Coverage Report

Created: 2023-08-28 06:23

/src/binutils-gdb/opcodes/vax-dis.c
Line
Count
Source (jump to first uncovered line)
1
/* Print VAX instructions.
2
   Copyright (C) 1995-2023 Free Software Foundation, Inc.
3
   Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
4
5
   This file is part of the GNU opcodes library.
6
7
   This library is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3, or (at your option)
10
   any later version.
11
12
   It is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
22
#include "sysdep.h"
23
#include <setjmp.h>
24
#include <string.h>
25
#include "opcode/vax.h"
26
#include "disassemble.h"
27
28
static char *reg_names[] =
29
{
30
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
31
  "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
32
};
33
34
/* Definitions for the function entry mask bits.  */
35
static char *entry_mask_bit[] =
36
{
37
  /* Registers 0 and 1 shall not be saved, since they're used to pass back
38
     a function's result to its caller...  */
39
  "~r0~", "~r1~",
40
  /* Registers 2 .. 11 are normal registers.  */
41
  "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
42
  /* Registers 12 and 13 are argument and frame pointer and must not
43
     be saved by using the entry mask.  */
44
  "~ap~", "~fp~",
45
  /* Bits 14 and 15 control integer and decimal overflow.  */
46
  "IntOvfl", "DecOvfl",
47
};
48
49
/* Sign-extend an (unsigned char). */
50
0
#define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
51
52
/* Get a 1 byte signed integer.  */
53
#define NEXTBYTE(p)  \
54
0
  (p += 1, FETCH_DATA (info, p), \
55
0
  COERCE_SIGNED_CHAR(p[-1]))
56
57
/* Get a 2 byte signed integer.  */
58
0
#define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
59
#define NEXTWORD(p)  \
60
0
  (p += 2, FETCH_DATA (info, p), \
61
0
   COERCE16 ((p[-1] << 8) + p[-2]))
62
63
/* Get a 4 byte signed integer.  */
64
0
#define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
65
#define NEXTLONG(p)  \
66
0
  (p += 4, FETCH_DATA (info, p), \
67
0
   (COERCE32 (((((((unsigned) p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
68
69
/* Maximum length of an instruction.  */
70
#define MAXLEN 25
71
72
struct private
73
{
74
  /* Points to first byte not fetched.  */
75
  bfd_byte * max_fetched;
76
  bfd_byte   the_buffer[MAXLEN];
77
  bfd_vma    insn_start;
78
  OPCODES_SIGJMP_BUF    bailout;
79
};
80
81
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
82
   to ADDR (exclusive) are valid.  Returns 1 for success, longjmps
83
   on error.  */
84
#define FETCH_DATA(info, addr) \
85
0
  ((addr) <= ((struct private *)(info->private_data))->max_fetched \
86
0
   ? 1 : fetch_data ((info), (addr)))
87
88
static int
89
fetch_data (struct disassemble_info *info, bfd_byte *addr)
90
0
{
91
0
  int status;
92
0
  struct private *priv = (struct private *) info->private_data;
93
0
  bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
94
95
0
  status = (*info->read_memory_func) (start,
96
0
              priv->max_fetched,
97
0
              addr - priv->max_fetched,
98
0
              info);
99
0
  if (status != 0)
100
0
    {
101
0
      (*info->memory_error_func) (status, start, info);
102
0
      OPCODES_SIGLONGJMP (priv->bailout, 1);
103
0
    }
104
0
  else
105
0
    priv->max_fetched = addr;
106
107
0
  return 1;
108
0
}
109
110
/* Entry mask handling.  */
111
static unsigned int  entry_addr_occupied_slots = 0;
112
static unsigned int  entry_addr_total_slots = 0;
113
static bfd_vma *     entry_addr = NULL;
114
115
/* Parse the VAX specific disassembler options.  These contain function
116
   entry addresses, which can be useful to disassemble ROM images, since
117
   there's no symbol table.  Returns TRUE upon success, FALSE otherwise.  */
118
119
static bool
120
parse_disassembler_options (const char *options)
121
0
{
122
0
  const char * entry_switch = "entry:";
123
124
0
  while ((options = strstr (options, entry_switch)))
125
0
    {
126
0
      options += strlen (entry_switch);
127
128
      /* The greater-than part of the test below is paranoia.  */
129
0
      if (entry_addr_occupied_slots >= entry_addr_total_slots)
130
0
  {
131
    /* A guesstimate of the number of entries we will have to create.  */
132
0
    entry_addr_total_slots
133
0
      += 1 + strlen (options) / (strlen (entry_switch) + 5);
134
135
0
    entry_addr = realloc (entry_addr, sizeof (bfd_vma)
136
0
        * entry_addr_total_slots);
137
0
  }
138
139
0
      if (entry_addr == NULL)
140
0
  return false;
141
142
0
      entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
143
0
      entry_addr_occupied_slots ++;
144
0
    }
145
146
0
  return true;
147
0
}
148
149
#if 0 /* FIXME:  Ideally the disassembler should have target specific
150
   initialisation and termination function pointers.  Then
151
   parse_disassembler_options could be the init function and
152
   free_entry_array (below) could be the termination routine.
153
   Until then there is no way for the disassembler to tell us
154
   that it has finished and that we no longer need the entry
155
   array, so this routine is suppressed for now.  It does mean
156
   that we leak memory, but only to the extent that we do not
157
   free it just before the disassembler is about to terminate
158
   anyway.  */
159
160
/* Free memory allocated to our entry array.  */
161
162
static void
163
free_entry_array (void)
164
{
165
  if (entry_addr)
166
    {
167
      free (entry_addr);
168
      entry_addr = NULL;
169
      entry_addr_occupied_slots = entry_addr_total_slots = 0;
170
    }
171
}
172
#endif
173
/* Check if the given address is a known function entry point.  This is
174
   the case if there is a symbol of the function type at this address.
175
   We also check for synthetic symbols as these are used for PLT entries
176
   (weak undefined symbols may not have the function type set).  Finally
177
   the address may have been forced to be treated as an entry point.  The
178
   latter helps in disassembling ROM images, because there's no symbol
179
   table at all.  Forced entry points can be given by supplying several
180
   -M options to objdump: -M entry:0xffbb7730.  */
181
182
static bool
183
is_function_entry (struct disassemble_info *info, bfd_vma addr)
184
0
{
185
0
  unsigned int i;
186
187
  /* Check if there's a function or PLT symbol at our address.  */
188
0
  if (info->symbols
189
0
      && info->symbols[0]
190
0
      && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
191
0
      && addr == bfd_asymbol_value (info->symbols[0]))
192
0
    return true;
193
194
  /* Check for forced function entry address.  */
195
0
  for (i = entry_addr_occupied_slots; i--;)
196
0
    if (entry_addr[i] == addr)
197
0
      return true;
198
199
0
  return false;
200
0
}
201
202
/* Check if the given address is the last longword of a PLT entry.
203
   This longword is data and depending on the value it may interfere
204
   with disassembly of further PLT entries.  We make use of the fact
205
   PLT symbols are marked BSF_SYNTHETIC.  */
206
static bool
207
is_plt_tail (struct disassemble_info *info, bfd_vma addr)
208
0
{
209
0
  if (info->symbols
210
0
      && info->symbols[0]
211
0
      && (info->symbols[0]->flags & BSF_SYNTHETIC)
212
0
      && addr == bfd_asymbol_value (info->symbols[0]) + 8)
213
0
    return true;
214
215
0
  return false;
216
0
}
217
218
static int
219
print_insn_mode (const char *d,
220
     int size,
221
     unsigned char *p0,
222
     bfd_vma addr,  /* PC for this arg to be relative to.  */
223
     disassemble_info *info)
224
0
{
225
0
  unsigned char *p = p0;
226
0
  unsigned char mode, reg;
227
228
  /* Fetch and interpret mode byte.  */
229
0
  mode = (unsigned char) NEXTBYTE (p);
230
0
  reg = mode & 0xF;
231
0
  switch (mode & 0xF0)
232
0
    {
233
0
    case 0x00:
234
0
    case 0x10:
235
0
    case 0x20:
236
0
    case 0x30: /* Literal mode      $number.  */
237
0
      if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
238
0
  (*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
239
0
      else
240
0
        (*info->fprintf_func) (info->stream, "$0x%x", mode);
241
0
      break;
242
0
    case 0x40: /* Index:      base-addr[Rn] */
243
0
      {
244
0
  unsigned char *q = p0 + 1;
245
0
  unsigned char nextmode = NEXTBYTE (q);
246
0
  if (nextmode < 0x60 || nextmode == 0x8f)
247
    /* Literal, index, register, or immediate is invalid.  In
248
       particular don't recurse into another index mode which
249
       might overflow the_buffer.   */
250
0
    (*info->fprintf_func) (info->stream, "[invalid base]");
251
0
  else
252
0
    p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
253
0
  (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
254
0
      }
255
0
      break;
256
0
    case 0x50: /* Register:     Rn */
257
0
      (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
258
0
      break;
259
0
    case 0x60: /* Register deferred:    (Rn) */
260
0
      (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
261
0
      break;
262
0
    case 0x70: /* Autodecrement:    -(Rn) */
263
0
      (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
264
0
      break;
265
0
    case 0x80: /* Autoincrement:    (Rn)+ */
266
0
      if (reg == 0xF)
267
0
  { /* Immediate?  */
268
0
    int i;
269
270
0
    FETCH_DATA (info, p + size);
271
0
    (*info->fprintf_func) (info->stream, "$0x");
272
0
    if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
273
0
      {
274
0
        int float_word;
275
276
0
        float_word = p[0] | (p[1] << 8);
277
0
        if ((d[1] == 'd' || d[1] == 'f')
278
0
      && (float_word & 0xff80) == 0x8000)
279
0
    {
280
0
      (*info->fprintf_func) (info->stream, "[invalid %c-float]",
281
0
           d[1]);
282
0
    }
283
0
        else
284
0
    {
285
0
            for (i = 0; i < size; i++)
286
0
        (*info->fprintf_func) (info->stream, "%02x",
287
0
                               p[size - i - 1]);
288
0
            (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
289
0
    }
290
0
      }
291
0
    else
292
0
      {
293
0
        for (i = 0; i < size; i++)
294
0
          (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
295
0
      }
296
0
    p += size;
297
0
  }
298
0
      else
299
0
  (*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
300
0
      break;
301
0
    case 0x90: /* Autoincrement deferred: @(Rn)+ */
302
0
      if (reg == 0xF)
303
0
  (*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
304
0
      else
305
0
  (*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
306
0
      break;
307
0
    case 0xB0: /* Displacement byte deferred: *displ(Rn).  */
308
0
      (*info->fprintf_func) (info->stream, "*");
309
      /* Fall through.  */
310
0
    case 0xA0: /* Displacement byte:    displ(Rn).  */
311
0
      if (reg == 0xF)
312
0
  (*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
313
0
      else
314
0
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
315
0
             reg_names[reg]);
316
0
      break;
317
0
    case 0xD0: /* Displacement word deferred: *displ(Rn).  */
318
0
      (*info->fprintf_func) (info->stream, "*");
319
      /* Fall through.  */
320
0
    case 0xC0: /* Displacement word:    displ(Rn).  */
321
0
      if (reg == 0xF)
322
0
  (*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
323
0
      else
324
0
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
325
0
             reg_names[reg]);
326
0
      break;
327
0
    case 0xF0: /* Displacement long deferred: *displ(Rn).  */
328
0
      (*info->fprintf_func) (info->stream, "*");
329
      /* Fall through.  */
330
0
    case 0xE0: /* Displacement long:    displ(Rn).  */
331
0
      if (reg == 0xF)
332
0
  (*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
333
0
      else
334
0
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
335
0
             reg_names[reg]);
336
0
      break;
337
0
    }
338
339
0
  return p - p0;
340
0
}
341
342
/* Returns number of bytes "eaten" by the operand, or return -1 if an
343
   invalid operand was found, or -2 if an opcode tabel error was
344
   found. */
345
346
static int
347
print_insn_arg (const char *d,
348
    unsigned char *p0,
349
    bfd_vma addr, /* PC for this arg to be relative to.  */
350
    disassemble_info *info)
351
0
{
352
0
  int arg_len;
353
354
  /* Check validity of addressing length.  */
355
0
  switch (d[1])
356
0
    {
357
0
    case 'b' : arg_len = 1; break;
358
0
    case 'd' : arg_len = 8; break;
359
0
    case 'f' : arg_len = 4; break;
360
0
    case 'g' : arg_len = 8; break;
361
0
    case 'h' : arg_len = 16;  break;
362
0
    case 'l' : arg_len = 4; break;
363
0
    case 'o' : arg_len = 16;  break;
364
0
    case 'w' : arg_len = 2; break;
365
0
    case 'q' : arg_len = 8; break;
366
0
    default  : abort ();
367
0
    }
368
369
  /* Branches have no mode byte.  */
370
0
  if (d[0] == 'b')
371
0
    {
372
0
      unsigned char *p = p0;
373
374
0
      if (arg_len == 1)
375
0
  (*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
376
0
      else
377
0
  (*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
378
379
0
      return p - p0;
380
0
    }
381
382
0
  return print_insn_mode (d, arg_len, p0, addr, info);
383
0
}
384
385
/* Print the vax instruction at address MEMADDR in debugged memory,
386
   on INFO->STREAM.  Returns length of the instruction, in bytes.  */
387
388
int
389
print_insn_vax (bfd_vma memaddr, disassemble_info *info)
390
0
{
391
0
  static bool parsed_disassembler_options = false;
392
0
  const struct vot *votp;
393
0
  const char *argp;
394
0
  unsigned char *arg;
395
0
  struct private priv;
396
0
  bfd_byte *buffer = priv.the_buffer;
397
398
0
  info->private_data = & priv;
399
0
  priv.max_fetched = priv.the_buffer;
400
0
  priv.insn_start = memaddr;
401
402
0
  if (! parsed_disassembler_options
403
0
      && info->disassembler_options != NULL)
404
0
    {
405
0
      parse_disassembler_options (info->disassembler_options);
406
407
      /* To avoid repeated parsing of these options.  */
408
0
      parsed_disassembler_options = true;
409
0
    }
410
411
0
  if (OPCODES_SIGSETJMP (priv.bailout) != 0)
412
    /* Error return.  */
413
0
    return -1;
414
415
0
  argp = NULL;
416
  /* Check if the info buffer has more than one byte left since
417
     the last opcode might be a single byte with no argument data.  */
418
0
  if (info->buffer_length - (memaddr - info->buffer_vma) > 1
419
0
      && (info->stop_vma == 0 || memaddr < (info->stop_vma - 1)))
420
0
    {
421
0
      FETCH_DATA (info, buffer + 2);
422
0
    }
423
0
  else
424
0
    {
425
0
      FETCH_DATA (info, buffer + 1);
426
0
      buffer[1] = 0;
427
0
    }
428
429
  /* Decode function entry mask.  */
430
0
  if (is_function_entry (info, memaddr))
431
0
    {
432
0
      int i = 0;
433
0
      int register_mask = buffer[1] << 8 | buffer[0];
434
435
0
      (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
436
0
           register_mask);
437
438
0
      for (i = 15; i >= 0; i--)
439
0
  if (register_mask & (1 << i))
440
0
          (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
441
442
0
      (*info->fprintf_func) (info->stream, " >");
443
444
0
      return 2;
445
0
    }
446
447
  /* Decode PLT entry offset longword.  */
448
0
  if (is_plt_tail (info, memaddr))
449
0
    {
450
0
      int offset;
451
452
0
      FETCH_DATA (info, buffer + 4);
453
0
      offset = ((unsigned) buffer[3] << 24 | buffer[2] << 16
454
0
    | buffer[1] << 8 | buffer[0]);
455
0
      (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
456
457
0
      return 4;
458
0
    }
459
460
0
  for (votp = &votstrs[0]; votp->name[0]; votp++)
461
0
    {
462
0
      vax_opcodeT opcode = votp->detail.code;
463
464
      /* 2 byte codes match 2 buffer pos. */
465
0
      if ((bfd_byte) opcode == buffer[0]
466
0
    && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
467
0
  {
468
0
    argp = votp->detail.args;
469
0
    break;
470
0
  }
471
0
    }
472
0
  if (argp == NULL)
473
0
    {
474
      /* Handle undefined instructions. */
475
0
      (*info->fprintf_func) (info->stream, ".word 0x%x",
476
0
           (buffer[0] << 8) + buffer[1]);
477
0
      return 2;
478
0
    }
479
480
  /* Point at first byte of argument data, and at descriptor for first
481
     argument.  */
482
0
  arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
483
484
  /* Make sure we have it in mem */
485
0
  FETCH_DATA (info, arg);
486
487
0
  (*info->fprintf_func) (info->stream, "%s", votp->name);
488
0
  if (*argp)
489
0
    (*info->fprintf_func) (info->stream, " ");
490
491
0
  while (*argp)
492
0
    {
493
0
      arg += print_insn_arg (argp, arg, memaddr + (arg - buffer), info);
494
0
      argp += 2;
495
0
      if (*argp)
496
0
  (*info->fprintf_func) (info->stream, ",");
497
0
    }
498
499
0
  return arg - buffer;
500
0
}
501