Coverage Report

Created: 2023-08-28 06:23

/src/binutils-gdb/libiberty/hashtab.c
Line
Count
Source (jump to first uncovered line)
1
/* An expandable hash tables datatype.  
2
   Copyright (C) 1999-2023 Free Software Foundation, Inc.
3
   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5
This file is part of the libiberty library.
6
Libiberty is free software; you can redistribute it and/or
7
modify it under the terms of the GNU Library General Public
8
License as published by the Free Software Foundation; either
9
version 2 of the License, or (at your option) any later version.
10
11
Libiberty is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
Library General Public License for more details.
15
16
You should have received a copy of the GNU Library General Public
17
License along with libiberty; see the file COPYING.LIB.  If
18
not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19
Boston, MA 02110-1301, USA.  */
20
21
/* This package implements basic hash table functionality.  It is possible
22
   to search for an entry, create an entry and destroy an entry.
23
24
   Elements in the table are generic pointers.
25
26
   The size of the table is not fixed; if the occupancy of the table
27
   grows too high the hash table will be expanded.
28
29
   The abstract data implementation is based on generalized Algorithm D
30
   from Knuth's book "The art of computer programming".  Hash table is
31
   expanded by creation of new hash table and transferring elements from
32
   the old table to the new table. */
33
34
#ifdef HAVE_CONFIG_H
35
#include "config.h"
36
#endif
37
38
#include <sys/types.h>
39
40
#ifdef HAVE_STDLIB_H
41
#include <stdlib.h>
42
#endif
43
#ifdef HAVE_STRING_H
44
#include <string.h>
45
#endif
46
#ifdef HAVE_MALLOC_H
47
#include <malloc.h>
48
#endif
49
#ifdef HAVE_LIMITS_H
50
#include <limits.h>
51
#endif
52
#ifdef HAVE_INTTYPES_H
53
#include <inttypes.h>
54
#endif
55
#ifdef HAVE_STDINT_H
56
#include <stdint.h>
57
#endif
58
59
#include <stdio.h>
60
61
#include "libiberty.h"
62
#include "ansidecl.h"
63
#include "hashtab.h"
64
65
#ifndef CHAR_BIT
66
#define CHAR_BIT 8
67
#endif
68
69
static unsigned int higher_prime_index (unsigned long);
70
static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
71
static hashval_t htab_mod (hashval_t, htab_t);
72
static hashval_t htab_mod_m2 (hashval_t, htab_t);
73
static hashval_t hash_pointer (const void *);
74
static int eq_pointer (const void *, const void *);
75
static int htab_expand (htab_t);
76
static void **find_empty_slot_for_expand (htab_t, hashval_t);
77
78
/* At some point, we could make these be NULL, and modify the
79
   hash-table routines to handle NULL specially; that would avoid
80
   function-call overhead for the common case of hashing pointers.  */
81
htab_hash htab_hash_pointer = hash_pointer;
82
htab_eq htab_eq_pointer = eq_pointer;
83
84
/* Table of primes and multiplicative inverses.
85
86
   Note that these are not minimally reduced inverses.  Unlike when generating
87
   code to divide by a constant, we want to be able to use the same algorithm
88
   all the time.  All of these inverses (are implied to) have bit 32 set.
89
90
   For the record, here's the function that computed the table; it's a 
91
   vastly simplified version of the function of the same name from gcc.  */
92
93
#if 0
94
unsigned int
95
ceil_log2 (unsigned int x)
96
{
97
  int i;
98
  for (i = 31; i >= 0 ; --i)
99
    if (x > (1u << i))
100
      return i+1;
101
  abort ();
102
}
103
104
unsigned int
105
choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
106
{
107
  unsigned long long mhigh;
108
  double nx;
109
  int lgup, post_shift;
110
  int pow, pow2;
111
  int n = 32, precision = 32;
112
113
  lgup = ceil_log2 (d);
114
  pow = n + lgup;
115
  pow2 = n + lgup - precision;
116
117
  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
118
  mhigh = nx / d;
119
120
  *shiftp = lgup - 1;
121
  *mlp = mhigh;
122
  return mhigh >> 32;
123
}
124
#endif
125
126
struct prime_ent
127
{
128
  hashval_t prime;
129
  hashval_t inv;
130
  hashval_t inv_m2; /* inverse of prime-2 */
131
  hashval_t shift;
132
};
133
134
static struct prime_ent const prime_tab[] = {
135
  {          7, 0x24924925, 0x9999999b, 2 },
136
  {         13, 0x3b13b13c, 0x745d1747, 3 },
137
  {         31, 0x08421085, 0x1a7b9612, 4 },
138
  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
139
  {        127, 0x02040811, 0x0624dd30, 6 },
140
  {        251, 0x05197f7e, 0x073260a5, 7 },
141
  {        509, 0x01824366, 0x02864fc8, 8 },
142
  {       1021, 0x00c0906d, 0x014191f7, 9 },
143
  {       2039, 0x0121456f, 0x0161e69e, 10 },
144
  {       4093, 0x00300902, 0x00501908, 11 },
145
  {       8191, 0x00080041, 0x00180241, 12 },
146
  {      16381, 0x000c0091, 0x00140191, 13 },
147
  {      32749, 0x002605a5, 0x002a06e6, 14 },
148
  {      65521, 0x000f00e2, 0x00110122, 15 },
149
  {     131071, 0x00008001, 0x00018003, 16 },
150
  {     262139, 0x00014002, 0x0001c004, 17 },
151
  {     524287, 0x00002001, 0x00006001, 18 },
152
  {    1048573, 0x00003001, 0x00005001, 19 },
153
  {    2097143, 0x00004801, 0x00005801, 20 },
154
  {    4194301, 0x00000c01, 0x00001401, 21 },
155
  {    8388593, 0x00001e01, 0x00002201, 22 },
156
  {   16777213, 0x00000301, 0x00000501, 23 },
157
  {   33554393, 0x00001381, 0x00001481, 24 },
158
  {   67108859, 0x00000141, 0x000001c1, 25 },
159
  {  134217689, 0x000004e1, 0x00000521, 26 },
160
  {  268435399, 0x00000391, 0x000003b1, 27 },
161
  {  536870909, 0x00000019, 0x00000029, 28 },
162
  { 1073741789, 0x0000008d, 0x00000095, 29 },
163
  { 2147483647, 0x00000003, 0x00000007, 30 },
164
  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
165
  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
166
};
167
168
/* The following function returns an index into the above table of the
169
   nearest prime number which is greater than N, and near a power of two. */
170
171
static unsigned int
172
higher_prime_index (unsigned long n)
173
0
{
174
0
  unsigned int low = 0;
175
0
  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
176
177
0
  while (low != high)
178
0
    {
179
0
      unsigned int mid = low + (high - low) / 2;
180
0
      if (n > prime_tab[mid].prime)
181
0
  low = mid + 1;
182
0
      else
183
0
  high = mid;
184
0
    }
185
186
  /* If we've run out of primes, abort.  */
187
0
  if (n > prime_tab[low].prime)
188
0
    {
189
0
      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
190
0
      abort ();
191
0
    }
192
193
0
  return low;
194
0
}
195
196
/* Returns non-zero if P1 and P2 are equal.  */
197
198
static int
199
eq_pointer (const void *p1, const void *p2)
200
0
{
201
0
  return p1 == p2;
202
0
}
203
204
205
/* The parens around the function names in the next two definitions
206
   are essential in order to prevent macro expansions of the name.
207
   The bodies, however, are expanded as expected, so they are not
208
   recursive definitions.  */
209
210
/* Return the current size of given hash table.  */
211
212
0
#define htab_size(htab)  ((htab)->size)
213
214
size_t
215
(htab_size) (htab_t htab)
216
0
{
217
0
  return htab_size (htab);
218
0
}
219
220
/* Return the current number of elements in given hash table. */
221
222
0
#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
223
224
size_t
225
(htab_elements) (htab_t htab)
226
0
{
227
0
  return htab_elements (htab);
228
0
}
229
230
/* Return X % Y.  */
231
232
static inline hashval_t
233
htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
234
0
{
235
  /* The multiplicative inverses computed above are for 32-bit types, and
236
     requires that we be able to compute a highpart multiply.  */
237
0
#ifdef UNSIGNED_64BIT_TYPE
238
0
  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
239
0
  if (sizeof (hashval_t) * CHAR_BIT <= 32)
240
0
    {
241
0
      hashval_t t1, t2, t3, t4, q, r;
242
243
0
      t1 = ((ull)x * inv) >> 32;
244
0
      t2 = x - t1;
245
0
      t3 = t2 >> 1;
246
0
      t4 = t1 + t3;
247
0
      q  = t4 >> shift;
248
0
      r  = x - (q * y);
249
250
0
      return r;
251
0
    }
252
0
#endif
253
254
  /* Otherwise just use the native division routines.  */
255
0
  return x % y;
256
0
}
257
258
/* Compute the primary hash for HASH given HTAB's current size.  */
259
260
static inline hashval_t
261
htab_mod (hashval_t hash, htab_t htab)
262
0
{
263
0
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
264
0
  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
265
0
}
266
267
/* Compute the secondary hash for HASH given HTAB's current size.  */
268
269
static inline hashval_t
270
htab_mod_m2 (hashval_t hash, htab_t htab)
271
0
{
272
0
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273
0
  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
274
0
}
275
276
/* This function creates table with length slightly longer than given
277
   source length.  Created hash table is initiated as empty (all the
278
   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
279
   created hash table, or NULL if memory allocation fails.  */
280
281
htab_t
282
htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
283
                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
284
0
{
285
0
  return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
286
0
          free_f);
287
0
}
288
289
/* As above, but uses the variants of ALLOC_F and FREE_F which accept
290
   an extra argument.  */
291
292
htab_t
293
htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
294
          htab_del del_f, void *alloc_arg,
295
          htab_alloc_with_arg alloc_f,
296
          htab_free_with_arg free_f)
297
0
{
298
0
  htab_t result;
299
0
  unsigned int size_prime_index;
300
301
0
  size_prime_index = higher_prime_index (size);
302
0
  size = prime_tab[size_prime_index].prime;
303
304
0
  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
305
0
  if (result == NULL)
306
0
    return NULL;
307
0
  result->entries = (void **) (*alloc_f) (alloc_arg, size, sizeof (void *));
308
0
  if (result->entries == NULL)
309
0
    {
310
0
      if (free_f != NULL)
311
0
  (*free_f) (alloc_arg, result);
312
0
      return NULL;
313
0
    }
314
0
  result->size = size;
315
0
  result->size_prime_index = size_prime_index;
316
0
  result->hash_f = hash_f;
317
0
  result->eq_f = eq_f;
318
0
  result->del_f = del_f;
319
0
  result->alloc_arg = alloc_arg;
320
0
  result->alloc_with_arg_f = alloc_f;
321
0
  result->free_with_arg_f = free_f;
322
0
  return result;
323
0
}
324
325
/*
326
327
@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
328
htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
329
htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
330
htab_free @var{free_f})
331
332
This function creates a hash table that uses two different allocators
333
@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
334
and its entries respectively.  This is useful when variables of different
335
types need to be allocated with different allocators.
336
337
The created hash table is slightly larger than @var{size} and it is
338
initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
339
The function returns the created hash table, or @code{NULL} if memory
340
allocation fails.
341
342
@end deftypefn
343
344
*/
345
346
htab_t
347
htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
348
       htab_del del_f, htab_alloc alloc_tab_f,
349
       htab_alloc alloc_f, htab_free free_f)
350
0
{
351
0
  htab_t result;
352
0
  unsigned int size_prime_index;
353
354
0
  size_prime_index = higher_prime_index (size);
355
0
  size = prime_tab[size_prime_index].prime;
356
357
0
  result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
358
0
  if (result == NULL)
359
0
    return NULL;
360
0
  result->entries = (void **) (*alloc_f) (size, sizeof (void *));
361
0
  if (result->entries == NULL)
362
0
    {
363
0
      if (free_f != NULL)
364
0
  (*free_f) (result);
365
0
      return NULL;
366
0
    }
367
0
  result->size = size;
368
0
  result->size_prime_index = size_prime_index;
369
0
  result->hash_f = hash_f;
370
0
  result->eq_f = eq_f;
371
0
  result->del_f = del_f;
372
0
  result->alloc_f = alloc_f;
373
0
  result->free_f = free_f;
374
0
  return result;
375
0
}
376
377
378
/* Update the function pointers and allocation parameter in the htab_t.  */
379
380
void
381
htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
382
                       htab_del del_f, void *alloc_arg,
383
                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
384
0
{
385
0
  htab->hash_f = hash_f;
386
0
  htab->eq_f = eq_f;
387
0
  htab->del_f = del_f;
388
0
  htab->alloc_arg = alloc_arg;
389
0
  htab->alloc_with_arg_f = alloc_f;
390
0
  htab->free_with_arg_f = free_f;
391
0
}
392
393
/* These functions exist solely for backward compatibility.  */
394
395
#undef htab_create
396
htab_t
397
htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
398
0
{
399
0
  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
400
0
}
401
402
htab_t
403
htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
404
0
{
405
0
  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
406
0
}
407
408
/* This function frees all memory allocated for given hash table.
409
   Naturally the hash table must already exist. */
410
411
void
412
htab_delete (htab_t htab)
413
0
{
414
0
  size_t size = htab_size (htab);
415
0
  void **entries = htab->entries;
416
0
  int i;
417
418
0
  if (htab->del_f)
419
0
    for (i = size - 1; i >= 0; i--)
420
0
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
421
0
  (*htab->del_f) (entries[i]);
422
423
0
  if (htab->free_f != NULL)
424
0
    {
425
0
      (*htab->free_f) (entries);
426
0
      (*htab->free_f) (htab);
427
0
    }
428
0
  else if (htab->free_with_arg_f != NULL)
429
0
    {
430
0
      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
431
0
      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
432
0
    }
433
0
}
434
435
/* This function clears all entries in the given hash table.  */
436
437
void
438
htab_empty (htab_t htab)
439
0
{
440
0
  size_t size = htab_size (htab);
441
0
  void **entries = htab->entries;
442
0
  int i;
443
444
0
  if (htab->del_f)
445
0
    for (i = size - 1; i >= 0; i--)
446
0
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
447
0
  (*htab->del_f) (entries[i]);
448
449
  /* Instead of clearing megabyte, downsize the table.  */
450
0
  if (size > 1024*1024 / sizeof (void *))
451
0
    {
452
0
      int nindex = higher_prime_index (1024 / sizeof (void *));
453
0
      int nsize = prime_tab[nindex].prime;
454
455
0
      if (htab->free_f != NULL)
456
0
  (*htab->free_f) (htab->entries);
457
0
      else if (htab->free_with_arg_f != NULL)
458
0
  (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
459
0
      if (htab->alloc_with_arg_f != NULL)
460
0
  htab->entries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
461
0
                   sizeof (void *));
462
0
      else
463
0
  htab->entries = (void **) (*htab->alloc_f) (nsize, sizeof (void *));
464
0
     htab->size = nsize;
465
0
     htab->size_prime_index = nindex;
466
0
    }
467
0
  else
468
0
    memset (entries, 0, size * sizeof (void *));
469
0
  htab->n_deleted = 0;
470
0
  htab->n_elements = 0;
471
0
}
472
473
/* Similar to htab_find_slot, but without several unwanted side effects:
474
    - Does not call htab->eq_f when it finds an existing entry.
475
    - Does not change the count of elements/searches/collisions in the
476
      hash table.
477
   This function also assumes there are no deleted entries in the table.
478
   HASH is the hash value for the element to be inserted.  */
479
480
static void **
481
find_empty_slot_for_expand (htab_t htab, hashval_t hash)
482
0
{
483
0
  hashval_t index = htab_mod (hash, htab);
484
0
  size_t size = htab_size (htab);
485
0
  void **slot = htab->entries + index;
486
0
  hashval_t hash2;
487
488
0
  if (*slot == HTAB_EMPTY_ENTRY)
489
0
    return slot;
490
0
  else if (*slot == HTAB_DELETED_ENTRY)
491
0
    abort ();
492
493
0
  hash2 = htab_mod_m2 (hash, htab);
494
0
  for (;;)
495
0
    {
496
0
      index += hash2;
497
0
      if (index >= size)
498
0
  index -= size;
499
500
0
      slot = htab->entries + index;
501
0
      if (*slot == HTAB_EMPTY_ENTRY)
502
0
  return slot;
503
0
      else if (*slot == HTAB_DELETED_ENTRY)
504
0
  abort ();
505
0
    }
506
0
}
507
508
/* The following function changes size of memory allocated for the
509
   entries and repeatedly inserts the table elements.  The occupancy
510
   of the table after the call will be about 50%.  Naturally the hash
511
   table must already exist.  Remember also that the place of the
512
   table entries is changed.  If memory allocation failures are allowed,
513
   this function will return zero, indicating that the table could not be
514
   expanded.  If all goes well, it will return a non-zero value.  */
515
516
static int
517
htab_expand (htab_t htab)
518
0
{
519
0
  void **oentries;
520
0
  void **olimit;
521
0
  void **p;
522
0
  void **nentries;
523
0
  size_t nsize, osize, elts;
524
0
  unsigned int oindex, nindex;
525
526
0
  oentries = htab->entries;
527
0
  oindex = htab->size_prime_index;
528
0
  osize = htab->size;
529
0
  olimit = oentries + osize;
530
0
  elts = htab_elements (htab);
531
532
  /* Resize only when table after removal of unused elements is either
533
     too full or too empty.  */
534
0
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
535
0
    {
536
0
      nindex = higher_prime_index (elts * 2);
537
0
      nsize = prime_tab[nindex].prime;
538
0
    }
539
0
  else
540
0
    {
541
0
      nindex = oindex;
542
0
      nsize = osize;
543
0
    }
544
545
0
  if (htab->alloc_with_arg_f != NULL)
546
0
    nentries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
547
0
                sizeof (void *));
548
0
  else
549
0
    nentries = (void **) (*htab->alloc_f) (nsize, sizeof (void *));
550
0
  if (nentries == NULL)
551
0
    return 0;
552
0
  htab->entries = nentries;
553
0
  htab->size = nsize;
554
0
  htab->size_prime_index = nindex;
555
0
  htab->n_elements -= htab->n_deleted;
556
0
  htab->n_deleted = 0;
557
558
0
  p = oentries;
559
0
  do
560
0
    {
561
0
      void *x = *p;
562
563
0
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
564
0
  {
565
0
    void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
566
567
0
    *q = x;
568
0
  }
569
570
0
      p++;
571
0
    }
572
0
  while (p < olimit);
573
574
0
  if (htab->free_f != NULL)
575
0
    (*htab->free_f) (oentries);
576
0
  else if (htab->free_with_arg_f != NULL)
577
0
    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
578
0
  return 1;
579
0
}
580
581
/* This function searches for a hash table entry equal to the given
582
   element.  It cannot be used to insert or delete an element.  */
583
584
void *
585
htab_find_with_hash (htab_t htab, const void *element, hashval_t hash)
586
0
{
587
0
  hashval_t index, hash2;
588
0
  size_t size;
589
0
  void *entry;
590
591
0
  htab->searches++;
592
0
  size = htab_size (htab);
593
0
  index = htab_mod (hash, htab);
594
595
0
  entry = htab->entries[index];
596
0
  if (entry == HTAB_EMPTY_ENTRY
597
0
      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
598
0
    return entry;
599
600
0
  hash2 = htab_mod_m2 (hash, htab);
601
0
  for (;;)
602
0
    {
603
0
      htab->collisions++;
604
0
      index += hash2;
605
0
      if (index >= size)
606
0
  index -= size;
607
608
0
      entry = htab->entries[index];
609
0
      if (entry == HTAB_EMPTY_ENTRY
610
0
    || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
611
0
  return entry;
612
0
    }
613
0
}
614
615
/* Like htab_find_slot_with_hash, but compute the hash value from the
616
   element.  */
617
618
void *
619
htab_find (htab_t htab, const void *element)
620
0
{
621
0
  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
622
0
}
623
624
/* This function searches for a hash table slot containing an entry
625
   equal to the given element.  To delete an entry, call this with
626
   insert=NO_INSERT, then call htab_clear_slot on the slot returned
627
   (possibly after doing some checks).  To insert an entry, call this
628
   with insert=INSERT, then write the value you want into the returned
629
   slot.  When inserting an entry, NULL may be returned if memory
630
   allocation fails.  */
631
632
void **
633
htab_find_slot_with_hash (htab_t htab, const void *element,
634
                          hashval_t hash, enum insert_option insert)
635
0
{
636
0
  void **first_deleted_slot;
637
0
  hashval_t index, hash2;
638
0
  size_t size;
639
0
  void *entry;
640
641
0
  size = htab_size (htab);
642
0
  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
643
0
    {
644
0
      if (htab_expand (htab) == 0)
645
0
  return NULL;
646
0
      size = htab_size (htab);
647
0
    }
648
649
0
  index = htab_mod (hash, htab);
650
651
0
  htab->searches++;
652
0
  first_deleted_slot = NULL;
653
654
0
  entry = htab->entries[index];
655
0
  if (entry == HTAB_EMPTY_ENTRY)
656
0
    goto empty_entry;
657
0
  else if (entry == HTAB_DELETED_ENTRY)
658
0
    first_deleted_slot = &htab->entries[index];
659
0
  else if ((*htab->eq_f) (entry, element))
660
0
    return &htab->entries[index];
661
      
662
0
  hash2 = htab_mod_m2 (hash, htab);
663
0
  for (;;)
664
0
    {
665
0
      htab->collisions++;
666
0
      index += hash2;
667
0
      if (index >= size)
668
0
  index -= size;
669
      
670
0
      entry = htab->entries[index];
671
0
      if (entry == HTAB_EMPTY_ENTRY)
672
0
  goto empty_entry;
673
0
      else if (entry == HTAB_DELETED_ENTRY)
674
0
  {
675
0
    if (!first_deleted_slot)
676
0
      first_deleted_slot = &htab->entries[index];
677
0
  }
678
0
      else if ((*htab->eq_f) (entry, element))
679
0
  return &htab->entries[index];
680
0
    }
681
682
0
 empty_entry:
683
0
  if (insert == NO_INSERT)
684
0
    return NULL;
685
686
0
  if (first_deleted_slot)
687
0
    {
688
0
      htab->n_deleted--;
689
0
      *first_deleted_slot = HTAB_EMPTY_ENTRY;
690
0
      return first_deleted_slot;
691
0
    }
692
693
0
  htab->n_elements++;
694
0
  return &htab->entries[index];
695
0
}
696
697
/* Like htab_find_slot_with_hash, but compute the hash value from the
698
   element.  */
699
700
void **
701
htab_find_slot (htab_t htab, const void *element, enum insert_option insert)
702
0
{
703
0
  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
704
0
           insert);
705
0
}
706
707
/* This function deletes an element with the given value from hash
708
   table (the hash is computed from the element).  If there is no matching
709
   element in the hash table, this function does nothing.  */
710
711
void
712
htab_remove_elt (htab_t htab, const void *element)
713
0
{
714
0
  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
715
0
}
716
717
718
/* This function deletes an element with the given value from hash
719
   table.  If there is no matching element in the hash table, this
720
   function does nothing.  */
721
722
void
723
htab_remove_elt_with_hash (htab_t htab, const void *element, hashval_t hash)
724
0
{
725
0
  void **slot;
726
727
0
  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
728
0
  if (slot == NULL)
729
0
    return;
730
731
0
  if (htab->del_f)
732
0
    (*htab->del_f) (*slot);
733
734
0
  *slot = HTAB_DELETED_ENTRY;
735
0
  htab->n_deleted++;
736
0
}
737
738
/* This function clears a specified slot in a hash table.  It is
739
   useful when you've already done the lookup and don't want to do it
740
   again.  */
741
742
void
743
htab_clear_slot (htab_t htab, void **slot)
744
0
{
745
0
  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
746
0
      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
747
0
    abort ();
748
749
0
  if (htab->del_f)
750
0
    (*htab->del_f) (*slot);
751
752
0
  *slot = HTAB_DELETED_ENTRY;
753
0
  htab->n_deleted++;
754
0
}
755
756
/* This function scans over the entire hash table calling
757
   CALLBACK for each live entry.  If CALLBACK returns false,
758
   the iteration stops.  INFO is passed as CALLBACK's second
759
   argument.  */
760
761
void
762
htab_traverse_noresize (htab_t htab, htab_trav callback, void *info)
763
0
{
764
0
  void **slot;
765
0
  void **limit;
766
  
767
0
  slot = htab->entries;
768
0
  limit = slot + htab_size (htab);
769
770
0
  do
771
0
    {
772
0
      void *x = *slot;
773
774
0
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
775
0
  if (!(*callback) (slot, info))
776
0
    break;
777
0
    }
778
0
  while (++slot < limit);
779
0
}
780
781
/* Like htab_traverse_noresize, but does resize the table when it is
782
   too empty to improve effectivity of subsequent calls.  */
783
784
void
785
htab_traverse (htab_t htab, htab_trav callback, void *info)
786
0
{
787
0
  size_t size = htab_size (htab);
788
0
  if (htab_elements (htab) * 8 < size && size > 32)
789
0
    htab_expand (htab);
790
791
0
  htab_traverse_noresize (htab, callback, info);
792
0
}
793
794
/* Return the fraction of fixed collisions during all work with given
795
   hash table. */
796
797
double
798
htab_collisions (htab_t htab)
799
0
{
800
0
  if (htab->searches == 0)
801
0
    return 0.0;
802
803
0
  return (double) htab->collisions / (double) htab->searches;
804
0
}
805
806
/* Hash P as a null-terminated string.
807
808
   Copied from gcc/hashtable.c.  Zack had the following to say with respect
809
   to applicability, though note that unlike hashtable.c, this hash table
810
   implementation re-hashes rather than chain buckets.
811
812
   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
813
   From: Zack Weinberg <zackw@panix.com>
814
   Date: Fri, 17 Aug 2001 02:15:56 -0400
815
816
   I got it by extracting all the identifiers from all the source code
817
   I had lying around in mid-1999, and testing many recurrences of
818
   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
819
   prime numbers or the appropriate identity.  This was the best one.
820
   I don't remember exactly what constituted "best", except I was
821
   looking at bucket-length distributions mostly.
822
   
823
   So it should be very good at hashing identifiers, but might not be
824
   as good at arbitrary strings.
825
   
826
   I'll add that it thoroughly trounces the hash functions recommended
827
   for this use at http://burtleburtle.net/bob/hash/index.html, both
828
   on speed and bucket distribution.  I haven't tried it against the
829
   function they just started using for Perl's hashes.  */
830
831
hashval_t
832
htab_hash_string (const void *p)
833
0
{
834
0
  const unsigned char *str = (const unsigned char *) p;
835
0
  hashval_t r = 0;
836
0
  unsigned char c;
837
838
0
  while ((c = *str++) != 0)
839
0
    r = r * 67 + c - 113;
840
841
0
  return r;
842
0
}
843
844
/* An equality function for null-terminated strings.  */
845
int
846
htab_eq_string (const void *a, const void *b)
847
0
{
848
0
  return strcmp ((const char *) a, (const char *) b) == 0;
849
0
}
850
851
/* DERIVED FROM:
852
--------------------------------------------------------------------
853
lookup2.c, by Bob Jenkins, December 1996, Public Domain.
854
hash(), hash2(), hash3, and mix() are externally useful functions.
855
Routines to test the hash are included if SELF_TEST is defined.
856
You can use this free for any purpose.  It has no warranty.
857
--------------------------------------------------------------------
858
*/
859
860
/*
861
--------------------------------------------------------------------
862
mix -- mix 3 32-bit values reversibly.
863
For every delta with one or two bit set, and the deltas of all three
864
  high bits or all three low bits, whether the original value of a,b,c
865
  is almost all zero or is uniformly distributed,
866
* If mix() is run forward or backward, at least 32 bits in a,b,c
867
  have at least 1/4 probability of changing.
868
* If mix() is run forward, every bit of c will change between 1/3 and
869
  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
870
mix() was built out of 36 single-cycle latency instructions in a 
871
  structure that could supported 2x parallelism, like so:
872
      a -= b; 
873
      a -= c; x = (c>>13);
874
      b -= c; a ^= x;
875
      b -= a; x = (a<<8);
876
      c -= a; b ^= x;
877
      c -= b; x = (b>>13);
878
      ...
879
  Unfortunately, superscalar Pentiums and Sparcs can't take advantage 
880
  of that parallelism.  They've also turned some of those single-cycle
881
  latency instructions into multi-cycle latency instructions.  Still,
882
  this is the fastest good hash I could find.  There were about 2^^68
883
  to choose from.  I only looked at a billion or so.
884
--------------------------------------------------------------------
885
*/
886
/* same, but slower, works on systems that might have 8 byte hashval_t's */
887
0
#define mix(a,b,c) \
888
0
{ \
889
0
  a -= b; a -= c; a ^= (c>>13); \
890
0
  b -= c; b -= a; b ^= (a<< 8); \
891
0
  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
892
0
  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
893
0
  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
894
0
  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
895
0
  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
896
0
  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
897
0
  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
898
0
}
899
900
/*
901
--------------------------------------------------------------------
902
hash() -- hash a variable-length key into a 32-bit value
903
  k     : the key (the unaligned variable-length array of bytes)
904
  len   : the length of the key, counting by bytes
905
  level : can be any 4-byte value
906
Returns a 32-bit value.  Every bit of the key affects every bit of
907
the return value.  Every 1-bit and 2-bit delta achieves avalanche.
908
About 36+6len instructions.
909
910
The best hash table sizes are powers of 2.  There is no need to do
911
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
912
use a bitmask.  For example, if you need only 10 bits, do
913
  h = (h & hashmask(10));
914
In which case, the hash table should have hashsize(10) elements.
915
916
If you are hashing n strings (ub1 **)k, do it like this:
917
  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
918
919
By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
920
code any way you wish, private, educational, or commercial.  It's free.
921
922
See http://burtleburtle.net/bob/hash/evahash.html
923
Use for hash table lookup, or anything where one collision in 2^32 is
924
acceptable.  Do NOT use for cryptographic purposes.
925
--------------------------------------------------------------------
926
*/
927
928
hashval_t
929
iterative_hash (const void *k_in /* the key */,
930
                register size_t  length /* the length of the key */,
931
                register hashval_t initval /* the previous hash, or
932
                                              an arbitrary value */)
933
0
{
934
0
  register const unsigned char *k = (const unsigned char *)k_in;
935
0
  register hashval_t a,b,c,len;
936
937
  /* Set up the internal state */
938
0
  len = length;
939
0
  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
940
0
  c = initval;           /* the previous hash value */
941
942
  /*---------------------------------------- handle most of the key */
943
0
#ifndef WORDS_BIGENDIAN
944
  /* On a little-endian machine, if the data is 4-byte aligned we can hash
945
     by word for better speed.  This gives nondeterministic results on
946
     big-endian machines.  */
947
0
  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
948
0
    while (len >= 12)    /* aligned */
949
0
      {
950
0
  a += *(hashval_t *)(k+0);
951
0
  b += *(hashval_t *)(k+4);
952
0
  c += *(hashval_t *)(k+8);
953
0
  mix(a,b,c);
954
0
  k += 12; len -= 12;
955
0
      }
956
0
  else /* unaligned */
957
0
#endif
958
0
    while (len >= 12)
959
0
      {
960
0
  a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
961
0
  b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
962
0
  c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
963
0
  mix(a,b,c);
964
0
  k += 12; len -= 12;
965
0
      }
966
967
  /*------------------------------------- handle the last 11 bytes */
968
0
  c += length;
969
0
  switch(len)              /* all the case statements fall through */
970
0
    {
971
0
    case 11: c+=((hashval_t)k[10]<<24); /* fall through */
972
0
    case 10: c+=((hashval_t)k[9]<<16);  /* fall through */
973
0
    case 9 : c+=((hashval_t)k[8]<<8); /* fall through */
974
      /* the first byte of c is reserved for the length */
975
0
    case 8 : b+=((hashval_t)k[7]<<24);  /* fall through */
976
0
    case 7 : b+=((hashval_t)k[6]<<16);  /* fall through */
977
0
    case 6 : b+=((hashval_t)k[5]<<8); /* fall through */
978
0
    case 5 : b+=k[4];     /* fall through */
979
0
    case 4 : a+=((hashval_t)k[3]<<24);  /* fall through */
980
0
    case 3 : a+=((hashval_t)k[2]<<16);  /* fall through */
981
0
    case 2 : a+=((hashval_t)k[1]<<8); /* fall through */
982
0
    case 1 : a+=k[0];
983
      /* case 0: nothing left to add */
984
0
    }
985
0
  mix(a,b,c);
986
  /*-------------------------------------------- report the result */
987
0
  return c;
988
0
}
989
990
/* Returns a hash code for pointer P. Simplified version of evahash */
991
992
static hashval_t
993
hash_pointer (const void *p)
994
0
{
995
0
  intptr_t v = (intptr_t) p;
996
0
  unsigned a, b, c;
997
998
0
  a = b = 0x9e3779b9;
999
0
  a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
1000
0
  b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
1001
0
  c = 0x42135234;
1002
0
  mix (a, b, c);
1003
0
  return c;
1004
0
}