Coverage Report

Created: 2023-08-28 06:31

/src/binutils-gdb/gas/atof-generic.c
Line
Count
Source (jump to first uncovered line)
1
/* atof_generic.c - turn a string of digits into a Flonum
2
   Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4
   This file is part of GAS, the GNU Assembler.
5
6
   GAS is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 3, or (at your option)
9
   any later version.
10
11
   GAS is distributed in the hope that it will be useful, but WITHOUT
12
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14
   License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with GAS; see the file COPYING.  If not, write to the Free
18
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19
   02110-1301, USA.  */
20
21
#include "as.h"
22
#include "safe-ctype.h"
23
#include <limits.h>
24
25
#ifdef TRACE
26
static void flonum_print (const FLONUM_TYPE *);
27
#endif
28
29
#define ASSUME_DECIMAL_MARK_IS_DOT
30
31
/***********************************************************************\
32
 *                  *
33
 *  Given a string of decimal digits , with optional decimal  *
34
 *  mark and optional decimal exponent (place value) of the   *
35
 *  lowest_order decimal digit: produce a floating point    *
36
 *  number. The number is 'generic' floating point: our   *
37
 *  caller will encode it for a specific machine architecture.  *
38
 *                  *
39
 *  Assumptions             *
40
 *    uses base (radix) 2         *
41
 *    this machine uses 2's complement binary integers  *
42
 *    target flonums use "      "         "       "   *
43
 *    target flonums exponents fit in a long      *
44
 *                  *
45
 \***********************************************************************/
46
47
/*
48
49
  Syntax:
50
51
  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
52
  <optional-sign> ::= '+' | '-' | {empty}
53
  <decimal-number> ::= <integer>
54
  | <integer> <radix-character>
55
  | <integer> <radix-character> <integer>
56
  | <radix-character> <integer>
57
58
  <optional-exponent> ::= {empty}
59
  | <exponent-character> <optional-sign> <integer>
60
61
  <integer> ::= <digit> | <digit> <integer>
62
  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
63
  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
64
  <radix-character> ::= {one character from "string_of_decimal_marks"}
65
66
  */
67
68
int
69
atof_generic (/* return pointer to just AFTER number we read.  */
70
        char **address_of_string_pointer,
71
        /* At most one per number.  */
72
        const char *string_of_decimal_marks,
73
        const char *string_of_decimal_exponent_marks,
74
        FLONUM_TYPE *address_of_generic_floating_point_number)
75
60.6k
{
76
60.6k
  int return_value = 0;   /* 0 means OK.  */
77
60.6k
  char *first_digit;
78
60.6k
  unsigned int number_of_digits_before_decimal;
79
60.6k
  unsigned int number_of_digits_after_decimal;
80
60.6k
  unsigned long decimal_exponent;
81
60.6k
  unsigned int number_of_digits_available;
82
60.6k
  char digits_sign_char;
83
84
  /*
85
   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
86
   * It would be simpler to modify the string, but we don't; just to be nice
87
   * to caller.
88
   * We need to know how many digits we have, so we can allocate space for
89
   * the digits' value.
90
   */
91
92
60.6k
  char *p;
93
60.6k
  char c;
94
60.6k
  int seen_significant_digit;
95
96
60.6k
#ifdef ASSUME_DECIMAL_MARK_IS_DOT
97
60.6k
  gas_assert (string_of_decimal_marks[0] == '.'
98
60.6k
    && string_of_decimal_marks[1] == 0);
99
232k
#define IS_DECIMAL_MARK(c)  ((c) == '.')
100
#else
101
#define IS_DECIMAL_MARK(c)  (0 != strchr (string_of_decimal_marks, (c)))
102
#endif
103
104
0
  first_digit = *address_of_string_pointer;
105
60.6k
  c = *first_digit;
106
107
60.6k
  if (c == '-' || c == '+')
108
623
    {
109
623
      digits_sign_char = c;
110
623
      first_digit++;
111
623
    }
112
59.9k
  else
113
59.9k
    digits_sign_char = '+';
114
115
60.6k
  switch (first_digit[0])
116
60.6k
    {
117
44
    case 's':
118
56
    case 'S':
119
82
    case 'q':
120
89
    case 'Q':
121
89
      if (!strncasecmp ("nan", first_digit + 1, 3))
122
0
  {
123
0
    address_of_generic_floating_point_number->sign =
124
0
      digits_sign_char == '+' ? TOUPPER (first_digit[0])
125
0
            : TOLOWER (first_digit[0]);
126
0
    address_of_generic_floating_point_number->exponent = 0;
127
0
    address_of_generic_floating_point_number->leader =
128
0
      address_of_generic_floating_point_number->low;
129
0
    *address_of_string_pointer = first_digit + 4;
130
0
    return 0;
131
0
  }
132
89
      break;
133
134
416
    case 'n':
135
503
    case 'N':
136
503
      if (!strncasecmp ("nan", first_digit, 3))
137
0
  {
138
0
    address_of_generic_floating_point_number->sign =
139
0
      digits_sign_char == '+' ? 0 : 'q';
140
0
    address_of_generic_floating_point_number->exponent = 0;
141
0
    address_of_generic_floating_point_number->leader =
142
0
      address_of_generic_floating_point_number->low;
143
0
    *address_of_string_pointer = first_digit + 3;
144
0
    return 0;
145
0
  }
146
503
      break;
147
148
503
    case 'i':
149
121
    case 'I':
150
121
      if (!strncasecmp ("inf", first_digit, 3))
151
1
  {
152
1
    address_of_generic_floating_point_number->sign =
153
1
      digits_sign_char == '+' ? 'P' : 'N';
154
1
    address_of_generic_floating_point_number->exponent = 0;
155
1
    address_of_generic_floating_point_number->leader =
156
1
      address_of_generic_floating_point_number->low;
157
158
1
    first_digit += 3;
159
1
    if (!strncasecmp ("inity", first_digit, 5))
160
0
      first_digit += 5;
161
162
1
    *address_of_string_pointer = first_digit;
163
164
1
    return 0;
165
1
  }
166
120
      break;
167
60.6k
    }
168
169
60.6k
  number_of_digits_before_decimal = 0;
170
60.6k
  number_of_digits_after_decimal = 0;
171
60.6k
  decimal_exponent = 0;
172
60.6k
  seen_significant_digit = 0;
173
60.6k
  for (p = first_digit;
174
173k
       (((c = *p) != '\0')
175
173k
  && (!c || !IS_DECIMAL_MARK (c))
176
173k
  && (!c || !strchr (string_of_decimal_exponent_marks, c)));
177
112k
       p++)
178
159k
    {
179
159k
      if (ISDIGIT (c))
180
112k
  {
181
112k
    if (seen_significant_digit || c > '0')
182
104k
      {
183
104k
        ++number_of_digits_before_decimal;
184
104k
        seen_significant_digit = 1;
185
104k
      }
186
8.46k
    else
187
8.46k
      {
188
8.46k
        first_digit++;
189
8.46k
      }
190
112k
  }
191
46.1k
      else
192
46.1k
  {
193
46.1k
    break;    /* p -> char after pre-decimal digits.  */
194
46.1k
  }
195
159k
    }        /* For each digit before decimal mark.  */
196
197
60.6k
#ifndef OLD_FLOAT_READS
198
  /* Ignore trailing 0's after the decimal point.  The original code here
199
     (ifdef'd out) does not do this, and numbers like
200
      4.29496729600000000000e+09  (2**31)
201
     come out inexact for some reason related to length of the digit
202
     string.  */
203
204
  /* The case number_of_digits_before_decimal = 0 is handled for
205
     deleting zeros after decimal.  In this case the decimal mark and
206
     the first zero digits after decimal mark are skipped.  */
207
60.6k
  seen_significant_digit = 0;
208
60.6k
  unsigned long subtract_decimal_exponent = 0;
209
210
60.6k
  if (c && IS_DECIMAL_MARK (c))
211
13.0k
    {
212
13.0k
      unsigned int zeros = 0; /* Length of current string of zeros.  */
213
214
13.0k
      if (number_of_digits_before_decimal == 0)
215
  /* Skip decimal mark.  */
216
8.93k
  first_digit++;
217
218
86.3k
      for (p++; (c = *p) && ISDIGIT (c); p++)
219
73.2k
  {
220
73.2k
    if (c == '0')
221
45.1k
      {
222
45.1k
        if (number_of_digits_before_decimal == 0
223
45.1k
      && !seen_significant_digit)
224
38.1k
    {
225
      /* Skip '0' and the decimal mark.  */
226
38.1k
      first_digit++;
227
38.1k
      subtract_decimal_exponent--;
228
38.1k
    }
229
7.03k
        else
230
7.03k
    zeros++;
231
45.1k
      }
232
28.0k
    else
233
28.0k
      {
234
28.0k
        seen_significant_digit = 1;
235
28.0k
        number_of_digits_after_decimal += 1 + zeros;
236
28.0k
        zeros = 0;
237
28.0k
      }
238
73.2k
  }
239
13.0k
    }
240
#else
241
  if (c && IS_DECIMAL_MARK (c))
242
    {
243
      for (p++;
244
     (((c = *p) != '\0')
245
      && (!c || !strchr (string_of_decimal_exponent_marks, c)));
246
     p++)
247
  {
248
    if (ISDIGIT (c))
249
      {
250
        /* This may be retracted below.  */
251
        number_of_digits_after_decimal++;
252
253
        if ( /* seen_significant_digit || */ c > '0')
254
    {
255
      seen_significant_digit = true;
256
    }
257
      }
258
    else
259
      {
260
        if (!seen_significant_digit)
261
    {
262
      number_of_digits_after_decimal = 0;
263
    }
264
        break;
265
      }
266
  }     /* For each digit after decimal mark.  */
267
    }
268
269
  while (number_of_digits_after_decimal
270
   && first_digit[number_of_digits_before_decimal
271
      + number_of_digits_after_decimal] == '0')
272
    --number_of_digits_after_decimal;
273
#endif
274
275
60.6k
  if (flag_m68k_mri)
276
0
    {
277
0
      while (c == '_')
278
0
  c = *++p;
279
0
    }
280
60.6k
  if (c && strchr (string_of_decimal_exponent_marks, c))
281
3.74k
    {
282
3.74k
      char digits_exponent_sign_char;
283
284
3.74k
      c = *++p;
285
3.74k
      if (flag_m68k_mri)
286
0
  {
287
0
    while (c == '_')
288
0
      c = *++p;
289
0
  }
290
3.74k
      if (c && strchr ("+-", c))
291
876
  {
292
876
    digits_exponent_sign_char = c;
293
876
    c = *++p;
294
876
  }
295
2.86k
      else
296
2.86k
  {
297
2.86k
    digits_exponent_sign_char = '+';
298
2.86k
  }
299
300
15.5k
      for (; (c); c = *++p)
301
13.9k
  {
302
13.9k
    if (ISDIGIT (c))
303
11.8k
      {
304
11.8k
        if (decimal_exponent > LONG_MAX / 10
305
11.8k
      || (decimal_exponent == LONG_MAX / 10
306
11.4k
          && c > '0' + (char) (LONG_MAX - LONG_MAX / 10 * 10)))
307
384
    return_value = ERROR_EXPONENT_OVERFLOW;
308
11.8k
        decimal_exponent = decimal_exponent * 10 + c - '0';
309
11.8k
      }
310
2.17k
    else
311
2.17k
      {
312
2.17k
        break;
313
2.17k
      }
314
13.9k
  }
315
316
3.74k
      if (digits_exponent_sign_char == '-')
317
876
  {
318
876
    decimal_exponent = -decimal_exponent;
319
876
  }
320
3.74k
    }
321
322
60.6k
#ifndef OLD_FLOAT_READS
323
  /* Subtract_decimal_exponent != 0 when number_of_digits_before_decimal = 0
324
     and first digit after decimal is '0'.  */
325
60.6k
  decimal_exponent += subtract_decimal_exponent;
326
60.6k
#endif
327
328
60.6k
  *address_of_string_pointer = p;
329
330
60.6k
  number_of_digits_available =
331
60.6k
    number_of_digits_before_decimal + number_of_digits_after_decimal;
332
60.6k
  if (number_of_digits_available == 0)
333
24.1k
    {
334
24.1k
      address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
335
24.1k
      address_of_generic_floating_point_number->leader
336
24.1k
  = -1 + address_of_generic_floating_point_number->low;
337
24.1k
      address_of_generic_floating_point_number->sign = digits_sign_char;
338
      /* We have just concocted (+/-)0.0E0 */
339
340
24.1k
    }
341
36.4k
  else
342
36.4k
    {
343
36.4k
      int count;    /* Number of useful digits left to scan.  */
344
345
36.4k
      LITTLENUM_TYPE *temporary_binary_low = NULL;
346
36.4k
      LITTLENUM_TYPE *power_binary_low = NULL;
347
36.4k
      LITTLENUM_TYPE *digits_binary_low;
348
36.4k
      unsigned int precision;
349
36.4k
      unsigned int maximum_useful_digits;
350
36.4k
      unsigned int number_of_digits_to_use;
351
36.4k
      unsigned int more_than_enough_bits_for_digits;
352
36.4k
      unsigned int more_than_enough_littlenums_for_digits;
353
36.4k
      unsigned int size_of_digits_in_littlenums;
354
36.4k
      unsigned int size_of_digits_in_chars;
355
36.4k
      FLONUM_TYPE power_of_10_flonum;
356
36.4k
      FLONUM_TYPE digits_flonum;
357
358
36.4k
      precision = (address_of_generic_floating_point_number->high
359
36.4k
       - address_of_generic_floating_point_number->low
360
36.4k
       + 1);  /* Number of destination littlenums.  */
361
362
      /* precision includes two littlenums worth of guard bits,
363
   so this gives us 10 decimal guard digits here.  */
364
36.4k
      maximum_useful_digits = (precision
365
36.4k
             * LITTLENUM_NUMBER_OF_BITS
366
36.4k
             * 1000000 / 3321928
367
36.4k
             + 1);  /* round up.  */
368
369
36.4k
      if (number_of_digits_available > maximum_useful_digits)
370
811
  {
371
811
    number_of_digits_to_use = maximum_useful_digits;
372
811
  }
373
35.6k
      else
374
35.6k
  {
375
35.6k
    number_of_digits_to_use = number_of_digits_available;
376
35.6k
  }
377
378
      /* Cast these to SIGNED LONG first, otherwise, on systems with
379
   LONG wider than INT (such as Alpha OSF/1), unsignedness may
380
   cause unexpected results.  */
381
36.4k
      decimal_exponent += ((long) number_of_digits_before_decimal
382
36.4k
         - (long) number_of_digits_to_use);
383
384
36.4k
      more_than_enough_bits_for_digits
385
36.4k
  = (number_of_digits_to_use * 3321928 / 1000000 + 1);
386
387
36.4k
      more_than_enough_littlenums_for_digits
388
36.4k
  = (more_than_enough_bits_for_digits
389
36.4k
     / LITTLENUM_NUMBER_OF_BITS)
390
36.4k
  + 2;
391
392
      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
393
   Arithmetic is exact here. If no digits are supplied then this
394
   part is a 0 valued binary integer.  Allocate room to build up
395
   the binary number as littlenums.  We want this memory to
396
   disappear when we leave this function.  Assume no alignment
397
   problems => (room for n objects) == n * (room for 1
398
   object).  */
399
400
36.4k
      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
401
36.4k
      size_of_digits_in_chars = size_of_digits_in_littlenums
402
36.4k
  * sizeof (LITTLENUM_TYPE);
403
404
36.4k
      digits_binary_low = (LITTLENUM_TYPE *)
405
36.4k
  xmalloc (size_of_digits_in_chars);
406
407
36.4k
      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
408
409
      /* Digits_binary_low[] is allocated and zeroed.  */
410
411
      /*
412
       * Parse the decimal digits as if * digits_low was in the units position.
413
       * Emit a binary number into digits_binary_low[].
414
       *
415
       * Use a large-precision version of:
416
       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
417
       */
418
419
164k
      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
420
128k
  {
421
128k
    c = *p;
422
128k
    if (ISDIGIT (c))
423
127k
      {
424
        /*
425
         * Multiply by 10. Assume can never overflow.
426
         * Add this digit to digits_binary_low[].
427
         */
428
429
127k
        long carry;
430
127k
        LITTLENUM_TYPE *littlenum_pointer;
431
127k
        LITTLENUM_TYPE *littlenum_limit;
432
433
127k
        littlenum_limit = digits_binary_low
434
127k
    + more_than_enough_littlenums_for_digits
435
127k
    - 1;
436
437
127k
        carry = c - '0';  /* char -> binary */
438
439
127k
        for (littlenum_pointer = digits_binary_low;
440
618k
       littlenum_pointer <= littlenum_limit;
441
491k
       littlenum_pointer++)
442
491k
    {
443
491k
      long work;
444
445
491k
      work = carry + 10 * (long) (*littlenum_pointer);
446
491k
      *littlenum_pointer = work & LITTLENUM_MASK;
447
491k
      carry = work >> LITTLENUM_NUMBER_OF_BITS;
448
491k
    }
449
450
127k
        if (carry != 0)
451
0
    {
452
      /*
453
       * We have a GROSS internal error.
454
       * This should never happen.
455
       */
456
0
      as_fatal (_("failed sanity check"));
457
0
    }
458
127k
      }
459
1.35k
    else
460
1.35k
      {
461
1.35k
        ++count;    /* '.' doesn't alter digits used count.  */
462
1.35k
      }
463
128k
  }
464
465
      /*
466
       * Digits_binary_low[] properly encodes the value of the digits.
467
       * Forget about any high-order littlenums that are 0.
468
       */
469
76.8k
      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
470
76.8k
       && size_of_digits_in_littlenums >= 2)
471
40.3k
  size_of_digits_in_littlenums--;
472
473
36.4k
      digits_flonum.low = digits_binary_low;
474
36.4k
      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
475
36.4k
      digits_flonum.leader = digits_flonum.high;
476
36.4k
      digits_flonum.exponent = 0;
477
      /*
478
       * The value of digits_flonum . sign should not be important.
479
       * We have already decided the output's sign.
480
       * We trust that the sign won't influence the other parts of the number!
481
       * So we give it a value for these reasons:
482
       * (1) courtesy to humans reading/debugging
483
       *     these numbers so they don't get excited about strange values
484
       * (2) in future there may be more meaning attached to sign,
485
       *     and what was
486
       *     harmless noise may become disruptive, ill-conditioned (or worse)
487
       *     input.
488
       */
489
36.4k
      digits_flonum.sign = '+';
490
491
36.4k
      {
492
  /*
493
   * Compute the mantissa (& exponent) of the power of 10.
494
   * If successful, then multiply the power of 10 by the digits
495
   * giving return_binary_mantissa and return_binary_exponent.
496
   */
497
498
36.4k
  int decimal_exponent_is_negative;
499
  /* This refers to the "-56" in "12.34E-56".  */
500
  /* FALSE: decimal_exponent is positive (or 0) */
501
  /* TRUE:  decimal_exponent is negative */
502
36.4k
  FLONUM_TYPE temporary_flonum;
503
36.4k
  unsigned int size_of_power_in_littlenums;
504
36.4k
  unsigned int size_of_power_in_chars;
505
506
36.4k
  size_of_power_in_littlenums = precision;
507
  /* Precision has a built-in fudge factor so we get a few guard bits.  */
508
509
36.4k
  decimal_exponent_is_negative = (long) decimal_exponent < 0;
510
36.4k
  if (decimal_exponent_is_negative)
511
4.99k
    {
512
4.99k
      decimal_exponent = -decimal_exponent;
513
4.99k
    }
514
515
  /* From now on: the decimal exponent is > 0. Its sign is separate.  */
516
517
36.4k
  size_of_power_in_chars = size_of_power_in_littlenums
518
36.4k
    * sizeof (LITTLENUM_TYPE) + 2;
519
520
36.4k
  power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
521
36.4k
  temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
522
523
36.4k
  memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
524
36.4k
  *power_binary_low = 1;
525
36.4k
  power_of_10_flonum.exponent = 0;
526
36.4k
  power_of_10_flonum.low = power_binary_low;
527
36.4k
  power_of_10_flonum.leader = power_binary_low;
528
36.4k
  power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
529
36.4k
  power_of_10_flonum.sign = '+';
530
36.4k
  temporary_flonum.low = temporary_binary_low;
531
36.4k
  temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
532
  /*
533
   * (power) == 1.
534
   * Space for temporary_flonum allocated.
535
   */
536
537
  /*
538
   * ...
539
   *
540
   * WHILE  more bits
541
   * DO find next bit (with place value)
542
   *  multiply into power mantissa
543
   * OD
544
   */
545
36.4k
  {
546
36.4k
    int place_number_limit;
547
    /* Any 10^(2^n) whose "n" exceeds this */
548
    /* value will fall off the end of */
549
    /* flonum_XXXX_powers_of_ten[].  */
550
36.4k
    int place_number;
551
36.4k
    const FLONUM_TYPE *multiplicand;  /* -> 10^(2^n) */
552
553
36.4k
    place_number_limit = table_size_of_flonum_powers_of_ten;
554
555
36.4k
    multiplicand = (decimal_exponent_is_negative
556
36.4k
        ? flonum_negative_powers_of_ten
557
36.4k
        : flonum_positive_powers_of_ten);
558
559
36.4k
    for (place_number = 1;/* Place value of this bit of exponent.  */
560
65.0k
         decimal_exponent;/* Quit when no more 1 bits in exponent.  */
561
36.4k
         decimal_exponent >>= 1, place_number++)
562
28.5k
      {
563
28.5k
        if (decimal_exponent & 1)
564
16.1k
    {
565
16.1k
      if (place_number > place_number_limit)
566
806
        {
567
          /* The decimal exponent has a magnitude so great
568
       that our tables can't help us fragment it.
569
       Although this routine is in error because it
570
       can't imagine a number that big, signal an
571
       error as if it is the user's fault for
572
       presenting such a big number.  */
573
806
          return_value = ERROR_EXPONENT_OVERFLOW;
574
          /* quit out of loop gracefully */
575
806
          decimal_exponent = 0;
576
806
        }
577
15.3k
      else
578
15.3k
        {
579
#ifdef TRACE
580
          printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
581
            place_number);
582
583
          flonum_print (&power_of_10_flonum);
584
          (void) putchar ('\n');
585
#endif
586
#ifdef TRACE
587
          printf ("multiplier:\n");
588
          flonum_print (multiplicand + place_number);
589
          (void) putchar ('\n');
590
#endif
591
15.3k
          flonum_multip (multiplicand + place_number,
592
15.3k
             &power_of_10_flonum, &temporary_flonum);
593
#ifdef TRACE
594
          printf ("after multiply:\n");
595
          flonum_print (&temporary_flonum);
596
          (void) putchar ('\n');
597
#endif
598
15.3k
          flonum_copy (&temporary_flonum, &power_of_10_flonum);
599
#ifdef TRACE
600
          printf ("after copy:\n");
601
          flonum_print (&power_of_10_flonum);
602
          (void) putchar ('\n');
603
#endif
604
15.3k
        } /* If this bit of decimal_exponent was computable.*/
605
16.1k
    } /* If this bit of decimal_exponent was set.  */
606
28.5k
      } /* For each bit of binary representation of exponent */
607
#ifdef TRACE
608
    printf ("after computing power_of_10_flonum:\n");
609
    flonum_print (&power_of_10_flonum);
610
    (void) putchar ('\n');
611
#endif
612
36.4k
  }
613
36.4k
      }
614
615
      /*
616
       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
617
       * It may be the number 1, in which case we don't NEED to multiply.
618
       *
619
       * Multiply (decimal digits) by power_of_10_flonum.
620
       */
621
622
36.4k
      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
623
      /* Assert sign of the number we made is '+'.  */
624
36.4k
      address_of_generic_floating_point_number->sign = digits_sign_char;
625
626
36.4k
      free (temporary_binary_low);
627
36.4k
      free (power_binary_low);
628
36.4k
      free (digits_binary_low);
629
36.4k
    }
630
60.6k
  return return_value;
631
60.6k
}
632
633
#ifdef TRACE
634
static void
635
flonum_print (f)
636
     const FLONUM_TYPE *f;
637
{
638
  LITTLENUM_TYPE *lp;
639
  char littlenum_format[10];
640
  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
641
#define print_littlenum(LP) (printf (littlenum_format, LP))
642
  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
643
  if (f->low < f->high)
644
    for (lp = f->high; lp >= f->low; lp--)
645
      print_littlenum (*lp);
646
  else
647
    for (lp = f->low; lp <= f->high; lp++)
648
      print_littlenum (*lp);
649
  printf ("\n");
650
  fflush (stdout);
651
}
652
#endif
653
654
/* end of atof_generic.c */