Coverage Report

Created: 2023-08-28 06:30

/src/binutils-gdb/opcodes/vax-dis.c
Line
Count
Source (jump to first uncovered line)
1
/* Print VAX instructions.
2
   Copyright (C) 1995-2023 Free Software Foundation, Inc.
3
   Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
4
5
   This file is part of the GNU opcodes library.
6
7
   This library is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3, or (at your option)
10
   any later version.
11
12
   It is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
22
#include "sysdep.h"
23
#include <setjmp.h>
24
#include <string.h>
25
#include "opcode/vax.h"
26
#include "disassemble.h"
27
28
static char *reg_names[] =
29
{
30
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
31
  "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
32
};
33
34
/* Definitions for the function entry mask bits.  */
35
static char *entry_mask_bit[] =
36
{
37
  /* Registers 0 and 1 shall not be saved, since they're used to pass back
38
     a function's result to its caller...  */
39
  "~r0~", "~r1~",
40
  /* Registers 2 .. 11 are normal registers.  */
41
  "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
42
  /* Registers 12 and 13 are argument and frame pointer and must not
43
     be saved by using the entry mask.  */
44
  "~ap~", "~fp~",
45
  /* Bits 14 and 15 control integer and decimal overflow.  */
46
  "IntOvfl", "DecOvfl",
47
};
48
49
/* Sign-extend an (unsigned char). */
50
158k
#define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
51
52
/* Get a 1 byte signed integer.  */
53
#define NEXTBYTE(p)  \
54
158k
  (p += 1, FETCH_DATA (info, p), \
55
158k
  COERCE_SIGNED_CHAR(p[-1]))
56
57
/* Get a 2 byte signed integer.  */
58
11.0k
#define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
59
#define NEXTWORD(p)  \
60
11.0k
  (p += 2, FETCH_DATA (info, p), \
61
11.0k
   COERCE16 ((p[-1] << 8) + p[-2]))
62
63
/* Get a 4 byte signed integer.  */
64
14.1k
#define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
65
#define NEXTLONG(p)  \
66
14.1k
  (p += 4, FETCH_DATA (info, p), \
67
14.1k
   (COERCE32 (((((((unsigned) p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
68
69
/* Maximum length of an instruction.  */
70
#define MAXLEN 25
71
72
struct private
73
{
74
  /* Points to first byte not fetched.  */
75
  bfd_byte * max_fetched;
76
  bfd_byte   the_buffer[MAXLEN];
77
  bfd_vma    insn_start;
78
  OPCODES_SIGJMP_BUF    bailout;
79
};
80
81
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
82
   to ADDR (exclusive) are valid.  Returns 1 for success, longjmps
83
   on error.  */
84
#define FETCH_DATA(info, addr) \
85
409k
  ((addr) <= ((struct private *)(info->private_data))->max_fetched \
86
409k
   ? 1 : fetch_data ((info), (addr)))
87
88
static int
89
fetch_data (struct disassemble_info *info, bfd_byte *addr)
90
236k
{
91
236k
  int status;
92
236k
  struct private *priv = (struct private *) info->private_data;
93
236k
  bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
94
95
236k
  status = (*info->read_memory_func) (start,
96
236k
              priv->max_fetched,
97
236k
              addr - priv->max_fetched,
98
236k
              info);
99
236k
  if (status != 0)
100
253
    {
101
253
      (*info->memory_error_func) (status, start, info);
102
253
      OPCODES_SIGLONGJMP (priv->bailout, 1);
103
253
    }
104
236k
  else
105
236k
    priv->max_fetched = addr;
106
107
236k
  return 1;
108
236k
}
109
110
/* Entry mask handling.  */
111
static unsigned int  entry_addr_occupied_slots = 0;
112
static unsigned int  entry_addr_total_slots = 0;
113
static bfd_vma *     entry_addr = NULL;
114
115
/* Parse the VAX specific disassembler options.  These contain function
116
   entry addresses, which can be useful to disassemble ROM images, since
117
   there's no symbol table.  Returns TRUE upon success, FALSE otherwise.  */
118
119
static bool
120
parse_disassembler_options (const char *options)
121
0
{
122
0
  const char * entry_switch = "entry:";
123
124
0
  while ((options = strstr (options, entry_switch)))
125
0
    {
126
0
      options += strlen (entry_switch);
127
128
      /* The greater-than part of the test below is paranoia.  */
129
0
      if (entry_addr_occupied_slots >= entry_addr_total_slots)
130
0
  {
131
    /* A guesstimate of the number of entries we will have to create.  */
132
0
    entry_addr_total_slots
133
0
      += 1 + strlen (options) / (strlen (entry_switch) + 5);
134
135
0
    entry_addr = realloc (entry_addr, sizeof (bfd_vma)
136
0
        * entry_addr_total_slots);
137
0
  }
138
139
0
      if (entry_addr == NULL)
140
0
  return false;
141
142
0
      entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
143
0
      entry_addr_occupied_slots ++;
144
0
    }
145
146
0
  return true;
147
0
}
148
149
#if 0 /* FIXME:  Ideally the disassembler should have target specific
150
   initialisation and termination function pointers.  Then
151
   parse_disassembler_options could be the init function and
152
   free_entry_array (below) could be the termination routine.
153
   Until then there is no way for the disassembler to tell us
154
   that it has finished and that we no longer need the entry
155
   array, so this routine is suppressed for now.  It does mean
156
   that we leak memory, but only to the extent that we do not
157
   free it just before the disassembler is about to terminate
158
   anyway.  */
159
160
/* Free memory allocated to our entry array.  */
161
162
static void
163
free_entry_array (void)
164
{
165
  if (entry_addr)
166
    {
167
      free (entry_addr);
168
      entry_addr = NULL;
169
      entry_addr_occupied_slots = entry_addr_total_slots = 0;
170
    }
171
}
172
#endif
173
/* Check if the given address is a known function entry point.  This is
174
   the case if there is a symbol of the function type at this address.
175
   We also check for synthetic symbols as these are used for PLT entries
176
   (weak undefined symbols may not have the function type set).  Finally
177
   the address may have been forced to be treated as an entry point.  The
178
   latter helps in disassembling ROM images, because there's no symbol
179
   table at all.  Forced entry points can be given by supplying several
180
   -M options to objdump: -M entry:0xffbb7730.  */
181
182
static bool
183
is_function_entry (struct disassemble_info *info, bfd_vma addr)
184
114k
{
185
114k
  unsigned int i;
186
187
  /* Check if there's a function or PLT symbol at our address.  */
188
114k
  if (info->symbols
189
114k
      && info->symbols[0]
190
114k
      && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
191
114k
      && addr == bfd_asymbol_value (info->symbols[0]))
192
0
    return true;
193
194
  /* Check for forced function entry address.  */
195
114k
  for (i = entry_addr_occupied_slots; i--;)
196
0
    if (entry_addr[i] == addr)
197
0
      return true;
198
199
114k
  return false;
200
114k
}
201
202
/* Check if the given address is the last longword of a PLT entry.
203
   This longword is data and depending on the value it may interfere
204
   with disassembly of further PLT entries.  We make use of the fact
205
   PLT symbols are marked BSF_SYNTHETIC.  */
206
static bool
207
is_plt_tail (struct disassemble_info *info, bfd_vma addr)
208
114k
{
209
114k
  if (info->symbols
210
114k
      && info->symbols[0]
211
114k
      && (info->symbols[0]->flags & BSF_SYNTHETIC)
212
114k
      && addr == bfd_asymbol_value (info->symbols[0]) + 8)
213
0
    return true;
214
215
114k
  return false;
216
114k
}
217
218
static int
219
print_insn_mode (const char *d,
220
     int size,
221
     unsigned char *p0,
222
     bfd_vma addr,  /* PC for this arg to be relative to.  */
223
     disassemble_info *info)
224
132k
{
225
132k
  unsigned char *p = p0;
226
132k
  unsigned char mode, reg;
227
228
  /* Fetch and interpret mode byte.  */
229
132k
  mode = (unsigned char) NEXTBYTE (p);
230
132k
  reg = mode & 0xF;
231
132k
  switch (mode & 0xF0)
232
132k
    {
233
34.6k
    case 0x00:
234
40.0k
    case 0x10:
235
48.6k
    case 0x20:
236
55.5k
    case 0x30: /* Literal mode      $number.  */
237
55.5k
      if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
238
8.21k
  (*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
239
47.2k
      else
240
47.2k
        (*info->fprintf_func) (info->stream, "$0x%x", mode);
241
55.5k
      break;
242
8.92k
    case 0x40: /* Index:      base-addr[Rn] */
243
8.92k
      {
244
8.92k
  unsigned char *q = p0 + 1;
245
8.92k
  unsigned char nextmode = NEXTBYTE (q);
246
8.92k
  if (nextmode < 0x60 || nextmode == 0x8f)
247
    /* Literal, index, register, or immediate is invalid.  In
248
       particular don't recurse into another index mode which
249
       might overflow the_buffer.   */
250
5.24k
    (*info->fprintf_func) (info->stream, "[invalid base]");
251
3.67k
  else
252
3.67k
    p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
253
8.92k
  (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
254
8.92k
      }
255
8.92k
      break;
256
6.04k
    case 0x50: /* Register:     Rn */
257
6.04k
      (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
258
6.04k
      break;
259
7.12k
    case 0x60: /* Register deferred:    (Rn) */
260
7.12k
      (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
261
7.12k
      break;
262
6.75k
    case 0x70: /* Autodecrement:    -(Rn) */
263
6.75k
      (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
264
6.75k
      break;
265
12.1k
    case 0x80: /* Autoincrement:    (Rn)+ */
266
12.1k
      if (reg == 0xF)
267
306
  { /* Immediate?  */
268
306
    int i;
269
270
306
    FETCH_DATA (info, p + size);
271
306
    (*info->fprintf_func) (info->stream, "$0x");
272
306
    if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
273
68
      {
274
68
        int float_word;
275
276
68
        float_word = p[0] | (p[1] << 8);
277
68
        if ((d[1] == 'd' || d[1] == 'f')
278
68
      && (float_word & 0xff80) == 0x8000)
279
0
    {
280
0
      (*info->fprintf_func) (info->stream, "[invalid %c-float]",
281
0
           d[1]);
282
0
    }
283
68
        else
284
68
    {
285
444
            for (i = 0; i < size; i++)
286
376
        (*info->fprintf_func) (info->stream, "%02x",
287
376
                               p[size - i - 1]);
288
68
            (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
289
68
    }
290
68
      }
291
238
    else
292
238
      {
293
734
        for (i = 0; i < size; i++)
294
496
          (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
295
238
      }
296
306
    p += size;
297
306
  }
298
11.8k
      else
299
11.8k
  (*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
300
12.1k
      break;
301
4.18k
    case 0x90: /* Autoincrement deferred: @(Rn)+ */
302
4.18k
      if (reg == 0xF)
303
405
  (*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
304
3.77k
      else
305
3.77k
  (*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
306
4.18k
      break;
307
4.30k
    case 0xB0: /* Displacement byte deferred: *displ(Rn).  */
308
4.30k
      (*info->fprintf_func) (info->stream, "*");
309
      /* Fall through.  */
310
8.38k
    case 0xA0: /* Displacement byte:    displ(Rn).  */
311
8.38k
      if (reg == 0xF)
312
402
  (*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
313
7.98k
      else
314
7.98k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
315
7.98k
             reg_names[reg]);
316
8.38k
      break;
317
4.21k
    case 0xD0: /* Displacement word deferred: *displ(Rn).  */
318
4.21k
      (*info->fprintf_func) (info->stream, "*");
319
      /* Fall through.  */
320
10.0k
    case 0xC0: /* Displacement word:    displ(Rn).  */
321
10.0k
      if (reg == 0xF)
322
435
  (*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
323
9.59k
      else
324
9.59k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
325
9.59k
             reg_names[reg]);
326
10.0k
      break;
327
8.28k
    case 0xF0: /* Displacement long deferred: *displ(Rn).  */
328
8.28k
      (*info->fprintf_func) (info->stream, "*");
329
      /* Fall through.  */
330
13.7k
    case 0xE0: /* Displacement long:    displ(Rn).  */
331
13.7k
      if (reg == 0xF)
332
3.36k
  (*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
333
10.3k
      else
334
10.3k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
335
10.3k
             reg_names[reg]);
336
13.7k
      break;
337
132k
    }
338
339
132k
  return p - p0;
340
132k
}
341
342
/* Returns number of bytes "eaten" by the operand, or return -1 if an
343
   invalid operand was found, or -2 if an opcode tabel error was
344
   found. */
345
346
static int
347
print_insn_arg (const char *d,
348
    unsigned char *p0,
349
    bfd_vma addr, /* PC for this arg to be relative to.  */
350
    disassemble_info *info)
351
139k
{
352
139k
  int arg_len;
353
354
  /* Check validity of addressing length.  */
355
139k
  switch (d[1])
356
139k
    {
357
65.1k
    case 'b' : arg_len = 1; break;
358
9.46k
    case 'd' : arg_len = 8; break;
359
10.4k
    case 'f' : arg_len = 4; break;
360
42
    case 'g' : arg_len = 8; break;
361
21
    case 'h' : arg_len = 16;  break;
362
25.2k
    case 'l' : arg_len = 4; break;
363
8
    case 'o' : arg_len = 16;  break;
364
26.0k
    case 'w' : arg_len = 2; break;
365
2.62k
    case 'q' : arg_len = 8; break;
366
0
    default  : abort ();
367
139k
    }
368
369
  /* Branches have no mode byte.  */
370
139k
  if (d[0] == 'b')
371
9.71k
    {
372
9.71k
      unsigned char *p = p0;
373
374
9.71k
      if (arg_len == 1)
375
8.66k
  (*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
376
1.05k
      else
377
1.05k
  (*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
378
379
9.71k
      return p - p0;
380
9.71k
    }
381
382
129k
  return print_insn_mode (d, arg_len, p0, addr, info);
383
139k
}
384
385
/* Print the vax instruction at address MEMADDR in debugged memory,
386
   on INFO->STREAM.  Returns length of the instruction, in bytes.  */
387
388
int
389
print_insn_vax (bfd_vma memaddr, disassemble_info *info)
390
114k
{
391
114k
  static bool parsed_disassembler_options = false;
392
114k
  const struct vot *votp;
393
114k
  const char *argp;
394
114k
  unsigned char *arg;
395
114k
  struct private priv;
396
114k
  bfd_byte *buffer = priv.the_buffer;
397
398
114k
  info->private_data = & priv;
399
114k
  priv.max_fetched = priv.the_buffer;
400
114k
  priv.insn_start = memaddr;
401
402
114k
  if (! parsed_disassembler_options
403
114k
      && info->disassembler_options != NULL)
404
0
    {
405
0
      parse_disassembler_options (info->disassembler_options);
406
407
      /* To avoid repeated parsing of these options.  */
408
0
      parsed_disassembler_options = true;
409
0
    }
410
411
114k
  if (OPCODES_SIGSETJMP (priv.bailout) != 0)
412
    /* Error return.  */
413
253
    return -1;
414
415
114k
  argp = NULL;
416
  /* Check if the info buffer has more than one byte left since
417
     the last opcode might be a single byte with no argument data.  */
418
114k
  if (info->buffer_length - (memaddr - info->buffer_vma) > 1
419
114k
      && (info->stop_vma == 0 || memaddr < (info->stop_vma - 1)))
420
114k
    {
421
114k
      FETCH_DATA (info, buffer + 2);
422
114k
    }
423
18.4E
  else
424
18.4E
    {
425
18.4E
      FETCH_DATA (info, buffer + 1);
426
18.4E
      buffer[1] = 0;
427
18.4E
    }
428
429
  /* Decode function entry mask.  */
430
114k
  if (is_function_entry (info, memaddr))
431
0
    {
432
0
      int i = 0;
433
0
      int register_mask = buffer[1] << 8 | buffer[0];
434
435
0
      (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
436
0
           register_mask);
437
438
0
      for (i = 15; i >= 0; i--)
439
0
  if (register_mask & (1 << i))
440
0
          (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
441
442
0
      (*info->fprintf_func) (info->stream, " >");
443
444
0
      return 2;
445
0
    }
446
447
  /* Decode PLT entry offset longword.  */
448
114k
  if (is_plt_tail (info, memaddr))
449
0
    {
450
0
      int offset;
451
452
0
      FETCH_DATA (info, buffer + 4);
453
0
      offset = ((unsigned) buffer[3] << 24 | buffer[2] << 16
454
0
    | buffer[1] << 8 | buffer[0]);
455
0
      (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
456
457
0
      return 4;
458
0
    }
459
460
8.19M
  for (votp = &votstrs[0]; votp->name[0]; votp++)
461
8.18M
    {
462
8.18M
      vax_opcodeT opcode = votp->detail.code;
463
464
      /* 2 byte codes match 2 buffer pos. */
465
8.18M
      if ((bfd_byte) opcode == buffer[0]
466
8.18M
    && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
467
110k
  {
468
110k
    argp = votp->detail.args;
469
110k
    break;
470
110k
  }
471
8.18M
    }
472
114k
  if (argp == NULL)
473
4.68k
    {
474
      /* Handle undefined instructions. */
475
4.68k
      (*info->fprintf_func) (info->stream, ".word 0x%x",
476
4.68k
           (buffer[0] << 8) + buffer[1]);
477
4.68k
      return 2;
478
4.68k
    }
479
480
  /* Point at first byte of argument data, and at descriptor for first
481
     argument.  */
482
110k
  arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
483
484
  /* Make sure we have it in mem */
485
110k
  FETCH_DATA (info, arg);
486
487
110k
  (*info->fprintf_func) (info->stream, "%s", votp->name);
488
110k
  if (*argp)
489
55.9k
    (*info->fprintf_func) (info->stream, " ");
490
491
249k
  while (*argp)
492
139k
    {
493
139k
      arg += print_insn_arg (argp, arg, memaddr + (arg - buffer), info);
494
139k
      argp += 2;
495
139k
      if (*argp)
496
83.1k
  (*info->fprintf_func) (info->stream, ",");
497
139k
    }
498
499
110k
  return arg - buffer;
500
114k
}
501