[] =
475
{
476
  { BFD_RELOC_32, R_SH_IMM32CE },
477
  { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478
  { BFD_RELOC_CTOR, R_SH_IMM32CE },
479
};
480
#else
481
/* An array mapping BFD reloc codes to SH PE relocs.  */
482
static const struct shcoff_reloc_map sh_reloc_map[] =
483
{
484
  { BFD_RELOC_32, R_SH_IMM32 },
485
  { BFD_RELOC_CTOR, R_SH_IMM32 },
486
};
487
#endif
488
489
/* Given a BFD reloc code, return the howto structure for the
490
   corresponding SH PE reloc.  */
491
#define coff_bfd_reloc_type_lookup  sh_coff_reloc_type_lookup
492
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
493
494
static reloc_howto_type *
495
sh_coff_reloc_type_lookup (bfd *abfd,
496
         bfd_reloc_code_real_type code)
497
2.43k
{
498
2.43k
  unsigned int i;
499
500
5.44k
  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501
5.44k
    if (sh_reloc_map[i].bfd_reloc_val == code)
502
2.43k
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
503
504
0
  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505
0
          abfd, (unsigned int) code);
506
0
  return NULL;
507
2.43k
}
Unexecuted instantiation: coff-sh.c:sh_coff_reloc_type_lookup
Unexecuted instantiation: pe-sh.c:sh_coff_reloc_type_lookup
pei-sh.c:sh_coff_reloc_type_lookup
Line
Count
Source
497
2.43k
{
498
2.43k
  unsigned int i;
499
500
5.44k
  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501
5.44k
    if (sh_reloc_map[i].bfd_reloc_val == code)
502
2.43k
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
503
504
0
  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505
0
          abfd, (unsigned int) code);
506
0
  return NULL;
507
2.43k
}
508
509
static reloc_howto_type *
510
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
511
         const char *r_name)
512
0
{
513
0
  unsigned int i;
514
515
0
  for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516
0
    if (sh_coff_howtos[i].name != NULL
517
0
  && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518
0
      return &sh_coff_howtos[i];
519
520
0
  return NULL;
521
0
}
Unexecuted instantiation: coff-sh.c:sh_coff_reloc_name_lookup
Unexecuted instantiation: pe-sh.c:sh_coff_reloc_name_lookup
Unexecuted instantiation: pei-sh.c:sh_coff_reloc_name_lookup
522
523
/* This macro is used in coffcode.h to get the howto corresponding to
524
   an internal reloc.  */
525
526
#define RTYPE2HOWTO(relent, internal)   \
527
0
  ((relent)->howto =        \
528
0
   ((internal)->r_type < SH_COFF_HOWTO_COUNT  \
529
0
    ? &sh_coff_howtos[(internal)->r_type]  \
530
0
    : (reloc_howto_type *) NULL))
531
532
/* This is the same as the macro in coffcode.h, except that it copies
533
   r_offset into reloc_entry->addend for some relocs.  */
534
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)    \
535
0
  {               \
536
0
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;  \
537
0
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)     \
538
0
      coffsym = (obj_symbols (abfd)       \
539
0
     + (cache_ptr->sym_ptr_ptr - symbols));   \
540
0
    else if (ptr)           \
541
0
      coffsym = coff_symbol_from (ptr);       \
542
0
    if (coffsym != (coff_symbol_type *) NULL      \
543
0
  && coffsym->native->u.syment.n_scnum == 0)   \
544
0
      cache_ptr->addend = 0;         \
545
0
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd    \
546
0
       && ptr->section != (asection *) NULL)   \
547
0
      cache_ptr->addend = - (ptr->section->vma + ptr->value); \
548
0
    else              \
549
0
      cache_ptr->addend = 0;         \
550
0
    if ((reloc).r_type == R_SH_SWITCH8        \
551
0
  || (reloc).r_type == R_SH_SWITCH16      \
552
0
  || (reloc).r_type == R_SH_SWITCH32      \
553
0
  || (reloc).r_type == R_SH_USES        \
554
0
  || (reloc).r_type == R_SH_COUNT        \
555
0
  || (reloc).r_type == R_SH_ALIGN)     \
556
0
      cache_ptr->addend = (reloc).r_offset;     \
557
0
  }
558
559
/* This is the howto function for the SH relocations.  */
560
561
static bfd_reloc_status_type
562
sh_reloc (bfd *      abfd,
563
    arelent *  reloc_entry,
564
    asymbol *  symbol_in,
565
    void *     data,
566
    asection * input_section,
567
    bfd *      output_bfd,
568
    char **    error_message ATTRIBUTE_UNUSED)
569
0
{
570
0
  bfd_vma insn;
571
0
  bfd_vma sym_value;
572
0
  unsigned short r_type;
573
0
  bfd_vma addr = reloc_entry->address;
574
0
  bfd_byte *hit_data = addr + (bfd_byte *) data;
575
576
0
  r_type = reloc_entry->howto->type;
577
578
0
  if (output_bfd != NULL)
579
0
    {
580
      /* Partial linking--do nothing.  */
581
0
      reloc_entry->address += input_section->output_offset;
582
0
      return bfd_reloc_ok;
583
0
    }
584
585
  /* Almost all relocs have to do with relaxing.  If any work must be
586
     done for them, it has been done in sh_relax_section.  */
587
0
  if (r_type != R_SH_IMM32
588
#ifdef COFF_WITH_PE
589
0
      && r_type != R_SH_IMM32CE
590
0
      && r_type != R_SH_IMAGEBASE
591
#endif
592
0
      && (r_type != R_SH_PCDISP
593
0
    || (symbol_in->flags & BSF_LOCAL) != 0))
594
0
    return bfd_reloc_ok;
595
596
0
  if (symbol_in != NULL
597
0
      && bfd_is_und_section (symbol_in->section))
598
0
    return bfd_reloc_undefined;
599
600
0
  if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section,
601
0
          addr))
602
0
    return bfd_reloc_outofrange;
603
604
0
  sym_value = get_symbol_value (symbol_in);
605
606
0
  switch (r_type)
607
0
    {
608
0
    case R_SH_IMM32:
609
#ifdef COFF_WITH_PE
610
0
    case R_SH_IMM32CE:
611
#endif
612
0
      insn = bfd_get_32 (abfd, hit_data);
613
0
      insn += sym_value + reloc_entry->addend;
614
0
      bfd_put_32 (abfd, insn, hit_data);
615
0
      break;
616
#ifdef COFF_WITH_PE
617
0
    case R_SH_IMAGEBASE:
618
0
      insn = bfd_get_32 (abfd, hit_data);
619
0
      insn += sym_value + reloc_entry->addend;
620
0
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
621
0
      bfd_put_32 (abfd, insn, hit_data);
622
0
      break;
623
0
#endif
624
0
    case R_SH_PCDISP:
625
0
      insn = bfd_get_16 (abfd, hit_data);
626
0
      sym_value += reloc_entry->addend;
627
0
      sym_value -= (input_section->output_section->vma
628
0
        + input_section->output_offset
629
0
        + addr
630
0
        + 4);
631
0
      sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
632
0
      insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
633
0
      bfd_put_16 (abfd, insn, hit_data);
634
0
      if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
635
0
  return bfd_reloc_overflow;
636
0
      break;
637
0
    default:
638
0
      abort ();
639
0
      break;
640
0
    }
641
642
0
  return bfd_reloc_ok;
643
0
}
Unexecuted instantiation: coff-sh.c:sh_reloc
Unexecuted instantiation: pe-sh.c:sh_reloc
Unexecuted instantiation: pei-sh.c:sh_reloc
644
645
#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
646
647
/* We can do relaxing.  */
648
#define coff_bfd_relax_section sh_relax_section
649
650
/* We use the special COFF backend linker.  */
651
#define coff_relocate_section sh_relocate_section
652
653
/* When relaxing, we need to use special code to get the relocated
654
   section contents.  */
655
#define coff_bfd_get_relocated_section_contents \
656
  sh_coff_get_relocated_section_contents
657
658
#include "coffcode.h"
659

660
static bool
661
sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
662
663
/* This function handles relaxing on the SH.
664
665
   Function calls on the SH look like this:
666
667
       movl  L1,r0
668
       ...
669
       jsr   @r0
670
       ...
671
     L1:
672
       .long function
673
674
   The compiler and assembler will cooperate to create R_SH_USES
675
   relocs on the jsr instructions.  The r_offset field of the
676
   R_SH_USES reloc is the PC relative offset to the instruction which
677
   loads the register (the r_offset field is computed as though it
678
   were a jump instruction, so the offset value is actually from four
679
   bytes past the instruction).  The linker can use this reloc to
680
   determine just which function is being called, and thus decide
681
   whether it is possible to replace the jsr with a bsr.
682
683
   If multiple function calls are all based on a single register load
684
   (i.e., the same function is called multiple times), the compiler
685
   guarantees that each function call will have an R_SH_USES reloc.
686
   Therefore, if the linker is able to convert each R_SH_USES reloc
687
   which refers to that address, it can safely eliminate the register
688
   load.
689
690
   When the assembler creates an R_SH_USES reloc, it examines it to
691
   determine which address is being loaded (L1 in the above example).
692
   It then counts the number of references to that address, and
693
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
694
   the R_SH_COUNT reloc will be the number of references.  If the
695
   linker is able to eliminate a register load, it can use the
696
   R_SH_COUNT reloc to see whether it can also eliminate the function
697
   address.
698
699
   SH relaxing also handles another, unrelated, matter.  On the SH, if
700
   a load or store instruction is not aligned on a four byte boundary,
701
   the memory cycle interferes with the 32 bit instruction fetch,
702
   causing a one cycle bubble in the pipeline.  Therefore, we try to
703
   align load and store instructions on four byte boundaries if we
704
   can, by swapping them with one of the adjacent instructions.  */
705
706
static bool
707
sh_relax_section (bfd *abfd,
708
      asection *sec,
709
      struct bfd_link_info *link_info,
710
      bool *again)
711
0
{
712
0
  struct internal_reloc *internal_relocs;
713
0
  bool have_code;
714
0
  struct internal_reloc *irel, *irelend;
715
0
  bfd_byte *contents = NULL;
716
717
0
  *again = false;
718
719
0
  if (bfd_link_relocatable (link_info)
720
0
      || (sec->flags & SEC_HAS_CONTENTS) == 0
721
0
      || (sec->flags & SEC_RELOC) == 0
722
0
      || sec->reloc_count == 0)
723
0
    return true;
724
725
0
  if (coff_section_data (abfd, sec) == NULL)
726
0
    {
727
0
      size_t amt = sizeof (struct coff_section_tdata);
728
0
      sec->used_by_bfd = bfd_zalloc (abfd, amt);
729
0
      if (sec->used_by_bfd == NULL)
730
0
  return false;
731
0
    }
732
733
0
  internal_relocs = (_bfd_coff_read_internal_relocs
734
0
         (abfd, sec, link_info->keep_memory,
735
0
          (bfd_byte *) NULL, false,
736
0
          (struct internal_reloc *) NULL));
737
0
  if (internal_relocs == NULL)
738
0
    goto error_return;
739
740
0
  have_code = false;
741
742
0
  irelend = internal_relocs + sec->reloc_count;
743
0
  for (irel = internal_relocs; irel < irelend; irel++)
744
0
    {
745
0
      bfd_vma laddr, paddr, symval;
746
0
      unsigned short insn;
747
0
      struct internal_reloc *irelfn, *irelscan, *irelcount;
748
0
      struct internal_syment sym;
749
0
      bfd_signed_vma foff;
750
751
0
      if (irel->r_type == R_SH_CODE)
752
0
  have_code = true;
753
754
0
      if (irel->r_type != R_SH_USES)
755
0
  continue;
756
757
      /* Get the section contents.  */
758
0
      if (contents == NULL)
759
0
  {
760
0
    if (coff_section_data (abfd, sec)->contents != NULL)
761
0
      contents = coff_section_data (abfd, sec)->contents;
762
0
    else
763
0
      {
764
0
        if (!bfd_malloc_and_get_section (abfd, sec, &contents))
765
0
    goto error_return;
766
0
      }
767
0
  }
768
769
      /* The r_offset field of the R_SH_USES reloc will point us to
770
   the register load.  The 4 is because the r_offset field is
771
   computed as though it were a jump offset, which are based
772
   from 4 bytes after the jump instruction.  */
773
0
      laddr = irel->r_vaddr - sec->vma + 4;
774
      /* Careful to sign extend the 32-bit offset.  */
775
0
      laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
776
0
      if (laddr >= sec->size)
777
0
  {
778
    /* xgettext: c-format */
779
0
    _bfd_error_handler
780
0
      (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
781
0
       abfd, (uint64_t) irel->r_vaddr);
782
0
    continue;
783
0
  }
784
0
      insn = bfd_get_16 (abfd, contents + laddr);
785
786
      /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
787
0
      if ((insn & 0xf000) != 0xd000)
788
0
  {
789
0
    _bfd_error_handler
790
      /* xgettext: c-format */
791
0
      (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
792
0
       abfd, (uint64_t) irel->r_vaddr, insn);
793
0
    continue;
794
0
  }
795
796
      /* Get the address from which the register is being loaded.  The
797
   displacement in the mov.l instruction is quadrupled.  It is a
798
   displacement from four bytes after the movl instruction, but,
799
   before adding in the PC address, two least significant bits
800
   of the PC are cleared.  We assume that the section is aligned
801
   on a four byte boundary.  */
802
0
      paddr = insn & 0xff;
803
0
      paddr *= 4;
804
0
      paddr += (laddr + 4) &~ (bfd_vma) 3;
805
0
      if (paddr >= sec->size)
806
0
  {
807
0
    _bfd_error_handler
808
      /* xgettext: c-format */
809
0
      (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
810
0
       abfd, (uint64_t) irel->r_vaddr);
811
0
    continue;
812
0
  }
813
814
      /* Get the reloc for the address from which the register is
815
   being loaded.  This reloc will tell us which function is
816
   actually being called.  */
817
0
      paddr += sec->vma;
818
0
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
819
0
  if (irelfn->r_vaddr == paddr
820
#ifdef COFF_WITH_PE
821
0
      && (irelfn->r_type == R_SH_IMM32
822
0
    || irelfn->r_type == R_SH_IMM32CE
823
0
    || irelfn->r_type == R_SH_IMAGEBASE)
824
825
#else
826
0
      && irelfn->r_type == R_SH_IMM32
827
#endif
828
0
      )
829
0
    break;
830
0
      if (irelfn >= irelend)
831
0
  {
832
0
    _bfd_error_handler
833
      /* xgettext: c-format */
834
0
      (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
835
0
       abfd, (uint64_t) paddr);
836
0
    continue;
837
0
  }
838
839
      /* Get the value of the symbol referred to by the reloc.  */
840
0
      if (! _bfd_coff_get_external_symbols (abfd))
841
0
  goto error_return;
842
0
      bfd_coff_swap_sym_in (abfd,
843
0
          ((bfd_byte *) obj_coff_external_syms (abfd)
844
0
           + (irelfn->r_symndx
845
0
        * bfd_coff_symesz (abfd))),
846
0
          &sym);
847
0
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
848
0
  {
849
0
    _bfd_error_handler
850
      /* xgettext: c-format */
851
0
      (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
852
0
       abfd, (uint64_t) paddr);
853
0
    continue;
854
0
  }
855
856
0
      if (sym.n_sclass != C_EXT)
857
0
  {
858
0
    symval = (sym.n_value
859
0
        - sec->vma
860
0
        + sec->output_section->vma
861
0
        + sec->output_offset);
862
0
  }
863
0
      else
864
0
  {
865
0
    struct coff_link_hash_entry *h;
866
867
0
    h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
868
0
    BFD_ASSERT (h != NULL);
869
0
    if (h->root.type != bfd_link_hash_defined
870
0
        && h->root.type != bfd_link_hash_defweak)
871
0
      {
872
        /* This appears to be a reference to an undefined
873
     symbol.  Just ignore it--it will be caught by the
874
     regular reloc processing.  */
875
0
        continue;
876
0
      }
877
878
0
    symval = (h->root.u.def.value
879
0
        + h->root.u.def.section->output_section->vma
880
0
        + h->root.u.def.section->output_offset);
881
0
  }
882
883
0
      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
884
885
      /* See if this function call can be shortened.  */
886
0
      foff = (symval
887
0
        - (irel->r_vaddr
888
0
     - sec->vma
889
0
     + sec->output_section->vma
890
0
     + sec->output_offset
891
0
     + 4));
892
0
      if (foff < -0x1000 || foff >= 0x1000)
893
0
  {
894
    /* After all that work, we can't shorten this function call.  */
895
0
    continue;
896
0
  }
897
898
      /* Shorten the function call.  */
899
900
      /* For simplicity of coding, we are going to modify the section
901
   contents, the section relocs, and the BFD symbol table.  We
902
   must tell the rest of the code not to free up this
903
   information.  It would be possible to instead create a table
904
   of changes which have to be made, as is done in coff-mips.c;
905
   that would be more work, but would require less memory when
906
   the linker is run.  */
907
908
0
      coff_section_data (abfd, sec)->relocs = internal_relocs;
909
0
      coff_section_data (abfd, sec)->contents = contents;
910
911
      /* Replace the jsr with a bsr.  */
912
913
      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
914
   replace the jsr with a bsr.  */
915
0
      irel->r_type = R_SH_PCDISP;
916
0
      irel->r_symndx = irelfn->r_symndx;
917
0
      if (sym.n_sclass != C_EXT)
918
0
  {
919
    /* If this needs to be changed because of future relaxing,
920
       it will be handled here like other internal PCDISP
921
       relocs.  */
922
0
    bfd_put_16 (abfd,
923
0
          (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
924
0
          contents + irel->r_vaddr - sec->vma);
925
0
  }
926
0
      else
927
0
  {
928
    /* We can't fully resolve this yet, because the external
929
       symbol value may be changed by future relaxing.  We let
930
       the final link phase handle it.  */
931
0
    bfd_put_16 (abfd, (bfd_vma) 0xb000,
932
0
          contents + irel->r_vaddr - sec->vma);
933
0
  }
934
935
      /* See if there is another R_SH_USES reloc referring to the same
936
   register load.  */
937
0
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
938
0
  if (irelscan->r_type == R_SH_USES
939
0
      && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
940
0
    break;
941
0
      if (irelscan < irelend)
942
0
  {
943
    /* Some other function call depends upon this register load,
944
       and we have not yet converted that function call.
945
       Indeed, we may never be able to convert it.  There is
946
       nothing else we can do at this point.  */
947
0
    continue;
948
0
  }
949
950
      /* Look for a R_SH_COUNT reloc on the location where the
951
   function address is stored.  Do this before deleting any
952
   bytes, to avoid confusion about the address.  */
953
0
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
954
0
  if (irelcount->r_vaddr == paddr
955
0
      && irelcount->r_type == R_SH_COUNT)
956
0
    break;
957
958
      /* Delete the register load.  */
959
0
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
960
0
  goto error_return;
961
962
      /* That will change things, so, just in case it permits some
963
   other function call to come within range, we should relax
964
   again.  Note that this is not required, and it may be slow.  */
965
0
      *again = true;
966
967
      /* Now check whether we got a COUNT reloc.  */
968
0
      if (irelcount >= irelend)
969
0
  {
970
0
    _bfd_error_handler
971
      /* xgettext: c-format */
972
0
      (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
973
0
       abfd, (uint64_t) paddr);
974
0
    continue;
975
0
  }
976
977
      /* The number of uses is stored in the r_offset field.  We've
978
   just deleted one.  */
979
0
      if (irelcount->r_offset == 0)
980
0
  {
981
    /* xgettext: c-format */
982
0
    _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
983
0
            abfd, (uint64_t) paddr);
984
0
    continue;
985
0
  }
986
987
0
      --irelcount->r_offset;
988
989
      /* If there are no more uses, we can delete the address.  Reload
990
   the address from irelfn, in case it was changed by the
991
   previous call to sh_relax_delete_bytes.  */
992
0
      if (irelcount->r_offset == 0)
993
0
  {
994
0
    if (! sh_relax_delete_bytes (abfd, sec,
995
0
               irelfn->r_vaddr - sec->vma, 4))
996
0
      goto error_return;
997
0
  }
998
999
      /* We've done all we can with that function call.  */
1000
0
    }
1001
1002
  /* Look for load and store instructions that we can align on four
1003
     byte boundaries.  */
1004
0
  if (have_code)
1005
0
    {
1006
0
      bool swapped;
1007
1008
      /* Get the section contents.  */
1009
0
      if (contents == NULL)
1010
0
  {
1011
0
    if (coff_section_data (abfd, sec)->contents != NULL)
1012
0
      contents = coff_section_data (abfd, sec)->contents;
1013
0
    else
1014
0
      {
1015
0
        if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1016
0
    goto error_return;
1017
0
      }
1018
0
  }
1019
1020
0
      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1021
0
  goto error_return;
1022
1023
0
      if (swapped)
1024
0
  {
1025
0
    coff_section_data (abfd, sec)->relocs = internal_relocs;
1026
0
    coff_section_data (abfd, sec)->contents = contents;
1027
0
  }
1028
0
    }
1029
1030
0
  if (internal_relocs != NULL
1031
0
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
1032
0
    {
1033
0
      if (! link_info->keep_memory)
1034
0
  free (internal_relocs);
1035
0
      else
1036
0
  coff_section_data (abfd, sec)->relocs = internal_relocs;
1037
0
    }
1038
1039
0
  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1040
0
    {
1041
0
      if (! link_info->keep_memory)
1042
0
  free (contents);
1043
0
      else
1044
  /* Cache the section contents for coff_link_input_bfd.  */
1045
0
  coff_section_data (abfd, sec)->contents = contents;
1046
0
    }
1047
1048
0
  return true;
1049
1050
0
 error_return:
1051
0
  if (internal_relocs != coff_section_data (abfd, sec)->relocs)
1052
0
    free (internal_relocs);
1053
0
  if (contents != coff_section_data (abfd, sec)->contents)
1054
0
    free (contents);
1055
0
  return false;
1056
0
}
Unexecuted instantiation: coff-sh.c:sh_relax_section
Unexecuted instantiation: pe-sh.c:sh_relax_section
Unexecuted instantiation: pei-sh.c:sh_relax_section
1057
1058
/* Delete some bytes from a section while relaxing.  */
1059
1060
static bool
1061
sh_relax_delete_bytes (bfd *abfd,
1062
           asection *sec,
1063
           bfd_vma addr,
1064
           int count)
1065
0
{
1066
0
  bfd_byte *contents;
1067
0
  struct internal_reloc *irel, *irelend;
1068
0
  struct internal_reloc *irelalign;
1069
0
  bfd_vma toaddr;
1070
0
  bfd_byte *esym, *esymend;
1071
0
  bfd_size_type symesz;
1072
0
  struct coff_link_hash_entry **sym_hash;
1073
0
  asection *o;
1074
1075
0
  contents = coff_section_data (abfd, sec)->contents;
1076
1077
  /* The deletion must stop at the next ALIGN reloc for an alignment
1078
     power larger than the number of bytes we are deleting.  */
1079
1080
0
  irelalign = NULL;
1081
0
  toaddr = sec->size;
1082
1083
0
  irel = coff_section_data (abfd, sec)->relocs;
1084
0
  irelend = irel + sec->reloc_count;
1085
0
  for (; irel < irelend; irel++)
1086
0
    {
1087
0
      if (irel->r_type == R_SH_ALIGN
1088
0
    && irel->r_vaddr - sec->vma > addr
1089
0
    && count < (1 << irel->r_offset))
1090
0
  {
1091
0
    irelalign = irel;
1092
0
    toaddr = irel->r_vaddr - sec->vma;
1093
0
    break;
1094
0
  }
1095
0
    }
1096
1097
  /* Actually delete the bytes.  */
1098
0
  memmove (contents + addr, contents + addr + count,
1099
0
     (size_t) (toaddr - addr - count));
1100
0
  if (irelalign == NULL)
1101
0
    sec->size -= count;
1102
0
  else
1103
0
    {
1104
0
      int i;
1105
1106
0
#define NOP_OPCODE (0x0009)
1107
1108
0
      BFD_ASSERT ((count & 1) == 0);
1109
0
      for (i = 0; i < count; i += 2)
1110
0
  bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1111
0
    }
1112
1113
  /* Adjust all the relocs.  */
1114
0
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1115
0
    {
1116
0
      bfd_vma nraddr, stop;
1117
0
      bfd_vma start = 0;
1118
0
      int insn = 0;
1119
0
      struct internal_syment sym;
1120
0
      int off, adjust, oinsn;
1121
0
      bfd_signed_vma voff = 0;
1122
0
      bool overflow;
1123
1124
      /* Get the new reloc address.  */
1125
0
      nraddr = irel->r_vaddr - sec->vma;
1126
0
      if ((irel->r_vaddr - sec->vma > addr
1127
0
     && irel->r_vaddr - sec->vma < toaddr)
1128
0
    || (irel->r_type == R_SH_ALIGN
1129
0
        && irel->r_vaddr - sec->vma == toaddr))
1130
0
  nraddr -= count;
1131
1132
      /* See if this reloc was for the bytes we have deleted, in which
1133
   case we no longer care about it.  Don't delete relocs which
1134
   represent addresses, though.  */
1135
0
      if (irel->r_vaddr - sec->vma >= addr
1136
0
    && irel->r_vaddr - sec->vma < addr + count
1137
0
    && irel->r_type != R_SH_ALIGN
1138
0
    && irel->r_type != R_SH_CODE
1139
0
    && irel->r_type != R_SH_DATA
1140
0
    && irel->r_type != R_SH_LABEL)
1141
0
  irel->r_type = R_SH_UNUSED;
1142
1143
      /* If this is a PC relative reloc, see if the range it covers
1144
   includes the bytes we have deleted.  */
1145
0
      switch (irel->r_type)
1146
0
  {
1147
0
  default:
1148
0
    break;
1149
1150
0
  case R_SH_PCDISP8BY2:
1151
0
  case R_SH_PCDISP:
1152
0
  case R_SH_PCRELIMM8BY2:
1153
0
  case R_SH_PCRELIMM8BY4:
1154
0
    start = irel->r_vaddr - sec->vma;
1155
0
    insn = bfd_get_16 (abfd, contents + nraddr);
1156
0
    break;
1157
0
  }
1158
1159
0
      switch (irel->r_type)
1160
0
  {
1161
0
  default:
1162
0
    start = stop = addr;
1163
0
    break;
1164
1165
0
  case R_SH_IMM32:
1166
#ifdef COFF_WITH_PE
1167
0
  case R_SH_IMM32CE:
1168
0
  case R_SH_IMAGEBASE:
1169
0
#endif
1170
    /* If this reloc is against a symbol defined in this
1171
       section, and the symbol will not be adjusted below, we
1172
       must check the addend to see it will put the value in
1173
       range to be adjusted, and hence must be changed.  */
1174
0
    bfd_coff_swap_sym_in (abfd,
1175
0
        ((bfd_byte *) obj_coff_external_syms (abfd)
1176
0
         + (irel->r_symndx
1177
0
            * bfd_coff_symesz (abfd))),
1178
0
        &sym);
1179
0
    if (sym.n_sclass != C_EXT
1180
0
        && sym.n_scnum == sec->target_index
1181
0
        && ((bfd_vma) sym.n_value <= addr
1182
0
      || (bfd_vma) sym.n_value >= toaddr))
1183
0
      {
1184
0
        bfd_vma val;
1185
1186
0
        val = bfd_get_32 (abfd, contents + nraddr);
1187
0
        val += sym.n_value;
1188
0
        if (val > addr && val < toaddr)
1189
0
    bfd_put_32 (abfd, val - count, contents + nraddr);
1190
0
      }
1191
0
    start = stop = addr;
1192
0
    break;
1193
1194
0
  case R_SH_PCDISP8BY2:
1195
0
    off = insn & 0xff;
1196
0
    if (off & 0x80)
1197
0
      off -= 0x100;
1198
0
    stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1199
0
    break;
1200
1201
0
  case R_SH_PCDISP:
1202
0
    bfd_coff_swap_sym_in (abfd,
1203
0
        ((bfd_byte *) obj_coff_external_syms (abfd)
1204
0
         + (irel->r_symndx
1205
0
            * bfd_coff_symesz (abfd))),
1206
0
        &sym);
1207
0
    if (sym.n_sclass == C_EXT)
1208
0
      start = stop = addr;
1209
0
    else
1210
0
      {
1211
0
        off = insn & 0xfff;
1212
0
        if (off & 0x800)
1213
0
    off -= 0x1000;
1214
0
        stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1215
0
      }
1216
0
    break;
1217
1218
0
  case R_SH_PCRELIMM8BY2:
1219
0
    off = insn & 0xff;
1220
0
    stop = start + 4 + off * 2;
1221
0
    break;
1222
1223
0
  case R_SH_PCRELIMM8BY4:
1224
0
    off = insn & 0xff;
1225
0
    stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1226
0
    break;
1227
1228
0
  case R_SH_SWITCH8:
1229
0
  case R_SH_SWITCH16:
1230
0
  case R_SH_SWITCH32:
1231
    /* These relocs types represent
1232
         .word L2-L1
1233
       The r_offset field holds the difference between the reloc
1234
       address and L1.  That is the start of the reloc, and
1235
       adding in the contents gives us the top.  We must adjust
1236
       both the r_offset field and the section contents.  */
1237
1238
0
    start = irel->r_vaddr - sec->vma;
1239
0
    stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1240
1241
0
    if (start > addr
1242
0
        && start < toaddr
1243
0
        && (stop <= addr || stop >= toaddr))
1244
0
      irel->r_offset += count;
1245
0
    else if (stop > addr
1246
0
       && stop < toaddr
1247
0
       && (start <= addr || start >= toaddr))
1248
0
      irel->r_offset -= count;
1249
1250
0
    start = stop;
1251
1252
0
    if (irel->r_type == R_SH_SWITCH16)
1253
0
      voff = bfd_get_signed_16 (abfd, contents + nraddr);
1254
0
    else if (irel->r_type == R_SH_SWITCH8)
1255
0
      voff = bfd_get_8 (abfd, contents + nraddr);
1256
0
    else
1257
0
      voff = bfd_get_signed_32 (abfd, contents + nraddr);
1258
0
    stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1259
1260
0
    break;
1261
1262
0
  case R_SH_USES:
1263
0
    start = irel->r_vaddr - sec->vma;
1264
0
    stop = (bfd_vma) ((bfd_signed_vma) start
1265
0
          + (long) irel->r_offset
1266
0
          + 4);
1267
0
    break;
1268
0
  }
1269
1270
0
      if (start > addr
1271
0
    && start < toaddr
1272
0
    && (stop <= addr || stop >= toaddr))
1273
0
  adjust = count;
1274
0
      else if (stop > addr
1275
0
         && stop < toaddr
1276
0
         && (start <= addr || start >= toaddr))
1277
0
  adjust = - count;
1278
0
      else
1279
0
  adjust = 0;
1280
1281
0
      if (adjust != 0)
1282
0
  {
1283
0
    oinsn = insn;
1284
0
    overflow = false;
1285
0
    switch (irel->r_type)
1286
0
      {
1287
0
      default:
1288
0
        abort ();
1289
0
        break;
1290
1291
0
      case R_SH_PCDISP8BY2:
1292
0
      case R_SH_PCRELIMM8BY2:
1293
0
        insn += adjust / 2;
1294
0
        if ((oinsn & 0xff00) != (insn & 0xff00))
1295
0
    overflow = true;
1296
0
        bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1297
0
        break;
1298
1299
0
      case R_SH_PCDISP:
1300
0
        insn += adjust / 2;
1301
0
        if ((oinsn & 0xf000) != (insn & 0xf000))
1302
0
    overflow = true;
1303
0
        bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1304
0
        break;
1305
1306
0
      case R_SH_PCRELIMM8BY4:
1307
0
        BFD_ASSERT (adjust == count || count >= 4);
1308
0
        if (count >= 4)
1309
0
    insn += adjust / 4;
1310
0
        else
1311
0
    {
1312
0
      if ((irel->r_vaddr & 3) == 0)
1313
0
        ++insn;
1314
0
    }
1315
0
        if ((oinsn & 0xff00) != (insn & 0xff00))
1316
0
    overflow = true;
1317
0
        bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1318
0
        break;
1319
1320
0
      case R_SH_SWITCH8:
1321
0
        voff += adjust;
1322
0
        if (voff < 0 || voff >= 0xff)
1323
0
    overflow = true;
1324
0
        bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1325
0
        break;
1326
1327
0
      case R_SH_SWITCH16:
1328
0
        voff += adjust;
1329
0
        if (voff < - 0x8000 || voff >= 0x8000)
1330
0
    overflow = true;
1331
0
        bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1332
0
        break;
1333
1334
0
      case R_SH_SWITCH32:
1335
0
        voff += adjust;
1336
0
        bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1337
0
        break;
1338
1339
0
      case R_SH_USES:
1340
0
        irel->r_offset += adjust;
1341
0
        break;
1342
0
      }
1343
1344
0
    if (overflow)
1345
0
      {
1346
0
        _bfd_error_handler
1347
    /* xgettext: c-format */
1348
0
    (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1349
0
     abfd, (uint64_t) irel->r_vaddr);
1350
0
        bfd_set_error (bfd_error_bad_value);
1351
0
        return false;
1352
0
      }
1353
0
  }
1354
1355
0
      irel->r_vaddr = nraddr + sec->vma;
1356
0
    }
1357
1358
  /* Look through all the other sections.  If there contain any IMM32
1359
     relocs against internal symbols which we are not going to adjust
1360
     below, we may need to adjust the addends.  */
1361
0
  for (o = abfd->sections; o != NULL; o = o->next)
1362
0
    {
1363
0
      struct internal_reloc *internal_relocs;
1364
0
      struct internal_reloc *irelscan, *irelscanend;
1365
0
      bfd_byte *ocontents;
1366
1367
0
      if (o == sec
1368
0
    || (o->flags & SEC_HAS_CONTENTS) == 0
1369
0
    || (o->flags & SEC_RELOC) == 0
1370
0
    || o->reloc_count == 0)
1371
0
  continue;
1372
1373
      /* We always cache the relocs.  Perhaps, if info->keep_memory is
1374
   FALSE, we should free them, if we are permitted to, when we
1375
   leave sh_coff_relax_section.  */
1376
0
      internal_relocs = (_bfd_coff_read_internal_relocs
1377
0
       (abfd, o, true, (bfd_byte *) NULL, false,
1378
0
        (struct internal_reloc *) NULL));
1379
0
      if (internal_relocs == NULL)
1380
0
  return false;
1381
1382
0
      ocontents = NULL;
1383
0
      irelscanend = internal_relocs + o->reloc_count;
1384
0
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1385
0
  {
1386
0
    struct internal_syment sym;
1387
1388
#ifdef COFF_WITH_PE
1389
0
    if (irelscan->r_type != R_SH_IMM32
1390
0
        && irelscan->r_type != R_SH_IMAGEBASE
1391
0
        && irelscan->r_type != R_SH_IMM32CE)
1392
#else
1393
0
    if (irelscan->r_type != R_SH_IMM32)
1394
0
#endif
1395
0
      continue;
1396
1397
0
    bfd_coff_swap_sym_in (abfd,
1398
0
        ((bfd_byte *) obj_coff_external_syms (abfd)
1399
0
         + (irelscan->r_symndx
1400
0
            * bfd_coff_symesz (abfd))),
1401
0
        &sym);
1402
0
    if (sym.n_sclass != C_EXT
1403
0
        && sym.n_scnum == sec->target_index
1404
0
        && ((bfd_vma) sym.n_value <= addr
1405
0
      || (bfd_vma) sym.n_value >= toaddr))
1406
0
      {
1407
0
        bfd_vma val;
1408
1409
0
        if (ocontents == NULL)
1410
0
    {
1411
0
      if (coff_section_data (abfd, o)->contents != NULL)
1412
0
        ocontents = coff_section_data (abfd, o)->contents;
1413
0
      else
1414
0
        {
1415
0
          if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1416
0
      return false;
1417
          /* We always cache the section contents.
1418
       Perhaps, if info->keep_memory is FALSE, we
1419
       should free them, if we are permitted to,
1420
       when we leave sh_coff_relax_section.  */
1421
0
          coff_section_data (abfd, o)->contents = ocontents;
1422
0
        }
1423
0
    }
1424
1425
0
        val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1426
0
        val += sym.n_value;
1427
0
        if (val > addr && val < toaddr)
1428
0
    bfd_put_32 (abfd, val - count,
1429
0
          ocontents + irelscan->r_vaddr - o->vma);
1430
0
      }
1431
0
  }
1432
0
    }
1433
1434
  /* Adjusting the internal symbols will not work if something has
1435
     already retrieved the generic symbols.  It would be possible to
1436
     make this work by adjusting the generic symbols at the same time.
1437
     However, this case should not arise in normal usage.  */
1438
0
  if (obj_symbols (abfd) != NULL
1439
0
      || obj_raw_syments (abfd) != NULL)
1440
0
    {
1441
0
      _bfd_error_handler
1442
0
  (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
1443
0
      bfd_set_error (bfd_error_invalid_operation);
1444
0
      return false;
1445
0
    }
1446
1447
  /* Adjust all the symbols.  */
1448
0
  sym_hash = obj_coff_sym_hashes (abfd);
1449
0
  symesz = bfd_coff_symesz (abfd);
1450
0
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
1451
0
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
1452
0
  while (esym < esymend)
1453
0
    {
1454
0
      struct internal_syment isym;
1455
1456
0
      bfd_coff_swap_sym_in (abfd, esym, &isym);
1457
1458
0
      if (isym.n_scnum == sec->target_index
1459
0
    && (bfd_vma) isym.n_value > addr
1460
0
    && (bfd_vma) isym.n_value < toaddr)
1461
0
  {
1462
0
    isym.n_value -= count;
1463
1464
0
    bfd_coff_swap_sym_out (abfd, &isym, esym);
1465
1466
0
    if (*sym_hash != NULL)
1467
0
      {
1468
0
        BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1469
0
        || (*sym_hash)->root.type == bfd_link_hash_defweak);
1470
0
        BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1471
0
        && (*sym_hash)->root.u.def.value < toaddr);
1472
0
        (*sym_hash)->root.u.def.value -= count;
1473
0
      }
1474
0
  }
1475
1476
0
      esym += (isym.n_numaux + 1) * symesz;
1477
0
      sym_hash += isym.n_numaux + 1;
1478
0
    }
1479
1480
  /* See if we can move the ALIGN reloc forward.  We have adjusted
1481
     r_vaddr for it already.  */
1482
0
  if (irelalign != NULL)
1483
0
    {
1484
0
      bfd_vma alignto, alignaddr;
1485
1486
0
      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1487
0
      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1488
0
           1 << irelalign->r_offset);
1489
0
      if (alignto != alignaddr)
1490
0
  {
1491
    /* Tail recursion.  */
1492
0
    return sh_relax_delete_bytes (abfd, sec, alignaddr,
1493
0
          (int) (alignto - alignaddr));
1494
0
  }
1495
0
    }
1496
1497
0
  return true;
1498
0
}
Unexecuted instantiation: coff-sh.c:sh_relax_delete_bytes
Unexecuted instantiation: pe-sh.c:sh_relax_delete_bytes
Unexecuted instantiation: pei-sh.c:sh_relax_delete_bytes
1499

1500
/* This is yet another version of the SH opcode table, used to rapidly
1501
   get information about a particular instruction.  */
1502
1503
/* The opcode map is represented by an array of these structures.  The
1504
   array is indexed by the high order four bits in the instruction.  */
1505
1506
struct sh_major_opcode
1507
{
1508
  /* A pointer to the instruction list.  This is an array which
1509
     contains all the instructions with this major opcode.  */
1510
  const struct sh_minor_opcode *minor_opcodes;
1511
  /* The number of elements in minor_opcodes.  */
1512
  unsigned short count;
1513
};
1514
1515
/* This structure holds information for a set of SH opcodes.  The
1516
   instruction code is anded with the mask value, and the resulting
1517
   value is used to search the order opcode list.  */
1518
1519
struct sh_minor_opcode
1520
{
1521
  /* The sorted opcode list.  */
1522
  const struct sh_opcode *opcodes;
1523
  /* The number of elements in opcodes.  */
1524
  unsigned short count;
1525
  /* The mask value to use when searching the opcode list.  */
1526
  unsigned short mask;
1527
};
1528
1529
/* This structure holds information for an SH instruction.  An array
1530
   of these structures is sorted in order by opcode.  */
1531
1532
struct sh_opcode
1533
{
1534
  /* The code for this instruction, after it has been anded with the
1535
     mask value in the sh_major_opcode structure.  */
1536
  unsigned short opcode;
1537
  /* Flags for this instruction.  */
1538
  unsigned long flags;
1539
};
1540
1541
/* Flag which appear in the sh_opcode structure.  */
1542
1543
/* This instruction loads a value from memory.  */
1544
0
#define LOAD (0x1)
1545
1546
/* This instruction stores a value to memory.  */
1547
0
#define STORE (0x2)
1548
1549
/* This instruction is a branch.  */
1550
0
#define BRANCH (0x4)
1551
1552
/* This instruction has a delay slot.  */
1553
0
#define DELAY (0x8)
1554
1555
/* This instruction uses the value in the register in the field at
1556
   mask 0x0f00 of the instruction.  */
1557
0
#define USES1 (0x10)
1558
0
#define USES1_REG(x) ((x & 0x0f00) >> 8)
1559
1560
/* This instruction uses the value in the register in the field at
1561
   mask 0x00f0 of the instruction.  */
1562
0
#define USES2 (0x20)
1563
0
#define USES2_REG(x) ((x & 0x00f0) >> 4)
1564
1565
/* This instruction uses the value in register 0.  */
1566
0
#define USESR0 (0x40)
1567
1568
/* This instruction sets the value in the register in the field at
1569
   mask 0x0f00 of the instruction.  */
1570
0
#define SETS1 (0x80)
1571
0
#define SETS1_REG(x) ((x & 0x0f00) >> 8)
1572
1573
/* This instruction sets the value in the register in the field at
1574
   mask 0x00f0 of the instruction.  */
1575
0
#define SETS2 (0x100)
1576
0
#define SETS2_REG(x) ((x & 0x00f0) >> 4)
1577
1578
/* This instruction sets register 0.  */
1579
0
#define SETSR0 (0x200)
1580
1581
/* This instruction sets a special register.  */
1582
0
#define SETSSP (0x400)
1583
1584
/* This instruction uses a special register.  */
1585
0
#define USESSP (0x800)
1586
1587
/* This instruction uses the floating point register in the field at
1588
   mask 0x0f00 of the instruction.  */
1589
0
#define USESF1 (0x1000)
1590
0
#define USESF1_REG(x) ((x & 0x0f00) >> 8)
1591
1592
/* This instruction uses the floating point register in the field at
1593
   mask 0x00f0 of the instruction.  */
1594
0
#define USESF2 (0x2000)
1595
0
#define USESF2_REG(x) ((x & 0x00f0) >> 4)
1596
1597
/* This instruction uses floating point register 0.  */
1598
0
#define USESF0 (0x4000)
1599
1600
/* This instruction sets the floating point register in the field at
1601
   mask 0x0f00 of the instruction.  */
1602
0
#define SETSF1 (0x8000)
1603
0
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1604
1605
0
#define USESAS (0x10000)
1606
0
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1607
0
#define USESR8 (0x20000)
1608
0
#define SETSAS (0x40000)
1609
0
#define SETSAS_REG(x) USESAS_REG (x)
1610
1611
#define MAP(a) a, sizeof a / sizeof a[0]
1612
1613
#ifndef COFF_IMAGE_WITH_PE
1614
1615
/* The opcode maps.  */
1616
1617
static const struct sh_opcode sh_opcode00[] =
1618
{
1619
  { 0x0008, SETSSP },     /* clrt */
1620
  { 0x0009, 0 },      /* nop */
1621
  { 0x000b, BRANCH | DELAY | USESSP },  /* rts */
1622
  { 0x0018, SETSSP },     /* sett */
1623
  { 0x0019, SETSSP },     /* div0u */
1624
  { 0x001b, 0 },      /* sleep */
1625
  { 0x0028, SETSSP },     /* clrmac */
1626
  { 0x002b, BRANCH | DELAY | SETSSP },  /* rte */
1627
  { 0x0038, USESSP | SETSSP },    /* ldtlb */
1628
  { 0x0048, SETSSP },     /* clrs */
1629
  { 0x0058, SETSSP }      /* sets */
1630
};
1631
1632
static const struct sh_opcode sh_opcode01[] =
1633
{
1634
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },  /* bsrf rn */
1635
  { 0x000a, SETS1 | USESSP },     /* sts mach,rn */
1636
  { 0x001a, SETS1 | USESSP },     /* sts macl,rn */
1637
  { 0x0023, BRANCH | DELAY | USES1 },   /* braf rn */
1638
  { 0x0029, SETS1 | USESSP },     /* movt rn */
1639
  { 0x002a, SETS1 | USESSP },     /* sts pr,rn */
1640
  { 0x005a, SETS1 | USESSP },     /* sts fpul,rn */
1641
  { 0x006a, SETS1 | USESSP },     /* sts fpscr,rn / sts dsr,rn */
1642
  { 0x0083, LOAD | USES1 },     /* pref @rn */
1643
  { 0x007a, SETS1 | USESSP },     /* sts a0,rn */
1644
  { 0x008a, SETS1 | USESSP },     /* sts x0,rn */
1645
  { 0x009a, SETS1 | USESSP },     /* sts x1,rn */
1646
  { 0x00aa, SETS1 | USESSP },     /* sts y0,rn */
1647
  { 0x00ba, SETS1 | USESSP }      /* sts y1,rn */
1648
};
1649
1650
static const struct sh_opcode sh_opcode02[] =
1651
{
1652
  { 0x0002, SETS1 | USESSP },     /* stc <special_reg>,rn */
1653
  { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1654
  { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1655
  { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1656
  { 0x0007, SETSSP | USES1 | USES2 },   /* mul.l rm,rn */
1657
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },  /* mov.b @(r0,rm),rn */
1658
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },  /* mov.w @(r0,rm),rn */
1659
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },  /* mov.l @(r0,rm),rn */
1660
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1661
};
1662
1663
static const struct sh_minor_opcode sh_opcode0[] =
1664
{
1665
  { MAP (sh_opcode00), 0xffff },
1666
  { MAP (sh_opcode01), 0xf0ff },
1667
  { MAP (sh_opcode02), 0xf00f }
1668
};
1669
1670
static const struct sh_opcode sh_opcode10[] =
1671
{
1672
  { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1673
};
1674
1675
static const struct sh_minor_opcode sh_opcode1[] =
1676
{
1677
  { MAP (sh_opcode10), 0xf000 }
1678
};
1679
1680
static const struct sh_opcode sh_opcode20[] =
1681
{
1682
  { 0x2000, STORE | USES1 | USES2 },    /* mov.b rm,@rn */
1683
  { 0x2001, STORE | USES1 | USES2 },    /* mov.w rm,@rn */
1684
  { 0x2002, STORE | USES1 | USES2 },    /* mov.l rm,@rn */
1685
  { 0x2004, STORE | SETS1 | USES1 | USES2 },  /* mov.b rm,@-rn */
1686
  { 0x2005, STORE | SETS1 | USES1 | USES2 },  /* mov.w rm,@-rn */
1687
  { 0x2006, STORE | SETS1 | USES1 | USES2 },  /* mov.l rm,@-rn */
1688
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },  /* div0s */
1689
  { 0x2008, SETSSP | USES1 | USES2 },   /* tst rm,rn */
1690
  { 0x2009, SETS1 | USES1 | USES2 },    /* and rm,rn */
1691
  { 0x200a, SETS1 | USES1 | USES2 },    /* xor rm,rn */
1692
  { 0x200b, SETS1 | USES1 | USES2 },    /* or rm,rn */
1693
  { 0x200c, SETSSP | USES1 | USES2 },   /* cmp/str rm,rn */
1694
  { 0x200d, SETS1 | USES1 | USES2 },    /* xtrct rm,rn */
1695
  { 0x200e, SETSSP | USES1 | USES2 },   /* mulu.w rm,rn */
1696
  { 0x200f, SETSSP | USES1 | USES2 }    /* muls.w rm,rn */
1697
};
1698
1699
static const struct sh_minor_opcode sh_opcode2[] =
1700
{
1701
  { MAP (sh_opcode20), 0xf00f }
1702
};
1703
1704
static const struct sh_opcode sh_opcode30[] =
1705
{
1706
  { 0x3000, SETSSP | USES1 | USES2 },   /* cmp/eq rm,rn */
1707
  { 0x3002, SETSSP | USES1 | USES2 },   /* cmp/hs rm,rn */
1708
  { 0x3003, SETSSP | USES1 | USES2 },   /* cmp/ge rm,rn */
1709
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },  /* div1 rm,rn */
1710
  { 0x3005, SETSSP | USES1 | USES2 },   /* dmulu.l rm,rn */
1711
  { 0x3006, SETSSP | USES1 | USES2 },   /* cmp/hi rm,rn */
1712
  { 0x3007, SETSSP | USES1 | USES2 },   /* cmp/gt rm,rn */
1713
  { 0x3008, SETS1 | USES1 | USES2 },    /* sub rm,rn */
1714
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1715
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1716
  { 0x300c, SETS1 | USES1 | USES2 },    /* add rm,rn */
1717
  { 0x300d, SETSSP | USES1 | USES2 },   /* dmuls.l rm,rn */
1718
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1719
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }  /* addv rm,rn */
1720
};
1721
1722
static const struct sh_minor_opcode sh_opcode3[] =
1723
{
1724
  { MAP (sh_opcode30), 0xf00f }
1725
};
1726
1727
static const struct sh_opcode sh_opcode40[] =
1728
{
1729
  { 0x4000, SETS1 | SETSSP | USES1 },   /* shll rn */
1730
  { 0x4001, SETS1 | SETSSP | USES1 },   /* shlr rn */
1731
  { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1732
  { 0x4004, SETS1 | SETSSP | USES1 },   /* rotl rn */
1733
  { 0x4005, SETS1 | SETSSP | USES1 },   /* rotr rn */
1734
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,mach */
1735
  { 0x4008, SETS1 | USES1 },      /* shll2 rn */
1736
  { 0x4009, SETS1 | USES1 },      /* shlr2 rn */
1737
  { 0x400a, SETSSP | USES1 },     /* lds rm,mach */
1738
  { 0x400b, BRANCH | DELAY | USES1 },   /* jsr @rn */
1739
  { 0x4010, SETS1 | SETSSP | USES1 },   /* dt rn */
1740
  { 0x4011, SETSSP | USES1 },     /* cmp/pz rn */
1741
  { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1742
  { 0x4014, SETSSP | USES1 },     /* setrc rm */
1743
  { 0x4015, SETSSP | USES1 },     /* cmp/pl rn */
1744
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,macl */
1745
  { 0x4018, SETS1 | USES1 },      /* shll8 rn */
1746
  { 0x4019, SETS1 | USES1 },      /* shlr8 rn */
1747
  { 0x401a, SETSSP | USES1 },     /* lds rm,macl */
1748
  { 0x401b, LOAD | SETSSP | USES1 },    /* tas.b @rn */
1749
  { 0x4020, SETS1 | SETSSP | USES1 },   /* shal rn */
1750
  { 0x4021, SETS1 | SETSSP | USES1 },   /* shar rn */
1751
  { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1752
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },  /* rotcl rn */
1753
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },  /* rotcr rn */
1754
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,pr */
1755
  { 0x4028, SETS1 | USES1 },      /* shll16 rn */
1756
  { 0x4029, SETS1 | USES1 },      /* shlr16 rn */
1757
  { 0x402a, SETSSP | USES1 },     /* lds rm,pr */
1758
  { 0x402b, BRANCH | DELAY | USES1 },   /* jmp @rn */
1759
  { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1760
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,fpul */
1761
  { 0x405a, SETSSP | USES1 },     /* lds.l rm,fpul */
1762
  { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1763
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,fpscr / dsr */
1764
  { 0x406a, SETSSP | USES1 },     /* lds rm,fpscr / lds rm,dsr */
1765
  { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1766
  { 0x4076, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,a0 */
1767
  { 0x407a, SETSSP | USES1 },     /* lds.l rm,a0 */
1768
  { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1769
  { 0x4086, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,x0 */
1770
  { 0x408a, SETSSP | USES1 },     /* lds.l rm,x0 */
1771
  { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1772
  { 0x4096, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,x1 */
1773
  { 0x409a, SETSSP | USES1 },     /* lds.l rm,x1 */
1774
  { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1775
  { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,y0 */
1776
  { 0x40aa, SETSSP | USES1 },     /* lds.l rm,y0 */
1777
  { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1778
  { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,y1 */
1779
  { 0x40ba, SETSSP | USES1 }      /* lds.l rm,y1 */
1780
};
1781
1782
static const struct sh_opcode sh_opcode41[] =
1783
{
1784
  { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1785
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },  /* ldc.l @rm+,<special_reg> */
1786
  { 0x400c, SETS1 | USES1 | USES2 },    /* shad rm,rn */
1787
  { 0x400d, SETS1 | USES1 | USES2 },    /* shld rm,rn */
1788
  { 0x400e, SETSSP | USES1 },     /* ldc rm,<special_reg> */
1789
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1790
};
1791
1792
static const struct sh_minor_opcode sh_opcode4[] =
1793
{
1794
  { MAP (sh_opcode40), 0xf0ff },
1795
  { MAP (sh_opcode41), 0xf00f }
1796
};
1797
1798
static const struct sh_opcode sh_opcode50[] =
1799
{
1800
  { 0x5000, LOAD | SETS1 | USES2 }  /* mov.l @(disp,rm),rn */
1801
};
1802
1803
static const struct sh_minor_opcode sh_opcode5[] =
1804
{
1805
  { MAP (sh_opcode50), 0xf000 }
1806
};
1807
1808
static const struct sh_opcode sh_opcode60[] =
1809
{
1810
  { 0x6000, LOAD | SETS1 | USES2 },   /* mov.b @rm,rn */
1811
  { 0x6001, LOAD | SETS1 | USES2 },   /* mov.w @rm,rn */
1812
  { 0x6002, LOAD | SETS1 | USES2 },   /* mov.l @rm,rn */
1813
  { 0x6003, SETS1 | USES2 },      /* mov rm,rn */
1814
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1815
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1816
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1817
  { 0x6007, SETS1 | USES2 },      /* not rm,rn */
1818
  { 0x6008, SETS1 | USES2 },      /* swap.b rm,rn */
1819
  { 0x6009, SETS1 | USES2 },      /* swap.w rm,rn */
1820
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },  /* negc rm,rn */
1821
  { 0x600b, SETS1 | USES2 },      /* neg rm,rn */
1822
  { 0x600c, SETS1 | USES2 },      /* extu.b rm,rn */
1823
  { 0x600d, SETS1 | USES2 },      /* extu.w rm,rn */
1824
  { 0x600e, SETS1 | USES2 },      /* exts.b rm,rn */
1825
  { 0x600f, SETS1 | USES2 }     /* exts.w rm,rn */
1826
};
1827
1828
static const struct sh_minor_opcode sh_opcode6[] =
1829
{
1830
  { MAP (sh_opcode60), 0xf00f }
1831
};
1832
1833
static const struct sh_opcode sh_opcode70[] =
1834
{
1835
  { 0x7000, SETS1 | USES1 }   /* add #imm,rn */
1836
};
1837
1838
static const struct sh_minor_opcode sh_opcode7[] =
1839
{
1840
  { MAP (sh_opcode70), 0xf000 }
1841
};
1842
1843
static const struct sh_opcode sh_opcode80[] =
1844
{
1845
  { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1846
  { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1847
  { 0x8200, SETSSP },     /* setrc #imm */
1848
  { 0x8400, LOAD | SETSR0 | USES2 },  /* mov.b @(disp,rm),r0 */
1849
  { 0x8500, LOAD | SETSR0 | USES2 },  /* mov.w @(disp,rn),r0 */
1850
  { 0x8800, SETSSP | USESR0 },    /* cmp/eq #imm,r0 */
1851
  { 0x8900, BRANCH | USESSP },    /* bt label */
1852
  { 0x8b00, BRANCH | USESSP },    /* bf label */
1853
  { 0x8c00, SETSSP },     /* ldrs @(disp,pc) */
1854
  { 0x8d00, BRANCH | DELAY | USESSP },  /* bt/s label */
1855
  { 0x8e00, SETSSP },     /* ldre @(disp,pc) */
1856
  { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1857
};
1858
1859
static const struct sh_minor_opcode sh_opcode8[] =
1860
{
1861
  { MAP (sh_opcode80), 0xff00 }
1862
};
1863
1864
static const struct sh_opcode sh_opcode90[] =
1865
{
1866
  { 0x9000, LOAD | SETS1 }  /* mov.w @(disp,pc),rn */
1867
};
1868
1869
static const struct sh_minor_opcode sh_opcode9[] =
1870
{
1871
  { MAP (sh_opcode90), 0xf000 }
1872
};
1873
1874
static const struct sh_opcode sh_opcodea0[] =
1875
{
1876
  { 0xa000, BRANCH | DELAY }  /* bra label */
1877
};
1878
1879
static const struct sh_minor_opcode sh_opcodea[] =
1880
{
1881
  { MAP (sh_opcodea0), 0xf000 }
1882
};
1883
1884
static const struct sh_opcode sh_opcodeb0[] =
1885
{
1886
  { 0xb000, BRANCH | DELAY }  /* bsr label */
1887
};
1888
1889
static const struct sh_minor_opcode sh_opcodeb[] =
1890
{
1891
  { MAP (sh_opcodeb0), 0xf000 }
1892
};
1893
1894
static const struct sh_opcode sh_opcodec0[] =
1895
{
1896
  { 0xc000, STORE | USESR0 | USESSP },    /* mov.b r0,@(disp,gbr) */
1897
  { 0xc100, STORE | USESR0 | USESSP },    /* mov.w r0,@(disp,gbr) */
1898
  { 0xc200, STORE | USESR0 | USESSP },    /* mov.l r0,@(disp,gbr) */
1899
  { 0xc300, BRANCH | USESSP },      /* trapa #imm */
1900
  { 0xc400, LOAD | SETSR0 | USESSP },   /* mov.b @(disp,gbr),r0 */
1901
  { 0xc500, LOAD | SETSR0 | USESSP },   /* mov.w @(disp,gbr),r0 */
1902
  { 0xc600, LOAD | SETSR0 | USESSP },   /* mov.l @(disp,gbr),r0 */
1903
  { 0xc700, SETSR0 },       /* mova @(disp,pc),r0 */
1904
  { 0xc800, SETSSP | USESR0 },      /* tst #imm,r0 */
1905
  { 0xc900, SETSR0 | USESR0 },      /* and #imm,r0 */
1906
  { 0xca00, SETSR0 | USESR0 },      /* xor #imm,r0 */
1907
  { 0xcb00, SETSR0 | USESR0 },      /* or #imm,r0 */
1908
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },  /* tst.b #imm,@(r0,gbr) */
1909
  { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1910
  { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1911
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }  /* or.b #imm,@(r0,gbr) */
1912
};
1913
1914
static const struct sh_minor_opcode sh_opcodec[] =
1915
{
1916
  { MAP (sh_opcodec0), 0xff00 }
1917
};
1918
1919
static const struct sh_opcode sh_opcoded0[] =
1920
{
1921
  { 0xd000, LOAD | SETS1 }    /* mov.l @(disp,pc),rn */
1922
};
1923
1924
static const struct sh_minor_opcode sh_opcoded[] =
1925
{
1926
  { MAP (sh_opcoded0), 0xf000 }
1927
};
1928
1929
static const struct sh_opcode sh_opcodee0[] =
1930
{
1931
  { 0xe000, SETS1 }   /* mov #imm,rn */
1932
};
1933
1934
static const struct sh_minor_opcode sh_opcodee[] =
1935
{
1936
  { MAP (sh_opcodee0), 0xf000 }
1937
};
1938
1939
static const struct sh_opcode sh_opcodef0[] =
1940
{
1941
  { 0xf000, SETSF1 | USESF1 | USESF2 },   /* fadd fm,fn */
1942
  { 0xf001, SETSF1 | USESF1 | USESF2 },   /* fsub fm,fn */
1943
  { 0xf002, SETSF1 | USESF1 | USESF2 },   /* fmul fm,fn */
1944
  { 0xf003, SETSF1 | USESF1 | USESF2 },   /* fdiv fm,fn */
1945
  { 0xf004, SETSSP | USESF1 | USESF2 },   /* fcmp/eq fm,fn */
1946
  { 0xf005, SETSSP | USESF1 | USESF2 },   /* fcmp/gt fm,fn */
1947
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1948
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },  /* fmov.s fm,@(r0,rn) */
1949
  { 0xf008, LOAD | SETSF1 | USES2 },    /* fmov.s @rm,fn */
1950
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },  /* fmov.s @rm+,fn */
1951
  { 0xf00a, STORE | USES1 | USESF2 },   /* fmov.s fm,@rn */
1952
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1953
  { 0xf00c, SETSF1 | USESF2 },      /* fmov fm,fn */
1954
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1955
};
1956
1957
static const struct sh_opcode sh_opcodef1[] =
1958
{
1959
  { 0xf00d, SETSF1 | USESSP },  /* fsts fpul,fn */
1960
  { 0xf01d, SETSSP | USESF1 },  /* flds fn,fpul */
1961
  { 0xf02d, SETSF1 | USESSP },  /* float fpul,fn */
1962
  { 0xf03d, SETSSP | USESF1 },  /* ftrc fn,fpul */
1963
  { 0xf04d, SETSF1 | USESF1 },  /* fneg fn */
1964
  { 0xf05d, SETSF1 | USESF1 },  /* fabs fn */
1965
  { 0xf06d, SETSF1 | USESF1 },  /* fsqrt fn */
1966
  { 0xf07d, SETSSP | USESF1 },  /* ftst/nan fn */
1967
  { 0xf08d, SETSF1 },   /* fldi0 fn */
1968
  { 0xf09d, SETSF1 }    /* fldi1 fn */
1969
};
1970
1971
static const struct sh_minor_opcode sh_opcodef[] =
1972
{
1973
  { MAP (sh_opcodef0), 0xf00f },
1974
  { MAP (sh_opcodef1), 0xf0ff }
1975
};
1976
1977
static struct sh_major_opcode sh_opcodes[] =
1978
{
1979
  { MAP (sh_opcode0) },
1980
  { MAP (sh_opcode1) },
1981
  { MAP (sh_opcode2) },
1982
  { MAP (sh_opcode3) },
1983
  { MAP (sh_opcode4) },
1984
  { MAP (sh_opcode5) },
1985
  { MAP (sh_opcode6) },
1986
  { MAP (sh_opcode7) },
1987
  { MAP (sh_opcode8) },
1988
  { MAP (sh_opcode9) },
1989
  { MAP (sh_opcodea) },
1990
  { MAP (sh_opcodeb) },
1991
  { MAP (sh_opcodec) },
1992
  { MAP (sh_opcoded) },
1993
  { MAP (sh_opcodee) },
1994
  { MAP (sh_opcodef) }
1995
};
1996
1997
/* The double data transfer / parallel processing insns are not
1998
   described here.  This will cause sh_align_load_span to leave them alone.  */
1999
2000
static const struct sh_opcode sh_dsp_opcodef0[] =
2001
{
2002
  { 0xf400, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @-as,ds */
2003
  { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2004
  { 0xf404, USESAS | LOAD | SETSSP },   /* movs.x @as,ds */
2005
  { 0xf405, USESAS | STORE | USESSP },    /* movs.x ds,@as */
2006
  { 0xf408, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @as+,ds */
2007
  { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2008
  { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2009
  { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2010
};
2011
2012
static const struct sh_minor_opcode sh_dsp_opcodef[] =
2013
{
2014
  { MAP (sh_dsp_opcodef0), 0xfc0d }
2015
};
2016
2017
/* Given an instruction, return a pointer to the corresponding
2018
   sh_opcode structure.  Return NULL if the instruction is not
2019
   recognized.  */
2020
2021
static const struct sh_opcode *
2022
sh_insn_info (unsigned int insn)
2023
0
{
2024
0
  const struct sh_major_opcode *maj;
2025
0
  const struct sh_minor_opcode *min, *minend;
2026
2027
0
  maj = &sh_opcodes[(insn & 0xf000) >> 12];
2028
0
  min = maj->minor_opcodes;
2029
0
  minend = min + maj->count;
2030
0
  for (; min < minend; min++)
2031
0
    {
2032
0
      unsigned int l;
2033
0
      const struct sh_opcode *op, *opend;
2034
2035
0
      l = insn & min->mask;
2036
0
      op = min->opcodes;
2037
0
      opend = op + min->count;
2038
2039
      /* Since the opcodes tables are sorted, we could use a binary
2040
   search here if the count were above some cutoff value.  */
2041
0
      for (; op < opend; op++)
2042
0
  if (op->opcode == l)
2043
0
    return op;
2044
0
    }
2045
2046
0
  return NULL;
2047
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_info
Unexecuted instantiation: pe-sh.c:sh_insn_info
2048
2049
/* See whether an instruction uses a general purpose register.  */
2050
2051
static bool
2052
sh_insn_uses_reg (unsigned int insn,
2053
      const struct sh_opcode *op,
2054
      unsigned int reg)
2055
0
{
2056
0
  unsigned int f;
2057
2058
0
  f = op->flags;
2059
2060
0
  if ((f & USES1) != 0
2061
0
      && USES1_REG (insn) == reg)
2062
0
    return true;
2063
0
  if ((f & USES2) != 0
2064
0
      && USES2_REG (insn) == reg)
2065
0
    return true;
2066
0
  if ((f & USESR0) != 0
2067
0
      && reg == 0)
2068
0
    return true;
2069
0
  if ((f & USESAS) && reg == USESAS_REG (insn))
2070
0
    return true;
2071
0
  if ((f & USESR8) && reg == 8)
2072
0
    return true;
2073
2074
0
  return false;
2075
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_reg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_reg
2076
2077
/* See whether an instruction sets a general purpose register.  */
2078
2079
static bool
2080
sh_insn_sets_reg (unsigned int insn,
2081
      const struct sh_opcode *op,
2082
      unsigned int reg)
2083
0
{
2084
0
  unsigned int f;
2085
2086
0
  f = op->flags;
2087
2088
0
  if ((f & SETS1) != 0
2089
0
      && SETS1_REG (insn) == reg)
2090
0
    return true;
2091
0
  if ((f & SETS2) != 0
2092
0
      && SETS2_REG (insn) == reg)
2093
0
    return true;
2094
0
  if ((f & SETSR0) != 0
2095
0
      && reg == 0)
2096
0
    return true;
2097
0
  if ((f & SETSAS) && reg == SETSAS_REG (insn))
2098
0
    return true;
2099
2100
0
  return false;
2101
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_sets_reg
Unexecuted instantiation: pe-sh.c:sh_insn_sets_reg
2102
2103
/* See whether an instruction uses or sets a general purpose register */
2104
2105
static bool
2106
sh_insn_uses_or_sets_reg (unsigned int insn,
2107
        const struct sh_opcode *op,
2108
        unsigned int reg)
2109
0
{
2110
0
  if (sh_insn_uses_reg (insn, op, reg))
2111
0
    return true;
2112
2113
0
  return sh_insn_sets_reg (insn, op, reg);
2114
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_or_sets_reg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_or_sets_reg
2115
2116
/* See whether an instruction uses a floating point register.  */
2117
2118
static bool
2119
sh_insn_uses_freg (unsigned int insn,
2120
       const struct sh_opcode *op,
2121
       unsigned int freg)
2122
0
{
2123
0
  unsigned int f;
2124
2125
0
  f = op->flags;
2126
2127
  /* We can't tell if this is a double-precision insn, so just play safe
2128
     and assume that it might be.  So not only have we test FREG against
2129
     itself, but also even FREG against FREG+1 - if the using insn uses
2130
     just the low part of a double precision value - but also an odd
2131
     FREG against FREG-1 -  if the setting insn sets just the low part
2132
     of a double precision value.
2133
     So what this all boils down to is that we have to ignore the lowest
2134
     bit of the register number.  */
2135
2136
0
  if ((f & USESF1) != 0
2137
0
      && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2138
0
    return true;
2139
0
  if ((f & USESF2) != 0
2140
0
      && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2141
0
    return true;
2142
0
  if ((f & USESF0) != 0
2143
0
      && freg == 0)
2144
0
    return true;
2145
2146
0
  return false;
2147
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_freg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_freg
2148
2149
/* See whether an instruction sets a floating point register.  */
2150
2151
static bool
2152
sh_insn_sets_freg (unsigned int insn,
2153
       const struct sh_opcode *op,
2154
       unsigned int freg)
2155
0
{
2156
0
  unsigned int f;
2157
2158
0
  f = op->flags;
2159
2160
  /* We can't tell if this is a double-precision insn, so just play safe
2161
     and assume that it might be.  So not only have we test FREG against
2162
     itself, but also even FREG against FREG+1 - if the using insn uses
2163
     just the low part of a double precision value - but also an odd
2164
     FREG against FREG-1 -  if the setting insn sets just the low part
2165
     of a double precision value.
2166
     So what this all boils down to is that we have to ignore the lowest
2167
     bit of the register number.  */
2168
2169
0
  if ((f & SETSF1) != 0
2170
0
      && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2171
0
    return true;
2172
2173
0
  return false;
2174
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_sets_freg
Unexecuted instantiation: pe-sh.c:sh_insn_sets_freg
2175
2176
/* See whether an instruction uses or sets a floating point register */
2177
2178
static bool
2179
sh_insn_uses_or_sets_freg (unsigned int insn,
2180
         const struct sh_opcode *op,
2181
         unsigned int reg)
2182
0
{
2183
0
  if (sh_insn_uses_freg (insn, op, reg))
2184
0
    return true;
2185
2186
0
  return sh_insn_sets_freg (insn, op, reg);
2187
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_or_sets_freg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_or_sets_freg
2188
2189
/* See whether instructions I1 and I2 conflict, assuming I1 comes
2190
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
2191
   This should return TRUE if there is a conflict, or FALSE if the
2192
   instructions can be swapped safely.  */
2193
2194
static bool
2195
sh_insns_conflict (unsigned int i1,
2196
       const struct sh_opcode *op1,
2197
       unsigned int i2,
2198
       const struct sh_opcode *op2)
2199
0
{
2200
0
  unsigned int f1, f2;
2201
2202
0
  f1 = op1->flags;
2203
0
  f2 = op2->flags;
2204
2205
  /* Load of fpscr conflicts with floating point operations.
2206
     FIXME: shouldn't test raw opcodes here.  */
2207
0
  if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2208
0
      || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2209
0
    return true;
2210
2211
0
  if ((f1 & (BRANCH | DELAY)) != 0
2212
0
      || (f2 & (BRANCH | DELAY)) != 0)
2213
0
    return true;
2214
2215
0
  if (((f1 | f2) & SETSSP)
2216
0
      && (f1 & (SETSSP | USESSP))
2217
0
      && (f2 & (SETSSP | USESSP)))
2218
0
    return true;
2219
2220
0
  if ((f1 & SETS1) != 0
2221
0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2222
0
    return true;
2223
0
  if ((f1 & SETS2) != 0
2224
0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2225
0
    return true;
2226
0
  if ((f1 & SETSR0) != 0
2227
0
      && sh_insn_uses_or_sets_reg (i2, op2, 0))
2228
0
    return true;
2229
0
  if ((f1 & SETSAS)
2230
0
      && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2231
0
    return true;
2232
0
  if ((f1 & SETSF1) != 0
2233
0
      && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2234
0
    return true;
2235
2236
0
  if ((f2 & SETS1) != 0
2237
0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2238
0
    return true;
2239
0
  if ((f2 & SETS2) != 0
2240
0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2241
0
    return true;
2242
0
  if ((f2 & SETSR0) != 0
2243
0
      && sh_insn_uses_or_sets_reg (i1, op1, 0))
2244
0
    return true;
2245
0
  if ((f2 & SETSAS)
2246
0
      && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2247
0
    return true;
2248
0
  if ((f2 & SETSF1) != 0
2249
0
      && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2250
0
    return true;
2251
2252
  /* The instructions do not conflict.  */
2253
0
  return false;
2254
0
}
Unexecuted instantiation: coff-sh.c:sh_insns_conflict
Unexecuted instantiation: pe-sh.c:sh_insns_conflict
2255
2256
/* I1 is a load instruction, and I2 is some other instruction.  Return
2257
   TRUE if I1 loads a register which I2 uses.  */
2258
2259
static bool
2260
sh_load_use (unsigned int i1,
2261
       const struct sh_opcode *op1,
2262
       unsigned int i2,
2263
       const struct sh_opcode *op2)
2264
0
{
2265
0
  unsigned int f1;
2266
2267
0
  f1 = op1->flags;
2268
2269
0
  if ((f1 & LOAD) == 0)
2270
0
    return false;
2271
2272
  /* If both SETS1 and SETSSP are set, that means a load to a special
2273
     register using postincrement addressing mode, which we don't care
2274
     about here.  */
2275
0
  if ((f1 & SETS1) != 0
2276
0
      && (f1 & SETSSP) == 0
2277
0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2278
0
    return true;
2279
2280
0
  if ((f1 & SETSR0) != 0
2281
0
      && sh_insn_uses_reg (i2, op2, 0))
2282
0
    return true;
2283
2284
0
  if ((f1 & SETSF1) != 0
2285
0
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2286
0
    return true;
2287
2288
0
  return false;
2289
0
}
Unexecuted instantiation: coff-sh.c:sh_load_use
Unexecuted instantiation: pe-sh.c:sh_load_use
2290
2291
/* Try to align loads and stores within a span of memory.  This is
2292
   called by both the ELF and the COFF sh targets.  ABFD and SEC are
2293
   the BFD and section we are examining.  CONTENTS is the contents of
2294
   the section.  SWAP is the routine to call to swap two instructions.
2295
   RELOCS is a pointer to the internal relocation information, to be
2296
   passed to SWAP.  PLABEL is a pointer to the current label in a
2297
   sorted list of labels; LABEL_END is the end of the list.  START and
2298
   STOP are the range of memory to examine.  If a swap is made,
2299
   *PSWAPPED is set to TRUE.  */
2300
2301
#ifdef COFF_WITH_PE
2302
static
2303
#endif
2304
bool
2305
_bfd_sh_align_load_span (bfd *abfd,
2306
       asection *sec,
2307
       bfd_byte *contents,
2308
       bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2309
       void * relocs,
2310
       bfd_vma **plabel,
2311
       bfd_vma *label_end,
2312
       bfd_vma start,
2313
       bfd_vma stop,
2314
       bool *pswapped)
2315
0
{
2316
0
  int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2317
0
       || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2318
0
  bfd_vma i;
2319
2320
  /* The SH4 has a Harvard architecture, hence aligning loads is not
2321
     desirable.  In fact, it is counter-productive, since it interferes
2322
     with the schedules generated by the compiler.  */
2323
0
  if (abfd->arch_info->mach == bfd_mach_sh4)
2324
0
    return true;
2325
2326
  /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2327
     instructions.  */
2328
0
  if (dsp)
2329
0
    {
2330
0
      sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2331
0
      sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
2332
0
    }
2333
2334
  /* Instructions should be aligned on 2 byte boundaries.  */
2335
0
  if ((start & 1) == 1)
2336
0
    ++start;
2337
2338
  /* Now look through the unaligned addresses.  */
2339
0
  i = start;
2340
0
  if ((i & 2) == 0)
2341
0
    i += 2;
2342
0
  for (; i < stop; i += 4)
2343
0
    {
2344
0
      unsigned int insn;
2345
0
      const struct sh_opcode *op;
2346
0
      unsigned int prev_insn = 0;
2347
0
      const struct sh_opcode *prev_op = NULL;
2348
2349
0
      insn = bfd_get_16 (abfd, contents + i);
2350
0
      op = sh_insn_info (insn);
2351
0
      if (op == NULL
2352
0
    || (op->flags & (LOAD | STORE)) == 0)
2353
0
  continue;
2354
2355
      /* This is a load or store which is not on a four byte boundary.  */
2356
2357
0
      while (*plabel < label_end && **plabel < i)
2358
0
  ++*plabel;
2359
2360
0
      if (i > start)
2361
0
  {
2362
0
    prev_insn = bfd_get_16 (abfd, contents + i - 2);
2363
    /* If INSN is the field b of a parallel processing insn, it is not
2364
       a load / store after all.  Note that the test here might mistake
2365
       the field_b of a pcopy insn for the starting code of a parallel
2366
       processing insn; this might miss a swapping opportunity, but at
2367
       least we're on the safe side.  */
2368
0
    if (dsp && (prev_insn & 0xfc00) == 0xf800)
2369
0
      continue;
2370
2371
    /* Check if prev_insn is actually the field b of a parallel
2372
       processing insn.  Again, this can give a spurious match
2373
       after a pcopy.  */
2374
0
    if (dsp && i - 2 > start)
2375
0
      {
2376
0
        unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2377
2378
0
        if ((pprev_insn & 0xfc00) == 0xf800)
2379
0
    prev_op = NULL;
2380
0
        else
2381
0
    prev_op = sh_insn_info (prev_insn);
2382
0
      }
2383
0
    else
2384
0
      prev_op = sh_insn_info (prev_insn);
2385
2386
    /* If the load/store instruction is in a delay slot, we
2387
       can't swap.  */
2388
0
    if (prev_op == NULL
2389
0
        || (prev_op->flags & DELAY) != 0)
2390
0
      continue;
2391
0
  }
2392
0
      if (i > start
2393
0
    && (*plabel >= label_end || **plabel != i)
2394
0
    && prev_op != NULL
2395
0
    && (prev_op->flags & (LOAD | STORE)) == 0
2396
0
    && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2397
0
  {
2398
0
    bool ok;
2399
2400
    /* The load/store instruction does not have a label, and
2401
       there is a previous instruction; PREV_INSN is not
2402
       itself a load/store instruction, and PREV_INSN and
2403
       INSN do not conflict.  */
2404
2405
0
    ok = true;
2406
2407
0
    if (i >= start + 4)
2408
0
      {
2409
0
        unsigned int prev2_insn;
2410
0
        const struct sh_opcode *prev2_op;
2411
2412
0
        prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2413
0
        prev2_op = sh_insn_info (prev2_insn);
2414
2415
        /* If the instruction before PREV_INSN has a delay
2416
     slot--that is, PREV_INSN is in a delay slot--we
2417
     can not swap.  */
2418
0
        if (prev2_op == NULL
2419
0
      || (prev2_op->flags & DELAY) != 0)
2420
0
    ok = false;
2421
2422
        /* If the instruction before PREV_INSN is a load,
2423
     and it sets a register which INSN uses, then
2424
     putting INSN immediately after PREV_INSN will
2425
     cause a pipeline bubble, so there is no point to
2426
     making the swap.  */
2427
0
        if (ok
2428
0
      && (prev2_op->flags & LOAD) != 0
2429
0
      && sh_load_use (prev2_insn, prev2_op, insn, op))
2430
0
    ok = false;
2431
0
      }
2432
2433
0
    if (ok)
2434
0
      {
2435
0
        if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2436
0
    return false;
2437
0
        *pswapped = true;
2438
0
        continue;
2439
0
      }
2440
0
  }
2441
2442
0
      while (*plabel < label_end && **plabel < i + 2)
2443
0
  ++*plabel;
2444
2445
0
      if (i + 2 < stop
2446
0
    && (*plabel >= label_end || **plabel != i + 2))
2447
0
  {
2448
0
    unsigned int next_insn;
2449
0
    const struct sh_opcode *next_op;
2450
2451
    /* There is an instruction after the load/store
2452
       instruction, and it does not have a label.  */
2453
0
    next_insn = bfd_get_16 (abfd, contents + i + 2);
2454
0
    next_op = sh_insn_info (next_insn);
2455
0
    if (next_op != NULL
2456
0
        && (next_op->flags & (LOAD | STORE)) == 0
2457
0
        && ! sh_insns_conflict (insn, op, next_insn, next_op))
2458
0
      {
2459
0
        bool ok;
2460
2461
        /* NEXT_INSN is not itself a load/store instruction,
2462
     and it does not conflict with INSN.  */
2463
2464
0
        ok = true;
2465
2466
        /* If PREV_INSN is a load, and it sets a register
2467
     which NEXT_INSN uses, then putting NEXT_INSN
2468
     immediately after PREV_INSN will cause a pipeline
2469
     bubble, so there is no reason to make this swap.  */
2470
0
        if (prev_op != NULL
2471
0
      && (prev_op->flags & LOAD) != 0
2472
0
      && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2473
0
    ok = false;
2474
2475
        /* If INSN is a load, and it sets a register which
2476
     the insn after NEXT_INSN uses, then doing the
2477
     swap will cause a pipeline bubble, so there is no
2478
     reason to make the swap.  However, if the insn
2479
     after NEXT_INSN is itself a load or store
2480
     instruction, then it is misaligned, so
2481
     optimistically hope that it will be swapped
2482
     itself, and just live with the pipeline bubble if
2483
     it isn't.  */
2484
0
        if (ok
2485
0
      && i + 4 < stop
2486
0
      && (op->flags & LOAD) != 0)
2487
0
    {
2488
0
      unsigned int next2_insn;
2489
0
      const struct sh_opcode *next2_op;
2490
2491
0
      next2_insn = bfd_get_16 (abfd, contents + i + 4);
2492
0
      next2_op = sh_insn_info (next2_insn);
2493
0
      if (next2_op == NULL
2494
0
          || ((next2_op->flags & (LOAD | STORE)) == 0
2495
0
        && sh_load_use (insn, op, next2_insn, next2_op)))
2496
0
        ok = false;
2497
0
    }
2498
2499
0
        if (ok)
2500
0
    {
2501
0
      if (! (*swap) (abfd, sec, relocs, contents, i))
2502
0
        return false;
2503
0
      *pswapped = true;
2504
0
      continue;
2505
0
    }
2506
0
      }
2507
0
  }
2508
0
    }
2509
2510
0
  return true;
2511
0
}
Unexecuted instantiation: _bfd_sh_align_load_span
Unexecuted instantiation: pe-sh.c:sh_align_load_span
2512
#endif /* not COFF_IMAGE_WITH_PE */
2513
2514
/* Swap two SH instructions.  */
2515
2516
static bool
2517
sh_swap_insns (bfd *      abfd,
2518
         asection * sec,
2519
         void *     relocs,
2520
         bfd_byte * contents,
2521
         bfd_vma    addr)
2522
0
{
2523
0
  struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2524
0
  unsigned short i1, i2;
2525
0
  struct internal_reloc *irel, *irelend;
2526
2527
  /* Swap the instructions themselves.  */
2528
0
  i1 = bfd_get_16 (abfd, contents + addr);
2529
0
  i2 = bfd_get_16 (abfd, contents + addr + 2);
2530
0
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2531
0
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2532
2533
  /* Adjust all reloc addresses.  */
2534
0
  irelend = internal_relocs + sec->reloc_count;
2535
0
  for (irel = internal_relocs; irel < irelend; irel++)
2536
0
    {
2537
0
      int type, add;
2538
2539
      /* There are a few special types of relocs that we don't want to
2540
   adjust.  These relocs do not apply to the instruction itself,
2541
   but are only associated with the address.  */
2542
0
      type = irel->r_type;
2543
0
      if (type == R_SH_ALIGN
2544
0
    || type == R_SH_CODE
2545
0
    || type == R_SH_DATA
2546
0
    || type == R_SH_LABEL)
2547
0
  continue;
2548
2549
      /* If an R_SH_USES reloc points to one of the addresses being
2550
   swapped, we must adjust it.  It would be incorrect to do this
2551
   for a jump, though, since we want to execute both
2552
   instructions after the jump.  (We have avoided swapping
2553
   around a label, so the jump will not wind up executing an
2554
   instruction it shouldn't).  */
2555
0
      if (type == R_SH_USES)
2556
0
  {
2557
0
    bfd_vma off;
2558
2559
0
    off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2560
0
    if (off == addr)
2561
0
      irel->r_offset += 2;
2562
0
    else if (off == addr + 2)
2563
0
      irel->r_offset -= 2;
2564
0
  }
2565
2566
0
      if (irel->r_vaddr - sec->vma == addr)
2567
0
  {
2568
0
    irel->r_vaddr += 2;
2569
0
    add = -2;
2570
0
  }
2571
0
      else if (irel->r_vaddr - sec->vma == addr + 2)
2572
0
  {
2573
0
    irel->r_vaddr -= 2;
2574
0
    add = 2;
2575
0
  }
2576
0
      else
2577
0
  add = 0;
2578
2579
0
      if (add != 0)
2580
0
  {
2581
0
    bfd_byte *loc;
2582
0
    unsigned short insn, oinsn;
2583
0
    bool overflow;
2584
2585
0
    loc = contents + irel->r_vaddr - sec->vma;
2586
0
    overflow = false;
2587
0
    switch (type)
2588
0
      {
2589
0
      default:
2590
0
        break;
2591
2592
0
      case R_SH_PCDISP8BY2:
2593
0
      case R_SH_PCRELIMM8BY2:
2594
0
        insn = bfd_get_16 (abfd, loc);
2595
0
        oinsn = insn;
2596
0
        insn += add / 2;
2597
0
        if ((oinsn & 0xff00) != (insn & 0xff00))
2598
0
    overflow = true;
2599
0
        bfd_put_16 (abfd, (bfd_vma) insn, loc);
2600
0
        break;
2601
2602
0
      case R_SH_PCDISP:
2603
0
        insn = bfd_get_16 (abfd, loc);
2604
0
        oinsn = insn;
2605
0
        insn += add / 2;
2606
0
        if ((oinsn & 0xf000) != (insn & 0xf000))
2607
0
    overflow = true;
2608
0
        bfd_put_16 (abfd, (bfd_vma) insn, loc);
2609
0
        break;
2610
2611
0
      case R_SH_PCRELIMM8BY4:
2612
        /* This reloc ignores the least significant 3 bits of
2613
     the program counter before adding in the offset.
2614
     This means that if ADDR is at an even address, the
2615
     swap will not affect the offset.  If ADDR is an at an
2616
     odd address, then the instruction will be crossing a
2617
     four byte boundary, and must be adjusted.  */
2618
0
        if ((addr & 3) != 0)
2619
0
    {
2620
0
      insn = bfd_get_16 (abfd, loc);
2621
0
      oinsn = insn;
2622
0
      insn += add / 2;
2623
0
      if ((oinsn & 0xff00) != (insn & 0xff00))
2624
0
        overflow = true;
2625
0
      bfd_put_16 (abfd, (bfd_vma) insn, loc);
2626
0
    }
2627
2628
0
        break;
2629
0
      }
2630
2631
0
    if (overflow)
2632
0
      {
2633
0
        _bfd_error_handler
2634
    /* xgettext: c-format */
2635
0
    (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2636
0
     abfd, (uint64_t) irel->r_vaddr);
2637
0
        bfd_set_error (bfd_error_bad_value);
2638
0
        return false;
2639
0
      }
2640
0
  }
2641
0
    }
2642
2643
0
  return true;
2644
0
}
Unexecuted instantiation: coff-sh.c:sh_swap_insns
Unexecuted instantiation: pe-sh.c:sh_swap_insns
Unexecuted instantiation: pei-sh.c:sh_swap_insns
2645
2646
/* Look for loads and stores which we can align to four byte
2647
   boundaries.  See the longer comment above sh_relax_section for why
2648
   this is desirable.  This sets *PSWAPPED if some instruction was
2649
   swapped.  */
2650
2651
static bool
2652
sh_align_loads (bfd *abfd,
2653
    asection *sec,
2654
    struct internal_reloc *internal_relocs,
2655
    bfd_byte *contents,
2656
    bool *pswapped)
2657
0
{
2658
0
  struct internal_reloc *irel, *irelend;
2659
0
  bfd_vma *labels = NULL;
2660
0
  bfd_vma *label, *label_end;
2661
0
  bfd_size_type amt;
2662
2663
0
  *pswapped = false;
2664
2665
0
  irelend = internal_relocs + sec->reloc_count;
2666
2667
  /* Get all the addresses with labels on them.  */
2668
0
  amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2669
0
  labels = (bfd_vma *) bfd_malloc (amt);
2670
0
  if (labels == NULL)
2671
0
    goto error_return;
2672
0
  label_end = labels;
2673
0
  for (irel = internal_relocs; irel < irelend; irel++)
2674
0
    {
2675
0
      if (irel->r_type == R_SH_LABEL)
2676
0
  {
2677
0
    *label_end = irel->r_vaddr - sec->vma;
2678
0
    ++label_end;
2679
0
  }
2680
0
    }
2681
2682
  /* Note that the assembler currently always outputs relocs in
2683
     address order.  If that ever changes, this code will need to sort
2684
     the label values and the relocs.  */
2685
2686
0
  label = labels;
2687
2688
0
  for (irel = internal_relocs; irel < irelend; irel++)
2689
0
    {
2690
0
      bfd_vma start, stop;
2691
2692
0
      if (irel->r_type != R_SH_CODE)
2693
0
  continue;
2694
2695
0
      start = irel->r_vaddr - sec->vma;
2696
2697
0
      for (irel++; irel < irelend; irel++)
2698
0
  if (irel->r_type == R_SH_DATA)
2699
0
    break;
2700
0
      if (irel < irelend)
2701
0
  stop = irel->r_vaddr - sec->vma;
2702
0
      else
2703
0
  stop = sec->size;
2704
2705
0
      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2706
0
             internal_relocs, &label,
2707
0
             label_end, start, stop, pswapped))
2708
0
  goto error_return;
2709
0
    }
2710
2711
0
  free (labels);
2712
2713
0
  return true;
2714
2715
0
 error_return:
2716
0
  free (labels);
2717
0
  return false;
2718
0
}
Unexecuted instantiation: coff-sh.c:sh_align_loads
Unexecuted instantiation: pe-sh.c:sh_align_loads
Unexecuted instantiation: pei-sh.c:sh_align_loads
2719

2720
/* This is a modification of _bfd_coff_generic_relocate_section, which
2721
   will handle SH relaxing.  */
2722
2723
static bool
2724
sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2725
         struct bfd_link_info *info,
2726
         bfd *input_bfd,
2727
         asection *input_section,
2728
         bfd_byte *contents,
2729
         struct internal_reloc *relocs,
2730
         struct internal_syment *syms,
2731
         asection **sections)
2732
0
{
2733
0
  struct internal_reloc *rel;
2734
0
  struct internal_reloc *relend;
2735
2736
0
  rel = relocs;
2737
0
  relend = rel + input_section->reloc_count;
2738
0
  for (; rel < relend; rel++)
2739
0
    {
2740
0
      long symndx;
2741
0
      struct coff_link_hash_entry *h;
2742
0
      struct internal_syment *sym;
2743
0
      bfd_vma addend;
2744
0
      bfd_vma val;
2745
0
      reloc_howto_type *howto;
2746
0
      bfd_reloc_status_type rstat;
2747
2748
      /* Almost all relocs have to do with relaxing.  If any work must
2749
   be done for them, it has been done in sh_relax_section.  */
2750
0
      if (rel->r_type != R_SH_IMM32
2751
#ifdef COFF_WITH_PE
2752
0
    && rel->r_type != R_SH_IMM32CE
2753
0
    && rel->r_type != R_SH_IMAGEBASE
2754
#endif
2755
0
    && rel->r_type != R_SH_PCDISP)
2756
0
  continue;
2757
2758
0
      symndx = rel->r_symndx;
2759
2760
0
      if (symndx == -1)
2761
0
  {
2762
0
    h = NULL;
2763
0
    sym = NULL;
2764
0
  }
2765
0
      else
2766
0
  {
2767
0
    if (symndx < 0
2768
0
        || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2769
0
      {
2770
0
        _bfd_error_handler
2771
    /* xgettext: c-format */
2772
0
    (_("%pB: illegal symbol index %ld in relocs"),
2773
0
     input_bfd, symndx);
2774
0
        bfd_set_error (bfd_error_bad_value);
2775
0
        return false;
2776
0
      }
2777
0
    h = obj_coff_sym_hashes (input_bfd)[symndx];
2778
0
    sym = syms + symndx;
2779
0
  }
2780
2781
0
      if (sym != NULL && sym->n_scnum != 0)
2782
0
  addend = - sym->n_value;
2783
0
      else
2784
0
  addend = 0;
2785
2786
0
      if (rel->r_type == R_SH_PCDISP)
2787
0
  addend -= 4;
2788
2789
0
      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2790
0
  howto = NULL;
2791
0
      else
2792
0
  howto = &sh_coff_howtos[rel->r_type];
2793
2794
0
      if (howto == NULL)
2795
0
  {
2796
0
    bfd_set_error (bfd_error_bad_value);
2797
0
    return false;
2798
0
  }
2799
2800
#ifdef COFF_WITH_PE
2801
0
      if (rel->r_type == R_SH_IMAGEBASE)
2802
0
  addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2803
#endif
2804
2805
0
      val = 0;
2806
2807
0
      if (h == NULL)
2808
0
  {
2809
0
    asection *sec;
2810
2811
    /* There is nothing to do for an internal PCDISP reloc.  */
2812
0
    if (rel->r_type == R_SH_PCDISP)
2813
0
      continue;
2814
2815
0
    if (symndx == -1)
2816
0
      {
2817
0
        sec = bfd_abs_section_ptr;
2818
0
        val = 0;
2819
0
      }
2820
0
    else
2821
0
      {
2822
0
        sec = sections[symndx];
2823
0
        val = (sec->output_section->vma
2824
0
         + sec->output_offset
2825
0
         + sym->n_value
2826
0
         - sec->vma);
2827
0
      }
2828
0
  }
2829
0
      else
2830
0
  {
2831
0
    if (h->root.type == bfd_link_hash_defined
2832
0
        || h->root.type == bfd_link_hash_defweak)
2833
0
      {
2834
0
        asection *sec;
2835
2836
0
        sec = h->root.u.def.section;
2837
0
        val = (h->root.u.def.value
2838
0
         + sec->output_section->vma
2839
0
         + sec->output_offset);
2840
0
      }
2841
0
    else if (! bfd_link_relocatable (info))
2842
0
      (*info->callbacks->undefined_symbol)
2843
0
        (info, h->root.root.string, input_bfd, input_section,
2844
0
         rel->r_vaddr - input_section->vma, true);
2845
0
  }
2846
2847
0
      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2848
0
          contents,
2849
0
          rel->r_vaddr - input_section->vma,
2850
0
          val, addend);
2851
2852
0
      switch (rstat)
2853
0
  {
2854
0
  default:
2855
0
    abort ();
2856
0
  case bfd_reloc_ok:
2857
0
    break;
2858
0
  case bfd_reloc_overflow:
2859
0
    {
2860
0
      const char *name;
2861
0
      char buf[SYMNMLEN + 1];
2862
2863
0
      if (symndx == -1)
2864
0
        name = "*ABS*";
2865
0
      else if (h != NULL)
2866
0
        name = NULL;
2867
0
      else if (sym->_n._n_n._n_zeroes == 0
2868
0
         && sym->_n._n_n._n_offset != 0)
2869
0
        {
2870
0
    if (sym->_n._n_n._n_offset < obj_coff_strings_len (input_bfd))
2871
0
      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2872
0
    else
2873
0
      name = "?";
2874
0
        }
2875
0
      else
2876
0
        {
2877
0
    strncpy (buf, sym->_n._n_name, SYMNMLEN);
2878
0
    buf[SYMNMLEN] = '\0';
2879
0
    name = buf;
2880
0
        }
2881
2882
0
      (*info->callbacks->reloc_overflow)
2883
0
        (info, (h ? &h->root : NULL), name, howto->name,
2884
0
         (bfd_vma) 0, input_bfd, input_section,
2885
0
         rel->r_vaddr - input_section->vma);
2886
0
    }
2887
0
  }
2888
0
    }
2889
2890
0
  return true;
2891
0
}
Unexecuted instantiation: coff-sh.c:sh_relocate_section
Unexecuted instantiation: pe-sh.c:sh_relocate_section
Unexecuted instantiation: pei-sh.c:sh_relocate_section
2892
2893
/* This is a version of bfd_generic_get_relocated_section_contents
2894
   which uses sh_relocate_section.  */
2895
2896
static bfd_byte *
2897
sh_coff_get_relocated_section_contents (bfd *output_bfd,
2898
          struct bfd_link_info *link_info,
2899
          struct bfd_link_order *link_order,
2900
          bfd_byte *data,
2901
          bool relocatable,
2902
          asymbol **symbols)
2903
0
{
2904
0
  asection *input_section = link_order->u.indirect.section;
2905
0
  bfd *input_bfd = input_section->owner;
2906
0
  asection **sections = NULL;
2907
0
  struct internal_reloc *internal_relocs = NULL;
2908
0
  struct internal_syment *internal_syms = NULL;
2909
2910
  /* We only need to handle the case of relaxing, or of having a
2911
     particular set of section contents, specially.  */
2912
0
  if (relocatable
2913
0
      || coff_section_data (input_bfd, input_section) == NULL
2914
0
      || coff_section_data (input_bfd, input_section)->contents == NULL)
2915
0
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2916
0
                   link_order, data,
2917
0
                   relocatable,
2918
0
                   symbols);
2919
2920
0
  bfd_byte *orig_data = data;
2921
0
  if (data == NULL)
2922
0
    {
2923
0
      data = bfd_malloc (input_section->size);
2924
0
      if (data == NULL)
2925
0
  return NULL;
2926
0
    }
2927
0
  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2928
0
    (size_t) input_section->size);
2929
2930
0
  if ((input_section->flags & SEC_RELOC) != 0
2931
0
      && input_section->reloc_count > 0)
2932
0
    {
2933
0
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2934
0
      bfd_byte *esym, *esymend;
2935
0
      struct internal_syment *isymp;
2936
0
      asection **secpp;
2937
0
      bfd_size_type amt;
2938
2939
0
      if (! _bfd_coff_get_external_symbols (input_bfd))
2940
0
  goto error_return;
2941
2942
0
      internal_relocs = (_bfd_coff_read_internal_relocs
2943
0
       (input_bfd, input_section, false, (bfd_byte *) NULL,
2944
0
        false, (struct internal_reloc *) NULL));
2945
0
      if (internal_relocs == NULL)
2946
0
  goto error_return;
2947
2948
0
      amt = obj_raw_syment_count (input_bfd);
2949
0
      amt *= sizeof (struct internal_syment);
2950
0
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
2951
0
      if (internal_syms == NULL)
2952
0
  goto error_return;
2953
2954
0
      amt = obj_raw_syment_count (input_bfd);
2955
0
      amt *= sizeof (asection *);
2956
0
      sections = (asection **) bfd_malloc (amt);
2957
0
      if (sections == NULL)
2958
0
  goto error_return;
2959
2960
0
      isymp = internal_syms;
2961
0
      secpp = sections;
2962
0
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2963
0
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2964
0
      while (esym < esymend)
2965
0
  {
2966
0
    bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2967
2968
0
    if (isymp->n_scnum != 0)
2969
0
      *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2970
0
    else
2971
0
      {
2972
0
        if (isymp->n_value == 0)
2973
0
    *secpp = bfd_und_section_ptr;
2974
0
        else
2975
0
    *secpp = bfd_com_section_ptr;
2976
0
      }
2977
2978
0
    esym += (isymp->n_numaux + 1) * symesz;
2979
0
    secpp += isymp->n_numaux + 1;
2980
0
    isymp += isymp->n_numaux + 1;
2981
0
  }
2982
2983
0
      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2984
0
         input_section, data, internal_relocs,
2985
0
         internal_syms, sections))
2986
0
  goto error_return;
2987
2988
0
      free (sections);
2989
0
      sections = NULL;
2990
0
      free (internal_syms);
2991
0
      internal_syms = NULL;
2992
0
      free (internal_relocs);
2993
0
      internal_relocs = NULL;
2994
0
    }
2995
2996
0
  return data;
2997
2998
0
 error_return:
2999
0
  free (internal_relocs);
3000
0
  free (internal_syms);
3001
0
  free (sections);
3002
0
  if (orig_data == NULL)
3003
0
    free (data);
3004
0
  return NULL;
3005
0
}
Unexecuted instantiation: coff-sh.c:sh_coff_get_relocated_section_contents
Unexecuted instantiation: pe-sh.c:sh_coff_get_relocated_section_contents
Unexecuted instantiation: pei-sh.c:sh_coff_get_relocated_section_contents
3006
3007
/* The target vectors.  */
3008
3009
#ifndef TARGET_SHL_SYM
3010
CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3011
#endif
3012
3013
#ifdef TARGET_SHL_SYM
3014
#define TARGET_SYM TARGET_SHL_SYM
3015
#else
3016
#define TARGET_SYM sh_coff_le_vec
3017
#endif
3018
3019
#ifndef TARGET_SHL_NAME
3020
#define TARGET_SHL_NAME "coff-shl"
3021
#endif
3022
3023
#ifdef COFF_WITH_PE
3024
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3025
             SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3026
#else
3027
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3028
             0, '_', NULL, COFF_SWAP_TABLE)
3029
#endif
3030
3031
#ifndef TARGET_SHL_SYM
3032
3033
/* Some people want versions of the SH COFF target which do not align
3034
   to 16 byte boundaries.  We implement that by adding a couple of new
3035
   target vectors.  These are just like the ones above, but they
3036
   change the default section alignment.  To generate them in the
3037
   assembler, use -small.  To use them in the linker, use -b
3038
   coff-sh{l}-small and -oformat coff-sh{l}-small.
3039
3040
   Yes, this is a horrible hack.  A general solution for setting
3041
   section alignment in COFF is rather complex.  ELF handles this
3042
   correctly.  */
3043
3044
/* Only recognize the small versions if the target was not defaulted.
3045
   Otherwise we won't recognize the non default endianness.  */
3046
3047
static bfd_cleanup
3048
coff_small_object_p (bfd *abfd)
3049
1.18M
{
3050
1.18M
  if (abfd->target_defaulted)
3051
0
    {
3052
0
      bfd_set_error (bfd_error_wrong_format);
3053
0
      return NULL;
3054
0
    }
3055
1.18M
  return coff_object_p (abfd);
3056
1.18M
}
3057
3058
/* Set the section alignment for the small versions.  */
3059
3060
static bool
3061
coff_small_new_section_hook (bfd *abfd, asection *section)
3062
3.34M
{
3063
3.34M
  if (! coff_new_section_hook (abfd, section))
3064
0
    return false;
3065
3066
  /* We must align to at least a four byte boundary, because longword
3067
     accesses must be on a four byte boundary.  */
3068
3.34M
  if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3069
3.33M
    section->alignment_power = 2;
3070
3071
3.34M
  return true;
3072
3.34M
}
3073
3074
/* This is copied from bfd_coff_std_swap_table so that we can change
3075
   the default section alignment power.  */
3076
3077
static const bfd_coff_backend_data bfd_coff_small_swap_table =
3078
{
3079
  coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3080
  coff_swap_aux_out, coff_swap_sym_out,
3081
  coff_swap_lineno_out, coff_swap_reloc_out,
3082
  coff_swap_filehdr_out, coff_swap_aouthdr_out,
3083
  coff_swap_scnhdr_out,
3084
  FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3085
#ifdef COFF_LONG_FILENAMES
3086
  true,
3087
#else
3088
  false,
3089
#endif
3090
  COFF_DEFAULT_LONG_SECTION_NAMES,
3091
  2,
3092
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3093
  true,
3094
#else
3095
  false,
3096
#endif
3097
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3098
  4,
3099
#else
3100
  2,
3101
#endif
3102
  32768,
3103
  coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3104
  coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3105
  coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3106
  coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3107
  coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3108
  coff_classify_symbol, coff_compute_section_file_positions,
3109
  coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3110
  coff_adjust_symndx, coff_link_add_one_symbol,
3111
  coff_link_output_has_begun, coff_final_link_postscript,
3112
  bfd_pe_print_pdata
3113
};
3114
3115
#define coff_small_close_and_cleanup \
3116
  coff_close_and_cleanup
3117
#define coff_small_bfd_free_cached_info \
3118
  coff_bfd_free_cached_info
3119
#define coff_small_get_section_contents \
3120
  coff_get_section_contents
3121
#define coff_small_get_section_contents_in_window \
3122
  coff_get_section_contents_in_window
3123
3124
extern const bfd_target sh_coff_small_le_vec;
3125
3126
const bfd_target sh_coff_small_vec =
3127
{
3128
  "coff-sh-small",    /* name */
3129
  bfd_target_coff_flavour,
3130
  BFD_ENDIAN_BIG,   /* data byte order is big */
3131
  BFD_ENDIAN_BIG,   /* header byte order is big */
3132
3133
  (HAS_RELOC | EXEC_P   /* object flags */
3134
   | HAS_LINENO | HAS_DEBUG
3135
   | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3136
3137
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3138
  '_',        /* leading symbol underscore */
3139
  '/',        /* ar_pad_char */
3140
  15,       /* ar_max_namelen */
3141
  0,        /* match priority.  */
3142
  TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */
3143
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3144
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3145
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3146
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3147
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3148
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3149
3150
  {       /* bfd_check_format */
3151
    _bfd_dummy_target,
3152
    coff_small_object_p,
3153
    bfd_generic_archive_p,
3154
    _bfd_dummy_target
3155
  },
3156
  {       /* bfd_set_format */
3157
    _bfd_bool_bfd_false_error,
3158
    coff_mkobject,
3159
    _bfd_generic_mkarchive,
3160
    _bfd_bool_bfd_false_error
3161
  },
3162
  {       /* bfd_write_contents */
3163
    _bfd_bool_bfd_false_error,
3164
    coff_write_object_contents,
3165
    _bfd_write_archive_contents,
3166
    _bfd_bool_bfd_false_error
3167
  },
3168
3169
  BFD_JUMP_TABLE_GENERIC (coff_small),
3170
  BFD_JUMP_TABLE_COPY (coff),
3171
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3172
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3173
  BFD_JUMP_TABLE_SYMBOLS (coff),
3174
  BFD_JUMP_TABLE_RELOCS (coff),
3175
  BFD_JUMP_TABLE_WRITE (coff),
3176
  BFD_JUMP_TABLE_LINK (coff),
3177
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3178
3179
  &sh_coff_small_le_vec,
3180
3181
  &bfd_coff_small_swap_table
3182
};
3183
3184
const bfd_target sh_coff_small_le_vec =
3185
{
3186
  "coff-shl-small",   /* name */
3187
  bfd_target_coff_flavour,
3188
  BFD_ENDIAN_LITTLE,    /* data byte order is little */
3189
  BFD_ENDIAN_LITTLE,    /* header byte order is little endian too*/
3190
3191
  (HAS_RELOC | EXEC_P   /* object flags */
3192
   | HAS_LINENO | HAS_DEBUG
3193
   | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3194
3195
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3196
  '_',        /* leading symbol underscore */
3197
  '/',        /* ar_pad_char */
3198
  15,       /* ar_max_namelen */
3199
  0,        /* match priority.  */
3200
  TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */
3201
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3202
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3203
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3204
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3205
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3206
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3207
3208
  {       /* bfd_check_format */
3209
    _bfd_dummy_target,
3210
    coff_small_object_p,
3211
    bfd_generic_archive_p,
3212
    _bfd_dummy_target
3213
  },
3214
  {       /* bfd_set_format */
3215
    _bfd_bool_bfd_false_error,
3216
    coff_mkobject,
3217
    _bfd_generic_mkarchive,
3218
    _bfd_bool_bfd_false_error
3219
  },
3220
  {       /* bfd_write_contents */
3221
    _bfd_bool_bfd_false_error,
3222
    coff_write_object_contents,
3223
    _bfd_write_archive_contents,
3224
    _bfd_bool_bfd_false_error
3225
  },
3226
3227
  BFD_JUMP_TABLE_GENERIC (coff_small),
3228
  BFD_JUMP_TABLE_COPY (coff),
3229
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3230
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3231
  BFD_JUMP_TABLE_SYMBOLS (coff),
3232
  BFD_JUMP_TABLE_RELOCS (coff),
3233
  BFD_JUMP_TABLE_WRITE (coff),
3234
  BFD_JUMP_TABLE_LINK (coff),
3235
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3236
3237
  &sh_coff_small_vec,
3238
3239
  &bfd_coff_small_swap_table
3240
};
3241
#endif