/src/binutils-gdb/gas/ehopt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* ehopt.c--optimize gcc exception frame information. |
2 | | Copyright (C) 1998-2023 Free Software Foundation, Inc. |
3 | | Written by Ian Lance Taylor <ian@cygnus.com>. |
4 | | |
5 | | This file is part of GAS, the GNU Assembler. |
6 | | |
7 | | GAS is free software; you can redistribute it and/or modify |
8 | | it under the terms of the GNU General Public License as published by |
9 | | the Free Software Foundation; either version 3, or (at your option) |
10 | | any later version. |
11 | | |
12 | | GAS is distributed in the hope that it will be useful, |
13 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | GNU General Public License for more details. |
16 | | |
17 | | You should have received a copy of the GNU General Public License |
18 | | along with GAS; see the file COPYING. If not, write to the Free |
19 | | Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA |
20 | | 02110-1301, USA. */ |
21 | | |
22 | | #include "as.h" |
23 | | #include "subsegs.h" |
24 | | |
25 | | /* We include this ELF file, even though we may not be assembling for |
26 | | ELF, since the exception frame information is always in a format |
27 | | derived from DWARF. */ |
28 | | |
29 | | #include "dwarf2.h" |
30 | | |
31 | | /* Try to optimize gcc 2.8 exception frame information. |
32 | | |
33 | | Exception frame information is emitted for every function in the |
34 | | .eh_frame or .debug_frame sections. Simple information for a function |
35 | | with no exceptions looks like this: |
36 | | |
37 | | __FRAME_BEGIN__: |
38 | | .4byte .LLCIE1 / Length of Common Information Entry |
39 | | .LSCIE1: |
40 | | #if .eh_frame |
41 | | .4byte 0x0 / CIE Identifier Tag |
42 | | #elif .debug_frame |
43 | | .4byte 0xffffffff / CIE Identifier Tag |
44 | | #endif |
45 | | .byte 0x1 / CIE Version |
46 | | .byte 0x0 / CIE Augmentation (none) |
47 | | .byte 0x1 / ULEB128 0x1 (CIE Code Alignment Factor) |
48 | | .byte 0x7c / SLEB128 -4 (CIE Data Alignment Factor) |
49 | | .byte 0x8 / CIE RA Column |
50 | | .byte 0xc / DW_CFA_def_cfa |
51 | | .byte 0x4 / ULEB128 0x4 |
52 | | .byte 0x4 / ULEB128 0x4 |
53 | | .byte 0x88 / DW_CFA_offset, column 0x8 |
54 | | .byte 0x1 / ULEB128 0x1 |
55 | | .align 4 |
56 | | .LECIE1: |
57 | | .set .LLCIE1,.LECIE1-.LSCIE1 / CIE Length Symbol |
58 | | .4byte .LLFDE1 / FDE Length |
59 | | .LSFDE1: |
60 | | .4byte .LSFDE1-__FRAME_BEGIN__ / FDE CIE offset |
61 | | .4byte .LFB1 / FDE initial location |
62 | | .4byte .LFE1-.LFB1 / FDE address range |
63 | | .byte 0x4 / DW_CFA_advance_loc4 |
64 | | .4byte .LCFI0-.LFB1 |
65 | | .byte 0xe / DW_CFA_def_cfa_offset |
66 | | .byte 0x8 / ULEB128 0x8 |
67 | | .byte 0x85 / DW_CFA_offset, column 0x5 |
68 | | .byte 0x2 / ULEB128 0x2 |
69 | | .byte 0x4 / DW_CFA_advance_loc4 |
70 | | .4byte .LCFI1-.LCFI0 |
71 | | .byte 0xd / DW_CFA_def_cfa_register |
72 | | .byte 0x5 / ULEB128 0x5 |
73 | | .byte 0x4 / DW_CFA_advance_loc4 |
74 | | .4byte .LCFI2-.LCFI1 |
75 | | .byte 0x2e / DW_CFA_GNU_args_size |
76 | | .byte 0x4 / ULEB128 0x4 |
77 | | .byte 0x4 / DW_CFA_advance_loc4 |
78 | | .4byte .LCFI3-.LCFI2 |
79 | | .byte 0x2e / DW_CFA_GNU_args_size |
80 | | .byte 0x0 / ULEB128 0x0 |
81 | | .align 4 |
82 | | .LEFDE1: |
83 | | .set .LLFDE1,.LEFDE1-.LSFDE1 / FDE Length Symbol |
84 | | |
85 | | The immediate issue we can address in the assembler is the |
86 | | DW_CFA_advance_loc4 followed by a four byte value. The value is |
87 | | the difference of two addresses in the function. Since gcc does |
88 | | not know this value, it always uses four bytes. We will know the |
89 | | value at the end of assembly, so we can do better. */ |
90 | | |
91 | | struct cie_info |
92 | | { |
93 | | unsigned code_alignment; |
94 | | int z_augmentation; |
95 | | }; |
96 | | |
97 | | /* Extract information from the CIE. */ |
98 | | |
99 | | static int |
100 | | get_cie_info (struct cie_info *info) |
101 | 373 | { |
102 | 373 | fragS *f; |
103 | 373 | fixS *fix; |
104 | 373 | unsigned int offset; |
105 | 373 | char CIE_id; |
106 | 373 | char augmentation[10]; |
107 | 373 | int iaug; |
108 | 373 | int code_alignment = 0; |
109 | | |
110 | | /* We should find the CIE at the start of the section. */ |
111 | | |
112 | 373 | f = seg_info (now_seg)->frchainP->frch_root; |
113 | 373 | fix = seg_info (now_seg)->frchainP->fix_root; |
114 | | |
115 | | /* Look through the frags of the section to find the code alignment. */ |
116 | | |
117 | | /* First make sure that the CIE Identifier Tag is 0/-1. */ |
118 | | |
119 | 373 | if (startswith (segment_name (now_seg), ".debug_frame")) |
120 | 373 | CIE_id = (char)0xff; |
121 | 0 | else |
122 | 0 | CIE_id = 0; |
123 | | |
124 | 373 | offset = 4; |
125 | 373 | while (f != NULL && offset >= f->fr_fix) |
126 | 0 | { |
127 | 0 | offset -= f->fr_fix; |
128 | 0 | f = f->fr_next; |
129 | 0 | } |
130 | 373 | if (f == NULL |
131 | 373 | || f->fr_fix - offset < 4 |
132 | 373 | || f->fr_literal[offset] != CIE_id |
133 | 373 | || f->fr_literal[offset + 1] != CIE_id |
134 | 373 | || f->fr_literal[offset + 2] != CIE_id |
135 | 373 | || f->fr_literal[offset + 3] != CIE_id) |
136 | 2 | return 0; |
137 | | |
138 | | /* Next make sure the CIE version number is 1. */ |
139 | | |
140 | 371 | offset += 4; |
141 | 371 | while (f != NULL && offset >= f->fr_fix) |
142 | 0 | { |
143 | 0 | offset -= f->fr_fix; |
144 | 0 | f = f->fr_next; |
145 | 0 | } |
146 | 371 | if (f == NULL |
147 | 371 | || f->fr_fix - offset < 1 |
148 | 371 | || f->fr_literal[offset] != 1) |
149 | 0 | return 0; |
150 | | |
151 | | /* Skip the augmentation (a null terminated string). */ |
152 | | |
153 | 371 | iaug = 0; |
154 | 371 | ++offset; |
155 | 371 | while (1) |
156 | 371 | { |
157 | 371 | while (f != NULL && offset >= f->fr_fix) |
158 | 0 | { |
159 | 0 | offset -= f->fr_fix; |
160 | 0 | f = f->fr_next; |
161 | 0 | } |
162 | 371 | if (f == NULL) |
163 | 0 | return 0; |
164 | | |
165 | 371 | while (offset < f->fr_fix && f->fr_literal[offset] != '\0') |
166 | 0 | { |
167 | 0 | if ((size_t) iaug < (sizeof augmentation) - 1) |
168 | 0 | { |
169 | 0 | augmentation[iaug] = f->fr_literal[offset]; |
170 | 0 | ++iaug; |
171 | 0 | } |
172 | 0 | ++offset; |
173 | 0 | } |
174 | 371 | if (offset < f->fr_fix) |
175 | 371 | break; |
176 | 371 | } |
177 | 371 | ++offset; |
178 | 371 | while (f != NULL && offset >= f->fr_fix) |
179 | 0 | { |
180 | 0 | offset -= f->fr_fix; |
181 | 0 | f = f->fr_next; |
182 | 0 | } |
183 | 371 | if (f == NULL) |
184 | 0 | return 0; |
185 | | |
186 | 371 | augmentation[iaug] = '\0'; |
187 | 371 | if (augmentation[0] == '\0') |
188 | 371 | { |
189 | | /* No augmentation. */ |
190 | 371 | } |
191 | 0 | else if (strcmp (augmentation, "eh") == 0) |
192 | 0 | { |
193 | | /* We have to skip a pointer. Unfortunately, we don't know how |
194 | | large it is. We find out by looking for a matching fixup. */ |
195 | 0 | while (fix != NULL |
196 | 0 | && (fix->fx_frag != f || fix->fx_where != offset)) |
197 | 0 | fix = fix->fx_next; |
198 | 0 | if (fix == NULL) |
199 | 0 | offset += 4; |
200 | 0 | else |
201 | 0 | offset += fix->fx_size; |
202 | 0 | while (f != NULL && offset >= f->fr_fix) |
203 | 0 | { |
204 | 0 | offset -= f->fr_fix; |
205 | 0 | f = f->fr_next; |
206 | 0 | } |
207 | 0 | if (f == NULL) |
208 | 0 | return 0; |
209 | 0 | } |
210 | 0 | else if (augmentation[0] != 'z') |
211 | 0 | return 0; |
212 | | |
213 | | /* We're now at the code alignment factor, which is a ULEB128. If |
214 | | it isn't a single byte, forget it. */ |
215 | | |
216 | 371 | code_alignment = f->fr_literal[offset] & 0xff; |
217 | 371 | if ((code_alignment & 0x80) != 0) |
218 | 0 | code_alignment = 0; |
219 | | |
220 | 371 | info->code_alignment = code_alignment; |
221 | 371 | info->z_augmentation = (augmentation[0] == 'z'); |
222 | | |
223 | 371 | return 1; |
224 | 371 | } |
225 | | |
226 | | enum frame_state |
227 | | { |
228 | | state_idle, |
229 | | state_saw_size, |
230 | | state_saw_cie_offset, |
231 | | state_saw_pc_begin, |
232 | | state_seeing_aug_size, |
233 | | state_skipping_aug, |
234 | | state_wait_loc4, |
235 | | state_saw_loc4, |
236 | | state_error, |
237 | | }; |
238 | | |
239 | | struct frame_data |
240 | | { |
241 | | enum frame_state state; |
242 | | |
243 | | int cie_info_ok; |
244 | | struct cie_info cie_info; |
245 | | |
246 | | symbolS *size_end_sym; |
247 | | fragS *loc4_frag; |
248 | | int loc4_fix; |
249 | | |
250 | | int aug_size; |
251 | | int aug_shift; |
252 | | }; |
253 | | |
254 | | static struct eh_state |
255 | | { |
256 | | struct frame_data eh_data; |
257 | | struct frame_data debug_data; |
258 | | } frame; |
259 | | |
260 | | /* This function is called from emit_expr. It looks for cases which |
261 | | we can optimize. |
262 | | |
263 | | Rather than try to parse all this information as we read it, we |
264 | | look for a single byte DW_CFA_advance_loc4 followed by a 4 byte |
265 | | difference. We turn that into a rs_cfa_advance frag, and handle |
266 | | those frags at the end of the assembly. If the gcc output changes |
267 | | somewhat, this optimization may stop working. |
268 | | |
269 | | This function returns non-zero if it handled the expression and |
270 | | emit_expr should not do anything, or zero otherwise. It can also |
271 | | change *EXP and *PNBYTES. */ |
272 | | |
273 | | int |
274 | | check_eh_frame (expressionS *exp, unsigned int *pnbytes) |
275 | 109k | { |
276 | 109k | struct frame_data *d; |
277 | | |
278 | | /* Don't optimize. */ |
279 | 109k | if (flag_traditional_format) |
280 | 0 | return 0; |
281 | | |
282 | | #ifdef md_allow_eh_opt |
283 | | if (! md_allow_eh_opt) |
284 | | return 0; |
285 | | #endif |
286 | | |
287 | | /* Select the proper section data. */ |
288 | 109k | if (startswith (segment_name (now_seg), ".eh_frame") |
289 | 109k | && segment_name (now_seg)[9] != '_') |
290 | 0 | d = &frame.eh_data; |
291 | 109k | else if (startswith (segment_name (now_seg), ".debug_frame")) |
292 | 39.7k | d = &frame.debug_data; |
293 | 69.7k | else |
294 | 69.7k | return 0; |
295 | | |
296 | 39.7k | if (d->state >= state_saw_size && S_IS_DEFINED (d->size_end_sym)) |
297 | 10.0k | { |
298 | | /* We have come to the end of the CIE or FDE. See below where |
299 | | we set saw_size. We must check this first because we may now |
300 | | be looking at the next size. */ |
301 | 10.0k | d->state = state_idle; |
302 | 10.0k | } |
303 | | |
304 | 39.7k | switch (d->state) |
305 | 39.7k | { |
306 | 10.5k | case state_idle: |
307 | 10.5k | if (*pnbytes == 4) |
308 | 10.4k | { |
309 | | /* This might be the size of the CIE or FDE. We want to know |
310 | | the size so that we don't accidentally optimize across an FDE |
311 | | boundary. We recognize the size in one of two forms: a |
312 | | symbol which will later be defined as a difference, or a |
313 | | subtraction of two symbols. Either way, we can tell when we |
314 | | are at the end of the FDE because the symbol becomes defined |
315 | | (in the case of a subtraction, the end symbol, from which the |
316 | | start symbol is being subtracted). Other ways of describing |
317 | | the size will not be optimized. */ |
318 | 10.4k | if ((exp->X_op == O_symbol || exp->X_op == O_subtract) |
319 | 10.4k | && ! S_IS_DEFINED (exp->X_add_symbol)) |
320 | 10.4k | { |
321 | 10.4k | d->state = state_saw_size; |
322 | 10.4k | d->size_end_sym = exp->X_add_symbol; |
323 | 10.4k | } |
324 | 10.4k | } |
325 | 10.5k | break; |
326 | | |
327 | 9.74k | case state_saw_size: |
328 | 19.4k | case state_saw_cie_offset: |
329 | | /* Assume whatever form it appears in, it appears atomically. */ |
330 | 19.4k | d->state = (enum frame_state) (d->state + 1); |
331 | 19.4k | break; |
332 | | |
333 | 9.74k | case state_saw_pc_begin: |
334 | | /* Decide whether we should see an augmentation. */ |
335 | 9.74k | if (! d->cie_info_ok |
336 | 9.74k | && ! (d->cie_info_ok = get_cie_info (&d->cie_info))) |
337 | 2 | d->state = state_error; |
338 | 9.73k | else if (d->cie_info.z_augmentation) |
339 | 0 | { |
340 | 0 | d->state = state_seeing_aug_size; |
341 | 0 | d->aug_size = 0; |
342 | 0 | d->aug_shift = 0; |
343 | 0 | } |
344 | 9.73k | else |
345 | 9.73k | d->state = state_wait_loc4; |
346 | 9.74k | break; |
347 | | |
348 | 0 | case state_seeing_aug_size: |
349 | | /* Bytes == -1 means this comes from an leb128 directive. */ |
350 | 0 | if ((int)*pnbytes == -1 && exp->X_op == O_constant) |
351 | 0 | { |
352 | 0 | d->aug_size = exp->X_add_number; |
353 | 0 | d->state = state_skipping_aug; |
354 | 0 | } |
355 | 0 | else if (*pnbytes == 1 && exp->X_op == O_constant) |
356 | 0 | { |
357 | 0 | unsigned char byte = exp->X_add_number; |
358 | 0 | d->aug_size |= (byte & 0x7f) << d->aug_shift; |
359 | 0 | d->aug_shift += 7; |
360 | 0 | if ((byte & 0x80) == 0) |
361 | 0 | d->state = state_skipping_aug; |
362 | 0 | } |
363 | 0 | else |
364 | 0 | d->state = state_error; |
365 | 0 | if (d->state == state_skipping_aug && d->aug_size == 0) |
366 | 0 | d->state = state_wait_loc4; |
367 | 0 | break; |
368 | | |
369 | 0 | case state_skipping_aug: |
370 | 0 | if ((int)*pnbytes < 0) |
371 | 0 | d->state = state_error; |
372 | 0 | else |
373 | 0 | { |
374 | 0 | int left = (d->aug_size -= *pnbytes); |
375 | 0 | if (left == 0) |
376 | 0 | d->state = state_wait_loc4; |
377 | 0 | else if (left < 0) |
378 | 0 | d->state = state_error; |
379 | 0 | } |
380 | 0 | break; |
381 | | |
382 | 0 | case state_wait_loc4: |
383 | 0 | if (*pnbytes == 1 |
384 | 0 | && exp->X_op == O_constant |
385 | 0 | && exp->X_add_number == DW_CFA_advance_loc4) |
386 | 0 | { |
387 | | /* This might be a DW_CFA_advance_loc4. Record the frag and the |
388 | | position within the frag, so that we can change it later. */ |
389 | 0 | frag_grow (1); |
390 | 0 | d->state = state_saw_loc4; |
391 | 0 | d->loc4_frag = frag_now; |
392 | 0 | d->loc4_fix = frag_now_fix (); |
393 | 0 | } |
394 | 0 | break; |
395 | | |
396 | 0 | case state_saw_loc4: |
397 | 0 | d->state = state_wait_loc4; |
398 | 0 | if (*pnbytes != 4) |
399 | 0 | break; |
400 | 0 | if (exp->X_op == O_constant) |
401 | 0 | { |
402 | | /* This is a case which we can optimize. The two symbols being |
403 | | subtracted were in the same frag and the expression was |
404 | | reduced to a constant. We can do the optimization entirely |
405 | | in this function. */ |
406 | 0 | if (exp->X_add_number < 0x40) |
407 | 0 | { |
408 | 0 | d->loc4_frag->fr_literal[d->loc4_fix] |
409 | 0 | = DW_CFA_advance_loc | exp->X_add_number; |
410 | | /* No more bytes needed. */ |
411 | 0 | return 1; |
412 | 0 | } |
413 | 0 | else if (exp->X_add_number < 0x100) |
414 | 0 | { |
415 | 0 | d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc1; |
416 | 0 | *pnbytes = 1; |
417 | 0 | } |
418 | 0 | else if (exp->X_add_number < 0x10000) |
419 | 0 | { |
420 | 0 | d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc2; |
421 | 0 | *pnbytes = 2; |
422 | 0 | } |
423 | 0 | } |
424 | 0 | else if (exp->X_op == O_subtract && d->cie_info.code_alignment == 1) |
425 | 0 | { |
426 | | /* This is a case we can optimize. The expression was not |
427 | | reduced, so we can not finish the optimization until the end |
428 | | of the assembly. We set up a variant frag which we handle |
429 | | later. */ |
430 | 0 | frag_var (rs_cfa, 4, 0, 1 << 3, make_expr_symbol (exp), |
431 | 0 | d->loc4_fix, (char *) d->loc4_frag); |
432 | 0 | return 1; |
433 | 0 | } |
434 | 0 | else if ((exp->X_op == O_divide |
435 | 0 | || exp->X_op == O_right_shift) |
436 | 0 | && d->cie_info.code_alignment > 1) |
437 | 0 | { |
438 | 0 | if (symbol_symbolS (exp->X_add_symbol) |
439 | 0 | && symbol_constant_p (exp->X_op_symbol) |
440 | 0 | && S_GET_SEGMENT (exp->X_op_symbol) == absolute_section |
441 | 0 | && ((exp->X_op == O_divide |
442 | 0 | ? *symbol_X_add_number (exp->X_op_symbol) |
443 | 0 | : (offsetT) 1 << *symbol_X_add_number (exp->X_op_symbol)) |
444 | 0 | == (offsetT) d->cie_info.code_alignment)) |
445 | 0 | { |
446 | 0 | expressionS *symval; |
447 | |
|
448 | 0 | symval = symbol_get_value_expression (exp->X_add_symbol); |
449 | 0 | if (symval->X_op == O_subtract) |
450 | 0 | { |
451 | | /* This is a case we can optimize as well. The |
452 | | expression was not reduced, so we can not finish |
453 | | the optimization until the end of the assembly. |
454 | | We set up a variant frag which we handle later. */ |
455 | 0 | frag_var (rs_cfa, 4, 0, d->cie_info.code_alignment << 3, |
456 | 0 | make_expr_symbol (symval), |
457 | 0 | d->loc4_fix, (char *) d->loc4_frag); |
458 | 0 | return 1; |
459 | 0 | } |
460 | 0 | } |
461 | 0 | } |
462 | 0 | break; |
463 | | |
464 | 34 | case state_error: |
465 | | /* Just skipping everything. */ |
466 | 34 | break; |
467 | 39.7k | } |
468 | | |
469 | 39.7k | return 0; |
470 | 39.7k | } |
471 | | |
472 | | /* The function estimates the size of a rs_cfa variant frag based on |
473 | | the current values of the symbols. It is called before the |
474 | | relaxation loop. We set fr_subtype{0:2} to the expected length. */ |
475 | | |
476 | | int |
477 | | eh_frame_estimate_size_before_relax (fragS *frag) |
478 | 0 | { |
479 | 0 | offsetT diff; |
480 | 0 | int ca = frag->fr_subtype >> 3; |
481 | 0 | int ret; |
482 | |
|
483 | 0 | diff = resolve_symbol_value (frag->fr_symbol); |
484 | |
|
485 | 0 | gas_assert (ca > 0); |
486 | 0 | diff /= ca; |
487 | 0 | if (diff == 0) |
488 | 0 | ret = -1; |
489 | 0 | else if (diff < 0x40) |
490 | 0 | ret = 0; |
491 | 0 | else if (diff < 0x100) |
492 | 0 | ret = 1; |
493 | 0 | else if (diff < 0x10000) |
494 | 0 | ret = 2; |
495 | 0 | else |
496 | 0 | ret = 4; |
497 | |
|
498 | 0 | frag->fr_subtype = (frag->fr_subtype & ~7) | (ret & 7); |
499 | |
|
500 | 0 | return ret; |
501 | 0 | } |
502 | | |
503 | | /* This function relaxes a rs_cfa variant frag based on the current |
504 | | values of the symbols. fr_subtype{0:2} is the current length of |
505 | | the frag. This returns the change in frag length. */ |
506 | | |
507 | | int |
508 | | eh_frame_relax_frag (fragS *frag) |
509 | 0 | { |
510 | 0 | int oldsize, newsize; |
511 | |
|
512 | 0 | oldsize = frag->fr_subtype & 7; |
513 | 0 | if (oldsize == 7) |
514 | 0 | oldsize = -1; |
515 | 0 | newsize = eh_frame_estimate_size_before_relax (frag); |
516 | 0 | return newsize - oldsize; |
517 | 0 | } |
518 | | |
519 | | /* This function converts a rs_cfa variant frag into a normal fill |
520 | | frag. This is called after all relaxation has been done. |
521 | | fr_subtype{0:2} will be the desired length of the frag. */ |
522 | | |
523 | | void |
524 | | eh_frame_convert_frag (fragS *frag) |
525 | 0 | { |
526 | 0 | offsetT diff; |
527 | 0 | fragS *loc4_frag; |
528 | 0 | int loc4_fix, ca; |
529 | |
|
530 | 0 | loc4_frag = (fragS *) frag->fr_opcode; |
531 | 0 | loc4_fix = (int) frag->fr_offset; |
532 | |
|
533 | 0 | diff = resolve_symbol_value (frag->fr_symbol); |
534 | |
|
535 | 0 | ca = frag->fr_subtype >> 3; |
536 | 0 | gas_assert (ca > 0); |
537 | 0 | diff /= ca; |
538 | 0 | switch (frag->fr_subtype & 7) |
539 | 0 | { |
540 | 0 | case 0: |
541 | 0 | gas_assert (diff < 0x40); |
542 | 0 | loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc | diff; |
543 | 0 | break; |
544 | | |
545 | 0 | case 1: |
546 | 0 | gas_assert (diff < 0x100); |
547 | 0 | loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc1; |
548 | 0 | frag->fr_literal[frag->fr_fix] = diff; |
549 | 0 | break; |
550 | | |
551 | 0 | case 2: |
552 | 0 | gas_assert (diff < 0x10000); |
553 | 0 | loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc2; |
554 | 0 | md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 2); |
555 | 0 | break; |
556 | | |
557 | 0 | case 4: |
558 | 0 | md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 4); |
559 | 0 | break; |
560 | | |
561 | 0 | case 7: |
562 | 0 | gas_assert (diff == 0); |
563 | 0 | frag->fr_fix -= 8; |
564 | 0 | break; |
565 | | |
566 | 0 | default: |
567 | 0 | abort (); |
568 | 0 | } |
569 | | |
570 | 0 | frag->fr_fix += frag->fr_subtype & 7; |
571 | 0 | frag->fr_type = rs_fill; |
572 | 0 | frag->fr_subtype = 0; |
573 | 0 | frag->fr_offset = 0; |
574 | 0 | } |
575 | | |
576 | | void |
577 | | eh_begin (void) |
578 | 1.15k | { |
579 | 1.15k | memset (&frame, 0, sizeof (frame)); |
580 | 1.15k | } |