/src/binutils-gdb/bfd/elf32-rl78.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Renesas RL78 specific support for 32-bit ELF. |
2 | | Copyright (C) 2011-2023 Free Software Foundation, Inc. |
3 | | |
4 | | This file is part of BFD, the Binary File Descriptor library. |
5 | | |
6 | | This program is free software; you can redistribute it and/or modify |
7 | | it under the terms of the GNU General Public License as published by |
8 | | the Free Software Foundation; either version 3 of the License, or |
9 | | (at your option) any later version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, |
12 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; if not, write to the Free Software |
18 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
19 | | MA 02110-1301, USA. */ |
20 | | |
21 | | #include "sysdep.h" |
22 | | #include "bfd.h" |
23 | | #include "libbfd.h" |
24 | | #include "elf-bfd.h" |
25 | | #include "elf/rl78.h" |
26 | | #include "libiberty.h" |
27 | | |
28 | 0 | #define valid_16bit_address(v) ((v) <= 0x0ffff || (v) >= 0xf0000) |
29 | | |
30 | | #define RL78REL(n,sz,bit,mask,shift,complain,pcrel) \ |
31 | | HOWTO (R_RL78_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \ |
32 | | bfd_elf_generic_reloc, "R_RL78_" #n, false, 0, mask, false) |
33 | | |
34 | | static bfd_reloc_status_type rl78_special_reloc (bfd *, arelent *, asymbol *, void *, |
35 | | asection *, bfd *, char **); |
36 | | |
37 | | #define RL78_OP_REL(n,sz,bit,mask,shift,complain,pcrel) \ |
38 | | HOWTO (R_RL78_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \ |
39 | | rl78_special_reloc, "R_RL78_" #n, false, 0, mask, false) |
40 | | |
41 | | /* Note that the relocations around 0x7f are internal to this file; |
42 | | feel free to move them as needed to avoid conflicts with published |
43 | | relocation numbers. */ |
44 | | |
45 | | static reloc_howto_type rl78_elf_howto_table [] = |
46 | | { |
47 | | RL78REL (NONE, 0, 0, 0, 0, dont, false), |
48 | | RL78REL (DIR32, 4, 32, 0xffffffff, 0, dont, false), |
49 | | RL78REL (DIR24S, 4, 24, 0xffffff, 0, signed, false), |
50 | | RL78REL (DIR16, 2, 16, 0xffff, 0, bitfield, false), |
51 | | RL78REL (DIR16U, 2, 16, 0xffff, 0, unsigned, false), |
52 | | RL78REL (DIR16S, 2, 16, 0xffff, 0, bitfield, false), |
53 | | RL78REL (DIR8, 1, 8, 0xff, 0, dont, false), |
54 | | RL78REL (DIR8U, 1, 8, 0xff, 0, unsigned, false), |
55 | | RL78REL (DIR8S, 1, 8, 0xff, 0, bitfield, false), |
56 | | RL78REL (DIR24S_PCREL, 4, 24, 0xffffff, 0, signed, true), |
57 | | RL78REL (DIR16S_PCREL, 2, 16, 0xffff, 0, signed, true), |
58 | | RL78REL (DIR8S_PCREL, 1, 8, 0xff, 0, signed, true), |
59 | | RL78REL (DIR16UL, 2, 16, 0xffff, 2, unsigned, false), |
60 | | RL78REL (DIR16UW, 2, 16, 0xffff, 1, unsigned, false), |
61 | | RL78REL (DIR8UL, 1, 8, 0xff, 2, unsigned, false), |
62 | | RL78REL (DIR8UW, 1, 8, 0xff, 1, unsigned, false), |
63 | | RL78REL (DIR32_REV, 4, 32, 0xffffffff, 0, dont, false), |
64 | | RL78REL (DIR16_REV, 2, 16, 0xffff, 0, bitfield, false), |
65 | | RL78REL (DIR3U_PCREL, 1, 3, 0x7, 0, unsigned, true), |
66 | | |
67 | | EMPTY_HOWTO (0x13), |
68 | | EMPTY_HOWTO (0x14), |
69 | | EMPTY_HOWTO (0x15), |
70 | | EMPTY_HOWTO (0x16), |
71 | | EMPTY_HOWTO (0x17), |
72 | | EMPTY_HOWTO (0x18), |
73 | | EMPTY_HOWTO (0x19), |
74 | | EMPTY_HOWTO (0x1a), |
75 | | EMPTY_HOWTO (0x1b), |
76 | | EMPTY_HOWTO (0x1c), |
77 | | EMPTY_HOWTO (0x1d), |
78 | | EMPTY_HOWTO (0x1e), |
79 | | EMPTY_HOWTO (0x1f), |
80 | | |
81 | | EMPTY_HOWTO (0x20), |
82 | | EMPTY_HOWTO (0x21), |
83 | | EMPTY_HOWTO (0x22), |
84 | | EMPTY_HOWTO (0x23), |
85 | | EMPTY_HOWTO (0x24), |
86 | | EMPTY_HOWTO (0x25), |
87 | | EMPTY_HOWTO (0x26), |
88 | | EMPTY_HOWTO (0x27), |
89 | | EMPTY_HOWTO (0x28), |
90 | | EMPTY_HOWTO (0x29), |
91 | | EMPTY_HOWTO (0x2a), |
92 | | EMPTY_HOWTO (0x2b), |
93 | | EMPTY_HOWTO (0x2c), |
94 | | |
95 | | RL78REL (RH_RELAX, 0, 0, 0, 0, dont, false), |
96 | | RL78REL (RH_SFR, 1, 8, 0xff, 0, unsigned, false), |
97 | | RL78REL (RH_SADDR, 1, 8, 0xff, 0, unsigned, false), |
98 | | |
99 | | EMPTY_HOWTO (0x30), |
100 | | EMPTY_HOWTO (0x31), |
101 | | EMPTY_HOWTO (0x32), |
102 | | EMPTY_HOWTO (0x33), |
103 | | EMPTY_HOWTO (0x34), |
104 | | EMPTY_HOWTO (0x35), |
105 | | EMPTY_HOWTO (0x36), |
106 | | EMPTY_HOWTO (0x37), |
107 | | EMPTY_HOWTO (0x38), |
108 | | EMPTY_HOWTO (0x39), |
109 | | EMPTY_HOWTO (0x3a), |
110 | | EMPTY_HOWTO (0x3b), |
111 | | EMPTY_HOWTO (0x3c), |
112 | | EMPTY_HOWTO (0x3d), |
113 | | EMPTY_HOWTO (0x3e), |
114 | | EMPTY_HOWTO (0x3f), |
115 | | EMPTY_HOWTO (0x40), |
116 | | |
117 | | RL78_OP_REL (ABS32, 4, 32, 0xffffffff, 0, dont, false), |
118 | | RL78_OP_REL (ABS24S, 4, 24, 0xffffff, 0, signed, false), |
119 | | RL78_OP_REL (ABS16, 2, 16, 0xffff, 0, bitfield, false), |
120 | | RL78_OP_REL (ABS16U, 2, 16, 0xffff, 0, unsigned, false), |
121 | | RL78_OP_REL (ABS16S, 2, 16, 0xffff, 0, signed, false), |
122 | | RL78_OP_REL (ABS8, 1, 8, 0xff, 0, bitfield, false), |
123 | | RL78_OP_REL (ABS8U, 1, 8, 0xff, 0, unsigned, false), |
124 | | RL78_OP_REL (ABS8S, 1, 8, 0xff, 0, signed, false), |
125 | | RL78_OP_REL (ABS24S_PCREL, 4, 24, 0xffffff, 0, signed, true), |
126 | | RL78_OP_REL (ABS16S_PCREL, 2, 16, 0xffff, 0, signed, true), |
127 | | RL78_OP_REL (ABS8S_PCREL, 1, 8, 0xff, 0, signed, true), |
128 | | RL78_OP_REL (ABS16UL, 2, 16, 0xffff, 0, unsigned, false), |
129 | | RL78_OP_REL (ABS16UW, 2, 16, 0xffff, 0, unsigned, false), |
130 | | RL78_OP_REL (ABS8UL, 1, 8, 0xff, 0, unsigned, false), |
131 | | RL78_OP_REL (ABS8UW, 1, 8, 0xff, 0, unsigned, false), |
132 | | RL78_OP_REL (ABS32_REV, 4, 32, 0xffffffff, 0, dont, false), |
133 | | RL78_OP_REL (ABS16_REV, 2, 16, 0xffff, 0, bitfield, false), |
134 | | |
135 | 0 | #define STACK_REL_P(x) ((x) <= R_RL78_ABS16_REV && (x) >= R_RL78_ABS32) |
136 | | |
137 | | EMPTY_HOWTO (0x52), |
138 | | EMPTY_HOWTO (0x53), |
139 | | EMPTY_HOWTO (0x54), |
140 | | EMPTY_HOWTO (0x55), |
141 | | EMPTY_HOWTO (0x56), |
142 | | EMPTY_HOWTO (0x57), |
143 | | EMPTY_HOWTO (0x58), |
144 | | EMPTY_HOWTO (0x59), |
145 | | EMPTY_HOWTO (0x5a), |
146 | | EMPTY_HOWTO (0x5b), |
147 | | EMPTY_HOWTO (0x5c), |
148 | | EMPTY_HOWTO (0x5d), |
149 | | EMPTY_HOWTO (0x5e), |
150 | | EMPTY_HOWTO (0x5f), |
151 | | EMPTY_HOWTO (0x60), |
152 | | EMPTY_HOWTO (0x61), |
153 | | EMPTY_HOWTO (0x62), |
154 | | EMPTY_HOWTO (0x63), |
155 | | EMPTY_HOWTO (0x64), |
156 | | EMPTY_HOWTO (0x65), |
157 | | EMPTY_HOWTO (0x66), |
158 | | EMPTY_HOWTO (0x67), |
159 | | EMPTY_HOWTO (0x68), |
160 | | EMPTY_HOWTO (0x69), |
161 | | EMPTY_HOWTO (0x6a), |
162 | | EMPTY_HOWTO (0x6b), |
163 | | EMPTY_HOWTO (0x6c), |
164 | | EMPTY_HOWTO (0x6d), |
165 | | EMPTY_HOWTO (0x6e), |
166 | | EMPTY_HOWTO (0x6f), |
167 | | EMPTY_HOWTO (0x70), |
168 | | EMPTY_HOWTO (0x71), |
169 | | EMPTY_HOWTO (0x72), |
170 | | EMPTY_HOWTO (0x73), |
171 | | EMPTY_HOWTO (0x74), |
172 | | EMPTY_HOWTO (0x75), |
173 | | EMPTY_HOWTO (0x76), |
174 | | EMPTY_HOWTO (0x77), |
175 | | |
176 | | EMPTY_HOWTO (0x78), |
177 | | EMPTY_HOWTO (0x79), |
178 | | EMPTY_HOWTO (0x7a), |
179 | | EMPTY_HOWTO (0x7b), |
180 | | EMPTY_HOWTO (0x7c), |
181 | | EMPTY_HOWTO (0x7d), |
182 | | EMPTY_HOWTO (0x7e), |
183 | | EMPTY_HOWTO (0x7f), |
184 | | |
185 | | RL78_OP_REL (SYM, 0, 0, 0, 0, dont, false), |
186 | | RL78_OP_REL (OPneg, 0, 0, 0, 0, dont, false), |
187 | | RL78_OP_REL (OPadd, 0, 0, 0, 0, dont, false), |
188 | | RL78_OP_REL (OPsub, 0, 0, 0, 0, dont, false), |
189 | | RL78_OP_REL (OPmul, 0, 0, 0, 0, dont, false), |
190 | | RL78_OP_REL (OPdiv, 0, 0, 0, 0, dont, false), |
191 | | RL78_OP_REL (OPshla, 0, 0, 0, 0, dont, false), |
192 | | RL78_OP_REL (OPshra, 0, 0, 0, 0, dont, false), |
193 | | RL78_OP_REL (OPsctsize, 0, 0, 0, 0, dont, false), |
194 | | EMPTY_HOWTO (0x89), |
195 | | EMPTY_HOWTO (0x8a), |
196 | | EMPTY_HOWTO (0x8b), |
197 | | EMPTY_HOWTO (0x8c), |
198 | | RL78_OP_REL (OPscttop, 0, 0, 0, 0, dont, false), |
199 | | EMPTY_HOWTO (0x8e), |
200 | | EMPTY_HOWTO (0x8f), |
201 | | RL78_OP_REL (OPand, 0, 0, 0, 0, dont, false), |
202 | | RL78_OP_REL (OPor, 0, 0, 0, 0, dont, false), |
203 | | RL78_OP_REL (OPxor, 0, 0, 0, 0, dont, false), |
204 | | RL78_OP_REL (OPnot, 0, 0, 0, 0, dont, false), |
205 | | RL78_OP_REL (OPmod, 0, 0, 0, 0, dont, false), |
206 | | RL78_OP_REL (OPromtop, 0, 0, 0, 0, dont, false), |
207 | | RL78_OP_REL (OPramtop, 0, 0, 0, 0, dont, false) |
208 | | }; |
209 | | |
210 | | /* Map BFD reloc types to RL78 ELF reloc types. */ |
211 | | |
212 | | struct rl78_reloc_map |
213 | | { |
214 | | bfd_reloc_code_real_type bfd_reloc_val; |
215 | | unsigned int rl78_reloc_val; |
216 | | }; |
217 | | |
218 | | static const struct rl78_reloc_map rl78_reloc_map [] = |
219 | | { |
220 | | { BFD_RELOC_NONE, R_RL78_NONE }, |
221 | | { BFD_RELOC_8, R_RL78_DIR8S }, |
222 | | { BFD_RELOC_16, R_RL78_DIR16S }, |
223 | | { BFD_RELOC_24, R_RL78_DIR24S }, |
224 | | { BFD_RELOC_32, R_RL78_DIR32 }, |
225 | | { BFD_RELOC_RL78_16_OP, R_RL78_DIR16 }, |
226 | | { BFD_RELOC_RL78_DIR3U_PCREL, R_RL78_DIR3U_PCREL }, |
227 | | { BFD_RELOC_8_PCREL, R_RL78_DIR8S_PCREL }, |
228 | | { BFD_RELOC_16_PCREL, R_RL78_DIR16S_PCREL }, |
229 | | { BFD_RELOC_24_PCREL, R_RL78_DIR24S_PCREL }, |
230 | | { BFD_RELOC_RL78_8U, R_RL78_DIR8U }, |
231 | | { BFD_RELOC_RL78_16U, R_RL78_DIR16U }, |
232 | | { BFD_RELOC_RL78_SYM, R_RL78_SYM }, |
233 | | { BFD_RELOC_RL78_OP_SUBTRACT, R_RL78_OPsub }, |
234 | | { BFD_RELOC_RL78_OP_NEG, R_RL78_OPneg }, |
235 | | { BFD_RELOC_RL78_OP_AND, R_RL78_OPand }, |
236 | | { BFD_RELOC_RL78_OP_SHRA, R_RL78_OPshra }, |
237 | | { BFD_RELOC_RL78_ABS8, R_RL78_ABS8 }, |
238 | | { BFD_RELOC_RL78_ABS16, R_RL78_ABS16 }, |
239 | | { BFD_RELOC_RL78_ABS16_REV, R_RL78_ABS16_REV }, |
240 | | { BFD_RELOC_RL78_ABS32, R_RL78_ABS32 }, |
241 | | { BFD_RELOC_RL78_ABS32_REV, R_RL78_ABS32_REV }, |
242 | | { BFD_RELOC_RL78_ABS16UL, R_RL78_ABS16UL }, |
243 | | { BFD_RELOC_RL78_ABS16UW, R_RL78_ABS16UW }, |
244 | | { BFD_RELOC_RL78_ABS16U, R_RL78_ABS16U }, |
245 | | { BFD_RELOC_RL78_SADDR, R_RL78_RH_SADDR }, |
246 | | { BFD_RELOC_RL78_RELAX, R_RL78_RH_RELAX } |
247 | | }; |
248 | | |
249 | | static reloc_howto_type * |
250 | | rl78_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, |
251 | | bfd_reloc_code_real_type code) |
252 | 0 | { |
253 | 0 | unsigned int i; |
254 | |
|
255 | 0 | if (code == BFD_RELOC_RL78_32_OP) |
256 | 0 | return rl78_elf_howto_table + R_RL78_DIR32; |
257 | | |
258 | 0 | for (i = ARRAY_SIZE (rl78_reloc_map); i--;) |
259 | 0 | if (rl78_reloc_map [i].bfd_reloc_val == code) |
260 | 0 | return rl78_elf_howto_table + rl78_reloc_map[i].rl78_reloc_val; |
261 | | |
262 | 0 | return NULL; |
263 | 0 | } |
264 | | |
265 | | static reloc_howto_type * |
266 | | rl78_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name) |
267 | 0 | { |
268 | 0 | unsigned int i; |
269 | |
|
270 | 0 | for (i = 0; i < ARRAY_SIZE (rl78_elf_howto_table); i++) |
271 | 0 | if (rl78_elf_howto_table[i].name != NULL |
272 | 0 | && strcasecmp (rl78_elf_howto_table[i].name, r_name) == 0) |
273 | 0 | return rl78_elf_howto_table + i; |
274 | | |
275 | 0 | return NULL; |
276 | 0 | } |
277 | | |
278 | | /* Set the howto pointer for an RL78 ELF reloc. */ |
279 | | |
280 | | static bool |
281 | | rl78_info_to_howto_rela (bfd * abfd, |
282 | | arelent * cache_ptr, |
283 | | Elf_Internal_Rela * dst) |
284 | 0 | { |
285 | 0 | unsigned int r_type; |
286 | |
|
287 | 0 | r_type = ELF32_R_TYPE (dst->r_info); |
288 | 0 | if (r_type >= (unsigned int) R_RL78_max) |
289 | 0 | { |
290 | | /* xgettext:c-format */ |
291 | 0 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
292 | 0 | abfd, r_type); |
293 | 0 | bfd_set_error (bfd_error_bad_value); |
294 | 0 | return false; |
295 | 0 | } |
296 | 0 | cache_ptr->howto = rl78_elf_howto_table + r_type; |
297 | 0 | return true; |
298 | 0 | } |
299 | | |
300 | | static bfd_vma |
301 | | get_symbol_value (const char * name, |
302 | | struct bfd_link_info * info, |
303 | | bfd * input_bfd, |
304 | | asection * input_section, |
305 | | int offset) |
306 | 0 | { |
307 | 0 | struct bfd_link_hash_entry * h; |
308 | |
|
309 | 0 | if (info == NULL) |
310 | 0 | return 0; |
311 | | |
312 | 0 | h = bfd_link_hash_lookup (info->hash, name, false, false, true); |
313 | |
|
314 | 0 | if (h == NULL |
315 | 0 | || (h->type != bfd_link_hash_defined |
316 | 0 | && h->type != bfd_link_hash_defweak)) |
317 | 0 | { |
318 | 0 | (*info->callbacks->undefined_symbol) |
319 | 0 | (info, name, input_bfd, input_section, offset, true); |
320 | 0 | return 0; |
321 | 0 | } |
322 | | |
323 | 0 | return (h->u.def.value |
324 | 0 | + h->u.def.section->output_section->vma |
325 | 0 | + h->u.def.section->output_offset); |
326 | 0 | } |
327 | | |
328 | | static bfd_vma |
329 | | get_romstart (struct bfd_link_info * info, |
330 | | bfd * abfd, |
331 | | asection * sec, |
332 | | int offset) |
333 | 0 | { |
334 | 0 | static bool cached = false; |
335 | 0 | static bfd_vma cached_value = 0; |
336 | |
|
337 | 0 | if (!cached) |
338 | 0 | { |
339 | 0 | cached_value = get_symbol_value ("_start", info, abfd, sec, offset); |
340 | 0 | cached = true; |
341 | 0 | } |
342 | 0 | return cached_value; |
343 | 0 | } |
344 | | |
345 | | static bfd_vma |
346 | | get_ramstart (struct bfd_link_info * info, |
347 | | bfd * abfd, |
348 | | asection * sec, |
349 | | int offset) |
350 | 0 | { |
351 | 0 | static bool cached = false; |
352 | 0 | static bfd_vma cached_value = 0; |
353 | |
|
354 | 0 | if (!cached) |
355 | 0 | { |
356 | 0 | cached_value = get_symbol_value ("__datastart", info, abfd, sec, offset); |
357 | 0 | cached = true; |
358 | 0 | } |
359 | 0 | return cached_value; |
360 | 0 | } |
361 | | |
362 | 0 | #define NUM_STACK_ENTRIES 16 |
363 | | static int32_t rl78_stack [ NUM_STACK_ENTRIES ]; |
364 | | static unsigned int rl78_stack_top; |
365 | | |
366 | | static inline void |
367 | | rl78_stack_push (bfd_vma val, bfd_reloc_status_type *r) |
368 | 0 | { |
369 | 0 | if (rl78_stack_top < NUM_STACK_ENTRIES) |
370 | 0 | rl78_stack[rl78_stack_top++] = val; |
371 | 0 | else |
372 | 0 | *r = bfd_reloc_dangerous; |
373 | 0 | } |
374 | | |
375 | | static inline bfd_vma |
376 | | rl78_stack_pop (bfd_reloc_status_type *r) |
377 | 0 | { |
378 | 0 | if (rl78_stack_top > 0) |
379 | 0 | return rl78_stack[-- rl78_stack_top]; |
380 | 0 | else |
381 | 0 | *r = bfd_reloc_dangerous; |
382 | 0 | return 0; |
383 | 0 | } |
384 | | |
385 | | /* Special handling for RL78 complex relocs. Returns the |
386 | | value of the reloc, or 0 for relocs which do not generate |
387 | | a result. SYMVAL is the value of the symbol for relocs |
388 | | which use a symbolic argument. */ |
389 | | |
390 | | static bfd_vma |
391 | | rl78_compute_complex_reloc (unsigned long r_type, |
392 | | bfd_vma symval, |
393 | | asection *input_section, |
394 | | bfd_reloc_status_type *r, |
395 | | char **error_message) |
396 | 0 | { |
397 | 0 | int32_t tmp1, tmp2; |
398 | 0 | bfd_vma relocation = 0; |
399 | 0 | bfd_reloc_status_type status = bfd_reloc_ok; |
400 | |
|
401 | 0 | switch (r_type) |
402 | 0 | { |
403 | 0 | default: |
404 | 0 | status = bfd_reloc_notsupported; |
405 | 0 | break; |
406 | | |
407 | 0 | case R_RL78_ABS24S_PCREL: |
408 | 0 | case R_RL78_ABS16S_PCREL: |
409 | 0 | case R_RL78_ABS8S_PCREL: |
410 | 0 | relocation = rl78_stack_pop (&status); |
411 | 0 | relocation -= input_section->output_section->vma + input_section->output_offset; |
412 | 0 | break; |
413 | | |
414 | 0 | case R_RL78_ABS32: |
415 | 0 | case R_RL78_ABS32_REV: |
416 | 0 | case R_RL78_ABS16: |
417 | 0 | case R_RL78_ABS16_REV: |
418 | 0 | case R_RL78_ABS16S: |
419 | 0 | case R_RL78_ABS16U: |
420 | 0 | case R_RL78_ABS8: |
421 | 0 | case R_RL78_ABS8U: |
422 | 0 | case R_RL78_ABS8S: |
423 | 0 | relocation = rl78_stack_pop (&status); |
424 | 0 | break; |
425 | | |
426 | 0 | case R_RL78_ABS16UL: |
427 | 0 | case R_RL78_ABS8UL: |
428 | 0 | relocation = rl78_stack_pop (&status) >> 2; |
429 | 0 | break;; |
430 | |
|
431 | 0 | case R_RL78_ABS16UW: |
432 | 0 | case R_RL78_ABS8UW: |
433 | 0 | relocation = rl78_stack_pop (&status) >> 1; |
434 | 0 | break; |
435 | | |
436 | | /* The rest of the relocs compute values and then push them onto the stack. */ |
437 | 0 | case R_RL78_OPramtop: |
438 | 0 | case R_RL78_OPromtop: |
439 | 0 | case R_RL78_SYM: |
440 | 0 | rl78_stack_push (symval, &status); |
441 | 0 | break; |
442 | | |
443 | 0 | case R_RL78_OPneg: |
444 | 0 | tmp1 = rl78_stack_pop (&status); |
445 | 0 | tmp1 = - tmp1; |
446 | 0 | rl78_stack_push (tmp1, &status); |
447 | 0 | break; |
448 | | |
449 | 0 | case R_RL78_OPadd: |
450 | 0 | tmp2 = rl78_stack_pop (&status); |
451 | 0 | tmp1 = rl78_stack_pop (&status); |
452 | 0 | tmp1 += tmp2; |
453 | 0 | rl78_stack_push (tmp1, &status); |
454 | 0 | break; |
455 | | |
456 | 0 | case R_RL78_OPsub: |
457 | | /* For the expression "A - B", the assembler pushes A, |
458 | | then B, then OPSUB. So the first op we pop is B, not A. */ |
459 | 0 | tmp2 = rl78_stack_pop (&status); /* B */ |
460 | 0 | tmp1 = rl78_stack_pop (&status); /* A */ |
461 | 0 | tmp1 -= tmp2; /* A - B */ |
462 | 0 | rl78_stack_push (tmp1, &status); |
463 | 0 | break; |
464 | | |
465 | 0 | case R_RL78_OPmul: |
466 | 0 | tmp2 = rl78_stack_pop (&status); |
467 | 0 | tmp1 = rl78_stack_pop (&status); |
468 | 0 | tmp1 *= tmp2; |
469 | 0 | rl78_stack_push (tmp1, &status); |
470 | 0 | break; |
471 | | |
472 | 0 | case R_RL78_OPdiv: |
473 | 0 | tmp2 = rl78_stack_pop (&status); |
474 | 0 | tmp1 = rl78_stack_pop (&status); |
475 | 0 | if (tmp2 != 0) |
476 | 0 | tmp1 /= tmp2; |
477 | 0 | else |
478 | 0 | { |
479 | 0 | tmp1 = 0; |
480 | 0 | status = bfd_reloc_overflow; |
481 | 0 | } |
482 | 0 | rl78_stack_push (tmp1, &status); |
483 | 0 | break; |
484 | | |
485 | 0 | case R_RL78_OPshla: |
486 | 0 | tmp2 = rl78_stack_pop (&status); |
487 | 0 | tmp1 = rl78_stack_pop (&status); |
488 | 0 | tmp1 <<= tmp2; |
489 | 0 | rl78_stack_push (tmp1, &status); |
490 | 0 | break; |
491 | | |
492 | 0 | case R_RL78_OPshra: |
493 | 0 | tmp2 = rl78_stack_pop (&status); |
494 | 0 | tmp1 = rl78_stack_pop (&status); |
495 | 0 | tmp1 >>= tmp2; |
496 | 0 | rl78_stack_push (tmp1, &status); |
497 | 0 | break; |
498 | | |
499 | 0 | case R_RL78_OPsctsize: |
500 | 0 | rl78_stack_push (input_section->size, &status); |
501 | 0 | break; |
502 | | |
503 | 0 | case R_RL78_OPscttop: |
504 | 0 | rl78_stack_push (input_section->output_section->vma, &status); |
505 | 0 | break; |
506 | | |
507 | 0 | case R_RL78_OPand: |
508 | 0 | tmp2 = rl78_stack_pop (&status); |
509 | 0 | tmp1 = rl78_stack_pop (&status); |
510 | 0 | tmp1 &= tmp2; |
511 | 0 | rl78_stack_push (tmp1, &status); |
512 | 0 | break; |
513 | | |
514 | 0 | case R_RL78_OPor: |
515 | 0 | tmp2 = rl78_stack_pop (&status); |
516 | 0 | tmp1 = rl78_stack_pop (&status); |
517 | 0 | tmp1 |= tmp2; |
518 | 0 | rl78_stack_push (tmp1, &status); |
519 | 0 | break; |
520 | | |
521 | 0 | case R_RL78_OPxor: |
522 | 0 | tmp2 = rl78_stack_pop (&status); |
523 | 0 | tmp1 = rl78_stack_pop (&status); |
524 | 0 | tmp1 ^= tmp2; |
525 | 0 | rl78_stack_push (tmp1, &status); |
526 | 0 | break; |
527 | | |
528 | 0 | case R_RL78_OPnot: |
529 | 0 | tmp1 = rl78_stack_pop (&status); |
530 | 0 | tmp1 = ~ tmp1; |
531 | 0 | rl78_stack_push (tmp1, &status); |
532 | 0 | break; |
533 | | |
534 | 0 | case R_RL78_OPmod: |
535 | 0 | tmp2 = rl78_stack_pop (&status); |
536 | 0 | tmp1 = rl78_stack_pop (&status); |
537 | 0 | if (tmp2 != 0) |
538 | 0 | tmp1 %= tmp2; |
539 | 0 | else |
540 | 0 | { |
541 | 0 | tmp1 = 0; |
542 | 0 | status = bfd_reloc_overflow; |
543 | 0 | } |
544 | 0 | rl78_stack_push (tmp1, &status); |
545 | 0 | break; |
546 | 0 | } |
547 | | |
548 | 0 | if (r) |
549 | 0 | { |
550 | 0 | if (status == bfd_reloc_dangerous) |
551 | 0 | *error_message = (_("RL78 reloc stack overflow/underflow")); |
552 | 0 | else if (status == bfd_reloc_overflow) |
553 | 0 | { |
554 | 0 | status = bfd_reloc_dangerous; |
555 | 0 | *error_message = (_("RL78 reloc divide by zero")); |
556 | 0 | } |
557 | 0 | *r = status; |
558 | 0 | } |
559 | 0 | return relocation; |
560 | 0 | } |
561 | | |
562 | | /* Check whether RELOCATION overflows a relocation field described by |
563 | | HOWTO. */ |
564 | | |
565 | | static bfd_reloc_status_type |
566 | | check_overflow (reloc_howto_type *howto, bfd_vma relocation) |
567 | 0 | { |
568 | 0 | switch (howto->complain_on_overflow) |
569 | 0 | { |
570 | 0 | case complain_overflow_dont: |
571 | 0 | break; |
572 | | |
573 | 0 | case complain_overflow_bitfield: |
574 | 0 | if ((bfd_signed_vma) relocation < -(1LL << (howto->bitsize - 1)) |
575 | 0 | || (bfd_signed_vma) relocation >= 1LL << howto->bitsize) |
576 | 0 | return bfd_reloc_overflow; |
577 | 0 | break; |
578 | | |
579 | 0 | case complain_overflow_signed: |
580 | 0 | if ((bfd_signed_vma) relocation < -(1LL << (howto->bitsize - 1)) |
581 | 0 | || (bfd_signed_vma) relocation >= 1LL << (howto->bitsize - 1)) |
582 | 0 | return bfd_reloc_overflow; |
583 | 0 | break; |
584 | | |
585 | 0 | case complain_overflow_unsigned: |
586 | 0 | if (relocation >= 1ULL << howto->bitsize) |
587 | 0 | return bfd_reloc_overflow; |
588 | 0 | break; |
589 | 0 | } |
590 | 0 | return bfd_reloc_ok; |
591 | 0 | } |
592 | | |
593 | | static bfd_reloc_status_type |
594 | | rl78_special_reloc (bfd * input_bfd, |
595 | | arelent * reloc, |
596 | | asymbol * symbol, |
597 | | void * data, |
598 | | asection * input_section, |
599 | | bfd * output_bfd ATTRIBUTE_UNUSED, |
600 | | char ** error_message) |
601 | 0 | { |
602 | 0 | bfd_reloc_status_type r = bfd_reloc_ok; |
603 | 0 | bfd_vma relocation = 0; |
604 | 0 | unsigned long r_type = reloc->howto->type; |
605 | 0 | bfd_byte * contents = data; |
606 | | |
607 | | /* If necessary, compute the symbolic value of the relocation. */ |
608 | 0 | switch (r_type) |
609 | 0 | { |
610 | 0 | case R_RL78_SYM: |
611 | 0 | relocation = (symbol->value |
612 | 0 | + symbol->section->output_section->vma |
613 | 0 | + symbol->section->output_offset |
614 | 0 | + reloc->addend); |
615 | 0 | break; |
616 | | |
617 | 0 | case R_RL78_OPromtop: |
618 | 0 | relocation = get_romstart (NULL, input_bfd, input_section, |
619 | 0 | reloc->address); |
620 | 0 | break; |
621 | | |
622 | 0 | case R_RL78_OPramtop: |
623 | 0 | relocation = get_ramstart (NULL, input_bfd, input_section, |
624 | 0 | reloc->address); |
625 | 0 | break; |
626 | 0 | } |
627 | | |
628 | | /* Get the value of the relocation. */ |
629 | 0 | relocation = rl78_compute_complex_reloc (r_type, relocation, input_section, |
630 | 0 | &r, error_message); |
631 | |
|
632 | 0 | if (STACK_REL_P (r_type)) |
633 | 0 | { |
634 | 0 | bfd_size_type limit; |
635 | 0 | unsigned int nbytes; |
636 | |
|
637 | 0 | if (r == bfd_reloc_ok) |
638 | 0 | r = check_overflow (reloc->howto, relocation); |
639 | |
|
640 | 0 | if (r_type == R_RL78_ABS16_REV) |
641 | 0 | relocation = ((relocation & 0xff) << 8) | ((relocation >> 8) & 0xff); |
642 | 0 | else if (r_type == R_RL78_ABS32_REV) |
643 | 0 | relocation = (((relocation & 0xff) << 24) |
644 | 0 | | ((relocation & 0xff00) << 8) |
645 | 0 | | ((relocation >> 8) & 0xff00) |
646 | 0 | | ((relocation >> 24) & 0xff)); |
647 | |
|
648 | 0 | limit = bfd_get_section_limit_octets (input_bfd, input_section); |
649 | 0 | nbytes = reloc->howto->bitsize / 8; |
650 | 0 | if (reloc->address < limit |
651 | 0 | && nbytes <= limit - reloc->address) |
652 | 0 | { |
653 | 0 | unsigned int i; |
654 | |
|
655 | 0 | for (i = 0; i < nbytes; i++) |
656 | 0 | { |
657 | 0 | contents[reloc->address + i] = relocation; |
658 | 0 | relocation >>= 8; |
659 | 0 | } |
660 | 0 | } |
661 | 0 | else |
662 | 0 | r = bfd_reloc_outofrange; |
663 | 0 | } |
664 | |
|
665 | 0 | return r; |
666 | 0 | } |
667 | | |
668 | 0 | #define OP(i) (contents[rel->r_offset + (i)]) |
669 | | |
670 | | /* Relocate an RL78 ELF section. |
671 | | There is some attempt to make this function usable for many architectures, |
672 | | both USE_REL and USE_RELA ['twould be nice if such a critter existed], |
673 | | if only to serve as a learning tool. |
674 | | |
675 | | The RELOCATE_SECTION function is called by the new ELF backend linker |
676 | | to handle the relocations for a section. |
677 | | |
678 | | The relocs are always passed as Rela structures; if the section |
679 | | actually uses Rel structures, the r_addend field will always be |
680 | | zero. |
681 | | |
682 | | This function is responsible for adjusting the section contents as |
683 | | necessary, and (if using Rela relocs and generating a relocatable |
684 | | output file) adjusting the reloc addend as necessary. |
685 | | |
686 | | This function does not have to worry about setting the reloc |
687 | | address or the reloc symbol index. |
688 | | |
689 | | LOCAL_SYMS is a pointer to the swapped in local symbols. |
690 | | |
691 | | LOCAL_SECTIONS is an array giving the section in the input file |
692 | | corresponding to the st_shndx field of each local symbol. |
693 | | |
694 | | The global hash table entry for the global symbols can be found |
695 | | via elf_sym_hashes (input_bfd). |
696 | | |
697 | | When generating relocatable output, this function must handle |
698 | | STB_LOCAL/STT_SECTION symbols specially. The output symbol is |
699 | | going to be the section symbol corresponding to the output |
700 | | section, which means that the addend must be adjusted |
701 | | accordingly. */ |
702 | | |
703 | | static int |
704 | | rl78_elf_relocate_section |
705 | | (bfd * output_bfd, |
706 | | struct bfd_link_info * info, |
707 | | bfd * input_bfd, |
708 | | asection * input_section, |
709 | | bfd_byte * contents, |
710 | | Elf_Internal_Rela * relocs, |
711 | | Elf_Internal_Sym * local_syms, |
712 | | asection ** local_sections) |
713 | 0 | { |
714 | 0 | Elf_Internal_Shdr * symtab_hdr; |
715 | 0 | struct elf_link_hash_entry ** sym_hashes; |
716 | 0 | Elf_Internal_Rela * rel; |
717 | 0 | Elf_Internal_Rela * relend; |
718 | 0 | asection *splt; |
719 | 0 | bool ret; |
720 | |
|
721 | 0 | symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; |
722 | 0 | sym_hashes = elf_sym_hashes (input_bfd); |
723 | 0 | relend = relocs + input_section->reloc_count; |
724 | |
|
725 | 0 | splt = elf_hash_table (info)->splt; |
726 | 0 | ret = true; |
727 | 0 | for (rel = relocs; rel < relend; rel ++) |
728 | 0 | { |
729 | 0 | reloc_howto_type *howto; |
730 | 0 | unsigned long r_symndx; |
731 | 0 | Elf_Internal_Sym *sym; |
732 | 0 | asection *sec; |
733 | 0 | struct elf_link_hash_entry *h; |
734 | 0 | bfd_vma relocation; |
735 | 0 | bfd_reloc_status_type r; |
736 | 0 | const char *name = NULL; |
737 | 0 | bool unresolved_reloc = true; |
738 | 0 | int r_type; |
739 | 0 | char *error_message; |
740 | |
|
741 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
742 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
743 | |
|
744 | 0 | howto = rl78_elf_howto_table + ELF32_R_TYPE (rel->r_info); |
745 | 0 | h = NULL; |
746 | 0 | sym = NULL; |
747 | 0 | sec = NULL; |
748 | 0 | relocation = 0; |
749 | |
|
750 | 0 | if (r_symndx < symtab_hdr->sh_info) |
751 | 0 | { |
752 | 0 | sym = local_syms + r_symndx; |
753 | 0 | sec = local_sections [r_symndx]; |
754 | 0 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel); |
755 | |
|
756 | 0 | name = bfd_elf_string_from_elf_section |
757 | 0 | (input_bfd, symtab_hdr->sh_link, sym->st_name); |
758 | 0 | name = sym->st_name == 0 ? bfd_section_name (sec) : name; |
759 | 0 | } |
760 | 0 | else |
761 | 0 | { |
762 | 0 | bool warned ATTRIBUTE_UNUSED; |
763 | 0 | bool ignored ATTRIBUTE_UNUSED; |
764 | |
|
765 | 0 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
766 | 0 | r_symndx, symtab_hdr, sym_hashes, h, |
767 | 0 | sec, relocation, unresolved_reloc, |
768 | 0 | warned, ignored); |
769 | | |
770 | 0 | name = h->root.root.string; |
771 | 0 | } |
772 | | |
773 | 0 | if (sec != NULL && discarded_section (sec)) |
774 | 0 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
775 | 0 | rel, 1, relend, howto, 0, contents); |
776 | |
|
777 | 0 | if (bfd_link_relocatable (info)) |
778 | 0 | { |
779 | | /* This is a relocatable link. We don't have to change |
780 | | anything, unless the reloc is against a section symbol, |
781 | | in which case we have to adjust according to where the |
782 | | section symbol winds up in the output section. */ |
783 | 0 | if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
784 | 0 | rel->r_addend += sec->output_offset; |
785 | 0 | continue; |
786 | 0 | } |
787 | | |
788 | 0 | switch (ELF32_R_TYPE (rel->r_info)) |
789 | 0 | { |
790 | 0 | case R_RL78_DIR16S: |
791 | 0 | { |
792 | 0 | bfd_vma *plt_offset; |
793 | |
|
794 | 0 | if (h != NULL) |
795 | 0 | plt_offset = &h->plt.offset; |
796 | 0 | else |
797 | 0 | plt_offset = elf_local_got_offsets (input_bfd) + r_symndx; |
798 | |
|
799 | 0 | if (! valid_16bit_address (relocation)) |
800 | 0 | { |
801 | | /* If this is the first time we've processed this symbol, |
802 | | fill in the plt entry with the correct symbol address. */ |
803 | 0 | if ((*plt_offset & 1) == 0) |
804 | 0 | { |
805 | 0 | unsigned int x; |
806 | |
|
807 | 0 | x = 0x000000ec; /* br !!abs24 */ |
808 | 0 | x |= (relocation << 8) & 0xffffff00; |
809 | 0 | bfd_put_32 (input_bfd, x, splt->contents + *plt_offset); |
810 | 0 | *plt_offset |= 1; |
811 | 0 | } |
812 | |
|
813 | 0 | relocation = (splt->output_section->vma |
814 | 0 | + splt->output_offset |
815 | 0 | + (*plt_offset & -2)); |
816 | 0 | if (name) |
817 | 0 | { |
818 | 0 | char *newname = bfd_malloc (strlen(name)+5); |
819 | 0 | strcpy (newname, name); |
820 | 0 | strcat(newname, ".plt"); |
821 | 0 | _bfd_generic_link_add_one_symbol (info, |
822 | 0 | input_bfd, |
823 | 0 | newname, |
824 | 0 | BSF_FUNCTION | BSF_WEAK, |
825 | 0 | splt, |
826 | 0 | (*plt_offset & -2), |
827 | 0 | 0, |
828 | 0 | 1, |
829 | 0 | 0, |
830 | 0 | 0); |
831 | 0 | } |
832 | 0 | } |
833 | 0 | } |
834 | 0 | break; |
835 | 0 | } |
836 | | |
837 | 0 | if (h != NULL && h->root.type == bfd_link_hash_undefweak) |
838 | | /* If the symbol is undefined and weak |
839 | | then the relocation resolves to zero. */ |
840 | 0 | relocation = 0; |
841 | 0 | else |
842 | 0 | { |
843 | 0 | if (howto->pc_relative) |
844 | 0 | { |
845 | 0 | relocation -= (input_section->output_section->vma |
846 | 0 | + input_section->output_offset |
847 | 0 | + rel->r_offset); |
848 | 0 | relocation -= bfd_get_reloc_size (howto); |
849 | 0 | } |
850 | |
|
851 | 0 | relocation += rel->r_addend; |
852 | 0 | } |
853 | |
|
854 | 0 | r = bfd_reloc_ok; |
855 | 0 | if (howto->bitsize != 0 |
856 | 0 | && (rel->r_offset >= input_section->size |
857 | 0 | || ((howto->bitsize + 7u) / 8 |
858 | 0 | > input_section->size - rel->r_offset))) |
859 | 0 | r = bfd_reloc_outofrange; |
860 | 0 | else |
861 | 0 | switch (r_type) |
862 | 0 | { |
863 | 0 | case R_RL78_NONE: |
864 | 0 | break; |
865 | | |
866 | 0 | case R_RL78_RH_RELAX: |
867 | 0 | break; |
868 | | |
869 | 0 | case R_RL78_DIR8S_PCREL: |
870 | 0 | OP (0) = relocation; |
871 | 0 | break; |
872 | | |
873 | 0 | case R_RL78_DIR8S: |
874 | 0 | OP (0) = relocation; |
875 | 0 | break; |
876 | | |
877 | 0 | case R_RL78_DIR8U: |
878 | 0 | OP (0) = relocation; |
879 | 0 | break; |
880 | | |
881 | 0 | case R_RL78_DIR16S_PCREL: |
882 | 0 | OP (0) = relocation; |
883 | 0 | OP (1) = relocation >> 8; |
884 | 0 | break; |
885 | | |
886 | 0 | case R_RL78_DIR16S: |
887 | 0 | if ((relocation & 0xf0000) == 0xf0000) |
888 | 0 | relocation &= 0xffff; |
889 | 0 | OP (0) = relocation; |
890 | 0 | OP (1) = relocation >> 8; |
891 | 0 | break; |
892 | | |
893 | 0 | case R_RL78_DIR16U: |
894 | 0 | OP (0) = relocation; |
895 | 0 | OP (1) = relocation >> 8; |
896 | 0 | break; |
897 | | |
898 | 0 | case R_RL78_DIR16: |
899 | 0 | OP (0) = relocation; |
900 | 0 | OP (1) = relocation >> 8; |
901 | 0 | break; |
902 | | |
903 | 0 | case R_RL78_DIR16_REV: |
904 | 0 | OP (1) = relocation; |
905 | 0 | OP (0) = relocation >> 8; |
906 | 0 | break; |
907 | | |
908 | 0 | case R_RL78_DIR3U_PCREL: |
909 | 0 | OP (0) &= 0xf8; |
910 | 0 | OP (0) |= relocation & 0x07; |
911 | | /* Map [3, 10] to [0, 7]. The code below using howto |
912 | | bitsize will check for unsigned overflow. */ |
913 | 0 | relocation -= 3; |
914 | 0 | break; |
915 | | |
916 | 0 | case R_RL78_DIR24S_PCREL: |
917 | 0 | OP (0) = relocation; |
918 | 0 | OP (1) = relocation >> 8; |
919 | 0 | OP (2) = relocation >> 16; |
920 | 0 | break; |
921 | | |
922 | 0 | case R_RL78_DIR24S: |
923 | 0 | OP (0) = relocation; |
924 | 0 | OP (1) = relocation >> 8; |
925 | 0 | OP (2) = relocation >> 16; |
926 | 0 | break; |
927 | | |
928 | 0 | case R_RL78_DIR32: |
929 | 0 | OP (0) = relocation; |
930 | 0 | OP (1) = relocation >> 8; |
931 | 0 | OP (2) = relocation >> 16; |
932 | 0 | OP (3) = relocation >> 24; |
933 | 0 | break; |
934 | | |
935 | 0 | case R_RL78_DIR32_REV: |
936 | 0 | OP (3) = relocation; |
937 | 0 | OP (2) = relocation >> 8; |
938 | 0 | OP (1) = relocation >> 16; |
939 | 0 | OP (0) = relocation >> 24; |
940 | 0 | break; |
941 | | |
942 | 0 | case R_RL78_RH_SFR: |
943 | 0 | relocation -= 0xfff00; |
944 | 0 | OP (0) = relocation; |
945 | 0 | break; |
946 | | |
947 | 0 | case R_RL78_RH_SADDR: |
948 | 0 | relocation -= 0xffe20; |
949 | 0 | OP (0) = relocation; |
950 | 0 | break; |
951 | | |
952 | | /* Complex reloc handling: */ |
953 | 0 | case R_RL78_ABS32: |
954 | 0 | case R_RL78_ABS32_REV: |
955 | 0 | case R_RL78_ABS24S_PCREL: |
956 | 0 | case R_RL78_ABS24S: |
957 | 0 | case R_RL78_ABS16: |
958 | 0 | case R_RL78_ABS16_REV: |
959 | 0 | case R_RL78_ABS16S_PCREL: |
960 | 0 | case R_RL78_ABS16S: |
961 | 0 | case R_RL78_ABS16U: |
962 | 0 | case R_RL78_ABS16UL: |
963 | 0 | case R_RL78_ABS16UW: |
964 | 0 | case R_RL78_ABS8: |
965 | 0 | case R_RL78_ABS8U: |
966 | 0 | case R_RL78_ABS8UL: |
967 | 0 | case R_RL78_ABS8UW: |
968 | 0 | case R_RL78_ABS8S_PCREL: |
969 | 0 | case R_RL78_ABS8S: |
970 | 0 | case R_RL78_OPneg: |
971 | 0 | case R_RL78_OPadd: |
972 | 0 | case R_RL78_OPsub: |
973 | 0 | case R_RL78_OPmul: |
974 | 0 | case R_RL78_OPdiv: |
975 | 0 | case R_RL78_OPshla: |
976 | 0 | case R_RL78_OPshra: |
977 | 0 | case R_RL78_OPsctsize: |
978 | 0 | case R_RL78_OPscttop: |
979 | 0 | case R_RL78_OPand: |
980 | 0 | case R_RL78_OPor: |
981 | 0 | case R_RL78_OPxor: |
982 | 0 | case R_RL78_OPnot: |
983 | 0 | case R_RL78_OPmod: |
984 | 0 | relocation = rl78_compute_complex_reloc (r_type, 0, input_section, |
985 | 0 | &r, &error_message); |
986 | |
|
987 | 0 | switch (r_type) |
988 | 0 | { |
989 | 0 | case R_RL78_ABS32: |
990 | 0 | OP (0) = relocation; |
991 | 0 | OP (1) = relocation >> 8; |
992 | 0 | OP (2) = relocation >> 16; |
993 | 0 | OP (3) = relocation >> 24; |
994 | 0 | break; |
995 | | |
996 | 0 | case R_RL78_ABS32_REV: |
997 | 0 | OP (3) = relocation; |
998 | 0 | OP (2) = relocation >> 8; |
999 | 0 | OP (1) = relocation >> 16; |
1000 | 0 | OP (0) = relocation >> 24; |
1001 | 0 | break; |
1002 | | |
1003 | 0 | case R_RL78_ABS24S_PCREL: |
1004 | 0 | case R_RL78_ABS24S: |
1005 | 0 | OP (0) = relocation; |
1006 | 0 | OP (1) = relocation >> 8; |
1007 | 0 | OP (2) = relocation >> 16; |
1008 | 0 | break; |
1009 | | |
1010 | 0 | case R_RL78_ABS16: |
1011 | 0 | OP (0) = relocation; |
1012 | 0 | OP (1) = relocation >> 8; |
1013 | 0 | break; |
1014 | | |
1015 | 0 | case R_RL78_ABS16_REV: |
1016 | 0 | OP (1) = relocation; |
1017 | 0 | OP (0) = relocation >> 8; |
1018 | 0 | break; |
1019 | | |
1020 | 0 | case R_RL78_ABS16S_PCREL: |
1021 | 0 | case R_RL78_ABS16S: |
1022 | 0 | OP (0) = relocation; |
1023 | 0 | OP (1) = relocation >> 8; |
1024 | 0 | break; |
1025 | | |
1026 | 0 | case R_RL78_ABS16U: |
1027 | 0 | case R_RL78_ABS16UL: |
1028 | 0 | case R_RL78_ABS16UW: |
1029 | 0 | OP (0) = relocation; |
1030 | 0 | OP (1) = relocation >> 8; |
1031 | 0 | break; |
1032 | | |
1033 | 0 | case R_RL78_ABS8: |
1034 | 0 | OP (0) = relocation; |
1035 | 0 | break; |
1036 | | |
1037 | 0 | case R_RL78_ABS8U: |
1038 | 0 | case R_RL78_ABS8UL: |
1039 | 0 | case R_RL78_ABS8UW: |
1040 | 0 | OP (0) = relocation; |
1041 | 0 | break; |
1042 | | |
1043 | 0 | case R_RL78_ABS8S_PCREL: |
1044 | 0 | case R_RL78_ABS8S: |
1045 | 0 | OP (0) = relocation; |
1046 | 0 | break; |
1047 | | |
1048 | 0 | default: |
1049 | 0 | break; |
1050 | 0 | } |
1051 | 0 | break; |
1052 | | |
1053 | 0 | case R_RL78_SYM: |
1054 | 0 | if (r_symndx < symtab_hdr->sh_info) |
1055 | 0 | relocation = sec->output_section->vma + sec->output_offset |
1056 | 0 | + sym->st_value + rel->r_addend; |
1057 | 0 | else if (h != NULL |
1058 | 0 | && (h->root.type == bfd_link_hash_defined |
1059 | 0 | || h->root.type == bfd_link_hash_defweak)) |
1060 | 0 | relocation = h->root.u.def.value |
1061 | 0 | + sec->output_section->vma |
1062 | 0 | + sec->output_offset |
1063 | 0 | + rel->r_addend; |
1064 | 0 | else |
1065 | 0 | { |
1066 | 0 | relocation = 0; |
1067 | 0 | if (h->root.type != bfd_link_hash_undefweak) |
1068 | 0 | _bfd_error_handler |
1069 | 0 | (_("warning: RL78_SYM reloc with an unknown symbol")); |
1070 | 0 | } |
1071 | 0 | (void) rl78_compute_complex_reloc (r_type, relocation, input_section, |
1072 | 0 | &r, &error_message); |
1073 | 0 | break; |
1074 | | |
1075 | 0 | case R_RL78_OPromtop: |
1076 | 0 | relocation = get_romstart (info, input_bfd, input_section, |
1077 | 0 | rel->r_offset); |
1078 | 0 | (void) rl78_compute_complex_reloc (r_type, relocation, input_section, |
1079 | 0 | &r, &error_message); |
1080 | 0 | break; |
1081 | | |
1082 | 0 | case R_RL78_OPramtop: |
1083 | 0 | relocation = get_ramstart (info, input_bfd, input_section, |
1084 | 0 | rel->r_offset); |
1085 | 0 | (void) rl78_compute_complex_reloc (r_type, relocation, input_section, |
1086 | 0 | &r, &error_message); |
1087 | 0 | break; |
1088 | | |
1089 | 0 | default: |
1090 | 0 | r = bfd_reloc_notsupported; |
1091 | 0 | break; |
1092 | 0 | } |
1093 | | |
1094 | 0 | if (r == bfd_reloc_ok) |
1095 | 0 | r = check_overflow (howto, relocation); |
1096 | |
|
1097 | 0 | if (r != bfd_reloc_ok) |
1098 | 0 | { |
1099 | 0 | switch (r) |
1100 | 0 | { |
1101 | 0 | case bfd_reloc_overflow: |
1102 | 0 | (*info->callbacks->reloc_overflow) |
1103 | 0 | (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, |
1104 | 0 | input_bfd, input_section, rel->r_offset); |
1105 | 0 | break; |
1106 | | |
1107 | 0 | case bfd_reloc_undefined: |
1108 | 0 | (*info->callbacks->undefined_symbol) |
1109 | 0 | (info, name, input_bfd, input_section, rel->r_offset, true); |
1110 | 0 | break; |
1111 | | |
1112 | 0 | case bfd_reloc_outofrange: |
1113 | | /* xgettext:c-format */ |
1114 | 0 | (*info->callbacks->einfo) |
1115 | 0 | (_("%H: %s out of range\n"), |
1116 | 0 | input_bfd, input_section, rel->r_offset, howto->name); |
1117 | 0 | break; |
1118 | | |
1119 | 0 | case bfd_reloc_notsupported: |
1120 | | /* xgettext:c-format */ |
1121 | 0 | (*info->callbacks->einfo) |
1122 | 0 | (_("%H: relocation type %u is not supported\n"), |
1123 | 0 | input_bfd, input_section, rel->r_offset, r_type); |
1124 | 0 | break; |
1125 | | |
1126 | 0 | case bfd_reloc_dangerous: |
1127 | 0 | (*info->callbacks->reloc_dangerous) |
1128 | 0 | (info, error_message, input_bfd, input_section, rel->r_offset); |
1129 | 0 | break; |
1130 | | |
1131 | 0 | default: |
1132 | | /* xgettext:c-format */ |
1133 | 0 | (*info->callbacks->einfo) |
1134 | 0 | (_("%H: relocation %s returns an unrecognized value %x\n"), |
1135 | 0 | input_bfd, input_section, rel->r_offset, howto->name, r); |
1136 | 0 | break; |
1137 | 0 | } |
1138 | 0 | ret = false; |
1139 | 0 | } |
1140 | 0 | } |
1141 | | |
1142 | 0 | return ret; |
1143 | 0 | } |
1144 | | |
1145 | | /* Function to set the ELF flag bits. */ |
1146 | | |
1147 | | static bool |
1148 | | rl78_elf_set_private_flags (bfd * abfd, flagword flags) |
1149 | 0 | { |
1150 | 0 | elf_elfheader (abfd)->e_flags = flags; |
1151 | 0 | elf_flags_init (abfd) = true; |
1152 | 0 | return true; |
1153 | 0 | } |
1154 | | |
1155 | | static bool no_warn_mismatch = false; |
1156 | | |
1157 | | void bfd_elf32_rl78_set_target_flags (bool); |
1158 | | |
1159 | | void |
1160 | | bfd_elf32_rl78_set_target_flags (bool user_no_warn_mismatch) |
1161 | 0 | { |
1162 | 0 | no_warn_mismatch = user_no_warn_mismatch; |
1163 | 0 | } |
1164 | | |
1165 | | static const char * |
1166 | | rl78_cpu_name (flagword flags) |
1167 | 0 | { |
1168 | 0 | switch (flags & E_FLAG_RL78_CPU_MASK) |
1169 | 0 | { |
1170 | 0 | default: return ""; |
1171 | 0 | case E_FLAG_RL78_G10: return "G10"; |
1172 | 0 | case E_FLAG_RL78_G13: return "G13"; |
1173 | 0 | case E_FLAG_RL78_G14: return "G14"; |
1174 | 0 | } |
1175 | 0 | } |
1176 | | |
1177 | | /* Merge backend specific data from an object file to the output |
1178 | | object file when linking. */ |
1179 | | |
1180 | | static bool |
1181 | | rl78_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
1182 | 0 | { |
1183 | 0 | bfd *obfd = info->output_bfd; |
1184 | 0 | flagword new_flags; |
1185 | 0 | flagword old_flags; |
1186 | 0 | bool error = false; |
1187 | |
|
1188 | 0 | new_flags = elf_elfheader (ibfd)->e_flags; |
1189 | 0 | old_flags = elf_elfheader (obfd)->e_flags; |
1190 | |
|
1191 | 0 | if (!elf_flags_init (obfd)) |
1192 | 0 | { |
1193 | | /* First call, no flags set. */ |
1194 | 0 | elf_flags_init (obfd) = true; |
1195 | 0 | elf_elfheader (obfd)->e_flags = new_flags; |
1196 | 0 | } |
1197 | 0 | else if (old_flags != new_flags) |
1198 | 0 | { |
1199 | 0 | flagword changed_flags = old_flags ^ new_flags; |
1200 | |
|
1201 | 0 | if (changed_flags & E_FLAG_RL78_CPU_MASK) |
1202 | 0 | { |
1203 | 0 | flagword out_cpu = old_flags & E_FLAG_RL78_CPU_MASK; |
1204 | 0 | flagword in_cpu = new_flags & E_FLAG_RL78_CPU_MASK; |
1205 | |
|
1206 | 0 | if (in_cpu == E_FLAG_RL78_ANY_CPU || in_cpu == out_cpu) |
1207 | 0 | /* It does not matter what new_cpu may have. */; |
1208 | 0 | else if (out_cpu == E_FLAG_RL78_ANY_CPU) |
1209 | 0 | { |
1210 | 0 | if (in_cpu == E_FLAG_RL78_G10) |
1211 | 0 | { |
1212 | | /* G10 files can only be linked with other G10 files. |
1213 | | If the output is set to "any" this means that it is |
1214 | | a G14 file that does not use hardware multiply/divide, |
1215 | | but that is still incompatible with the G10 ABI. */ |
1216 | 0 | error = true; |
1217 | |
|
1218 | 0 | _bfd_error_handler |
1219 | | /* xgettext:c-format */ |
1220 | 0 | (_("RL78 ABI conflict: G10 file %pB cannot be linked" |
1221 | 0 | " with %s file %pB"), |
1222 | 0 | ibfd, rl78_cpu_name (out_cpu), obfd); |
1223 | 0 | } |
1224 | 0 | else |
1225 | 0 | { |
1226 | 0 | old_flags &= ~ E_FLAG_RL78_CPU_MASK; |
1227 | 0 | old_flags |= in_cpu; |
1228 | 0 | elf_elfheader (obfd)->e_flags = old_flags; |
1229 | 0 | } |
1230 | 0 | } |
1231 | 0 | else |
1232 | 0 | { |
1233 | 0 | error = true; |
1234 | |
|
1235 | 0 | _bfd_error_handler |
1236 | | /* xgettext:c-format */ |
1237 | 0 | (_("RL78 ABI conflict: cannot link %s file %pB with %s file %pB"), |
1238 | 0 | rl78_cpu_name (in_cpu), ibfd, |
1239 | 0 | rl78_cpu_name (out_cpu), obfd); |
1240 | 0 | } |
1241 | 0 | } |
1242 | |
|
1243 | 0 | if (changed_flags & E_FLAG_RL78_64BIT_DOUBLES) |
1244 | 0 | { |
1245 | 0 | _bfd_error_handler |
1246 | 0 | (_("RL78 merge conflict: cannot link 32-bit and 64-bit objects together")); |
1247 | |
|
1248 | 0 | if (old_flags & E_FLAG_RL78_64BIT_DOUBLES) |
1249 | | /* xgettext:c-format */ |
1250 | 0 | _bfd_error_handler (_("- %pB is 64-bit, %pB is not"), |
1251 | 0 | obfd, ibfd); |
1252 | 0 | else |
1253 | | /* xgettext:c-format */ |
1254 | 0 | _bfd_error_handler (_("- %pB is 64-bit, %pB is not"), |
1255 | 0 | ibfd, obfd); |
1256 | 0 | error = true; |
1257 | 0 | } |
1258 | 0 | } |
1259 | |
|
1260 | 0 | return !error; |
1261 | 0 | } |
1262 | | |
1263 | | static bool |
1264 | | rl78_elf_print_private_bfd_data (bfd * abfd, void * ptr) |
1265 | 0 | { |
1266 | 0 | FILE * file = (FILE *) ptr; |
1267 | 0 | flagword flags; |
1268 | |
|
1269 | 0 | BFD_ASSERT (abfd != NULL && ptr != NULL); |
1270 | | |
1271 | | /* Print normal ELF private data. */ |
1272 | 0 | _bfd_elf_print_private_bfd_data (abfd, ptr); |
1273 | |
|
1274 | 0 | flags = elf_elfheader (abfd)->e_flags; |
1275 | 0 | fprintf (file, _("private flags = 0x%lx:"), (long) flags); |
1276 | |
|
1277 | 0 | if (flags & E_FLAG_RL78_CPU_MASK) |
1278 | 0 | fprintf (file, " [%s]", rl78_cpu_name (flags)); |
1279 | |
|
1280 | 0 | if (flags & E_FLAG_RL78_64BIT_DOUBLES) |
1281 | 0 | fprintf (file, _(" [64-bit doubles]")); |
1282 | |
|
1283 | 0 | fputc ('\n', file); |
1284 | 0 | return true; |
1285 | 0 | } |
1286 | | |
1287 | | /* Return the MACH for an e_flags value. */ |
1288 | | |
1289 | | static int |
1290 | | elf32_rl78_machine (bfd * abfd ATTRIBUTE_UNUSED) |
1291 | 2 | { |
1292 | 2 | return bfd_mach_rl78; |
1293 | 2 | } |
1294 | | |
1295 | | static bool |
1296 | | rl78_elf_object_p (bfd * abfd) |
1297 | 2 | { |
1298 | 2 | bfd_default_set_arch_mach (abfd, bfd_arch_rl78, |
1299 | 2 | elf32_rl78_machine (abfd)); |
1300 | 2 | return true; |
1301 | 2 | } |
1302 | | |
1303 | | /* support PLT for 16-bit references to 24-bit functions. */ |
1304 | | |
1305 | | /* We support 16-bit pointers to code above 64k by generating a thunk |
1306 | | below 64k containing a JMP instruction to the final address. */ |
1307 | | |
1308 | | static bool |
1309 | | rl78_elf_check_relocs |
1310 | | (bfd * abfd, |
1311 | | struct bfd_link_info * info, |
1312 | | asection * sec, |
1313 | | const Elf_Internal_Rela * relocs) |
1314 | 0 | { |
1315 | 0 | Elf_Internal_Shdr * symtab_hdr; |
1316 | 0 | struct elf_link_hash_entry ** sym_hashes; |
1317 | 0 | const Elf_Internal_Rela * rel; |
1318 | 0 | const Elf_Internal_Rela * rel_end; |
1319 | 0 | bfd_vma *local_plt_offsets; |
1320 | 0 | asection *splt; |
1321 | 0 | bfd *dynobj; |
1322 | |
|
1323 | 0 | if (bfd_link_relocatable (info)) |
1324 | 0 | return true; |
1325 | | |
1326 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1327 | 0 | sym_hashes = elf_sym_hashes (abfd); |
1328 | 0 | local_plt_offsets = elf_local_got_offsets (abfd); |
1329 | 0 | dynobj = elf_hash_table(info)->dynobj; |
1330 | |
|
1331 | 0 | rel_end = relocs + sec->reloc_count; |
1332 | 0 | for (rel = relocs; rel < rel_end; rel++) |
1333 | 0 | { |
1334 | 0 | struct elf_link_hash_entry *h; |
1335 | 0 | unsigned long r_symndx; |
1336 | 0 | bfd_vma *offset; |
1337 | |
|
1338 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
1339 | 0 | if (r_symndx < symtab_hdr->sh_info) |
1340 | 0 | h = NULL; |
1341 | 0 | else |
1342 | 0 | { |
1343 | 0 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
1344 | 0 | while (h->root.type == bfd_link_hash_indirect |
1345 | 0 | || h->root.type == bfd_link_hash_warning) |
1346 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
1347 | 0 | } |
1348 | |
|
1349 | 0 | switch (ELF32_R_TYPE (rel->r_info)) |
1350 | 0 | { |
1351 | | /* This relocation describes a 16-bit pointer to a function. |
1352 | | We may need to allocate a thunk in low memory; reserve memory |
1353 | | for it now. */ |
1354 | 0 | case R_RL78_DIR16S: |
1355 | 0 | if (dynobj == NULL) |
1356 | 0 | elf_hash_table (info)->dynobj = dynobj = abfd; |
1357 | 0 | splt = elf_hash_table (info)->splt; |
1358 | 0 | if (splt == NULL) |
1359 | 0 | { |
1360 | 0 | flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS |
1361 | 0 | | SEC_IN_MEMORY | SEC_LINKER_CREATED |
1362 | 0 | | SEC_READONLY | SEC_CODE); |
1363 | 0 | splt = bfd_make_section_anyway_with_flags (dynobj, ".plt", |
1364 | 0 | flags); |
1365 | 0 | elf_hash_table (info)->splt = splt; |
1366 | 0 | if (splt == NULL |
1367 | 0 | || !bfd_set_section_alignment (splt, 1)) |
1368 | 0 | return false; |
1369 | 0 | } |
1370 | | |
1371 | 0 | if (h != NULL) |
1372 | 0 | offset = &h->plt.offset; |
1373 | 0 | else |
1374 | 0 | { |
1375 | 0 | if (local_plt_offsets == NULL) |
1376 | 0 | { |
1377 | 0 | size_t size; |
1378 | 0 | unsigned int i; |
1379 | |
|
1380 | 0 | size = symtab_hdr->sh_info * sizeof (bfd_vma); |
1381 | 0 | local_plt_offsets = (bfd_vma *) bfd_alloc (abfd, size); |
1382 | 0 | if (local_plt_offsets == NULL) |
1383 | 0 | return false; |
1384 | 0 | elf_local_got_offsets (abfd) = local_plt_offsets; |
1385 | |
|
1386 | 0 | for (i = 0; i < symtab_hdr->sh_info; i++) |
1387 | 0 | local_plt_offsets[i] = (bfd_vma) -1; |
1388 | 0 | } |
1389 | 0 | offset = &local_plt_offsets[r_symndx]; |
1390 | 0 | } |
1391 | | |
1392 | 0 | if (*offset == (bfd_vma) -1) |
1393 | 0 | { |
1394 | 0 | *offset = splt->size; |
1395 | 0 | splt->size += 4; |
1396 | 0 | } |
1397 | 0 | break; |
1398 | 0 | } |
1399 | 0 | } |
1400 | | |
1401 | 0 | return true; |
1402 | 0 | } |
1403 | | |
1404 | | /* This must exist if dynobj is ever set. */ |
1405 | | |
1406 | | static bool |
1407 | | rl78_elf_finish_dynamic_sections (bfd *abfd ATTRIBUTE_UNUSED, |
1408 | | struct bfd_link_info *info) |
1409 | 0 | { |
1410 | 0 | bfd *dynobj; |
1411 | 0 | asection *splt; |
1412 | |
|
1413 | 0 | if (!elf_hash_table (info)->dynamic_sections_created) |
1414 | 0 | return true; |
1415 | | |
1416 | | /* As an extra sanity check, verify that all plt entries have been |
1417 | | filled in. However, relaxing might have changed the relocs so |
1418 | | that some plt entries don't get filled in, so we have to skip |
1419 | | this check if we're relaxing. Unfortunately, check_relocs is |
1420 | | called before relaxation. */ |
1421 | | |
1422 | 0 | if (info->relax_trip > 0) |
1423 | 0 | return true; |
1424 | | |
1425 | 0 | dynobj = elf_hash_table (info)->dynobj; |
1426 | 0 | splt = elf_hash_table (info)->splt; |
1427 | 0 | if (dynobj != NULL && splt != NULL) |
1428 | 0 | { |
1429 | 0 | bfd_byte *contents = splt->contents; |
1430 | 0 | unsigned int i, size = splt->size; |
1431 | |
|
1432 | 0 | for (i = 0; i < size; i += 4) |
1433 | 0 | { |
1434 | 0 | unsigned int x = bfd_get_32 (dynobj, contents + i); |
1435 | 0 | BFD_ASSERT (x != 0); |
1436 | 0 | } |
1437 | 0 | } |
1438 | |
|
1439 | 0 | return true; |
1440 | 0 | } |
1441 | | |
1442 | | static bool |
1443 | | rl78_elf_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1444 | | struct bfd_link_info *info) |
1445 | 0 | { |
1446 | 0 | bfd *dynobj; |
1447 | 0 | asection *splt; |
1448 | |
|
1449 | 0 | if (bfd_link_relocatable (info)) |
1450 | 0 | return true; |
1451 | | |
1452 | 0 | dynobj = elf_hash_table (info)->dynobj; |
1453 | 0 | if (dynobj == NULL) |
1454 | 0 | return true; |
1455 | | |
1456 | 0 | splt = elf_hash_table (info)->splt; |
1457 | 0 | BFD_ASSERT (splt != NULL); |
1458 | |
|
1459 | 0 | splt->contents = (bfd_byte *) bfd_zalloc (dynobj, splt->size); |
1460 | 0 | if (splt->contents == NULL) |
1461 | 0 | return false; |
1462 | | |
1463 | 0 | return true; |
1464 | 0 | } |
1465 | | |
1466 | | |
1467 | | |
1468 | | /* Handle relaxing. */ |
1469 | | |
1470 | | /* A subroutine of rl78_elf_relax_section. If the global symbol H |
1471 | | is within the low 64k, remove any entry for it in the plt. */ |
1472 | | |
1473 | | struct relax_plt_data |
1474 | | { |
1475 | | asection *splt; |
1476 | | bool *again; |
1477 | | }; |
1478 | | |
1479 | | static bool |
1480 | | rl78_relax_plt_check (struct elf_link_hash_entry *h, void * xdata) |
1481 | 0 | { |
1482 | 0 | struct relax_plt_data *data = (struct relax_plt_data *) xdata; |
1483 | |
|
1484 | 0 | if (h->plt.offset != (bfd_vma) -1) |
1485 | 0 | { |
1486 | 0 | bfd_vma address; |
1487 | |
|
1488 | 0 | if (h->root.type == bfd_link_hash_undefined |
1489 | 0 | || h->root.type == bfd_link_hash_undefweak) |
1490 | 0 | address = 0; |
1491 | 0 | else |
1492 | 0 | address = (h->root.u.def.section->output_section->vma |
1493 | 0 | + h->root.u.def.section->output_offset |
1494 | 0 | + h->root.u.def.value); |
1495 | |
|
1496 | 0 | if (valid_16bit_address (address)) |
1497 | 0 | { |
1498 | 0 | h->plt.offset = -1; |
1499 | 0 | data->splt->size -= 4; |
1500 | 0 | *data->again = true; |
1501 | 0 | } |
1502 | 0 | } |
1503 | |
|
1504 | 0 | return true; |
1505 | 0 | } |
1506 | | |
1507 | | /* A subroutine of rl78_elf_relax_section. If the global symbol H |
1508 | | previously had a plt entry, give it a new entry offset. */ |
1509 | | |
1510 | | static bool |
1511 | | rl78_relax_plt_realloc (struct elf_link_hash_entry *h, void * xdata) |
1512 | 0 | { |
1513 | 0 | bfd_vma *entry = (bfd_vma *) xdata; |
1514 | |
|
1515 | 0 | if (h->plt.offset != (bfd_vma) -1) |
1516 | 0 | { |
1517 | 0 | h->plt.offset = *entry; |
1518 | 0 | *entry += 4; |
1519 | 0 | } |
1520 | |
|
1521 | 0 | return true; |
1522 | 0 | } |
1523 | | |
1524 | | static bool |
1525 | | rl78_elf_relax_plt_section (bfd *dynobj, |
1526 | | asection *splt, |
1527 | | struct bfd_link_info *info, |
1528 | | bool *again) |
1529 | 0 | { |
1530 | 0 | struct relax_plt_data relax_plt_data; |
1531 | 0 | bfd *ibfd; |
1532 | | |
1533 | | /* Assume nothing changes. */ |
1534 | 0 | *again = false; |
1535 | |
|
1536 | 0 | if (bfd_link_relocatable (info)) |
1537 | 0 | return true; |
1538 | | |
1539 | | /* We only relax the .plt section at the moment. */ |
1540 | 0 | if (dynobj != elf_hash_table (info)->dynobj |
1541 | 0 | || strcmp (splt->name, ".plt") != 0) |
1542 | 0 | return true; |
1543 | | |
1544 | | /* Quick check for an empty plt. */ |
1545 | 0 | if (splt->size == 0) |
1546 | 0 | return true; |
1547 | | |
1548 | | /* Map across all global symbols; see which ones happen to |
1549 | | fall in the low 64k. */ |
1550 | 0 | relax_plt_data.splt = splt; |
1551 | 0 | relax_plt_data.again = again; |
1552 | 0 | elf_link_hash_traverse (elf_hash_table (info), rl78_relax_plt_check, |
1553 | 0 | &relax_plt_data); |
1554 | | |
1555 | | /* Likewise for local symbols, though that's somewhat less convenient |
1556 | | as we have to walk the list of input bfds and swap in symbol data. */ |
1557 | 0 | for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next) |
1558 | 0 | { |
1559 | 0 | bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd); |
1560 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1561 | 0 | Elf_Internal_Sym *isymbuf = NULL; |
1562 | 0 | unsigned int idx; |
1563 | |
|
1564 | 0 | if (! local_plt_offsets) |
1565 | 0 | continue; |
1566 | | |
1567 | 0 | symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
1568 | 0 | if (symtab_hdr->sh_info != 0) |
1569 | 0 | { |
1570 | 0 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
1571 | 0 | if (isymbuf == NULL) |
1572 | 0 | isymbuf = bfd_elf_get_elf_syms (ibfd, symtab_hdr, |
1573 | 0 | symtab_hdr->sh_info, 0, |
1574 | 0 | NULL, NULL, NULL); |
1575 | 0 | if (isymbuf == NULL) |
1576 | 0 | return false; |
1577 | 0 | } |
1578 | | |
1579 | 0 | for (idx = 0; idx < symtab_hdr->sh_info; ++idx) |
1580 | 0 | { |
1581 | 0 | Elf_Internal_Sym *isym; |
1582 | 0 | asection *tsec; |
1583 | 0 | bfd_vma address; |
1584 | |
|
1585 | 0 | if (local_plt_offsets[idx] == (bfd_vma) -1) |
1586 | 0 | continue; |
1587 | | |
1588 | 0 | isym = &isymbuf[idx]; |
1589 | 0 | if (isym->st_shndx == SHN_UNDEF) |
1590 | 0 | continue; |
1591 | 0 | else if (isym->st_shndx == SHN_ABS) |
1592 | 0 | tsec = bfd_abs_section_ptr; |
1593 | 0 | else if (isym->st_shndx == SHN_COMMON) |
1594 | 0 | tsec = bfd_com_section_ptr; |
1595 | 0 | else |
1596 | 0 | tsec = bfd_section_from_elf_index (ibfd, isym->st_shndx); |
1597 | | |
1598 | 0 | address = (tsec->output_section->vma |
1599 | 0 | + tsec->output_offset |
1600 | 0 | + isym->st_value); |
1601 | 0 | if (valid_16bit_address (address)) |
1602 | 0 | { |
1603 | 0 | local_plt_offsets[idx] = -1; |
1604 | 0 | splt->size -= 4; |
1605 | 0 | *again = true; |
1606 | 0 | } |
1607 | 0 | } |
1608 | |
|
1609 | 0 | if (isymbuf != NULL |
1610 | 0 | && symtab_hdr->contents != (unsigned char *) isymbuf) |
1611 | 0 | { |
1612 | 0 | if (! info->keep_memory) |
1613 | 0 | free (isymbuf); |
1614 | 0 | else |
1615 | 0 | { |
1616 | | /* Cache the symbols for elf_link_input_bfd. */ |
1617 | 0 | symtab_hdr->contents = (unsigned char *) isymbuf; |
1618 | 0 | } |
1619 | 0 | } |
1620 | 0 | } |
1621 | | |
1622 | | /* If we changed anything, walk the symbols again to reallocate |
1623 | | .plt entry addresses. */ |
1624 | 0 | if (*again && splt->size > 0) |
1625 | 0 | { |
1626 | 0 | bfd_vma entry = 0; |
1627 | |
|
1628 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
1629 | 0 | rl78_relax_plt_realloc, &entry); |
1630 | |
|
1631 | 0 | for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next) |
1632 | 0 | { |
1633 | 0 | bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd); |
1634 | 0 | unsigned int nlocals = elf_tdata (ibfd)->symtab_hdr.sh_info; |
1635 | 0 | unsigned int idx; |
1636 | |
|
1637 | 0 | if (! local_plt_offsets) |
1638 | 0 | continue; |
1639 | | |
1640 | 0 | for (idx = 0; idx < nlocals; ++idx) |
1641 | 0 | if (local_plt_offsets[idx] != (bfd_vma) -1) |
1642 | 0 | { |
1643 | 0 | local_plt_offsets[idx] = entry; |
1644 | 0 | entry += 4; |
1645 | 0 | } |
1646 | 0 | } |
1647 | 0 | } |
1648 | |
|
1649 | 0 | return true; |
1650 | 0 | } |
1651 | | |
1652 | | /* Delete some bytes from a section while relaxing. */ |
1653 | | |
1654 | | static bool |
1655 | | elf32_rl78_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count, |
1656 | | Elf_Internal_Rela *alignment_rel, int force_snip) |
1657 | 0 | { |
1658 | 0 | Elf_Internal_Shdr * symtab_hdr; |
1659 | 0 | unsigned int sec_shndx; |
1660 | 0 | bfd_byte * contents; |
1661 | 0 | Elf_Internal_Rela * irel; |
1662 | 0 | Elf_Internal_Rela * irelend; |
1663 | 0 | Elf_Internal_Sym * isym; |
1664 | 0 | Elf_Internal_Sym * isymend; |
1665 | 0 | bfd_vma toaddr; |
1666 | 0 | unsigned int symcount; |
1667 | 0 | struct elf_link_hash_entry ** sym_hashes; |
1668 | 0 | struct elf_link_hash_entry ** end_hashes; |
1669 | |
|
1670 | 0 | if (!alignment_rel) |
1671 | 0 | force_snip = 1; |
1672 | |
|
1673 | 0 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
1674 | |
|
1675 | 0 | contents = elf_section_data (sec)->this_hdr.contents; |
1676 | | |
1677 | | /* The deletion must stop at the next alignment boundary, if |
1678 | | ALIGNMENT_REL is non-NULL. */ |
1679 | 0 | toaddr = sec->size; |
1680 | 0 | if (alignment_rel) |
1681 | 0 | toaddr = alignment_rel->r_offset; |
1682 | |
|
1683 | 0 | irel = elf_section_data (sec)->relocs; |
1684 | 0 | if (irel == NULL) |
1685 | 0 | { |
1686 | 0 | _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, true); |
1687 | 0 | irel = elf_section_data (sec)->relocs; |
1688 | 0 | } |
1689 | |
|
1690 | 0 | irelend = irel + sec->reloc_count; |
1691 | | |
1692 | | /* Actually delete the bytes. */ |
1693 | 0 | memmove (contents + addr, contents + addr + count, |
1694 | 0 | (size_t) (toaddr - addr - count)); |
1695 | | |
1696 | | /* If we don't have an alignment marker to worry about, we can just |
1697 | | shrink the section. Otherwise, we have to fill in the newly |
1698 | | created gap with NOP insns (0x03). */ |
1699 | 0 | if (force_snip) |
1700 | 0 | sec->size -= count; |
1701 | 0 | else |
1702 | 0 | memset (contents + toaddr - count, 0x03, count); |
1703 | | |
1704 | | /* Adjust all the relocs. */ |
1705 | 0 | for (; irel && irel < irelend; irel++) |
1706 | 0 | { |
1707 | | /* Get the new reloc address. */ |
1708 | 0 | if (irel->r_offset > addr |
1709 | 0 | && (irel->r_offset < toaddr |
1710 | 0 | || (force_snip && irel->r_offset == toaddr))) |
1711 | 0 | irel->r_offset -= count; |
1712 | | |
1713 | | /* If we see an ALIGN marker at the end of the gap, we move it |
1714 | | to the beginning of the gap, since marking these gaps is what |
1715 | | they're for. */ |
1716 | 0 | if (irel->r_offset == toaddr |
1717 | 0 | && ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX |
1718 | 0 | && irel->r_addend & RL78_RELAXA_ALIGN) |
1719 | 0 | irel->r_offset -= count; |
1720 | 0 | } |
1721 | | |
1722 | | /* Adjust the local symbols defined in this section. */ |
1723 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1724 | 0 | isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
1725 | 0 | isymend = isym + symtab_hdr->sh_info; |
1726 | |
|
1727 | 0 | for (; isym < isymend; isym++) |
1728 | 0 | { |
1729 | | /* If the symbol is in the range of memory we just moved, we |
1730 | | have to adjust its value. */ |
1731 | 0 | if (isym->st_shndx == sec_shndx |
1732 | 0 | && isym->st_value > addr |
1733 | 0 | && isym->st_value < toaddr) |
1734 | 0 | isym->st_value -= count; |
1735 | | |
1736 | | /* If the symbol *spans* the bytes we just deleted (i.e. it's |
1737 | | *end* is in the moved bytes but it's *start* isn't), then we |
1738 | | must adjust its size. */ |
1739 | 0 | if (isym->st_shndx == sec_shndx |
1740 | 0 | && isym->st_value < addr |
1741 | 0 | && isym->st_value + isym->st_size > addr |
1742 | 0 | && isym->st_value + isym->st_size < toaddr) |
1743 | 0 | isym->st_size -= count; |
1744 | 0 | } |
1745 | | |
1746 | | /* Now adjust the global symbols defined in this section. */ |
1747 | 0 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
1748 | 0 | - symtab_hdr->sh_info); |
1749 | 0 | sym_hashes = elf_sym_hashes (abfd); |
1750 | 0 | end_hashes = sym_hashes + symcount; |
1751 | |
|
1752 | 0 | for (; sym_hashes < end_hashes; sym_hashes++) |
1753 | 0 | { |
1754 | 0 | struct elf_link_hash_entry *sym_hash = *sym_hashes; |
1755 | |
|
1756 | 0 | if ((sym_hash->root.type == bfd_link_hash_defined |
1757 | 0 | || sym_hash->root.type == bfd_link_hash_defweak) |
1758 | 0 | && sym_hash->root.u.def.section == sec) |
1759 | 0 | { |
1760 | | /* As above, adjust the value if needed. */ |
1761 | 0 | if (sym_hash->root.u.def.value > addr |
1762 | 0 | && sym_hash->root.u.def.value < toaddr) |
1763 | 0 | sym_hash->root.u.def.value -= count; |
1764 | | |
1765 | | /* As above, adjust the size if needed. */ |
1766 | 0 | if (sym_hash->root.u.def.value < addr |
1767 | 0 | && sym_hash->root.u.def.value + sym_hash->size > addr |
1768 | 0 | && sym_hash->root.u.def.value + sym_hash->size < toaddr) |
1769 | 0 | sym_hash->size -= count; |
1770 | 0 | } |
1771 | 0 | } |
1772 | |
|
1773 | 0 | return true; |
1774 | 0 | } |
1775 | | |
1776 | | /* Used to sort relocs by address. If relocs have the same address, |
1777 | | we maintain their relative order, except that R_RL78_RH_RELAX |
1778 | | alignment relocs must be the first reloc for any given address. */ |
1779 | | |
1780 | | static void |
1781 | | reloc_bubblesort (Elf_Internal_Rela * r, int count) |
1782 | 0 | { |
1783 | 0 | int i; |
1784 | 0 | bool again; |
1785 | 0 | bool swappit; |
1786 | | |
1787 | | /* This is almost a classic bubblesort. It's the slowest sort, but |
1788 | | we're taking advantage of the fact that the relocations are |
1789 | | mostly in order already (the assembler emits them that way) and |
1790 | | we need relocs with the same address to remain in the same |
1791 | | relative order. */ |
1792 | 0 | again = true; |
1793 | 0 | while (again) |
1794 | 0 | { |
1795 | 0 | again = false; |
1796 | 0 | for (i = 0; i < count - 1; i ++) |
1797 | 0 | { |
1798 | 0 | if (r[i].r_offset > r[i + 1].r_offset) |
1799 | 0 | swappit = true; |
1800 | 0 | else if (r[i].r_offset < r[i + 1].r_offset) |
1801 | 0 | swappit = false; |
1802 | 0 | else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX |
1803 | 0 | && (r[i + 1].r_addend & RL78_RELAXA_ALIGN)) |
1804 | 0 | swappit = true; |
1805 | 0 | else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX |
1806 | 0 | && (r[i + 1].r_addend & RL78_RELAXA_ELIGN) |
1807 | 0 | && !(ELF32_R_TYPE (r[i].r_info) == R_RL78_RH_RELAX |
1808 | 0 | && (r[i].r_addend & RL78_RELAXA_ALIGN))) |
1809 | 0 | swappit = true; |
1810 | 0 | else |
1811 | 0 | swappit = false; |
1812 | |
|
1813 | 0 | if (swappit) |
1814 | 0 | { |
1815 | 0 | Elf_Internal_Rela tmp; |
1816 | |
|
1817 | 0 | tmp = r[i]; |
1818 | 0 | r[i] = r[i + 1]; |
1819 | 0 | r[i + 1] = tmp; |
1820 | | /* If we do move a reloc back, re-scan to see if it |
1821 | | needs to be moved even further back. This avoids |
1822 | | most of the O(n^2) behavior for our cases. */ |
1823 | 0 | if (i > 0) |
1824 | 0 | i -= 2; |
1825 | 0 | again = true; |
1826 | 0 | } |
1827 | 0 | } |
1828 | 0 | } |
1829 | 0 | } |
1830 | | |
1831 | | |
1832 | | #define OFFSET_FOR_RELOC(rel, lrel, scale) \ |
1833 | 0 | rl78_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \ |
1834 | 0 | lrel, abfd, sec, link_info, scale) |
1835 | | |
1836 | | static bfd_vma |
1837 | | rl78_offset_for_reloc (bfd * abfd, |
1838 | | Elf_Internal_Rela * rel, |
1839 | | Elf_Internal_Shdr * symtab_hdr, |
1840 | | bfd_byte * shndx_buf ATTRIBUTE_UNUSED, |
1841 | | Elf_Internal_Sym * intsyms, |
1842 | | Elf_Internal_Rela ** lrel, |
1843 | | bfd * input_bfd, |
1844 | | asection * input_section, |
1845 | | struct bfd_link_info * info, |
1846 | | int * scale) |
1847 | 0 | { |
1848 | 0 | bfd_vma symval; |
1849 | |
|
1850 | 0 | *scale = 1; |
1851 | | |
1852 | | /* REL is the first of 1..N relocations. We compute the symbol |
1853 | | value for each relocation, then combine them if needed. LREL |
1854 | | gets a pointer to the last relocation used. */ |
1855 | 0 | while (1) |
1856 | 0 | { |
1857 | 0 | unsigned long r_type; |
1858 | | |
1859 | | /* Get the value of the symbol referred to by the reloc. */ |
1860 | 0 | if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info) |
1861 | 0 | { |
1862 | | /* A local symbol. */ |
1863 | 0 | Elf_Internal_Sym *isym; |
1864 | 0 | asection *ssec; |
1865 | |
|
1866 | 0 | isym = intsyms + ELF32_R_SYM (rel->r_info); |
1867 | |
|
1868 | 0 | if (isym->st_shndx == SHN_UNDEF) |
1869 | 0 | ssec = bfd_und_section_ptr; |
1870 | 0 | else if (isym->st_shndx == SHN_ABS) |
1871 | 0 | ssec = bfd_abs_section_ptr; |
1872 | 0 | else if (isym->st_shndx == SHN_COMMON) |
1873 | 0 | ssec = bfd_com_section_ptr; |
1874 | 0 | else |
1875 | 0 | ssec = bfd_section_from_elf_index (abfd, |
1876 | 0 | isym->st_shndx); |
1877 | | |
1878 | | /* Initial symbol value. */ |
1879 | 0 | symval = isym->st_value; |
1880 | | |
1881 | | /* GAS may have made this symbol relative to a section, in |
1882 | | which case, we have to add the addend to find the |
1883 | | symbol. */ |
1884 | 0 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
1885 | 0 | symval += rel->r_addend; |
1886 | |
|
1887 | 0 | if (ssec) |
1888 | 0 | { |
1889 | 0 | if ((ssec->flags & SEC_MERGE) |
1890 | 0 | && ssec->sec_info_type == SEC_INFO_TYPE_MERGE) |
1891 | 0 | symval = _bfd_merged_section_offset (abfd, & ssec, |
1892 | 0 | elf_section_data (ssec)->sec_info, |
1893 | 0 | symval); |
1894 | 0 | } |
1895 | | |
1896 | | /* Now make the offset relative to where the linker is putting it. */ |
1897 | 0 | if (ssec) |
1898 | 0 | symval += |
1899 | 0 | ssec->output_section->vma + ssec->output_offset; |
1900 | |
|
1901 | 0 | symval += rel->r_addend; |
1902 | 0 | } |
1903 | 0 | else |
1904 | 0 | { |
1905 | 0 | unsigned long indx; |
1906 | 0 | struct elf_link_hash_entry * h; |
1907 | | |
1908 | | /* An external symbol. */ |
1909 | 0 | indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info; |
1910 | 0 | h = elf_sym_hashes (abfd)[indx]; |
1911 | 0 | BFD_ASSERT (h != NULL); |
1912 | |
|
1913 | 0 | if (h->root.type != bfd_link_hash_defined |
1914 | 0 | && h->root.type != bfd_link_hash_defweak) |
1915 | 0 | { |
1916 | | /* This appears to be a reference to an undefined |
1917 | | symbol. Just ignore it--it will be caught by the |
1918 | | regular reloc processing. */ |
1919 | 0 | if (lrel) |
1920 | 0 | *lrel = rel; |
1921 | 0 | return 0; |
1922 | 0 | } |
1923 | | |
1924 | 0 | symval = (h->root.u.def.value |
1925 | 0 | + h->root.u.def.section->output_section->vma |
1926 | 0 | + h->root.u.def.section->output_offset); |
1927 | |
|
1928 | 0 | symval += rel->r_addend; |
1929 | 0 | } |
1930 | | |
1931 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
1932 | 0 | switch (r_type) |
1933 | 0 | { |
1934 | 0 | case R_RL78_SYM: |
1935 | 0 | (void) rl78_compute_complex_reloc (r_type, symval, input_section, |
1936 | 0 | NULL, NULL); |
1937 | 0 | break; |
1938 | | |
1939 | 0 | case R_RL78_OPromtop: |
1940 | 0 | symval = get_romstart (info, input_bfd, input_section, rel->r_offset); |
1941 | 0 | (void) rl78_compute_complex_reloc (r_type, symval, input_section, |
1942 | 0 | NULL, NULL); |
1943 | 0 | break; |
1944 | | |
1945 | 0 | case R_RL78_OPramtop: |
1946 | 0 | symval = get_ramstart (info, input_bfd, input_section, rel->r_offset); |
1947 | 0 | (void) rl78_compute_complex_reloc (r_type, symval, input_section, |
1948 | 0 | NULL, NULL); |
1949 | 0 | break; |
1950 | | |
1951 | 0 | case R_RL78_OPneg: |
1952 | 0 | case R_RL78_OPadd: |
1953 | 0 | case R_RL78_OPsub: |
1954 | 0 | case R_RL78_OPmul: |
1955 | 0 | case R_RL78_OPdiv: |
1956 | 0 | case R_RL78_OPshla: |
1957 | 0 | case R_RL78_OPshra: |
1958 | 0 | case R_RL78_OPsctsize: |
1959 | 0 | case R_RL78_OPscttop: |
1960 | 0 | case R_RL78_OPand: |
1961 | 0 | case R_RL78_OPor: |
1962 | 0 | case R_RL78_OPxor: |
1963 | 0 | case R_RL78_OPnot: |
1964 | 0 | case R_RL78_OPmod: |
1965 | 0 | (void) rl78_compute_complex_reloc (r_type, 0, input_section, |
1966 | 0 | NULL, NULL); |
1967 | 0 | break; |
1968 | | |
1969 | 0 | case R_RL78_DIR16UL: |
1970 | 0 | case R_RL78_DIR8UL: |
1971 | 0 | case R_RL78_ABS16UL: |
1972 | 0 | case R_RL78_ABS8UL: |
1973 | 0 | *scale = 4; |
1974 | 0 | goto reloc_computes_value; |
1975 | | |
1976 | 0 | case R_RL78_DIR16UW: |
1977 | 0 | case R_RL78_DIR8UW: |
1978 | 0 | case R_RL78_ABS16UW: |
1979 | 0 | case R_RL78_ABS8UW: |
1980 | 0 | *scale = 2; |
1981 | 0 | goto reloc_computes_value; |
1982 | | |
1983 | 0 | default: |
1984 | 0 | reloc_computes_value: |
1985 | 0 | symval = rl78_compute_complex_reloc (r_type, symval, input_section, |
1986 | 0 | NULL, NULL); |
1987 | | /* Fall through. */ |
1988 | 0 | case R_RL78_DIR32: |
1989 | 0 | case R_RL78_DIR24S: |
1990 | 0 | case R_RL78_DIR16: |
1991 | 0 | case R_RL78_DIR16U: |
1992 | 0 | case R_RL78_DIR16S: |
1993 | 0 | case R_RL78_DIR24S_PCREL: |
1994 | 0 | case R_RL78_DIR16S_PCREL: |
1995 | 0 | case R_RL78_DIR8S_PCREL: |
1996 | 0 | if (lrel) |
1997 | 0 | *lrel = rel; |
1998 | 0 | return symval; |
1999 | 0 | } |
2000 | | |
2001 | 0 | rel ++; |
2002 | 0 | } |
2003 | 0 | } |
2004 | | |
2005 | | const struct { |
2006 | | int prefix; /* or -1 for "no prefix" */ |
2007 | | int insn; /* or -1 for "end of list" */ |
2008 | | int insn_for_saddr; /* or -1 for "no alternative" */ |
2009 | | int insn_for_sfr; /* or -1 for "no alternative" */ |
2010 | | } relax_addr16[] = { |
2011 | | { -1, 0x02, 0x06, -1 }, /* ADDW AX, !addr16 */ |
2012 | | { -1, 0x22, 0x26, -1 }, /* SUBW AX, !addr16 */ |
2013 | | { -1, 0x42, 0x46, -1 }, /* CMPW AX, !addr16 */ |
2014 | | { -1, 0x40, 0x4a, -1 }, /* CMP !addr16, #byte */ |
2015 | | |
2016 | | { -1, 0x0f, 0x0b, -1 }, /* ADD A, !addr16 */ |
2017 | | { -1, 0x1f, 0x1b, -1 }, /* ADDC A, !addr16 */ |
2018 | | { -1, 0x2f, 0x2b, -1 }, /* SUB A, !addr16 */ |
2019 | | { -1, 0x3f, 0x3b, -1 }, /* SUBC A, !addr16 */ |
2020 | | { -1, 0x4f, 0x4b, -1 }, /* CMP A, !addr16 */ |
2021 | | { -1, 0x5f, 0x5b, -1 }, /* AND A, !addr16 */ |
2022 | | { -1, 0x6f, 0x6b, -1 }, /* OR A, !addr16 */ |
2023 | | { -1, 0x7f, 0x7b, -1 }, /* XOR A, !addr16 */ |
2024 | | |
2025 | | { -1, 0x8f, 0x8d, 0x8e }, /* MOV A, !addr16 */ |
2026 | | { -1, 0x9f, 0x9d, 0x9e }, /* MOV !addr16, A */ |
2027 | | { -1, 0xaf, 0xad, 0xae }, /* MOVW AX, !addr16 */ |
2028 | | { -1, 0xbf, 0xbd, 0xbe }, /* MOVW !addr16, AX */ |
2029 | | { -1, 0xcf, 0xcd, 0xce }, /* MOVW !addr16, #word */ |
2030 | | |
2031 | | { -1, 0xa0, 0xa4, -1 }, /* INC !addr16 */ |
2032 | | { -1, 0xa2, 0xa6, -1 }, /* INCW !addr16 */ |
2033 | | { -1, 0xb0, 0xb4, -1 }, /* DEC !addr16 */ |
2034 | | { -1, 0xb2, 0xb6, -1 }, /* DECW !addr16 */ |
2035 | | |
2036 | | { -1, 0xd5, 0xd4, -1 }, /* CMP0 !addr16 */ |
2037 | | { -1, 0xe5, 0xe4, -1 }, /* ONEB !addr16 */ |
2038 | | { -1, 0xf5, 0xf4, -1 }, /* CLRB !addr16 */ |
2039 | | |
2040 | | { -1, 0xd9, 0xd8, -1 }, /* MOV X, !addr16 */ |
2041 | | { -1, 0xe9, 0xe8, -1 }, /* MOV B, !addr16 */ |
2042 | | { -1, 0xf9, 0xf8, -1 }, /* MOV C, !addr16 */ |
2043 | | { -1, 0xdb, 0xda, -1 }, /* MOVW BC, !addr16 */ |
2044 | | { -1, 0xeb, 0xea, -1 }, /* MOVW DE, !addr16 */ |
2045 | | { -1, 0xfb, 0xfa, -1 }, /* MOVW HL, !addr16 */ |
2046 | | |
2047 | | { 0x61, 0xaa, 0xa8, -1 }, /* XCH A, !addr16 */ |
2048 | | |
2049 | | { 0x71, 0x00, 0x02, 0x0a }, /* SET1 !addr16.0 */ |
2050 | | { 0x71, 0x10, 0x12, 0x1a }, /* SET1 !addr16.0 */ |
2051 | | { 0x71, 0x20, 0x22, 0x2a }, /* SET1 !addr16.0 */ |
2052 | | { 0x71, 0x30, 0x32, 0x3a }, /* SET1 !addr16.0 */ |
2053 | | { 0x71, 0x40, 0x42, 0x4a }, /* SET1 !addr16.0 */ |
2054 | | { 0x71, 0x50, 0x52, 0x5a }, /* SET1 !addr16.0 */ |
2055 | | { 0x71, 0x60, 0x62, 0x6a }, /* SET1 !addr16.0 */ |
2056 | | { 0x71, 0x70, 0x72, 0x7a }, /* SET1 !addr16.0 */ |
2057 | | |
2058 | | { 0x71, 0x08, 0x03, 0x0b }, /* CLR1 !addr16.0 */ |
2059 | | { 0x71, 0x18, 0x13, 0x1b }, /* CLR1 !addr16.0 */ |
2060 | | { 0x71, 0x28, 0x23, 0x2b }, /* CLR1 !addr16.0 */ |
2061 | | { 0x71, 0x38, 0x33, 0x3b }, /* CLR1 !addr16.0 */ |
2062 | | { 0x71, 0x48, 0x43, 0x4b }, /* CLR1 !addr16.0 */ |
2063 | | { 0x71, 0x58, 0x53, 0x5b }, /* CLR1 !addr16.0 */ |
2064 | | { 0x71, 0x68, 0x63, 0x6b }, /* CLR1 !addr16.0 */ |
2065 | | { 0x71, 0x78, 0x73, 0x7b }, /* CLR1 !addr16.0 */ |
2066 | | |
2067 | | { -1, -1, -1, -1 } |
2068 | | }; |
2069 | | |
2070 | | /* Relax one section. */ |
2071 | | |
2072 | | static bool |
2073 | | rl78_elf_relax_section (bfd *abfd, |
2074 | | asection *sec, |
2075 | | struct bfd_link_info *link_info, |
2076 | | bool *again) |
2077 | 0 | { |
2078 | 0 | Elf_Internal_Shdr * symtab_hdr; |
2079 | 0 | Elf_Internal_Shdr * shndx_hdr; |
2080 | 0 | Elf_Internal_Rela * internal_relocs; |
2081 | 0 | Elf_Internal_Rela * free_relocs = NULL; |
2082 | 0 | Elf_Internal_Rela * irel; |
2083 | 0 | Elf_Internal_Rela * srel; |
2084 | 0 | Elf_Internal_Rela * irelend; |
2085 | 0 | Elf_Internal_Rela * next_alignment; |
2086 | 0 | bfd_byte * contents = NULL; |
2087 | 0 | bfd_byte * free_contents = NULL; |
2088 | 0 | Elf_Internal_Sym * intsyms = NULL; |
2089 | 0 | Elf_Internal_Sym * free_intsyms = NULL; |
2090 | 0 | bfd_byte * shndx_buf = NULL; |
2091 | 0 | bfd_vma pc; |
2092 | 0 | bfd_vma symval ATTRIBUTE_UNUSED = 0; |
2093 | 0 | int pcrel ATTRIBUTE_UNUSED = 0; |
2094 | 0 | int code ATTRIBUTE_UNUSED = 0; |
2095 | 0 | int section_alignment_glue; |
2096 | 0 | int scale; |
2097 | |
|
2098 | 0 | if (abfd == elf_hash_table (link_info)->dynobj |
2099 | 0 | && strcmp (sec->name, ".plt") == 0) |
2100 | 0 | return rl78_elf_relax_plt_section (abfd, sec, link_info, again); |
2101 | | |
2102 | | /* Assume nothing changes. */ |
2103 | 0 | *again = false; |
2104 | | |
2105 | | /* We don't have to do anything for a relocatable link, if |
2106 | | this section does not have relocs, or if this is not a |
2107 | | code section. */ |
2108 | 0 | if (bfd_link_relocatable (link_info) |
2109 | 0 | || sec->reloc_count == 0 |
2110 | 0 | || (sec->flags & SEC_RELOC) == 0 |
2111 | 0 | || (sec->flags & SEC_HAS_CONTENTS) == 0 |
2112 | 0 | || (sec->flags & SEC_CODE) == 0) |
2113 | 0 | return true; |
2114 | | |
2115 | 0 | symtab_hdr = & elf_symtab_hdr (abfd); |
2116 | 0 | if (elf_symtab_shndx_list (abfd)) |
2117 | 0 | shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; |
2118 | 0 | else |
2119 | 0 | shndx_hdr = NULL; |
2120 | | |
2121 | | /* Get the section contents. */ |
2122 | 0 | if (elf_section_data (sec)->this_hdr.contents != NULL) |
2123 | 0 | contents = elf_section_data (sec)->this_hdr.contents; |
2124 | | /* Go get them off disk. */ |
2125 | 0 | else |
2126 | 0 | { |
2127 | 0 | if (! bfd_malloc_and_get_section (abfd, sec, &contents)) |
2128 | 0 | goto error_return; |
2129 | 0 | elf_section_data (sec)->this_hdr.contents = contents; |
2130 | 0 | } |
2131 | | |
2132 | | /* Read this BFD's symbols. */ |
2133 | | /* Get cached copy if it exists. */ |
2134 | 0 | if (symtab_hdr->contents != NULL) |
2135 | 0 | intsyms = (Elf_Internal_Sym *) symtab_hdr->contents; |
2136 | 0 | else |
2137 | 0 | { |
2138 | 0 | intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); |
2139 | 0 | symtab_hdr->contents = (bfd_byte *) intsyms; |
2140 | 0 | } |
2141 | |
|
2142 | 0 | if (shndx_hdr && shndx_hdr->sh_size != 0) |
2143 | 0 | { |
2144 | 0 | size_t amt; |
2145 | |
|
2146 | 0 | if (_bfd_mul_overflow (symtab_hdr->sh_info, |
2147 | 0 | sizeof (Elf_External_Sym_Shndx), &amt)) |
2148 | 0 | { |
2149 | 0 | bfd_set_error (bfd_error_no_memory); |
2150 | 0 | goto error_return; |
2151 | 0 | } |
2152 | 0 | if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0) |
2153 | 0 | goto error_return; |
2154 | 0 | shndx_buf = _bfd_malloc_and_read (abfd, amt, amt); |
2155 | 0 | if (shndx_buf == NULL) |
2156 | 0 | goto error_return; |
2157 | 0 | shndx_hdr->contents = shndx_buf; |
2158 | 0 | } |
2159 | | |
2160 | | /* Get a copy of the native relocations. */ |
2161 | 0 | internal_relocs = (_bfd_elf_link_read_relocs |
2162 | 0 | (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
2163 | 0 | link_info->keep_memory)); |
2164 | 0 | if (internal_relocs == NULL) |
2165 | 0 | goto error_return; |
2166 | 0 | if (! link_info->keep_memory) |
2167 | 0 | free_relocs = internal_relocs; |
2168 | | |
2169 | | /* The RL_ relocs must be just before the operand relocs they go |
2170 | | with, so we must sort them to guarantee this. We use bubblesort |
2171 | | instead of qsort so we can guarantee that relocs with the same |
2172 | | address remain in the same relative order. */ |
2173 | 0 | reloc_bubblesort (internal_relocs, sec->reloc_count); |
2174 | | |
2175 | | /* Walk through them looking for relaxing opportunities. */ |
2176 | 0 | irelend = internal_relocs + sec->reloc_count; |
2177 | | |
2178 | | |
2179 | | /* This will either be NULL or a pointer to the next alignment |
2180 | | relocation. */ |
2181 | 0 | next_alignment = internal_relocs; |
2182 | | |
2183 | | /* We calculate worst case shrinkage caused by alignment directives. |
2184 | | No fool-proof, but better than either ignoring the problem or |
2185 | | doing heavy duty analysis of all the alignment markers in all |
2186 | | input sections. */ |
2187 | 0 | section_alignment_glue = 0; |
2188 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
2189 | 0 | if (ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX |
2190 | 0 | && irel->r_addend & RL78_RELAXA_ALIGN) |
2191 | 0 | { |
2192 | 0 | int this_glue = 1 << (irel->r_addend & RL78_RELAXA_ANUM); |
2193 | |
|
2194 | 0 | if (section_alignment_glue < this_glue) |
2195 | 0 | section_alignment_glue = this_glue; |
2196 | 0 | } |
2197 | | /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte |
2198 | | shrinkage. */ |
2199 | 0 | section_alignment_glue *= 2; |
2200 | |
|
2201 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
2202 | 0 | { |
2203 | 0 | unsigned char *insn; |
2204 | 0 | int nrelocs; |
2205 | | |
2206 | | /* The insns we care about are all marked with one of these. */ |
2207 | 0 | if (ELF32_R_TYPE (irel->r_info) != R_RL78_RH_RELAX) |
2208 | 0 | continue; |
2209 | | |
2210 | 0 | if (irel->r_addend & RL78_RELAXA_ALIGN |
2211 | 0 | || next_alignment == internal_relocs) |
2212 | 0 | { |
2213 | | /* When we delete bytes, we need to maintain all the alignments |
2214 | | indicated. In addition, we need to be careful about relaxing |
2215 | | jumps across alignment boundaries - these displacements |
2216 | | *grow* when we delete bytes. For now, don't shrink |
2217 | | displacements across an alignment boundary, just in case. |
2218 | | Note that this only affects relocations to the same |
2219 | | section. */ |
2220 | 0 | next_alignment += 2; |
2221 | 0 | while (next_alignment < irelend |
2222 | 0 | && (ELF32_R_TYPE (next_alignment->r_info) != R_RL78_RH_RELAX |
2223 | 0 | || !(next_alignment->r_addend & RL78_RELAXA_ELIGN))) |
2224 | 0 | next_alignment ++; |
2225 | 0 | if (next_alignment >= irelend || next_alignment->r_offset == 0) |
2226 | 0 | next_alignment = NULL; |
2227 | 0 | } |
2228 | | |
2229 | | /* When we hit alignment markers, see if we've shrunk enough |
2230 | | before them to reduce the gap without violating the alignment |
2231 | | requirements. */ |
2232 | 0 | if (irel->r_addend & RL78_RELAXA_ALIGN) |
2233 | 0 | { |
2234 | | /* At this point, the next relocation *should* be the ELIGN |
2235 | | end marker. */ |
2236 | 0 | Elf_Internal_Rela *erel = irel + 1; |
2237 | 0 | unsigned int alignment, nbytes; |
2238 | |
|
2239 | 0 | if (ELF32_R_TYPE (erel->r_info) != R_RL78_RH_RELAX) |
2240 | 0 | continue; |
2241 | 0 | if (!(erel->r_addend & RL78_RELAXA_ELIGN)) |
2242 | 0 | continue; |
2243 | | |
2244 | 0 | alignment = 1 << (irel->r_addend & RL78_RELAXA_ANUM); |
2245 | |
|
2246 | 0 | if (erel->r_offset - irel->r_offset < alignment) |
2247 | 0 | continue; |
2248 | | |
2249 | 0 | nbytes = erel->r_offset - irel->r_offset; |
2250 | 0 | nbytes /= alignment; |
2251 | 0 | nbytes *= alignment; |
2252 | |
|
2253 | 0 | elf32_rl78_relax_delete_bytes (abfd, sec, erel->r_offset - nbytes, nbytes, |
2254 | 0 | next_alignment, erel->r_offset == sec->size); |
2255 | 0 | *again = true; |
2256 | |
|
2257 | 0 | continue; |
2258 | 0 | } |
2259 | | |
2260 | 0 | if (irel->r_addend & RL78_RELAXA_ELIGN) |
2261 | 0 | continue; |
2262 | | |
2263 | 0 | insn = contents + irel->r_offset; |
2264 | |
|
2265 | 0 | nrelocs = irel->r_addend & RL78_RELAXA_RNUM; |
2266 | | |
2267 | | /* At this point, we have an insn that is a candidate for linker |
2268 | | relaxation. There are NRELOCS relocs following that may be |
2269 | | relaxed, although each reloc may be made of more than one |
2270 | | reloc entry (such as gp-rel symbols). */ |
2271 | | |
2272 | | /* Get the value of the symbol referred to by the reloc. Just |
2273 | | in case this is the last reloc in the list, use the RL's |
2274 | | addend to choose between this reloc (no addend) or the next |
2275 | | (yes addend, which means at least one following reloc). */ |
2276 | | |
2277 | | /* srel points to the "current" reloction for this insn - |
2278 | | actually the last reloc for a given operand, which is the one |
2279 | | we need to update. We check the relaxations in the same |
2280 | | order that the relocations happen, so we'll just push it |
2281 | | along as we go. */ |
2282 | 0 | srel = irel; |
2283 | |
|
2284 | 0 | pc = sec->output_section->vma + sec->output_offset |
2285 | 0 | + srel->r_offset; |
2286 | |
|
2287 | 0 | #define GET_RELOC \ |
2288 | 0 | BFD_ASSERT (nrelocs > 0); \ |
2289 | 0 | symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \ |
2290 | 0 | pcrel = symval - pc + srel->r_addend; \ |
2291 | 0 | nrelocs --; |
2292 | |
|
2293 | 0 | #define SNIPNR(offset, nbytes) \ |
2294 | 0 | elf32_rl78_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0); |
2295 | |
|
2296 | 0 | #define SNIP(offset, nbytes, newtype) \ |
2297 | 0 | SNIPNR (offset, nbytes); \ |
2298 | 0 | srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype) |
2299 | | |
2300 | | /* The order of these bit tests must match the order that the |
2301 | | relocs appear in. Since we sorted those by offset, we can |
2302 | | predict them. */ |
2303 | | |
2304 | | /*----------------------------------------------------------------------*/ |
2305 | | /* EF ad BR $rel8 pcrel |
2306 | | ED al ah BR !abs16 abs |
2307 | | EE al ah BR $!rel16 pcrel |
2308 | | EC al ah as BR !!abs20 abs |
2309 | | |
2310 | | FD al ah CALL !abs16 abs |
2311 | | FE al ah CALL $!rel16 pcrel |
2312 | | FC al ah as CALL !!abs20 abs |
2313 | | |
2314 | | DC ad BC $rel8 |
2315 | | DE ad BNC $rel8 |
2316 | | DD ad BZ $rel8 |
2317 | | DF ad BNZ $rel8 |
2318 | | 61 C3 ad BH $rel8 |
2319 | | 61 D3 ad BNH $rel8 |
2320 | | 61 C8 EF ad SKC ; BR $rel8 |
2321 | | 61 D8 EF ad SKNC ; BR $rel8 |
2322 | | 61 E8 EF ad SKZ ; BR $rel8 |
2323 | | 61 F8 EF ad SKNZ ; BR $rel8 |
2324 | | 61 E3 EF ad SKH ; BR $rel8 |
2325 | | 61 F3 EF ad SKNH ; BR $rel8 |
2326 | | */ |
2327 | |
|
2328 | 0 | if ((irel->r_addend & RL78_RELAXA_MASK) == RL78_RELAXA_BRA) |
2329 | 0 | { |
2330 | | /* SKIP opcodes that skip non-branches will have a relax tag |
2331 | | but no corresponding symbol to relax against; we just |
2332 | | skip those. */ |
2333 | 0 | if (irel->r_addend & RL78_RELAXA_RNUM) |
2334 | 0 | { |
2335 | 0 | GET_RELOC; |
2336 | 0 | } |
2337 | |
|
2338 | 0 | switch (insn[0]) |
2339 | 0 | { |
2340 | 0 | case 0xdc: /* BC */ |
2341 | 0 | case 0xdd: /* BZ */ |
2342 | 0 | case 0xde: /* BNC */ |
2343 | 0 | case 0xdf: /* BNZ */ |
2344 | 0 | if (insn[1] == 0x03 && insn[2] == 0xee /* BR */ |
2345 | 0 | && (srel->r_offset - irel->r_offset) > 1) /* a B<c> without its own reloc */ |
2346 | 0 | { |
2347 | | /* This is a "long" conditional as generated by gas: |
2348 | | DC 03 EE ad.dr */ |
2349 | 0 | if (pcrel < 127 |
2350 | 0 | && pcrel > -127) |
2351 | 0 | { |
2352 | 0 | insn[0] ^= 0x02; /* invert conditional */ |
2353 | 0 | SNIPNR (4, 1); |
2354 | 0 | SNIP (1, 2, R_RL78_DIR8S_PCREL); |
2355 | 0 | insn[1] = pcrel; |
2356 | 0 | *again = true; |
2357 | 0 | } |
2358 | 0 | } |
2359 | 0 | break; |
2360 | | |
2361 | 0 | case 0xec: /* BR !!abs20 */ |
2362 | |
|
2363 | 0 | if (pcrel < 127 |
2364 | 0 | && pcrel > -127) |
2365 | 0 | { |
2366 | 0 | insn[0] = 0xef; |
2367 | 0 | insn[1] = pcrel; |
2368 | 0 | SNIP (2, 2, R_RL78_DIR8S_PCREL); |
2369 | 0 | *again = true; |
2370 | 0 | } |
2371 | 0 | else if (symval < 65536) |
2372 | 0 | { |
2373 | 0 | insn[0] = 0xed; |
2374 | 0 | insn[1] = symval & 0xff; |
2375 | 0 | insn[2] = symval >> 8; |
2376 | 0 | SNIP (2, 1, R_RL78_DIR16U); |
2377 | 0 | *again = true; |
2378 | 0 | } |
2379 | 0 | else if (pcrel < 32767 |
2380 | 0 | && pcrel > -32767) |
2381 | 0 | { |
2382 | 0 | insn[0] = 0xee; |
2383 | 0 | insn[1] = pcrel & 0xff; |
2384 | 0 | insn[2] = pcrel >> 8; |
2385 | 0 | SNIP (2, 1, R_RL78_DIR16S_PCREL); |
2386 | 0 | *again = true; |
2387 | 0 | } |
2388 | 0 | break; |
2389 | | |
2390 | 0 | case 0xee: /* BR $!pcrel16 */ |
2391 | 0 | case 0xed: /* BR $!abs16 */ |
2392 | 0 | if (pcrel < 127 |
2393 | 0 | && pcrel > -127) |
2394 | 0 | { |
2395 | 0 | insn[0] = 0xef; |
2396 | 0 | insn[1] = pcrel; |
2397 | 0 | SNIP (2, 1, R_RL78_DIR8S_PCREL); |
2398 | 0 | *again = true; |
2399 | 0 | } |
2400 | 0 | break; |
2401 | | |
2402 | 0 | case 0xfc: /* CALL !!abs20 */ |
2403 | 0 | if (symval < 65536) |
2404 | 0 | { |
2405 | 0 | insn[0] = 0xfd; |
2406 | 0 | insn[1] = symval & 0xff; |
2407 | 0 | insn[2] = symval >> 8; |
2408 | 0 | SNIP (2, 1, R_RL78_DIR16U); |
2409 | 0 | *again = true; |
2410 | 0 | } |
2411 | 0 | else if (pcrel < 32767 |
2412 | 0 | && pcrel > -32767) |
2413 | 0 | { |
2414 | 0 | insn[0] = 0xfe; |
2415 | 0 | insn[1] = pcrel & 0xff; |
2416 | 0 | insn[2] = pcrel >> 8; |
2417 | 0 | SNIP (2, 1, R_RL78_DIR16S_PCREL); |
2418 | 0 | *again = true; |
2419 | 0 | } |
2420 | 0 | break; |
2421 | | |
2422 | 0 | case 0x61: /* PREFIX */ |
2423 | | /* For SKIP/BR, we change the BR opcode and delete the |
2424 | | SKIP. That way, we don't have to find and change the |
2425 | | relocation for the BR. */ |
2426 | | /* Note that, for the case where we're skipping some |
2427 | | other insn, we have no "other" reloc but that's safe |
2428 | | here anyway. */ |
2429 | 0 | switch (insn[1]) |
2430 | 0 | { |
2431 | 0 | case 0xd3: /* BNH */ |
2432 | 0 | case 0xc3: /* BH */ |
2433 | 0 | if (insn[2] == 0x03 && insn[3] == 0xee |
2434 | 0 | && (srel->r_offset - irel->r_offset) > 2) /* a B<c> without its own reloc */ |
2435 | 0 | { |
2436 | | /* Another long branch by gas: |
2437 | | 61 D3 03 EE ad.dr */ |
2438 | 0 | if (pcrel < 127 |
2439 | 0 | && pcrel > -127) |
2440 | 0 | { |
2441 | 0 | insn[1] ^= 0x10; /* invert conditional */ |
2442 | 0 | SNIPNR (5, 1); |
2443 | 0 | SNIP (2, 2, R_RL78_DIR8S_PCREL); |
2444 | 0 | insn[2] = pcrel; |
2445 | 0 | *again = true; |
2446 | 0 | } |
2447 | 0 | } |
2448 | 0 | break; |
2449 | | |
2450 | 0 | case 0xc8: /* SKC */ |
2451 | 0 | if (insn[2] == 0xef) |
2452 | 0 | { |
2453 | 0 | insn[2] = 0xde; /* BNC */ |
2454 | 0 | SNIPNR (0, 2); |
2455 | 0 | } |
2456 | 0 | break; |
2457 | | |
2458 | 0 | case 0xd8: /* SKNC */ |
2459 | 0 | if (insn[2] == 0xef) |
2460 | 0 | { |
2461 | 0 | insn[2] = 0xdc; /* BC */ |
2462 | 0 | SNIPNR (0, 2); |
2463 | 0 | } |
2464 | 0 | break; |
2465 | | |
2466 | 0 | case 0xe8: /* SKZ */ |
2467 | 0 | if (insn[2] == 0xef) |
2468 | 0 | { |
2469 | 0 | insn[2] = 0xdf; /* BNZ */ |
2470 | 0 | SNIPNR (0, 2); |
2471 | 0 | } |
2472 | 0 | break; |
2473 | | |
2474 | 0 | case 0xf8: /* SKNZ */ |
2475 | 0 | if (insn[2] == 0xef) |
2476 | 0 | { |
2477 | 0 | insn[2] = 0xdd; /* BZ */ |
2478 | 0 | SNIPNR (0, 2); |
2479 | 0 | } |
2480 | 0 | break; |
2481 | | |
2482 | 0 | case 0xe3: /* SKH */ |
2483 | 0 | if (insn[2] == 0xef) |
2484 | 0 | { |
2485 | 0 | insn[2] = 0xd3; /* BNH */ |
2486 | 0 | SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */ |
2487 | 0 | } |
2488 | 0 | break; |
2489 | | |
2490 | 0 | case 0xf3: /* SKNH */ |
2491 | 0 | if (insn[2] == 0xef) |
2492 | 0 | { |
2493 | 0 | insn[2] = 0xc3; /* BH */ |
2494 | 0 | SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */ |
2495 | 0 | } |
2496 | 0 | break; |
2497 | 0 | } |
2498 | 0 | break; |
2499 | 0 | } |
2500 | 0 | } |
2501 | | |
2502 | 0 | if ((irel->r_addend & RL78_RELAXA_MASK) == RL78_RELAXA_ADDR16 |
2503 | 0 | && nrelocs > 0) |
2504 | 0 | { |
2505 | | /*----------------------------------------------------------------------*/ |
2506 | | /* Some insns have both a 16-bit address operand and an 8-bit |
2507 | | variant if the address is within a special range: |
2508 | | |
2509 | | Address 16-bit operand SADDR range SFR range |
2510 | | FFF00-FFFFF 0xff00-0xffff 0x00-0xff |
2511 | | FFE20-FFF1F 0xfe20-0xff1f 0x00-0xff |
2512 | | |
2513 | | The RELAX_ADDR16[] array has the insn encodings for the |
2514 | | 16-bit operand version, as well as the SFR and SADDR |
2515 | | variants. We only need to replace the encodings and |
2516 | | adjust the operand. |
2517 | | |
2518 | | Note: we intentionally do not attempt to decode and skip |
2519 | | any ES: prefix, as adding ES: means the addr16 (likely) |
2520 | | no longer points to saddr/sfr space. |
2521 | | */ |
2522 | |
|
2523 | 0 | int is_sfr; |
2524 | 0 | int is_saddr; |
2525 | 0 | int idx; |
2526 | 0 | int poff; |
2527 | |
|
2528 | 0 | GET_RELOC; |
2529 | |
|
2530 | 0 | if (0xffe20 <= symval && symval <= 0xfffff) |
2531 | 0 | { |
2532 | |
|
2533 | 0 | is_saddr = (0xffe20 <= symval && symval <= 0xfff1f); |
2534 | 0 | is_sfr = (0xfff00 <= symval && symval <= 0xfffff); |
2535 | |
|
2536 | 0 | for (idx = 0; relax_addr16[idx].insn != -1; idx ++) |
2537 | 0 | { |
2538 | 0 | if (relax_addr16[idx].prefix != -1 |
2539 | 0 | && insn[0] == relax_addr16[idx].prefix |
2540 | 0 | && insn[1] == relax_addr16[idx].insn) |
2541 | 0 | { |
2542 | 0 | poff = 1; |
2543 | 0 | } |
2544 | 0 | else if (relax_addr16[idx].prefix == -1 |
2545 | 0 | && insn[0] == relax_addr16[idx].insn) |
2546 | 0 | { |
2547 | 0 | poff = 0; |
2548 | 0 | } |
2549 | 0 | else |
2550 | 0 | continue; |
2551 | | |
2552 | | /* We have a matched insn, and poff is 0 or 1 depending |
2553 | | on the base pattern size. */ |
2554 | | |
2555 | 0 | if (is_sfr && relax_addr16[idx].insn_for_sfr != -1) |
2556 | 0 | { |
2557 | 0 | insn[poff] = relax_addr16[idx].insn_for_sfr; |
2558 | 0 | SNIP (poff+2, 1, R_RL78_RH_SFR); |
2559 | 0 | } |
2560 | | |
2561 | 0 | else if (is_saddr && relax_addr16[idx].insn_for_saddr != -1) |
2562 | 0 | { |
2563 | 0 | insn[poff] = relax_addr16[idx].insn_for_saddr; |
2564 | 0 | SNIP (poff+2, 1, R_RL78_RH_SADDR); |
2565 | 0 | } |
2566 | 0 | } |
2567 | 0 | } |
2568 | 0 | } |
2569 | | /*----------------------------------------------------------------------*/ |
2570 | 0 | } |
2571 | | |
2572 | 0 | return true; |
2573 | | |
2574 | 0 | error_return: |
2575 | 0 | free (free_relocs); |
2576 | 0 | free (free_contents); |
2577 | |
|
2578 | 0 | if (shndx_buf != NULL) |
2579 | 0 | { |
2580 | 0 | shndx_hdr->contents = NULL; |
2581 | 0 | free (shndx_buf); |
2582 | 0 | } |
2583 | |
|
2584 | 0 | free (free_intsyms); |
2585 | |
|
2586 | 0 | return true; |
2587 | 0 | } |
2588 | | |
2589 | | |
2590 | | |
2591 | | #define ELF_ARCH bfd_arch_rl78 |
2592 | | #define ELF_MACHINE_CODE EM_RL78 |
2593 | | #define ELF_MAXPAGESIZE 0x1000 |
2594 | | |
2595 | | #define TARGET_LITTLE_SYM rl78_elf32_vec |
2596 | | #define TARGET_LITTLE_NAME "elf32-rl78" |
2597 | | |
2598 | | #define elf_info_to_howto_rel NULL |
2599 | | #define elf_info_to_howto rl78_info_to_howto_rela |
2600 | | #define elf_backend_object_p rl78_elf_object_p |
2601 | | #define elf_backend_relocate_section rl78_elf_relocate_section |
2602 | | #define elf_symbol_leading_char ('_') |
2603 | | #define elf_backend_can_gc_sections 1 |
2604 | | |
2605 | | #define bfd_elf32_bfd_reloc_type_lookup rl78_reloc_type_lookup |
2606 | | #define bfd_elf32_bfd_reloc_name_lookup rl78_reloc_name_lookup |
2607 | | #define bfd_elf32_bfd_set_private_flags rl78_elf_set_private_flags |
2608 | | #define bfd_elf32_bfd_merge_private_bfd_data rl78_elf_merge_private_bfd_data |
2609 | | #define bfd_elf32_bfd_print_private_bfd_data rl78_elf_print_private_bfd_data |
2610 | | |
2611 | | #define bfd_elf32_bfd_relax_section rl78_elf_relax_section |
2612 | | #define elf_backend_check_relocs rl78_elf_check_relocs |
2613 | | #define elf_backend_always_size_sections \ |
2614 | | rl78_elf_always_size_sections |
2615 | | #define elf_backend_finish_dynamic_sections \ |
2616 | | rl78_elf_finish_dynamic_sections |
2617 | | |
2618 | | #include "elf32-target.h" |