Coverage Report

Created: 2023-08-28 06:31

/src/binutils-gdb/libctf/ctf-util.c
Line
Count
Source (jump to first uncovered line)
1
/* Miscellaneous utilities.
2
   Copyright (C) 2019-2023 Free Software Foundation, Inc.
3
4
   This file is part of libctf.
5
6
   libctf is free software; you can redistribute it and/or modify it under
7
   the terms of the GNU General Public License as published by the Free
8
   Software Foundation; either version 3, or (at your option) any later
9
   version.
10
11
   This program is distributed in the hope that it will be useful, but
12
   WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14
   See the GNU General Public License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with this program; see the file COPYING.  If not see
18
   <http://www.gnu.org/licenses/>.  */
19
20
#include <ctf-impl.h>
21
#include <string.h>
22
#include "ctf-endian.h"
23
24
/* Simple doubly-linked list append routine.  This implementation assumes that
25
   each list element contains an embedded ctf_list_t as the first member.
26
   An additional ctf_list_t is used to store the head (l_next) and tail
27
   (l_prev) pointers.  The current head and tail list elements have their
28
   previous and next pointers set to NULL, respectively.  */
29
30
void
31
ctf_list_append (ctf_list_t *lp, void *newp)
32
0
{
33
0
  ctf_list_t *p = lp->l_prev; /* p = tail list element.  */
34
0
  ctf_list_t *q = newp;   /* q = new list element.  */
35
36
0
  lp->l_prev = q;
37
0
  q->l_prev = p;
38
0
  q->l_next = NULL;
39
40
0
  if (p != NULL)
41
0
    p->l_next = q;
42
0
  else
43
0
    lp->l_next = q;
44
0
}
45
46
/* Prepend the specified existing element to the given ctf_list_t.  The
47
   existing pointer should be pointing at a struct with embedded ctf_list_t.  */
48
49
void
50
ctf_list_prepend (ctf_list_t * lp, void *newp)
51
0
{
52
0
  ctf_list_t *p = newp;   /* p = new list element.  */
53
0
  ctf_list_t *q = lp->l_next; /* q = head list element.  */
54
55
0
  lp->l_next = p;
56
0
  p->l_prev = NULL;
57
0
  p->l_next = q;
58
59
0
  if (q != NULL)
60
0
    q->l_prev = p;
61
0
  else
62
0
    lp->l_prev = p;
63
0
}
64
65
/* Delete the specified existing element from the given ctf_list_t.  The
66
   existing pointer should be pointing at a struct with embedded ctf_list_t.  */
67
68
void
69
ctf_list_delete (ctf_list_t *lp, void *existing)
70
0
{
71
0
  ctf_list_t *p = existing;
72
73
0
  if (p->l_prev != NULL)
74
0
    p->l_prev->l_next = p->l_next;
75
0
  else
76
0
    lp->l_next = p->l_next;
77
78
0
  if (p->l_next != NULL)
79
0
    p->l_next->l_prev = p->l_prev;
80
0
  else
81
0
    lp->l_prev = p->l_prev;
82
0
}
83
84
/* Return 1 if the list is empty.  */
85
86
int
87
ctf_list_empty_p (ctf_list_t *lp)
88
0
{
89
0
  return (lp->l_next == NULL && lp->l_prev == NULL);
90
0
}
91
92
/* Splice one entire list onto the end of another one.  The existing list is
93
   emptied.  */
94
95
void
96
ctf_list_splice (ctf_list_t *lp, ctf_list_t *append)
97
0
{
98
0
  if (ctf_list_empty_p (append))
99
0
    return;
100
101
0
  if (lp->l_prev != NULL)
102
0
    lp->l_prev->l_next = append->l_next;
103
0
  else
104
0
    lp->l_next = append->l_next;
105
106
0
  append->l_next->l_prev = lp->l_prev;
107
0
  lp->l_prev = append->l_prev;
108
0
  append->l_next = NULL;
109
0
  append->l_prev = NULL;
110
0
}
111
112
/* Convert a 32-bit ELF symbol to a ctf_link_sym_t.  */
113
114
ctf_link_sym_t *
115
ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src,
116
           uint32_t symidx)
117
0
{
118
0
  Elf32_Sym tmp;
119
0
  int needs_flipping = 0;
120
121
#ifdef WORDS_BIGENDIAN
122
  if (fp->ctf_symsect_little_endian)
123
    needs_flipping = 1;
124
#else
125
0
  if (!fp->ctf_symsect_little_endian)
126
0
    needs_flipping = 1;
127
0
#endif
128
129
0
  memcpy (&tmp, src, sizeof (Elf32_Sym));
130
0
  if (needs_flipping)
131
0
    {
132
0
      swap_thing (tmp.st_name);
133
0
      swap_thing (tmp.st_size);
134
0
      swap_thing (tmp.st_shndx);
135
0
      swap_thing (tmp.st_value);
136
0
    }
137
  /* The name must be in the external string table.  */
138
0
  if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
139
0
    dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
140
0
  else
141
0
    dst->st_name = _CTF_NULLSTR;
142
0
  dst->st_nameidx_set = 0;
143
0
  dst->st_symidx = symidx;
144
0
  dst->st_shndx = tmp.st_shndx;
145
0
  dst->st_type = ELF32_ST_TYPE (tmp.st_info);
146
0
  dst->st_value = tmp.st_value;
147
148
0
  return dst;
149
0
}
150
151
/* Convert a 64-bit ELF symbol to a ctf_link_sym_t.  */
152
153
ctf_link_sym_t *
154
ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src,
155
           uint32_t symidx)
156
0
{
157
0
  Elf64_Sym tmp;
158
0
  int needs_flipping = 0;
159
160
#ifdef WORDS_BIGENDIAN
161
  if (fp->ctf_symsect_little_endian)
162
    needs_flipping = 1;
163
#else
164
0
  if (!fp->ctf_symsect_little_endian)
165
0
    needs_flipping = 1;
166
0
#endif
167
168
0
  memcpy (&tmp, src, sizeof (Elf64_Sym));
169
0
  if (needs_flipping)
170
0
    {
171
0
      swap_thing (tmp.st_name);
172
0
      swap_thing (tmp.st_size);
173
0
      swap_thing (tmp.st_shndx);
174
0
      swap_thing (tmp.st_value);
175
0
    }
176
177
  /* The name must be in the external string table.  */
178
0
  if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
179
0
    dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
180
0
  else
181
0
    dst->st_name = _CTF_NULLSTR;
182
0
  dst->st_nameidx_set = 0;
183
0
  dst->st_symidx = symidx;
184
0
  dst->st_shndx = tmp.st_shndx;
185
0
  dst->st_type = ELF32_ST_TYPE (tmp.st_info);
186
187
  /* We only care if the value is zero, so avoid nonzeroes turning into
188
     zeroes.  */
189
0
  if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0)))
190
0
    dst->st_value = 1;
191
0
  else
192
0
    dst->st_value = (uint32_t) tmp.st_value;
193
194
0
  return dst;
195
0
}
196
197
/* A string appender working on dynamic strings.  Returns NULL on OOM.  */
198
199
char *
200
ctf_str_append (char *s, const char *append)
201
0
{
202
0
  size_t s_len = 0;
203
204
0
  if (append == NULL)
205
0
    return s;
206
207
0
  if (s != NULL)
208
0
    s_len = strlen (s);
209
210
0
  size_t append_len = strlen (append);
211
212
0
  if ((s = realloc (s, s_len + append_len + 1)) == NULL)
213
0
    return NULL;
214
215
0
  memcpy (s + s_len, append, append_len);
216
0
  s[s_len + append_len] = '\0';
217
218
0
  return s;
219
0
}
220
221
/* A version of ctf_str_append that returns the old string on OOM.  */
222
223
char *
224
ctf_str_append_noerr (char *s, const char *append)
225
0
{
226
0
  char *new_s;
227
228
0
  new_s = ctf_str_append (s, append);
229
0
  if (!new_s)
230
0
    return s;
231
0
  return new_s;
232
0
}
233
234
/* A realloc() that fails noisily if called with any ctf_str_num_users.  */
235
void *
236
ctf_realloc (ctf_dict_t *fp, void *ptr, size_t size)
237
0
{
238
0
  if (fp->ctf_str_num_refs > 0)
239
0
    {
240
0
      ctf_dprintf ("%p: attempt to realloc() string table with %lu active refs\n",
241
0
       (void *) fp, (unsigned long) fp->ctf_str_num_refs);
242
0
      return NULL;
243
0
    }
244
0
  return realloc (ptr, size);
245
0
}
246
247
/* Store the specified error code into errp if it is non-NULL, and then
248
   return NULL for the benefit of the caller.  */
249
250
void *
251
ctf_set_open_errno (int *errp, int error)
252
0
{
253
0
  if (errp != NULL)
254
0
    *errp = error;
255
0
  return NULL;
256
0
}
257
258
/* Store the specified error code into the CTF dict, and then return CTF_ERR /
259
   -1 for the benefit of the caller. */
260
261
unsigned long
262
ctf_set_errno (ctf_dict_t *fp, int err)
263
0
{
264
0
  fp->ctf_errno = err;
265
0
  return CTF_ERR;
266
0
}
267
268
/* Create a ctf_next_t.  */
269
270
ctf_next_t *
271
ctf_next_create (void)
272
0
{
273
0
  return calloc (1, sizeof (struct ctf_next));
274
0
}
275
276
/* Destroy a ctf_next_t, for early exit from iterators.  */
277
278
void
279
ctf_next_destroy (ctf_next_t *i)
280
0
{
281
0
  if (i == NULL)
282
0
    return;
283
284
0
  if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
285
0
    free (i->u.ctn_sorted_hkv);
286
0
  if (i->ctn_next)
287
0
    ctf_next_destroy (i->ctn_next);
288
0
  free (i);
289
0
}
290
291
/* Copy a ctf_next_t.  */
292
293
ctf_next_t *
294
ctf_next_copy (ctf_next_t *i)
295
0
{
296
0
  ctf_next_t *i2;
297
298
0
  if ((i2 = ctf_next_create()) == NULL)
299
0
    return NULL;
300
0
  memcpy (i2, i, sizeof (struct ctf_next));
301
302
0
  if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
303
0
    {
304
0
      size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h);
305
0
      if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
306
0
  {
307
0
    free (i2);
308
0
    return NULL;
309
0
  }
310
0
      memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv,
311
0
        els * sizeof (ctf_next_hkv_t));
312
0
    }
313
0
  return i2;
314
0
}