/src/binutils-gdb/bfd/elfxx-x86.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* x86 specific support for ELF |
2 | | Copyright (C) 2017-2023 Free Software Foundation, Inc. |
3 | | |
4 | | This file is part of BFD, the Binary File Descriptor library. |
5 | | |
6 | | This program is free software; you can redistribute it and/or modify |
7 | | it under the terms of the GNU General Public License as published by |
8 | | the Free Software Foundation; either version 3 of the License, or |
9 | | (at your option) any later version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, |
12 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; if not, write to the Free Software |
18 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
19 | | MA 02110-1301, USA. */ |
20 | | |
21 | | #include "elfxx-x86.h" |
22 | | #include "elf-vxworks.h" |
23 | | #include "objalloc.h" |
24 | | |
25 | | /* The name of the dynamic interpreter. This is put in the .interp |
26 | | section. */ |
27 | | |
28 | 0 | #define ELF32_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
29 | 0 | #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1" |
30 | 0 | #define ELFX32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1" |
31 | | |
32 | | bool |
33 | | _bfd_x86_elf_mkobject (bfd *abfd) |
34 | 0 | { |
35 | 0 | return bfd_elf_allocate_object (abfd, |
36 | 0 | sizeof (struct elf_x86_obj_tdata), |
37 | 0 | get_elf_backend_data (abfd)->target_id); |
38 | 0 | } |
39 | | |
40 | | /* _TLS_MODULE_BASE_ needs to be treated especially when linking |
41 | | executables. Rather than setting it to the beginning of the TLS |
42 | | section, we have to set it to the end. This function may be called |
43 | | multiple times, it is idempotent. */ |
44 | | |
45 | | void |
46 | | _bfd_x86_elf_set_tls_module_base (struct bfd_link_info *info) |
47 | 0 | { |
48 | 0 | struct elf_x86_link_hash_table *htab; |
49 | 0 | struct bfd_link_hash_entry *base; |
50 | 0 | const struct elf_backend_data *bed; |
51 | |
|
52 | 0 | if (!bfd_link_executable (info)) |
53 | 0 | return; |
54 | | |
55 | 0 | bed = get_elf_backend_data (info->output_bfd); |
56 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
57 | 0 | if (htab == NULL) |
58 | 0 | return; |
59 | | |
60 | 0 | base = htab->tls_module_base; |
61 | 0 | if (base == NULL) |
62 | 0 | return; |
63 | | |
64 | 0 | base->u.def.value = htab->elf.tls_size; |
65 | 0 | } |
66 | | |
67 | | /* Return the base VMA address which should be subtracted from real addresses |
68 | | when resolving @dtpoff relocation. |
69 | | This is PT_TLS segment p_vaddr. */ |
70 | | |
71 | | bfd_vma |
72 | | _bfd_x86_elf_dtpoff_base (struct bfd_link_info *info) |
73 | 0 | { |
74 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
75 | 0 | if (elf_hash_table (info)->tls_sec == NULL) |
76 | 0 | return 0; |
77 | 0 | return elf_hash_table (info)->tls_sec->vma; |
78 | 0 | } |
79 | | |
80 | | /* Allocate space in .plt, .got and associated reloc sections for |
81 | | dynamic relocs. */ |
82 | | |
83 | | static bool |
84 | | elf_x86_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
85 | 0 | { |
86 | 0 | struct bfd_link_info *info; |
87 | 0 | struct elf_x86_link_hash_table *htab; |
88 | 0 | struct elf_x86_link_hash_entry *eh; |
89 | 0 | struct elf_dyn_relocs *p; |
90 | 0 | unsigned int plt_entry_size; |
91 | 0 | bool resolved_to_zero; |
92 | 0 | const struct elf_backend_data *bed; |
93 | |
|
94 | 0 | if (h->root.type == bfd_link_hash_indirect) |
95 | 0 | return true; |
96 | | |
97 | 0 | eh = (struct elf_x86_link_hash_entry *) h; |
98 | |
|
99 | 0 | info = (struct bfd_link_info *) inf; |
100 | 0 | bed = get_elf_backend_data (info->output_bfd); |
101 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
102 | 0 | if (htab == NULL) |
103 | 0 | return false; |
104 | | |
105 | 0 | plt_entry_size = htab->plt.plt_entry_size; |
106 | |
|
107 | 0 | resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh); |
108 | | |
109 | | /* We can't use the GOT PLT if pointer equality is needed since |
110 | | finish_dynamic_symbol won't clear symbol value and the dynamic |
111 | | linker won't update the GOT slot. We will get into an infinite |
112 | | loop at run-time. */ |
113 | 0 | if (htab->plt_got != NULL |
114 | 0 | && h->type != STT_GNU_IFUNC |
115 | 0 | && !h->pointer_equality_needed |
116 | 0 | && h->plt.refcount > 0 |
117 | 0 | && h->got.refcount > 0) |
118 | 0 | { |
119 | | /* Don't use the regular PLT if there are both GOT and GOTPLT |
120 | | reloctions. */ |
121 | 0 | h->plt.offset = (bfd_vma) -1; |
122 | | |
123 | | /* Use the GOT PLT. */ |
124 | 0 | eh->plt_got.refcount = 1; |
125 | 0 | } |
126 | | |
127 | | /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
128 | | here if it is defined and referenced in a non-shared object. */ |
129 | 0 | if (h->type == STT_GNU_IFUNC |
130 | 0 | && h->def_regular) |
131 | 0 | { |
132 | | /* GOTOFF relocation needs PLT. */ |
133 | 0 | if (eh->gotoff_ref) |
134 | 0 | h->plt.refcount = 1; |
135 | |
|
136 | 0 | if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs, |
137 | 0 | plt_entry_size, |
138 | 0 | (htab->plt.has_plt0 |
139 | 0 | * plt_entry_size), |
140 | 0 | htab->got_entry_size, |
141 | 0 | true)) |
142 | 0 | { |
143 | 0 | asection *s = htab->plt_second; |
144 | 0 | if (h->plt.offset != (bfd_vma) -1 && s != NULL) |
145 | 0 | { |
146 | | /* Use the second PLT section if it is created. */ |
147 | 0 | eh->plt_second.offset = s->size; |
148 | | |
149 | | /* Make room for this entry in the second PLT section. */ |
150 | 0 | s->size += htab->non_lazy_plt->plt_entry_size; |
151 | 0 | } |
152 | |
|
153 | 0 | return true; |
154 | 0 | } |
155 | 0 | else |
156 | 0 | return false; |
157 | 0 | } |
158 | | /* Don't create the PLT entry if there are only function pointer |
159 | | relocations which can be resolved at run-time. */ |
160 | 0 | else if (htab->elf.dynamic_sections_created |
161 | 0 | && (h->plt.refcount > 0 |
162 | 0 | || eh->plt_got.refcount > 0)) |
163 | 0 | { |
164 | 0 | bool use_plt_got = eh->plt_got.refcount > 0; |
165 | | |
166 | | /* Make sure this symbol is output as a dynamic symbol. |
167 | | Undefined weak syms won't yet be marked as dynamic. */ |
168 | 0 | if (h->dynindx == -1 |
169 | 0 | && !h->forced_local |
170 | 0 | && !resolved_to_zero |
171 | 0 | && h->root.type == bfd_link_hash_undefweak) |
172 | 0 | { |
173 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
174 | 0 | return false; |
175 | 0 | } |
176 | | |
177 | 0 | if (bfd_link_pic (info) |
178 | 0 | || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
179 | 0 | { |
180 | 0 | asection *s = htab->elf.splt; |
181 | 0 | asection *second_s = htab->plt_second; |
182 | 0 | asection *got_s = htab->plt_got; |
183 | 0 | bool use_plt; |
184 | | |
185 | | /* If this is the first .plt entry, make room for the special |
186 | | first entry. The .plt section is used by prelink to undo |
187 | | prelinking for dynamic relocations. */ |
188 | 0 | if (s->size == 0) |
189 | 0 | s->size = htab->plt.has_plt0 * plt_entry_size; |
190 | |
|
191 | 0 | if (use_plt_got) |
192 | 0 | eh->plt_got.offset = got_s->size; |
193 | 0 | else |
194 | 0 | { |
195 | 0 | h->plt.offset = s->size; |
196 | 0 | if (second_s) |
197 | 0 | eh->plt_second.offset = second_s->size; |
198 | 0 | } |
199 | | |
200 | | /* If this symbol is not defined in a regular file, and we are |
201 | | generating PDE, then set the symbol to this location in the |
202 | | .plt. This is required to make function pointers compare |
203 | | as equal between PDE and the shared library. |
204 | | |
205 | | NB: If PLT is PC-relative, we can use the .plt in PIE for |
206 | | function address. */ |
207 | 0 | if (h->def_regular) |
208 | 0 | use_plt = false; |
209 | 0 | else if (htab->pcrel_plt) |
210 | 0 | use_plt = ! bfd_link_dll (info); |
211 | 0 | else |
212 | 0 | use_plt = bfd_link_pde (info); |
213 | 0 | if (use_plt) |
214 | 0 | { |
215 | 0 | if (use_plt_got) |
216 | 0 | { |
217 | | /* We need to make a call to the entry of the GOT PLT |
218 | | instead of regular PLT entry. */ |
219 | 0 | h->root.u.def.section = got_s; |
220 | 0 | h->root.u.def.value = eh->plt_got.offset; |
221 | 0 | } |
222 | 0 | else |
223 | 0 | { |
224 | 0 | if (second_s) |
225 | 0 | { |
226 | | /* We need to make a call to the entry of the |
227 | | second PLT instead of regular PLT entry. */ |
228 | 0 | h->root.u.def.section = second_s; |
229 | 0 | h->root.u.def.value = eh->plt_second.offset; |
230 | 0 | } |
231 | 0 | else |
232 | 0 | { |
233 | 0 | h->root.u.def.section = s; |
234 | 0 | h->root.u.def.value = h->plt.offset; |
235 | 0 | } |
236 | 0 | } |
237 | 0 | } |
238 | | |
239 | | /* Make room for this entry. */ |
240 | 0 | if (use_plt_got) |
241 | 0 | got_s->size += htab->non_lazy_plt->plt_entry_size; |
242 | 0 | else |
243 | 0 | { |
244 | 0 | s->size += plt_entry_size; |
245 | 0 | if (second_s) |
246 | 0 | second_s->size += htab->non_lazy_plt->plt_entry_size; |
247 | | |
248 | | /* We also need to make an entry in the .got.plt section, |
249 | | which will be placed in the .got section by the linker |
250 | | script. */ |
251 | 0 | htab->elf.sgotplt->size += htab->got_entry_size; |
252 | | |
253 | | /* There should be no PLT relocation against resolved |
254 | | undefined weak symbol in executable. */ |
255 | 0 | if (!resolved_to_zero) |
256 | 0 | { |
257 | | /* We also need to make an entry in the .rel.plt |
258 | | section. */ |
259 | 0 | htab->elf.srelplt->size += htab->sizeof_reloc; |
260 | 0 | htab->elf.srelplt->reloc_count++; |
261 | 0 | } |
262 | 0 | } |
263 | |
|
264 | 0 | if (htab->elf.target_os == is_vxworks && !bfd_link_pic (info)) |
265 | 0 | { |
266 | | /* VxWorks has a second set of relocations for each PLT entry |
267 | | in executables. They go in a separate relocation section, |
268 | | which is processed by the kernel loader. */ |
269 | | |
270 | | /* There are two relocations for the initial PLT entry: an |
271 | | R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an |
272 | | R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */ |
273 | |
|
274 | 0 | asection *srelplt2 = htab->srelplt2; |
275 | 0 | if (h->plt.offset == plt_entry_size) |
276 | 0 | srelplt2->size += (htab->sizeof_reloc * 2); |
277 | | |
278 | | /* There are two extra relocations for each subsequent PLT entry: |
279 | | an R_386_32 relocation for the GOT entry, and an R_386_32 |
280 | | relocation for the PLT entry. */ |
281 | |
|
282 | 0 | srelplt2->size += (htab->sizeof_reloc * 2); |
283 | 0 | } |
284 | 0 | } |
285 | 0 | else |
286 | 0 | { |
287 | 0 | eh->plt_got.offset = (bfd_vma) -1; |
288 | 0 | h->plt.offset = (bfd_vma) -1; |
289 | 0 | h->needs_plt = 0; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | else |
293 | 0 | { |
294 | 0 | eh->plt_got.offset = (bfd_vma) -1; |
295 | 0 | h->plt.offset = (bfd_vma) -1; |
296 | 0 | h->needs_plt = 0; |
297 | 0 | } |
298 | | |
299 | 0 | eh->tlsdesc_got = (bfd_vma) -1; |
300 | | |
301 | | /* For i386, if R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the |
302 | | binary, make it a R_386_TLS_LE_32 requiring no TLS entry. For |
303 | | x86-64, if R_X86_64_GOTTPOFF symbol is now local to the binary, |
304 | | make it a R_X86_64_TPOFF32 requiring no GOT entry. */ |
305 | 0 | if (h->got.refcount > 0 |
306 | 0 | && bfd_link_executable (info) |
307 | 0 | && h->dynindx == -1 |
308 | 0 | && (elf_x86_hash_entry (h)->tls_type & GOT_TLS_IE)) |
309 | 0 | h->got.offset = (bfd_vma) -1; |
310 | 0 | else if (h->got.refcount > 0) |
311 | 0 | { |
312 | 0 | asection *s; |
313 | 0 | bool dyn; |
314 | 0 | int tls_type = elf_x86_hash_entry (h)->tls_type; |
315 | | |
316 | | /* Make sure this symbol is output as a dynamic symbol. |
317 | | Undefined weak syms won't yet be marked as dynamic. */ |
318 | 0 | if (h->dynindx == -1 |
319 | 0 | && !h->forced_local |
320 | 0 | && !resolved_to_zero |
321 | 0 | && h->root.type == bfd_link_hash_undefweak) |
322 | 0 | { |
323 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
324 | 0 | return false; |
325 | 0 | } |
326 | | |
327 | 0 | s = htab->elf.sgot; |
328 | 0 | if (GOT_TLS_GDESC_P (tls_type)) |
329 | 0 | { |
330 | 0 | eh->tlsdesc_got = htab->elf.sgotplt->size |
331 | 0 | - elf_x86_compute_jump_table_size (htab); |
332 | 0 | htab->elf.sgotplt->size += 2 * htab->got_entry_size; |
333 | 0 | h->got.offset = (bfd_vma) -2; |
334 | 0 | } |
335 | 0 | if (! GOT_TLS_GDESC_P (tls_type) |
336 | 0 | || GOT_TLS_GD_P (tls_type)) |
337 | 0 | { |
338 | 0 | h->got.offset = s->size; |
339 | 0 | s->size += htab->got_entry_size; |
340 | | /* R_386_TLS_GD and R_X86_64_TLSGD need 2 consecutive GOT |
341 | | slots. */ |
342 | 0 | if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH) |
343 | 0 | s->size += htab->got_entry_size; |
344 | 0 | } |
345 | 0 | dyn = htab->elf.dynamic_sections_created; |
346 | | /* R_386_TLS_IE_32 needs one dynamic relocation, |
347 | | R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation, |
348 | | (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we |
349 | | need two), R_386_TLS_GD and R_X86_64_TLSGD need one if local |
350 | | symbol and two if global. No dynamic relocation against |
351 | | resolved undefined weak symbol in executable. No dynamic |
352 | | relocation against non-preemptible absolute symbol. */ |
353 | 0 | if (tls_type == GOT_TLS_IE_BOTH) |
354 | 0 | htab->elf.srelgot->size += 2 * htab->sizeof_reloc; |
355 | 0 | else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) |
356 | 0 | || (tls_type & GOT_TLS_IE)) |
357 | 0 | htab->elf.srelgot->size += htab->sizeof_reloc; |
358 | 0 | else if (GOT_TLS_GD_P (tls_type)) |
359 | 0 | htab->elf.srelgot->size += 2 * htab->sizeof_reloc; |
360 | 0 | else if (! GOT_TLS_GDESC_P (tls_type) |
361 | 0 | && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
362 | 0 | && !resolved_to_zero) |
363 | 0 | || h->root.type != bfd_link_hash_undefweak) |
364 | 0 | && ((bfd_link_pic (info) |
365 | 0 | && !(h->dynindx == -1 |
366 | 0 | && ABS_SYMBOL_P (h))) |
367 | 0 | || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
368 | 0 | htab->elf.srelgot->size += htab->sizeof_reloc; |
369 | 0 | if (GOT_TLS_GDESC_P (tls_type)) |
370 | 0 | { |
371 | 0 | htab->elf.srelplt->size += htab->sizeof_reloc; |
372 | 0 | if (bed->target_id == X86_64_ELF_DATA) |
373 | 0 | htab->elf.tlsdesc_plt = (bfd_vma) -1; |
374 | 0 | } |
375 | 0 | } |
376 | 0 | else |
377 | 0 | h->got.offset = (bfd_vma) -1; |
378 | | |
379 | 0 | if (h->dyn_relocs == NULL) |
380 | 0 | return true; |
381 | | |
382 | | /* In the shared -Bsymbolic case, discard space allocated for |
383 | | dynamic pc-relative relocs against symbols which turn out to be |
384 | | defined in regular objects. For the normal shared case, discard |
385 | | space for pc-relative relocs that have become local due to symbol |
386 | | visibility changes. */ |
387 | | |
388 | 0 | if (bfd_link_pic (info)) |
389 | 0 | { |
390 | | /* Relocs that use pc_count are those that appear on a call |
391 | | insn, or certain REL relocs that can generated via assembly. |
392 | | We want calls to protected symbols to resolve directly to the |
393 | | function rather than going via the plt. If people want |
394 | | function pointer comparisons to work as expected then they |
395 | | should avoid writing weird assembly. */ |
396 | 0 | if (SYMBOL_CALLS_LOCAL (info, h)) |
397 | 0 | { |
398 | 0 | struct elf_dyn_relocs **pp; |
399 | |
|
400 | 0 | for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
401 | 0 | { |
402 | 0 | p->count -= p->pc_count; |
403 | 0 | p->pc_count = 0; |
404 | 0 | if (p->count == 0) |
405 | 0 | *pp = p->next; |
406 | 0 | else |
407 | 0 | pp = &p->next; |
408 | 0 | } |
409 | 0 | } |
410 | |
|
411 | 0 | if (htab->elf.target_os == is_vxworks) |
412 | 0 | { |
413 | 0 | struct elf_dyn_relocs **pp; |
414 | 0 | for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
415 | 0 | { |
416 | 0 | if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) |
417 | 0 | *pp = p->next; |
418 | 0 | else |
419 | 0 | pp = &p->next; |
420 | 0 | } |
421 | 0 | } |
422 | | |
423 | | /* Also discard relocs on undefined weak syms with non-default |
424 | | visibility or in PIE. */ |
425 | 0 | if (h->dyn_relocs != NULL) |
426 | 0 | { |
427 | 0 | if (h->root.type == bfd_link_hash_undefweak) |
428 | 0 | { |
429 | | /* Undefined weak symbol is never bound locally in shared |
430 | | library. */ |
431 | 0 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
432 | 0 | || resolved_to_zero) |
433 | 0 | { |
434 | 0 | if (bed->target_id == I386_ELF_DATA |
435 | 0 | && h->non_got_ref) |
436 | 0 | { |
437 | | /* Keep dynamic non-GOT/non-PLT relocation so |
438 | | that we can branch to 0 without PLT. */ |
439 | 0 | struct elf_dyn_relocs **pp; |
440 | |
|
441 | 0 | for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
442 | 0 | if (p->pc_count == 0) |
443 | 0 | *pp = p->next; |
444 | 0 | else |
445 | 0 | { |
446 | | /* Remove non-R_386_PC32 relocation. */ |
447 | 0 | p->count = p->pc_count; |
448 | 0 | pp = &p->next; |
449 | 0 | } |
450 | | |
451 | | /* Make sure undefined weak symbols are output |
452 | | as dynamic symbols in PIEs for dynamic non-GOT |
453 | | non-PLT reloations. */ |
454 | 0 | if (h->dyn_relocs != NULL |
455 | 0 | && !bfd_elf_link_record_dynamic_symbol (info, h)) |
456 | 0 | return false; |
457 | 0 | } |
458 | 0 | else |
459 | 0 | h->dyn_relocs = NULL; |
460 | 0 | } |
461 | 0 | else if (h->dynindx == -1 |
462 | 0 | && !h->forced_local |
463 | 0 | && !bfd_elf_link_record_dynamic_symbol (info, h)) |
464 | 0 | return false; |
465 | 0 | } |
466 | 0 | else if (bfd_link_executable (info) |
467 | 0 | && (h->needs_copy || eh->needs_copy) |
468 | 0 | && h->def_dynamic |
469 | 0 | && !h->def_regular) |
470 | 0 | { |
471 | | /* NB: needs_copy is set only for x86-64. For PIE, |
472 | | discard space for pc-relative relocs against symbols |
473 | | which turn out to need copy relocs. */ |
474 | 0 | struct elf_dyn_relocs **pp; |
475 | |
|
476 | 0 | for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
477 | 0 | { |
478 | 0 | if (p->pc_count != 0) |
479 | 0 | *pp = p->next; |
480 | 0 | else |
481 | 0 | pp = &p->next; |
482 | 0 | } |
483 | 0 | } |
484 | 0 | } |
485 | 0 | } |
486 | 0 | else if (ELIMINATE_COPY_RELOCS) |
487 | 0 | { |
488 | | /* For the non-shared case, discard space for relocs against |
489 | | symbols which turn out to need copy relocs or are not |
490 | | dynamic. Keep dynamic relocations for run-time function |
491 | | pointer initialization. */ |
492 | |
|
493 | 0 | if ((!h->non_got_ref |
494 | 0 | || (h->root.type == bfd_link_hash_undefweak |
495 | 0 | && !resolved_to_zero)) |
496 | 0 | && ((h->def_dynamic |
497 | 0 | && !h->def_regular) |
498 | 0 | || (htab->elf.dynamic_sections_created |
499 | 0 | && (h->root.type == bfd_link_hash_undefweak |
500 | 0 | || h->root.type == bfd_link_hash_undefined)))) |
501 | 0 | { |
502 | | /* Make sure this symbol is output as a dynamic symbol. |
503 | | Undefined weak syms won't yet be marked as dynamic. */ |
504 | 0 | if (h->dynindx == -1 |
505 | 0 | && !h->forced_local |
506 | 0 | && !resolved_to_zero |
507 | 0 | && h->root.type == bfd_link_hash_undefweak |
508 | 0 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
509 | 0 | return false; |
510 | | |
511 | | /* If that succeeded, we know we'll be keeping all the |
512 | | relocs. */ |
513 | 0 | if (h->dynindx != -1) |
514 | 0 | goto keep; |
515 | 0 | } |
516 | | |
517 | 0 | h->dyn_relocs = NULL; |
518 | |
|
519 | 0 | keep: ; |
520 | 0 | } |
521 | | |
522 | | /* Finally, allocate space. */ |
523 | 0 | for (p = h->dyn_relocs; p != NULL; p = p->next) |
524 | 0 | { |
525 | 0 | asection *sreloc; |
526 | |
|
527 | 0 | if (eh->def_protected && bfd_link_executable (info)) |
528 | 0 | { |
529 | | /* Disallow copy relocation against non-copyable protected |
530 | | symbol. */ |
531 | 0 | asection *s = p->sec->output_section; |
532 | 0 | if (s != NULL && (s->flags & SEC_READONLY) != 0) |
533 | 0 | { |
534 | 0 | info->callbacks->einfo |
535 | | /* xgettext:c-format */ |
536 | 0 | (_("%F%P: %pB: copy relocation against non-copyable " |
537 | 0 | "protected symbol `%s' in %pB\n"), |
538 | 0 | p->sec->owner, h->root.root.string, |
539 | 0 | h->root.u.def.section->owner); |
540 | 0 | return false; |
541 | 0 | } |
542 | 0 | } |
543 | | |
544 | 0 | sreloc = elf_section_data (p->sec)->sreloc; |
545 | |
|
546 | 0 | BFD_ASSERT (sreloc != NULL); |
547 | 0 | sreloc->size += p->count * htab->sizeof_reloc; |
548 | 0 | } |
549 | | |
550 | 0 | return true; |
551 | 0 | } |
552 | | |
553 | | /* Allocate space in .plt, .got and associated reloc sections for |
554 | | local dynamic relocs. */ |
555 | | |
556 | | static int |
557 | | elf_x86_allocate_local_dynreloc (void **slot, void *inf) |
558 | 0 | { |
559 | 0 | struct elf_link_hash_entry *h |
560 | 0 | = (struct elf_link_hash_entry *) *slot; |
561 | |
|
562 | 0 | if (h->type != STT_GNU_IFUNC |
563 | 0 | || !h->def_regular |
564 | 0 | || !h->ref_regular |
565 | 0 | || !h->forced_local |
566 | 0 | || h->root.type != bfd_link_hash_defined) |
567 | 0 | abort (); |
568 | | |
569 | 0 | return elf_x86_allocate_dynrelocs (h, inf); |
570 | 0 | } |
571 | | |
572 | | /* Find and/or create a hash entry for local symbol. */ |
573 | | |
574 | | struct elf_link_hash_entry * |
575 | | _bfd_elf_x86_get_local_sym_hash (struct elf_x86_link_hash_table *htab, |
576 | | bfd *abfd, const Elf_Internal_Rela *rel, |
577 | | bool create) |
578 | 0 | { |
579 | 0 | struct elf_x86_link_hash_entry e, *ret; |
580 | 0 | asection *sec = abfd->sections; |
581 | 0 | hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
582 | 0 | htab->r_sym (rel->r_info)); |
583 | 0 | void **slot; |
584 | |
|
585 | 0 | e.elf.indx = sec->id; |
586 | 0 | e.elf.dynstr_index = htab->r_sym (rel->r_info); |
587 | 0 | slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
588 | 0 | create ? INSERT : NO_INSERT); |
589 | |
|
590 | 0 | if (!slot) |
591 | 0 | return NULL; |
592 | | |
593 | 0 | if (*slot) |
594 | 0 | { |
595 | 0 | ret = (struct elf_x86_link_hash_entry *) *slot; |
596 | 0 | return &ret->elf; |
597 | 0 | } |
598 | | |
599 | 0 | ret = (struct elf_x86_link_hash_entry *) |
600 | 0 | objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
601 | 0 | sizeof (struct elf_x86_link_hash_entry)); |
602 | 0 | if (ret) |
603 | 0 | { |
604 | 0 | memset (ret, 0, sizeof (*ret)); |
605 | 0 | ret->elf.indx = sec->id; |
606 | 0 | ret->elf.dynstr_index = htab->r_sym (rel->r_info); |
607 | 0 | ret->elf.dynindx = -1; |
608 | 0 | ret->plt_got.offset = (bfd_vma) -1; |
609 | 0 | *slot = ret; |
610 | 0 | } |
611 | 0 | return &ret->elf; |
612 | 0 | } |
613 | | |
614 | | /* Create an entry in a x86 ELF linker hash table. NB: THIS MUST BE IN |
615 | | SYNC WITH _bfd_elf_link_hash_newfunc. */ |
616 | | |
617 | | struct bfd_hash_entry * |
618 | | _bfd_x86_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
619 | | struct bfd_hash_table *table, |
620 | | const char *string) |
621 | 0 | { |
622 | | /* Allocate the structure if it has not already been allocated by a |
623 | | subclass. */ |
624 | 0 | if (entry == NULL) |
625 | 0 | { |
626 | 0 | entry = (struct bfd_hash_entry *) |
627 | 0 | bfd_hash_allocate (table, |
628 | 0 | sizeof (struct elf_x86_link_hash_entry)); |
629 | 0 | if (entry == NULL) |
630 | 0 | return entry; |
631 | 0 | } |
632 | | |
633 | | /* Call the allocation method of the superclass. */ |
634 | 0 | entry = _bfd_link_hash_newfunc (entry, table, string); |
635 | 0 | if (entry != NULL) |
636 | 0 | { |
637 | 0 | struct elf_x86_link_hash_entry *eh |
638 | 0 | = (struct elf_x86_link_hash_entry *) entry; |
639 | 0 | struct elf_link_hash_table *htab |
640 | 0 | = (struct elf_link_hash_table *) table; |
641 | |
|
642 | 0 | memset (&eh->elf.size, 0, |
643 | 0 | (sizeof (struct elf_x86_link_hash_entry) |
644 | 0 | - offsetof (struct elf_link_hash_entry, size))); |
645 | | /* Set local fields. */ |
646 | 0 | eh->elf.indx = -1; |
647 | 0 | eh->elf.dynindx = -1; |
648 | 0 | eh->elf.got = htab->init_got_refcount; |
649 | 0 | eh->elf.plt = htab->init_plt_refcount; |
650 | | /* Assume that we have been called by a non-ELF symbol reader. |
651 | | This flag is then reset by the code which reads an ELF input |
652 | | file. This ensures that a symbol created by a non-ELF symbol |
653 | | reader will have the flag set correctly. */ |
654 | 0 | eh->elf.non_elf = 1; |
655 | 0 | eh->plt_second.offset = (bfd_vma) -1; |
656 | 0 | eh->plt_got.offset = (bfd_vma) -1; |
657 | 0 | eh->tlsdesc_got = (bfd_vma) -1; |
658 | 0 | eh->zero_undefweak = 1; |
659 | 0 | } |
660 | |
|
661 | 0 | return entry; |
662 | 0 | } |
663 | | |
664 | | /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
665 | | for local symbol so that we can handle local STT_GNU_IFUNC symbols |
666 | | as global symbol. We reuse indx and dynstr_index for local symbol |
667 | | hash since they aren't used by global symbols in this backend. */ |
668 | | |
669 | | hashval_t |
670 | | _bfd_x86_elf_local_htab_hash (const void *ptr) |
671 | 0 | { |
672 | 0 | struct elf_link_hash_entry *h |
673 | 0 | = (struct elf_link_hash_entry *) ptr; |
674 | 0 | return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
675 | 0 | } |
676 | | |
677 | | /* Compare local hash entries. */ |
678 | | |
679 | | int |
680 | | _bfd_x86_elf_local_htab_eq (const void *ptr1, const void *ptr2) |
681 | 0 | { |
682 | 0 | struct elf_link_hash_entry *h1 |
683 | 0 | = (struct elf_link_hash_entry *) ptr1; |
684 | 0 | struct elf_link_hash_entry *h2 |
685 | 0 | = (struct elf_link_hash_entry *) ptr2; |
686 | |
|
687 | 0 | return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
688 | 0 | } |
689 | | |
690 | | /* Destroy an x86 ELF linker hash table. */ |
691 | | |
692 | | static void |
693 | | elf_x86_link_hash_table_free (bfd *obfd) |
694 | 0 | { |
695 | 0 | struct elf_x86_link_hash_table *htab |
696 | 0 | = (struct elf_x86_link_hash_table *) obfd->link.hash; |
697 | |
|
698 | 0 | if (htab->loc_hash_table) |
699 | 0 | htab_delete (htab->loc_hash_table); |
700 | 0 | if (htab->loc_hash_memory) |
701 | 0 | objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
702 | 0 | _bfd_elf_link_hash_table_free (obfd); |
703 | 0 | } |
704 | | |
705 | | static bool |
706 | | elf_i386_is_reloc_section (const char *secname) |
707 | 0 | { |
708 | 0 | return startswith (secname, ".rel"); |
709 | 0 | } |
710 | | |
711 | | static bool |
712 | | elf_x86_64_is_reloc_section (const char *secname) |
713 | 0 | { |
714 | 0 | return startswith (secname, ".rela"); |
715 | 0 | } |
716 | | |
717 | | /* Create an x86 ELF linker hash table. */ |
718 | | |
719 | | struct bfd_link_hash_table * |
720 | | _bfd_x86_elf_link_hash_table_create (bfd *abfd) |
721 | 0 | { |
722 | 0 | struct elf_x86_link_hash_table *ret; |
723 | 0 | const struct elf_backend_data *bed; |
724 | 0 | size_t amt = sizeof (struct elf_x86_link_hash_table); |
725 | |
|
726 | 0 | ret = (struct elf_x86_link_hash_table *) bfd_zmalloc (amt); |
727 | 0 | if (ret == NULL) |
728 | 0 | return NULL; |
729 | | |
730 | 0 | bed = get_elf_backend_data (abfd); |
731 | 0 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
732 | 0 | _bfd_x86_elf_link_hash_newfunc, |
733 | 0 | sizeof (struct elf_x86_link_hash_entry), |
734 | 0 | bed->target_id)) |
735 | 0 | { |
736 | 0 | free (ret); |
737 | 0 | return NULL; |
738 | 0 | } |
739 | | |
740 | 0 | if (bed->target_id == X86_64_ELF_DATA) |
741 | 0 | { |
742 | 0 | ret->is_reloc_section = elf_x86_64_is_reloc_section; |
743 | 0 | ret->got_entry_size = 8; |
744 | 0 | ret->pcrel_plt = true; |
745 | 0 | ret->tls_get_addr = "__tls_get_addr"; |
746 | 0 | ret->relative_r_type = R_X86_64_RELATIVE; |
747 | 0 | ret->relative_r_name = "R_X86_64_RELATIVE"; |
748 | 0 | ret->elf_append_reloc = elf_append_rela; |
749 | 0 | ret->elf_write_addend_in_got = _bfd_elf64_write_addend; |
750 | 0 | } |
751 | 0 | if (ABI_64_P (abfd)) |
752 | 0 | { |
753 | 0 | ret->sizeof_reloc = sizeof (Elf64_External_Rela); |
754 | 0 | ret->pointer_r_type = R_X86_64_64; |
755 | 0 | ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; |
756 | 0 | ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; |
757 | 0 | ret->elf_write_addend = _bfd_elf64_write_addend; |
758 | 0 | } |
759 | 0 | else |
760 | 0 | { |
761 | 0 | if (bed->target_id == X86_64_ELF_DATA) |
762 | 0 | { |
763 | 0 | ret->sizeof_reloc = sizeof (Elf32_External_Rela); |
764 | 0 | ret->pointer_r_type = R_X86_64_32; |
765 | 0 | ret->dynamic_interpreter = ELFX32_DYNAMIC_INTERPRETER; |
766 | 0 | ret->dynamic_interpreter_size |
767 | 0 | = sizeof ELFX32_DYNAMIC_INTERPRETER; |
768 | 0 | ret->elf_write_addend = _bfd_elf32_write_addend; |
769 | 0 | } |
770 | 0 | else |
771 | 0 | { |
772 | 0 | ret->is_reloc_section = elf_i386_is_reloc_section; |
773 | 0 | ret->sizeof_reloc = sizeof (Elf32_External_Rel); |
774 | 0 | ret->got_entry_size = 4; |
775 | 0 | ret->pcrel_plt = false; |
776 | 0 | ret->pointer_r_type = R_386_32; |
777 | 0 | ret->relative_r_type = R_386_RELATIVE; |
778 | 0 | ret->relative_r_name = "R_386_RELATIVE"; |
779 | 0 | ret->elf_append_reloc = elf_append_rel; |
780 | 0 | ret->elf_write_addend = _bfd_elf32_write_addend; |
781 | 0 | ret->elf_write_addend_in_got = _bfd_elf32_write_addend; |
782 | 0 | ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; |
783 | 0 | ret->dynamic_interpreter_size |
784 | 0 | = sizeof ELF32_DYNAMIC_INTERPRETER; |
785 | 0 | ret->tls_get_addr = "___tls_get_addr"; |
786 | 0 | } |
787 | 0 | } |
788 | |
|
789 | 0 | ret->loc_hash_table = htab_try_create (1024, |
790 | 0 | _bfd_x86_elf_local_htab_hash, |
791 | 0 | _bfd_x86_elf_local_htab_eq, |
792 | 0 | NULL); |
793 | 0 | ret->loc_hash_memory = objalloc_create (); |
794 | 0 | if (!ret->loc_hash_table || !ret->loc_hash_memory) |
795 | 0 | { |
796 | 0 | elf_x86_link_hash_table_free (abfd); |
797 | 0 | return NULL; |
798 | 0 | } |
799 | 0 | ret->elf.root.hash_table_free = elf_x86_link_hash_table_free; |
800 | |
|
801 | 0 | return &ret->elf.root; |
802 | 0 | } |
803 | | |
804 | | /* Sort relocs into address order. */ |
805 | | |
806 | | int |
807 | | _bfd_x86_elf_compare_relocs (const void *ap, const void *bp) |
808 | 0 | { |
809 | 0 | const arelent *a = * (const arelent **) ap; |
810 | 0 | const arelent *b = * (const arelent **) bp; |
811 | |
|
812 | 0 | if (a->address > b->address) |
813 | 0 | return 1; |
814 | 0 | else if (a->address < b->address) |
815 | 0 | return -1; |
816 | 0 | else |
817 | 0 | return 0; |
818 | 0 | } |
819 | | |
820 | | /* Mark symbol, NAME, as locally defined by linker if it is referenced |
821 | | and not defined in a relocatable object file. */ |
822 | | |
823 | | static void |
824 | | elf_x86_linker_defined (struct bfd_link_info *info, const char *name) |
825 | 0 | { |
826 | 0 | struct elf_link_hash_entry *h; |
827 | |
|
828 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), name, |
829 | 0 | false, false, false); |
830 | 0 | if (h == NULL) |
831 | 0 | return; |
832 | | |
833 | 0 | while (h->root.type == bfd_link_hash_indirect) |
834 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
835 | |
|
836 | 0 | if (h->root.type == bfd_link_hash_new |
837 | 0 | || h->root.type == bfd_link_hash_undefined |
838 | 0 | || h->root.type == bfd_link_hash_undefweak |
839 | 0 | || h->root.type == bfd_link_hash_common |
840 | 0 | || (!h->def_regular && h->def_dynamic)) |
841 | 0 | { |
842 | 0 | elf_x86_hash_entry (h)->local_ref = 2; |
843 | 0 | elf_x86_hash_entry (h)->linker_def = 1; |
844 | 0 | } |
845 | 0 | } |
846 | | |
847 | | /* Hide a linker-defined symbol, NAME, with hidden visibility. */ |
848 | | |
849 | | static void |
850 | | elf_x86_hide_linker_defined (struct bfd_link_info *info, |
851 | | const char *name) |
852 | 0 | { |
853 | 0 | struct elf_link_hash_entry *h; |
854 | |
|
855 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), name, |
856 | 0 | false, false, false); |
857 | 0 | if (h == NULL) |
858 | 0 | return; |
859 | | |
860 | 0 | while (h->root.type == bfd_link_hash_indirect) |
861 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
862 | |
|
863 | 0 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
864 | 0 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
865 | 0 | _bfd_elf_link_hash_hide_symbol (info, h, true); |
866 | 0 | } |
867 | | |
868 | | bool |
869 | | _bfd_x86_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) |
870 | 0 | { |
871 | 0 | if (!bfd_link_relocatable (info)) |
872 | 0 | { |
873 | | /* Check for __tls_get_addr reference. */ |
874 | 0 | struct elf_x86_link_hash_table *htab; |
875 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
876 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
877 | 0 | if (htab) |
878 | 0 | { |
879 | 0 | struct elf_link_hash_entry *h; |
880 | |
|
881 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), |
882 | 0 | htab->tls_get_addr, |
883 | 0 | false, false, false); |
884 | 0 | if (h != NULL) |
885 | 0 | { |
886 | 0 | elf_x86_hash_entry (h)->tls_get_addr = 1; |
887 | | |
888 | | /* Check the versioned __tls_get_addr symbol. */ |
889 | 0 | while (h->root.type == bfd_link_hash_indirect) |
890 | 0 | { |
891 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
892 | 0 | elf_x86_hash_entry (h)->tls_get_addr = 1; |
893 | 0 | } |
894 | 0 | } |
895 | | |
896 | | /* "__ehdr_start" will be defined by linker as a hidden symbol |
897 | | later if it is referenced and not defined. */ |
898 | 0 | elf_x86_linker_defined (info, "__ehdr_start"); |
899 | |
|
900 | 0 | if (bfd_link_executable (info)) |
901 | 0 | { |
902 | | /* References to __bss_start, _end and _edata should be |
903 | | locally resolved within executables. */ |
904 | 0 | elf_x86_linker_defined (info, "__bss_start"); |
905 | 0 | elf_x86_linker_defined (info, "_end"); |
906 | 0 | elf_x86_linker_defined (info, "_edata"); |
907 | 0 | } |
908 | 0 | else |
909 | 0 | { |
910 | | /* Hide hidden __bss_start, _end and _edata in shared |
911 | | libraries. */ |
912 | 0 | elf_x86_hide_linker_defined (info, "__bss_start"); |
913 | 0 | elf_x86_hide_linker_defined (info, "_end"); |
914 | 0 | elf_x86_hide_linker_defined (info, "_edata"); |
915 | 0 | } |
916 | 0 | } |
917 | 0 | } |
918 | | |
919 | | /* Invoke the regular ELF backend linker to do all the work. */ |
920 | 0 | return _bfd_elf_link_check_relocs (abfd, info); |
921 | 0 | } |
922 | | |
923 | | /* Look through the relocs for a section before allocation to make the |
924 | | dynamic reloc section. */ |
925 | | |
926 | | bool |
927 | | _bfd_x86_elf_check_relocs (bfd *abfd, |
928 | | struct bfd_link_info *info, |
929 | | asection *sec, |
930 | | const Elf_Internal_Rela *relocs) |
931 | 0 | { |
932 | 0 | struct elf_x86_link_hash_table *htab; |
933 | 0 | Elf_Internal_Shdr *symtab_hdr; |
934 | 0 | struct elf_link_hash_entry **sym_hashes; |
935 | 0 | const Elf_Internal_Rela *rel; |
936 | 0 | const Elf_Internal_Rela *rel_end; |
937 | 0 | asection *sreloc; |
938 | 0 | const struct elf_backend_data *bed; |
939 | 0 | bool is_x86_64; |
940 | |
|
941 | 0 | if (bfd_link_relocatable (info)) |
942 | 0 | return true; |
943 | | |
944 | 0 | bed = get_elf_backend_data (abfd); |
945 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
946 | 0 | if (htab == NULL) |
947 | 0 | { |
948 | 0 | sec->check_relocs_failed = 1; |
949 | 0 | return false; |
950 | 0 | } |
951 | | |
952 | 0 | is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
953 | |
|
954 | 0 | symtab_hdr = &elf_symtab_hdr (abfd); |
955 | 0 | sym_hashes = elf_sym_hashes (abfd); |
956 | |
|
957 | 0 | rel_end = relocs + sec->reloc_count; |
958 | 0 | for (rel = relocs; rel < rel_end; rel++) |
959 | 0 | { |
960 | 0 | unsigned int r_type; |
961 | 0 | unsigned int r_symndx; |
962 | 0 | struct elf_link_hash_entry *h; |
963 | |
|
964 | 0 | r_symndx = htab->r_sym (rel->r_info); |
965 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
966 | |
|
967 | 0 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
968 | 0 | { |
969 | | /* xgettext:c-format */ |
970 | 0 | _bfd_error_handler (_("%pB: bad symbol index: %d"), |
971 | 0 | abfd, r_symndx); |
972 | 0 | goto error_return; |
973 | 0 | } |
974 | | |
975 | 0 | if (r_symndx < symtab_hdr->sh_info) |
976 | 0 | h = NULL; |
977 | 0 | else |
978 | 0 | { |
979 | 0 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
980 | 0 | while (h->root.type == bfd_link_hash_indirect |
981 | 0 | || h->root.type == bfd_link_hash_warning) |
982 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
983 | 0 | } |
984 | |
|
985 | 0 | if (X86_NEED_DYNAMIC_RELOC_TYPE_P (is_x86_64, r_type) |
986 | 0 | && NEED_DYNAMIC_RELOCATION_P (is_x86_64, info, true, h, sec, |
987 | 0 | r_type, htab->pointer_r_type)) |
988 | 0 | { |
989 | | /* We may copy these reloc types into the output file. |
990 | | Create a reloc section in dynobj and make room for |
991 | | this reloc. */ |
992 | 0 | sreloc = _bfd_elf_make_dynamic_reloc_section |
993 | 0 | (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2, |
994 | 0 | abfd, sec->use_rela_p); |
995 | |
|
996 | 0 | if (sreloc != NULL) |
997 | 0 | return true; |
998 | | |
999 | 0 | error_return: |
1000 | 0 | sec->check_relocs_failed = 1; |
1001 | 0 | return false; |
1002 | 0 | } |
1003 | 0 | } |
1004 | | |
1005 | 0 | return true; |
1006 | 0 | } |
1007 | | |
1008 | | /* Add an entry to the relative reloc record. */ |
1009 | | |
1010 | | static bool |
1011 | | elf_x86_relative_reloc_record_add |
1012 | | (struct bfd_link_info *info, |
1013 | | struct elf_x86_relative_reloc_data *relative_reloc, |
1014 | | Elf_Internal_Rela *rel, asection *sec, |
1015 | | asection *sym_sec, struct elf_link_hash_entry *h, |
1016 | | Elf_Internal_Sym *sym, bfd_vma offset, bool *keep_symbuf_p) |
1017 | 0 | { |
1018 | 0 | bfd_size_type newidx; |
1019 | |
|
1020 | 0 | if (relative_reloc->data == NULL) |
1021 | 0 | { |
1022 | 0 | relative_reloc->data = bfd_malloc |
1023 | 0 | (sizeof (struct elf_x86_relative_reloc_record)); |
1024 | 0 | relative_reloc->count = 0; |
1025 | 0 | relative_reloc->size = 1; |
1026 | 0 | } |
1027 | |
|
1028 | 0 | newidx = relative_reloc->count++; |
1029 | |
|
1030 | 0 | if (relative_reloc->count > relative_reloc->size) |
1031 | 0 | { |
1032 | 0 | relative_reloc->size <<= 1; |
1033 | 0 | relative_reloc->data = bfd_realloc |
1034 | 0 | (relative_reloc->data, |
1035 | 0 | (relative_reloc->size |
1036 | 0 | * sizeof (struct elf_x86_relative_reloc_record))); |
1037 | 0 | } |
1038 | |
|
1039 | 0 | if (relative_reloc->data == NULL) |
1040 | 0 | { |
1041 | 0 | info->callbacks->einfo |
1042 | | /* xgettext:c-format */ |
1043 | 0 | (_("%F%P: %pB: failed to allocate relative reloc record\n"), |
1044 | 0 | info->output_bfd); |
1045 | 0 | return false; |
1046 | 0 | } |
1047 | | |
1048 | 0 | relative_reloc->data[newidx].rel = *rel; |
1049 | 0 | relative_reloc->data[newidx].sec = sec; |
1050 | 0 | if (h != NULL) |
1051 | 0 | { |
1052 | | /* Set SYM to NULL to indicate a global symbol. */ |
1053 | 0 | relative_reloc->data[newidx].sym = NULL; |
1054 | 0 | relative_reloc->data[newidx].u.h = h; |
1055 | 0 | } |
1056 | 0 | else |
1057 | 0 | { |
1058 | 0 | relative_reloc->data[newidx].sym = sym; |
1059 | 0 | relative_reloc->data[newidx].u.sym_sec = sym_sec; |
1060 | | /* We must keep the symbol buffer since SYM will be used later. */ |
1061 | 0 | *keep_symbuf_p = true; |
1062 | 0 | } |
1063 | 0 | relative_reloc->data[newidx].offset = offset; |
1064 | 0 | relative_reloc->data[newidx].address = 0; |
1065 | 0 | return true; |
1066 | 0 | } |
1067 | | |
1068 | | /* After input sections have been mapped to output sections and |
1069 | | addresses of output sections are set initiallly, scan input |
1070 | | relocations with the same logic in relocate_section to determine |
1071 | | if a relative relocation should be generated. Save the relative |
1072 | | relocation candidate information for sizing the DT_RELR section |
1073 | | later after all symbols addresses can be determined. */ |
1074 | | |
1075 | | bool |
1076 | | _bfd_x86_elf_link_relax_section (bfd *abfd ATTRIBUTE_UNUSED, |
1077 | | asection *input_section, |
1078 | | struct bfd_link_info *info, |
1079 | | bool *again) |
1080 | 0 | { |
1081 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1082 | 0 | Elf_Internal_Rela *internal_relocs; |
1083 | 0 | Elf_Internal_Rela *irel, *irelend; |
1084 | 0 | Elf_Internal_Sym *isymbuf = NULL; |
1085 | 0 | struct elf_link_hash_entry **sym_hashes; |
1086 | 0 | const struct elf_backend_data *bed; |
1087 | 0 | struct elf_x86_link_hash_table *htab; |
1088 | 0 | bfd_vma *local_got_offsets; |
1089 | 0 | bool is_x86_64; |
1090 | 0 | bool unaligned_section; |
1091 | 0 | bool return_status = false; |
1092 | 0 | bool keep_symbuf = false; |
1093 | |
|
1094 | 0 | if (bfd_link_relocatable (info)) |
1095 | 0 | return true; |
1096 | | |
1097 | | /* Assume we're not going to change any sizes, and we'll only need |
1098 | | one pass. */ |
1099 | 0 | *again = false; |
1100 | |
|
1101 | 0 | bed = get_elf_backend_data (abfd); |
1102 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
1103 | 0 | if (htab == NULL) |
1104 | 0 | return true; |
1105 | | |
1106 | | /* Nothing to do if there are no relocations or relative relocations |
1107 | | have been packed. */ |
1108 | 0 | if (input_section == htab->elf.srelrdyn |
1109 | 0 | || input_section->relative_reloc_packed |
1110 | 0 | || ((input_section->flags & (SEC_RELOC | SEC_ALLOC)) |
1111 | 0 | != (SEC_RELOC | SEC_ALLOC)) |
1112 | 0 | || (input_section->flags & SEC_DEBUGGING) != 0 |
1113 | 0 | || input_section->reloc_count == 0) |
1114 | 0 | return true; |
1115 | | |
1116 | | /* Skip if the section isn't aligned. */ |
1117 | 0 | unaligned_section = input_section->alignment_power == 0; |
1118 | |
|
1119 | 0 | is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
1120 | |
|
1121 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1122 | 0 | sym_hashes = elf_sym_hashes (abfd); |
1123 | 0 | local_got_offsets = elf_local_got_offsets (abfd); |
1124 | | |
1125 | | /* Load the relocations for this section. */ |
1126 | 0 | internal_relocs = |
1127 | 0 | _bfd_elf_link_info_read_relocs (abfd, info, input_section, NULL, |
1128 | 0 | (Elf_Internal_Rela *) NULL, |
1129 | 0 | info->keep_memory); |
1130 | 0 | if (internal_relocs == NULL) |
1131 | 0 | return false; |
1132 | | |
1133 | 0 | irelend = internal_relocs + input_section->reloc_count; |
1134 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
1135 | 0 | { |
1136 | 0 | unsigned int r_type; |
1137 | 0 | unsigned int r_symndx; |
1138 | 0 | Elf_Internal_Sym *isym; |
1139 | 0 | struct elf_link_hash_entry *h; |
1140 | 0 | struct elf_x86_link_hash_entry *eh; |
1141 | 0 | bfd_vma offset; |
1142 | 0 | bool resolved_to_zero; |
1143 | 0 | bool need_copy_reloc_in_pie; |
1144 | 0 | bool pc32_reloc; |
1145 | 0 | asection *sec; |
1146 | | /* Offset must be a multiple of 2. */ |
1147 | 0 | bool unaligned_offset = (irel->r_offset & 1) != 0; |
1148 | | /* True if there is a relative relocation against a dynamic |
1149 | | symbol. */ |
1150 | 0 | bool dynamic_relative_reloc_p; |
1151 | | |
1152 | | /* Get the value of the symbol referred to by the reloc. */ |
1153 | 0 | r_symndx = htab->r_sym (irel->r_info); |
1154 | |
|
1155 | 0 | r_type = ELF32_R_TYPE (irel->r_info); |
1156 | | /* Clear the R_X86_64_converted_reloc_bit bit. */ |
1157 | 0 | r_type &= ~R_X86_64_converted_reloc_bit; |
1158 | |
|
1159 | 0 | sec = NULL; |
1160 | 0 | h = NULL; |
1161 | 0 | dynamic_relative_reloc_p = false; |
1162 | |
|
1163 | 0 | if (r_symndx < symtab_hdr->sh_info) |
1164 | 0 | { |
1165 | | /* Read this BFD's local symbols. */ |
1166 | 0 | if (isymbuf == NULL) |
1167 | 0 | { |
1168 | 0 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
1169 | 0 | if (isymbuf == NULL) |
1170 | 0 | { |
1171 | 0 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
1172 | 0 | symtab_hdr->sh_info, |
1173 | 0 | 0, NULL, NULL, NULL); |
1174 | 0 | if (isymbuf == NULL) |
1175 | 0 | goto error_return; |
1176 | 0 | } |
1177 | 0 | } |
1178 | | |
1179 | 0 | isym = isymbuf + r_symndx; |
1180 | 0 | switch (isym->st_shndx) |
1181 | 0 | { |
1182 | 0 | case SHN_ABS: |
1183 | 0 | sec = bfd_abs_section_ptr; |
1184 | 0 | break; |
1185 | 0 | case SHN_COMMON: |
1186 | 0 | sec = bfd_com_section_ptr; |
1187 | 0 | break; |
1188 | 0 | case SHN_X86_64_LCOMMON: |
1189 | 0 | if (!is_x86_64) |
1190 | 0 | abort (); |
1191 | 0 | sec = &_bfd_elf_large_com_section; |
1192 | 0 | break; |
1193 | 0 | default: |
1194 | 0 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
1195 | 0 | break; |
1196 | 0 | } |
1197 | | |
1198 | | /* Skip relocation against local STT_GNU_IFUNC symbol. */ |
1199 | 0 | if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
1200 | 0 | continue; |
1201 | | |
1202 | 0 | eh = (struct elf_x86_link_hash_entry *) h; |
1203 | 0 | resolved_to_zero = false; |
1204 | 0 | } |
1205 | 0 | else |
1206 | 0 | { |
1207 | | /* Get H and SEC for GENERATE_DYNAMIC_RELOCATION_P below. */ |
1208 | 0 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
1209 | 0 | while (h->root.type == bfd_link_hash_indirect |
1210 | 0 | || h->root.type == bfd_link_hash_warning) |
1211 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
1212 | |
|
1213 | 0 | if (h->root.type == bfd_link_hash_defined |
1214 | 0 | || h->root.type == bfd_link_hash_defweak) |
1215 | 0 | sec = h->root.u.def.section; |
1216 | | |
1217 | | /* Skip relocation against STT_GNU_IFUNC symbol. */ |
1218 | 0 | if (h->type == STT_GNU_IFUNC) |
1219 | 0 | continue; |
1220 | | |
1221 | 0 | eh = (struct elf_x86_link_hash_entry *) h; |
1222 | 0 | resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh); |
1223 | | |
1224 | | /* NB: See how elf_backend_finish_dynamic_symbol is called |
1225 | | from elf_link_output_extsym. */ |
1226 | 0 | if ((h->dynindx != -1 || h->forced_local) |
1227 | 0 | && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
1228 | 0 | || h->root.type != bfd_link_hash_undefweak) |
1229 | 0 | || !h->forced_local) |
1230 | 0 | && h->got.offset != (bfd_vma) -1 |
1231 | 0 | && ! GOT_TLS_GD_ANY_P (elf_x86_hash_entry (h)->tls_type) |
1232 | 0 | && elf_x86_hash_entry (h)->tls_type != GOT_TLS_IE |
1233 | 0 | && !resolved_to_zero |
1234 | 0 | && SYMBOL_REFERENCES_LOCAL_P (info, h) |
1235 | 0 | && SYMBOL_DEFINED_NON_SHARED_P (h)) |
1236 | 0 | dynamic_relative_reloc_p = true; |
1237 | |
|
1238 | 0 | isym = NULL; |
1239 | 0 | } |
1240 | | |
1241 | 0 | if (X86_GOT_TYPE_P (is_x86_64, r_type)) |
1242 | 0 | { |
1243 | | /* Pack GOT relative relocations. There should be only a |
1244 | | single R_*_RELATIVE relocation in GOT. */ |
1245 | 0 | if (eh != NULL) |
1246 | 0 | { |
1247 | 0 | if (eh->got_relative_reloc_done) |
1248 | 0 | continue; |
1249 | | |
1250 | 0 | if (!(dynamic_relative_reloc_p |
1251 | 0 | || (RESOLVED_LOCALLY_P (info, h, htab) |
1252 | 0 | && GENERATE_RELATIVE_RELOC_P (info, h)))) |
1253 | 0 | continue; |
1254 | | |
1255 | 0 | if (!dynamic_relative_reloc_p) |
1256 | 0 | eh->no_finish_dynamic_symbol = 1; |
1257 | 0 | eh->got_relative_reloc_done = 1; |
1258 | 0 | offset = h->got.offset; |
1259 | 0 | } |
1260 | 0 | else |
1261 | 0 | { |
1262 | 0 | if (elf_x86_relative_reloc_done (abfd)[r_symndx]) |
1263 | 0 | continue; |
1264 | | |
1265 | 0 | if (!X86_LOCAL_GOT_RELATIVE_RELOC_P (is_x86_64, info, |
1266 | 0 | isym)) |
1267 | 0 | continue; |
1268 | | |
1269 | 0 | elf_x86_relative_reloc_done (abfd)[r_symndx] = 1; |
1270 | 0 | offset = local_got_offsets[r_symndx]; |
1271 | 0 | } |
1272 | | |
1273 | 0 | if (!elf_x86_relative_reloc_record_add (info, |
1274 | 0 | &htab->relative_reloc, |
1275 | 0 | irel, htab->elf.sgot, |
1276 | 0 | sec, h, isym, offset, |
1277 | 0 | &keep_symbuf)) |
1278 | 0 | goto error_return; |
1279 | | |
1280 | 0 | continue; |
1281 | 0 | } |
1282 | | |
1283 | 0 | if (is_x86_64 |
1284 | 0 | && irel->r_addend == 0 |
1285 | 0 | && !ABI_64_P (info->output_bfd)) |
1286 | 0 | { |
1287 | | /* For x32, if addend is zero, treat R_X86_64_64 like |
1288 | | R_X86_64_32 and R_X86_64_SIZE64 like R_X86_64_SIZE32. */ |
1289 | 0 | if (r_type == R_X86_64_64) |
1290 | 0 | r_type = R_X86_64_32; |
1291 | 0 | else if (r_type == R_X86_64_SIZE64) |
1292 | 0 | r_type = R_X86_64_SIZE32; |
1293 | 0 | } |
1294 | |
|
1295 | 0 | if (!X86_RELATIVE_RELOC_TYPE_P (is_x86_64, r_type)) |
1296 | 0 | continue; |
1297 | | |
1298 | | /* Pack non-GOT relative relocations. */ |
1299 | 0 | if (is_x86_64) |
1300 | 0 | { |
1301 | 0 | need_copy_reloc_in_pie = |
1302 | 0 | (bfd_link_pie (info) |
1303 | 0 | && h != NULL |
1304 | 0 | && (h->needs_copy |
1305 | 0 | || eh->needs_copy |
1306 | 0 | || (h->root.type == bfd_link_hash_undefined)) |
1307 | 0 | && (X86_PCREL_TYPE_P (true, r_type) |
1308 | 0 | || X86_SIZE_TYPE_P (true, r_type))); |
1309 | 0 | pc32_reloc = false; |
1310 | 0 | } |
1311 | 0 | else |
1312 | 0 | { |
1313 | 0 | need_copy_reloc_in_pie = false; |
1314 | 0 | pc32_reloc = r_type == R_386_PC32; |
1315 | 0 | } |
1316 | |
|
1317 | 0 | if (GENERATE_DYNAMIC_RELOCATION_P (is_x86_64, info, eh, r_type, |
1318 | 0 | sec, need_copy_reloc_in_pie, |
1319 | 0 | resolved_to_zero, pc32_reloc)) |
1320 | 0 | { |
1321 | | /* When generating a shared object, these relocations |
1322 | | are copied into the output file to be resolved at run |
1323 | | time. */ |
1324 | 0 | offset = _bfd_elf_section_offset (info->output_bfd, info, |
1325 | 0 | input_section, |
1326 | 0 | irel->r_offset); |
1327 | 0 | if (offset == (bfd_vma) -1 |
1328 | 0 | || offset == (bfd_vma) -2 |
1329 | 0 | || COPY_INPUT_RELOC_P (is_x86_64, info, h, r_type)) |
1330 | 0 | continue; |
1331 | | |
1332 | | /* This symbol is local, or marked to become local. When |
1333 | | relocation overflow check is disabled, we convert |
1334 | | R_X86_64_32 to dynamic R_X86_64_RELATIVE. */ |
1335 | 0 | if (is_x86_64 |
1336 | 0 | && !(r_type == htab->pointer_r_type |
1337 | 0 | || (r_type == R_X86_64_32 |
1338 | 0 | && htab->params->no_reloc_overflow_check))) |
1339 | 0 | continue; |
1340 | | |
1341 | 0 | if (!elf_x86_relative_reloc_record_add |
1342 | 0 | (info, |
1343 | 0 | ((unaligned_section || unaligned_offset) |
1344 | 0 | ? &htab->unaligned_relative_reloc |
1345 | 0 | : &htab->relative_reloc), |
1346 | 0 | irel, input_section, sec, h, isym, offset, |
1347 | 0 | &keep_symbuf)) |
1348 | 0 | goto error_return; |
1349 | 0 | } |
1350 | 0 | } |
1351 | | |
1352 | 0 | input_section->relative_reloc_packed = 1; |
1353 | |
|
1354 | 0 | return_status = true; |
1355 | |
|
1356 | 0 | error_return: |
1357 | 0 | if ((unsigned char *) isymbuf != symtab_hdr->contents) |
1358 | 0 | { |
1359 | | /* Cache the symbol buffer if it must be kept. */ |
1360 | 0 | if (keep_symbuf) |
1361 | 0 | symtab_hdr->contents = (unsigned char *) isymbuf; |
1362 | 0 | else |
1363 | 0 | free (isymbuf); |
1364 | 0 | } |
1365 | 0 | if (elf_section_data (input_section)->relocs != internal_relocs) |
1366 | 0 | free (internal_relocs); |
1367 | 0 | return return_status; |
1368 | 0 | } |
1369 | | |
1370 | | /* Add an entry to the 64-bit DT_RELR bitmap. */ |
1371 | | |
1372 | | static void |
1373 | | elf64_dt_relr_bitmap_add |
1374 | | (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap, |
1375 | | uint64_t entry) |
1376 | 0 | { |
1377 | 0 | bfd_size_type newidx; |
1378 | |
|
1379 | 0 | if (bitmap->u.elf64 == NULL) |
1380 | 0 | { |
1381 | 0 | bitmap->u.elf64 = bfd_malloc (sizeof (uint64_t)); |
1382 | 0 | bitmap->count = 0; |
1383 | 0 | bitmap->size = 1; |
1384 | 0 | } |
1385 | |
|
1386 | 0 | newidx = bitmap->count++; |
1387 | |
|
1388 | 0 | if (bitmap->count > bitmap->size) |
1389 | 0 | { |
1390 | 0 | bitmap->size <<= 1; |
1391 | 0 | bitmap->u.elf64 = bfd_realloc (bitmap->u.elf64, |
1392 | 0 | (bitmap->size * sizeof (uint64_t))); |
1393 | 0 | } |
1394 | |
|
1395 | 0 | if (bitmap->u.elf64 == NULL) |
1396 | 0 | { |
1397 | 0 | info->callbacks->einfo |
1398 | | /* xgettext:c-format */ |
1399 | 0 | (_("%F%P: %pB: failed to allocate 64-bit DT_RELR bitmap\n"), |
1400 | 0 | info->output_bfd); |
1401 | 0 | } |
1402 | |
|
1403 | 0 | bitmap->u.elf64[newidx] = entry; |
1404 | 0 | } |
1405 | | |
1406 | | /* Add an entry to the 32-bit DT_RELR bitmap. */ |
1407 | | |
1408 | | static void |
1409 | | elf32_dt_relr_bitmap_add |
1410 | | (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap, |
1411 | | uint32_t entry) |
1412 | 0 | { |
1413 | 0 | bfd_size_type newidx; |
1414 | |
|
1415 | 0 | if (bitmap->u.elf32 == NULL) |
1416 | 0 | { |
1417 | 0 | bitmap->u.elf32 = bfd_malloc (sizeof (uint32_t)); |
1418 | 0 | bitmap->count = 0; |
1419 | 0 | bitmap->size = 1; |
1420 | 0 | } |
1421 | |
|
1422 | 0 | newidx = bitmap->count++; |
1423 | |
|
1424 | 0 | if (bitmap->count > bitmap->size) |
1425 | 0 | { |
1426 | 0 | bitmap->size <<= 1; |
1427 | 0 | bitmap->u.elf32 = bfd_realloc (bitmap->u.elf32, |
1428 | 0 | (bitmap->size * sizeof (uint32_t))); |
1429 | 0 | } |
1430 | |
|
1431 | 0 | if (bitmap->u.elf32 == NULL) |
1432 | 0 | { |
1433 | 0 | info->callbacks->einfo |
1434 | | /* xgettext:c-format */ |
1435 | 0 | (_("%F%P: %pB: failed to allocate 32-bit DT_RELR bitmap\n"), |
1436 | 0 | info->output_bfd); |
1437 | 0 | } |
1438 | |
|
1439 | 0 | bitmap->u.elf32[newidx] = entry; |
1440 | 0 | } |
1441 | | |
1442 | | void |
1443 | | _bfd_elf32_write_addend (bfd *abfd, uint64_t value, void *addr) |
1444 | 0 | { |
1445 | 0 | bfd_put_32 (abfd, value, addr); |
1446 | 0 | } |
1447 | | |
1448 | | void |
1449 | | _bfd_elf64_write_addend (bfd *abfd, uint64_t value, void *addr) |
1450 | 0 | { |
1451 | 0 | bfd_put_64 (abfd, value, addr); |
1452 | 0 | } |
1453 | | |
1454 | | /* Size or finish relative relocations to determine the run-time |
1455 | | addresses for DT_RELR bitmap computation later. OUTREL is set |
1456 | | to NULL in the sizing phase and non-NULL in the finising phase |
1457 | | where the regular relative relocations will be written out. */ |
1458 | | |
1459 | | static void |
1460 | | elf_x86_size_or_finish_relative_reloc |
1461 | | (bool is_x86_64, struct bfd_link_info *info, |
1462 | | struct elf_x86_link_hash_table *htab, bool unaligned, |
1463 | | Elf_Internal_Rela *outrel) |
1464 | 0 | { |
1465 | 0 | unsigned int align_mask; |
1466 | 0 | bfd_size_type i, count; |
1467 | 0 | asection *sec, *srel; |
1468 | 0 | struct elf_link_hash_entry *h; |
1469 | 0 | bfd_vma offset; |
1470 | 0 | Elf_Internal_Sym *sym; |
1471 | 0 | asection *sym_sec; |
1472 | 0 | asection *sgot = htab->elf.sgot; |
1473 | 0 | asection *srelgot = htab->elf.srelgot; |
1474 | 0 | struct elf_x86_relative_reloc_data *relative_reloc; |
1475 | |
|
1476 | 0 | if (unaligned) |
1477 | 0 | { |
1478 | 0 | align_mask = 0; |
1479 | 0 | relative_reloc = &htab->unaligned_relative_reloc; |
1480 | 0 | } |
1481 | 0 | else |
1482 | 0 | { |
1483 | 0 | align_mask = 1; |
1484 | 0 | relative_reloc = &htab->relative_reloc; |
1485 | 0 | } |
1486 | |
|
1487 | 0 | count = relative_reloc->count; |
1488 | 0 | for (i = 0; i < count; i++) |
1489 | 0 | { |
1490 | 0 | sec = relative_reloc->data[i].sec; |
1491 | 0 | sym = relative_reloc->data[i].sym; |
1492 | | |
1493 | | /* If SYM is NULL, it must be a global symbol. */ |
1494 | 0 | if (sym == NULL) |
1495 | 0 | h = relative_reloc->data[i].u.h; |
1496 | 0 | else |
1497 | 0 | h = NULL; |
1498 | |
|
1499 | 0 | if (is_x86_64) |
1500 | 0 | { |
1501 | 0 | bfd_vma relocation; |
1502 | | /* This function may be called more than once and REL may be |
1503 | | updated by _bfd_elf_rela_local_sym below. */ |
1504 | 0 | Elf_Internal_Rela rel = relative_reloc->data[i].rel; |
1505 | |
|
1506 | 0 | if (h != NULL) |
1507 | 0 | { |
1508 | 0 | if (h->root.type == bfd_link_hash_defined |
1509 | 0 | || h->root.type == bfd_link_hash_defweak) |
1510 | 0 | { |
1511 | 0 | sym_sec = h->root.u.def.section; |
1512 | 0 | relocation = (h->root.u.def.value |
1513 | 0 | + sym_sec->output_section->vma |
1514 | 0 | + sym_sec->output_offset); |
1515 | 0 | } |
1516 | 0 | else |
1517 | 0 | { |
1518 | | /* Allow undefined symbol only at the sizing phase. |
1519 | | Otherwise skip undefined symbol here. Undefined |
1520 | | symbol will be reported by relocate_section. */ |
1521 | 0 | if (outrel == NULL) |
1522 | 0 | relocation = 0; |
1523 | 0 | else |
1524 | 0 | continue; |
1525 | 0 | } |
1526 | 0 | } |
1527 | 0 | else |
1528 | 0 | { |
1529 | 0 | sym_sec = relative_reloc->data[i].u.sym_sec; |
1530 | 0 | relocation = _bfd_elf_rela_local_sym |
1531 | 0 | (info->output_bfd, sym, &sym_sec, &rel); |
1532 | 0 | } |
1533 | | |
1534 | 0 | if (outrel != NULL) |
1535 | 0 | { |
1536 | 0 | outrel->r_addend = relocation; |
1537 | 0 | if (sec == sgot) |
1538 | 0 | { |
1539 | 0 | if (h != NULL && h->needs_plt) |
1540 | 0 | abort (); |
1541 | 0 | } |
1542 | 0 | else |
1543 | 0 | outrel->r_addend += rel.r_addend; |
1544 | | |
1545 | | /* Write the implicit addend if ALIGN_MASK isn't 0. */ |
1546 | 0 | if (align_mask) |
1547 | 0 | { |
1548 | 0 | if (sec == sgot) |
1549 | 0 | { |
1550 | 0 | if (relative_reloc->data[i].offset >= sec->size) |
1551 | 0 | abort (); |
1552 | 0 | htab->elf_write_addend_in_got |
1553 | 0 | (info->output_bfd, outrel->r_addend, |
1554 | 0 | sec->contents + relative_reloc->data[i].offset); |
1555 | 0 | } |
1556 | 0 | else |
1557 | 0 | { |
1558 | 0 | bfd_byte *contents; |
1559 | |
|
1560 | 0 | if (rel.r_offset >= sec->size) |
1561 | 0 | abort (); |
1562 | | |
1563 | 0 | if (elf_section_data (sec)->this_hdr.contents |
1564 | 0 | != NULL) |
1565 | 0 | contents |
1566 | 0 | = elf_section_data (sec)->this_hdr.contents; |
1567 | 0 | else |
1568 | 0 | { |
1569 | 0 | if (!bfd_malloc_and_get_section (sec->owner, |
1570 | 0 | sec, |
1571 | 0 | &contents)) |
1572 | 0 | info->callbacks->einfo |
1573 | | /* xgettext:c-format */ |
1574 | 0 | (_("%F%P: %pB: failed to allocate memory for section `%pA'\n"), |
1575 | 0 | info->output_bfd, sec); |
1576 | | |
1577 | | /* Cache the section contents for |
1578 | | elf_link_input_bfd. */ |
1579 | 0 | elf_section_data (sec)->this_hdr.contents |
1580 | 0 | = contents; |
1581 | 0 | } |
1582 | 0 | htab->elf_write_addend |
1583 | 0 | (info->output_bfd, outrel->r_addend, |
1584 | 0 | contents + rel.r_offset); |
1585 | 0 | } |
1586 | 0 | } |
1587 | 0 | } |
1588 | 0 | } |
1589 | | |
1590 | 0 | if (sec == sgot) |
1591 | 0 | srel = srelgot; |
1592 | 0 | else |
1593 | 0 | srel = elf_section_data (sec)->sreloc; |
1594 | 0 | offset = (sec->output_section->vma + sec->output_offset |
1595 | 0 | + relative_reloc->data[i].offset); |
1596 | 0 | relative_reloc->data[i].address = offset; |
1597 | 0 | if (outrel != NULL) |
1598 | 0 | { |
1599 | 0 | outrel->r_offset = offset; |
1600 | |
|
1601 | 0 | if ((outrel->r_offset & align_mask) != 0) |
1602 | 0 | abort (); |
1603 | | |
1604 | 0 | if (htab->params->report_relative_reloc) |
1605 | 0 | _bfd_x86_elf_link_report_relative_reloc |
1606 | 0 | (info, sec, h, sym, htab->relative_r_name, outrel); |
1607 | | |
1608 | | /* Generate regular relative relocation if ALIGN_MASK is 0. */ |
1609 | 0 | if (align_mask == 0) |
1610 | 0 | htab->elf_append_reloc (info->output_bfd, srel, outrel); |
1611 | 0 | } |
1612 | 0 | } |
1613 | 0 | } |
1614 | | |
1615 | | /* Compute the DT_RELR section size. Set NEED_PLAYOUT to true if |
1616 | | the DT_RELR section size has been increased. */ |
1617 | | |
1618 | | static void |
1619 | | elf_x86_compute_dl_relr_bitmap |
1620 | | (struct bfd_link_info *info, struct elf_x86_link_hash_table *htab, |
1621 | | bool *need_layout) |
1622 | 0 | { |
1623 | 0 | bfd_vma base; |
1624 | 0 | bfd_size_type i, count, new_count; |
1625 | 0 | struct elf_x86_relative_reloc_data *relative_reloc = |
1626 | 0 | &htab->relative_reloc; |
1627 | | /* Save the old DT_RELR bitmap count. Don't shrink the DT_RELR bitmap |
1628 | | if the new DT_RELR bitmap count is smaller than the old one. Pad |
1629 | | with trailing 1s which won't be decoded to more relocations. */ |
1630 | 0 | bfd_size_type dt_relr_bitmap_count = htab->dt_relr_bitmap.count; |
1631 | | |
1632 | | /* Clear the DT_RELR bitmap count. */ |
1633 | 0 | htab->dt_relr_bitmap.count = 0; |
1634 | |
|
1635 | 0 | count = relative_reloc->count; |
1636 | |
|
1637 | 0 | if (ABI_64_P (info->output_bfd)) |
1638 | 0 | { |
1639 | | /* Compute the 64-bit DT_RELR bitmap. */ |
1640 | 0 | i = 0; |
1641 | 0 | while (i < count) |
1642 | 0 | { |
1643 | 0 | if ((relative_reloc->data[i].address % 1) != 0) |
1644 | 0 | abort (); |
1645 | | |
1646 | 0 | elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
1647 | 0 | relative_reloc->data[i].address); |
1648 | |
|
1649 | 0 | base = relative_reloc->data[i].address + 8; |
1650 | 0 | i++; |
1651 | |
|
1652 | 0 | while (i < count) |
1653 | 0 | { |
1654 | 0 | uint64_t bitmap = 0; |
1655 | 0 | for (; i < count; i++) |
1656 | 0 | { |
1657 | 0 | bfd_vma delta = (relative_reloc->data[i].address |
1658 | 0 | - base); |
1659 | | /* Stop if it is too far from base. */ |
1660 | 0 | if (delta >= 63 * 8) |
1661 | 0 | break; |
1662 | | /* Stop if it isn't a multiple of 8. */ |
1663 | 0 | if ((delta % 8) != 0) |
1664 | 0 | break; |
1665 | 0 | bitmap |= 1ULL << (delta / 8); |
1666 | 0 | } |
1667 | |
|
1668 | 0 | if (bitmap == 0) |
1669 | 0 | break; |
1670 | | |
1671 | 0 | elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
1672 | 0 | (bitmap << 1) | 1); |
1673 | |
|
1674 | 0 | base += 63 * 8; |
1675 | 0 | } |
1676 | 0 | } |
1677 | | |
1678 | 0 | new_count = htab->dt_relr_bitmap.count; |
1679 | 0 | if (dt_relr_bitmap_count > new_count) |
1680 | 0 | { |
1681 | | /* Don't shrink the DT_RELR section size to avoid section |
1682 | | layout oscillation. Instead, pad the DT_RELR bitmap with |
1683 | | 1s which do not decode to more relocations. */ |
1684 | |
|
1685 | 0 | htab->dt_relr_bitmap.count = dt_relr_bitmap_count; |
1686 | 0 | count = dt_relr_bitmap_count - new_count; |
1687 | 0 | for (i = 0; i < count; i++) |
1688 | 0 | htab->dt_relr_bitmap.u.elf64[new_count + i] = 1; |
1689 | 0 | } |
1690 | 0 | } |
1691 | 0 | else |
1692 | 0 | { |
1693 | | /* Compute the 32-bit DT_RELR bitmap. */ |
1694 | 0 | i = 0; |
1695 | 0 | while (i < count) |
1696 | 0 | { |
1697 | 0 | if ((relative_reloc->data[i].address % 1) != 0) |
1698 | 0 | abort (); |
1699 | | |
1700 | 0 | elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
1701 | 0 | relative_reloc->data[i].address); |
1702 | |
|
1703 | 0 | base = relative_reloc->data[i].address + 4; |
1704 | 0 | i++; |
1705 | |
|
1706 | 0 | while (i < count) |
1707 | 0 | { |
1708 | 0 | uint32_t bitmap = 0; |
1709 | 0 | for (; i < count; i++) |
1710 | 0 | { |
1711 | 0 | bfd_vma delta = (relative_reloc->data[i].address |
1712 | 0 | - base); |
1713 | | /* Stop if it is too far from base. */ |
1714 | 0 | if (delta >= 31 * 4) |
1715 | 0 | break; |
1716 | | /* Stop if it isn't a multiple of 4. */ |
1717 | 0 | if ((delta % 4) != 0) |
1718 | 0 | break; |
1719 | 0 | bitmap |= 1ULL << (delta / 4); |
1720 | 0 | } |
1721 | |
|
1722 | 0 | if (bitmap == 0) |
1723 | 0 | break; |
1724 | | |
1725 | 0 | elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
1726 | 0 | (bitmap << 1) | 1); |
1727 | |
|
1728 | 0 | base += 31 * 4; |
1729 | 0 | } |
1730 | 0 | } |
1731 | | |
1732 | 0 | new_count = htab->dt_relr_bitmap.count; |
1733 | 0 | if (dt_relr_bitmap_count > new_count) |
1734 | 0 | { |
1735 | | /* Don't shrink the DT_RELR section size to avoid section |
1736 | | layout oscillation. Instead, pad the DT_RELR bitmap with |
1737 | | 1s which do not decode to more relocations. */ |
1738 | |
|
1739 | 0 | htab->dt_relr_bitmap.count = dt_relr_bitmap_count; |
1740 | 0 | count = dt_relr_bitmap_count - new_count; |
1741 | 0 | for (i = 0; i < count; i++) |
1742 | 0 | htab->dt_relr_bitmap.u.elf32[new_count + i] = 1; |
1743 | 0 | } |
1744 | 0 | } |
1745 | | |
1746 | 0 | if (htab->dt_relr_bitmap.count != dt_relr_bitmap_count) |
1747 | 0 | { |
1748 | 0 | if (need_layout) |
1749 | 0 | { |
1750 | | /* The .relr.dyn section size is changed. Update the section |
1751 | | size and tell linker to layout sections again. */ |
1752 | 0 | htab->elf.srelrdyn->size = |
1753 | 0 | (htab->dt_relr_bitmap.count |
1754 | 0 | * (ABI_64_P (info->output_bfd) ? 8 : 4)); |
1755 | |
|
1756 | 0 | *need_layout = true; |
1757 | 0 | } |
1758 | 0 | else |
1759 | 0 | info->callbacks->einfo |
1760 | | /* xgettext:c-format */ |
1761 | 0 | (_("%F%P: %pB: size of compact relative reloc section is " |
1762 | 0 | "changed: new (%lu) != old (%lu)\n"), |
1763 | 0 | info->output_bfd, htab->dt_relr_bitmap.count, |
1764 | 0 | dt_relr_bitmap_count); |
1765 | 0 | } |
1766 | 0 | } |
1767 | | |
1768 | | /* Write out the DT_RELR section. */ |
1769 | | |
1770 | | static void |
1771 | | elf_x86_write_dl_relr_bitmap (struct bfd_link_info *info, |
1772 | | struct elf_x86_link_hash_table *htab) |
1773 | 0 | { |
1774 | 0 | asection *sec = htab->elf.srelrdyn; |
1775 | 0 | bfd_size_type size = sec->size; |
1776 | 0 | bfd_size_type i; |
1777 | 0 | unsigned char *contents; |
1778 | |
|
1779 | 0 | contents = (unsigned char *) bfd_alloc (sec->owner, size); |
1780 | 0 | if (contents == NULL) |
1781 | 0 | info->callbacks->einfo |
1782 | | /* xgettext:c-format */ |
1783 | 0 | (_("%F%P: %pB: failed to allocate compact relative reloc section\n"), |
1784 | 0 | info->output_bfd); |
1785 | | |
1786 | | /* Cache the section contents for elf_link_input_bfd. */ |
1787 | 0 | sec->contents = contents; |
1788 | |
|
1789 | 0 | if (ABI_64_P (info->output_bfd)) |
1790 | 0 | for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 8) |
1791 | 0 | bfd_put_64 (info->output_bfd, htab->dt_relr_bitmap.u.elf64[i], |
1792 | 0 | contents); |
1793 | 0 | else |
1794 | 0 | for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 4) |
1795 | 0 | bfd_put_32 (info->output_bfd, htab->dt_relr_bitmap.u.elf32[i], |
1796 | 0 | contents); |
1797 | 0 | } |
1798 | | |
1799 | | /* Sort relative relocations by address. */ |
1800 | | |
1801 | | static int |
1802 | | elf_x86_relative_reloc_compare (const void *pa, const void *pb) |
1803 | 0 | { |
1804 | 0 | struct elf_x86_relative_reloc_record *a = |
1805 | 0 | (struct elf_x86_relative_reloc_record *) pa; |
1806 | 0 | struct elf_x86_relative_reloc_record *b = |
1807 | 0 | (struct elf_x86_relative_reloc_record *) pb; |
1808 | 0 | if (a->address < b->address) |
1809 | 0 | return -1; |
1810 | 0 | if (a->address > b->address) |
1811 | 0 | return 1; |
1812 | 0 | return 0; |
1813 | 0 | } |
1814 | | |
1815 | | enum dynobj_sframe_plt_type |
1816 | | { |
1817 | | SFRAME_PLT = 1, |
1818 | | SFRAME_PLT_SEC = 2 |
1819 | | }; |
1820 | | |
1821 | | /* Create SFrame stack trace info for the plt entries in the .plt section |
1822 | | of type PLT_SEC_TYPE. */ |
1823 | | |
1824 | | static bool |
1825 | | _bfd_x86_elf_create_sframe_plt (bfd *output_bfd, |
1826 | | struct bfd_link_info *info, |
1827 | | unsigned int plt_sec_type) |
1828 | 0 | { |
1829 | 0 | struct elf_x86_link_hash_table *htab; |
1830 | 0 | const struct elf_backend_data *bed; |
1831 | |
|
1832 | 0 | bool plt0_generated_p; |
1833 | 0 | unsigned int plt0_entry_size; |
1834 | 0 | unsigned char func_info; |
1835 | 0 | uint32_t fre_type; |
1836 | | /* The dynamic plt section for which .sframe stack trace information is being |
1837 | | created. */ |
1838 | 0 | asection *dpltsec; |
1839 | |
|
1840 | 0 | int err = 0; |
1841 | |
|
1842 | 0 | sframe_encoder_ctx **ectx = NULL; |
1843 | 0 | unsigned plt_entry_size = 0; |
1844 | 0 | unsigned int num_pltn_fres = 0; |
1845 | 0 | unsigned int num_pltn_entries = 0; |
1846 | |
|
1847 | 0 | bed = get_elf_backend_data (output_bfd); |
1848 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
1849 | | /* Whether SFrame stack trace info for plt0 is to be generated. */ |
1850 | 0 | plt0_generated_p = htab->plt.has_plt0; |
1851 | 0 | plt0_entry_size |
1852 | 0 | = (plt0_generated_p) ? htab->sframe_plt->plt0_entry_size : 0; |
1853 | |
|
1854 | 0 | switch (plt_sec_type) |
1855 | 0 | { |
1856 | 0 | case SFRAME_PLT: |
1857 | 0 | { |
1858 | 0 | ectx = &htab->plt_cfe_ctx; |
1859 | 0 | dpltsec = htab->elf.splt; |
1860 | |
|
1861 | 0 | plt_entry_size = htab->plt.plt_entry_size; |
1862 | 0 | num_pltn_fres = htab->sframe_plt->pltn_num_fres; |
1863 | 0 | num_pltn_entries |
1864 | 0 | = (htab->elf.splt->size - plt0_entry_size) / plt_entry_size; |
1865 | |
|
1866 | 0 | break; |
1867 | 0 | } |
1868 | 0 | case SFRAME_PLT_SEC: |
1869 | 0 | { |
1870 | 0 | ectx = &htab->plt_second_cfe_ctx; |
1871 | | /* FIXME - this or htab->plt_second_sframe ? */ |
1872 | 0 | dpltsec = htab->plt_second_eh_frame; |
1873 | |
|
1874 | 0 | plt_entry_size = htab->sframe_plt->sec_pltn_entry_size; |
1875 | 0 | num_pltn_fres = htab->sframe_plt->sec_pltn_num_fres; |
1876 | 0 | num_pltn_entries |
1877 | 0 | = htab->plt_second_eh_frame->size / plt_entry_size; |
1878 | 0 | break; |
1879 | 0 | } |
1880 | 0 | default: |
1881 | | /* No other value is possible. */ |
1882 | 0 | return false; |
1883 | 0 | break; |
1884 | 0 | } |
1885 | | |
1886 | 0 | *ectx = sframe_encode (SFRAME_VERSION_2, |
1887 | 0 | 0, |
1888 | 0 | SFRAME_ABI_AMD64_ENDIAN_LITTLE, |
1889 | 0 | SFRAME_CFA_FIXED_FP_INVALID, |
1890 | 0 | -8, /* Fixed RA offset. */ |
1891 | 0 | &err); |
1892 | | |
1893 | | /* FRE type is dependent on the size of the function. */ |
1894 | 0 | fre_type = sframe_calc_fre_type (dpltsec->size); |
1895 | 0 | func_info = sframe_fde_create_func_info (fre_type, SFRAME_FDE_TYPE_PCINC); |
1896 | | |
1897 | | /* Add SFrame FDE and the associated FREs for plt0 if plt0 has been |
1898 | | generated. */ |
1899 | 0 | if (plt0_generated_p) |
1900 | 0 | { |
1901 | | /* Add SFrame FDE for plt0, the function start address is updated later |
1902 | | at _bfd_elf_merge_section_sframe time. */ |
1903 | 0 | sframe_encoder_add_funcdesc_v2 (*ectx, |
1904 | 0 | 0, /* func start addr. */ |
1905 | 0 | plt0_entry_size, |
1906 | 0 | func_info, |
1907 | 0 | 16, |
1908 | 0 | 0 /* Num FREs. */); |
1909 | 0 | sframe_frame_row_entry plt0_fre; |
1910 | 0 | unsigned int num_plt0_fres = htab->sframe_plt->plt0_num_fres; |
1911 | 0 | for (unsigned int j = 0; j < num_plt0_fres; j++) |
1912 | 0 | { |
1913 | 0 | plt0_fre = *(htab->sframe_plt->plt0_fres[j]); |
1914 | 0 | sframe_encoder_add_fre (*ectx, 0, &plt0_fre); |
1915 | 0 | } |
1916 | 0 | } |
1917 | | |
1918 | |
|
1919 | 0 | if (num_pltn_entries) |
1920 | 0 | { |
1921 | | /* pltn entries use an SFrame FDE of type |
1922 | | SFRAME_FDE_TYPE_PCMASK to exploit the repetitive |
1923 | | pattern of the instructions in these entries. Using this SFrame FDE |
1924 | | type helps in keeping the SFrame stack trace info for pltn entries |
1925 | | compact. */ |
1926 | 0 | func_info = sframe_fde_create_func_info (fre_type, |
1927 | 0 | SFRAME_FDE_TYPE_PCMASK); |
1928 | | /* Add the SFrame FDE for all PCs starting at the first pltn entry (hence, |
1929 | | function start address = plt0_entry_size. As usual, this will be |
1930 | | updated later at _bfd_elf_merge_section_sframe, by when the |
1931 | | sections are relocated. */ |
1932 | 0 | sframe_encoder_add_funcdesc_v2 (*ectx, |
1933 | 0 | plt0_entry_size, /* func start addr. */ |
1934 | 0 | dpltsec->size - plt0_entry_size, |
1935 | 0 | func_info, |
1936 | 0 | 16, |
1937 | 0 | 0 /* Num FREs. */); |
1938 | |
|
1939 | 0 | sframe_frame_row_entry pltn_fre; |
1940 | | /* Now add the FREs for pltn. Simply adding the two FREs suffices due |
1941 | | to the usage of SFRAME_FDE_TYPE_PCMASK above. */ |
1942 | 0 | for (unsigned int j = 0; j < num_pltn_fres; j++) |
1943 | 0 | { |
1944 | 0 | pltn_fre = *(htab->sframe_plt->pltn_fres[j]); |
1945 | 0 | sframe_encoder_add_fre (*ectx, 1, &pltn_fre); |
1946 | 0 | } |
1947 | 0 | } |
1948 | |
|
1949 | 0 | return true; |
1950 | 0 | } |
1951 | | |
1952 | | /* Put contents of the .sframe section corresponding to the specified |
1953 | | PLT_SEC_TYPE. */ |
1954 | | |
1955 | | static bool |
1956 | | _bfd_x86_elf_write_sframe_plt (bfd *output_bfd, |
1957 | | struct bfd_link_info *info, |
1958 | | unsigned int plt_sec_type) |
1959 | 0 | { |
1960 | 0 | struct elf_x86_link_hash_table *htab; |
1961 | 0 | const struct elf_backend_data *bed; |
1962 | 0 | sframe_encoder_ctx *ectx; |
1963 | 0 | size_t sec_size; |
1964 | 0 | asection *sec; |
1965 | 0 | bfd *dynobj; |
1966 | |
|
1967 | 0 | int err = 0; |
1968 | |
|
1969 | 0 | bed = get_elf_backend_data (output_bfd); |
1970 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
1971 | 0 | dynobj = htab->elf.dynobj; |
1972 | |
|
1973 | 0 | switch (plt_sec_type) |
1974 | 0 | { |
1975 | 0 | case SFRAME_PLT: |
1976 | 0 | ectx = htab->plt_cfe_ctx; |
1977 | 0 | sec = htab->plt_sframe; |
1978 | 0 | break; |
1979 | 0 | case SFRAME_PLT_SEC: |
1980 | 0 | ectx = htab->plt_second_cfe_ctx; |
1981 | 0 | sec = htab->plt_second_sframe; |
1982 | 0 | break; |
1983 | 0 | default: |
1984 | | /* No other value is possible. */ |
1985 | 0 | return false; |
1986 | 0 | break; |
1987 | 0 | } |
1988 | | |
1989 | 0 | BFD_ASSERT (ectx); |
1990 | |
|
1991 | 0 | void *contents = sframe_encoder_write (ectx, &sec_size, &err); |
1992 | |
|
1993 | 0 | sec->size = (bfd_size_type) sec_size; |
1994 | 0 | sec->contents = (unsigned char *) bfd_zalloc (dynobj, sec->size); |
1995 | 0 | memcpy (sec->contents, contents, sec_size); |
1996 | |
|
1997 | 0 | sframe_encoder_free (&ectx); |
1998 | |
|
1999 | 0 | return true; |
2000 | 0 | } |
2001 | | |
2002 | | bool |
2003 | | _bfd_elf_x86_size_relative_relocs (struct bfd_link_info *info, |
2004 | | bool *need_layout) |
2005 | 0 | { |
2006 | 0 | struct elf_x86_link_hash_table *htab; |
2007 | 0 | const struct elf_backend_data *bed; |
2008 | 0 | bool is_x86_64; |
2009 | 0 | bfd_size_type i, count, unaligned_count; |
2010 | 0 | asection *sec, *srel; |
2011 | | |
2012 | | /* Do nothing for ld -r. */ |
2013 | 0 | if (bfd_link_relocatable (info)) |
2014 | 0 | return true; |
2015 | | |
2016 | 0 | bed = get_elf_backend_data (info->output_bfd); |
2017 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
2018 | 0 | if (htab == NULL) |
2019 | 0 | return false; |
2020 | | |
2021 | 0 | count = htab->relative_reloc.count; |
2022 | 0 | unaligned_count = htab->unaligned_relative_reloc.count; |
2023 | 0 | if (count == 0) |
2024 | 0 | { |
2025 | 0 | if (htab->generate_relative_reloc_pass == 0 |
2026 | 0 | && htab->elf.srelrdyn != NULL) |
2027 | 0 | { |
2028 | | /* Remove the empty .relr.dyn sections now. */ |
2029 | 0 | if (!bfd_is_abs_section (htab->elf.srelrdyn->output_section)) |
2030 | 0 | { |
2031 | 0 | bfd_section_list_remove |
2032 | 0 | (info->output_bfd, htab->elf.srelrdyn->output_section); |
2033 | 0 | info->output_bfd->section_count--; |
2034 | 0 | } |
2035 | 0 | bfd_section_list_remove (htab->elf.srelrdyn->owner, |
2036 | 0 | htab->elf.srelrdyn); |
2037 | 0 | htab->elf.srelrdyn->owner->section_count--; |
2038 | 0 | } |
2039 | 0 | if (unaligned_count == 0) |
2040 | 0 | { |
2041 | 0 | htab->generate_relative_reloc_pass++; |
2042 | 0 | return true; |
2043 | 0 | } |
2044 | 0 | } |
2045 | | |
2046 | 0 | is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
2047 | | |
2048 | | /* Size relative relocations. */ |
2049 | 0 | if (htab->generate_relative_reloc_pass) |
2050 | 0 | { |
2051 | | /* Reset the regular relative relocation count. */ |
2052 | 0 | for (i = 0; i < unaligned_count; i++) |
2053 | 0 | { |
2054 | 0 | sec = htab->unaligned_relative_reloc.data[i].sec; |
2055 | 0 | srel = elf_section_data (sec)->sreloc; |
2056 | 0 | srel->reloc_count = 0; |
2057 | 0 | } |
2058 | 0 | } |
2059 | 0 | else |
2060 | 0 | { |
2061 | | /* Remove the reserved space for compact relative relocations. */ |
2062 | 0 | if (count) |
2063 | 0 | { |
2064 | 0 | asection *sgot = htab->elf.sgot; |
2065 | 0 | asection *srelgot = htab->elf.srelgot; |
2066 | |
|
2067 | 0 | for (i = 0; i < count; i++) |
2068 | 0 | { |
2069 | 0 | sec = htab->relative_reloc.data[i].sec; |
2070 | 0 | if (sec == sgot) |
2071 | 0 | srel = srelgot; |
2072 | 0 | else |
2073 | 0 | srel = elf_section_data (sec)->sreloc; |
2074 | 0 | srel->size -= htab->sizeof_reloc; |
2075 | 0 | } |
2076 | 0 | } |
2077 | 0 | } |
2078 | | |
2079 | | /* Size unaligned relative relocations. */ |
2080 | 0 | if (unaligned_count) |
2081 | 0 | elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
2082 | 0 | true, NULL); |
2083 | |
|
2084 | 0 | if (count) |
2085 | 0 | { |
2086 | 0 | elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
2087 | 0 | false, NULL); |
2088 | | |
2089 | | /* Sort relative relocations by addresses. We only need to |
2090 | | sort them in the first pass since the relative positions |
2091 | | won't change. */ |
2092 | 0 | if (htab->generate_relative_reloc_pass == 0) |
2093 | 0 | qsort (htab->relative_reloc.data, count, |
2094 | 0 | sizeof (struct elf_x86_relative_reloc_record), |
2095 | 0 | elf_x86_relative_reloc_compare); |
2096 | |
|
2097 | 0 | elf_x86_compute_dl_relr_bitmap (info, htab, need_layout); |
2098 | 0 | } |
2099 | |
|
2100 | 0 | htab->generate_relative_reloc_pass++; |
2101 | |
|
2102 | 0 | return true; |
2103 | 0 | } |
2104 | | |
2105 | | bool |
2106 | | _bfd_elf_x86_finish_relative_relocs (struct bfd_link_info *info) |
2107 | 0 | { |
2108 | 0 | struct elf_x86_link_hash_table *htab; |
2109 | 0 | const struct elf_backend_data *bed; |
2110 | 0 | Elf_Internal_Rela outrel; |
2111 | 0 | bool is_x86_64; |
2112 | 0 | bfd_size_type count; |
2113 | | |
2114 | | /* Do nothing for ld -r. */ |
2115 | 0 | if (bfd_link_relocatable (info)) |
2116 | 0 | return true; |
2117 | | |
2118 | 0 | bed = get_elf_backend_data (info->output_bfd); |
2119 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
2120 | 0 | if (htab == NULL) |
2121 | 0 | return false; |
2122 | | |
2123 | 0 | is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
2124 | |
|
2125 | 0 | outrel.r_info = htab->r_info (0, htab->relative_r_type); |
2126 | |
|
2127 | 0 | if (htab->unaligned_relative_reloc.count) |
2128 | 0 | elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
2129 | 0 | true, &outrel); |
2130 | |
|
2131 | 0 | count = htab->relative_reloc.count; |
2132 | 0 | if (count) |
2133 | 0 | { |
2134 | 0 | elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
2135 | 0 | false, &outrel); |
2136 | |
|
2137 | 0 | elf_x86_compute_dl_relr_bitmap (info, htab, NULL); |
2138 | |
|
2139 | 0 | elf_x86_write_dl_relr_bitmap (info, htab); |
2140 | 0 | } |
2141 | |
|
2142 | 0 | return true; |
2143 | 0 | } |
2144 | | |
2145 | | bool |
2146 | | _bfd_elf_x86_valid_reloc_p (asection *input_section, |
2147 | | struct bfd_link_info *info, |
2148 | | struct elf_x86_link_hash_table *htab, |
2149 | | const Elf_Internal_Rela *rel, |
2150 | | struct elf_link_hash_entry *h, |
2151 | | Elf_Internal_Sym *sym, |
2152 | | Elf_Internal_Shdr *symtab_hdr, |
2153 | | bool *no_dynreloc_p) |
2154 | 0 | { |
2155 | 0 | bool valid_p = true; |
2156 | |
|
2157 | 0 | *no_dynreloc_p = false; |
2158 | | |
2159 | | /* Check If relocation against non-preemptible absolute symbol is |
2160 | | valid in PIC. FIXME: Can't use SYMBOL_REFERENCES_LOCAL_P since |
2161 | | it may call _bfd_elf_link_hide_sym_by_version and result in |
2162 | | ld-elfvers/ vers21 test failure. */ |
2163 | 0 | if (bfd_link_pic (info) |
2164 | 0 | && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) |
2165 | 0 | { |
2166 | 0 | const struct elf_backend_data *bed; |
2167 | 0 | unsigned int r_type; |
2168 | 0 | Elf_Internal_Rela irel; |
2169 | | |
2170 | | /* Skip non-absolute symbol. */ |
2171 | 0 | if (h) |
2172 | 0 | { |
2173 | 0 | if (!ABS_SYMBOL_P (h)) |
2174 | 0 | return valid_p; |
2175 | 0 | } |
2176 | 0 | else if (sym->st_shndx != SHN_ABS) |
2177 | 0 | return valid_p; |
2178 | | |
2179 | 0 | bed = get_elf_backend_data (input_section->owner); |
2180 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
2181 | 0 | irel = *rel; |
2182 | | |
2183 | | /* Only allow relocations against absolute symbol, which can be |
2184 | | resolved as absolute value + addend. GOTPCREL and GOT32 |
2185 | | relocations are allowed since absolute value + addend is |
2186 | | stored in the GOT slot. */ |
2187 | 0 | if (bed->target_id == X86_64_ELF_DATA) |
2188 | 0 | { |
2189 | 0 | r_type &= ~R_X86_64_converted_reloc_bit; |
2190 | 0 | valid_p = (r_type == R_X86_64_64 |
2191 | 0 | || r_type == R_X86_64_32 |
2192 | 0 | || r_type == R_X86_64_32S |
2193 | 0 | || r_type == R_X86_64_16 |
2194 | 0 | || r_type == R_X86_64_8 |
2195 | 0 | || r_type == R_X86_64_GOTPCREL |
2196 | 0 | || r_type == R_X86_64_GOTPCRELX |
2197 | 0 | || r_type == R_X86_64_REX_GOTPCRELX); |
2198 | 0 | if (!valid_p) |
2199 | 0 | { |
2200 | 0 | unsigned int r_symndx = htab->r_sym (rel->r_info); |
2201 | 0 | irel.r_info = htab->r_info (r_symndx, r_type); |
2202 | 0 | } |
2203 | 0 | } |
2204 | 0 | else |
2205 | 0 | valid_p = (r_type == R_386_32 |
2206 | 0 | || r_type == R_386_16 |
2207 | 0 | || r_type == R_386_8 |
2208 | 0 | || r_type == R_386_GOT32 |
2209 | 0 | || r_type == R_386_GOT32X); |
2210 | |
|
2211 | 0 | if (valid_p) |
2212 | 0 | *no_dynreloc_p = true; |
2213 | 0 | else |
2214 | 0 | { |
2215 | 0 | const char *name; |
2216 | 0 | arelent internal_reloc; |
2217 | |
|
2218 | 0 | if (!bed->elf_info_to_howto (input_section->owner, |
2219 | 0 | &internal_reloc, &irel) |
2220 | 0 | || internal_reloc.howto == NULL) |
2221 | 0 | abort (); |
2222 | | |
2223 | 0 | if (h) |
2224 | 0 | name = h->root.root.string; |
2225 | 0 | else |
2226 | 0 | name = bfd_elf_sym_name (input_section->owner, symtab_hdr, |
2227 | 0 | sym, NULL); |
2228 | 0 | info->callbacks->einfo |
2229 | | /* xgettext:c-format */ |
2230 | 0 | (_("%F%P: %pB: relocation %s against absolute symbol " |
2231 | 0 | "`%s' in section `%pA' is disallowed\n"), |
2232 | 0 | input_section->owner, internal_reloc.howto->name, name, |
2233 | 0 | input_section); |
2234 | 0 | bfd_set_error (bfd_error_bad_value); |
2235 | 0 | } |
2236 | 0 | } |
2237 | | |
2238 | 0 | return valid_p; |
2239 | 0 | } |
2240 | | |
2241 | | /* Set the sizes of the dynamic sections. */ |
2242 | | |
2243 | | bool |
2244 | | _bfd_x86_elf_size_dynamic_sections (bfd *output_bfd, |
2245 | | struct bfd_link_info *info) |
2246 | 0 | { |
2247 | 0 | struct elf_x86_link_hash_table *htab; |
2248 | 0 | bfd *dynobj; |
2249 | 0 | asection *s; |
2250 | 0 | bool relocs; |
2251 | 0 | bfd *ibfd; |
2252 | 0 | const struct elf_backend_data *bed |
2253 | 0 | = get_elf_backend_data (output_bfd); |
2254 | |
|
2255 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
2256 | 0 | if (htab == NULL) |
2257 | 0 | return false; |
2258 | 0 | dynobj = htab->elf.dynobj; |
2259 | 0 | if (dynobj == NULL) |
2260 | 0 | abort (); |
2261 | | |
2262 | | /* Set up .got offsets for local syms, and space for local dynamic |
2263 | | relocs. */ |
2264 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
2265 | 0 | { |
2266 | 0 | bfd_signed_vma *local_got; |
2267 | 0 | bfd_signed_vma *end_local_got; |
2268 | 0 | char *local_tls_type; |
2269 | 0 | bfd_vma *local_tlsdesc_gotent; |
2270 | 0 | bfd_size_type locsymcount; |
2271 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2272 | 0 | asection *srel; |
2273 | |
|
2274 | 0 | if (! is_x86_elf (ibfd, htab)) |
2275 | 0 | continue; |
2276 | | |
2277 | 0 | for (s = ibfd->sections; s != NULL; s = s->next) |
2278 | 0 | { |
2279 | 0 | struct elf_dyn_relocs *p; |
2280 | |
|
2281 | 0 | for (p = ((struct elf_dyn_relocs *) |
2282 | 0 | elf_section_data (s)->local_dynrel); |
2283 | 0 | p != NULL; |
2284 | 0 | p = p->next) |
2285 | 0 | { |
2286 | 0 | if (!bfd_is_abs_section (p->sec) |
2287 | 0 | && bfd_is_abs_section (p->sec->output_section)) |
2288 | 0 | { |
2289 | | /* Input section has been discarded, either because |
2290 | | it is a copy of a linkonce section or due to |
2291 | | linker script /DISCARD/, so we'll be discarding |
2292 | | the relocs too. */ |
2293 | 0 | } |
2294 | 0 | else if (htab->elf.target_os == is_vxworks |
2295 | 0 | && strcmp (p->sec->output_section->name, |
2296 | 0 | ".tls_vars") == 0) |
2297 | 0 | { |
2298 | | /* Relocations in vxworks .tls_vars sections are |
2299 | | handled specially by the loader. */ |
2300 | 0 | } |
2301 | 0 | else if (p->count != 0) |
2302 | 0 | { |
2303 | 0 | srel = elf_section_data (p->sec)->sreloc; |
2304 | 0 | srel->size += p->count * htab->sizeof_reloc; |
2305 | 0 | if ((p->sec->output_section->flags & SEC_READONLY) != 0 |
2306 | 0 | && (info->flags & DF_TEXTREL) == 0) |
2307 | 0 | { |
2308 | 0 | info->flags |= DF_TEXTREL; |
2309 | 0 | if (bfd_link_textrel_check (info)) |
2310 | | /* xgettext:c-format */ |
2311 | 0 | info->callbacks->einfo |
2312 | 0 | (_("%P: %pB: warning: relocation " |
2313 | 0 | "in read-only section `%pA'\n"), |
2314 | 0 | p->sec->owner, p->sec); |
2315 | 0 | } |
2316 | 0 | } |
2317 | 0 | } |
2318 | 0 | } |
2319 | |
|
2320 | 0 | local_got = elf_local_got_refcounts (ibfd); |
2321 | 0 | if (!local_got) |
2322 | 0 | continue; |
2323 | | |
2324 | 0 | symtab_hdr = &elf_symtab_hdr (ibfd); |
2325 | 0 | locsymcount = symtab_hdr->sh_info; |
2326 | 0 | end_local_got = local_got + locsymcount; |
2327 | 0 | local_tls_type = elf_x86_local_got_tls_type (ibfd); |
2328 | 0 | local_tlsdesc_gotent = elf_x86_local_tlsdesc_gotent (ibfd); |
2329 | 0 | s = htab->elf.sgot; |
2330 | 0 | srel = htab->elf.srelgot; |
2331 | 0 | for (; local_got < end_local_got; |
2332 | 0 | ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) |
2333 | 0 | { |
2334 | 0 | *local_tlsdesc_gotent = (bfd_vma) -1; |
2335 | 0 | if (*local_got > 0) |
2336 | 0 | { |
2337 | 0 | if (GOT_TLS_GDESC_P (*local_tls_type)) |
2338 | 0 | { |
2339 | 0 | *local_tlsdesc_gotent = htab->elf.sgotplt->size |
2340 | 0 | - elf_x86_compute_jump_table_size (htab); |
2341 | 0 | htab->elf.sgotplt->size += 2 * htab->got_entry_size; |
2342 | 0 | *local_got = (bfd_vma) -2; |
2343 | 0 | } |
2344 | 0 | if (! GOT_TLS_GDESC_P (*local_tls_type) |
2345 | 0 | || GOT_TLS_GD_P (*local_tls_type)) |
2346 | 0 | { |
2347 | 0 | *local_got = s->size; |
2348 | 0 | s->size += htab->got_entry_size; |
2349 | 0 | if (GOT_TLS_GD_P (*local_tls_type) |
2350 | 0 | || *local_tls_type == GOT_TLS_IE_BOTH) |
2351 | 0 | s->size += htab->got_entry_size; |
2352 | 0 | } |
2353 | 0 | if ((bfd_link_pic (info) && *local_tls_type != GOT_ABS) |
2354 | 0 | || GOT_TLS_GD_ANY_P (*local_tls_type) |
2355 | 0 | || (*local_tls_type & GOT_TLS_IE)) |
2356 | 0 | { |
2357 | 0 | if (*local_tls_type == GOT_TLS_IE_BOTH) |
2358 | 0 | srel->size += 2 * htab->sizeof_reloc; |
2359 | 0 | else if (GOT_TLS_GD_P (*local_tls_type) |
2360 | 0 | || ! GOT_TLS_GDESC_P (*local_tls_type)) |
2361 | 0 | srel->size += htab->sizeof_reloc; |
2362 | 0 | if (GOT_TLS_GDESC_P (*local_tls_type)) |
2363 | 0 | { |
2364 | 0 | htab->elf.srelplt->size += htab->sizeof_reloc; |
2365 | 0 | if (bed->target_id == X86_64_ELF_DATA) |
2366 | 0 | htab->elf.tlsdesc_plt = (bfd_vma) -1; |
2367 | 0 | } |
2368 | 0 | } |
2369 | 0 | } |
2370 | 0 | else |
2371 | 0 | *local_got = (bfd_vma) -1; |
2372 | 0 | } |
2373 | 0 | } |
2374 | |
|
2375 | 0 | if (htab->tls_ld_or_ldm_got.refcount > 0) |
2376 | 0 | { |
2377 | | /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM |
2378 | | or R_X86_64_TLSLD relocs. */ |
2379 | 0 | htab->tls_ld_or_ldm_got.offset = htab->elf.sgot->size; |
2380 | 0 | htab->elf.sgot->size += 2 * htab->got_entry_size; |
2381 | 0 | htab->elf.srelgot->size += htab->sizeof_reloc; |
2382 | 0 | } |
2383 | 0 | else |
2384 | 0 | htab->tls_ld_or_ldm_got.offset = -1; |
2385 | | |
2386 | | /* Allocate global sym .plt and .got entries, and space for global |
2387 | | sym dynamic relocs. */ |
2388 | 0 | elf_link_hash_traverse (&htab->elf, elf_x86_allocate_dynrelocs, |
2389 | 0 | info); |
2390 | | |
2391 | | /* Allocate .plt and .got entries, and space for local symbols. */ |
2392 | 0 | htab_traverse (htab->loc_hash_table, elf_x86_allocate_local_dynreloc, |
2393 | 0 | info); |
2394 | | |
2395 | | /* For every jump slot reserved in the sgotplt, reloc_count is |
2396 | | incremented. However, when we reserve space for TLS descriptors, |
2397 | | it's not incremented, so in order to compute the space reserved |
2398 | | for them, it suffices to multiply the reloc count by the jump |
2399 | | slot size. |
2400 | | |
2401 | | PR ld/13302: We start next_irelative_index at the end of .rela.plt |
2402 | | so that R_{386,X86_64}_IRELATIVE entries come last. */ |
2403 | 0 | if (htab->elf.srelplt) |
2404 | 0 | { |
2405 | 0 | htab->next_tls_desc_index = htab->elf.srelplt->reloc_count; |
2406 | 0 | htab->sgotplt_jump_table_size |
2407 | 0 | = elf_x86_compute_jump_table_size (htab); |
2408 | 0 | htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1; |
2409 | 0 | } |
2410 | 0 | else if (htab->elf.irelplt) |
2411 | 0 | htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1; |
2412 | |
|
2413 | 0 | if (htab->elf.tlsdesc_plt) |
2414 | 0 | { |
2415 | | /* NB: tlsdesc_plt is set only for x86-64. If we're not using |
2416 | | lazy TLS relocations, don't generate the PLT and GOT entries |
2417 | | they require. */ |
2418 | 0 | if ((info->flags & DF_BIND_NOW)) |
2419 | 0 | htab->elf.tlsdesc_plt = 0; |
2420 | 0 | else |
2421 | 0 | { |
2422 | 0 | htab->elf.tlsdesc_got = htab->elf.sgot->size; |
2423 | 0 | htab->elf.sgot->size += htab->got_entry_size; |
2424 | | /* Reserve room for the initial entry. |
2425 | | FIXME: we could probably do away with it in this case. */ |
2426 | 0 | if (htab->elf.splt->size == 0) |
2427 | 0 | htab->elf.splt->size = htab->plt.plt_entry_size; |
2428 | 0 | htab->elf.tlsdesc_plt = htab->elf.splt->size; |
2429 | 0 | htab->elf.splt->size += htab->plt.plt_entry_size; |
2430 | 0 | } |
2431 | 0 | } |
2432 | |
|
2433 | 0 | if (htab->elf.sgotplt) |
2434 | 0 | { |
2435 | | /* Don't allocate .got.plt section if there are no GOT nor PLT |
2436 | | entries and there is no reference to _GLOBAL_OFFSET_TABLE_. */ |
2437 | 0 | if ((htab->elf.hgot == NULL |
2438 | 0 | || !htab->got_referenced) |
2439 | 0 | && (htab->elf.sgotplt->size == bed->got_header_size) |
2440 | 0 | && (htab->elf.splt == NULL |
2441 | 0 | || htab->elf.splt->size == 0) |
2442 | 0 | && (htab->elf.sgot == NULL |
2443 | 0 | || htab->elf.sgot->size == 0) |
2444 | 0 | && (htab->elf.iplt == NULL |
2445 | 0 | || htab->elf.iplt->size == 0) |
2446 | 0 | && (htab->elf.igotplt == NULL |
2447 | 0 | || htab->elf.igotplt->size == 0)) |
2448 | 0 | { |
2449 | 0 | htab->elf.sgotplt->size = 0; |
2450 | | /* Solaris requires to keep _GLOBAL_OFFSET_TABLE_ even if it |
2451 | | isn't used. */ |
2452 | 0 | if (htab->elf.hgot != NULL |
2453 | 0 | && htab->elf.target_os != is_solaris) |
2454 | 0 | { |
2455 | | /* Remove the unused _GLOBAL_OFFSET_TABLE_ from symbol |
2456 | | table. */ |
2457 | 0 | htab->elf.hgot->root.type = bfd_link_hash_undefined; |
2458 | 0 | htab->elf.hgot->root.u.undef.abfd |
2459 | 0 | = htab->elf.hgot->root.u.def.section->owner; |
2460 | 0 | htab->elf.hgot->root.linker_def = 0; |
2461 | 0 | htab->elf.hgot->ref_regular = 0; |
2462 | 0 | htab->elf.hgot->def_regular = 0; |
2463 | 0 | } |
2464 | 0 | } |
2465 | 0 | } |
2466 | |
|
2467 | 0 | if (_bfd_elf_eh_frame_present (info)) |
2468 | 0 | { |
2469 | 0 | if (htab->plt_eh_frame != NULL |
2470 | 0 | && htab->elf.splt != NULL |
2471 | 0 | && htab->elf.splt->size != 0 |
2472 | 0 | && !bfd_is_abs_section (htab->elf.splt->output_section)) |
2473 | 0 | htab->plt_eh_frame->size = htab->plt.eh_frame_plt_size; |
2474 | |
|
2475 | 0 | if (htab->plt_got_eh_frame != NULL |
2476 | 0 | && htab->plt_got != NULL |
2477 | 0 | && htab->plt_got->size != 0 |
2478 | 0 | && !bfd_is_abs_section (htab->plt_got->output_section)) |
2479 | 0 | htab->plt_got_eh_frame->size |
2480 | 0 | = htab->non_lazy_plt->eh_frame_plt_size; |
2481 | | |
2482 | | /* Unwind info for the second PLT and .plt.got sections are |
2483 | | identical. */ |
2484 | 0 | if (htab->plt_second_eh_frame != NULL |
2485 | 0 | && htab->plt_second != NULL |
2486 | 0 | && htab->plt_second->size != 0 |
2487 | 0 | && !bfd_is_abs_section (htab->plt_second->output_section)) |
2488 | 0 | htab->plt_second_eh_frame->size |
2489 | 0 | = htab->non_lazy_plt->eh_frame_plt_size; |
2490 | 0 | } |
2491 | | |
2492 | | /* No need to size the .sframe section explicitly because the write-out |
2493 | | mechanism is different. Simply prep up the FDE/FRE for the |
2494 | | .plt section. */ |
2495 | 0 | if (_bfd_elf_sframe_present (info)) |
2496 | 0 | { |
2497 | 0 | if (htab->plt_sframe != NULL |
2498 | 0 | && htab->elf.splt != NULL |
2499 | 0 | && htab->elf.splt->size != 0 |
2500 | 0 | && !bfd_is_abs_section (htab->elf.splt->output_section)) |
2501 | 0 | { |
2502 | 0 | _bfd_x86_elf_create_sframe_plt (output_bfd, info, SFRAME_PLT); |
2503 | | /* FIXME - Dirty Hack. Set the size to something non-zero for now, |
2504 | | so that the section does not get stripped out below. The precise |
2505 | | size of this section is known only when the contents are |
2506 | | serialized in _bfd_x86_elf_write_sframe_plt. */ |
2507 | 0 | htab->plt_sframe->size = sizeof (sframe_header) + 1; |
2508 | 0 | } |
2509 | | |
2510 | | /* FIXME - generate for .got.plt ? */ |
2511 | | |
2512 | | /* Unwind info for the second PLT. */ |
2513 | 0 | if (htab->plt_second_sframe != NULL |
2514 | 0 | && htab->plt_second != NULL |
2515 | 0 | && htab->plt_second->size != 0 |
2516 | 0 | && !bfd_is_abs_section (htab->plt_second->output_section)) |
2517 | 0 | { |
2518 | 0 | _bfd_x86_elf_create_sframe_plt (output_bfd, info, |
2519 | 0 | SFRAME_PLT_SEC); |
2520 | | /* FIXME - Dirty Hack. Set the size to something non-zero for now, |
2521 | | so that the section does not get stripped out below. The precise |
2522 | | size of this section is known only when the contents are |
2523 | | serialized in _bfd_x86_elf_write_sframe_plt. */ |
2524 | 0 | htab->plt_second_sframe->size = sizeof (sframe_header) + 1; |
2525 | 0 | } |
2526 | 0 | } |
2527 | | |
2528 | | /* We now have determined the sizes of the various dynamic sections. |
2529 | | Allocate memory for them. */ |
2530 | 0 | relocs = false; |
2531 | 0 | for (s = dynobj->sections; s != NULL; s = s->next) |
2532 | 0 | { |
2533 | 0 | bool strip_section = true; |
2534 | |
|
2535 | 0 | if ((s->flags & SEC_LINKER_CREATED) == 0) |
2536 | 0 | continue; |
2537 | | |
2538 | | /* The .relr.dyn section for compact relative relocation will |
2539 | | be filled later. */ |
2540 | 0 | if (s == htab->elf.srelrdyn) |
2541 | 0 | continue; |
2542 | | |
2543 | 0 | if (s == htab->elf.splt |
2544 | 0 | || s == htab->elf.sgot) |
2545 | 0 | { |
2546 | | /* Strip this section if we don't need it; see the |
2547 | | comment below. */ |
2548 | | /* We'd like to strip these sections if they aren't needed, but if |
2549 | | we've exported dynamic symbols from them we must leave them. |
2550 | | It's too late to tell BFD to get rid of the symbols. */ |
2551 | |
|
2552 | 0 | if (htab->elf.hplt != NULL) |
2553 | 0 | strip_section = false; |
2554 | 0 | } |
2555 | 0 | else if (s == htab->elf.sgotplt |
2556 | 0 | || s == htab->elf.iplt |
2557 | 0 | || s == htab->elf.igotplt |
2558 | 0 | || s == htab->plt_second |
2559 | 0 | || s == htab->plt_got |
2560 | 0 | || s == htab->plt_eh_frame |
2561 | 0 | || s == htab->plt_got_eh_frame |
2562 | 0 | || s == htab->plt_second_eh_frame |
2563 | 0 | || s == htab->plt_sframe |
2564 | 0 | || s == htab->plt_second_sframe |
2565 | 0 | || s == htab->elf.sdynbss |
2566 | 0 | || s == htab->elf.sdynrelro) |
2567 | 0 | { |
2568 | | /* Strip these too. */ |
2569 | 0 | } |
2570 | 0 | else if (htab->is_reloc_section (bfd_section_name (s))) |
2571 | 0 | { |
2572 | 0 | if (s->size != 0 |
2573 | 0 | && s != htab->elf.srelplt |
2574 | 0 | && s != htab->srelplt2) |
2575 | 0 | relocs = true; |
2576 | | |
2577 | | /* We use the reloc_count field as a counter if we need |
2578 | | to copy relocs into the output file. */ |
2579 | 0 | if (s != htab->elf.srelplt) |
2580 | 0 | s->reloc_count = 0; |
2581 | 0 | } |
2582 | 0 | else |
2583 | 0 | { |
2584 | | /* It's not one of our sections, so don't allocate space. */ |
2585 | 0 | continue; |
2586 | 0 | } |
2587 | | |
2588 | 0 | if (s->size == 0) |
2589 | 0 | { |
2590 | | /* If we don't need this section, strip it from the |
2591 | | output file. This is mostly to handle .rel.bss and |
2592 | | .rel.plt. We must create both sections in |
2593 | | create_dynamic_sections, because they must be created |
2594 | | before the linker maps input sections to output |
2595 | | sections. The linker does that before |
2596 | | adjust_dynamic_symbol is called, and it is that |
2597 | | function which decides whether anything needs to go |
2598 | | into these sections. */ |
2599 | 0 | if (strip_section) |
2600 | 0 | s->flags |= SEC_EXCLUDE; |
2601 | 0 | continue; |
2602 | 0 | } |
2603 | | |
2604 | 0 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
2605 | 0 | continue; |
2606 | | |
2607 | | /* Skip allocating contents for .sframe section as it is written |
2608 | | out differently. See below. */ |
2609 | 0 | if ((s == htab->plt_sframe) || (s == htab->plt_second_sframe)) |
2610 | 0 | continue; |
2611 | | |
2612 | | /* NB: Initially, the iplt section has minimal alignment to |
2613 | | avoid moving dot of the following section backwards when |
2614 | | it is empty. Update its section alignment now since it |
2615 | | is non-empty. */ |
2616 | 0 | if (s == htab->elf.iplt) |
2617 | 0 | bfd_set_section_alignment (s, htab->plt.iplt_alignment); |
2618 | | |
2619 | | /* Allocate memory for the section contents. We use bfd_zalloc |
2620 | | here in case unused entries are not reclaimed before the |
2621 | | section's contents are written out. This should not happen, |
2622 | | but this way if it does, we get a R_386_NONE or R_X86_64_NONE |
2623 | | reloc instead of garbage. */ |
2624 | 0 | s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); |
2625 | 0 | if (s->contents == NULL) |
2626 | 0 | return false; |
2627 | 0 | } |
2628 | | |
2629 | 0 | if (htab->plt_eh_frame != NULL |
2630 | 0 | && htab->plt_eh_frame->contents != NULL) |
2631 | 0 | { |
2632 | 0 | memcpy (htab->plt_eh_frame->contents, |
2633 | 0 | htab->plt.eh_frame_plt, |
2634 | 0 | htab->plt_eh_frame->size); |
2635 | 0 | bfd_put_32 (dynobj, htab->elf.splt->size, |
2636 | 0 | htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET); |
2637 | 0 | } |
2638 | |
|
2639 | 0 | if (htab->plt_got_eh_frame != NULL |
2640 | 0 | && htab->plt_got_eh_frame->contents != NULL) |
2641 | 0 | { |
2642 | 0 | memcpy (htab->plt_got_eh_frame->contents, |
2643 | 0 | htab->non_lazy_plt->eh_frame_plt, |
2644 | 0 | htab->plt_got_eh_frame->size); |
2645 | 0 | bfd_put_32 (dynobj, htab->plt_got->size, |
2646 | 0 | (htab->plt_got_eh_frame->contents |
2647 | 0 | + PLT_FDE_LEN_OFFSET)); |
2648 | 0 | } |
2649 | |
|
2650 | 0 | if (htab->plt_second_eh_frame != NULL |
2651 | 0 | && htab->plt_second_eh_frame->contents != NULL) |
2652 | 0 | { |
2653 | 0 | memcpy (htab->plt_second_eh_frame->contents, |
2654 | 0 | htab->non_lazy_plt->eh_frame_plt, |
2655 | 0 | htab->plt_second_eh_frame->size); |
2656 | 0 | bfd_put_32 (dynobj, htab->plt_second->size, |
2657 | 0 | (htab->plt_second_eh_frame->contents |
2658 | 0 | + PLT_FDE_LEN_OFFSET)); |
2659 | 0 | } |
2660 | |
|
2661 | 0 | if (_bfd_elf_sframe_present (info)) |
2662 | 0 | { |
2663 | 0 | if (htab->plt_sframe != NULL |
2664 | 0 | && htab->elf.splt != NULL |
2665 | 0 | && htab->elf.splt->size != 0 |
2666 | 0 | && htab->plt_sframe->contents == NULL) |
2667 | 0 | _bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT); |
2668 | |
|
2669 | 0 | if (htab->plt_second_sframe != NULL |
2670 | 0 | && htab->elf.splt != NULL |
2671 | 0 | && htab->elf.splt->size != 0 |
2672 | 0 | && htab->plt_second_sframe->contents == NULL) |
2673 | 0 | _bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT_SEC); |
2674 | 0 | } |
2675 | |
|
2676 | 0 | return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info, |
2677 | 0 | relocs); |
2678 | 0 | } |
2679 | | |
2680 | | /* Finish up the x86 dynamic sections. */ |
2681 | | |
2682 | | struct elf_x86_link_hash_table * |
2683 | | _bfd_x86_elf_finish_dynamic_sections (bfd *output_bfd, |
2684 | | struct bfd_link_info *info) |
2685 | 0 | { |
2686 | 0 | struct elf_x86_link_hash_table *htab; |
2687 | 0 | const struct elf_backend_data *bed; |
2688 | 0 | bfd *dynobj; |
2689 | 0 | asection *sdyn; |
2690 | 0 | bfd_byte *dyncon, *dynconend; |
2691 | 0 | bfd_size_type sizeof_dyn; |
2692 | |
|
2693 | 0 | bed = get_elf_backend_data (output_bfd); |
2694 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
2695 | 0 | if (htab == NULL) |
2696 | 0 | return htab; |
2697 | | |
2698 | 0 | dynobj = htab->elf.dynobj; |
2699 | 0 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
2700 | | |
2701 | | /* GOT is always created in setup_gnu_properties. But it may not be |
2702 | | needed. .got.plt section may be needed for static IFUNC. */ |
2703 | 0 | if (htab->elf.sgotplt && htab->elf.sgotplt->size > 0) |
2704 | 0 | { |
2705 | 0 | bfd_vma dynamic_addr; |
2706 | |
|
2707 | 0 | if (bfd_is_abs_section (htab->elf.sgotplt->output_section)) |
2708 | 0 | { |
2709 | 0 | _bfd_error_handler |
2710 | 0 | (_("discarded output section: `%pA'"), htab->elf.sgotplt); |
2711 | 0 | return NULL; |
2712 | 0 | } |
2713 | | |
2714 | 0 | elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize |
2715 | 0 | = htab->got_entry_size; |
2716 | |
|
2717 | 0 | dynamic_addr = (sdyn == NULL |
2718 | 0 | ? (bfd_vma) 0 |
2719 | 0 | : sdyn->output_section->vma + sdyn->output_offset); |
2720 | | |
2721 | | /* Set the first entry in the global offset table to the address |
2722 | | of the dynamic section. Write GOT[1] and GOT[2], needed for |
2723 | | the dynamic linker. */ |
2724 | 0 | if (htab->got_entry_size == 8) |
2725 | 0 | { |
2726 | 0 | bfd_put_64 (output_bfd, dynamic_addr, |
2727 | 0 | htab->elf.sgotplt->contents); |
2728 | 0 | bfd_put_64 (output_bfd, (bfd_vma) 0, |
2729 | 0 | htab->elf.sgotplt->contents + 8); |
2730 | 0 | bfd_put_64 (output_bfd, (bfd_vma) 0, |
2731 | 0 | htab->elf.sgotplt->contents + 8*2); |
2732 | 0 | } |
2733 | 0 | else |
2734 | 0 | { |
2735 | 0 | bfd_put_32 (output_bfd, dynamic_addr, |
2736 | 0 | htab->elf.sgotplt->contents); |
2737 | 0 | bfd_put_32 (output_bfd, 0, |
2738 | 0 | htab->elf.sgotplt->contents + 4); |
2739 | 0 | bfd_put_32 (output_bfd, 0, |
2740 | 0 | htab->elf.sgotplt->contents + 4*2); |
2741 | 0 | } |
2742 | 0 | } |
2743 | | |
2744 | 0 | if (!htab->elf.dynamic_sections_created) |
2745 | 0 | return htab; |
2746 | | |
2747 | 0 | if (sdyn == NULL || htab->elf.sgot == NULL) |
2748 | 0 | abort (); |
2749 | | |
2750 | 0 | sizeof_dyn = bed->s->sizeof_dyn; |
2751 | 0 | dyncon = sdyn->contents; |
2752 | 0 | dynconend = sdyn->contents + sdyn->size; |
2753 | 0 | for (; dyncon < dynconend; dyncon += sizeof_dyn) |
2754 | 0 | { |
2755 | 0 | Elf_Internal_Dyn dyn; |
2756 | 0 | asection *s; |
2757 | |
|
2758 | 0 | (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn); |
2759 | |
|
2760 | 0 | switch (dyn.d_tag) |
2761 | 0 | { |
2762 | 0 | default: |
2763 | 0 | if (htab->elf.target_os == is_vxworks |
2764 | 0 | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) |
2765 | 0 | break; |
2766 | 0 | continue; |
2767 | | |
2768 | 0 | case DT_PLTGOT: |
2769 | 0 | s = htab->elf.sgotplt; |
2770 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2771 | 0 | break; |
2772 | | |
2773 | 0 | case DT_JMPREL: |
2774 | 0 | s = htab->elf.srelplt; |
2775 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2776 | 0 | break; |
2777 | | |
2778 | 0 | case DT_PLTRELSZ: |
2779 | 0 | s = htab->elf.srelplt; |
2780 | 0 | dyn.d_un.d_val = s->size; |
2781 | 0 | break; |
2782 | | |
2783 | 0 | case DT_TLSDESC_PLT: |
2784 | 0 | s = htab->elf.splt; |
2785 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset |
2786 | 0 | + htab->elf.tlsdesc_plt; |
2787 | 0 | break; |
2788 | | |
2789 | 0 | case DT_TLSDESC_GOT: |
2790 | 0 | s = htab->elf.sgot; |
2791 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset |
2792 | 0 | + htab->elf.tlsdesc_got; |
2793 | 0 | break; |
2794 | 0 | } |
2795 | | |
2796 | 0 | (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon); |
2797 | 0 | } |
2798 | | |
2799 | 0 | if (htab->plt_got != NULL && htab->plt_got->size > 0) |
2800 | 0 | elf_section_data (htab->plt_got->output_section) |
2801 | 0 | ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size; |
2802 | |
|
2803 | 0 | if (htab->plt_second != NULL && htab->plt_second->size > 0) |
2804 | 0 | elf_section_data (htab->plt_second->output_section) |
2805 | 0 | ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size; |
2806 | | |
2807 | | /* Adjust .eh_frame for .plt section. */ |
2808 | 0 | if (htab->plt_eh_frame != NULL |
2809 | 0 | && htab->plt_eh_frame->contents != NULL) |
2810 | 0 | { |
2811 | 0 | if (htab->elf.splt != NULL |
2812 | 0 | && htab->elf.splt->size != 0 |
2813 | 0 | && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 |
2814 | 0 | && htab->elf.splt->output_section != NULL |
2815 | 0 | && htab->plt_eh_frame->output_section != NULL) |
2816 | 0 | { |
2817 | 0 | bfd_vma plt_start = htab->elf.splt->output_section->vma; |
2818 | 0 | bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma |
2819 | 0 | + htab->plt_eh_frame->output_offset |
2820 | 0 | + PLT_FDE_START_OFFSET; |
2821 | 0 | bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
2822 | 0 | htab->plt_eh_frame->contents |
2823 | 0 | + PLT_FDE_START_OFFSET); |
2824 | 0 | } |
2825 | |
|
2826 | 0 | if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) |
2827 | 0 | { |
2828 | 0 | if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
2829 | 0 | htab->plt_eh_frame, |
2830 | 0 | htab->plt_eh_frame->contents)) |
2831 | 0 | return NULL; |
2832 | 0 | } |
2833 | 0 | } |
2834 | | |
2835 | | /* Adjust .eh_frame for .plt.got section. */ |
2836 | 0 | if (htab->plt_got_eh_frame != NULL |
2837 | 0 | && htab->plt_got_eh_frame->contents != NULL) |
2838 | 0 | { |
2839 | 0 | if (htab->plt_got != NULL |
2840 | 0 | && htab->plt_got->size != 0 |
2841 | 0 | && (htab->plt_got->flags & SEC_EXCLUDE) == 0 |
2842 | 0 | && htab->plt_got->output_section != NULL |
2843 | 0 | && htab->plt_got_eh_frame->output_section != NULL) |
2844 | 0 | { |
2845 | 0 | bfd_vma plt_start = htab->plt_got->output_section->vma; |
2846 | 0 | bfd_vma eh_frame_start = htab->plt_got_eh_frame->output_section->vma |
2847 | 0 | + htab->plt_got_eh_frame->output_offset |
2848 | 0 | + PLT_FDE_START_OFFSET; |
2849 | 0 | bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
2850 | 0 | htab->plt_got_eh_frame->contents |
2851 | 0 | + PLT_FDE_START_OFFSET); |
2852 | 0 | } |
2853 | 0 | if (htab->plt_got_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) |
2854 | 0 | { |
2855 | 0 | if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
2856 | 0 | htab->plt_got_eh_frame, |
2857 | 0 | htab->plt_got_eh_frame->contents)) |
2858 | 0 | return NULL; |
2859 | 0 | } |
2860 | 0 | } |
2861 | | |
2862 | | /* Adjust .eh_frame for the second PLT section. */ |
2863 | 0 | if (htab->plt_second_eh_frame != NULL |
2864 | 0 | && htab->plt_second_eh_frame->contents != NULL) |
2865 | 0 | { |
2866 | 0 | if (htab->plt_second != NULL |
2867 | 0 | && htab->plt_second->size != 0 |
2868 | 0 | && (htab->plt_second->flags & SEC_EXCLUDE) == 0 |
2869 | 0 | && htab->plt_second->output_section != NULL |
2870 | 0 | && htab->plt_second_eh_frame->output_section != NULL) |
2871 | 0 | { |
2872 | 0 | bfd_vma plt_start = htab->plt_second->output_section->vma; |
2873 | 0 | bfd_vma eh_frame_start |
2874 | 0 | = (htab->plt_second_eh_frame->output_section->vma |
2875 | 0 | + htab->plt_second_eh_frame->output_offset |
2876 | 0 | + PLT_FDE_START_OFFSET); |
2877 | 0 | bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
2878 | 0 | htab->plt_second_eh_frame->contents |
2879 | 0 | + PLT_FDE_START_OFFSET); |
2880 | 0 | } |
2881 | 0 | if (htab->plt_second_eh_frame->sec_info_type |
2882 | 0 | == SEC_INFO_TYPE_EH_FRAME) |
2883 | 0 | { |
2884 | 0 | if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
2885 | 0 | htab->plt_second_eh_frame, |
2886 | 0 | htab->plt_second_eh_frame->contents)) |
2887 | 0 | return NULL; |
2888 | 0 | } |
2889 | 0 | } |
2890 | | |
2891 | | /* Make any adjustment if necessary and merge .sframe section to |
2892 | | create the final .sframe section for output_bfd. */ |
2893 | 0 | if (htab->plt_sframe != NULL |
2894 | 0 | && htab->plt_sframe->contents != NULL) |
2895 | 0 | { |
2896 | 0 | if (htab->elf.splt != NULL |
2897 | 0 | && htab->elf.splt->size != 0 |
2898 | 0 | && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 |
2899 | 0 | && htab->elf.splt->output_section != NULL |
2900 | 0 | && htab->plt_sframe->output_section != NULL) |
2901 | 0 | { |
2902 | 0 | bfd_vma plt_start = htab->elf.splt->output_section->vma; |
2903 | 0 | bfd_vma sframe_start = htab->plt_sframe->output_section->vma |
2904 | 0 | + htab->plt_sframe->output_offset |
2905 | 0 | + PLT_SFRAME_FDE_START_OFFSET; |
2906 | | #if 0 /* FIXME Testing only. Remove before review. */ |
2907 | | bfd_vma test_value = (plt_start - sframe_start) |
2908 | | + htab->plt_sframe->output_section->vma |
2909 | | + htab->plt_sframe->output_offset |
2910 | | + PLT_SFRAME_FDE_START_OFFSET; |
2911 | | bfd_put_signed_32 (dynobj, test_value, |
2912 | | #endif |
2913 | 0 | bfd_put_signed_32 (dynobj, plt_start - sframe_start, |
2914 | 0 | htab->plt_sframe->contents |
2915 | 0 | + PLT_SFRAME_FDE_START_OFFSET); |
2916 | 0 | } |
2917 | 0 | if (htab->plt_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME) |
2918 | 0 | { |
2919 | 0 | if (! _bfd_elf_merge_section_sframe (output_bfd, info, |
2920 | 0 | htab->plt_sframe, |
2921 | 0 | htab->plt_sframe->contents)) |
2922 | 0 | return NULL; |
2923 | 0 | } |
2924 | 0 | } |
2925 | | |
2926 | 0 | if (htab->plt_second_sframe != NULL |
2927 | 0 | && htab->plt_second_sframe->contents != NULL) |
2928 | 0 | { |
2929 | 0 | if (htab->plt_second != NULL |
2930 | 0 | && htab->plt_second->size != 0 |
2931 | 0 | && (htab->plt_second->flags & SEC_EXCLUDE) == 0 |
2932 | 0 | && htab->plt_second->output_section != NULL |
2933 | 0 | && htab->plt_second_sframe->output_section != NULL) |
2934 | 0 | { |
2935 | 0 | bfd_vma plt_start = htab->plt_second->output_section->vma; |
2936 | 0 | bfd_vma sframe_start |
2937 | 0 | = (htab->plt_second_sframe->output_section->vma |
2938 | 0 | + htab->plt_second_sframe->output_offset |
2939 | 0 | + PLT_SFRAME_FDE_START_OFFSET); |
2940 | | #if 0 /* FIXME Testing only. Remove before review. */ |
2941 | | bfd_vma test_value = (plt_start - sframe_start) |
2942 | | + htab->plt_second_sframe->output_section->vma |
2943 | | + htab->plt_second_sframe->output_offset |
2944 | | + PLT_SFRAME_FDE_START_OFFSET; |
2945 | | bfd_put_signed_32 (dynobj, test_value, |
2946 | | #endif |
2947 | 0 | bfd_put_signed_32 (dynobj, plt_start - sframe_start, |
2948 | 0 | htab->plt_second_sframe->contents |
2949 | 0 | + PLT_SFRAME_FDE_START_OFFSET); |
2950 | 0 | } |
2951 | 0 | if (htab->plt_second_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME) |
2952 | 0 | { |
2953 | 0 | if (! _bfd_elf_merge_section_sframe (output_bfd, info, |
2954 | 0 | htab->plt_second_sframe, |
2955 | 0 | htab->plt_second_sframe->contents)) |
2956 | 0 | return NULL; |
2957 | 0 | } |
2958 | 0 | } |
2959 | 0 | if (htab->elf.sgot && htab->elf.sgot->size > 0) |
2960 | 0 | elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize |
2961 | 0 | = htab->got_entry_size; |
2962 | |
|
2963 | 0 | return htab; |
2964 | 0 | } |
2965 | | |
2966 | | |
2967 | | bool |
2968 | | _bfd_x86_elf_always_size_sections (bfd *output_bfd, |
2969 | | struct bfd_link_info *info) |
2970 | 0 | { |
2971 | 0 | asection *tls_sec = elf_hash_table (info)->tls_sec; |
2972 | |
|
2973 | 0 | if (tls_sec && !bfd_link_relocatable (info)) |
2974 | 0 | { |
2975 | 0 | struct elf_link_hash_entry *tlsbase; |
2976 | |
|
2977 | 0 | tlsbase = elf_link_hash_lookup (elf_hash_table (info), |
2978 | 0 | "_TLS_MODULE_BASE_", |
2979 | 0 | false, false, false); |
2980 | |
|
2981 | 0 | if (tlsbase && tlsbase->type == STT_TLS) |
2982 | 0 | { |
2983 | 0 | struct elf_x86_link_hash_table *htab; |
2984 | 0 | struct bfd_link_hash_entry *bh = NULL; |
2985 | 0 | const struct elf_backend_data *bed |
2986 | 0 | = get_elf_backend_data (output_bfd); |
2987 | |
|
2988 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
2989 | 0 | if (htab == NULL) |
2990 | 0 | return false; |
2991 | | |
2992 | 0 | if (!(_bfd_generic_link_add_one_symbol |
2993 | 0 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
2994 | 0 | tls_sec, 0, NULL, false, |
2995 | 0 | bed->collect, &bh))) |
2996 | 0 | return false; |
2997 | | |
2998 | 0 | htab->tls_module_base = bh; |
2999 | |
|
3000 | 0 | tlsbase = (struct elf_link_hash_entry *)bh; |
3001 | 0 | tlsbase->def_regular = 1; |
3002 | 0 | tlsbase->other = STV_HIDDEN; |
3003 | 0 | tlsbase->root.linker_def = 1; |
3004 | 0 | (*bed->elf_backend_hide_symbol) (info, tlsbase, true); |
3005 | 0 | } |
3006 | 0 | } |
3007 | | |
3008 | 0 | return true; |
3009 | 0 | } |
3010 | | |
3011 | | void |
3012 | | _bfd_x86_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, |
3013 | | unsigned int st_other, |
3014 | | bool definition, |
3015 | | bool dynamic ATTRIBUTE_UNUSED) |
3016 | 0 | { |
3017 | 0 | if (definition) |
3018 | 0 | { |
3019 | 0 | struct elf_x86_link_hash_entry *eh |
3020 | 0 | = (struct elf_x86_link_hash_entry *) h; |
3021 | 0 | eh->def_protected = ELF_ST_VISIBILITY (st_other) == STV_PROTECTED; |
3022 | 0 | } |
3023 | 0 | } |
3024 | | |
3025 | | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
3026 | | |
3027 | | void |
3028 | | _bfd_x86_elf_copy_indirect_symbol (struct bfd_link_info *info, |
3029 | | struct elf_link_hash_entry *dir, |
3030 | | struct elf_link_hash_entry *ind) |
3031 | 0 | { |
3032 | 0 | struct elf_x86_link_hash_entry *edir, *eind; |
3033 | |
|
3034 | 0 | edir = (struct elf_x86_link_hash_entry *) dir; |
3035 | 0 | eind = (struct elf_x86_link_hash_entry *) ind; |
3036 | |
|
3037 | 0 | if (ind->root.type == bfd_link_hash_indirect |
3038 | 0 | && dir->got.refcount <= 0) |
3039 | 0 | { |
3040 | 0 | edir->tls_type = eind->tls_type; |
3041 | 0 | eind->tls_type = GOT_UNKNOWN; |
3042 | 0 | } |
3043 | | |
3044 | | /* Copy gotoff_ref so that elf_i386_adjust_dynamic_symbol will |
3045 | | generate a R_386_COPY reloc. */ |
3046 | 0 | edir->gotoff_ref |= eind->gotoff_ref; |
3047 | |
|
3048 | 0 | edir->zero_undefweak |= eind->zero_undefweak; |
3049 | |
|
3050 | 0 | if (ELIMINATE_COPY_RELOCS |
3051 | 0 | && ind->root.type != bfd_link_hash_indirect |
3052 | 0 | && dir->dynamic_adjusted) |
3053 | 0 | { |
3054 | | /* If called to transfer flags for a weakdef during processing |
3055 | | of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
3056 | | We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
3057 | 0 | if (dir->versioned != versioned_hidden) |
3058 | 0 | dir->ref_dynamic |= ind->ref_dynamic; |
3059 | 0 | dir->ref_regular |= ind->ref_regular; |
3060 | 0 | dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
3061 | 0 | dir->needs_plt |= ind->needs_plt; |
3062 | 0 | dir->pointer_equality_needed |= ind->pointer_equality_needed; |
3063 | 0 | } |
3064 | 0 | else |
3065 | 0 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
3066 | 0 | } |
3067 | | |
3068 | | /* Remove undefined weak symbol from the dynamic symbol table if it |
3069 | | is resolved to 0. */ |
3070 | | |
3071 | | bool |
3072 | | _bfd_x86_elf_fixup_symbol (struct bfd_link_info *info, |
3073 | | struct elf_link_hash_entry *h) |
3074 | 0 | { |
3075 | 0 | if (h->dynindx != -1 |
3076 | 0 | && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, elf_x86_hash_entry (h))) |
3077 | 0 | { |
3078 | 0 | h->dynindx = -1; |
3079 | 0 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
3080 | 0 | h->dynstr_index); |
3081 | 0 | } |
3082 | 0 | return true; |
3083 | 0 | } |
3084 | | |
3085 | | /* Change the STT_GNU_IFUNC symbol defined in position-dependent |
3086 | | executable into the normal function symbol and set its address |
3087 | | to its PLT entry, which should be resolved by R_*_IRELATIVE at |
3088 | | run-time. */ |
3089 | | |
3090 | | void |
3091 | | _bfd_x86_elf_link_fixup_ifunc_symbol (struct bfd_link_info *info, |
3092 | | struct elf_x86_link_hash_table *htab, |
3093 | | struct elf_link_hash_entry *h, |
3094 | | Elf_Internal_Sym *sym) |
3095 | 0 | { |
3096 | 0 | if (bfd_link_pde (info) |
3097 | 0 | && h->def_regular |
3098 | 0 | && h->dynindx != -1 |
3099 | 0 | && h->plt.offset != (bfd_vma) -1 |
3100 | 0 | && h->type == STT_GNU_IFUNC) |
3101 | 0 | { |
3102 | 0 | asection *plt_s; |
3103 | 0 | bfd_vma plt_offset; |
3104 | 0 | bfd *output_bfd = info->output_bfd; |
3105 | |
|
3106 | 0 | if (htab->plt_second) |
3107 | 0 | { |
3108 | 0 | struct elf_x86_link_hash_entry *eh |
3109 | 0 | = (struct elf_x86_link_hash_entry *) h; |
3110 | |
|
3111 | 0 | plt_s = htab->plt_second; |
3112 | 0 | plt_offset = eh->plt_second.offset; |
3113 | 0 | } |
3114 | 0 | else |
3115 | 0 | { |
3116 | 0 | plt_s = htab->elf.splt; |
3117 | 0 | plt_offset = h->plt.offset; |
3118 | 0 | } |
3119 | |
|
3120 | 0 | sym->st_size = 0; |
3121 | 0 | sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); |
3122 | 0 | sym->st_shndx |
3123 | 0 | = _bfd_elf_section_from_bfd_section (output_bfd, |
3124 | 0 | plt_s->output_section); |
3125 | 0 | sym->st_value = (plt_s->output_section->vma |
3126 | 0 | + plt_s->output_offset + plt_offset); |
3127 | 0 | } |
3128 | 0 | } |
3129 | | |
3130 | | /* Report relative relocation. */ |
3131 | | |
3132 | | void |
3133 | | _bfd_x86_elf_link_report_relative_reloc |
3134 | | (struct bfd_link_info *info, asection *asect, |
3135 | | struct elf_link_hash_entry *h, Elf_Internal_Sym *sym, |
3136 | | const char *reloc_name, const void *reloc) |
3137 | 0 | { |
3138 | 0 | const char *name; |
3139 | 0 | bfd *abfd; |
3140 | 0 | const Elf_Internal_Rela *rel = (const Elf_Internal_Rela *) reloc; |
3141 | | |
3142 | | /* Use the output BFD for linker created sections. */ |
3143 | 0 | if ((asect->flags & SEC_LINKER_CREATED) != 0) |
3144 | 0 | abfd = info->output_bfd; |
3145 | 0 | else |
3146 | 0 | abfd = asect->owner; |
3147 | |
|
3148 | 0 | if (h != NULL && h->root.root.string != NULL) |
3149 | 0 | name = h->root.root.string; |
3150 | 0 | else |
3151 | 0 | name = bfd_elf_sym_name (abfd, &elf_symtab_hdr (abfd), sym, NULL); |
3152 | |
|
3153 | 0 | if (asect->use_rela_p) |
3154 | 0 | info->callbacks->einfo |
3155 | 0 | (_("%pB: %s (offset: 0x%v, info: 0x%v, addend: 0x%v) against " |
3156 | 0 | "'%s' " "for section '%pA' in %pB\n"), |
3157 | 0 | info->output_bfd, reloc_name, rel->r_offset, rel->r_info, |
3158 | 0 | rel->r_addend, name, asect, abfd); |
3159 | 0 | else |
3160 | 0 | info->callbacks->einfo |
3161 | 0 | (_("%pB: %s (offset: 0x%v, info: 0x%v) against '%s' for section " |
3162 | 0 | "'%pA' in %pB\n"), |
3163 | 0 | info->output_bfd, reloc_name, rel->r_offset, rel->r_info, name, |
3164 | 0 | asect, abfd); |
3165 | 0 | } |
3166 | | |
3167 | | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ |
3168 | | |
3169 | | bool |
3170 | | _bfd_x86_elf_hash_symbol (struct elf_link_hash_entry *h) |
3171 | 0 | { |
3172 | 0 | if (h->plt.offset != (bfd_vma) -1 |
3173 | 0 | && !h->def_regular |
3174 | 0 | && !h->pointer_equality_needed) |
3175 | 0 | return false; |
3176 | | |
3177 | 0 | return _bfd_elf_hash_symbol (h); |
3178 | 0 | } |
3179 | | |
3180 | | /* Adjust a symbol defined by a dynamic object and referenced by a |
3181 | | regular object. The current definition is in some section of the |
3182 | | dynamic object, but we're not including those sections. We have to |
3183 | | change the definition to something the rest of the link can |
3184 | | understand. */ |
3185 | | |
3186 | | bool |
3187 | | _bfd_x86_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
3188 | | struct elf_link_hash_entry *h) |
3189 | 0 | { |
3190 | 0 | struct elf_x86_link_hash_table *htab; |
3191 | 0 | asection *s, *srel; |
3192 | 0 | struct elf_x86_link_hash_entry *eh; |
3193 | 0 | struct elf_dyn_relocs *p; |
3194 | 0 | const struct elf_backend_data *bed |
3195 | 0 | = get_elf_backend_data (info->output_bfd); |
3196 | |
|
3197 | 0 | eh = (struct elf_x86_link_hash_entry *) h; |
3198 | | |
3199 | | /* Clear GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS if it is turned |
3200 | | on by an input relocatable file and there is a non-GOT/non-PLT |
3201 | | reference from another relocatable file without it. |
3202 | | NB: There can be non-GOT reference in data sections in input with |
3203 | | GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS. */ |
3204 | 0 | if (eh->non_got_ref_without_indirect_extern_access |
3205 | 0 | && info->indirect_extern_access == 1 |
3206 | 0 | && bfd_link_executable (info)) |
3207 | 0 | { |
3208 | 0 | unsigned int needed_1; |
3209 | 0 | info->indirect_extern_access = 0; |
3210 | | /* Turn off nocopyreloc if implied by indirect_extern_access. */ |
3211 | 0 | if (info->nocopyreloc == 2) |
3212 | 0 | info->nocopyreloc = 0; |
3213 | 0 | needed_1 = bfd_h_get_32 (info->output_bfd, info->needed_1_p); |
3214 | 0 | needed_1 &= ~GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS; |
3215 | 0 | bfd_h_put_32 (info->output_bfd, needed_1, info->needed_1_p); |
3216 | 0 | } |
3217 | | |
3218 | | /* STT_GNU_IFUNC symbol must go through PLT. */ |
3219 | 0 | if (h->type == STT_GNU_IFUNC) |
3220 | 0 | { |
3221 | | /* All local STT_GNU_IFUNC references must be treate as local |
3222 | | calls via local PLT. */ |
3223 | 0 | if (h->ref_regular |
3224 | 0 | && SYMBOL_CALLS_LOCAL (info, h)) |
3225 | 0 | { |
3226 | 0 | bfd_size_type pc_count = 0, count = 0; |
3227 | 0 | struct elf_dyn_relocs **pp; |
3228 | |
|
3229 | 0 | eh = (struct elf_x86_link_hash_entry *) h; |
3230 | 0 | for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
3231 | 0 | { |
3232 | 0 | pc_count += p->pc_count; |
3233 | 0 | p->count -= p->pc_count; |
3234 | 0 | p->pc_count = 0; |
3235 | 0 | count += p->count; |
3236 | 0 | if (p->count == 0) |
3237 | 0 | *pp = p->next; |
3238 | 0 | else |
3239 | 0 | pp = &p->next; |
3240 | 0 | } |
3241 | |
|
3242 | 0 | if (pc_count || count) |
3243 | 0 | { |
3244 | 0 | h->non_got_ref = 1; |
3245 | 0 | if (pc_count) |
3246 | 0 | { |
3247 | | /* Increment PLT reference count only for PC-relative |
3248 | | references. */ |
3249 | 0 | h->needs_plt = 1; |
3250 | 0 | if (h->plt.refcount <= 0) |
3251 | 0 | h->plt.refcount = 1; |
3252 | 0 | else |
3253 | 0 | h->plt.refcount += 1; |
3254 | 0 | } |
3255 | 0 | } |
3256 | | |
3257 | | /* GOTOFF relocation needs PLT. */ |
3258 | 0 | if (eh->gotoff_ref) |
3259 | 0 | h->plt.refcount = 1; |
3260 | 0 | } |
3261 | |
|
3262 | 0 | if (h->plt.refcount <= 0) |
3263 | 0 | { |
3264 | 0 | h->plt.offset = (bfd_vma) -1; |
3265 | 0 | h->needs_plt = 0; |
3266 | 0 | } |
3267 | 0 | return true; |
3268 | 0 | } |
3269 | | |
3270 | | /* If this is a function, put it in the procedure linkage table. We |
3271 | | will fill in the contents of the procedure linkage table later, |
3272 | | when we know the address of the .got section. */ |
3273 | 0 | if (h->type == STT_FUNC |
3274 | 0 | || h->needs_plt) |
3275 | 0 | { |
3276 | 0 | if (h->plt.refcount <= 0 |
3277 | 0 | || SYMBOL_CALLS_LOCAL (info, h) |
3278 | 0 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
3279 | 0 | && h->root.type == bfd_link_hash_undefweak)) |
3280 | 0 | { |
3281 | | /* This case can occur if we saw a PLT32 reloc in an input |
3282 | | file, but the symbol was never referred to by a dynamic |
3283 | | object, or if all references were garbage collected. In |
3284 | | such a case, we don't actually need to build a procedure |
3285 | | linkage table, and we can just do a PC32 reloc instead. */ |
3286 | 0 | h->plt.offset = (bfd_vma) -1; |
3287 | 0 | h->needs_plt = 0; |
3288 | 0 | } |
3289 | |
|
3290 | 0 | return true; |
3291 | 0 | } |
3292 | 0 | else |
3293 | | /* It's possible that we incorrectly decided a .plt reloc was needed |
3294 | | * for an R_386_PC32/R_X86_64_PC32 reloc to a non-function sym in |
3295 | | check_relocs. We can't decide accurately between function and |
3296 | | non-function syms in check-relocs; Objects loaded later in |
3297 | | the link may change h->type. So fix it now. */ |
3298 | 0 | h->plt.offset = (bfd_vma) -1; |
3299 | | |
3300 | | /* If this is a weak symbol, and there is a real definition, the |
3301 | | processor independent code will have arranged for us to see the |
3302 | | real definition first, and we can just use the same value. */ |
3303 | 0 | if (h->is_weakalias) |
3304 | 0 | { |
3305 | 0 | struct elf_link_hash_entry *def = weakdef (h); |
3306 | 0 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
3307 | 0 | h->root.u.def.section = def->root.u.def.section; |
3308 | 0 | h->root.u.def.value = def->root.u.def.value; |
3309 | 0 | if (ELIMINATE_COPY_RELOCS |
3310 | 0 | || info->nocopyreloc |
3311 | 0 | || SYMBOL_NO_COPYRELOC (info, eh)) |
3312 | 0 | { |
3313 | | /* NB: needs_copy is always 0 for i386. */ |
3314 | 0 | h->non_got_ref = def->non_got_ref; |
3315 | 0 | eh->needs_copy = def->needs_copy; |
3316 | 0 | } |
3317 | 0 | return true; |
3318 | 0 | } |
3319 | | |
3320 | | /* This is a reference to a symbol defined by a dynamic object which |
3321 | | is not a function. */ |
3322 | | |
3323 | | /* If we are creating a shared library, we must presume that the |
3324 | | only references to the symbol are via the global offset table. |
3325 | | For such cases we need not do anything here; the relocations will |
3326 | | be handled correctly by relocate_section. */ |
3327 | 0 | if (!bfd_link_executable (info)) |
3328 | 0 | return true; |
3329 | | |
3330 | | /* If there are no references to this symbol that do not use the |
3331 | | GOT nor R_386_GOTOFF relocation, we don't need to generate a copy |
3332 | | reloc. NB: gotoff_ref is always 0 for x86-64. */ |
3333 | 0 | if (!h->non_got_ref && !eh->gotoff_ref) |
3334 | 0 | return true; |
3335 | | |
3336 | | /* If -z nocopyreloc was given, we won't generate them either. */ |
3337 | 0 | if (info->nocopyreloc || SYMBOL_NO_COPYRELOC (info, eh)) |
3338 | 0 | { |
3339 | 0 | h->non_got_ref = 0; |
3340 | 0 | return true; |
3341 | 0 | } |
3342 | | |
3343 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
3344 | 0 | if (htab == NULL) |
3345 | 0 | return false; |
3346 | | |
3347 | | /* If there aren't any dynamic relocs in read-only sections nor |
3348 | | R_386_GOTOFF relocation, then we can keep the dynamic relocs and |
3349 | | avoid the copy reloc. This doesn't work on VxWorks, where we can |
3350 | | not have dynamic relocations (other than copy and jump slot |
3351 | | relocations) in an executable. */ |
3352 | 0 | if (ELIMINATE_COPY_RELOCS |
3353 | 0 | && (bed->target_id == X86_64_ELF_DATA |
3354 | 0 | || (!eh->gotoff_ref |
3355 | 0 | && htab->elf.target_os != is_vxworks))) |
3356 | 0 | { |
3357 | | /* If we don't find any dynamic relocs in read-only sections, |
3358 | | then we'll be keeping the dynamic relocs and avoiding the copy |
3359 | | reloc. */ |
3360 | 0 | if (!_bfd_elf_readonly_dynrelocs (h)) |
3361 | 0 | { |
3362 | 0 | h->non_got_ref = 0; |
3363 | 0 | return true; |
3364 | 0 | } |
3365 | 0 | } |
3366 | | |
3367 | | /* We must allocate the symbol in our .dynbss section, which will |
3368 | | become part of the .bss section of the executable. There will be |
3369 | | an entry for this symbol in the .dynsym section. The dynamic |
3370 | | object will contain position independent code, so all references |
3371 | | from the dynamic object to this symbol will go through the global |
3372 | | offset table. The dynamic linker will use the .dynsym entry to |
3373 | | determine the address it must put in the global offset table, so |
3374 | | both the dynamic object and the regular object will refer to the |
3375 | | same memory location for the variable. */ |
3376 | | |
3377 | | /* We must generate a R_386_COPY/R_X86_64_COPY reloc to tell the |
3378 | | dynamic linker to copy the initial value out of the dynamic object |
3379 | | and into the runtime process image. */ |
3380 | 0 | if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
3381 | 0 | { |
3382 | 0 | s = htab->elf.sdynrelro; |
3383 | 0 | srel = htab->elf.sreldynrelro; |
3384 | 0 | } |
3385 | 0 | else |
3386 | 0 | { |
3387 | 0 | s = htab->elf.sdynbss; |
3388 | 0 | srel = htab->elf.srelbss; |
3389 | 0 | } |
3390 | 0 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
3391 | 0 | { |
3392 | 0 | if (eh->def_protected && bfd_link_executable (info)) |
3393 | 0 | for (p = h->dyn_relocs; p != NULL; p = p->next) |
3394 | 0 | { |
3395 | | /* Disallow copy relocation against non-copyable protected |
3396 | | symbol. */ |
3397 | 0 | s = p->sec->output_section; |
3398 | 0 | if (s != NULL && (s->flags & SEC_READONLY) != 0) |
3399 | 0 | { |
3400 | 0 | info->callbacks->einfo |
3401 | | /* xgettext:c-format */ |
3402 | 0 | (_("%F%P: %pB: copy relocation against non-copyable " |
3403 | 0 | "protected symbol `%s' in %pB\n"), |
3404 | 0 | p->sec->owner, h->root.root.string, |
3405 | 0 | h->root.u.def.section->owner); |
3406 | 0 | return false; |
3407 | 0 | } |
3408 | 0 | } |
3409 | | |
3410 | 0 | srel->size += htab->sizeof_reloc; |
3411 | 0 | h->needs_copy = 1; |
3412 | 0 | } |
3413 | | |
3414 | 0 | return _bfd_elf_adjust_dynamic_copy (info, h, s); |
3415 | 0 | } |
3416 | | |
3417 | | void |
3418 | | _bfd_x86_elf_hide_symbol (struct bfd_link_info *info, |
3419 | | struct elf_link_hash_entry *h, |
3420 | | bool force_local) |
3421 | 0 | { |
3422 | 0 | if (h->root.type == bfd_link_hash_undefweak |
3423 | 0 | && info->nointerp |
3424 | 0 | && bfd_link_pie (info)) |
3425 | 0 | { |
3426 | | /* When there is no dynamic interpreter in PIE, make the undefined |
3427 | | weak symbol dynamic so that PC relative branch to the undefined |
3428 | | weak symbol will land to address 0. */ |
3429 | 0 | struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h); |
3430 | 0 | if (h->plt.refcount > 0 |
3431 | 0 | || eh->plt_got.refcount > 0) |
3432 | 0 | return; |
3433 | 0 | } |
3434 | | |
3435 | 0 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); |
3436 | 0 | } |
3437 | | |
3438 | | /* Return TRUE if a symbol is referenced locally. It is similar to |
3439 | | SYMBOL_REFERENCES_LOCAL, but it also checks version script. It |
3440 | | works in check_relocs. */ |
3441 | | |
3442 | | bool |
3443 | | _bfd_x86_elf_link_symbol_references_local (struct bfd_link_info *info, |
3444 | | struct elf_link_hash_entry *h) |
3445 | 0 | { |
3446 | 0 | struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h); |
3447 | 0 | struct elf_x86_link_hash_table *htab |
3448 | 0 | = (struct elf_x86_link_hash_table *) info->hash; |
3449 | |
|
3450 | 0 | if (eh->local_ref > 1) |
3451 | 0 | return true; |
3452 | | |
3453 | 0 | if (eh->local_ref == 1) |
3454 | 0 | return false; |
3455 | | |
3456 | | /* Unversioned symbols defined in regular objects can be forced local |
3457 | | by linker version script. A weak undefined symbol is forced local |
3458 | | if |
3459 | | 1. It has non-default visibility. Or |
3460 | | 2. When building executable, there is no dynamic linker. Or |
3461 | | 3. or "-z nodynamic-undefined-weak" is used. |
3462 | | */ |
3463 | 0 | if (_bfd_elf_symbol_refs_local_p (h, info, 1) |
3464 | 0 | || (h->root.type == bfd_link_hash_undefweak |
3465 | 0 | && (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
3466 | 0 | || (bfd_link_executable (info) |
3467 | 0 | && htab->interp == NULL) |
3468 | 0 | || info->dynamic_undefined_weak == 0)) |
3469 | 0 | || ((h->def_regular || ELF_COMMON_DEF_P (h)) |
3470 | 0 | && info->version_info != NULL |
3471 | 0 | && _bfd_elf_link_hide_sym_by_version (info, h))) |
3472 | 0 | { |
3473 | 0 | eh->local_ref = 2; |
3474 | 0 | return true; |
3475 | 0 | } |
3476 | | |
3477 | 0 | eh->local_ref = 1; |
3478 | 0 | return false; |
3479 | 0 | } |
3480 | | |
3481 | | /* Return the section that should be marked against GC for a given |
3482 | | relocation. */ |
3483 | | |
3484 | | asection * |
3485 | | _bfd_x86_elf_gc_mark_hook (asection *sec, |
3486 | | struct bfd_link_info *info, |
3487 | | Elf_Internal_Rela *rel, |
3488 | | struct elf_link_hash_entry *h, |
3489 | | Elf_Internal_Sym *sym) |
3490 | 0 | { |
3491 | | /* Compiler should optimize this out. */ |
3492 | 0 | if (((unsigned int) R_X86_64_GNU_VTINHERIT |
3493 | 0 | != (unsigned int) R_386_GNU_VTINHERIT) |
3494 | 0 | || ((unsigned int) R_X86_64_GNU_VTENTRY |
3495 | 0 | != (unsigned int) R_386_GNU_VTENTRY)) |
3496 | 0 | abort (); |
3497 | | |
3498 | 0 | if (h != NULL) |
3499 | 0 | switch (ELF32_R_TYPE (rel->r_info)) |
3500 | 0 | { |
3501 | 0 | case R_X86_64_GNU_VTINHERIT: |
3502 | 0 | case R_X86_64_GNU_VTENTRY: |
3503 | 0 | return NULL; |
3504 | 0 | } |
3505 | | |
3506 | 0 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
3507 | 0 | } |
3508 | | |
3509 | | static bfd_vma |
3510 | | elf_i386_get_plt_got_vma (struct elf_x86_plt *plt_p ATTRIBUTE_UNUSED, |
3511 | | bfd_vma off, |
3512 | | bfd_vma offset ATTRIBUTE_UNUSED, |
3513 | | bfd_vma got_addr) |
3514 | 0 | { |
3515 | 0 | return got_addr + off; |
3516 | 0 | } |
3517 | | |
3518 | | static bfd_vma |
3519 | | elf_x86_64_get_plt_got_vma (struct elf_x86_plt *plt_p, |
3520 | | bfd_vma off, |
3521 | | bfd_vma offset, |
3522 | | bfd_vma got_addr ATTRIBUTE_UNUSED) |
3523 | 0 | { |
3524 | 0 | return plt_p->sec->vma + offset + off + plt_p->plt_got_insn_size; |
3525 | 0 | } |
3526 | | |
3527 | | static bool |
3528 | | elf_i386_valid_plt_reloc_p (unsigned int type) |
3529 | 0 | { |
3530 | 0 | return (type == R_386_JUMP_SLOT |
3531 | 0 | || type == R_386_GLOB_DAT |
3532 | 0 | || type == R_386_IRELATIVE); |
3533 | 0 | } |
3534 | | |
3535 | | static bool |
3536 | | elf_x86_64_valid_plt_reloc_p (unsigned int type) |
3537 | 0 | { |
3538 | 0 | return (type == R_X86_64_JUMP_SLOT |
3539 | 0 | || type == R_X86_64_GLOB_DAT |
3540 | 0 | || type == R_X86_64_IRELATIVE); |
3541 | 0 | } |
3542 | | |
3543 | | long |
3544 | | _bfd_x86_elf_get_synthetic_symtab (bfd *abfd, |
3545 | | long count, |
3546 | | long relsize, |
3547 | | bfd_vma got_addr, |
3548 | | struct elf_x86_plt plts[], |
3549 | | asymbol **dynsyms, |
3550 | | asymbol **ret) |
3551 | 0 | { |
3552 | 0 | long size, i, n, len; |
3553 | 0 | int j; |
3554 | 0 | unsigned int plt_got_offset, plt_entry_size; |
3555 | 0 | asymbol *s; |
3556 | 0 | bfd_byte *plt_contents; |
3557 | 0 | long dynrelcount; |
3558 | 0 | arelent **dynrelbuf, *p; |
3559 | 0 | char *names; |
3560 | 0 | const struct elf_backend_data *bed; |
3561 | 0 | bfd_vma (*get_plt_got_vma) (struct elf_x86_plt *, bfd_vma, bfd_vma, |
3562 | 0 | bfd_vma); |
3563 | 0 | bool (*valid_plt_reloc_p) (unsigned int); |
3564 | |
|
3565 | 0 | dynrelbuf = NULL; |
3566 | 0 | if (count == 0) |
3567 | 0 | goto bad_return; |
3568 | | |
3569 | 0 | dynrelbuf = (arelent **) bfd_malloc (relsize); |
3570 | 0 | if (dynrelbuf == NULL) |
3571 | 0 | goto bad_return; |
3572 | | |
3573 | 0 | dynrelcount = bfd_canonicalize_dynamic_reloc (abfd, dynrelbuf, |
3574 | 0 | dynsyms); |
3575 | 0 | if (dynrelcount <= 0) |
3576 | 0 | goto bad_return; |
3577 | | |
3578 | | /* Sort the relocs by address. */ |
3579 | 0 | qsort (dynrelbuf, dynrelcount, sizeof (arelent *), |
3580 | 0 | _bfd_x86_elf_compare_relocs); |
3581 | |
|
3582 | 0 | size = count * sizeof (asymbol); |
3583 | | |
3584 | | /* Allocate space for @plt suffixes. */ |
3585 | 0 | n = 0; |
3586 | 0 | for (i = 0; i < dynrelcount; i++) |
3587 | 0 | { |
3588 | 0 | p = dynrelbuf[i]; |
3589 | 0 | size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); |
3590 | 0 | if (p->addend != 0) |
3591 | 0 | size += sizeof ("+0x") - 1 + 8 + 8 * ABI_64_P (abfd); |
3592 | 0 | } |
3593 | |
|
3594 | 0 | s = *ret = (asymbol *) bfd_zmalloc (size); |
3595 | 0 | if (s == NULL) |
3596 | 0 | goto bad_return; |
3597 | | |
3598 | 0 | bed = get_elf_backend_data (abfd); |
3599 | |
|
3600 | 0 | if (bed->target_id == X86_64_ELF_DATA) |
3601 | 0 | { |
3602 | 0 | get_plt_got_vma = elf_x86_64_get_plt_got_vma; |
3603 | 0 | valid_plt_reloc_p = elf_x86_64_valid_plt_reloc_p; |
3604 | 0 | } |
3605 | 0 | else |
3606 | 0 | { |
3607 | 0 | get_plt_got_vma = elf_i386_get_plt_got_vma; |
3608 | 0 | valid_plt_reloc_p = elf_i386_valid_plt_reloc_p; |
3609 | 0 | if (got_addr) |
3610 | 0 | { |
3611 | | /* Check .got.plt and then .got to get the _GLOBAL_OFFSET_TABLE_ |
3612 | | address. */ |
3613 | 0 | asection *sec = bfd_get_section_by_name (abfd, ".got.plt"); |
3614 | 0 | if (sec != NULL) |
3615 | 0 | got_addr = sec->vma; |
3616 | 0 | else |
3617 | 0 | { |
3618 | 0 | sec = bfd_get_section_by_name (abfd, ".got"); |
3619 | 0 | if (sec != NULL) |
3620 | 0 | got_addr = sec->vma; |
3621 | 0 | } |
3622 | |
|
3623 | 0 | if (got_addr == (bfd_vma) -1) |
3624 | 0 | goto bad_return; |
3625 | 0 | } |
3626 | 0 | } |
3627 | | |
3628 | | /* Check for each PLT section. */ |
3629 | 0 | names = (char *) (s + count); |
3630 | 0 | size = 0; |
3631 | 0 | n = 0; |
3632 | 0 | for (j = 0; plts[j].name != NULL; j++) |
3633 | 0 | if ((plt_contents = plts[j].contents) != NULL) |
3634 | 0 | { |
3635 | 0 | long k; |
3636 | 0 | bfd_vma offset; |
3637 | 0 | asection *plt; |
3638 | 0 | struct elf_x86_plt *plt_p = &plts[j]; |
3639 | |
|
3640 | 0 | plt_got_offset = plt_p->plt_got_offset; |
3641 | 0 | plt_entry_size = plt_p->plt_entry_size; |
3642 | |
|
3643 | 0 | plt = plt_p->sec; |
3644 | |
|
3645 | 0 | if ((plt_p->type & plt_lazy)) |
3646 | 0 | { |
3647 | | /* Skip PLT0 in lazy PLT. */ |
3648 | 0 | k = 1; |
3649 | 0 | offset = plt_entry_size; |
3650 | 0 | } |
3651 | 0 | else |
3652 | 0 | { |
3653 | 0 | k = 0; |
3654 | 0 | offset = 0; |
3655 | 0 | } |
3656 | | |
3657 | | /* Check each PLT entry against dynamic relocations. */ |
3658 | 0 | for (; k < plt_p->count; k++) |
3659 | 0 | { |
3660 | 0 | int off; |
3661 | 0 | bfd_vma got_vma; |
3662 | 0 | long min, max, mid; |
3663 | | |
3664 | | /* Get the GOT offset for i386 or the PC-relative offset |
3665 | | for x86-64, a signed 32-bit integer. */ |
3666 | 0 | off = H_GET_32 (abfd, (plt_contents + offset |
3667 | 0 | + plt_got_offset)); |
3668 | 0 | got_vma = get_plt_got_vma (plt_p, off, offset, got_addr); |
3669 | | |
3670 | | /* Binary search. */ |
3671 | 0 | p = dynrelbuf[0]; |
3672 | 0 | min = 0; |
3673 | 0 | max = dynrelcount; |
3674 | 0 | while ((min + 1) < max) |
3675 | 0 | { |
3676 | 0 | arelent *r; |
3677 | |
|
3678 | 0 | mid = (min + max) / 2; |
3679 | 0 | r = dynrelbuf[mid]; |
3680 | 0 | if (got_vma > r->address) |
3681 | 0 | min = mid; |
3682 | 0 | else if (got_vma < r->address) |
3683 | 0 | max = mid; |
3684 | 0 | else |
3685 | 0 | { |
3686 | 0 | p = r; |
3687 | 0 | break; |
3688 | 0 | } |
3689 | 0 | } |
3690 | | |
3691 | | /* Skip unknown relocation. PR 17512: file: bc9d6cf5. */ |
3692 | 0 | if (got_vma == p->address |
3693 | 0 | && p->howto != NULL |
3694 | 0 | && valid_plt_reloc_p (p->howto->type)) |
3695 | 0 | { |
3696 | 0 | *s = **p->sym_ptr_ptr; |
3697 | | /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL |
3698 | | set. Since we are defining a symbol, ensure one |
3699 | | of them is set. */ |
3700 | 0 | if ((s->flags & BSF_LOCAL) == 0) |
3701 | 0 | s->flags |= BSF_GLOBAL; |
3702 | 0 | s->flags |= BSF_SYNTHETIC; |
3703 | | /* This is no longer a section symbol. */ |
3704 | 0 | s->flags &= ~BSF_SECTION_SYM; |
3705 | 0 | s->section = plt; |
3706 | 0 | s->the_bfd = plt->owner; |
3707 | 0 | s->value = offset; |
3708 | 0 | s->udata.p = NULL; |
3709 | 0 | s->name = names; |
3710 | 0 | len = strlen ((*p->sym_ptr_ptr)->name); |
3711 | 0 | memcpy (names, (*p->sym_ptr_ptr)->name, len); |
3712 | 0 | names += len; |
3713 | 0 | if (p->addend != 0) |
3714 | 0 | { |
3715 | 0 | char buf[30], *a; |
3716 | |
|
3717 | 0 | memcpy (names, "+0x", sizeof ("+0x") - 1); |
3718 | 0 | names += sizeof ("+0x") - 1; |
3719 | 0 | bfd_sprintf_vma (abfd, buf, p->addend); |
3720 | 0 | for (a = buf; *a == '0'; ++a) |
3721 | 0 | ; |
3722 | 0 | size = strlen (a); |
3723 | 0 | memcpy (names, a, size); |
3724 | 0 | names += size; |
3725 | 0 | } |
3726 | 0 | memcpy (names, "@plt", sizeof ("@plt")); |
3727 | 0 | names += sizeof ("@plt"); |
3728 | 0 | n++; |
3729 | 0 | s++; |
3730 | | /* There should be only one entry in PLT for a given |
3731 | | symbol. Set howto to NULL after processing a PLT |
3732 | | entry to guard against corrupted PLT. */ |
3733 | 0 | p->howto = NULL; |
3734 | 0 | } |
3735 | 0 | offset += plt_entry_size; |
3736 | 0 | } |
3737 | 0 | } |
3738 | | |
3739 | | /* PLT entries with R_386_TLS_DESC relocations are skipped. */ |
3740 | 0 | if (n == 0) |
3741 | 0 | { |
3742 | 0 | bad_return: |
3743 | 0 | count = -1; |
3744 | 0 | } |
3745 | 0 | else |
3746 | 0 | count = n; |
3747 | |
|
3748 | 0 | for (j = 0; plts[j].name != NULL; j++) |
3749 | 0 | free (plts[j].contents); |
3750 | |
|
3751 | 0 | free (dynrelbuf); |
3752 | |
|
3753 | 0 | return count; |
3754 | 0 | } |
3755 | | |
3756 | | /* Parse x86 GNU properties. */ |
3757 | | |
3758 | | enum elf_property_kind |
3759 | | _bfd_x86_elf_parse_gnu_properties (bfd *abfd, unsigned int type, |
3760 | | bfd_byte *ptr, unsigned int datasz) |
3761 | 0 | { |
3762 | 0 | elf_property *prop; |
3763 | |
|
3764 | 0 | if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED |
3765 | 0 | || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
3766 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_AND_LO |
3767 | 0 | && type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
3768 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_OR_LO |
3769 | 0 | && type <= GNU_PROPERTY_X86_UINT32_OR_HI) |
3770 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO |
3771 | 0 | && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) |
3772 | 0 | { |
3773 | 0 | if (datasz != 4) |
3774 | 0 | { |
3775 | 0 | _bfd_error_handler |
3776 | 0 | (_("error: %pB: <corrupt x86 property (0x%x) size: 0x%x>"), |
3777 | 0 | abfd, type, datasz); |
3778 | 0 | return property_corrupt; |
3779 | 0 | } |
3780 | 0 | prop = _bfd_elf_get_property (abfd, type, datasz); |
3781 | 0 | prop->u.number |= bfd_h_get_32 (abfd, ptr); |
3782 | 0 | prop->pr_kind = property_number; |
3783 | 0 | return property_number; |
3784 | 0 | } |
3785 | | |
3786 | 0 | return property_ignored; |
3787 | 0 | } |
3788 | | |
3789 | | /* Merge x86 GNU property BPROP with APROP. If APROP isn't NULL, |
3790 | | return TRUE if APROP is updated. Otherwise, return TRUE if BPROP |
3791 | | should be merged with ABFD. */ |
3792 | | |
3793 | | bool |
3794 | | _bfd_x86_elf_merge_gnu_properties (struct bfd_link_info *info, |
3795 | | bfd *abfd ATTRIBUTE_UNUSED, |
3796 | | bfd *bbfd ATTRIBUTE_UNUSED, |
3797 | | elf_property *aprop, |
3798 | | elf_property *bprop) |
3799 | 0 | { |
3800 | 0 | unsigned int number, features; |
3801 | 0 | bool updated = false; |
3802 | 0 | const struct elf_backend_data *bed; |
3803 | 0 | struct elf_x86_link_hash_table *htab; |
3804 | 0 | unsigned int pr_type = aprop != NULL ? aprop->pr_type : bprop->pr_type; |
3805 | |
|
3806 | 0 | if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED |
3807 | 0 | || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO |
3808 | 0 | && pr_type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) |
3809 | 0 | { |
3810 | 0 | if (aprop == NULL || bprop == NULL) |
3811 | 0 | { |
3812 | | /* Only one of APROP and BPROP can be NULL. */ |
3813 | 0 | if (aprop != NULL) |
3814 | 0 | { |
3815 | | /* Remove this property since the other input file doesn't |
3816 | | have it. */ |
3817 | 0 | aprop->pr_kind = property_remove; |
3818 | 0 | updated = true; |
3819 | 0 | } |
3820 | 0 | } |
3821 | 0 | else |
3822 | 0 | { |
3823 | 0 | number = aprop->u.number; |
3824 | 0 | aprop->u.number = number | bprop->u.number; |
3825 | 0 | updated = number != (unsigned int) aprop->u.number; |
3826 | 0 | } |
3827 | 0 | return updated; |
3828 | 0 | } |
3829 | 0 | else if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
3830 | 0 | || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_LO |
3831 | 0 | && pr_type <= GNU_PROPERTY_X86_UINT32_OR_HI)) |
3832 | 0 | { |
3833 | 0 | features = 0; |
3834 | 0 | if (pr_type == GNU_PROPERTY_X86_ISA_1_NEEDED) |
3835 | 0 | { |
3836 | 0 | bed = get_elf_backend_data (info->output_bfd); |
3837 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
3838 | 0 | switch (htab->params->isa_level) |
3839 | 0 | { |
3840 | 0 | case 0: |
3841 | 0 | break; |
3842 | 0 | case 2: |
3843 | 0 | features = GNU_PROPERTY_X86_ISA_1_V2; |
3844 | 0 | break; |
3845 | 0 | case 3: |
3846 | 0 | features = GNU_PROPERTY_X86_ISA_1_V3; |
3847 | 0 | break; |
3848 | 0 | case 4: |
3849 | 0 | features = GNU_PROPERTY_X86_ISA_1_V4; |
3850 | 0 | break; |
3851 | 0 | default: |
3852 | 0 | abort (); |
3853 | 0 | } |
3854 | 0 | } |
3855 | 0 | if (aprop != NULL && bprop != NULL) |
3856 | 0 | { |
3857 | 0 | number = aprop->u.number; |
3858 | 0 | aprop->u.number = number | bprop->u.number | features; |
3859 | | /* Remove the property if all bits are empty. */ |
3860 | 0 | if (aprop->u.number == 0) |
3861 | 0 | { |
3862 | 0 | aprop->pr_kind = property_remove; |
3863 | 0 | updated = true; |
3864 | 0 | } |
3865 | 0 | else |
3866 | 0 | updated = number != (unsigned int) aprop->u.number; |
3867 | 0 | } |
3868 | 0 | else |
3869 | 0 | { |
3870 | | /* Only one of APROP and BPROP can be NULL. */ |
3871 | 0 | if (aprop != NULL) |
3872 | 0 | { |
3873 | 0 | aprop->u.number |= features; |
3874 | 0 | if (aprop->u.number == 0) |
3875 | 0 | { |
3876 | | /* Remove APROP if all bits are empty. */ |
3877 | 0 | aprop->pr_kind = property_remove; |
3878 | 0 | updated = true; |
3879 | 0 | } |
3880 | 0 | } |
3881 | 0 | else |
3882 | 0 | { |
3883 | | /* Return TRUE if APROP is NULL and all bits of BPROP |
3884 | | aren't empty to indicate that BPROP should be added |
3885 | | to ABFD. */ |
3886 | 0 | bprop->u.number |= features; |
3887 | 0 | updated = bprop->u.number != 0; |
3888 | 0 | } |
3889 | 0 | } |
3890 | 0 | return updated; |
3891 | 0 | } |
3892 | 0 | else if (pr_type >= GNU_PROPERTY_X86_UINT32_AND_LO |
3893 | 0 | && pr_type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
3894 | 0 | { |
3895 | | /* Only one of APROP and BPROP can be NULL: |
3896 | | 1. APROP & BPROP when both APROP and BPROP aren't NULL. |
3897 | | 2. If APROP is NULL, remove x86 feature. |
3898 | | 3. Otherwise, do nothing. |
3899 | | */ |
3900 | 0 | bed = get_elf_backend_data (info->output_bfd); |
3901 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
3902 | 0 | if (!htab) |
3903 | 0 | abort (); |
3904 | 0 | if (aprop != NULL && bprop != NULL) |
3905 | 0 | { |
3906 | 0 | number = aprop->u.number; |
3907 | 0 | aprop->u.number = number & bprop->u.number; |
3908 | 0 | if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) |
3909 | 0 | { |
3910 | 0 | features = 0; |
3911 | 0 | if (htab->params->ibt) |
3912 | 0 | features = GNU_PROPERTY_X86_FEATURE_1_IBT; |
3913 | 0 | if (htab->params->shstk) |
3914 | 0 | features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; |
3915 | 0 | if (htab->params->lam_u48) |
3916 | 0 | features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
3917 | 0 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
3918 | 0 | else if (htab->params->lam_u57) |
3919 | 0 | features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; |
3920 | | /* Add GNU_PROPERTY_X86_FEATURE_1_IBT, |
3921 | | GNU_PROPERTY_X86_FEATURE_1_SHSTK, |
3922 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and |
3923 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */ |
3924 | 0 | aprop->u.number |= features; |
3925 | 0 | } |
3926 | 0 | updated = number != (unsigned int) aprop->u.number; |
3927 | | /* Remove the property if all feature bits are cleared. */ |
3928 | 0 | if (aprop->u.number == 0) |
3929 | 0 | aprop->pr_kind = property_remove; |
3930 | 0 | } |
3931 | 0 | else |
3932 | 0 | { |
3933 | | /* There should be no AND properties since some input doesn't |
3934 | | have them. Set IBT and SHSTK properties for -z ibt and -z |
3935 | | shstk if needed. */ |
3936 | 0 | features = 0; |
3937 | 0 | if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) |
3938 | 0 | { |
3939 | 0 | if (htab->params->ibt) |
3940 | 0 | features = GNU_PROPERTY_X86_FEATURE_1_IBT; |
3941 | 0 | if (htab->params->shstk) |
3942 | 0 | features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; |
3943 | 0 | if (htab->params->lam_u48) |
3944 | 0 | features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
3945 | 0 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
3946 | 0 | else if (htab->params->lam_u57) |
3947 | 0 | features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; |
3948 | 0 | } |
3949 | 0 | if (features) |
3950 | 0 | { |
3951 | 0 | if (aprop != NULL) |
3952 | 0 | { |
3953 | 0 | updated = features != (unsigned int) aprop->u.number; |
3954 | 0 | aprop->u.number = features; |
3955 | 0 | } |
3956 | 0 | else |
3957 | 0 | { |
3958 | 0 | updated = true; |
3959 | 0 | bprop->u.number = features; |
3960 | 0 | } |
3961 | 0 | } |
3962 | 0 | else if (aprop != NULL) |
3963 | 0 | { |
3964 | 0 | aprop->pr_kind = property_remove; |
3965 | 0 | updated = true; |
3966 | 0 | } |
3967 | 0 | } |
3968 | 0 | return updated; |
3969 | 0 | } |
3970 | 0 | else |
3971 | 0 | { |
3972 | | /* Never should happen. */ |
3973 | 0 | abort (); |
3974 | 0 | } |
3975 | | |
3976 | 0 | return updated; |
3977 | 0 | } |
3978 | | |
3979 | | /* Set up x86 GNU properties. Return the first relocatable ELF input |
3980 | | with GNU properties if found. Otherwise, return NULL. */ |
3981 | | |
3982 | | bfd * |
3983 | | _bfd_x86_elf_link_setup_gnu_properties |
3984 | | (struct bfd_link_info *info, struct elf_x86_init_table *init_table) |
3985 | 0 | { |
3986 | 0 | bool normal_target; |
3987 | 0 | bool lazy_plt; |
3988 | 0 | asection *sec, *pltsec; |
3989 | 0 | bfd *dynobj; |
3990 | 0 | bool use_ibt_plt; |
3991 | 0 | unsigned int plt_alignment, features, isa_level; |
3992 | 0 | struct elf_x86_link_hash_table *htab; |
3993 | 0 | bfd *pbfd; |
3994 | 0 | bfd *ebfd = NULL; |
3995 | 0 | elf_property *prop; |
3996 | 0 | const struct elf_backend_data *bed; |
3997 | 0 | unsigned int class_align = ABI_64_P (info->output_bfd) ? 3 : 2; |
3998 | 0 | unsigned int got_align; |
3999 | | |
4000 | | /* Find a normal input file with GNU property note. */ |
4001 | 0 | for (pbfd = info->input_bfds; |
4002 | 0 | pbfd != NULL; |
4003 | 0 | pbfd = pbfd->link.next) |
4004 | 0 | if (bfd_get_flavour (pbfd) == bfd_target_elf_flavour |
4005 | 0 | && bfd_count_sections (pbfd) != 0) |
4006 | 0 | { |
4007 | 0 | ebfd = pbfd; |
4008 | |
|
4009 | 0 | if (elf_properties (pbfd) != NULL) |
4010 | 0 | break; |
4011 | 0 | } |
4012 | |
|
4013 | 0 | bed = get_elf_backend_data (info->output_bfd); |
4014 | |
|
4015 | 0 | htab = elf_x86_hash_table (info, bed->target_id); |
4016 | 0 | if (htab == NULL) |
4017 | 0 | return pbfd; |
4018 | | |
4019 | 0 | features = 0; |
4020 | 0 | if (htab->params->ibt) |
4021 | 0 | { |
4022 | 0 | features = GNU_PROPERTY_X86_FEATURE_1_IBT; |
4023 | 0 | htab->params->cet_report &= ~prop_report_ibt; |
4024 | 0 | } |
4025 | 0 | if (htab->params->shstk) |
4026 | 0 | { |
4027 | 0 | features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; |
4028 | 0 | htab->params->cet_report &= ~prop_report_shstk; |
4029 | 0 | } |
4030 | 0 | if (!(htab->params->cet_report & (prop_report_ibt | prop_report_shstk))) |
4031 | 0 | htab->params->cet_report = prop_report_none; |
4032 | 0 | if (htab->params->lam_u48) |
4033 | 0 | { |
4034 | 0 | features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
4035 | 0 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
4036 | 0 | htab->params->lam_u48_report = prop_report_none; |
4037 | 0 | htab->params->lam_u57_report = prop_report_none; |
4038 | 0 | } |
4039 | 0 | else if (htab->params->lam_u57) |
4040 | 0 | { |
4041 | 0 | features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; |
4042 | 0 | htab->params->lam_u57_report = prop_report_none; |
4043 | 0 | } |
4044 | |
|
4045 | 0 | switch (htab->params->isa_level) |
4046 | 0 | { |
4047 | 0 | case 0: |
4048 | 0 | isa_level = 0; |
4049 | 0 | break; |
4050 | 0 | case 1: |
4051 | 0 | isa_level = GNU_PROPERTY_X86_ISA_1_BASELINE; |
4052 | 0 | break; |
4053 | 0 | case 2: |
4054 | 0 | isa_level = GNU_PROPERTY_X86_ISA_1_V2; |
4055 | 0 | break; |
4056 | 0 | case 3: |
4057 | 0 | isa_level = GNU_PROPERTY_X86_ISA_1_V3; |
4058 | 0 | break; |
4059 | 0 | case 4: |
4060 | 0 | isa_level = GNU_PROPERTY_X86_ISA_1_V4; |
4061 | 0 | break; |
4062 | 0 | default: |
4063 | 0 | abort (); |
4064 | 0 | } |
4065 | | |
4066 | 0 | if (ebfd != NULL) |
4067 | 0 | { |
4068 | 0 | prop = NULL; |
4069 | 0 | if (features) |
4070 | 0 | { |
4071 | | /* If features is set, add GNU_PROPERTY_X86_FEATURE_1_IBT, |
4072 | | GNU_PROPERTY_X86_FEATURE_1_SHSTK, |
4073 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and |
4074 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */ |
4075 | 0 | prop = _bfd_elf_get_property (ebfd, |
4076 | 0 | GNU_PROPERTY_X86_FEATURE_1_AND, |
4077 | 0 | 4); |
4078 | 0 | prop->u.number |= features; |
4079 | 0 | prop->pr_kind = property_number; |
4080 | 0 | } |
4081 | |
|
4082 | 0 | if (isa_level) |
4083 | 0 | { |
4084 | | /* If ISA level is set, add GNU_PROPERTY_X86_ISA_1_NEEDED. */ |
4085 | 0 | prop = _bfd_elf_get_property (ebfd, |
4086 | 0 | GNU_PROPERTY_X86_ISA_1_NEEDED, |
4087 | 0 | 4); |
4088 | 0 | prop->u.number |= isa_level; |
4089 | 0 | prop->pr_kind = property_number; |
4090 | 0 | } |
4091 | | |
4092 | | /* Create the GNU property note section if needed. */ |
4093 | 0 | if (prop != NULL && pbfd == NULL) |
4094 | 0 | { |
4095 | 0 | sec = bfd_make_section_with_flags (ebfd, |
4096 | 0 | NOTE_GNU_PROPERTY_SECTION_NAME, |
4097 | 0 | (SEC_ALLOC |
4098 | 0 | | SEC_LOAD |
4099 | 0 | | SEC_IN_MEMORY |
4100 | 0 | | SEC_READONLY |
4101 | 0 | | SEC_HAS_CONTENTS |
4102 | 0 | | SEC_DATA)); |
4103 | 0 | if (sec == NULL) |
4104 | 0 | info->callbacks->einfo (_("%F%P: failed to create GNU property section\n")); |
4105 | |
|
4106 | 0 | if (!bfd_set_section_alignment (sec, class_align)) |
4107 | 0 | { |
4108 | 0 | error_alignment: |
4109 | 0 | info->callbacks->einfo (_("%F%pA: failed to align section\n"), |
4110 | 0 | sec); |
4111 | 0 | } |
4112 | |
|
4113 | 0 | elf_section_type (sec) = SHT_NOTE; |
4114 | 0 | } |
4115 | 0 | } |
4116 | |
|
4117 | 0 | if (htab->params->cet_report |
4118 | 0 | || htab->params->lam_u48_report |
4119 | 0 | || htab->params->lam_u57_report) |
4120 | 0 | { |
4121 | | /* Report missing IBT, SHSTK and LAM properties. */ |
4122 | 0 | bfd *abfd; |
4123 | 0 | const char *warning_msg = _("%P: %pB: warning: missing %s\n"); |
4124 | 0 | const char *error_msg = _("%X%P: %pB: error: missing %s\n"); |
4125 | 0 | const char *cet_msg = NULL; |
4126 | 0 | const char *lam_u48_msg = NULL; |
4127 | 0 | const char *lam_u57_msg = NULL; |
4128 | 0 | const char *missing; |
4129 | 0 | elf_property_list *p; |
4130 | 0 | bool missing_ibt, missing_shstk; |
4131 | 0 | bool missing_lam_u48, missing_lam_u57; |
4132 | 0 | bool check_ibt |
4133 | 0 | = (htab->params->cet_report |
4134 | 0 | && (htab->params->cet_report & prop_report_ibt)); |
4135 | 0 | bool check_shstk |
4136 | 0 | = (htab->params->cet_report |
4137 | 0 | && (htab->params->cet_report & prop_report_shstk)); |
4138 | |
|
4139 | 0 | if (htab->params->cet_report) |
4140 | 0 | { |
4141 | 0 | if ((htab->params->cet_report & prop_report_warning)) |
4142 | 0 | cet_msg = warning_msg; |
4143 | 0 | else |
4144 | 0 | cet_msg = error_msg; |
4145 | 0 | } |
4146 | 0 | if (htab->params->lam_u48_report) |
4147 | 0 | { |
4148 | 0 | if ((htab->params->lam_u48_report & prop_report_warning)) |
4149 | 0 | lam_u48_msg = warning_msg; |
4150 | 0 | else |
4151 | 0 | lam_u48_msg = error_msg; |
4152 | 0 | } |
4153 | 0 | if (htab->params->lam_u57_report) |
4154 | 0 | { |
4155 | 0 | if ((htab->params->lam_u57_report & prop_report_warning)) |
4156 | 0 | lam_u57_msg = warning_msg; |
4157 | 0 | else |
4158 | 0 | lam_u57_msg = error_msg; |
4159 | 0 | } |
4160 | |
|
4161 | 0 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
4162 | 0 | if (!(abfd->flags & (DYNAMIC | BFD_PLUGIN | BFD_LINKER_CREATED)) |
4163 | 0 | && bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
4164 | 0 | { |
4165 | 0 | for (p = elf_properties (abfd); p; p = p->next) |
4166 | 0 | if (p->property.pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) |
4167 | 0 | break; |
4168 | |
|
4169 | 0 | missing_ibt = check_ibt; |
4170 | 0 | missing_shstk = check_shstk; |
4171 | 0 | missing_lam_u48 = !!lam_u48_msg; |
4172 | 0 | missing_lam_u57 = !!lam_u57_msg; |
4173 | 0 | if (p) |
4174 | 0 | { |
4175 | 0 | missing_ibt &= !(p->property.u.number |
4176 | 0 | & GNU_PROPERTY_X86_FEATURE_1_IBT); |
4177 | 0 | missing_shstk &= !(p->property.u.number |
4178 | 0 | & GNU_PROPERTY_X86_FEATURE_1_SHSTK); |
4179 | 0 | missing_lam_u48 &= !(p->property.u.number |
4180 | 0 | & GNU_PROPERTY_X86_FEATURE_1_LAM_U48); |
4181 | 0 | missing_lam_u57 &= !(p->property.u.number |
4182 | 0 | & GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
4183 | 0 | } |
4184 | 0 | if (missing_ibt || missing_shstk) |
4185 | 0 | { |
4186 | 0 | if (missing_ibt && missing_shstk) |
4187 | 0 | missing = _("IBT and SHSTK properties"); |
4188 | 0 | else if (missing_ibt) |
4189 | 0 | missing = _("IBT property"); |
4190 | 0 | else |
4191 | 0 | missing = _("SHSTK property"); |
4192 | 0 | info->callbacks->einfo (cet_msg, abfd, missing); |
4193 | 0 | } |
4194 | 0 | if (missing_lam_u48) |
4195 | 0 | { |
4196 | 0 | missing = _("LAM_U48 property"); |
4197 | 0 | info->callbacks->einfo (lam_u48_msg, abfd, missing); |
4198 | 0 | } |
4199 | 0 | if (missing_lam_u57) |
4200 | 0 | { |
4201 | 0 | missing = _("LAM_U57 property"); |
4202 | 0 | info->callbacks->einfo (lam_u57_msg, abfd, missing); |
4203 | 0 | } |
4204 | 0 | } |
4205 | 0 | } |
4206 | |
|
4207 | 0 | pbfd = _bfd_elf_link_setup_gnu_properties (info); |
4208 | |
|
4209 | 0 | htab->r_info = init_table->r_info; |
4210 | 0 | htab->r_sym = init_table->r_sym; |
4211 | |
|
4212 | 0 | if (bfd_link_relocatable (info)) |
4213 | 0 | return pbfd; |
4214 | | |
4215 | 0 | htab->plt0_pad_byte = init_table->plt0_pad_byte; |
4216 | |
|
4217 | 0 | use_ibt_plt = htab->params->ibtplt || htab->params->ibt; |
4218 | 0 | if (!use_ibt_plt && pbfd != NULL) |
4219 | 0 | { |
4220 | | /* Check if GNU_PROPERTY_X86_FEATURE_1_IBT is on. */ |
4221 | 0 | elf_property_list *p; |
4222 | | |
4223 | | /* The property list is sorted in order of type. */ |
4224 | 0 | for (p = elf_properties (pbfd); p; p = p->next) |
4225 | 0 | { |
4226 | 0 | if (GNU_PROPERTY_X86_FEATURE_1_AND == p->property.pr_type) |
4227 | 0 | { |
4228 | 0 | use_ibt_plt = !!(p->property.u.number |
4229 | 0 | & GNU_PROPERTY_X86_FEATURE_1_IBT); |
4230 | 0 | break; |
4231 | 0 | } |
4232 | 0 | else if (GNU_PROPERTY_X86_FEATURE_1_AND < p->property.pr_type) |
4233 | 0 | break; |
4234 | 0 | } |
4235 | 0 | } |
4236 | |
|
4237 | 0 | dynobj = htab->elf.dynobj; |
4238 | | |
4239 | | /* Set htab->elf.dynobj here so that there is no need to check and |
4240 | | set it in check_relocs. */ |
4241 | 0 | if (dynobj == NULL) |
4242 | 0 | { |
4243 | 0 | if (pbfd != NULL) |
4244 | 0 | { |
4245 | 0 | htab->elf.dynobj = pbfd; |
4246 | 0 | dynobj = pbfd; |
4247 | 0 | } |
4248 | 0 | else |
4249 | 0 | { |
4250 | 0 | bfd *abfd; |
4251 | | |
4252 | | /* Find a normal input file to hold linker created |
4253 | | sections. */ |
4254 | 0 | for (abfd = info->input_bfds; |
4255 | 0 | abfd != NULL; |
4256 | 0 | abfd = abfd->link.next) |
4257 | 0 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
4258 | 0 | && (abfd->flags |
4259 | 0 | & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 |
4260 | 0 | && bed->relocs_compatible (abfd->xvec, |
4261 | 0 | info->output_bfd->xvec)) |
4262 | 0 | { |
4263 | 0 | htab->elf.dynobj = abfd; |
4264 | 0 | dynobj = abfd; |
4265 | 0 | break; |
4266 | 0 | } |
4267 | 0 | } |
4268 | 0 | } |
4269 | | |
4270 | | /* Return if there are no normal input files. */ |
4271 | 0 | if (dynobj == NULL) |
4272 | 0 | return pbfd; |
4273 | | |
4274 | | /* Even when lazy binding is disabled by "-z now", the PLT0 entry may |
4275 | | still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for |
4276 | | canonical function address. */ |
4277 | 0 | htab->plt.has_plt0 = 1; |
4278 | 0 | normal_target = htab->elf.target_os == is_normal; |
4279 | |
|
4280 | 0 | if (normal_target) |
4281 | 0 | { |
4282 | 0 | if (use_ibt_plt) |
4283 | 0 | { |
4284 | 0 | htab->lazy_plt = init_table->lazy_ibt_plt; |
4285 | 0 | htab->non_lazy_plt = init_table->non_lazy_ibt_plt; |
4286 | 0 | } |
4287 | 0 | else |
4288 | 0 | { |
4289 | 0 | htab->lazy_plt = init_table->lazy_plt; |
4290 | 0 | htab->non_lazy_plt = init_table->non_lazy_plt; |
4291 | 0 | } |
4292 | 0 | } |
4293 | 0 | else |
4294 | 0 | { |
4295 | 0 | htab->lazy_plt = init_table->lazy_plt; |
4296 | 0 | htab->non_lazy_plt = NULL; |
4297 | 0 | } |
4298 | |
|
4299 | 0 | pltsec = htab->elf.splt; |
4300 | |
|
4301 | 0 | if (htab->non_lazy_plt != NULL |
4302 | 0 | && (!htab->plt.has_plt0 || pltsec == NULL)) |
4303 | 0 | lazy_plt = false; |
4304 | 0 | else |
4305 | 0 | lazy_plt = true; |
4306 | |
|
4307 | 0 | if (normal_target) |
4308 | 0 | { |
4309 | 0 | if (use_ibt_plt) |
4310 | 0 | { |
4311 | 0 | if (lazy_plt) |
4312 | 0 | htab->sframe_plt = init_table->sframe_lazy_ibt_plt; |
4313 | 0 | else |
4314 | 0 | htab->sframe_plt = init_table->sframe_non_lazy_ibt_plt; |
4315 | 0 | } |
4316 | 0 | else |
4317 | 0 | { |
4318 | 0 | if (lazy_plt) |
4319 | 0 | htab->sframe_plt = init_table->sframe_lazy_plt; |
4320 | 0 | else |
4321 | 0 | htab->sframe_plt = init_table->sframe_non_lazy_plt; |
4322 | 0 | } |
4323 | 0 | } |
4324 | 0 | else |
4325 | 0 | htab->sframe_plt = NULL; |
4326 | | |
4327 | | /* If the non-lazy PLT is available, use it for all PLT entries if |
4328 | | there are no PLT0 or no .plt section. */ |
4329 | 0 | if (!lazy_plt) |
4330 | 0 | { |
4331 | 0 | if (bfd_link_pic (info)) |
4332 | 0 | htab->plt.plt_entry = htab->non_lazy_plt->pic_plt_entry; |
4333 | 0 | else |
4334 | 0 | htab->plt.plt_entry = htab->non_lazy_plt->plt_entry; |
4335 | 0 | htab->plt.plt_entry_size = htab->non_lazy_plt->plt_entry_size; |
4336 | 0 | htab->plt.plt_got_offset = htab->non_lazy_plt->plt_got_offset; |
4337 | 0 | htab->plt.plt_got_insn_size |
4338 | 0 | = htab->non_lazy_plt->plt_got_insn_size; |
4339 | 0 | htab->plt.eh_frame_plt_size |
4340 | 0 | = htab->non_lazy_plt->eh_frame_plt_size; |
4341 | 0 | htab->plt.eh_frame_plt = htab->non_lazy_plt->eh_frame_plt; |
4342 | 0 | } |
4343 | 0 | else |
4344 | 0 | { |
4345 | 0 | if (bfd_link_pic (info)) |
4346 | 0 | { |
4347 | 0 | htab->plt.plt0_entry = htab->lazy_plt->pic_plt0_entry; |
4348 | 0 | htab->plt.plt_entry = htab->lazy_plt->pic_plt_entry; |
4349 | 0 | } |
4350 | 0 | else |
4351 | 0 | { |
4352 | 0 | htab->plt.plt0_entry = htab->lazy_plt->plt0_entry; |
4353 | 0 | htab->plt.plt_entry = htab->lazy_plt->plt_entry; |
4354 | 0 | } |
4355 | 0 | htab->plt.plt_entry_size = htab->lazy_plt->plt_entry_size; |
4356 | 0 | htab->plt.plt_got_offset = htab->lazy_plt->plt_got_offset; |
4357 | 0 | htab->plt.plt_got_insn_size |
4358 | 0 | = htab->lazy_plt->plt_got_insn_size; |
4359 | 0 | htab->plt.eh_frame_plt_size |
4360 | 0 | = htab->lazy_plt->eh_frame_plt_size; |
4361 | 0 | htab->plt.eh_frame_plt = htab->lazy_plt->eh_frame_plt; |
4362 | 0 | } |
4363 | |
|
4364 | 0 | if (htab->elf.target_os == is_vxworks |
4365 | 0 | && !elf_vxworks_create_dynamic_sections (dynobj, info, |
4366 | 0 | &htab->srelplt2)) |
4367 | 0 | { |
4368 | 0 | info->callbacks->einfo (_("%F%P: failed to create VxWorks dynamic sections\n")); |
4369 | 0 | return pbfd; |
4370 | 0 | } |
4371 | | |
4372 | | /* Since create_dynamic_sections isn't always called, but GOT |
4373 | | relocations need GOT relocations, create them here so that we |
4374 | | don't need to do it in check_relocs. */ |
4375 | 0 | if (htab->elf.sgot == NULL |
4376 | 0 | && !_bfd_elf_create_got_section (dynobj, info)) |
4377 | 0 | info->callbacks->einfo (_("%F%P: failed to create GOT sections\n")); |
4378 | |
|
4379 | 0 | got_align = (bed->target_id == X86_64_ELF_DATA) ? 3 : 2; |
4380 | | |
4381 | | /* Align .got and .got.plt sections to their entry size. Do it here |
4382 | | instead of in create_dynamic_sections so that they are always |
4383 | | properly aligned even if create_dynamic_sections isn't called. */ |
4384 | 0 | sec = htab->elf.sgot; |
4385 | 0 | if (!bfd_set_section_alignment (sec, got_align)) |
4386 | 0 | goto error_alignment; |
4387 | | |
4388 | 0 | sec = htab->elf.sgotplt; |
4389 | 0 | if (!bfd_set_section_alignment (sec, got_align)) |
4390 | 0 | goto error_alignment; |
4391 | | |
4392 | | /* Create the ifunc sections here so that check_relocs can be |
4393 | | simplified. */ |
4394 | 0 | if (!_bfd_elf_create_ifunc_sections (dynobj, info)) |
4395 | 0 | info->callbacks->einfo (_("%F%P: failed to create ifunc sections\n")); |
4396 | |
|
4397 | 0 | plt_alignment = bfd_log2 (htab->plt.plt_entry_size); |
4398 | |
|
4399 | 0 | if (pltsec != NULL) |
4400 | 0 | { |
4401 | | /* Whe creating executable, set the contents of the .interp |
4402 | | section to the interpreter. */ |
4403 | 0 | if (bfd_link_executable (info) && !info->nointerp) |
4404 | 0 | { |
4405 | 0 | asection *s = bfd_get_linker_section (dynobj, ".interp"); |
4406 | 0 | if (s == NULL) |
4407 | 0 | abort (); |
4408 | 0 | s->size = htab->dynamic_interpreter_size; |
4409 | 0 | s->contents = (unsigned char *) htab->dynamic_interpreter; |
4410 | 0 | htab->interp = s; |
4411 | 0 | } |
4412 | | |
4413 | 0 | if (normal_target) |
4414 | 0 | { |
4415 | 0 | flagword pltflags = (bed->dynamic_sec_flags |
4416 | 0 | | SEC_ALLOC |
4417 | 0 | | SEC_CODE |
4418 | 0 | | SEC_LOAD |
4419 | 0 | | SEC_READONLY); |
4420 | 0 | unsigned int non_lazy_plt_alignment |
4421 | 0 | = bfd_log2 (htab->non_lazy_plt->plt_entry_size); |
4422 | |
|
4423 | 0 | sec = pltsec; |
4424 | 0 | if (!bfd_set_section_alignment (sec, plt_alignment)) |
4425 | 0 | goto error_alignment; |
4426 | | |
4427 | | /* Create the GOT procedure linkage table. */ |
4428 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4429 | 0 | ".plt.got", |
4430 | 0 | pltflags); |
4431 | 0 | if (sec == NULL) |
4432 | 0 | info->callbacks->einfo (_("%F%P: failed to create GOT PLT section\n")); |
4433 | |
|
4434 | 0 | if (!bfd_set_section_alignment (sec, non_lazy_plt_alignment)) |
4435 | 0 | goto error_alignment; |
4436 | | |
4437 | 0 | htab->plt_got = sec; |
4438 | |
|
4439 | 0 | if (lazy_plt) |
4440 | 0 | { |
4441 | 0 | sec = NULL; |
4442 | |
|
4443 | 0 | if (use_ibt_plt) |
4444 | 0 | { |
4445 | | /* Create the second PLT for Intel IBT support. IBT |
4446 | | PLT is needed only for lazy binding. */ |
4447 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4448 | 0 | ".plt.sec", |
4449 | 0 | pltflags); |
4450 | 0 | if (sec == NULL) |
4451 | 0 | info->callbacks->einfo (_("%F%P: failed to create IBT-enabled PLT section\n")); |
4452 | |
|
4453 | 0 | if (!bfd_set_section_alignment (sec, plt_alignment)) |
4454 | 0 | goto error_alignment; |
4455 | 0 | } |
4456 | | |
4457 | 0 | htab->plt_second = sec; |
4458 | 0 | } |
4459 | 0 | } |
4460 | | |
4461 | 0 | if (!info->no_ld_generated_unwind_info) |
4462 | 0 | { |
4463 | 0 | flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
4464 | 0 | | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
4465 | 0 | | SEC_LINKER_CREATED); |
4466 | |
|
4467 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4468 | 0 | ".eh_frame", |
4469 | 0 | flags); |
4470 | 0 | if (sec == NULL) |
4471 | 0 | info->callbacks->einfo (_("%F%P: failed to create PLT .eh_frame section\n")); |
4472 | |
|
4473 | 0 | if (!bfd_set_section_alignment (sec, class_align)) |
4474 | 0 | goto error_alignment; |
4475 | | |
4476 | 0 | htab->plt_eh_frame = sec; |
4477 | |
|
4478 | 0 | if (htab->plt_got != NULL) |
4479 | 0 | { |
4480 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4481 | 0 | ".eh_frame", |
4482 | 0 | flags); |
4483 | 0 | if (sec == NULL) |
4484 | 0 | info->callbacks->einfo (_("%F%P: failed to create GOT PLT .eh_frame section\n")); |
4485 | |
|
4486 | 0 | if (!bfd_set_section_alignment (sec, class_align)) |
4487 | 0 | goto error_alignment; |
4488 | | |
4489 | 0 | htab->plt_got_eh_frame = sec; |
4490 | 0 | } |
4491 | | |
4492 | 0 | if (htab->plt_second != NULL) |
4493 | 0 | { |
4494 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4495 | 0 | ".eh_frame", |
4496 | 0 | flags); |
4497 | 0 | if (sec == NULL) |
4498 | 0 | info->callbacks->einfo (_("%F%P: failed to create the second PLT .eh_frame section\n")); |
4499 | |
|
4500 | 0 | if (!bfd_set_section_alignment (sec, class_align)) |
4501 | 0 | goto error_alignment; |
4502 | | |
4503 | 0 | htab->plt_second_eh_frame = sec; |
4504 | 0 | } |
4505 | 0 | } |
4506 | | |
4507 | | /* .sframe sections are emitted for AMD64 ABI only. */ |
4508 | 0 | if (ABI_64_P (info->output_bfd) && !info->no_ld_generated_unwind_info) |
4509 | 0 | { |
4510 | 0 | flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
4511 | 0 | | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
4512 | 0 | | SEC_LINKER_CREATED); |
4513 | |
|
4514 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4515 | 0 | ".sframe", |
4516 | 0 | flags); |
4517 | 0 | if (sec == NULL) |
4518 | 0 | info->callbacks->einfo (_("%F%P: failed to create PLT .sframe section\n")); |
4519 | | |
4520 | | // FIXME check this |
4521 | | // if (!bfd_set_section_alignment (sec, class_align)) |
4522 | | // goto error_alignment; |
4523 | |
|
4524 | 0 | htab->plt_sframe = sec; |
4525 | | |
4526 | | /* Second PLT is generated for Intel IBT + lazy plt. */ |
4527 | 0 | if (htab->plt_second != NULL) |
4528 | 0 | { |
4529 | 0 | sec = bfd_make_section_anyway_with_flags (dynobj, |
4530 | 0 | ".sframe", |
4531 | 0 | flags); |
4532 | 0 | if (sec == NULL) |
4533 | 0 | info->callbacks->einfo (_("%F%P: failed to create second PLT .sframe section\n")); |
4534 | |
|
4535 | 0 | htab->plt_second_sframe = sec; |
4536 | 0 | } |
4537 | | /* FIXME - add later for plt_got. */ |
4538 | 0 | } |
4539 | 0 | } |
4540 | | |
4541 | | /* The .iplt section is used for IFUNC symbols in static |
4542 | | executables. */ |
4543 | 0 | sec = htab->elf.iplt; |
4544 | 0 | if (sec != NULL) |
4545 | 0 | { |
4546 | | /* NB: Delay setting its alignment until we know it is non-empty. |
4547 | | Otherwise an empty iplt section may change vma and lma of the |
4548 | | following sections, which triggers moving dot of the following |
4549 | | section backwards, resulting in a warning and section lma not |
4550 | | being set properly. It later leads to a "File truncated" |
4551 | | error. */ |
4552 | 0 | if (!bfd_set_section_alignment (sec, 0)) |
4553 | 0 | goto error_alignment; |
4554 | | |
4555 | 0 | htab->plt.iplt_alignment = (normal_target |
4556 | 0 | ? plt_alignment |
4557 | 0 | : bed->plt_alignment); |
4558 | 0 | } |
4559 | | |
4560 | 0 | if (bfd_link_executable (info) |
4561 | 0 | && !info->nointerp |
4562 | 0 | && !htab->params->has_dynamic_linker |
4563 | 0 | && htab->params->static_before_all_inputs) |
4564 | 0 | { |
4565 | | /* Report error for dynamic input objects if -static is passed at |
4566 | | command-line before all input files without --dynamic-linker |
4567 | | unless --no-dynamic-linker is used. */ |
4568 | 0 | bfd *abfd; |
4569 | |
|
4570 | 0 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
4571 | 0 | if ((abfd->flags & DYNAMIC)) |
4572 | 0 | info->callbacks->einfo |
4573 | 0 | (_("%X%P: attempted static link of dynamic object `%pB'\n"), |
4574 | 0 | abfd); |
4575 | 0 | } |
4576 | |
|
4577 | 0 | return pbfd; |
4578 | 0 | } |
4579 | | |
4580 | | /* Fix up x86 GNU properties. */ |
4581 | | |
4582 | | void |
4583 | | _bfd_x86_elf_link_fixup_gnu_properties |
4584 | | (struct bfd_link_info *info, elf_property_list **listp) |
4585 | 0 | { |
4586 | 0 | elf_property_list *p; |
4587 | |
|
4588 | 0 | for (p = *listp; p; p = p->next) |
4589 | 0 | { |
4590 | 0 | unsigned int type = p->property.pr_type; |
4591 | 0 | if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED |
4592 | 0 | || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
4593 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_AND_LO |
4594 | 0 | && type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
4595 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_OR_LO |
4596 | 0 | && type <= GNU_PROPERTY_X86_UINT32_OR_HI) |
4597 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO |
4598 | 0 | && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) |
4599 | 0 | { |
4600 | 0 | if (p->property.u.number == 0 |
4601 | 0 | && (type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
4602 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_AND_LO |
4603 | 0 | && type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
4604 | 0 | || (type >= GNU_PROPERTY_X86_UINT32_OR_LO |
4605 | 0 | && type <= GNU_PROPERTY_X86_UINT32_OR_HI))) |
4606 | 0 | { |
4607 | | /* Remove empty property. */ |
4608 | 0 | *listp = p->next; |
4609 | 0 | continue; |
4610 | 0 | } |
4611 | | |
4612 | | /* Keep LAM features only for 64-bit output. */ |
4613 | 0 | if (type == GNU_PROPERTY_X86_FEATURE_1_AND |
4614 | 0 | && !ABI_64_P (info->output_bfd)) |
4615 | 0 | p->property.u.number &= ~(GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
4616 | 0 | | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
4617 | |
|
4618 | 0 | listp = &p->next; |
4619 | 0 | } |
4620 | 0 | else if (type > GNU_PROPERTY_HIPROC) |
4621 | 0 | { |
4622 | | /* The property list is sorted in order of type. */ |
4623 | 0 | break; |
4624 | 0 | } |
4625 | 0 | } |
4626 | 0 | } |
4627 | | |
4628 | | void |
4629 | | _bfd_elf_linker_x86_set_options (struct bfd_link_info * info, |
4630 | | struct elf_linker_x86_params *params) |
4631 | 0 | { |
4632 | 0 | const struct elf_backend_data *bed |
4633 | 0 | = get_elf_backend_data (info->output_bfd); |
4634 | 0 | struct elf_x86_link_hash_table *htab |
4635 | 0 | = elf_x86_hash_table (info, bed->target_id); |
4636 | 0 | if (htab != NULL) |
4637 | 0 | htab->params = params; |
4638 | 0 | } |