Coverage Report

Created: 2024-05-21 06:29

/src/binutils-gdb/libctf/ctf-dedup.c
Line
Count
Source (jump to first uncovered line)
1
/* CTF type deduplication.
2
   Copyright (C) 2019-2024 Free Software Foundation, Inc.
3
4
   This file is part of libctf.
5
6
   libctf is free software; you can redistribute it and/or modify it under
7
   the terms of the GNU General Public License as published by the Free
8
   Software Foundation; either version 3, or (at your option) any later
9
   version.
10
11
   This program is distributed in the hope that it will be useful, but
12
   WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14
   See the GNU General Public License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with this program; see the file COPYING.  If not see
18
   <http://www.gnu.org/licenses/>.  */
19
20
#include <ctf-impl.h>
21
#include <string.h>
22
#include <errno.h>
23
#include <assert.h>
24
#include "hashtab.h"
25
26
/* (In the below, relevant functions are named in square brackets.)  */
27
28
/* Type deduplication is a three-phase process:
29
30
    [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
31
    1) come up with unambiguous hash values for all types: no two types may have
32
       the same hash value, and any given type should have only one hash value
33
       (for optimal deduplication).
34
35
    [ctf_dedup, ctf_dedup_detect_name_ambiguity,
36
     ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
37
    2) mark those distinct types with names that collide (and thus cannot be
38
       declared simultaneously in the same translation unit) as conflicting, and
39
       recursively mark all types that cite one of those types as conflicting as
40
       well.  Possibly mark all types cited in only one TU as conflicting, if
41
       the CTF_LINK_SHARE_DUPLICATED link mode is active.
42
43
    [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
44
    3) emit all the types, one hash value at a time.  Types not marked
45
       conflicting are emitted once, into the shared dictionary: types marked
46
       conflicting are emitted once per TU into a dictionary corresponding to
47
       each TU in which they appear.  Structs marked conflicting get at the very
48
       least a forward emitted into the shared dict so that other dicts can cite
49
       it if needed.
50
51
   [id_to_packed_id]
52
   This all works over an array of inputs (usually in the same order as the
53
   inputs on the link line).  We don't use the ctf_link_inputs hash directly
54
   because it is convenient to be able to address specific input types as a
55
   *global type ID* or 'GID', a pair of an array offset and a ctf_id_t.  Since
56
   both are already 32 bits or less or can easily be constrained to that range,
57
   we can pack them both into a single 64-bit hash word for easy lookups, which
58
   would be much more annoying to do with a ctf_dict_t * and a ctf_id_t.  (On
59
   32-bit platforms, we must do that anyway, since pointers, and thus hash keys
60
   and values, are only 32 bits wide).  We track which inputs are parents of
61
   which other inputs so that we can correctly recognize that types we have
62
   traversed in children may cite types in parents, and so that we can process
63
   the parents first.)
64
65
   Note that thanks to ld -r, the deduplicator can be fed its own output, so the
66
   inputs may themselves have child dicts.  Since we need to support this usage
67
   anyway, we can use it in one other place.  If the caller finds translation
68
   units to be too small a unit ambiguous types, links can be 'cu-mapped', where
69
   the caller provides a mapping of input TU names to output child dict names.
70
   This mapping can fuse many child TUs into one potential child dict, so that
71
   ambiguous types in any of those input TUs go into the same child dict.
72
   When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
73
   repeatedly, once for every output name that has more than one input, to fuse
74
   all the input TUs associated with a given output dict into one, and once again
75
   as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
76
   together.  This has much higher memory usage than otherwise, because in the
77
   intermediate state, all the output TUs are in memory at once and cannot be
78
   lazily opened.  It also has implications for the emission code: if types
79
   appear ambiguously in multiple input TUs that are all mapped to the same
80
   child dict, we cannot put them in children in the cu-mapping link phase
81
   because this output is meant to *become* a child in the next link stage and
82
   parent/child relationships are only one level deep: so instead, we just hide
83
   all but one of the ambiguous types.
84
85
   There are a few other subtleties here that make this more complex than it
86
   seems.  Let's go over the steps above in more detail.
87
88
   1) HASHING.
89
90
   [ctf_dedup_hash_type, ctf_dedup_rhash_type]
91
   Hashing proceeds recursively, mixing in the properties of each input type
92
   (including its name, if any), and then adding the hash values of every type
93
   cited by that type.  The result is stashed in the cd_type_hashes so other
94
   phases can find the hash values of input types given their IDs, and so that
95
   if we encounter this type again while hashing we can just return its hash
96
   value: it is also stashed in the *output mapping*, a mapping from hash value
97
   to the set of GIDs corresponding to that type in all inputs.  We also keep
98
   track of the GID of the first appearance of the type in any input (in
99
   cd_output_first_gid), and the GID of structs, unions, and forwards that only
100
   appear in one TU (in cd_struct_origin).  See below for where these things are
101
   used.
102
103
   Everything in this phase is time-critical, because it is operating over
104
   non-deduplicated types and so may have hundreds or thousands of times the
105
   data volume to deal with than later phases.  Trace output is hidden behind
106
   ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
107
   ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
108
   from the calls to ctf_dprintf(), even with debugging switched off), and keep
109
   down the volume of output (hundreds of gigabytes of debug output are not
110
   uncommon on larger links).
111
112
   We have to do *something* about potential cycles in the type graph.  We'd
113
   like to avoid emitting forwards in the final output if possible, because
114
   forwards aren't much use: they have no members.  We are mostly saved from
115
   needing to worry about this at emission time by ctf_add_struct*()
116
   automatically replacing newly-created forwards when the real struct/union
117
   comes along.  So we only have to avoid getting stuck in cycles during the
118
   hashing phase, while also not confusing types that cite members that are
119
   structs with each other.  It is easiest to solve this problem by noting two
120
   things:
121
122
    - all cycles in C depend on the presence of tagged structs/unions
123
    - all tagged structs/unions have a unique name they can be disambiguated by
124
125
   [ctf_dedup_is_stub]
126
   This means that we can break all cycles by ceasing to hash in cited types at
127
   every tagged struct/union and instead hashing in a stub consisting of the
128
   struct/union's *decorated name*, which is the name preceded by "s " or "u "
129
   depending on the namespace (cached in cd_decorated_names).  Forwards are
130
   decorated identically (so a forward to "struct foo" would be represented as
131
   "s foo"): this means that a citation of a forward to a type and a citation of
132
   a concrete definition of a type with the same name ends up getting the same
133
   hash value.
134
135
   Of course, it is quite possible to have two TUs with structs with the same
136
   name and different definitions, but that's OK because when we scan for types
137
   with ambiguous names we will identify these and mark them conflicting.
138
139
   We populate one thing to help conflictedness marking.  No unconflicted type
140
   may cite a conflicted one, but this means that conflictedness marking must
141
   walk from types to the types that cite them, which is the opposite of the
142
   usual order.  We can make this easier to do by constructing a *citers* graph
143
   in cd_citers, which points from types to the types that cite them: because we
144
   emit forwards corresponding to every conflicted struct/union, we don't need
145
   to do this for citations of structs/unions by other types.  This is very
146
   convenient for us, because that's the only type we don't traverse
147
   recursively: so we can construct the citers graph at the same time as we
148
   hash, rather than needing to add an extra pass.  (This graph is a dynhash of
149
   *type hash values*, so it's small: in effect it is automatically
150
   deduplicated.)
151
152
   2) COLLISIONAL MARKING.
153
154
   [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
155
   We identify types whose names collide during the hashing process, and count
156
   the rough number of uses of each name (caching may throw it off a bit: this
157
   doesn't need to be accurate).  We then mark the less-frequently-cited types
158
   with each names conflicting: the most-frequently-cited one goes into the
159
   shared type dictionary, while all others are duplicated into per-TU
160
   dictionaries, named after the input TU, that have the shared dictionary as a
161
   parent.  For structures and unions this is not quite good enough: we'd like
162
   to have citations of forwards to ambiguously named structures and unions
163
   *stay* as citations of forwards, so that the user can tell that the caller
164
   didn't actually know which structure definition was meant: but if we put one
165
   of those structures into the shared dictionary, it would supplant and replace
166
   the forward, leaving no sign.  So structures and unions do not take part in
167
   this popularity contest: if their names are ambiguous, they are just
168
   duplicated, and only a forward appears in the shared dict.
169
170
   [ctf_dedup_propagate_conflictedness]
171
   The process of marking types conflicted is itself recursive: we recursively
172
   traverse the cd_citers graph populated in the hashing pass above and mark
173
   everything that we encounter conflicted (without wasting time re-marking
174
   anything that is already marked).  This naturally terminates just where we
175
   want it to (at types that are cited by no other types, and at structures and
176
   unions) and suffices to ensure that types that cite conflicted types are
177
   always marked conflicted.
178
179
   [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
180
   When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
181
   are used in only one TU to end up in a per-CU dict. The easiest way to do
182
   that is to mark them conflicted.  ctf_dedup_conflictify_unshared does this,
183
   traversing the output mapping and using ctf_dedup_multiple_input_dicts to
184
   check the number of input dicts each distinct type hash value came from:
185
   types that only came from one get marked conflicted.  One caveat here is that
186
   we need to consider both structs and forwards to them: a struct that appears
187
   in one TU and has a dozen citations to an opaque forward in other TUs should
188
   *not* be considered to be used in only one TU, because users would find it
189
   useful to be able to traverse into opaque structures of that sort: so we use
190
   cd_struct_origin to check both structs/unions and the forwards corresponding
191
   to them.
192
193
   3) EMISSION.
194
195
   [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
196
    ctf_dedup_rwalk_one_output_mapping]
197
   Emission involves another walk of the entire output mapping, this time
198
   traversing everything other than struct members, recursively.  Types are
199
   emitted from leaves to trunk, emitting all types a type cites before emitting
200
   the type itself.  We sort the output mapping before traversing it, for
201
   reproducibility and also correctness: the input dicts may have parent/child
202
   relationships, so we simply sort all types that first appear in parents
203
   before all children, then sort types that first appear in dicts appearing
204
   earlier on the linker command line before those that appear later, then sort
205
   by input ctf_id_t.  (This is where we use cd_output_first_gid, collected
206
   above.)
207
208
   The walking is done using a recursive traverser which arranges to not revisit
209
   any type already visited and to call its callback once per input GID for
210
   input GIDs corresponding to conflicted output types.  The traverser only
211
   finds input types and calls a callback for them as many times as the output
212
   needs to appear: it doesn't try to figure out anything about where the output
213
   might go.  That's done by the callback based on whether the type is
214
   marked conflicted or not.
215
216
   [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
217
   ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
218
   Conflicted types have all necessary dictionaries created, and then we emit
219
   the type into each dictionary in turn, working over each input CTF type
220
   corresponding to each hash value and using ctf_dedup_id_to_target to map each
221
   input ctf_id_t into the corresponding type in the output (dealing with input
222
   ctf_id_t's with parents in the process by simply chasing to the parent dict
223
   if the type we're looking up is in there).  Emitting structures involves
224
   simply noting that the members of this structure need emission later on:
225
   because you cannot cite a single structure member from another type, we avoid
226
   emitting the members at this stage to keep recursion depths down a bit.
227
228
   At this point, if we have by some mischance decided that two different types
229
   with child types that hash to different values have in fact got the same hash
230
   value themselves and *not* marked it conflicting, the type walk will walk
231
   only *one* of them and in all likelihood we'll find that we are trying to
232
   emit a type into some child dictionary that references a type that was never
233
   emitted into that dictionary and assertion-fail.  This always indicates a bug
234
   in the conflictedness marking machinery or the hashing code, or both.
235
236
   ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
237
   thing, alluded to above: if this is a conflicted tagged structure or union,
238
   and the target is the shared dict (i.e., the type we're being asked to emit
239
   is not itself conflicted so can't just point straight at the conflicted
240
   type), we instead synthesise a forward with the same name, emit it into the
241
   shared dict, record it in cd_output_emission_conflicted_forwards so that we
242
   don't re-emit it, and return it.  This means that cycles that contain
243
   conflicts do not cause the entire cycle to be replicated in every child: only
244
   that piece of the cycle which takes you back as far as the closest tagged
245
   struct/union needs to be replicated.  This trick means that no part of the
246
   deduplicator needs a cycle detector: every recursive walk can stop at tagged
247
   structures.
248
249
   [ctf_dedup_emit_struct_members]
250
   The final stage of emission is to walk over all structures with members
251
   that need emission and emit all of them. Every type has been emitted at
252
   this stage, so emission cannot fail.
253
254
   [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
255
   Finally, we update the input -> output type ID mappings used by the ctf-link
256
   machinery to update all the other sections.  This is surprisingly expensive
257
   and may be replaced with a scheme which lets the ctf-link machinery extract
258
   the needed info directly from the deduplicator.  */
259
260
/* Possible future optimizations are flagged with 'optimization opportunity'
261
   below.  */
262
263
/* Global optimization opportunity: a GC pass, eliminating types with no direct
264
   or indirect citations from the other sections in the dictionary.  */
265
266
/* Internal flag values for ctf_dedup_hash_type.  */
267
268
/* Child call: consider forwardable types equivalent to forwards or stubs below
269
   this point.  */
270
0
#define CTF_DEDUP_HASH_INTERNAL_CHILD         0x01
271
272
/* Transform references to single ctf_id_ts in passed-in inputs into a number
273
   that will fit in a uint64_t.  Needs rethinking if CTF_MAX_TYPE is boosted.
274
275
   On 32-bit platforms, we pack things together differently: see the note
276
   above.  */
277
278
#if UINTPTR_MAX < UINT64_MAX
279
# define IDS_NEED_ALLOCATION 1
280
# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
281
# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
282
# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
283
#else
284
# define CTF_DEDUP_GID(fp, input, type) \
285
0
  (void *) (((uint64_t) input) << 32 | (type))
286
0
# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
287
0
# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
288
#endif
289
290
#ifdef IDS_NEED_ALLOCATION
291
292
 /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
293
    into the pool.  It is notably less efficient than the 64-bit direct storage
294
    approach, but with a smaller key, this is all we can do.  */
295
296
static void *
297
id_to_packed_id (ctf_dict_t *fp, int input_num, ctf_id_t type)
298
{
299
  const void *lookup;
300
  ctf_type_id_key_t *dynkey = NULL;
301
  ctf_type_id_key_t key = { input_num, type };
302
303
  if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
304
            &key, &lookup, NULL))
305
    {
306
      if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
307
  goto oom;
308
      memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
309
310
      if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_dict_t, dynkey, NULL) < 0)
311
  goto oom;
312
313
      ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
314
           dynkey, &lookup, NULL);
315
    }
316
  /* We use a raw assert() here because there isn't really a way to get any sort
317
     of error back from this routine without vastly complicating things for the
318
     much more common case of !IDS_NEED_ALLOCATION.  */
319
  assert (lookup);
320
  return (void *) lookup;
321
322
 oom:
323
  free (dynkey);
324
  ctf_set_errno (fp, ENOMEM);
325
  return NULL;
326
}
327
328
static int
329
packed_id_to_input (const void *id)
330
{
331
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
332
333
  return key->ctii_input_num;
334
}
335
336
static ctf_id_t
337
packed_id_to_type (const void *id)
338
{
339
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
340
341
  return key->ctii_type;
342
}
343
#endif
344
345
/* Make an element in a dynhash-of-dynsets, or return it if already present.  */
346
347
static ctf_dynset_t *
348
make_set_element (ctf_dynhash_t *set, const void *key)
349
0
{
350
0
  ctf_dynset_t *element;
351
352
0
  if ((element = ctf_dynhash_lookup (set, key)) == NULL)
353
0
    {
354
0
      if ((element = ctf_dynset_create (htab_hash_string,
355
0
          htab_eq_string,
356
0
          NULL)) == NULL)
357
0
  return NULL;
358
359
0
      if (ctf_dynhash_insert (set, (void *) key, element) < 0)
360
0
  {
361
0
    ctf_dynset_destroy (element);
362
0
    return NULL;
363
0
  }
364
0
    }
365
366
0
  return element;
367
0
}
368
369
/* Initialize the dedup atoms table.  */
370
int
371
ctf_dedup_atoms_init (ctf_dict_t *fp)
372
0
{
373
0
  if (fp->ctf_dedup_atoms)
374
0
    return 0;
375
376
0
  if (!fp->ctf_dedup_atoms_alloc)
377
0
    {
378
0
      if ((fp->ctf_dedup_atoms_alloc
379
0
     = ctf_dynset_create (htab_hash_string, htab_eq_string,
380
0
        free)) == NULL)
381
0
  return ctf_set_errno (fp, ENOMEM);
382
0
    }
383
0
  fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
384
0
  return 0;
385
0
}
386
387
/* Intern things in the dedup atoms table.  */
388
389
static const char *
390
intern (ctf_dict_t *fp, char *atom)
391
0
{
392
0
  const void *foo;
393
394
0
  if (atom == NULL)
395
0
    return NULL;
396
397
0
  if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
398
0
    {
399
0
      if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
400
0
  {
401
0
    ctf_set_errno (fp, ENOMEM);
402
0
    return NULL;
403
0
  }
404
0
      foo = atom;
405
0
    }
406
0
  else
407
0
    free (atom);
408
409
0
  return (const char *) foo;
410
0
}
411
412
/* Add an indication of the namespace to a type name in a way that is not valid
413
   for C identifiers.  Used to maintain hashes of type names to other things
414
   while allowing for the four C namespaces (normal, struct, union, enum).
415
   Return a pointer into the cd_decorated_names atoms table.  */
416
static const char *
417
ctf_decorate_type_name (ctf_dict_t *fp, const char *name, int kind)
418
0
{
419
0
  ctf_dedup_t *d = &fp->ctf_dedup;
420
0
  const char *ret;
421
0
  const char *k;
422
0
  char *p;
423
0
  size_t i;
424
425
0
  switch (kind)
426
0
    {
427
0
    case CTF_K_STRUCT:
428
0
      k = "s ";
429
0
      i = 0;
430
0
      break;
431
0
    case CTF_K_UNION:
432
0
      k = "u ";
433
0
      i = 1;
434
0
      break;
435
0
    case CTF_K_ENUM:
436
0
      k = "e ";
437
0
      i = 2;
438
0
      break;
439
0
    default:
440
0
      k = "";
441
0
      i = 3;
442
0
    }
443
444
0
  if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
445
0
    {
446
0
      char *str;
447
448
0
      if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
449
0
  goto oom;
450
451
0
      p = stpcpy (str, k);
452
0
      strcpy (p, name);
453
0
      ret = intern (fp, str);
454
0
      if (!ret)
455
0
  goto oom;
456
457
0
      if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
458
0
  goto oom;
459
0
    }
460
461
0
  return ret;
462
463
0
 oom:
464
0
  ctf_set_errno (fp, ENOMEM);
465
0
  return NULL;
466
0
}
467
468
/* Hash a type, possibly debugging-dumping something about it as well.  */
469
static inline void
470
ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
471
        const char *description _libctf_unused_,
472
        unsigned long depth _libctf_unused_)
473
0
{
474
0
  ctf_sha1_add (sha1, buf, len);
475
476
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
477
  ctf_sha1_t tmp;
478
  char tmp_hval[CTF_SHA1_SIZE];
479
  tmp = *sha1;
480
  ctf_sha1_fini (&tmp, tmp_hval);
481
  ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
482
         tmp_hval);
483
#endif
484
0
}
485
486
static const char *
487
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
488
         ctf_dict_t **inputs, uint32_t *parents,
489
         int input_num, ctf_id_t type, int flags,
490
         unsigned long depth,
491
         int (*populate_fun) (ctf_dict_t *fp,
492
            ctf_dict_t *input,
493
            ctf_dict_t **inputs,
494
            int input_num,
495
            ctf_id_t type,
496
            void *id,
497
            const char *decorated_name,
498
            const char *hash));
499
500
/* Determine whether this type is being hashed as a stub (in which case it is
501
   unsafe to cache it).  */
502
static int
503
ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
504
0
{
505
  /* We can cache all types unless we are recursing to children and are hashing
506
     in a tagged struct, union or forward, all of which are replaced with their
507
     decorated name as a stub and will have different hash values when hashed at
508
     the top level.  */
509
510
0
  return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
511
0
    && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
512
0
        || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
513
0
              || fwdkind == CTF_K_UNION))));
514
0
}
515
516
/* Populate struct_origin if need be (not already populated, or populated with
517
   a different origin), in which case it must go to -1, "shared".)
518
519
   Only called for forwards or forwardable types with names, when the link mode
520
   is CTF_LINK_SHARE_DUPLICATED.  */
521
static int
522
ctf_dedup_record_origin (ctf_dict_t *fp, int input_num, const char *decorated,
523
       void *id)
524
0
{
525
0
  ctf_dedup_t *d = &fp->ctf_dedup;
526
0
  void *origin;
527
0
  int populate_origin = 0;
528
529
0
  if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
530
0
    {
531
0
      if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
532
0
    && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
533
0
  {
534
0
    populate_origin = 1;
535
0
    origin = CTF_DEDUP_GID (fp, -1, -1);
536
0
  }
537
0
    }
538
0
  else
539
0
    {
540
0
      populate_origin = 1;
541
0
      origin = id;
542
0
    }
543
544
0
  if (populate_origin)
545
0
    if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
546
0
      return ctf_set_errno (fp, errno);
547
0
  return 0;
548
0
}
549
550
/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
551
   calls, recursively).  */
552
553
static const char *
554
ctf_dedup_rhash_type (ctf_dict_t *fp, ctf_dict_t *input, ctf_dict_t **inputs,
555
          uint32_t *parents, int input_num, ctf_id_t type,
556
          void *type_id, const ctf_type_t *tp, const char *name,
557
          const char *decorated, int kind, int flags,
558
          unsigned long depth,
559
          int (*populate_fun) (ctf_dict_t *fp,
560
             ctf_dict_t *input,
561
             ctf_dict_t **inputs,
562
             int input_num,
563
             ctf_id_t type,
564
             void *id,
565
             const char *decorated_name,
566
             const char *hash))
567
0
{
568
0
  ctf_dedup_t *d = &fp->ctf_dedup;
569
0
  ctf_next_t *i = NULL;
570
0
  ctf_sha1_t hash;
571
0
  ctf_id_t child_type;
572
0
  char hashbuf[CTF_SHA1_SIZE];
573
0
  const char *hval = NULL;
574
0
  const char *whaterr;
575
0
  int err = 0;
576
577
0
  const char *citer = NULL;
578
0
  ctf_dynset_t *citers = NULL;
579
580
  /* Add a citer to the citers set.  */
581
0
#define ADD_CITER(citers, hval)           \
582
0
  do                  \
583
0
    {                 \
584
0
      whaterr = N_("error updating citers");        \
585
0
      if (!citers)             \
586
0
  if ((citers = ctf_dynset_create (htab_hash_string,    \
587
0
           htab_eq_string,    \
588
0
           NULL)) == NULL)   \
589
0
    goto oom;             \
590
0
      if (ctf_dynset_cinsert (citers, hval) < 0)     \
591
0
  goto oom;             \
592
0
    }                 \
593
0
  while (0)
594
595
  /* If this is a named struct or union or a forward to one, and this is a child
596
     traversal, treat this type as if it were a forward -- do not recurse to
597
     children, ignore all content not already hashed in, and hash in the
598
     decorated name of the type instead.  */
599
600
0
  if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
601
0
    {
602
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
603
      ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
604
       "stub with decorated name %s\n", decorated);
605
606
#endif
607
0
      ctf_sha1_init (&hash);
608
0
      ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
609
0
        "decorated struct/union/forward name", depth);
610
0
      ctf_sha1_fini (&hash, hashbuf);
611
612
0
      if ((hval = intern (fp, strdup (hashbuf))) == NULL)
613
0
  {
614
0
    ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
615
0
            "stub hashing for type with GID %p"),
616
0
      ctf_link_input_name (input), input_num, type_id);
617
0
    return NULL;        /* errno is set for us.  */
618
0
  }
619
620
      /* In share-duplicated link mode, make sure the origin of this type is
621
   recorded, even if this is a type in a parent dict which will not be
622
   directly traversed.  */
623
0
      if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
624
0
    && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
625
0
  return NULL;       /* errno is set for us.  */
626
627
0
      return hval;
628
0
    }
629
630
  /* Now ensure that subsequent recursive calls (but *not* the top-level call)
631
     get this treatment.  */
632
0
  flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
633
634
  /* If this is a struct, union, or forward with a name, record the unique
635
     originating input TU, if there is one.  */
636
637
0
  if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
638
0
    if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
639
0
  && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
640
0
      return NULL;       /* errno is set for us.  */
641
642
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
643
  ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
644
         depth, input_num, type, kind, name ? name : "");
645
#endif
646
647
  /* Some type kinds don't have names: the API provides no way to set the name,
648
     so the type the deduplicator outputs will be nameless even if the input
649
     somehow has a name, and the name should not be mixed into the hash.  */
650
651
0
  switch (kind)
652
0
    {
653
0
    case CTF_K_POINTER:
654
0
    case CTF_K_ARRAY:
655
0
    case CTF_K_FUNCTION:
656
0
    case CTF_K_VOLATILE:
657
0
    case CTF_K_CONST:
658
0
    case CTF_K_RESTRICT:
659
0
    case CTF_K_SLICE:
660
0
      name = NULL;
661
0
    }
662
663
  /* Mix in invariant stuff, transforming the type kind if needed.  Note that
664
     the vlen is *not* hashed in: the actual variable-length info is hashed in
665
     instead, piecewise.  The vlen is not part of the type, only the
666
     variable-length data is: identical types with distinct vlens are quite
667
     possible.  Equally, we do not want to hash in the isroot flag: both the
668
     compiler and the deduplicator set the nonroot flag to indicate clashes with
669
     *other types in the same TU* with the same name: so two types can easily
670
     have distinct nonroot flags, yet be exactly the same type.*/
671
672
0
  ctf_sha1_init (&hash);
673
0
  if (name)
674
0
    ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
675
0
  ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
676
677
  /* Hash content of this type.  */
678
0
  switch (kind)
679
0
    {
680
0
    case CTF_K_UNKNOWN:
681
      /* No extra state.  */
682
0
      break;
683
0
    case CTF_K_FORWARD:
684
685
      /* Add the forwarded kind, stored in the ctt_type.  */
686
0
      ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
687
0
        "forwarded kind", depth);
688
0
      break;
689
0
    case CTF_K_INTEGER:
690
0
    case CTF_K_FLOAT:
691
0
      {
692
0
  ctf_encoding_t ep;
693
0
  memset (&ep, 0, sizeof (ctf_encoding_t));
694
695
0
  ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
696
0
          depth);
697
0
  if (ctf_type_encoding (input, type, &ep) < 0)
698
0
    {
699
0
      whaterr = N_("error getting encoding");
700
0
      goto input_err;
701
0
    }
702
0
  ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
703
0
          depth);
704
0
  break;
705
0
      }
706
      /* Types that reference other types.  */
707
0
    case CTF_K_TYPEDEF:
708
0
    case CTF_K_VOLATILE:
709
0
    case CTF_K_CONST:
710
0
    case CTF_K_RESTRICT:
711
0
    case CTF_K_POINTER:
712
      /* Hash the referenced type, if not already hashed, and mix it in.  */
713
0
      child_type = ctf_type_reference (input, type);
714
0
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
715
0
               child_type, flags, depth,
716
0
               populate_fun)) == NULL)
717
0
  {
718
0
    whaterr = N_("error doing referenced type hashing");
719
0
    goto err;
720
0
  }
721
0
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
722
0
        depth);
723
0
      citer = hval;
724
725
0
      break;
726
727
      /* The slices of two types hash identically only if the type they overlay
728
   also has the same encoding.  This is not ideal, but in practice will work
729
   well enough.  We work directly rather than using the CTF API because
730
   we do not want the slice's normal automatically-shine-through
731
   semantics to kick in here.  */
732
0
    case CTF_K_SLICE:
733
0
      {
734
0
  const ctf_slice_t *slice;
735
0
  const ctf_dtdef_t *dtd;
736
0
  ssize_t size;
737
0
  ssize_t increment;
738
739
0
  child_type = ctf_type_reference (input, type);
740
0
  ctf_get_ctt_size (input, tp, &size, &increment);
741
0
  ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
742
743
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
744
0
           child_type, flags, depth,
745
0
           populate_fun)) == NULL)
746
0
    {
747
0
      whaterr = N_("error doing slice-referenced type hashing");
748
0
      goto err;
749
0
    }
750
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
751
0
          depth);
752
0
  citer = hval;
753
754
0
  if ((dtd = ctf_dynamic_type (input, type)) != NULL)
755
0
    slice = (ctf_slice_t *) dtd->dtd_vlen;
756
0
  else
757
0
    slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
758
759
0
  ctf_dedup_sha1_add (&hash, &slice->cts_offset,
760
0
          sizeof (slice->cts_offset), "slice offset", depth);
761
0
  ctf_dedup_sha1_add (&hash, &slice->cts_bits,
762
0
          sizeof (slice->cts_bits), "slice bits", depth);
763
0
  break;
764
0
      }
765
766
0
    case CTF_K_ARRAY:
767
0
      {
768
0
  ctf_arinfo_t ar;
769
770
0
  if (ctf_array_info (input, type, &ar) < 0)
771
0
    {
772
0
      whaterr = N_("error getting array info");
773
0
      goto input_err;
774
0
    }
775
776
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
777
0
           ar.ctr_contents, flags, depth,
778
0
           populate_fun)) == NULL)
779
0
    {
780
0
      whaterr = N_("error doing array contents type hashing");
781
0
      goto err;
782
0
    }
783
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
784
0
          depth);
785
0
  ADD_CITER (citers, hval);
786
787
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
788
0
           ar.ctr_index, flags, depth,
789
0
           populate_fun)) == NULL)
790
0
    {
791
0
      whaterr = N_("error doing array index type hashing");
792
0
      goto err;
793
0
    }
794
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
795
0
          depth);
796
0
  ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
797
0
          "element count", depth);
798
0
  ADD_CITER (citers, hval);
799
800
0
  break;
801
0
      }
802
0
    case CTF_K_FUNCTION:
803
0
      {
804
0
  ctf_funcinfo_t fi;
805
0
  ctf_id_t *args;
806
0
  uint32_t j;
807
808
0
  if (ctf_func_type_info (input, type, &fi) < 0)
809
0
    {
810
0
      whaterr = N_("error getting func type info");
811
0
      goto input_err;
812
0
    }
813
814
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
815
0
           fi.ctc_return, flags, depth,
816
0
           populate_fun)) == NULL)
817
0
    {
818
0
      whaterr = N_("error getting func return type");
819
0
      goto err;
820
0
    }
821
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
822
0
          depth);
823
0
  ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
824
0
          "func argc", depth);
825
0
  ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
826
0
          "func flags", depth);
827
0
  ADD_CITER (citers, hval);
828
829
0
  if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
830
0
    {
831
0
      err = ENOMEM;
832
0
      whaterr = N_("error doing memory allocation");
833
0
      goto err;
834
0
    }
835
836
0
  if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
837
0
    {
838
0
      free (args);
839
0
      whaterr = N_("error getting func arg type");
840
0
      goto input_err;
841
0
    }
842
0
  for (j = 0; j < fi.ctc_argc; j++)
843
0
    {
844
0
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
845
0
               input_num, args[j], flags, depth,
846
0
               populate_fun)) == NULL)
847
0
        {
848
0
    free (args);
849
0
    whaterr = N_("error doing func arg type hashing");
850
0
    goto err;
851
0
        }
852
0
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
853
0
        depth);
854
0
      ADD_CITER (citers, hval);
855
0
    }
856
0
  free (args);
857
0
  break;
858
0
      }
859
0
    case CTF_K_ENUM:
860
0
      {
861
0
  int val;
862
0
  const char *ename;
863
864
0
  ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
865
0
          "enum size", depth);
866
0
  while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
867
0
    {
868
0
      ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
869
0
        depth);
870
0
      ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
871
0
    }
872
0
  if (ctf_errno (input) != ECTF_NEXT_END)
873
0
    {
874
0
      whaterr = N_("error doing enum member iteration");
875
0
      goto input_err;
876
0
    }
877
0
  break;
878
0
      }
879
    /* Top-level only.  */
880
0
    case CTF_K_STRUCT:
881
0
    case CTF_K_UNION:
882
0
      {
883
0
  ssize_t offset;
884
0
  const char *mname;
885
0
  ctf_id_t membtype;
886
0
  ssize_t size;
887
888
0
  ctf_get_ctt_size (input, tp, &size, NULL);
889
0
  ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
890
0
          depth);
891
892
0
  while ((offset = ctf_member_next (input, type, &i, &mname, &membtype,
893
0
            0)) >= 0)
894
0
    {
895
0
      if (mname == NULL)
896
0
        mname = "";
897
0
      ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
898
0
        "member name", depth);
899
900
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
901
      ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
902
#endif
903
0
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
904
0
               input_num, membtype, flags, depth,
905
0
               populate_fun)) == NULL)
906
0
        {
907
0
    whaterr = N_("error doing struct/union member type hashing");
908
0
    goto iterr;
909
0
        }
910
911
0
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
912
0
        depth);
913
0
      ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
914
0
        depth);
915
0
      ADD_CITER (citers, hval);
916
0
    }
917
0
  if (ctf_errno (input) != ECTF_NEXT_END)
918
0
    {
919
0
      whaterr = N_("error doing struct/union member iteration");
920
0
      goto input_err;
921
0
    }
922
0
  break;
923
0
      }
924
0
    default:
925
0
      whaterr = N_("error: unknown type kind");
926
0
      goto err;
927
0
    }
928
0
  ctf_sha1_fini (&hash, hashbuf);
929
930
0
  if ((hval = intern (fp, strdup (hashbuf))) == NULL)
931
0
    {
932
0
      whaterr = N_("cannot intern hash");
933
0
      goto oom;
934
0
    }
935
936
  /* Populate the citers for this type's subtypes, now the hash for the type
937
     itself is known.  */
938
0
  whaterr = N_("error tracking citers");
939
940
0
  if (citer)
941
0
    {
942
0
      ctf_dynset_t *citer_hashes;
943
944
0
      if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
945
0
  goto oom;
946
0
      if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
947
0
  goto oom;
948
0
    }
949
0
  else if (citers)
950
0
    {
951
0
      const void *k;
952
953
0
      while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
954
0
  {
955
0
    ctf_dynset_t *citer_hashes;
956
0
    citer = (const char *) k;
957
958
0
    if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
959
0
      goto oom;
960
961
0
    if (ctf_dynset_exists (citer_hashes, hval, NULL))
962
0
      continue;
963
0
    if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
964
0
      goto oom;
965
0
  }
966
0
      if (err != ECTF_NEXT_END)
967
0
  goto err;
968
0
      ctf_dynset_destroy (citers);
969
0
    }
970
971
0
  return hval;
972
973
0
 iterr:
974
0
  ctf_next_destroy (i);
975
0
 input_err:
976
0
  err = ctf_errno (input);
977
0
 err:
978
0
  ctf_sha1_fini (&hash, NULL);
979
0
  ctf_err_warn (fp, 0, err, _("%s (%i): %s: during type hashing for type %lx, "
980
0
            "kind %i"), ctf_link_input_name (input),
981
0
    input_num, gettext (whaterr), type, kind);
982
0
  return NULL;
983
0
 oom:
984
0
  ctf_set_errno (fp, errno);
985
0
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
986
0
          "kind %i"), ctf_link_input_name (input),
987
0
    input_num, gettext (whaterr), type, kind);
988
0
  return NULL;
989
0
}
990
991
/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
992
   state is stored.  INPUT_NUM is the number of this input in the set of inputs.
993
   Record its hash in FP's cd_type_hashes once it is known.  PARENTS is
994
   described in the comment above ctf_dedup.
995
996
   (The flags argument currently accepts only the flag
997
   CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
998
   struct/union hashing in recursive traversals below the TYPE.)
999
1000
   We use the CTF API rather than direct access wherever possible, because types
1001
   that appear identical through the API should be considered identical, with
1002
   one exception: slices should only be considered identical to other slices,
1003
   not to the corresponding unsliced type.
1004
1005
   The POPULATE_FUN is a mandatory hook that populates other mappings with each
1006
   type we see (excepting types that are recursively hashed as stubs).  The
1007
   caller should not rely on the order of calls to this hook, though it will be
1008
   called at least once for every non-stub reference to every type.
1009
1010
   Returns a hash value (an atom), or NULL on error.  */
1011
1012
static const char *
1013
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
1014
         ctf_dict_t **inputs, uint32_t *parents,
1015
         int input_num, ctf_id_t type, int flags,
1016
         unsigned long depth,
1017
         int (*populate_fun) (ctf_dict_t *fp,
1018
            ctf_dict_t *input,
1019
            ctf_dict_t **inputs,
1020
            int input_num,
1021
            ctf_id_t type,
1022
            void *id,
1023
            const char *decorated_name,
1024
            const char *hash))
1025
0
{
1026
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1027
0
  const ctf_type_t *tp;
1028
0
  void *type_id;
1029
0
  const char *hval = NULL;
1030
0
  const char *name;
1031
0
  const char *whaterr;
1032
0
  const char *decorated = NULL;
1033
0
  uint32_t kind, fwdkind;
1034
1035
0
  depth++;
1036
1037
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1038
  ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
1039
#endif
1040
1041
  /* The unimplemented type doesn't really exist, but must be noted in parent
1042
     hashes: so it gets a fixed, arbitrary hash.  */
1043
0
  if (type == 0)
1044
0
    return "00000000000000000000";
1045
1046
  /* Possible optimization: if the input type is in the parent type space, just
1047
     copy recursively-cited hashes from the parent's types into the output
1048
     mapping rather than rehashing them.  */
1049
1050
0
  type_id = CTF_DEDUP_GID (fp, input_num, type);
1051
1052
0
  if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
1053
0
    {
1054
0
      ctf_set_errno (fp, ctf_errno (input));
1055
0
      ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
1056
0
        "flags %x"), ctf_link_input_name (input),
1057
0
        input_num, type, flags);
1058
0
      return NULL;    /* errno is set for us.  */
1059
0
    }
1060
1061
0
  kind = LCTF_INFO_KIND (input, tp->ctt_info);
1062
0
  name = ctf_strraw (input, tp->ctt_name);
1063
1064
0
  if (tp->ctt_name == 0 || !name || name[0] == '\0')
1065
0
    name = NULL;
1066
1067
  /* Decorate the name appropriately for the namespace it appears in: forwards
1068
     appear in the namespace of their referent.  */
1069
1070
0
  fwdkind = kind;
1071
0
  if (name)
1072
0
    {
1073
0
      if (kind == CTF_K_FORWARD)
1074
0
  fwdkind = tp->ctt_type;
1075
1076
0
      if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
1077
0
  return NULL;       /* errno is set for us.  */
1078
0
    }
1079
1080
  /* If not hashing a stub, we can rely on various sorts of caches.
1081
1082
     Optimization opportunity: we may be able to avoid calling the populate_fun
1083
     sometimes here.  */
1084
1085
0
  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1086
0
    {
1087
0
      if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
1088
0
  {
1089
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1090
    ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
1091
           type,  hval);
1092
#endif
1093
0
    populate_fun (fp, input, inputs, input_num, type, type_id,
1094
0
      decorated, hval);
1095
1096
0
    return hval;
1097
0
  }
1098
0
    }
1099
1100
  /* We have never seen this type before, and must figure out its hash and the
1101
     hashes of the types it cites.
1102
1103
     Hash this type, and call ourselves recursively.  (The hashing part is
1104
     optional, and is disabled if overidden_hval is set.)  */
1105
1106
0
  if ((hval = ctf_dedup_rhash_type (fp, input, inputs, parents, input_num,
1107
0
            type, type_id, tp, name, decorated,
1108
0
            kind, flags, depth, populate_fun)) == NULL)
1109
0
    return NULL;       /* errno is set for us.  */
1110
1111
  /* The hash of this type is now known: record it unless caching is unsafe
1112
     because the hash value will change later.  This will be the final storage
1113
     of this type's hash, so we call the population function on it.  */
1114
1115
0
  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1116
0
    {
1117
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1118
      ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
1119
       type_id, name ? name : "", hval);
1120
#endif
1121
1122
0
      if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
1123
0
  {
1124
0
    whaterr = N_("error hash caching");
1125
0
    goto oom;
1126
0
  }
1127
1128
0
      if (populate_fun (fp, input, inputs, input_num, type, type_id,
1129
0
      decorated, hval) < 0)
1130
0
  {
1131
0
    whaterr = N_("error calling population function");
1132
0
    goto err;       /* errno is set for us. */
1133
0
  }
1134
0
    }
1135
1136
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1137
  ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
1138
         input_num, type, hval);
1139
#endif
1140
0
  return hval;
1141
1142
0
 oom:
1143
0
  ctf_set_errno (fp, errno);
1144
0
 err:
1145
0
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
1146
0
          "type %lx, kind %i"),
1147
0
    ctf_link_input_name (input), input_num,
1148
0
    gettext (whaterr), type, kind);
1149
0
  return NULL;
1150
0
}
1151
1152
/* Populate a number of useful mappings not directly used by the hashing
1153
   machinery: the output mapping, the cd_name_counts mapping from name -> hash
1154
   -> count of hashval deduplication state for a given hashed type, and the
1155
   cd_output_first_tu mapping.  */
1156
1157
static int
1158
ctf_dedup_populate_mappings (ctf_dict_t *fp, ctf_dict_t *input _libctf_unused_,
1159
           ctf_dict_t **inputs _libctf_unused_,
1160
           int input_num _libctf_unused_,
1161
           ctf_id_t type _libctf_unused_, void *id,
1162
           const char *decorated_name,
1163
           const char *hval)
1164
0
{
1165
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1166
0
  ctf_dynset_t *type_ids;
1167
0
  ctf_dynhash_t *name_counts;
1168
0
  long int count;
1169
1170
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1171
  ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
1172
         hval, decorated_name ? decorated_name : "(unnamed)",
1173
         input_num, type, ctf_link_input_name (input));
1174
1175
  const char *orig_hval;
1176
1177
  /* Make sure we never map a single GID to multiple hash values.  */
1178
1179
  if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
1180
    {
1181
      /* We can rely on pointer identity here, since all hashes are
1182
   interned.  */
1183
      if (!ctf_assert (fp, orig_hval == hval))
1184
  return -1;
1185
    }
1186
  else
1187
    if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
1188
      return ctf_set_errno (fp, errno);
1189
#endif
1190
1191
  /* Record the type in the output mapping: if this is the first time this type
1192
     has been seen, also record it in the cd_output_first_gid.  Because we
1193
     traverse types in TU order and we do not merge types after the hashing
1194
     phase, this will be the lowest TU this type ever appears in.  */
1195
1196
0
  if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
1197
0
              hval)) == NULL)
1198
0
    {
1199
0
      if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
1200
0
  return ctf_set_errno (fp, errno);
1201
1202
0
      if ((type_ids = ctf_dynset_create (htab_hash_pointer,
1203
0
           htab_eq_pointer,
1204
0
           NULL)) == NULL)
1205
0
  return ctf_set_errno (fp, errno);
1206
0
      if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
1207
0
            type_ids) < 0)
1208
0
  {
1209
0
    ctf_dynset_destroy (type_ids);
1210
0
    return ctf_set_errno (fp, errno);
1211
0
  }
1212
0
    }
1213
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1214
    {
1215
      /* Verify that all types with this hash are of the same kind, and that the
1216
   first TU a type was seen in never falls.  */
1217
1218
      int err;
1219
      const void *one_id;
1220
      ctf_next_t *i = NULL;
1221
      int orig_kind = ctf_type_kind_unsliced (input, type);
1222
      int orig_first_tu;
1223
1224
      orig_first_tu = CTF_DEDUP_GID_TO_INPUT
1225
  (ctf_dynhash_lookup (d->cd_output_first_gid, hval));
1226
      if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
1227
  return -1;
1228
1229
      while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
1230
  {
1231
    ctf_dict_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
1232
    ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
1233
    if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
1234
      {
1235
        ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
1236
          "for hash %s named %s: %p/%lx from %s is "
1237
          "kind %i, but newly-added %p/%lx from %s is "
1238
          "kind %i", hval,
1239
          decorated_name ? decorated_name : "(unnamed)",
1240
          (void *) foo, bar,
1241
          ctf_link_input_name (foo),
1242
          ctf_type_kind_unsliced (foo, bar),
1243
          (void *) input, type,
1244
          ctf_link_input_name (input), orig_kind);
1245
        if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
1246
             == orig_kind))
1247
    return -1;
1248
      }
1249
  }
1250
      if (err != ECTF_NEXT_END)
1251
  return ctf_set_errno (fp, err);
1252
    }
1253
#endif
1254
1255
  /* This function will be repeatedly called for the same types many times:
1256
     don't waste time reinserting the same keys in that case.  */
1257
0
  if (!ctf_dynset_exists (type_ids, id, NULL)
1258
0
      && ctf_dynset_insert (type_ids, id) < 0)
1259
0
    return ctf_set_errno (fp, errno);
1260
1261
  /* The rest only needs to happen for types with names.  */
1262
0
  if (!decorated_name)
1263
0
    return 0;
1264
1265
  /* Count the number of occurrences of the hash value for this GID.  */
1266
1267
0
  hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
1268
1269
  /* Mapping from name -> hash(hashval, count) not already present?  */
1270
0
  if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts,
1271
0
           decorated_name)) == NULL)
1272
0
    {
1273
0
      if ((name_counts = ctf_dynhash_create (ctf_hash_string,
1274
0
               ctf_hash_eq_string,
1275
0
               NULL, NULL)) == NULL)
1276
0
    return ctf_set_errno (fp, errno);
1277
0
      if (ctf_dynhash_cinsert (d->cd_name_counts, decorated_name,
1278
0
             name_counts) < 0)
1279
0
  {
1280
0
    ctf_dynhash_destroy (name_counts);
1281
0
    return ctf_set_errno (fp, errno);
1282
0
  }
1283
0
    }
1284
1285
  /* This will, conveniently, return NULL (i.e. 0) for a new entry.  */
1286
0
  count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
1287
1288
0
  if (ctf_dynhash_cinsert (name_counts, hval,
1289
0
         (const void *) (uintptr_t) (count + 1)) < 0)
1290
0
    return ctf_set_errno (fp, errno);
1291
1292
0
  return 0;
1293
0
}
1294
1295
/* Mark a single hash as corresponding to a conflicting type.  Mark all types
1296
   that cite it as conflicting as well, terminating the recursive walk only when
1297
   types that are already conflicted or types do not cite other types are seen.
1298
   (Tagged structures and unions do not appear in the cd_citers graph, so the
1299
   walk also terminates there, since any reference to a conflicting structure is
1300
   just going to reference an unconflicting forward instead: see
1301
   ctf_dedup_maybe_synthesize_forward.)  */
1302
1303
static int
1304
ctf_dedup_mark_conflicting_hash (ctf_dict_t *fp, const char *hval)
1305
0
{
1306
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1307
0
  ctf_next_t *i = NULL;
1308
0
  int err;
1309
0
  const void *k;
1310
0
  ctf_dynset_t *citers;
1311
1312
  /* Mark conflicted if not already so marked.  */
1313
0
  if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
1314
0
    return 0;
1315
1316
0
  ctf_dprintf ("Marking %s as conflicted\n", hval);
1317
1318
0
  if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
1319
0
    {
1320
0
      ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
1321
0
      return ctf_set_errno (fp, errno);
1322
0
    }
1323
1324
  /* If any types cite this type, mark them conflicted too.  */
1325
0
  if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
1326
0
    return 0;
1327
1328
0
  while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
1329
0
    {
1330
0
      const char *hv = (const char *) k;
1331
1332
0
      if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
1333
0
  continue;
1334
1335
0
      if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
1336
0
  {
1337
0
    ctf_next_destroy (i);
1338
0
    return -1;        /* errno is set for us.  */
1339
0
  }
1340
0
    }
1341
0
  if (err != ECTF_NEXT_END)
1342
0
    return ctf_set_errno (fp, err);
1343
1344
0
  return 0;
1345
0
}
1346
1347
/* Look up a type kind from the output mapping, given a type hash value.  */
1348
static int
1349
ctf_dedup_hash_kind (ctf_dict_t *fp, ctf_dict_t **inputs, const char *hash)
1350
0
{
1351
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1352
0
  void *id;
1353
0
  ctf_dynset_t *type_ids;
1354
1355
  /* Precondition: the output mapping is populated.  */
1356
0
  if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
1357
0
    return -1;
1358
1359
  /* Look up some GID from the output hash for this type.  (They are all
1360
     identical, so we can pick any).  Don't assert if someone calls this
1361
     function wrongly, but do assert if the output mapping knows about the hash,
1362
     but has nothing associated with it.  */
1363
1364
0
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
1365
0
  if (!type_ids)
1366
0
    {
1367
0
      ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
1368
0
      return ctf_set_errno (fp, ECTF_INTERNAL);
1369
0
    }
1370
0
  id = ctf_dynset_lookup_any (type_ids);
1371
0
  if (!ctf_assert (fp, id))
1372
0
    return -1;
1373
1374
0
  return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1375
0
         CTF_DEDUP_GID_TO_TYPE (id));
1376
0
}
1377
1378
/* Used to keep a count of types: i.e. distinct type hash values.  */
1379
typedef struct ctf_dedup_type_counter
1380
{
1381
  ctf_dict_t *fp;
1382
  ctf_dict_t **inputs;
1383
  int num_non_forwards;
1384
} ctf_dedup_type_counter_t;
1385
1386
/* Add to the type counter for one name entry from the cd_name_counts.  */
1387
static int
1388
ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
1389
0
{
1390
0
  const char *hval = (const char *) key_;
1391
0
  int kind;
1392
0
  ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
1393
1394
0
  kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
1395
1396
  /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
1397
     smuggle errors out of here.  */
1398
1399
0
  if (kind != CTF_K_FORWARD)
1400
0
    {
1401
0
      arg->num_non_forwards++;
1402
0
      ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
1403
0
       hval, kind, arg->num_non_forwards);
1404
0
    }
1405
1406
  /* We only need to know if there is more than one non-forward (an ambiguous
1407
     type): don't waste time iterating any more than needed to figure that
1408
     out.  */
1409
1410
0
  if (arg->num_non_forwards > 1)
1411
0
    return 1;
1412
1413
0
  return 0;
1414
0
}
1415
1416
/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
1417
   most common.  */
1418
static int
1419
ctf_dedup_detect_name_ambiguity (ctf_dict_t *fp, ctf_dict_t **inputs)
1420
0
{
1421
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1422
0
  ctf_next_t *i = NULL;
1423
0
  void *k;
1424
0
  void *v;
1425
0
  int err;
1426
0
  const char *whaterr;
1427
1428
  /* Go through cd_name_counts for all CTF namespaces in turn.  */
1429
1430
0
  while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
1431
0
    {
1432
0
      const char *decorated = (const char *) k;
1433
0
      ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
1434
0
      ctf_next_t *j = NULL;
1435
1436
      /* If this is a forwardable kind or a forward (which we can tell without
1437
   consulting the type because its decorated name has a space as its
1438
   second character: see ctf_decorate_type_name), we are only interested
1439
   in whether this name has many hashes associated with it: any such name
1440
   is necessarily ambiguous, and types with that name are conflicting.
1441
   Once we know whether this is true, we can skip to the next name: so use
1442
   ctf_dynhash_iter_find for efficiency.  */
1443
1444
0
      if (decorated[0] != '\0' && decorated[1] == ' ')
1445
0
  {
1446
0
    ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
1447
0
    ctf_dynhash_t *counts = (ctf_dynhash_t *) v;
1448
1449
0
    ctf_dynhash_iter_find (counts, ctf_dedup_count_types, &counters);
1450
1451
    /* Check for assertion failure and pass it up.  */
1452
0
    if (ctf_errno (fp) == ECTF_INTERNAL)
1453
0
      goto assert_err;
1454
1455
0
    if (counters.num_non_forwards > 1)
1456
0
      {
1457
0
        const void *hval_;
1458
1459
0
        while ((err = ctf_dynhash_cnext (counts, &j, &hval_, NULL)) == 0)
1460
0
    {
1461
0
      const char *hval = (const char *) hval_;
1462
0
      ctf_dynset_t *type_ids;
1463
0
      void *id;
1464
0
      int kind;
1465
1466
      /* Dig through the types in this hash to find the non-forwards
1467
         and mark them ambiguous.  */
1468
1469
0
      type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1470
1471
      /* Nonexistent? Must be a forward with no referent.  */
1472
0
      if (!type_ids)
1473
0
        continue;
1474
1475
0
      id = ctf_dynset_lookup_any (type_ids);
1476
1477
0
      kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1478
0
          CTF_DEDUP_GID_TO_TYPE (id));
1479
1480
0
      if (kind != CTF_K_FORWARD)
1481
0
        {
1482
0
          ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
1483
0
           "of many non-forward GIDs for %s\n", id,
1484
0
           hval, (char *) k);
1485
0
          ctf_dedup_mark_conflicting_hash (fp, hval);
1486
0
        }
1487
0
    }
1488
0
        if (err != ECTF_NEXT_END)
1489
0
    {
1490
0
      whaterr = N_("error marking conflicting structs/unions");
1491
0
      goto iterr;
1492
0
    }
1493
0
      }
1494
0
  }
1495
0
      else
1496
0
  {
1497
    /* This is an ordinary type.  Find the most common type with this
1498
       name, and mark it unconflicting: all others are conflicting.  (We
1499
       cannot do this sort of popularity contest with forwardable types
1500
       because any forwards to that type would be immediately unified with
1501
       the most-popular type on insertion, and we want conflicting structs
1502
       et al to have all forwards left intact, so the user is notified
1503
       that this type is conflicting.  TODO: improve this in future by
1504
       setting such forwards non-root-visible.)
1505
1506
       If multiple distinct types are "most common", pick the one that
1507
       appears first on the link line, and within that, the one with the
1508
       lowest type ID.  (See sort_output_mapping.)  */
1509
1510
0
    const void *key;
1511
0
    const void *count;
1512
0
    const char *hval;
1513
0
    long max_hcount = -1;
1514
0
    void *max_gid = NULL;
1515
0
    const char *max_hval = NULL;
1516
1517
0
    if (ctf_dynhash_elements (name_counts) <= 1)
1518
0
      continue;
1519
1520
    /* First find the most common.  */
1521
0
    while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
1522
0
      {
1523
0
        hval = (const char *) key;
1524
1525
0
        if ((long int) (uintptr_t) count > max_hcount)
1526
0
    {
1527
0
      max_hcount = (long int) (uintptr_t) count;
1528
0
      max_hval = hval;
1529
0
      max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1530
0
    }
1531
0
        else if ((long int) (uintptr_t) count == max_hcount)
1532
0
    {
1533
0
      void *gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1534
1535
0
      if (CTF_DEDUP_GID_TO_INPUT(gid) < CTF_DEDUP_GID_TO_INPUT(max_gid)
1536
0
          || (CTF_DEDUP_GID_TO_INPUT(gid) == CTF_DEDUP_GID_TO_INPUT(max_gid)
1537
0
        && CTF_DEDUP_GID_TO_TYPE(gid) < CTF_DEDUP_GID_TO_TYPE(max_gid)))
1538
0
        {
1539
0
          max_hval = hval;
1540
0
          max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1541
0
        }
1542
0
    }
1543
0
      }
1544
0
    if (err != ECTF_NEXT_END)
1545
0
      {
1546
0
        whaterr = N_("error finding commonest conflicting type");
1547
0
        goto iterr;
1548
0
      }
1549
1550
    /* Mark all the others as conflicting.   */
1551
0
    while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
1552
0
      {
1553
0
        hval = (const char *) key;
1554
0
        if (strcmp (max_hval, hval) == 0)
1555
0
    continue;
1556
1557
0
        ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
1558
0
         hval, (const char *) k);
1559
0
        if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
1560
0
    {
1561
0
      whaterr = N_("error marking hashes as conflicting");
1562
0
      goto err;
1563
0
    }
1564
0
      }
1565
0
    if (err != ECTF_NEXT_END)
1566
0
      {
1567
0
        whaterr = N_("marking uncommon conflicting types");
1568
0
        goto iterr;
1569
0
      }
1570
0
  }
1571
0
    }
1572
0
  if (err != ECTF_NEXT_END)
1573
0
    {
1574
0
      whaterr = N_("scanning for ambiguous names");
1575
0
      goto iterr;
1576
0
    }
1577
1578
0
  return 0;
1579
1580
0
 err:
1581
0
  ctf_next_destroy (i);
1582
0
  ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
1583
0
  return -1;          /* errno is set for us.  */
1584
1585
0
 iterr:
1586
0
  ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
1587
0
  return ctf_set_errno (fp, err);
1588
1589
0
 assert_err:
1590
0
  ctf_next_destroy (i);
1591
0
  return -1;           /* errno is set for us.  */
1592
0
}
1593
1594
/* Initialize the deduplication machinery.  */
1595
1596
static int
1597
ctf_dedup_init (ctf_dict_t *fp)
1598
0
{
1599
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1600
0
  size_t i;
1601
1602
0
  if (ctf_dedup_atoms_init (fp) < 0)
1603
0
      goto oom;
1604
1605
#if IDS_NEED_ALLOCATION
1606
  if ((d->cd_id_to_dict_t = ctf_dynhash_create (ctf_hash_type_id_key,
1607
            ctf_hash_eq_type_id_key,
1608
            free, NULL)) == NULL)
1609
    goto oom;
1610
#endif
1611
1612
0
  for (i = 0; i < 4; i++)
1613
0
    {
1614
0
      if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
1615
0
                ctf_hash_eq_string,
1616
0
                NULL, NULL)) == NULL)
1617
0
  goto oom;
1618
0
    }
1619
1620
0
  if ((d->cd_name_counts
1621
0
       = ctf_dynhash_create (ctf_hash_string,
1622
0
           ctf_hash_eq_string, NULL,
1623
0
           (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
1624
0
    goto oom;
1625
1626
0
  if ((d->cd_type_hashes
1627
0
       = ctf_dynhash_create (ctf_hash_integer,
1628
0
           ctf_hash_eq_integer,
1629
0
           NULL, NULL)) == NULL)
1630
0
    goto oom;
1631
1632
0
  if ((d->cd_struct_origin
1633
0
       = ctf_dynhash_create (ctf_hash_string,
1634
0
           ctf_hash_eq_string,
1635
0
           NULL, NULL)) == NULL)
1636
0
    goto oom;
1637
1638
0
  if ((d->cd_citers
1639
0
       = ctf_dynhash_create (ctf_hash_string,
1640
0
           ctf_hash_eq_string, NULL,
1641
0
           (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1642
0
    goto oom;
1643
1644
0
  if ((d->cd_output_mapping
1645
0
       = ctf_dynhash_create (ctf_hash_string,
1646
0
           ctf_hash_eq_string, NULL,
1647
0
           (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1648
0
    goto oom;
1649
1650
0
  if ((d->cd_output_first_gid
1651
0
       = ctf_dynhash_create (ctf_hash_string,
1652
0
           ctf_hash_eq_string,
1653
0
           NULL, NULL)) == NULL)
1654
0
    goto oom;
1655
1656
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1657
  if ((d->cd_output_mapping_guard
1658
       = ctf_dynhash_create (ctf_hash_integer,
1659
           ctf_hash_eq_integer, NULL, NULL)) == NULL)
1660
    goto oom;
1661
#endif
1662
1663
0
  if ((d->cd_input_nums
1664
0
       = ctf_dynhash_create (ctf_hash_integer,
1665
0
           ctf_hash_eq_integer,
1666
0
           NULL, NULL)) == NULL)
1667
0
    goto oom;
1668
1669
0
  if ((d->cd_emission_struct_members
1670
0
       = ctf_dynhash_create (ctf_hash_integer,
1671
0
           ctf_hash_eq_integer,
1672
0
           NULL, NULL)) == NULL)
1673
0
    goto oom;
1674
1675
0
  if ((d->cd_conflicting_types
1676
0
       = ctf_dynset_create (htab_hash_string,
1677
0
          htab_eq_string, NULL)) == NULL)
1678
0
    goto oom;
1679
1680
0
  return 0;
1681
1682
0
 oom:
1683
0
  ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
1684
0
         "out of memory"));
1685
0
  return ctf_set_errno (fp, ENOMEM);
1686
0
}
1687
1688
/* No ctf_dedup calls are allowed after this call other than starting a new
1689
   deduplication via ctf_dedup (not even ctf_dedup_type_mapping lookups).  */
1690
void
1691
ctf_dedup_fini (ctf_dict_t *fp, ctf_dict_t **outputs, uint32_t noutputs)
1692
0
{
1693
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1694
0
  size_t i;
1695
1696
  /* ctf_dedup_atoms is kept across links.  */
1697
#if IDS_NEED_ALLOCATION
1698
  ctf_dynhash_destroy (d->cd_id_to_dict_t);
1699
#endif
1700
0
  for (i = 0; i < 4; i++)
1701
0
    ctf_dynhash_destroy (d->cd_decorated_names[i]);
1702
0
  ctf_dynhash_destroy (d->cd_name_counts);
1703
0
  ctf_dynhash_destroy (d->cd_type_hashes);
1704
0
  ctf_dynhash_destroy (d->cd_struct_origin);
1705
0
  ctf_dynhash_destroy (d->cd_citers);
1706
0
  ctf_dynhash_destroy (d->cd_output_mapping);
1707
0
  ctf_dynhash_destroy (d->cd_output_first_gid);
1708
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1709
  ctf_dynhash_destroy (d->cd_output_mapping_guard);
1710
#endif
1711
0
  ctf_dynhash_destroy (d->cd_input_nums);
1712
0
  ctf_dynhash_destroy (d->cd_emission_struct_members);
1713
0
  ctf_dynset_destroy (d->cd_conflicting_types);
1714
1715
  /* Free the per-output state.  */
1716
0
  if (outputs)
1717
0
    {
1718
0
      for (i = 0; i < noutputs; i++)
1719
0
  {
1720
0
    ctf_dedup_t *od = &outputs[i]->ctf_dedup;
1721
0
    ctf_dynhash_destroy (od->cd_output_emission_hashes);
1722
0
    ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
1723
0
    ctf_dict_close (od->cd_output);
1724
0
  }
1725
0
    }
1726
0
  memset (d, 0, sizeof (ctf_dedup_t));
1727
0
}
1728
1729
/* Return 1 if this type is cited by multiple input dictionaries.  */
1730
1731
static int
1732
ctf_dedup_multiple_input_dicts (ctf_dict_t *output, ctf_dict_t **inputs,
1733
        const char *hval)
1734
0
{
1735
0
  ctf_dedup_t *d = &output->ctf_dedup;
1736
0
  ctf_dynset_t *type_ids;
1737
0
  ctf_next_t *i = NULL;
1738
0
  void *id;
1739
0
  ctf_dict_t *found = NULL, *relative_found = NULL;
1740
0
  const char *type_id;
1741
0
  ctf_dict_t *input_fp;
1742
0
  ctf_id_t input_id;
1743
0
  const char *name;
1744
0
  const char *decorated;
1745
0
  int fwdkind;
1746
0
  int multiple = 0;
1747
0
  int err;
1748
1749
0
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1750
0
  if (!ctf_assert (output, type_ids))
1751
0
    return -1;
1752
1753
  /* Scan across the IDs until we find proof that two disjoint dictionaries
1754
     are referenced.  Exit as soon as possible.  Optimization opportunity, but
1755
     possibly not worth it, given that this is only executed in
1756
     CTF_LINK_SHARE_DUPLICATED mode.  */
1757
1758
0
  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
1759
0
    {
1760
0
      ctf_dict_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
1761
1762
0
      if (fp == found || fp == relative_found)
1763
0
  continue;
1764
1765
0
      if (!found)
1766
0
  {
1767
0
    found = fp;
1768
0
    continue;
1769
0
  }
1770
1771
0
      if (!relative_found
1772
0
    && (fp->ctf_parent == found || found->ctf_parent == fp))
1773
0
  {
1774
0
    relative_found = fp;
1775
0
    continue;
1776
0
  }
1777
1778
0
      multiple = 1;
1779
0
      ctf_next_destroy (i);
1780
0
      break;
1781
0
    }
1782
0
  if ((err != ECTF_NEXT_END) && (err != 0))
1783
0
    {
1784
0
      ctf_err_warn (output, 0, err, _("iteration error "
1785
0
              "propagating conflictedness"));
1786
0
      return ctf_set_errno (output, err);
1787
0
    }
1788
1789
0
  if (multiple)
1790
0
    return multiple;
1791
1792
  /* This type itself does not appear in multiple input dicts: how about another
1793
     related type with the same name (e.g. a forward if this is a struct,
1794
     etc).  */
1795
1796
0
  type_id = ctf_dynset_lookup_any (type_ids);
1797
0
  if (!ctf_assert (output, type_id))
1798
0
    return -1;
1799
1800
0
  input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
1801
0
  input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
1802
0
  fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
1803
0
  name = ctf_type_name_raw (input_fp, input_id);
1804
1805
0
  if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
1806
0
      && name[0] != '\0')
1807
0
    {
1808
0
      const void *origin;
1809
1810
0
      if ((decorated = ctf_decorate_type_name (output, name,
1811
0
                 fwdkind)) == NULL)
1812
0
  return -1;       /* errno is set for us.  */
1813
1814
0
      origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
1815
0
      if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
1816
0
  multiple = 1;
1817
0
    }
1818
1819
0
  return multiple;
1820
0
}
1821
1822
/* Demote unconflicting types which reference only one input, or which reference
1823
   two inputs where one input is the parent of the other, into conflicting
1824
   types.  Only used if the link mode is CTF_LINK_SHARE_DUPLICATED.  */
1825
1826
static int
1827
ctf_dedup_conflictify_unshared (ctf_dict_t *output, ctf_dict_t **inputs)
1828
0
{
1829
0
  ctf_dedup_t *d = &output->ctf_dedup;
1830
0
  ctf_next_t *i = NULL;
1831
0
  int err;
1832
0
  const void *k;
1833
0
  ctf_dynset_t *to_mark = NULL;
1834
1835
0
  if ((to_mark = ctf_dynset_create (htab_hash_string, htab_eq_string,
1836
0
            NULL)) == NULL)
1837
0
    goto err_no;
1838
1839
0
  while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
1840
0
    {
1841
0
      const char *hval = (const char *) k;
1842
0
      int conflicting;
1843
1844
      /* Types referenced by only one dict, with no type appearing under that
1845
   name elsewhere, are marked conflicting.  */
1846
1847
0
      conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
1848
1849
0
      if (conflicting < 0)
1850
0
  goto err;       /* errno is set for us.  */
1851
1852
0
      if (conflicting)
1853
0
  if (ctf_dynset_cinsert (to_mark, hval) < 0)
1854
0
    goto err;
1855
0
    }
1856
0
  if (err != ECTF_NEXT_END)
1857
0
    goto iterr;
1858
1859
0
  while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
1860
0
    {
1861
0
      const char *hval = (const char *) k;
1862
1863
0
      if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
1864
0
  goto err;
1865
0
    }
1866
0
  if (err != ECTF_NEXT_END)
1867
0
    goto iterr;
1868
1869
0
  ctf_dynset_destroy (to_mark);
1870
1871
0
  return 0;
1872
1873
0
 err_no:
1874
0
  ctf_set_errno (output, errno);
1875
0
 err:
1876
0
  err = ctf_errno (output);
1877
0
  ctf_next_destroy (i);
1878
0
 iterr:
1879
0
  ctf_dynset_destroy (to_mark);
1880
0
  ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
1881
0
  return ctf_set_errno (output, err);
1882
0
}
1883
1884
/* The core deduplicator.  Populate cd_output_mapping in the output ctf_dedup
1885
   with a mapping of all types that belong in this dictionary and where they
1886
   come from, and cd_conflicting_types with an indication of whether each type
1887
   is conflicted or not.  OUTPUT is the top-level output: INPUTS is the array of
1888
   input dicts; NINPUTS is the size of that array; PARENTS is an NINPUTS-element
1889
   array with each element corresponding to a input which is a child dict set to
1890
   the number in the INPUTS array of that input's parent.
1891
1892
   If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
1893
   mapping: only one output will result.
1894
1895
   Only deduplicates: does not emit the types into the output.  Call
1896
   ctf_dedup_emit afterwards to do that.  */
1897
1898
int
1899
ctf_dedup (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
1900
     uint32_t *parents, int cu_mapped)
1901
0
{
1902
0
  ctf_dedup_t *d = &output->ctf_dedup;
1903
0
  size_t i;
1904
0
  ctf_next_t *it = NULL;
1905
1906
0
  if (ctf_dedup_init (output) < 0)
1907
0
    return -1;           /* errno is set for us.  */
1908
1909
0
  for (i = 0; i < ninputs; i++)
1910
0
    {
1911
0
      ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
1912
0
      if (ctf_dynhash_insert (d->cd_input_nums, inputs[i],
1913
0
            (void *) (uintptr_t) i) < 0)
1914
0
  {
1915
0
    ctf_set_errno (output, errno);
1916
0
    ctf_err_warn (output, 0, errno, _("ctf_dedup: cannot initialize: %s\n"),
1917
0
      ctf_errmsg (errno));
1918
0
    goto err;
1919
0
  }
1920
0
    }
1921
1922
  /* Some flags do not apply when CU-mapping: this is not a duplicated link,
1923
     because there is only one output and we really don't want to end up marking
1924
     all nonconflicting but appears-only-once types as conflicting (which in the
1925
     CU-mapped link means we'd mark them all as non-root-visible!).  */
1926
0
  d->cd_link_flags = output->ctf_link_flags;
1927
0
  if (cu_mapped)
1928
0
    d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
1929
1930
  /* Compute hash values for all types, recursively, treating child structures
1931
     and unions equivalent to forwards, and hashing in the name of the referent
1932
     of each such type into structures, unions, and non-opaque forwards.
1933
     Populate a mapping from decorated name (including an indication of
1934
     struct/union/enum namespace) to count of type hash values in
1935
     cd_name_counts, a mapping from and a mapping from hash values to input type
1936
     IDs in cd_output_mapping.  */
1937
1938
0
  ctf_dprintf ("Computing type hashes\n");
1939
0
  for (i = 0; i < ninputs; i++)
1940
0
    {
1941
0
      ctf_id_t id;
1942
1943
0
      while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
1944
0
  {
1945
0
    if (ctf_dedup_hash_type (output, inputs[i], inputs,
1946
0
           parents, i, id, 0, 0,
1947
0
           ctf_dedup_populate_mappings) == NULL)
1948
0
      goto err;       /* errno is set for us.  */
1949
0
  }
1950
0
      if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
1951
0
  {
1952
0
    ctf_set_errno (output, ctf_errno (inputs[i]));
1953
0
    ctf_err_warn (output, 0, 0, _("iteration failure "
1954
0
          "computing type hashes"));
1955
0
    goto err;
1956
0
  }
1957
0
    }
1958
1959
  /* Go through the cd_name_counts name->hash->count mapping for all CTF
1960
     namespaces: any name with many hashes associated with it at this stage is
1961
     necessarily ambiguous.  Mark all the hashes except the most common as
1962
     conflicting in the output.  */
1963
1964
0
  ctf_dprintf ("Detecting type name ambiguity\n");
1965
0
  if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
1966
0
      goto err;         /* errno is set for us.  */
1967
1968
  /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
1969
     types whose output mapping references only one input dict into a
1970
     conflicting type, so that they end up in the per-CU dictionaries.  */
1971
1972
0
  if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
1973
0
    {
1974
0
      ctf_dprintf ("Conflictifying unshared types\n");
1975
0
      if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
1976
0
  goto err;       /* errno is set for us.  */
1977
0
    }
1978
0
  return 0;
1979
1980
0
 err:
1981
0
  ctf_dedup_fini (output, NULL, 0);
1982
0
  return -1;
1983
0
}
1984
1985
static int
1986
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
1987
        uint32_t ninputs, uint32_t *parents,
1988
        ctf_dynset_t *already_visited,
1989
        const char *hval,
1990
        int (*visit_fun) (const char *hval,
1991
              ctf_dict_t *output,
1992
              ctf_dict_t **inputs,
1993
              uint32_t ninputs,
1994
              uint32_t *parents,
1995
              int already_visited,
1996
              ctf_dict_t *input,
1997
              ctf_id_t type,
1998
              void *id,
1999
              int depth,
2000
              void *arg),
2001
        void *arg, unsigned long depth);
2002
2003
/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
2004
   type and visits it.  */
2005
static int
2006
ctf_dedup_rwalk_one_output_mapping (ctf_dict_t *output,
2007
            ctf_dict_t **inputs, uint32_t ninputs,
2008
            uint32_t *parents,
2009
            ctf_dynset_t *already_visited,
2010
            int visited, void *type_id,
2011
            const char *hval,
2012
            int (*visit_fun) (const char *hval,
2013
                  ctf_dict_t *output,
2014
                  ctf_dict_t **inputs,
2015
                  uint32_t ninputs,
2016
                  uint32_t *parents,
2017
                  int already_visited,
2018
                  ctf_dict_t *input,
2019
                  ctf_id_t type,
2020
                  void *id,
2021
                  int depth,
2022
                  void *arg),
2023
            void *arg, unsigned long depth)
2024
0
{
2025
0
  ctf_dedup_t *d = &output->ctf_dedup;
2026
0
  ctf_dict_t *fp;
2027
0
  int input_num;
2028
0
  ctf_id_t type;
2029
0
  int ret;
2030
0
  const char *whaterr;
2031
2032
0
  input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
2033
0
  fp = inputs[input_num];
2034
0
  type = CTF_DEDUP_GID_TO_TYPE (type_id);
2035
2036
0
  ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
2037
0
         "kind %i\n", depth, hval, input_num, type, (void *) fp,
2038
0
         ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
2039
2040
  /* Get the single call we do if this type has already been visited out of the
2041
     way.  */
2042
0
  if (visited)
2043
0
    return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
2044
0
          type, type_id, depth, arg);
2045
2046
  /* This macro is really ugly, but the alternative is repeating this code many
2047
     times, which is worse.  */
2048
2049
0
#define CTF_TYPE_WALK(type, errlabel, errmsg)       \
2050
0
  do                  \
2051
0
    {                 \
2052
0
      void *type_id;              \
2053
0
      const char *hashval;            \
2054
0
      int cited_type_input_num = input_num;       \
2055
0
                  \
2056
0
      if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
2057
0
  cited_type_input_num = parents[input_num];     \
2058
0
                  \
2059
0
      type_id = CTF_DEDUP_GID (output, cited_type_input_num, type);  \
2060
0
                  \
2061
0
      if (type == 0)             \
2062
0
  {               \
2063
0
    ctf_dprintf ("Walking: unimplemented type\n");    \
2064
0
    break;              \
2065
0
  }                \
2066
0
                  \
2067
0
      ctf_dprintf ("Looking up ID %i/%lx in type hashes\n",   \
2068
0
       cited_type_input_num, type);       \
2069
0
      hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id);  \
2070
0
      if (!ctf_assert (output, hashval))       \
2071
0
  {               \
2072
0
    whaterr = N_("error looking up ID in type hashes");   \
2073
0
    goto errlabel;            \
2074
0
  }               \
2075
0
      ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
2076
0
       hashval);            \
2077
0
                  \
2078
0
      ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
2079
0
              already_visited, hashval, \
2080
0
              visit_fun, arg, depth); \
2081
0
      if (ret < 0)             \
2082
0
  {               \
2083
0
    whaterr = errmsg;           \
2084
0
    goto errlabel;            \
2085
0
  }                \
2086
0
    }                 \
2087
0
  while (0)
2088
2089
0
  switch (ctf_type_kind_unsliced (fp, type))
2090
0
    {
2091
0
    case CTF_K_UNKNOWN:
2092
0
    case CTF_K_FORWARD:
2093
0
    case CTF_K_INTEGER:
2094
0
    case CTF_K_FLOAT:
2095
0
    case CTF_K_ENUM:
2096
      /* No types referenced.  */
2097
0
      break;
2098
2099
0
    case CTF_K_TYPEDEF:
2100
0
    case CTF_K_VOLATILE:
2101
0
    case CTF_K_CONST:
2102
0
    case CTF_K_RESTRICT:
2103
0
    case CTF_K_POINTER:
2104
0
    case CTF_K_SLICE:
2105
0
      CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
2106
0
         N_("error during referenced type walk"));
2107
0
      break;
2108
2109
0
    case CTF_K_ARRAY:
2110
0
      {
2111
0
  ctf_arinfo_t ar;
2112
2113
0
  if (ctf_array_info (fp, type, &ar) < 0)
2114
0
    {
2115
0
      whaterr = N_("error during array info lookup");
2116
0
      goto err_msg;
2117
0
    }
2118
2119
0
  CTF_TYPE_WALK (ar.ctr_contents, err,
2120
0
           N_("error during array contents type walk"));
2121
0
  CTF_TYPE_WALK (ar.ctr_index, err,
2122
0
           N_("error during array index type walk"));
2123
0
  break;
2124
0
      }
2125
2126
0
    case CTF_K_FUNCTION:
2127
0
      {
2128
0
  ctf_funcinfo_t fi;
2129
0
  ctf_id_t *args;
2130
0
  uint32_t j;
2131
2132
0
  if (ctf_func_type_info (fp, type, &fi) < 0)
2133
0
    {
2134
0
      whaterr = N_("error during func type info lookup");
2135
0
      goto err_msg;
2136
0
    }
2137
2138
0
  CTF_TYPE_WALK (fi.ctc_return, err,
2139
0
           N_("error during func return type walk"));
2140
2141
0
  if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2142
0
    {
2143
0
      whaterr = N_("error doing memory allocation");
2144
0
      goto err_msg;
2145
0
    }
2146
2147
0
  if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
2148
0
    {
2149
0
      whaterr = N_("error doing func arg type lookup");
2150
0
      free (args);
2151
0
      goto err_msg;
2152
0
    }
2153
2154
0
  for (j = 0; j < fi.ctc_argc; j++)
2155
0
    CTF_TYPE_WALK (args[j], err_free_args,
2156
0
       N_("error during Func arg type walk"));
2157
0
  free (args);
2158
0
  break;
2159
2160
0
      err_free_args:
2161
0
  free (args);
2162
0
  goto err;
2163
0
      }
2164
0
    case CTF_K_STRUCT:
2165
0
    case CTF_K_UNION:
2166
      /* We do not recursively traverse the members of structures: they are
2167
   emitted later, in a separate pass.  */
2168
0
  break;
2169
0
    default:
2170
0
      whaterr = N_("CTF dict corruption: unknown type kind");
2171
0
      goto err_msg;
2172
0
    }
2173
2174
0
  return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
2175
0
        type_id, depth, arg);
2176
2177
0
 err_msg:
2178
0
  ctf_set_errno (output, ctf_errno (fp));
2179
0
  ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
2180
0
    gettext (whaterr), ctf_link_input_name (fp), type);
2181
0
 err:
2182
0
  return -1;
2183
0
}
2184
/* Recursively traverse the output mapping, and do something with each type
2185
   visited, from leaves to root.  VISIT_FUN, called as recursion unwinds,
2186
   returns a negative error code or zero.  Type hashes may be visited more than
2187
   once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
2188
   types have already been visited.  */
2189
static int
2190
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2191
        uint32_t ninputs, uint32_t *parents,
2192
        ctf_dynset_t *already_visited,
2193
        const char *hval,
2194
        int (*visit_fun) (const char *hval,
2195
              ctf_dict_t *output,
2196
              ctf_dict_t **inputs,
2197
              uint32_t ninputs,
2198
              uint32_t *parents,
2199
              int already_visited,
2200
              ctf_dict_t *input,
2201
              ctf_id_t type,
2202
              void *id,
2203
              int depth,
2204
              void *arg),
2205
        void *arg, unsigned long depth)
2206
0
{
2207
0
  ctf_dedup_t *d = &output->ctf_dedup;
2208
0
  ctf_next_t *i = NULL;
2209
0
  int err;
2210
0
  int visited = 1;
2211
0
  ctf_dynset_t *type_ids;
2212
0
  void *id;
2213
2214
0
  depth++;
2215
2216
0
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
2217
0
  if (!type_ids)
2218
0
    {
2219
0
      ctf_err_warn (output, 0, ECTF_INTERNAL,
2220
0
        _("looked up type kind by nonexistent hash %s"), hval);
2221
0
      return ctf_set_errno (output, ECTF_INTERNAL);
2222
0
    }
2223
2224
  /* Have we seen this type before?  */
2225
2226
0
  if (!ctf_dynset_exists (already_visited, hval, NULL))
2227
0
    {
2228
      /* Mark as already-visited immediately, to eliminate the possibility of
2229
   cycles: but remember we have not actually visited it yet for the
2230
   upcoming call to the visit_fun.  (All our callers handle cycles
2231
   properly themselves, so we can just abort them aggressively as soon as
2232
   we find ourselves in one.)  */
2233
2234
0
      visited = 0;
2235
0
      if (ctf_dynset_cinsert (already_visited, hval) < 0)
2236
0
  {
2237
0
    ctf_err_warn (output, 0, ENOMEM,
2238
0
      _("out of memory tracking already-visited types"));
2239
0
    return ctf_set_errno (output, ENOMEM);
2240
0
  }
2241
0
    }
2242
2243
  /* If this type is marked conflicted, traverse members and call
2244
     ctf_dedup_rwalk_output_mapping_once on all the unique ones: otherwise, just
2245
     pick a random one and use it.  */
2246
2247
0
  if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
2248
0
    {
2249
0
      id = ctf_dynset_lookup_any (type_ids);
2250
0
      if (!ctf_assert (output, id))
2251
0
  return -1;
2252
2253
0
      return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2254
0
             parents, already_visited,
2255
0
             visited, id, hval, visit_fun,
2256
0
             arg, depth);
2257
0
    }
2258
2259
0
  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
2260
0
    {
2261
0
      int ret;
2262
2263
0
      ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2264
0
            parents, already_visited,
2265
0
            visited, id, hval,
2266
0
            visit_fun, arg, depth);
2267
0
      if (ret < 0)
2268
0
  {
2269
0
    ctf_next_destroy (i);
2270
0
    return ret;       /* errno is set for us.  */
2271
0
  }
2272
0
    }
2273
0
  if (err != ECTF_NEXT_END)
2274
0
    {
2275
0
      ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
2276
0
      return ctf_set_errno (output, err);
2277
0
    }
2278
2279
0
  return 0;
2280
0
}
2281
2282
typedef struct ctf_sort_om_cb_arg
2283
{
2284
  ctf_dict_t **inputs;
2285
  uint32_t ninputs;
2286
  ctf_dedup_t *d;
2287
} ctf_sort_om_cb_arg_t;
2288
2289
/* Sort the output mapping into order: types first appearing in earlier inputs
2290
   first, parents preceding children: if types first appear in the same input,
2291
   sort those with earlier ctf_id_t's first.  */
2292
static int
2293
sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
2294
         void *arg_)
2295
0
{
2296
0
  ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
2297
0
  ctf_dedup_t *d = arg->d;
2298
0
  const char *one_hval = (const char *) one->hkv_key;
2299
0
  const char *two_hval = (const char *) two->hkv_key;
2300
0
  void *one_gid, *two_gid;
2301
0
  uint32_t one_ninput;
2302
0
  uint32_t two_ninput;
2303
0
  ctf_dict_t *one_fp;
2304
0
  ctf_dict_t *two_fp;
2305
0
  ctf_id_t one_type;
2306
0
  ctf_id_t two_type;
2307
2308
  /* Inputs are always equal to themselves.  */
2309
0
  if (one == two)
2310
0
    return 0;
2311
2312
0
  one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
2313
0
  two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
2314
2315
0
  one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
2316
0
  two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
2317
2318
0
  one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
2319
0
  two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
2320
2321
  /* It's kind of hard to smuggle an assertion failure out of here.  */
2322
0
  assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
2323
2324
0
  one_fp = arg->inputs[one_ninput];
2325
0
  two_fp = arg->inputs[two_ninput];
2326
2327
  /* Parents before children.  */
2328
2329
0
  if (!(one_fp->ctf_flags & LCTF_CHILD)
2330
0
      && (two_fp->ctf_flags & LCTF_CHILD))
2331
0
    return -1;
2332
0
  else if ((one_fp->ctf_flags & LCTF_CHILD)
2333
0
      && !(two_fp->ctf_flags & LCTF_CHILD))
2334
0
    return 1;
2335
2336
  /* ninput order, types appearing in earlier TUs first.  */
2337
2338
0
  if (one_ninput < two_ninput)
2339
0
    return -1;
2340
0
  else if (two_ninput < one_ninput)
2341
0
    return 1;
2342
2343
  /* Same TU.  Earliest ctf_id_t first.  They cannot be the same.  */
2344
2345
0
  assert (one_type != two_type);
2346
0
  if (one_type < two_type)
2347
0
    return -1;
2348
0
  else
2349
0
    return 1;
2350
0
}
2351
2352
/* The public entry point to ctf_dedup_rwalk_output_mapping, above.  */
2353
static int
2354
ctf_dedup_walk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2355
             uint32_t ninputs, uint32_t *parents,
2356
             int (*visit_fun) (const char *hval,
2357
             ctf_dict_t *output,
2358
             ctf_dict_t **inputs,
2359
             uint32_t ninputs,
2360
             uint32_t *parents,
2361
             int already_visited,
2362
             ctf_dict_t *input,
2363
             ctf_id_t type,
2364
             void *id,
2365
             int depth,
2366
             void *arg),
2367
             void *arg)
2368
0
{
2369
0
  ctf_dynset_t *already_visited;
2370
0
  ctf_next_t *i = NULL;
2371
0
  ctf_sort_om_cb_arg_t sort_arg;
2372
0
  int err;
2373
0
  void *k;
2374
2375
0
  if ((already_visited = ctf_dynset_create (htab_hash_string,
2376
0
              htab_eq_string,
2377
0
              NULL)) == NULL)
2378
0
    return ctf_set_errno (output, ENOMEM);
2379
2380
0
  sort_arg.inputs = inputs;
2381
0
  sort_arg.ninputs = ninputs;
2382
0
  sort_arg.d = &output->ctf_dedup;
2383
2384
0
  while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
2385
0
           &i, &k, NULL, sort_output_mapping,
2386
0
           &sort_arg)) == 0)
2387
0
    {
2388
0
      const char *hval = (const char *) k;
2389
2390
0
      err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
2391
0
              already_visited, hval, visit_fun,
2392
0
              arg, 0);
2393
0
      if (err < 0)
2394
0
  {
2395
0
    ctf_next_destroy (i);
2396
0
    goto err;       /* errno is set for us.  */
2397
0
  }
2398
0
    }
2399
0
  if (err != ECTF_NEXT_END)
2400
0
    {
2401
0
      ctf_set_errno (output, err);
2402
0
      ctf_err_warn (output, 0, 0, _("cannot recurse over output mapping"));
2403
0
      goto err;
2404
0
    }
2405
0
  ctf_dynset_destroy (already_visited);
2406
2407
0
  return 0;
2408
0
 err:
2409
0
  ctf_dynset_destroy (already_visited);
2410
0
  return -1;
2411
0
}
2412
2413
/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
2414
   conflicted per-TU type ID in INPUT with hash HVAL.  Return its CTF ID, or 0
2415
   if none was needed.  */
2416
static ctf_id_t
2417
ctf_dedup_maybe_synthesize_forward (ctf_dict_t *output, ctf_dict_t *target,
2418
            ctf_dict_t *input, ctf_id_t id,
2419
            const char *hval)
2420
0
{
2421
0
  ctf_dedup_t *od = &output->ctf_dedup;
2422
0
  ctf_dedup_t *td = &target->ctf_dedup;
2423
0
  int kind;
2424
0
  int fwdkind;
2425
0
  const char *name = ctf_type_name_raw (input, id);
2426
0
  const char *decorated;
2427
0
  void *v;
2428
0
  ctf_id_t emitted_forward;
2429
2430
0
  if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
2431
0
      || target->ctf_flags & LCTF_CHILD
2432
0
      || name[0] == '\0'
2433
0
      || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
2434
0
     && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
2435
0
    return 0;
2436
2437
0
  fwdkind = ctf_type_kind_forwarded (input, id);
2438
2439
0
  ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
2440
0
         "hval %s\n", hval);
2441
2442
0
  if (!ctf_assert (output, name))
2443
0
    return CTF_ERR;
2444
2445
0
  if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
2446
0
    return CTF_ERR;
2447
2448
0
  if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
2449
0
            decorated, NULL, &v))
2450
0
    {
2451
0
      if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
2452
0
                fwdkind)) == CTF_ERR)
2453
0
  return ctf_set_typed_errno (output, ctf_errno (target));
2454
2455
0
      if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
2456
0
             decorated, (void *) (uintptr_t)
2457
0
             emitted_forward) < 0)
2458
0
  return ctf_set_typed_errno (output, ENOMEM);
2459
0
    }
2460
0
  else
2461
0
    emitted_forward = (ctf_id_t) (uintptr_t) v;
2462
2463
0
  ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
2464
0
         emitted_forward);
2465
2466
0
  return emitted_forward;
2467
0
}
2468
2469
/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
2470
   into a GID in a target output dict.  If it returns 0, this is the
2471
   unimplemented type, and the input type must have been 0.  The OUTPUT dict is
2472
   assumed to be the parent of the TARGET, if it is not the TARGET itself.
2473
2474
   Returns CTF_ERR on failure.  Responds to an incoming CTF_ERR as an 'id' by
2475
   returning CTF_ERR, to simplify callers.  Errors are always propagated to the
2476
   input, even if they relate to the target, for the same reason.  (Target
2477
   errors are expected to be very rare.)
2478
2479
   If the type in question is a citation of a conflicted type in a different TU,
2480
   emit a forward of the right type in its place (if not already emitted), and
2481
   record that forward in cd_output_emission_conflicted_forwards.  This avoids
2482
   the need to replicate the entire type graph below this point in the current
2483
   TU (an appalling waste of space).
2484
2485
   TODO: maybe replace forwards in the same TU with their referents?  Might
2486
   make usability a bit better.  */
2487
2488
static ctf_id_t
2489
ctf_dedup_id_to_target (ctf_dict_t *output, ctf_dict_t *target,
2490
      ctf_dict_t **inputs, uint32_t ninputs,
2491
      uint32_t *parents, ctf_dict_t *input, int input_num,
2492
      ctf_id_t id)
2493
0
{
2494
0
  ctf_dedup_t *od = &output->ctf_dedup;
2495
0
  ctf_dedup_t *td = &target->ctf_dedup;
2496
0
  ctf_dict_t *err_fp = input;
2497
0
  const char *hval;
2498
0
  void *target_id;
2499
0
  ctf_id_t emitted_forward;
2500
2501
  /* The target type of an error is an error.  */
2502
0
  if (id == CTF_ERR)
2503
0
    return CTF_ERR;
2504
2505
  /* The unimplemented type's ID never changes.  */
2506
0
  if (!id)
2507
0
    {
2508
0
      ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
2509
0
      return 0;
2510
0
    }
2511
2512
0
  ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
2513
0
         id, (void *) target, ctf_link_input_name (target));
2514
2515
  /* If the input type is in the parent type space, and this is a child, reset
2516
     the input to the parent (which must already have been emitted, since
2517
     emission of parent dicts happens before children).  */
2518
0
  if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
2519
0
    {
2520
0
      if (!ctf_assert (output, parents[input_num] <= ninputs))
2521
0
  return CTF_ERR;
2522
0
      input = inputs[parents[input_num]];
2523
0
      input_num = parents[input_num];
2524
0
    }
2525
2526
0
  hval = ctf_dynhash_lookup (od->cd_type_hashes,
2527
0
           CTF_DEDUP_GID (output, input_num, id));
2528
2529
0
  if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
2530
0
    return CTF_ERR;
2531
2532
  /* If this type is a conflicted tagged structure, union, or forward,
2533
     substitute a synthetic forward instead, emitting it if need be.  Only do
2534
     this if the target is in the parent dict: if it's in the child dict, we can
2535
     just point straight at the thing itself.  Of course, we might be looking in
2536
     the child dict right now and not find it and have to look in the parent, so
2537
     we have to do this check twice.  */
2538
2539
0
  emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
2540
0
              input, id, hval);
2541
0
  switch (emitted_forward)
2542
0
    {
2543
0
    case 0: /* No forward needed.  */
2544
0
      break;
2545
0
    case -1:
2546
0
      ctf_set_errno (err_fp, ctf_errno (output));
2547
0
      ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
2548
0
            "%i/%lx"), input_num, id);
2549
0
      return CTF_ERR;
2550
0
    default:
2551
0
      return emitted_forward;
2552
0
    }
2553
2554
0
  ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
2555
2556
0
  target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
2557
0
  if (!target_id)
2558
0
    {
2559
      /* Must be in the parent, so this must be a child, and they must not be
2560
   the same dict.  */
2561
0
      ctf_dprintf ("Checking shared parent for target\n");
2562
0
      if (!ctf_assert (output, (target != output)
2563
0
           && (target->ctf_flags & LCTF_CHILD)))
2564
0
  return CTF_ERR;
2565
2566
0
      target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
2567
2568
0
      emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
2569
0
                  input, id, hval);
2570
0
      switch (emitted_forward)
2571
0
  {
2572
0
  case 0: /* No forward needed.  */
2573
0
    break;
2574
0
  case -1:
2575
0
    ctf_err_warn (err_fp, 0, ctf_errno (output),
2576
0
      _("cannot add synthetic forward for type %i/%lx"),
2577
0
      input_num, id);
2578
0
    return ctf_set_typed_errno (err_fp, ctf_errno (output));
2579
0
  default:
2580
0
    return emitted_forward;
2581
0
  }
2582
0
    }
2583
0
  if (!ctf_assert (output, target_id))
2584
0
    return CTF_ERR;
2585
0
  return (ctf_id_t) (uintptr_t) target_id;
2586
0
}
2587
2588
/* Emit a single deduplicated TYPE with the given HVAL, located in a given
2589
   INPUT, with the given (G)ID, into the shared OUTPUT or a
2590
   possibly-newly-created per-CU dict.  All the types this type depends upon
2591
   have already been emitted.  (This type itself may also have been emitted.)
2592
2593
   If the ARG is 1, this is a CU-mapped deduplication round mapping many
2594
   ctf_dict_t's into precisely one: conflicting types should be marked
2595
   non-root-visible.  If the ARG is 0, conflicting types go into per-CU
2596
   dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
2597
   is emitted directly into the output.  No struct/union members are emitted.
2598
2599
   Optimization opportunity: trace the ancestry of non-root-visible types and
2600
   elide all that neither have a root-visible type somewhere towards their root,
2601
   nor have the type visible via any other route (the function info section,
2602
   data object section, backtrace section etc).  */
2603
2604
static int
2605
ctf_dedup_emit_type (const char *hval, ctf_dict_t *output, ctf_dict_t **inputs,
2606
         uint32_t ninputs, uint32_t *parents, int already_visited,
2607
         ctf_dict_t *input, ctf_id_t type, void *id, int depth,
2608
         void *arg)
2609
0
{
2610
0
  ctf_dedup_t *d = &output->ctf_dedup;
2611
0
  int kind = ctf_type_kind_unsliced (input, type);
2612
0
  const char *name;
2613
0
  ctf_dict_t *target = output;
2614
0
  ctf_dict_t *real_input;
2615
0
  const ctf_type_t *tp;
2616
0
  int input_num = CTF_DEDUP_GID_TO_INPUT (id);
2617
0
  int output_num = (uint32_t) -1;   /* 'shared' */
2618
0
  int cu_mapped = *(int *)arg;
2619
0
  int isroot = 1;
2620
0
  int is_conflicting;
2621
2622
0
  ctf_next_t *i = NULL;
2623
0
  ctf_id_t new_type;
2624
0
  ctf_id_t ref;
2625
0
  ctf_id_t maybe_dup = 0;
2626
0
  ctf_encoding_t ep;
2627
0
  const char *errtype;
2628
0
  int emission_hashed = 0;
2629
2630
  /* We don't want to re-emit something we've already emitted.  */
2631
2632
0
  if (already_visited)
2633
0
    return 0;
2634
2635
0
  ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
2636
0
         depth, hval, ctf_link_input_name (input));
2637
2638
  /* Conflicting types go into a per-CU output dictionary, unless this is a
2639
     CU-mapped run.  The import is not refcounted, since it goes into the
2640
     ctf_link_outputs dict of the output that is its parent.  */
2641
0
  is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
2642
2643
0
  if (is_conflicting && !cu_mapped)
2644
0
    {
2645
0
      ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
2646
0
       "inserting into per-CU target.\n",
2647
0
       depth, hval, input_num, type);
2648
2649
0
      if (input->ctf_dedup.cd_output)
2650
0
  target = input->ctf_dedup.cd_output;
2651
0
      else
2652
0
  {
2653
0
    int err;
2654
2655
0
    if ((target = ctf_create (&err)) == NULL)
2656
0
      {
2657
0
        ctf_err_warn (output, 0, err,
2658
0
          _("cannot create per-CU CTF archive for CU %s"),
2659
0
          ctf_link_input_name (input));
2660
0
        return ctf_set_errno (output, err);
2661
0
      }
2662
2663
0
    ctf_import_unref (target, output);
2664
0
    if (ctf_cuname (input) != NULL)
2665
0
      ctf_cuname_set (target, ctf_cuname (input));
2666
0
    else
2667
0
      ctf_cuname_set (target, "unnamed-CU");
2668
0
    ctf_parent_name_set (target, _CTF_SECTION);
2669
2670
0
    input->ctf_dedup.cd_output = target;
2671
0
    input->ctf_link_in_out = target;
2672
0
    target->ctf_link_in_out = input;
2673
0
  }
2674
0
      output_num = input_num;
2675
0
    }
2676
2677
0
  real_input = input;
2678
0
  if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
2679
0
    {
2680
0
      ctf_err_warn (output, 0, ctf_errno (input),
2681
0
        _("%s: lookup failure for type %lx"),
2682
0
        ctf_link_input_name (real_input), type);
2683
0
      return ctf_set_errno (output, ctf_errno (input));
2684
0
    }
2685
2686
0
  name = ctf_strraw (real_input, tp->ctt_name);
2687
2688
  /* Hide conflicting types, if we were asked to: also hide if a type with this
2689
     name already exists and is not a forward.  */
2690
0
  if (cu_mapped && is_conflicting)
2691
0
    isroot = 0;
2692
0
  else if (name
2693
0
     && (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
2694
0
    {
2695
0
      if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
2696
0
  isroot = 0;
2697
0
    }
2698
2699
0
  ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
2700
0
         depth, hval, name ? name : "", input_num, (void *) target);
2701
2702
0
  if (!target->ctf_dedup.cd_output_emission_hashes)
2703
0
    if ((target->ctf_dedup.cd_output_emission_hashes
2704
0
   = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2705
0
            NULL, NULL)) == NULL)
2706
0
      goto oom_hash;
2707
2708
0
  if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
2709
0
    if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
2710
0
   = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2711
0
            NULL, NULL)) == NULL)
2712
0
      goto oom_hash;
2713
2714
0
  switch (kind)
2715
0
    {
2716
0
    case CTF_K_UNKNOWN:
2717
      /* These are types that CTF cannot encode, marked as such by the
2718
   compiler.  */
2719
0
      errtype = _("unknown type");
2720
0
      if ((new_type = ctf_add_unknown (target, isroot, name)) == CTF_ERR)
2721
0
  goto err_target;
2722
0
      break;
2723
0
    case CTF_K_FORWARD:
2724
      /* This will do nothing if the type to which this forwards already exists,
2725
   and will be replaced with such a type if it appears later.  */
2726
2727
0
      errtype = _("forward");
2728
0
      if ((new_type = ctf_add_forward (target, isroot, name,
2729
0
               ctf_type_kind_forwarded (input, type)))
2730
0
    == CTF_ERR)
2731
0
  goto err_target;
2732
0
      break;
2733
2734
0
    case CTF_K_FLOAT:
2735
0
    case CTF_K_INTEGER:
2736
0
      errtype = _("float/int");
2737
0
      if (ctf_type_encoding (input, type, &ep) < 0)
2738
0
  goto err_input;       /* errno is set for us.  */
2739
0
      if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
2740
0
    == CTF_ERR)
2741
0
  goto err_target;
2742
0
      break;
2743
2744
0
    case CTF_K_ENUM:
2745
0
      {
2746
0
  int val;
2747
0
  errtype = _("enum");
2748
0
  if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
2749
0
    goto err_input;       /* errno is set for us.  */
2750
2751
0
  while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
2752
0
    {
2753
0
      if (ctf_add_enumerator (target, new_type, name, val) < 0)
2754
0
        {
2755
0
    ctf_err_warn (target, 0, ctf_errno (target),
2756
0
            _("%s (%i): cannot add enumeration value %s "
2757
0
        "from input type %lx"),
2758
0
            ctf_link_input_name (input), input_num, name,
2759
0
            type);
2760
0
    ctf_next_destroy (i);
2761
0
    return ctf_set_errno (output, ctf_errno (target));
2762
0
        }
2763
0
    }
2764
0
  if (ctf_errno (input) != ECTF_NEXT_END)
2765
0
    goto err_input;
2766
0
  break;
2767
0
      }
2768
2769
0
    case CTF_K_TYPEDEF:
2770
0
      errtype = _("typedef");
2771
2772
0
      ref = ctf_type_reference (input, type);
2773
0
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2774
0
           parents, input, input_num,
2775
0
           ref)) == CTF_ERR)
2776
0
  goto err_input;       /* errno is set for us.  */
2777
2778
0
      if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
2779
0
  goto err_target;     /* errno is set for us.  */
2780
0
      break;
2781
2782
0
    case CTF_K_VOLATILE:
2783
0
    case CTF_K_CONST:
2784
0
    case CTF_K_RESTRICT:
2785
0
    case CTF_K_POINTER:
2786
0
      errtype = _("pointer or cvr-qual");
2787
2788
0
      ref = ctf_type_reference (input, type);
2789
0
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2790
0
           parents, input, input_num,
2791
0
           ref)) == CTF_ERR)
2792
0
  goto err_input;       /* errno is set for us.  */
2793
2794
0
      if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
2795
0
  goto err_target;     /* errno is set for us.  */
2796
0
      break;
2797
2798
0
    case CTF_K_SLICE:
2799
0
      errtype = _("slice");
2800
2801
0
      if (ctf_type_encoding (input, type, &ep) < 0)
2802
0
  goto err_input;       /* errno is set for us.  */
2803
2804
0
      ref = ctf_type_reference (input, type);
2805
0
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2806
0
           parents, input, input_num,
2807
0
           ref)) == CTF_ERR)
2808
0
  goto err_input;
2809
2810
0
      if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
2811
0
  goto err_target;
2812
0
      break;
2813
2814
0
    case CTF_K_ARRAY:
2815
0
      {
2816
0
  ctf_arinfo_t ar;
2817
2818
0
  errtype = _("array info");
2819
0
  if (ctf_array_info (input, type, &ar) < 0)
2820
0
    goto err_input;
2821
2822
0
  ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
2823
0
              ninputs, parents, input,
2824
0
              input_num, ar.ctr_contents);
2825
0
  ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2826
0
                 parents, input, input_num,
2827
0
                 ar.ctr_index);
2828
2829
0
  if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
2830
0
    goto err_input;
2831
2832
0
  if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
2833
0
    goto err_target;
2834
2835
0
  break;
2836
0
      }
2837
2838
0
    case CTF_K_FUNCTION:
2839
0
      {
2840
0
  ctf_funcinfo_t fi;
2841
0
  ctf_id_t *args;
2842
0
  uint32_t j;
2843
2844
0
  errtype = _("function");
2845
0
  if (ctf_func_type_info (input, type, &fi) < 0)
2846
0
    goto err_input;
2847
2848
0
  fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2849
0
            parents, input, input_num,
2850
0
            fi.ctc_return);
2851
0
  if (fi.ctc_return == CTF_ERR)
2852
0
    goto err_input;
2853
2854
0
  if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2855
0
    {
2856
0
      ctf_set_errno (input, ENOMEM);
2857
0
      goto err_input;
2858
0
    }
2859
2860
0
  errtype = _("function args");
2861
0
  if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
2862
0
    {
2863
0
      free (args);
2864
0
      goto err_input;
2865
0
    }
2866
2867
0
  for (j = 0; j < fi.ctc_argc; j++)
2868
0
    {
2869
0
      args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2870
0
                parents, input, input_num,
2871
0
                args[j]);
2872
0
      if (args[j] == CTF_ERR)
2873
0
        goto err_input;
2874
0
    }
2875
2876
0
  if ((new_type = ctf_add_function (target, isroot,
2877
0
            &fi, args)) == CTF_ERR)
2878
0
    {
2879
0
      free (args);
2880
0
      goto err_target;
2881
0
    }
2882
0
  free (args);
2883
0
  break;
2884
0
      }
2885
2886
0
    case CTF_K_STRUCT:
2887
0
    case CTF_K_UNION:
2888
0
      {
2889
0
  size_t size = ctf_type_size (input, type);
2890
0
  void *out_id;
2891
  /* Insert the structure itself, so other types can refer to it.  */
2892
2893
0
  errtype = _("structure/union");
2894
0
  if (kind == CTF_K_STRUCT)
2895
0
    new_type = ctf_add_struct_sized (target, isroot, name, size);
2896
0
  else
2897
0
    new_type = ctf_add_union_sized (target, isroot, name, size);
2898
2899
0
  if (new_type == CTF_ERR)
2900
0
    goto err_target;
2901
2902
0
  out_id = CTF_DEDUP_GID (output, output_num, new_type);
2903
0
  ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
2904
0
         id, out_id);
2905
  /* Record the need to emit the members of this structure later.  */
2906
0
  if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
2907
0
    {
2908
0
      ctf_set_errno (target, errno);
2909
0
      goto err_target;
2910
0
    }
2911
0
  break;
2912
0
      }
2913
0
    default:
2914
0
      ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
2915
0
                 "input type %lx"),
2916
0
        ctf_link_input_name (input), type);
2917
0
      return ctf_set_errno (output, ECTF_CORRUPT);
2918
0
    }
2919
2920
0
  if (!emission_hashed
2921
0
      && new_type != 0
2922
0
      && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
2923
0
            hval, (void *) (uintptr_t) new_type) < 0)
2924
0
    {
2925
0
      ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
2926
0
           "global type IDs"));
2927
0
  return ctf_set_errno (output, ENOMEM);
2928
0
    }
2929
2930
0
  if (!emission_hashed && new_type != 0)
2931
0
    ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
2932
0
     "target %p (%s)\n", depth, hval, input_num, type, new_type,
2933
0
     (void *) target, ctf_link_input_name (target));
2934
2935
0
  return 0;
2936
2937
0
 oom_hash:
2938
0
  ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
2939
0
             "hashes"));
2940
0
  return ctf_set_errno (output, ENOMEM);
2941
2942
0
 err_input:
2943
0
  ctf_err_warn (output, 0, ctf_errno (input),
2944
0
    _("%s (%i): while emitting deduplicated %s, error getting "
2945
0
      "input type %lx"), ctf_link_input_name (input),
2946
0
    input_num, errtype, type);
2947
0
  return ctf_set_errno (output, ctf_errno (input));
2948
0
 err_target:
2949
0
  ctf_err_warn (output, 0, ctf_errno (target),
2950
0
    _("%s (%i): while emitting deduplicated %s, error emitting "
2951
0
      "target type from input type %lx"),
2952
0
    ctf_link_input_name (input), input_num,
2953
0
    errtype, type);
2954
0
  return ctf_set_errno (output, ctf_errno (target));
2955
0
}
2956
2957
/* Traverse the cd_emission_struct_members and emit the members of all
2958
   structures and unions.  All other types are emitted and complete by this
2959
   point.  */
2960
2961
static int
2962
ctf_dedup_emit_struct_members (ctf_dict_t *output, ctf_dict_t **inputs,
2963
             uint32_t ninputs, uint32_t *parents)
2964
0
{
2965
0
  ctf_dedup_t *d = &output->ctf_dedup;
2966
0
  ctf_next_t *i = NULL;
2967
0
  void *input_id, *target_id;
2968
0
  int err;
2969
0
  ctf_dict_t *err_fp, *input_fp;
2970
0
  int input_num;
2971
0
  ctf_id_t err_type;
2972
2973
0
  while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
2974
0
          &input_id, &target_id)) == 0)
2975
0
    {
2976
0
      ctf_next_t *j = NULL;
2977
0
      ctf_dict_t *target;
2978
0
      uint32_t target_num;
2979
0
      ctf_id_t input_type, target_type;
2980
0
      ssize_t offset;
2981
0
      ctf_id_t membtype;
2982
0
      const char *name;
2983
2984
0
      input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
2985
0
      input_fp = inputs[input_num];
2986
0
      input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
2987
2988
      /* The output is either -1 (for the shared, parent output dict) or the
2989
   number of the corresponding input.  */
2990
0
      target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
2991
0
      if (target_num == (uint32_t) -1)
2992
0
  target = output;
2993
0
      else
2994
0
  {
2995
0
    target = inputs[target_num]->ctf_dedup.cd_output;
2996
0
    if (!ctf_assert (output, target))
2997
0
      {
2998
0
        err_fp = output;
2999
0
        err_type = input_type;
3000
0
        goto err_target;
3001
0
      }
3002
0
  }
3003
0
      target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
3004
3005
0
      while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
3006
0
          &membtype, 0)) >= 0)
3007
0
  {
3008
0
    err_fp = target;
3009
0
    err_type = target_type;
3010
0
    if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
3011
0
              ninputs, parents, input_fp,
3012
0
              input_num,
3013
0
              membtype)) == CTF_ERR)
3014
0
      {
3015
0
        ctf_next_destroy (j);
3016
0
        goto err_target;
3017
0
      }
3018
3019
0
    if (name == NULL)
3020
0
      name = "";
3021
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
3022
    ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
3023
#endif
3024
0
    if (ctf_add_member_offset (target, target_type, name,
3025
0
             membtype, offset) < 0)
3026
0
      {
3027
0
        ctf_next_destroy (j);
3028
0
        goto err_target;
3029
0
      }
3030
0
  }
3031
0
      if (ctf_errno (input_fp) != ECTF_NEXT_END)
3032
0
  {
3033
0
    err = ctf_errno (input_fp);
3034
0
    ctf_next_destroy (i);
3035
0
    goto iterr;
3036
0
  }
3037
0
    }
3038
0
  if (err != ECTF_NEXT_END)
3039
0
    goto iterr;
3040
3041
0
  return 0;
3042
0
 err_target:
3043
0
  ctf_next_destroy (i);
3044
0
  ctf_err_warn (output, 0, ctf_errno (err_fp),
3045
0
    _("%s (%i): error emitting members for structure type %lx"),
3046
0
    ctf_link_input_name (input_fp), input_num, err_type);
3047
0
  return ctf_set_errno (output, ctf_errno (err_fp));
3048
0
 iterr:
3049
0
  ctf_err_warn (output, 0, err, _("iteration failure emitting "
3050
0
          "structure members"));
3051
0
  return ctf_set_errno (output, err);
3052
0
}
3053
3054
/* Emit deduplicated types into the outputs.  The shared type repository is
3055
   OUTPUT, on which the ctf_dedup function must have already been called.  The
3056
   PARENTS array contains the INPUTS index of the parent dict for every child
3057
   dict at the corresponding index in the INPUTS (for non-child dicts, the value
3058
   is undefined).
3059
3060
   Return an array of fps with content emitted into them (starting with OUTPUT,
3061
   which is the parent of all others, then all the newly-generated outputs).
3062
3063
   If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
3064
   mapping: only one output will result.  */
3065
3066
ctf_dict_t **
3067
ctf_dedup_emit (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
3068
    uint32_t *parents, uint32_t *noutputs, int cu_mapped)
3069
0
{
3070
0
  size_t num_outputs = 1;   /* Always at least one output: us.  */
3071
0
  ctf_dict_t **outputs;
3072
0
  ctf_dict_t **walk;
3073
0
  size_t i;
3074
3075
0
  ctf_dprintf ("Triggering emission.\n");
3076
0
  if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
3077
0
             ctf_dedup_emit_type, &cu_mapped) < 0)
3078
0
    return NULL;       /* errno is set for us.  */
3079
3080
0
  ctf_dprintf ("Populating struct members.\n");
3081
0
  if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
3082
0
    return NULL;       /* errno is set for us.  */
3083
3084
0
  for (i = 0; i < ninputs; i++)
3085
0
    {
3086
0
      if (inputs[i]->ctf_dedup.cd_output)
3087
0
  num_outputs++;
3088
0
    }
3089
3090
0
  if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
3091
0
    return NULL;
3092
3093
0
  if ((outputs = calloc (num_outputs, sizeof (ctf_dict_t *))) == NULL)
3094
0
    {
3095
0
      ctf_set_errno (output, ENOMEM);
3096
0
      ctf_err_warn (output, 0, 0,
3097
0
        _("out of memory allocating link outputs array"));
3098
0
      return NULL;
3099
0
    }
3100
0
  *noutputs = num_outputs;
3101
3102
0
  walk = outputs;
3103
0
  *walk = output;
3104
0
  output->ctf_refcnt++;
3105
0
  walk++;
3106
3107
0
  for (i = 0; i < ninputs; i++)
3108
0
    {
3109
0
      if (inputs[i]->ctf_dedup.cd_output)
3110
0
  {
3111
0
    *walk = inputs[i]->ctf_dedup.cd_output;
3112
0
    inputs[i]->ctf_dedup.cd_output = NULL;
3113
0
    walk++;
3114
0
  }
3115
0
    }
3116
3117
0
  return outputs;
3118
0
}
3119
3120
/* Determine what type SRC_FP / SRC_TYPE was emitted as in the FP, which
3121
   must be the shared dict or have it as a parent: return 0 if none.  The SRC_FP
3122
   must be a past input to ctf_dedup.  */
3123
3124
ctf_id_t
3125
ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp, ctf_id_t src_type)
3126
0
{
3127
0
  ctf_dict_t *output = NULL;
3128
0
  ctf_dedup_t *d;
3129
0
  int input_num;
3130
0
  void *num_ptr;
3131
0
  void *type_ptr;
3132
0
  int found;
3133
0
  const char *hval;
3134
3135
  /* It is an error (an internal error in the caller, in ctf-link.c) to call
3136
     this with an FP that is not a per-CU output or shared output dict, or with
3137
     a SRC_FP that was not passed to ctf_dedup as an input; it is an internal
3138
     error in ctf-dedup for the type passed not to have been hashed, though if
3139
     the src_fp is a child dict and the type is not a child type, it will have
3140
     been hashed under the GID corresponding to the parent.  */
3141
3142
0
  if (fp->ctf_dedup.cd_type_hashes != NULL)
3143
0
    output = fp;
3144
0
  else if (fp->ctf_parent && fp->ctf_parent->ctf_dedup.cd_type_hashes != NULL)
3145
0
    output = fp->ctf_parent;
3146
0
  else
3147
0
    {
3148
0
      ctf_set_errno (fp, ECTF_INTERNAL);
3149
0
      ctf_err_warn (fp, 0, 0,
3150
0
        _("dict %p passed to ctf_dedup_type_mapping is not a "
3151
0
          "deduplicated output"), (void *) fp);
3152
0
      return CTF_ERR;
3153
0
    }
3154
3155
0
  if (src_fp->ctf_parent && ctf_type_isparent (src_fp, src_type))
3156
0
    src_fp = src_fp->ctf_parent;
3157
3158
0
  d = &output->ctf_dedup;
3159
3160
0
  found = ctf_dynhash_lookup_kv (d->cd_input_nums, src_fp, NULL, &num_ptr);
3161
0
  if (!ctf_assert (output, found != 0))
3162
0
    return CTF_ERR;       /* errno is set for us.  */
3163
0
  input_num = (uintptr_t) num_ptr;
3164
3165
0
  hval = ctf_dynhash_lookup (d->cd_type_hashes,
3166
0
           CTF_DEDUP_GID (output, input_num, src_type));
3167
3168
0
  if (!ctf_assert (output, hval != NULL))
3169
0
    return CTF_ERR;       /* errno is set for us.  */
3170
3171
  /* The emission hashes may be unset if this dict was created after
3172
     deduplication to house variables or other things that would conflict if
3173
     stored in the shared dict.  */
3174
0
  if (fp->ctf_dedup.cd_output_emission_hashes)
3175
0
    if (ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_output_emission_hashes, hval,
3176
0
             NULL, &type_ptr))
3177
0
      return (ctf_id_t) (uintptr_t) type_ptr;
3178
3179
0
  if (fp->ctf_parent)
3180
0
    {
3181
0
      ctf_dict_t *pfp = fp->ctf_parent;
3182
0
      if (pfp->ctf_dedup.cd_output_emission_hashes)
3183
0
  if (ctf_dynhash_lookup_kv (pfp->ctf_dedup.cd_output_emission_hashes,
3184
0
           hval, NULL, &type_ptr))
3185
0
    return (ctf_id_t) (uintptr_t) type_ptr;
3186
0
    }
3187
3188
0
  return 0;
3189
0
}