Coverage Report

Created: 2023-08-28 06:31

/src/binutils-gdb/opcodes/vax-dis.c
Line
Count
Source (jump to first uncovered line)
1
/* Print VAX instructions.
2
   Copyright (C) 1995-2023 Free Software Foundation, Inc.
3
   Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
4
5
   This file is part of the GNU opcodes library.
6
7
   This library is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3, or (at your option)
10
   any later version.
11
12
   It is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
22
#include "sysdep.h"
23
#include <setjmp.h>
24
#include <string.h>
25
#include "opcode/vax.h"
26
#include "disassemble.h"
27
28
static char *reg_names[] =
29
{
30
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
31
  "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
32
};
33
34
/* Definitions for the function entry mask bits.  */
35
static char *entry_mask_bit[] =
36
{
37
  /* Registers 0 and 1 shall not be saved, since they're used to pass back
38
     a function's result to its caller...  */
39
  "~r0~", "~r1~",
40
  /* Registers 2 .. 11 are normal registers.  */
41
  "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
42
  /* Registers 12 and 13 are argument and frame pointer and must not
43
     be saved by using the entry mask.  */
44
  "~ap~", "~fp~",
45
  /* Bits 14 and 15 control integer and decimal overflow.  */
46
  "IntOvfl", "DecOvfl",
47
};
48
49
/* Sign-extend an (unsigned char). */
50
260k
#define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
51
52
/* Get a 1 byte signed integer.  */
53
#define NEXTBYTE(p)  \
54
260k
  (p += 1, FETCH_DATA (info, p), \
55
260k
  COERCE_SIGNED_CHAR(p[-1]))
56
57
/* Get a 2 byte signed integer.  */
58
17.5k
#define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
59
#define NEXTWORD(p)  \
60
17.5k
  (p += 2, FETCH_DATA (info, p), \
61
17.5k
   COERCE16 ((p[-1] << 8) + p[-2]))
62
63
/* Get a 4 byte signed integer.  */
64
23.3k
#define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
65
#define NEXTLONG(p)  \
66
23.3k
  (p += 4, FETCH_DATA (info, p), \
67
23.3k
   (COERCE32 (((((((unsigned) p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
68
69
/* Maximum length of an instruction.  */
70
#define MAXLEN 25
71
72
struct private
73
{
74
  /* Points to first byte not fetched.  */
75
  bfd_byte * max_fetched;
76
  bfd_byte   the_buffer[MAXLEN];
77
  bfd_vma    insn_start;
78
  OPCODES_SIGJMP_BUF    bailout;
79
};
80
81
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
82
   to ADDR (exclusive) are valid.  Returns 1 for success, longjmps
83
   on error.  */
84
#define FETCH_DATA(info, addr) \
85
653k
  ((addr) <= ((struct private *)(info->private_data))->max_fetched \
86
653k
   ? 1 : fetch_data ((info), (addr)))
87
88
static int
89
fetch_data (struct disassemble_info *info, bfd_byte *addr)
90
381k
{
91
381k
  int status;
92
381k
  struct private *priv = (struct private *) info->private_data;
93
381k
  bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
94
95
381k
  status = (*info->read_memory_func) (start,
96
381k
              priv->max_fetched,
97
381k
              addr - priv->max_fetched,
98
381k
              info);
99
381k
  if (status != 0)
100
326
    {
101
326
      (*info->memory_error_func) (status, start, info);
102
326
      OPCODES_SIGLONGJMP (priv->bailout, 1);
103
326
    }
104
381k
  else
105
381k
    priv->max_fetched = addr;
106
107
381k
  return 1;
108
381k
}
109
110
/* Entry mask handling.  */
111
static unsigned int  entry_addr_occupied_slots = 0;
112
static unsigned int  entry_addr_total_slots = 0;
113
static bfd_vma *     entry_addr = NULL;
114
115
/* Parse the VAX specific disassembler options.  These contain function
116
   entry addresses, which can be useful to disassemble ROM images, since
117
   there's no symbol table.  Returns TRUE upon success, FALSE otherwise.  */
118
119
static bool
120
parse_disassembler_options (const char *options)
121
0
{
122
0
  const char * entry_switch = "entry:";
123
124
0
  while ((options = strstr (options, entry_switch)))
125
0
    {
126
0
      options += strlen (entry_switch);
127
128
      /* The greater-than part of the test below is paranoia.  */
129
0
      if (entry_addr_occupied_slots >= entry_addr_total_slots)
130
0
  {
131
    /* A guesstimate of the number of entries we will have to create.  */
132
0
    entry_addr_total_slots
133
0
      += 1 + strlen (options) / (strlen (entry_switch) + 5);
134
135
0
    entry_addr = realloc (entry_addr, sizeof (bfd_vma)
136
0
        * entry_addr_total_slots);
137
0
  }
138
139
0
      if (entry_addr == NULL)
140
0
  return false;
141
142
0
      entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
143
0
      entry_addr_occupied_slots ++;
144
0
    }
145
146
0
  return true;
147
0
}
148
149
#if 0 /* FIXME:  Ideally the disassembler should have target specific
150
   initialisation and termination function pointers.  Then
151
   parse_disassembler_options could be the init function and
152
   free_entry_array (below) could be the termination routine.
153
   Until then there is no way for the disassembler to tell us
154
   that it has finished and that we no longer need the entry
155
   array, so this routine is suppressed for now.  It does mean
156
   that we leak memory, but only to the extent that we do not
157
   free it just before the disassembler is about to terminate
158
   anyway.  */
159
160
/* Free memory allocated to our entry array.  */
161
162
static void
163
free_entry_array (void)
164
{
165
  if (entry_addr)
166
    {
167
      free (entry_addr);
168
      entry_addr = NULL;
169
      entry_addr_occupied_slots = entry_addr_total_slots = 0;
170
    }
171
}
172
#endif
173
/* Check if the given address is a known function entry point.  This is
174
   the case if there is a symbol of the function type at this address.
175
   We also check for synthetic symbols as these are used for PLT entries
176
   (weak undefined symbols may not have the function type set).  Finally
177
   the address may have been forced to be treated as an entry point.  The
178
   latter helps in disassembling ROM images, because there's no symbol
179
   table at all.  Forced entry points can be given by supplying several
180
   -M options to objdump: -M entry:0xffbb7730.  */
181
182
static bool
183
is_function_entry (struct disassemble_info *info, bfd_vma addr)
184
181k
{
185
181k
  unsigned int i;
186
187
  /* Check if there's a function or PLT symbol at our address.  */
188
181k
  if (info->symbols
189
181k
      && info->symbols[0]
190
181k
      && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
191
181k
      && addr == bfd_asymbol_value (info->symbols[0]))
192
0
    return true;
193
194
  /* Check for forced function entry address.  */
195
181k
  for (i = entry_addr_occupied_slots; i--;)
196
0
    if (entry_addr[i] == addr)
197
0
      return true;
198
199
181k
  return false;
200
181k
}
201
202
/* Check if the given address is the last longword of a PLT entry.
203
   This longword is data and depending on the value it may interfere
204
   with disassembly of further PLT entries.  We make use of the fact
205
   PLT symbols are marked BSF_SYNTHETIC.  */
206
static bool
207
is_plt_tail (struct disassemble_info *info, bfd_vma addr)
208
181k
{
209
181k
  if (info->symbols
210
181k
      && info->symbols[0]
211
181k
      && (info->symbols[0]->flags & BSF_SYNTHETIC)
212
181k
      && addr == bfd_asymbol_value (info->symbols[0]) + 8)
213
0
    return true;
214
215
181k
  return false;
216
181k
}
217
218
static int
219
print_insn_mode (const char *d,
220
     int size,
221
     unsigned char *p0,
222
     bfd_vma addr,  /* PC for this arg to be relative to.  */
223
     disassemble_info *info)
224
218k
{
225
218k
  unsigned char *p = p0;
226
218k
  unsigned char mode, reg;
227
228
  /* Fetch and interpret mode byte.  */
229
218k
  mode = (unsigned char) NEXTBYTE (p);
230
218k
  reg = mode & 0xF;
231
218k
  switch (mode & 0xF0)
232
218k
    {
233
48.0k
    case 0x00:
234
55.5k
    case 0x10:
235
70.8k
    case 0x20:
236
88.4k
    case 0x30: /* Literal mode      $number.  */
237
88.4k
      if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
238
11.7k
  (*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
239
76.6k
      else
240
76.6k
        (*info->fprintf_func) (info->stream, "$0x%x", mode);
241
88.4k
      break;
242
14.4k
    case 0x40: /* Index:      base-addr[Rn] */
243
14.4k
      {
244
14.4k
  unsigned char *q = p0 + 1;
245
14.4k
  unsigned char nextmode = NEXTBYTE (q);
246
14.4k
  if (nextmode < 0x60 || nextmode == 0x8f)
247
    /* Literal, index, register, or immediate is invalid.  In
248
       particular don't recurse into another index mode which
249
       might overflow the_buffer.   */
250
8.70k
    (*info->fprintf_func) (info->stream, "[invalid base]");
251
5.73k
  else
252
5.73k
    p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
253
14.4k
  (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
254
14.4k
      }
255
14.4k
      break;
256
9.48k
    case 0x50: /* Register:     Rn */
257
9.48k
      (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
258
9.48k
      break;
259
13.4k
    case 0x60: /* Register deferred:    (Rn) */
260
13.4k
      (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
261
13.4k
      break;
262
13.6k
    case 0x70: /* Autodecrement:    -(Rn) */
263
13.6k
      (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
264
13.6k
      break;
265
15.5k
    case 0x80: /* Autoincrement:    (Rn)+ */
266
15.5k
      if (reg == 0xF)
267
799
  { /* Immediate?  */
268
799
    int i;
269
270
799
    FETCH_DATA (info, p + size);
271
799
    (*info->fprintf_func) (info->stream, "$0x");
272
799
    if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
273
275
      {
274
275
        int float_word;
275
276
275
        float_word = p[0] | (p[1] << 8);
277
275
        if ((d[1] == 'd' || d[1] == 'f')
278
275
      && (float_word & 0xff80) == 0x8000)
279
1
    {
280
1
      (*info->fprintf_func) (info->stream, "[invalid %c-float]",
281
1
           d[1]);
282
1
    }
283
274
        else
284
274
    {
285
2.66k
            for (i = 0; i < size; i++)
286
2.39k
        (*info->fprintf_func) (info->stream, "%02x",
287
2.39k
                               p[size - i - 1]);
288
274
            (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
289
274
    }
290
275
      }
291
524
    else
292
524
      {
293
1.46k
        for (i = 0; i < size; i++)
294
944
          (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
295
524
      }
296
799
    p += size;
297
799
  }
298
14.7k
      else
299
14.7k
  (*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
300
15.5k
      break;
301
10.1k
    case 0x90: /* Autoincrement deferred: @(Rn)+ */
302
10.1k
      if (reg == 0xF)
303
751
  (*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
304
9.43k
      else
305
9.43k
  (*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
306
10.1k
      break;
307
6.45k
    case 0xB0: /* Displacement byte deferred: *displ(Rn).  */
308
6.45k
      (*info->fprintf_func) (info->stream, "*");
309
      /* Fall through.  */
310
15.1k
    case 0xA0: /* Displacement byte:    displ(Rn).  */
311
15.1k
      if (reg == 0xF)
312
1.48k
  (*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
313
13.6k
      else
314
13.6k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
315
13.6k
             reg_names[reg]);
316
15.1k
      break;
317
6.32k
    case 0xD0: /* Displacement word deferred: *displ(Rn).  */
318
6.32k
      (*info->fprintf_func) (info->stream, "*");
319
      /* Fall through.  */
320
14.8k
    case 0xC0: /* Displacement word:    displ(Rn).  */
321
14.8k
      if (reg == 0xF)
322
875
  (*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
323
14.0k
      else
324
14.0k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
325
14.0k
             reg_names[reg]);
326
14.8k
      break;
327
14.7k
    case 0xF0: /* Displacement long deferred: *displ(Rn).  */
328
14.7k
      (*info->fprintf_func) (info->stream, "*");
329
      /* Fall through.  */
330
22.6k
    case 0xE0: /* Displacement long:    displ(Rn).  */
331
22.6k
      if (reg == 0xF)
332
6.18k
  (*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
333
16.4k
      else
334
16.4k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
335
16.4k
             reg_names[reg]);
336
22.6k
      break;
337
218k
    }
338
339
217k
  return p - p0;
340
218k
}
341
342
/* Returns number of bytes "eaten" by the operand, or return -1 if an
343
   invalid operand was found, or -2 if an opcode tabel error was
344
   found. */
345
346
static int
347
print_insn_arg (const char *d,
348
    unsigned char *p0,
349
    bfd_vma addr, /* PC for this arg to be relative to.  */
350
    disassemble_info *info)
351
227k
{
352
227k
  int arg_len;
353
354
  /* Check validity of addressing length.  */
355
227k
  switch (d[1])
356
227k
    {
357
96.1k
    case 'b' : arg_len = 1; break;
358
18.8k
    case 'd' : arg_len = 8; break;
359
17.0k
    case 'f' : arg_len = 4; break;
360
92
    case 'g' : arg_len = 8; break;
361
407
    case 'h' : arg_len = 16;  break;
362
42.8k
    case 'l' : arg_len = 4; break;
363
56
    case 'o' : arg_len = 16;  break;
364
47.7k
    case 'w' : arg_len = 2; break;
365
4.54k
    case 'q' : arg_len = 8; break;
366
0
    default  : abort ();
367
227k
    }
368
369
  /* Branches have no mode byte.  */
370
227k
  if (d[0] == 'b')
371
15.4k
    {
372
15.4k
      unsigned char *p = p0;
373
374
15.4k
      if (arg_len == 1)
375
12.8k
  (*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
376
2.61k
      else
377
2.61k
  (*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
378
379
15.4k
      return p - p0;
380
15.4k
    }
381
382
212k
  return print_insn_mode (d, arg_len, p0, addr, info);
383
227k
}
384
385
/* Print the vax instruction at address MEMADDR in debugged memory,
386
   on INFO->STREAM.  Returns length of the instruction, in bytes.  */
387
388
int
389
print_insn_vax (bfd_vma memaddr, disassemble_info *info)
390
181k
{
391
181k
  static bool parsed_disassembler_options = false;
392
181k
  const struct vot *votp;
393
181k
  const char *argp;
394
181k
  unsigned char *arg;
395
181k
  struct private priv;
396
181k
  bfd_byte *buffer = priv.the_buffer;
397
398
181k
  info->private_data = & priv;
399
181k
  priv.max_fetched = priv.the_buffer;
400
181k
  priv.insn_start = memaddr;
401
402
181k
  if (! parsed_disassembler_options
403
181k
      && info->disassembler_options != NULL)
404
0
    {
405
0
      parse_disassembler_options (info->disassembler_options);
406
407
      /* To avoid repeated parsing of these options.  */
408
0
      parsed_disassembler_options = true;
409
0
    }
410
411
181k
  if (OPCODES_SIGSETJMP (priv.bailout) != 0)
412
    /* Error return.  */
413
326
    return -1;
414
415
181k
  argp = NULL;
416
  /* Check if the info buffer has more than one byte left since
417
     the last opcode might be a single byte with no argument data.  */
418
181k
  if (info->buffer_length - (memaddr - info->buffer_vma) > 1
419
181k
      && (info->stop_vma == 0 || memaddr < (info->stop_vma - 1)))
420
181k
    {
421
181k
      FETCH_DATA (info, buffer + 2);
422
181k
    }
423
18.4E
  else
424
18.4E
    {
425
18.4E
      FETCH_DATA (info, buffer + 1);
426
18.4E
      buffer[1] = 0;
427
18.4E
    }
428
429
  /* Decode function entry mask.  */
430
181k
  if (is_function_entry (info, memaddr))
431
0
    {
432
0
      int i = 0;
433
0
      int register_mask = buffer[1] << 8 | buffer[0];
434
435
0
      (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
436
0
           register_mask);
437
438
0
      for (i = 15; i >= 0; i--)
439
0
  if (register_mask & (1 << i))
440
0
          (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
441
442
0
      (*info->fprintf_func) (info->stream, " >");
443
444
0
      return 2;
445
0
    }
446
447
  /* Decode PLT entry offset longword.  */
448
181k
  if (is_plt_tail (info, memaddr))
449
0
    {
450
0
      int offset;
451
452
0
      FETCH_DATA (info, buffer + 4);
453
0
      offset = ((unsigned) buffer[3] << 24 | buffer[2] << 16
454
0
    | buffer[1] << 8 | buffer[0]);
455
0
      (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
456
457
0
      return 4;
458
0
    }
459
460
14.6M
  for (votp = &votstrs[0]; votp->name[0]; votp++)
461
14.6M
    {
462
14.6M
      vax_opcodeT opcode = votp->detail.code;
463
464
      /* 2 byte codes match 2 buffer pos. */
465
14.6M
      if ((bfd_byte) opcode == buffer[0]
466
14.6M
    && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
467
170k
  {
468
170k
    argp = votp->detail.args;
469
170k
    break;
470
170k
  }
471
14.6M
    }
472
181k
  if (argp == NULL)
473
11.5k
    {
474
      /* Handle undefined instructions. */
475
11.5k
      (*info->fprintf_func) (info->stream, ".word 0x%x",
476
11.5k
           (buffer[0] << 8) + buffer[1]);
477
11.5k
      return 2;
478
11.5k
    }
479
480
  /* Point at first byte of argument data, and at descriptor for first
481
     argument.  */
482
169k
  arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
483
484
  /* Make sure we have it in mem */
485
169k
  FETCH_DATA (info, arg);
486
487
169k
  (*info->fprintf_func) (info->stream, "%s", votp->name);
488
169k
  if (*argp)
489
92.4k
    (*info->fprintf_func) (info->stream, " ");
490
491
397k
  while (*argp)
492
227k
    {
493
227k
      arg += print_insn_arg (argp, arg, memaddr + (arg - buffer), info);
494
227k
      argp += 2;
495
227k
      if (*argp)
496
135k
  (*info->fprintf_func) (info->stream, ",");
497
227k
    }
498
499
169k
  return arg - buffer;
500
181k
}
501