Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/bfd/coff-sh.c
Line
Count
Source (jump to first uncovered line)
1
/* BFD back-end for Renesas Super-H COFF binaries.
2
   Copyright (C) 1993-2025 Free Software Foundation, Inc.
3
   Contributed by Cygnus Support.
4
   Written by Steve Chamberlain, <sac@cygnus.com>.
5
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
6
7
   This file is part of BFD, the Binary File Descriptor library.
8
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
   MA 02110-1301, USA.  */
23
24
#include "sysdep.h"
25
#include "bfd.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "bfdlink.h"
29
#include "coff/sh.h"
30
#include "coff/internal.h"
31
32
#undef  bfd_pe_print_pdata
33
34
#ifdef COFF_WITH_PE
35
#include "coff/pe.h"
36
37
#ifndef COFF_IMAGE_WITH_PE
38
static bool sh_align_load_span
39
  (bfd *, asection *, bfd_byte *,
40
   bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41
   void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *);
42
43
0
#define _bfd_sh_align_load_span sh_align_load_span
44
#endif
45
46
#define bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata
47
48
#else
49
50
#define bfd_pe_print_pdata   NULL
51
52
#endif /* COFF_WITH_PE.  */
53
54
#include "libcoff.h"
55
56
/* Internal functions.  */
57
58
#ifdef COFF_WITH_PE
59
/* Can't build import tables with 2**4 alignment.  */
60
981k
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER  2
61
#else
62
/* Default section alignment to 2**4.  */
63
26.2M
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER  4
64
#endif
65
66
#ifdef COFF_IMAGE_WITH_PE
67
/* Align PE executables.  */
68
0
#define COFF_PAGE_SIZE 0x1000
69
#endif
70
71
/* Generate long file names.  */
72
#define COFF_LONG_FILENAMES
73
74
#ifdef COFF_WITH_PE
75
/* Return TRUE if this relocation should
76
   appear in the output .reloc section.  */
77
78
static bool
79
in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80
      reloc_howto_type * howto)
81
0
{
82
0
  return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
83
0
}
Unexecuted instantiation: pe-sh.c:in_reloc_p
Unexecuted instantiation: pei-sh.c:in_reloc_p
84
#endif
85
86
static bfd_reloc_status_type
87
sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88
static bool
89
sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90
         bfd_byte *, struct internal_reloc *,
91
         struct internal_syment *, asection **);
92
static bool
93
sh_align_loads (bfd *, asection *, struct internal_reloc *,
94
    bfd_byte *, bool *);
95
96
/* The supported relocations.  There are a lot of relocations defined
97
   in coff/internal.h which we do not expect to ever see.  */
98
static reloc_howto_type sh_coff_howtos[] =
99
{
100
  EMPTY_HOWTO (0),
101
  EMPTY_HOWTO (1),
102
#ifdef COFF_WITH_PE
103
  /* Windows CE */
104
  HOWTO (R_SH_IMM32CE,    /* type */
105
   0,     /* rightshift */
106
   4,     /* size */
107
   32,      /* bitsize */
108
   false,     /* pc_relative */
109
   0,     /* bitpos */
110
   complain_overflow_bitfield, /* complain_on_overflow */
111
   sh_reloc,    /* special_function */
112
   "r_imm32ce",   /* name */
113
   true,      /* partial_inplace */
114
   0xffffffff,    /* src_mask */
115
   0xffffffff,    /* dst_mask */
116
   false),    /* pcrel_offset */
117
#else
118
  EMPTY_HOWTO (2),
119
#endif
120
  EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121
  EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122
  EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123
  EMPTY_HOWTO (6), /* R_SH_IMM24 */
124
  EMPTY_HOWTO (7), /* R_SH_LOW16 */
125
  EMPTY_HOWTO (8),
126
  EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
127
128
  HOWTO (R_SH_PCDISP8BY2, /* type */
129
   1,     /* rightshift */
130
   2,     /* size */
131
   8,     /* bitsize */
132
   true,      /* pc_relative */
133
   0,     /* bitpos */
134
   complain_overflow_signed, /* complain_on_overflow */
135
   sh_reloc,    /* special_function */
136
   "r_pcdisp8by2",  /* name */
137
   true,      /* partial_inplace */
138
   0xff,      /* src_mask */
139
   0xff,      /* dst_mask */
140
   true),     /* pcrel_offset */
141
142
  EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
143
144
  HOWTO (R_SH_PCDISP,   /* type */
145
   1,     /* rightshift */
146
   2,     /* size */
147
   12,      /* bitsize */
148
   true,      /* pc_relative */
149
   0,     /* bitpos */
150
   complain_overflow_signed, /* complain_on_overflow */
151
   sh_reloc,    /* special_function */
152
   "r_pcdisp12by2", /* name */
153
   true,      /* partial_inplace */
154
   0xfff,     /* src_mask */
155
   0xfff,     /* dst_mask */
156
   true),     /* pcrel_offset */
157
158
  EMPTY_HOWTO (13),
159
160
  HOWTO (R_SH_IMM32,    /* type */
161
   0,     /* rightshift */
162
   4,     /* size */
163
   32,      /* bitsize */
164
   false,     /* pc_relative */
165
   0,     /* bitpos */
166
   complain_overflow_bitfield, /* complain_on_overflow */
167
   sh_reloc,    /* special_function */
168
   "r_imm32",   /* name */
169
   true,      /* partial_inplace */
170
   0xffffffff,    /* src_mask */
171
   0xffffffff,    /* dst_mask */
172
   false),    /* pcrel_offset */
173
174
  EMPTY_HOWTO (15),
175
#ifdef COFF_WITH_PE
176
  HOWTO (R_SH_IMAGEBASE,  /* type */
177
   0,     /* rightshift */
178
   4,     /* size */
179
   32,      /* bitsize */
180
   false,     /* pc_relative */
181
   0,     /* bitpos */
182
   complain_overflow_bitfield, /* complain_on_overflow */
183
   sh_reloc,    /* special_function */
184
   "rva32",   /* name */
185
   true,      /* partial_inplace */
186
   0xffffffff,    /* src_mask */
187
   0xffffffff,    /* dst_mask */
188
   false),    /* pcrel_offset */
189
#else
190
  EMPTY_HOWTO (16), /* R_SH_IMM8 */
191
#endif
192
  EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193
  EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194
  EMPTY_HOWTO (19), /* R_SH_IMM4 */
195
  EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196
  EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
197
198
  HOWTO (R_SH_PCRELIMM8BY2, /* type */
199
   1,     /* rightshift */
200
   2,     /* size */
201
   8,     /* bitsize */
202
   true,      /* pc_relative */
203
   0,     /* bitpos */
204
   complain_overflow_unsigned, /* complain_on_overflow */
205
   sh_reloc,    /* special_function */
206
   "r_pcrelimm8by2",  /* name */
207
   true,      /* partial_inplace */
208
   0xff,      /* src_mask */
209
   0xff,      /* dst_mask */
210
   true),     /* pcrel_offset */
211
212
  HOWTO (R_SH_PCRELIMM8BY4, /* type */
213
   2,     /* rightshift */
214
   2,     /* size */
215
   8,     /* bitsize */
216
   true,      /* pc_relative */
217
   0,     /* bitpos */
218
   complain_overflow_unsigned, /* complain_on_overflow */
219
   sh_reloc,    /* special_function */
220
   "r_pcrelimm8by4",  /* name */
221
   true,      /* partial_inplace */
222
   0xff,      /* src_mask */
223
   0xff,      /* dst_mask */
224
   true),     /* pcrel_offset */
225
226
  HOWTO (R_SH_IMM16,    /* type */
227
   0,     /* rightshift */
228
   2,     /* size */
229
   16,      /* bitsize */
230
   false,     /* pc_relative */
231
   0,     /* bitpos */
232
   complain_overflow_bitfield, /* complain_on_overflow */
233
   sh_reloc,    /* special_function */
234
   "r_imm16",   /* name */
235
   true,      /* partial_inplace */
236
   0xffff,    /* src_mask */
237
   0xffff,    /* dst_mask */
238
   false),    /* pcrel_offset */
239
240
  HOWTO (R_SH_SWITCH16,   /* type */
241
   0,     /* rightshift */
242
   2,     /* size */
243
   16,      /* bitsize */
244
   false,     /* pc_relative */
245
   0,     /* bitpos */
246
   complain_overflow_bitfield, /* complain_on_overflow */
247
   sh_reloc,    /* special_function */
248
   "r_switch16",    /* name */
249
   true,      /* partial_inplace */
250
   0xffff,    /* src_mask */
251
   0xffff,    /* dst_mask */
252
   false),    /* pcrel_offset */
253
254
  HOWTO (R_SH_SWITCH32,   /* type */
255
   0,     /* rightshift */
256
   4,     /* size */
257
   32,      /* bitsize */
258
   false,     /* pc_relative */
259
   0,     /* bitpos */
260
   complain_overflow_bitfield, /* complain_on_overflow */
261
   sh_reloc,    /* special_function */
262
   "r_switch32",    /* name */
263
   true,      /* partial_inplace */
264
   0xffffffff,    /* src_mask */
265
   0xffffffff,    /* dst_mask */
266
   false),    /* pcrel_offset */
267
268
  HOWTO (R_SH_USES,   /* type */
269
   0,     /* rightshift */
270
   2,     /* size */
271
   16,      /* bitsize */
272
   false,     /* pc_relative */
273
   0,     /* bitpos */
274
   complain_overflow_bitfield, /* complain_on_overflow */
275
   sh_reloc,    /* special_function */
276
   "r_uses",    /* name */
277
   true,      /* partial_inplace */
278
   0xffff,    /* src_mask */
279
   0xffff,    /* dst_mask */
280
   false),    /* pcrel_offset */
281
282
  HOWTO (R_SH_COUNT,    /* type */
283
   0,     /* rightshift */
284
   4,     /* size */
285
   32,      /* bitsize */
286
   false,     /* pc_relative */
287
   0,     /* bitpos */
288
   complain_overflow_bitfield, /* complain_on_overflow */
289
   sh_reloc,    /* special_function */
290
   "r_count",   /* name */
291
   true,      /* partial_inplace */
292
   0xffffffff,    /* src_mask */
293
   0xffffffff,    /* dst_mask */
294
   false),    /* pcrel_offset */
295
296
  HOWTO (R_SH_ALIGN,    /* type */
297
   0,     /* rightshift */
298
   4,     /* size */
299
   32,      /* bitsize */
300
   false,     /* pc_relative */
301
   0,     /* bitpos */
302
   complain_overflow_bitfield, /* complain_on_overflow */
303
   sh_reloc,    /* special_function */
304
   "r_align",   /* name */
305
   true,      /* partial_inplace */
306
   0xffffffff,    /* src_mask */
307
   0xffffffff,    /* dst_mask */
308
   false),    /* pcrel_offset */
309
310
  HOWTO (R_SH_CODE,   /* type */
311
   0,     /* rightshift */
312
   4,     /* size */
313
   32,      /* bitsize */
314
   false,     /* pc_relative */
315
   0,     /* bitpos */
316
   complain_overflow_bitfield, /* complain_on_overflow */
317
   sh_reloc,    /* special_function */
318
   "r_code",    /* name */
319
   true,      /* partial_inplace */
320
   0xffffffff,    /* src_mask */
321
   0xffffffff,    /* dst_mask */
322
   false),    /* pcrel_offset */
323
324
  HOWTO (R_SH_DATA,   /* type */
325
   0,     /* rightshift */
326
   4,     /* size */
327
   32,      /* bitsize */
328
   false,     /* pc_relative */
329
   0,     /* bitpos */
330
   complain_overflow_bitfield, /* complain_on_overflow */
331
   sh_reloc,    /* special_function */
332
   "r_data",    /* name */
333
   true,      /* partial_inplace */
334
   0xffffffff,    /* src_mask */
335
   0xffffffff,    /* dst_mask */
336
   false),    /* pcrel_offset */
337
338
  HOWTO (R_SH_LABEL,    /* type */
339
   0,     /* rightshift */
340
   4,     /* size */
341
   32,      /* bitsize */
342
   false,     /* pc_relative */
343
   0,     /* bitpos */
344
   complain_overflow_bitfield, /* complain_on_overflow */
345
   sh_reloc,    /* special_function */
346
   "r_label",   /* name */
347
   true,      /* partial_inplace */
348
   0xffffffff,    /* src_mask */
349
   0xffffffff,    /* dst_mask */
350
   false),    /* pcrel_offset */
351
352
  HOWTO (R_SH_SWITCH8,    /* type */
353
   0,     /* rightshift */
354
   1,     /* size */
355
   8,     /* bitsize */
356
   false,     /* pc_relative */
357
   0,     /* bitpos */
358
   complain_overflow_bitfield, /* complain_on_overflow */
359
   sh_reloc,    /* special_function */
360
   "r_switch8",   /* name */
361
   true,      /* partial_inplace */
362
   0xff,      /* src_mask */
363
   0xff,      /* dst_mask */
364
   false)     /* pcrel_offset */
365
};
366
367
6.32k
#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
368
369
/* Check for a bad magic number.  */
370
17.6M
#define BADMAG(x) SHBADMAG(x)
371
372
/* Customize coffcode.h (this is not currently used).  */
373
#define SH 1
374
375
/* FIXME: This should not be set here.  */
376
#define __A_MAGIC_SET__
377
378
#ifndef COFF_WITH_PE
379
/* Swap the r_offset field in and out.  */
380
4.57k
#define SWAP_IN_RELOC_OFFSET  H_GET_32
381
0
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
382
383
/* Swap out extra information in the reloc structure.  */
384
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)  \
385
0
  do            \
386
0
    {           \
387
0
      dst->r_stuff[0] = 'S';      \
388
0
      dst->r_stuff[1] = 'C';      \
389
0
    }            \
390
0
  while (0)
391
#endif
392
393
/* Get the value of a symbol, when performing a relocation.  */
394
395
static long
396
get_symbol_value (asymbol *symbol)
397
0
{
398
0
  bfd_vma relocation;
399
400
0
  if (bfd_is_com_section (symbol->section))
401
0
    relocation = 0;
402
0
  else
403
0
    relocation = (symbol->value +
404
0
      symbol->section->output_section->vma +
405
0
      symbol->section->output_offset);
406
407
0
  return relocation;
408
0
}
Unexecuted instantiation: coff-sh.c:get_symbol_value
Unexecuted instantiation: pe-sh.c:get_symbol_value
Unexecuted instantiation: pei-sh.c:get_symbol_value
409
410
#ifdef COFF_WITH_PE
411
/* Convert an rtype to howto for the COFF backend linker.
412
   Copied from coff-i386.  */
413
#define coff_rtype_to_howto coff_sh_rtype_to_howto
414
415
416
static reloc_howto_type *
417
coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418
      asection * sec,
419
      struct internal_reloc * rel,
420
      struct coff_link_hash_entry * h,
421
      struct internal_syment * sym,
422
      bfd_vma * addendp)
423
0
{
424
0
  reloc_howto_type * howto;
425
426
0
  howto = sh_coff_howtos + rel->r_type;
427
428
0
  *addendp = 0;
429
430
0
  if (howto->pc_relative)
431
0
    *addendp += sec->vma;
432
433
0
  if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
434
0
    {
435
      /* This is a common symbol.  The section contents include the
436
   size (sym->n_value) as an addend.  The relocate_section
437
   function will be adding in the final value of the symbol.  We
438
   need to subtract out the current size in order to get the
439
   correct result.  */
440
0
      BFD_ASSERT (h != NULL);
441
0
    }
442
443
0
  if (howto->pc_relative)
444
0
    {
445
0
      *addendp -= 4;
446
447
      /* If the symbol is defined, then the generic code is going to
448
   add back the symbol value in order to cancel out an
449
   adjustment it made to the addend.  However, we set the addend
450
   to 0 at the start of this function.  We need to adjust here,
451
   to avoid the adjustment the generic code will make.  FIXME:
452
   This is getting a bit hackish.  */
453
0
      if (sym != NULL && sym->n_scnum != 0)
454
0
  *addendp -= sym->n_value;
455
0
    }
456
457
0
  if (rel->r_type == R_SH_IMAGEBASE)
458
0
    *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
459
460
0
  return howto;
461
0
}
Unexecuted instantiation: pe-sh.c:coff_sh_rtype_to_howto
Unexecuted instantiation: pei-sh.c:coff_sh_rtype_to_howto
462
463
#endif /* COFF_WITH_PE */
464
465
/* This structure is used to map BFD reloc codes to SH PE relocs.  */
466
struct shcoff_reloc_map
467
{
468
  bfd_reloc_code_real_type bfd_reloc_val;
469
  unsigned char shcoff_reloc_val;
470
};
471
472
#ifdef COFF_WITH_PE
473
/* An array mapping BFD reloc codes to SH PE relocs.  */
474
static const struct shcoff_reloc_map sh_reloc_map[] =
475
{
476
  { BFD_RELOC_32, R_SH_IMM32CE },
477
  { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478
  { BFD_RELOC_CTOR, R_SH_IMM32CE },
479
};
480
#else
481
/* An array mapping BFD reloc codes to SH PE relocs.  */
482
static const struct shcoff_reloc_map sh_reloc_map[] =
483
{
484
  { BFD_RELOC_32, R_SH_IMM32 },
485
  { BFD_RELOC_CTOR, R_SH_IMM32 },
486
};
487
#endif
488
489
/* Given a BFD reloc code, return the howto structure for the
490
   corresponding SH PE reloc.  */
491
#define coff_bfd_reloc_type_lookup  sh_coff_reloc_type_lookup
492
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
493
494
static reloc_howto_type *
495
sh_coff_reloc_type_lookup (bfd *abfd,
496
         bfd_reloc_code_real_type code)
497
16.6k
{
498
16.6k
  unsigned int i;
499
500
36.8k
  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501
36.8k
    if (sh_reloc_map[i].bfd_reloc_val == code)
502
16.6k
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
503
504
0
  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505
0
          abfd, (unsigned int) code);
506
0
  return NULL;
507
16.6k
}
Unexecuted instantiation: coff-sh.c:sh_coff_reloc_type_lookup
Unexecuted instantiation: pe-sh.c:sh_coff_reloc_type_lookup
pei-sh.c:sh_coff_reloc_type_lookup
Line
Count
Source
497
16.6k
{
498
16.6k
  unsigned int i;
499
500
36.8k
  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501
36.8k
    if (sh_reloc_map[i].bfd_reloc_val == code)
502
16.6k
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
503
504
0
  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505
0
          abfd, (unsigned int) code);
506
0
  return NULL;
507
16.6k
}
508
509
static reloc_howto_type *
510
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
511
         const char *r_name)
512
0
{
513
0
  unsigned int i;
514
515
0
  for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516
0
    if (sh_coff_howtos[i].name != NULL
517
0
  && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518
0
      return &sh_coff_howtos[i];
519
520
0
  return NULL;
521
0
}
Unexecuted instantiation: coff-sh.c:sh_coff_reloc_name_lookup
Unexecuted instantiation: pe-sh.c:sh_coff_reloc_name_lookup
Unexecuted instantiation: pei-sh.c:sh_coff_reloc_name_lookup
522
523
/* This macro is used in coffcode.h to get the howto corresponding to
524
   an internal reloc.  */
525
526
#define RTYPE2HOWTO(relent, internal)   \
527
6.32k
  ((relent)->howto =        \
528
6.32k
   ((internal)->r_type < SH_COFF_HOWTO_COUNT  \
529
6.32k
    ? &sh_coff_howtos[(internal)->r_type]  \
530
6.32k
    : (reloc_howto_type *) NULL))
531
532
/* This is the same as the macro in coffcode.h, except that it copies
533
   r_offset into reloc_entry->addend for some relocs.  */
534
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)    \
535
6.32k
  {               \
536
6.32k
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;  \
537
6.32k
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)     \
538
6.32k
      coffsym = (obj_symbols (abfd)       \
539
0
     + (cache_ptr->sym_ptr_ptr - symbols));   \
540
6.32k
    else if (ptr)           \
541
6.32k
      coffsym = coff_symbol_from (ptr);       \
542
6.32k
    if (coffsym != (coff_symbol_type *) NULL      \
543
6.32k
  && coffsym->native->u.syment.n_scnum == 0)   \
544
6.32k
      cache_ptr->addend = 0;         \
545
6.32k
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd    \
546
5.27k
       && ptr->section != (asection *) NULL)   \
547
5.27k
      cache_ptr->addend = - (ptr->section->vma      \
548
634
           + COFF_PE_ADDEND_BIAS (ptr)); \
549
5.27k
    else              \
550
5.27k
      cache_ptr->addend = 0;         \
551
6.32k
    if ((reloc).r_type == R_SH_SWITCH8        \
552
6.32k
  || (reloc).r_type == R_SH_SWITCH16      \
553
6.32k
  || (reloc).r_type == R_SH_SWITCH32      \
554
6.32k
  || (reloc).r_type == R_SH_USES        \
555
6.32k
  || (reloc).r_type == R_SH_COUNT        \
556
6.32k
  || (reloc).r_type == R_SH_ALIGN)     \
557
6.32k
      cache_ptr->addend = (reloc).r_offset;     \
558
6.32k
  }
559
560
/* This is the howto function for the SH relocations.  */
561
562
static bfd_reloc_status_type
563
sh_reloc (bfd *      abfd,
564
    arelent *  reloc_entry,
565
    asymbol *  symbol_in,
566
    void *     data,
567
    asection * input_section,
568
    bfd *      output_bfd,
569
    char **    error_message ATTRIBUTE_UNUSED)
570
11
{
571
11
  bfd_vma insn;
572
11
  bfd_vma sym_value;
573
11
  unsigned short r_type;
574
11
  bfd_vma addr = reloc_entry->address;
575
11
  bfd_byte *hit_data = addr + (bfd_byte *) data;
576
577
11
  r_type = reloc_entry->howto->type;
578
579
11
  if (output_bfd != NULL)
580
0
    {
581
      /* Partial linking--do nothing.  */
582
0
      reloc_entry->address += input_section->output_offset;
583
0
      return bfd_reloc_ok;
584
0
    }
585
586
  /* Almost all relocs have to do with relaxing.  If any work must be
587
     done for them, it has been done in sh_relax_section.  */
588
11
  if (r_type != R_SH_IMM32
589
#ifdef COFF_WITH_PE
590
2
      && r_type != R_SH_IMM32CE
591
0
      && r_type != R_SH_IMAGEBASE
592
#endif
593
11
      && (r_type != R_SH_PCDISP
594
6
    || (symbol_in->flags & BSF_LOCAL) != 0))
595
4
    return bfd_reloc_ok;
596
597
7
  if (symbol_in != NULL
598
7
      && bfd_is_und_section (symbol_in->section))
599
2
    return bfd_reloc_undefined;
600
601
5
  if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section,
602
5
          addr))
603
5
    return bfd_reloc_outofrange;
604
605
0
  sym_value = get_symbol_value (symbol_in);
606
607
0
  switch (r_type)
608
0
    {
609
0
    case R_SH_IMM32:
610
#ifdef COFF_WITH_PE
611
0
    case R_SH_IMM32CE:
612
#endif
613
0
      insn = bfd_get_32 (abfd, hit_data);
614
0
      insn += sym_value + reloc_entry->addend;
615
0
      bfd_put_32 (abfd, insn, hit_data);
616
0
      break;
617
#ifdef COFF_WITH_PE
618
0
    case R_SH_IMAGEBASE:
619
0
      insn = bfd_get_32 (abfd, hit_data);
620
0
      insn += sym_value + reloc_entry->addend;
621
0
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
622
0
      bfd_put_32 (abfd, insn, hit_data);
623
0
      break;
624
0
#endif
625
0
    case R_SH_PCDISP:
626
0
      insn = bfd_get_16 (abfd, hit_data);
627
0
      sym_value += reloc_entry->addend;
628
0
      sym_value -= (input_section->output_section->vma
629
0
        + input_section->output_offset
630
0
        + addr
631
0
        + 4);
632
0
      sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
633
0
      insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
634
0
      bfd_put_16 (abfd, insn, hit_data);
635
0
      if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
636
0
  return bfd_reloc_overflow;
637
0
      break;
638
0
    default:
639
0
      abort ();
640
0
      break;
641
0
    }
642
643
0
  return bfd_reloc_ok;
644
0
}
coff-sh.c:sh_reloc
Line
Count
Source
570
9
{
571
9
  bfd_vma insn;
572
9
  bfd_vma sym_value;
573
9
  unsigned short r_type;
574
9
  bfd_vma addr = reloc_entry->address;
575
9
  bfd_byte *hit_data = addr + (bfd_byte *) data;
576
577
9
  r_type = reloc_entry->howto->type;
578
579
9
  if (output_bfd != NULL)
580
0
    {
581
      /* Partial linking--do nothing.  */
582
0
      reloc_entry->address += input_section->output_offset;
583
0
      return bfd_reloc_ok;
584
0
    }
585
586
  /* Almost all relocs have to do with relaxing.  If any work must be
587
     done for them, it has been done in sh_relax_section.  */
588
9
  if (r_type != R_SH_IMM32
589
#ifdef COFF_WITH_PE
590
      && r_type != R_SH_IMM32CE
591
      && r_type != R_SH_IMAGEBASE
592
#endif
593
9
      && (r_type != R_SH_PCDISP
594
6
    || (symbol_in->flags & BSF_LOCAL) != 0))
595
4
    return bfd_reloc_ok;
596
597
5
  if (symbol_in != NULL
598
5
      && bfd_is_und_section (symbol_in->section))
599
2
    return bfd_reloc_undefined;
600
601
3
  if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section,
602
3
          addr))
603
3
    return bfd_reloc_outofrange;
604
605
0
  sym_value = get_symbol_value (symbol_in);
606
607
0
  switch (r_type)
608
0
    {
609
0
    case R_SH_IMM32:
610
#ifdef COFF_WITH_PE
611
    case R_SH_IMM32CE:
612
#endif
613
0
      insn = bfd_get_32 (abfd, hit_data);
614
0
      insn += sym_value + reloc_entry->addend;
615
0
      bfd_put_32 (abfd, insn, hit_data);
616
0
      break;
617
#ifdef COFF_WITH_PE
618
    case R_SH_IMAGEBASE:
619
      insn = bfd_get_32 (abfd, hit_data);
620
      insn += sym_value + reloc_entry->addend;
621
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
622
      bfd_put_32 (abfd, insn, hit_data);
623
      break;
624
#endif
625
0
    case R_SH_PCDISP:
626
0
      insn = bfd_get_16 (abfd, hit_data);
627
0
      sym_value += reloc_entry->addend;
628
0
      sym_value -= (input_section->output_section->vma
629
0
        + input_section->output_offset
630
0
        + addr
631
0
        + 4);
632
0
      sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
633
0
      insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
634
0
      bfd_put_16 (abfd, insn, hit_data);
635
0
      if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
636
0
  return bfd_reloc_overflow;
637
0
      break;
638
0
    default:
639
0
      abort ();
640
0
      break;
641
0
    }
642
643
0
  return bfd_reloc_ok;
644
0
}
pe-sh.c:sh_reloc
Line
Count
Source
570
2
{
571
2
  bfd_vma insn;
572
2
  bfd_vma sym_value;
573
2
  unsigned short r_type;
574
2
  bfd_vma addr = reloc_entry->address;
575
2
  bfd_byte *hit_data = addr + (bfd_byte *) data;
576
577
2
  r_type = reloc_entry->howto->type;
578
579
2
  if (output_bfd != NULL)
580
0
    {
581
      /* Partial linking--do nothing.  */
582
0
      reloc_entry->address += input_section->output_offset;
583
0
      return bfd_reloc_ok;
584
0
    }
585
586
  /* Almost all relocs have to do with relaxing.  If any work must be
587
     done for them, it has been done in sh_relax_section.  */
588
2
  if (r_type != R_SH_IMM32
589
2
#ifdef COFF_WITH_PE
590
2
      && r_type != R_SH_IMM32CE
591
2
      && r_type != R_SH_IMAGEBASE
592
2
#endif
593
2
      && (r_type != R_SH_PCDISP
594
0
    || (symbol_in->flags & BSF_LOCAL) != 0))
595
0
    return bfd_reloc_ok;
596
597
2
  if (symbol_in != NULL
598
2
      && bfd_is_und_section (symbol_in->section))
599
0
    return bfd_reloc_undefined;
600
601
2
  if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section,
602
2
          addr))
603
2
    return bfd_reloc_outofrange;
604
605
0
  sym_value = get_symbol_value (symbol_in);
606
607
0
  switch (r_type)
608
0
    {
609
0
    case R_SH_IMM32:
610
0
#ifdef COFF_WITH_PE
611
0
    case R_SH_IMM32CE:
612
0
#endif
613
0
      insn = bfd_get_32 (abfd, hit_data);
614
0
      insn += sym_value + reloc_entry->addend;
615
0
      bfd_put_32 (abfd, insn, hit_data);
616
0
      break;
617
0
#ifdef COFF_WITH_PE
618
0
    case R_SH_IMAGEBASE:
619
0
      insn = bfd_get_32 (abfd, hit_data);
620
0
      insn += sym_value + reloc_entry->addend;
621
0
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
622
0
      bfd_put_32 (abfd, insn, hit_data);
623
0
      break;
624
0
#endif
625
0
    case R_SH_PCDISP:
626
0
      insn = bfd_get_16 (abfd, hit_data);
627
0
      sym_value += reloc_entry->addend;
628
0
      sym_value -= (input_section->output_section->vma
629
0
        + input_section->output_offset
630
0
        + addr
631
0
        + 4);
632
0
      sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
633
0
      insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
634
0
      bfd_put_16 (abfd, insn, hit_data);
635
0
      if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
636
0
  return bfd_reloc_overflow;
637
0
      break;
638
0
    default:
639
0
      abort ();
640
0
      break;
641
0
    }
642
643
0
  return bfd_reloc_ok;
644
0
}
Unexecuted instantiation: pei-sh.c:sh_reloc
645
646
#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
647
648
/* We can do relaxing.  */
649
#define coff_bfd_relax_section sh_relax_section
650
651
/* We use the special COFF backend linker.  */
652
#define coff_relocate_section sh_relocate_section
653
654
/* When relaxing, we need to use special code to get the relocated
655
   section contents.  */
656
#define coff_bfd_get_relocated_section_contents \
657
  sh_coff_get_relocated_section_contents
658
659
#include "coffcode.h"
660

661
static bool
662
sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
663
664
/* This function handles relaxing on the SH.
665
666
   Function calls on the SH look like this:
667
668
       movl  L1,r0
669
       ...
670
       jsr   @r0
671
       ...
672
     L1:
673
       .long function
674
675
   The compiler and assembler will cooperate to create R_SH_USES
676
   relocs on the jsr instructions.  The r_offset field of the
677
   R_SH_USES reloc is the PC relative offset to the instruction which
678
   loads the register (the r_offset field is computed as though it
679
   were a jump instruction, so the offset value is actually from four
680
   bytes past the instruction).  The linker can use this reloc to
681
   determine just which function is being called, and thus decide
682
   whether it is possible to replace the jsr with a bsr.
683
684
   If multiple function calls are all based on a single register load
685
   (i.e., the same function is called multiple times), the compiler
686
   guarantees that each function call will have an R_SH_USES reloc.
687
   Therefore, if the linker is able to convert each R_SH_USES reloc
688
   which refers to that address, it can safely eliminate the register
689
   load.
690
691
   When the assembler creates an R_SH_USES reloc, it examines it to
692
   determine which address is being loaded (L1 in the above example).
693
   It then counts the number of references to that address, and
694
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
695
   the R_SH_COUNT reloc will be the number of references.  If the
696
   linker is able to eliminate a register load, it can use the
697
   R_SH_COUNT reloc to see whether it can also eliminate the function
698
   address.
699
700
   SH relaxing also handles another, unrelated, matter.  On the SH, if
701
   a load or store instruction is not aligned on a four byte boundary,
702
   the memory cycle interferes with the 32 bit instruction fetch,
703
   causing a one cycle bubble in the pipeline.  Therefore, we try to
704
   align load and store instructions on four byte boundaries if we
705
   can, by swapping them with one of the adjacent instructions.  */
706
707
static bool
708
sh_relax_section (bfd *abfd,
709
      asection *sec,
710
      struct bfd_link_info *link_info,
711
      bool *again)
712
0
{
713
0
  struct internal_reloc *internal_relocs;
714
0
  bool have_code;
715
0
  struct internal_reloc *irel, *irelend;
716
0
  bfd_byte *contents = NULL;
717
718
0
  *again = false;
719
720
0
  if (bfd_link_relocatable (link_info)
721
0
      || (sec->flags & SEC_HAS_CONTENTS) == 0
722
0
      || (sec->flags & SEC_RELOC) == 0
723
0
      || sec->reloc_count == 0)
724
0
    return true;
725
726
0
  if (coff_section_data (abfd, sec) == NULL)
727
0
    {
728
0
      size_t amt = sizeof (struct coff_section_tdata);
729
0
      sec->used_by_bfd = bfd_zalloc (abfd, amt);
730
0
      if (sec->used_by_bfd == NULL)
731
0
  return false;
732
0
    }
733
734
0
  internal_relocs = (_bfd_coff_read_internal_relocs
735
0
         (abfd, sec, link_info->keep_memory,
736
0
          (bfd_byte *) NULL, false,
737
0
          (struct internal_reloc *) NULL));
738
0
  if (internal_relocs == NULL)
739
0
    goto error_return;
740
741
0
  have_code = false;
742
743
0
  irelend = internal_relocs + sec->reloc_count;
744
0
  for (irel = internal_relocs; irel < irelend; irel++)
745
0
    {
746
0
      bfd_vma laddr, paddr, symval;
747
0
      unsigned short insn;
748
0
      struct internal_reloc *irelfn, *irelscan, *irelcount;
749
0
      struct internal_syment sym;
750
0
      bfd_signed_vma foff;
751
752
0
      if (irel->r_type == R_SH_CODE)
753
0
  have_code = true;
754
755
0
      if (irel->r_type != R_SH_USES)
756
0
  continue;
757
758
      /* Get the section contents.  */
759
0
      if (contents == NULL)
760
0
  {
761
0
    if (coff_section_data (abfd, sec)->contents != NULL)
762
0
      contents = coff_section_data (abfd, sec)->contents;
763
0
    else
764
0
      {
765
0
        if (!bfd_malloc_and_get_section (abfd, sec, &contents))
766
0
    goto error_return;
767
0
      }
768
0
  }
769
770
      /* The r_offset field of the R_SH_USES reloc will point us to
771
   the register load.  The 4 is because the r_offset field is
772
   computed as though it were a jump offset, which are based
773
   from 4 bytes after the jump instruction.  */
774
0
      laddr = irel->r_vaddr - sec->vma + 4;
775
      /* Careful to sign extend the 32-bit offset.  */
776
0
      laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
777
0
      if (laddr >= sec->size)
778
0
  {
779
    /* xgettext: c-format */
780
0
    _bfd_error_handler
781
0
      (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
782
0
       abfd, (uint64_t) irel->r_vaddr);
783
0
    continue;
784
0
  }
785
0
      insn = bfd_get_16 (abfd, contents + laddr);
786
787
      /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
788
0
      if ((insn & 0xf000) != 0xd000)
789
0
  {
790
0
    _bfd_error_handler
791
      /* xgettext: c-format */
792
0
      (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
793
0
       abfd, (uint64_t) irel->r_vaddr, insn);
794
0
    continue;
795
0
  }
796
797
      /* Get the address from which the register is being loaded.  The
798
   displacement in the mov.l instruction is quadrupled.  It is a
799
   displacement from four bytes after the movl instruction, but,
800
   before adding in the PC address, two least significant bits
801
   of the PC are cleared.  We assume that the section is aligned
802
   on a four byte boundary.  */
803
0
      paddr = insn & 0xff;
804
0
      paddr *= 4;
805
0
      paddr += (laddr + 4) &~ (bfd_vma) 3;
806
0
      if (paddr >= sec->size)
807
0
  {
808
0
    _bfd_error_handler
809
      /* xgettext: c-format */
810
0
      (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
811
0
       abfd, (uint64_t) irel->r_vaddr);
812
0
    continue;
813
0
  }
814
815
      /* Get the reloc for the address from which the register is
816
   being loaded.  This reloc will tell us which function is
817
   actually being called.  */
818
0
      paddr += sec->vma;
819
0
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
820
0
  if (irelfn->r_vaddr == paddr
821
#ifdef COFF_WITH_PE
822
0
      && (irelfn->r_type == R_SH_IMM32
823
0
    || irelfn->r_type == R_SH_IMM32CE
824
0
    || irelfn->r_type == R_SH_IMAGEBASE)
825
826
#else
827
0
      && irelfn->r_type == R_SH_IMM32
828
#endif
829
0
      )
830
0
    break;
831
0
      if (irelfn >= irelend)
832
0
  {
833
0
    _bfd_error_handler
834
      /* xgettext: c-format */
835
0
      (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
836
0
       abfd, (uint64_t) paddr);
837
0
    continue;
838
0
  }
839
840
      /* Get the value of the symbol referred to by the reloc.  */
841
0
      if (! _bfd_coff_get_external_symbols (abfd))
842
0
  goto error_return;
843
0
      bfd_coff_swap_sym_in (abfd,
844
0
          ((bfd_byte *) obj_coff_external_syms (abfd)
845
0
           + (irelfn->r_symndx
846
0
        * bfd_coff_symesz (abfd))),
847
0
          &sym);
848
0
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
849
0
  {
850
0
    _bfd_error_handler
851
      /* xgettext: c-format */
852
0
      (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
853
0
       abfd, (uint64_t) paddr);
854
0
    continue;
855
0
  }
856
857
0
      if (sym.n_sclass != C_EXT)
858
0
  {
859
0
    symval = (sym.n_value
860
0
        - sec->vma
861
0
        + sec->output_section->vma
862
0
        + sec->output_offset);
863
0
  }
864
0
      else
865
0
  {
866
0
    struct coff_link_hash_entry *h;
867
868
0
    h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
869
0
    BFD_ASSERT (h != NULL);
870
0
    if (h->root.type != bfd_link_hash_defined
871
0
        && h->root.type != bfd_link_hash_defweak)
872
0
      {
873
        /* This appears to be a reference to an undefined
874
     symbol.  Just ignore it--it will be caught by the
875
     regular reloc processing.  */
876
0
        continue;
877
0
      }
878
879
0
    symval = (h->root.u.def.value
880
0
        + h->root.u.def.section->output_section->vma
881
0
        + h->root.u.def.section->output_offset);
882
0
  }
883
884
0
      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
885
886
      /* See if this function call can be shortened.  */
887
0
      foff = (symval
888
0
        - (irel->r_vaddr
889
0
     - sec->vma
890
0
     + sec->output_section->vma
891
0
     + sec->output_offset
892
0
     + 4));
893
0
      if (foff < -0x1000 || foff >= 0x1000)
894
0
  {
895
    /* After all that work, we can't shorten this function call.  */
896
0
    continue;
897
0
  }
898
899
      /* Shorten the function call.  */
900
901
      /* For simplicity of coding, we are going to modify the section
902
   contents, the section relocs, and the BFD symbol table.  We
903
   must tell the rest of the code not to free up this
904
   information.  It would be possible to instead create a table
905
   of changes which have to be made, as is done in coff-mips.c;
906
   that would be more work, but would require less memory when
907
   the linker is run.  */
908
909
0
      coff_section_data (abfd, sec)->relocs = internal_relocs;
910
0
      coff_section_data (abfd, sec)->contents = contents;
911
912
      /* Replace the jsr with a bsr.  */
913
914
      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
915
   replace the jsr with a bsr.  */
916
0
      irel->r_type = R_SH_PCDISP;
917
0
      irel->r_symndx = irelfn->r_symndx;
918
0
      if (sym.n_sclass != C_EXT)
919
0
  {
920
    /* If this needs to be changed because of future relaxing,
921
       it will be handled here like other internal PCDISP
922
       relocs.  */
923
0
    bfd_put_16 (abfd,
924
0
          (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
925
0
          contents + irel->r_vaddr - sec->vma);
926
0
  }
927
0
      else
928
0
  {
929
    /* We can't fully resolve this yet, because the external
930
       symbol value may be changed by future relaxing.  We let
931
       the final link phase handle it.  */
932
0
    bfd_put_16 (abfd, (bfd_vma) 0xb000,
933
0
          contents + irel->r_vaddr - sec->vma);
934
0
  }
935
936
      /* See if there is another R_SH_USES reloc referring to the same
937
   register load.  */
938
0
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
939
0
  if (irelscan->r_type == R_SH_USES
940
0
      && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
941
0
    break;
942
0
      if (irelscan < irelend)
943
0
  {
944
    /* Some other function call depends upon this register load,
945
       and we have not yet converted that function call.
946
       Indeed, we may never be able to convert it.  There is
947
       nothing else we can do at this point.  */
948
0
    continue;
949
0
  }
950
951
      /* Look for a R_SH_COUNT reloc on the location where the
952
   function address is stored.  Do this before deleting any
953
   bytes, to avoid confusion about the address.  */
954
0
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
955
0
  if (irelcount->r_vaddr == paddr
956
0
      && irelcount->r_type == R_SH_COUNT)
957
0
    break;
958
959
      /* Delete the register load.  */
960
0
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
961
0
  goto error_return;
962
963
      /* That will change things, so, just in case it permits some
964
   other function call to come within range, we should relax
965
   again.  Note that this is not required, and it may be slow.  */
966
0
      *again = true;
967
968
      /* Now check whether we got a COUNT reloc.  */
969
0
      if (irelcount >= irelend)
970
0
  {
971
0
    _bfd_error_handler
972
      /* xgettext: c-format */
973
0
      (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
974
0
       abfd, (uint64_t) paddr);
975
0
    continue;
976
0
  }
977
978
      /* The number of uses is stored in the r_offset field.  We've
979
   just deleted one.  */
980
0
      if (irelcount->r_offset == 0)
981
0
  {
982
    /* xgettext: c-format */
983
0
    _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
984
0
            abfd, (uint64_t) paddr);
985
0
    continue;
986
0
  }
987
988
0
      --irelcount->r_offset;
989
990
      /* If there are no more uses, we can delete the address.  Reload
991
   the address from irelfn, in case it was changed by the
992
   previous call to sh_relax_delete_bytes.  */
993
0
      if (irelcount->r_offset == 0)
994
0
  {
995
0
    if (! sh_relax_delete_bytes (abfd, sec,
996
0
               irelfn->r_vaddr - sec->vma, 4))
997
0
      goto error_return;
998
0
  }
999
1000
      /* We've done all we can with that function call.  */
1001
0
    }
1002
1003
  /* Look for load and store instructions that we can align on four
1004
     byte boundaries.  */
1005
0
  if (have_code)
1006
0
    {
1007
0
      bool swapped;
1008
1009
      /* Get the section contents.  */
1010
0
      if (contents == NULL)
1011
0
  {
1012
0
    if (coff_section_data (abfd, sec)->contents != NULL)
1013
0
      contents = coff_section_data (abfd, sec)->contents;
1014
0
    else
1015
0
      {
1016
0
        if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1017
0
    goto error_return;
1018
0
      }
1019
0
  }
1020
1021
0
      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1022
0
  goto error_return;
1023
1024
0
      if (swapped)
1025
0
  {
1026
0
    coff_section_data (abfd, sec)->relocs = internal_relocs;
1027
0
    coff_section_data (abfd, sec)->contents = contents;
1028
0
  }
1029
0
    }
1030
1031
0
  if (internal_relocs != NULL
1032
0
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
1033
0
    {
1034
0
      if (! link_info->keep_memory)
1035
0
  free (internal_relocs);
1036
0
      else
1037
0
  coff_section_data (abfd, sec)->relocs = internal_relocs;
1038
0
    }
1039
1040
0
  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1041
0
    {
1042
0
      if (! link_info->keep_memory)
1043
0
  free (contents);
1044
0
      else
1045
  /* Cache the section contents for coff_link_input_bfd.  */
1046
0
  coff_section_data (abfd, sec)->contents = contents;
1047
0
    }
1048
1049
0
  return true;
1050
1051
0
 error_return:
1052
0
  if (internal_relocs != coff_section_data (abfd, sec)->relocs)
1053
0
    free (internal_relocs);
1054
0
  if (contents != coff_section_data (abfd, sec)->contents)
1055
0
    free (contents);
1056
0
  return false;
1057
0
}
Unexecuted instantiation: coff-sh.c:sh_relax_section
Unexecuted instantiation: pe-sh.c:sh_relax_section
Unexecuted instantiation: pei-sh.c:sh_relax_section
1058
1059
/* Delete some bytes from a section while relaxing.  */
1060
1061
static bool
1062
sh_relax_delete_bytes (bfd *abfd,
1063
           asection *sec,
1064
           bfd_vma addr,
1065
           int count)
1066
0
{
1067
0
  bfd_byte *contents;
1068
0
  struct internal_reloc *irel, *irelend;
1069
0
  struct internal_reloc *irelalign;
1070
0
  bfd_vma toaddr;
1071
0
  bfd_byte *esym, *esymend;
1072
0
  bfd_size_type symesz;
1073
0
  struct coff_link_hash_entry **sym_hash;
1074
0
  asection *o;
1075
1076
0
  contents = coff_section_data (abfd, sec)->contents;
1077
1078
  /* The deletion must stop at the next ALIGN reloc for an alignment
1079
     power larger than the number of bytes we are deleting.  */
1080
1081
0
  irelalign = NULL;
1082
0
  toaddr = sec->size;
1083
1084
0
  irel = coff_section_data (abfd, sec)->relocs;
1085
0
  irelend = irel + sec->reloc_count;
1086
0
  for (; irel < irelend; irel++)
1087
0
    {
1088
0
      if (irel->r_type == R_SH_ALIGN
1089
0
    && irel->r_vaddr - sec->vma > addr
1090
0
    && count < (1 << irel->r_offset))
1091
0
  {
1092
0
    irelalign = irel;
1093
0
    toaddr = irel->r_vaddr - sec->vma;
1094
0
    break;
1095
0
  }
1096
0
    }
1097
1098
  /* Actually delete the bytes.  */
1099
0
  memmove (contents + addr, contents + addr + count,
1100
0
     (size_t) (toaddr - addr - count));
1101
0
  if (irelalign == NULL)
1102
0
    sec->size -= count;
1103
0
  else
1104
0
    {
1105
0
      int i;
1106
1107
0
#define NOP_OPCODE (0x0009)
1108
1109
0
      BFD_ASSERT ((count & 1) == 0);
1110
0
      for (i = 0; i < count; i += 2)
1111
0
  bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1112
0
    }
1113
1114
  /* Adjust all the relocs.  */
1115
0
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1116
0
    {
1117
0
      bfd_vma nraddr, stop;
1118
0
      bfd_vma start = 0;
1119
0
      int insn = 0;
1120
0
      struct internal_syment sym;
1121
0
      int off, adjust, oinsn;
1122
0
      bfd_signed_vma voff = 0;
1123
0
      bool overflow;
1124
1125
      /* Get the new reloc address.  */
1126
0
      nraddr = irel->r_vaddr - sec->vma;
1127
0
      if ((irel->r_vaddr - sec->vma > addr
1128
0
     && irel->r_vaddr - sec->vma < toaddr)
1129
0
    || (irel->r_type == R_SH_ALIGN
1130
0
        && irel->r_vaddr - sec->vma == toaddr))
1131
0
  nraddr -= count;
1132
1133
      /* See if this reloc was for the bytes we have deleted, in which
1134
   case we no longer care about it.  Don't delete relocs which
1135
   represent addresses, though.  */
1136
0
      if (irel->r_vaddr - sec->vma >= addr
1137
0
    && irel->r_vaddr - sec->vma < addr + count
1138
0
    && irel->r_type != R_SH_ALIGN
1139
0
    && irel->r_type != R_SH_CODE
1140
0
    && irel->r_type != R_SH_DATA
1141
0
    && irel->r_type != R_SH_LABEL)
1142
0
  irel->r_type = R_SH_UNUSED;
1143
1144
      /* If this is a PC relative reloc, see if the range it covers
1145
   includes the bytes we have deleted.  */
1146
0
      switch (irel->r_type)
1147
0
  {
1148
0
  default:
1149
0
    break;
1150
1151
0
  case R_SH_PCDISP8BY2:
1152
0
  case R_SH_PCDISP:
1153
0
  case R_SH_PCRELIMM8BY2:
1154
0
  case R_SH_PCRELIMM8BY4:
1155
0
    start = irel->r_vaddr - sec->vma;
1156
0
    insn = bfd_get_16 (abfd, contents + nraddr);
1157
0
    break;
1158
0
  }
1159
1160
0
      switch (irel->r_type)
1161
0
  {
1162
0
  default:
1163
0
    start = stop = addr;
1164
0
    break;
1165
1166
0
  case R_SH_IMM32:
1167
#ifdef COFF_WITH_PE
1168
0
  case R_SH_IMM32CE:
1169
0
  case R_SH_IMAGEBASE:
1170
0
#endif
1171
    /* If this reloc is against a symbol defined in this
1172
       section, and the symbol will not be adjusted below, we
1173
       must check the addend to see it will put the value in
1174
       range to be adjusted, and hence must be changed.  */
1175
0
    bfd_coff_swap_sym_in (abfd,
1176
0
        ((bfd_byte *) obj_coff_external_syms (abfd)
1177
0
         + (irel->r_symndx
1178
0
            * bfd_coff_symesz (abfd))),
1179
0
        &sym);
1180
0
    if (sym.n_sclass != C_EXT
1181
0
        && sym.n_scnum == sec->target_index
1182
0
        && ((bfd_vma) sym.n_value <= addr
1183
0
      || (bfd_vma) sym.n_value >= toaddr))
1184
0
      {
1185
0
        bfd_vma val;
1186
1187
0
        val = bfd_get_32 (abfd, contents + nraddr);
1188
0
        val += sym.n_value;
1189
0
        if (val > addr && val < toaddr)
1190
0
    bfd_put_32 (abfd, val - count, contents + nraddr);
1191
0
      }
1192
0
    start = stop = addr;
1193
0
    break;
1194
1195
0
  case R_SH_PCDISP8BY2:
1196
0
    off = insn & 0xff;
1197
0
    if (off & 0x80)
1198
0
      off -= 0x100;
1199
0
    stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1200
0
    break;
1201
1202
0
  case R_SH_PCDISP:
1203
0
    bfd_coff_swap_sym_in (abfd,
1204
0
        ((bfd_byte *) obj_coff_external_syms (abfd)
1205
0
         + (irel->r_symndx
1206
0
            * bfd_coff_symesz (abfd))),
1207
0
        &sym);
1208
0
    if (sym.n_sclass == C_EXT)
1209
0
      start = stop = addr;
1210
0
    else
1211
0
      {
1212
0
        off = insn & 0xfff;
1213
0
        if (off & 0x800)
1214
0
    off -= 0x1000;
1215
0
        stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1216
0
      }
1217
0
    break;
1218
1219
0
  case R_SH_PCRELIMM8BY2:
1220
0
    off = insn & 0xff;
1221
0
    stop = start + 4 + off * 2;
1222
0
    break;
1223
1224
0
  case R_SH_PCRELIMM8BY4:
1225
0
    off = insn & 0xff;
1226
0
    stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1227
0
    break;
1228
1229
0
  case R_SH_SWITCH8:
1230
0
  case R_SH_SWITCH16:
1231
0
  case R_SH_SWITCH32:
1232
    /* These relocs types represent
1233
         .word L2-L1
1234
       The r_offset field holds the difference between the reloc
1235
       address and L1.  That is the start of the reloc, and
1236
       adding in the contents gives us the top.  We must adjust
1237
       both the r_offset field and the section contents.  */
1238
1239
0
    start = irel->r_vaddr - sec->vma;
1240
0
    stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1241
1242
0
    if (start > addr
1243
0
        && start < toaddr
1244
0
        && (stop <= addr || stop >= toaddr))
1245
0
      irel->r_offset += count;
1246
0
    else if (stop > addr
1247
0
       && stop < toaddr
1248
0
       && (start <= addr || start >= toaddr))
1249
0
      irel->r_offset -= count;
1250
1251
0
    start = stop;
1252
1253
0
    if (irel->r_type == R_SH_SWITCH16)
1254
0
      voff = bfd_get_signed_16 (abfd, contents + nraddr);
1255
0
    else if (irel->r_type == R_SH_SWITCH8)
1256
0
      voff = bfd_get_8 (abfd, contents + nraddr);
1257
0
    else
1258
0
      voff = bfd_get_signed_32 (abfd, contents + nraddr);
1259
0
    stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1260
1261
0
    break;
1262
1263
0
  case R_SH_USES:
1264
0
    start = irel->r_vaddr - sec->vma;
1265
0
    stop = (bfd_vma) ((bfd_signed_vma) start
1266
0
          + (long) irel->r_offset
1267
0
          + 4);
1268
0
    break;
1269
0
  }
1270
1271
0
      if (start > addr
1272
0
    && start < toaddr
1273
0
    && (stop <= addr || stop >= toaddr))
1274
0
  adjust = count;
1275
0
      else if (stop > addr
1276
0
         && stop < toaddr
1277
0
         && (start <= addr || start >= toaddr))
1278
0
  adjust = - count;
1279
0
      else
1280
0
  adjust = 0;
1281
1282
0
      if (adjust != 0)
1283
0
  {
1284
0
    oinsn = insn;
1285
0
    overflow = false;
1286
0
    switch (irel->r_type)
1287
0
      {
1288
0
      default:
1289
0
        abort ();
1290
0
        break;
1291
1292
0
      case R_SH_PCDISP8BY2:
1293
0
      case R_SH_PCRELIMM8BY2:
1294
0
        insn += adjust / 2;
1295
0
        if ((oinsn & 0xff00) != (insn & 0xff00))
1296
0
    overflow = true;
1297
0
        bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1298
0
        break;
1299
1300
0
      case R_SH_PCDISP:
1301
0
        insn += adjust / 2;
1302
0
        if ((oinsn & 0xf000) != (insn & 0xf000))
1303
0
    overflow = true;
1304
0
        bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1305
0
        break;
1306
1307
0
      case R_SH_PCRELIMM8BY4:
1308
0
        BFD_ASSERT (adjust == count || count >= 4);
1309
0
        if (count >= 4)
1310
0
    insn += adjust / 4;
1311
0
        else
1312
0
    {
1313
0
      if ((irel->r_vaddr & 3) == 0)
1314
0
        ++insn;
1315
0
    }
1316
0
        if ((oinsn & 0xff00) != (insn & 0xff00))
1317
0
    overflow = true;
1318
0
        bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1319
0
        break;
1320
1321
0
      case R_SH_SWITCH8:
1322
0
        voff += adjust;
1323
0
        if (voff < 0 || voff >= 0xff)
1324
0
    overflow = true;
1325
0
        bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1326
0
        break;
1327
1328
0
      case R_SH_SWITCH16:
1329
0
        voff += adjust;
1330
0
        if (voff < - 0x8000 || voff >= 0x8000)
1331
0
    overflow = true;
1332
0
        bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1333
0
        break;
1334
1335
0
      case R_SH_SWITCH32:
1336
0
        voff += adjust;
1337
0
        bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1338
0
        break;
1339
1340
0
      case R_SH_USES:
1341
0
        irel->r_offset += adjust;
1342
0
        break;
1343
0
      }
1344
1345
0
    if (overflow)
1346
0
      {
1347
0
        _bfd_error_handler
1348
    /* xgettext: c-format */
1349
0
    (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1350
0
     abfd, (uint64_t) irel->r_vaddr);
1351
0
        bfd_set_error (bfd_error_bad_value);
1352
0
        return false;
1353
0
      }
1354
0
  }
1355
1356
0
      irel->r_vaddr = nraddr + sec->vma;
1357
0
    }
1358
1359
  /* Look through all the other sections.  If there contain any IMM32
1360
     relocs against internal symbols which we are not going to adjust
1361
     below, we may need to adjust the addends.  */
1362
0
  for (o = abfd->sections; o != NULL; o = o->next)
1363
0
    {
1364
0
      struct internal_reloc *internal_relocs;
1365
0
      struct internal_reloc *irelscan, *irelscanend;
1366
0
      bfd_byte *ocontents;
1367
1368
0
      if (o == sec
1369
0
    || (o->flags & SEC_HAS_CONTENTS) == 0
1370
0
    || (o->flags & SEC_RELOC) == 0
1371
0
    || o->reloc_count == 0)
1372
0
  continue;
1373
1374
      /* We always cache the relocs.  Perhaps, if info->keep_memory is
1375
   FALSE, we should free them, if we are permitted to, when we
1376
   leave sh_coff_relax_section.  */
1377
0
      internal_relocs = (_bfd_coff_read_internal_relocs
1378
0
       (abfd, o, true, (bfd_byte *) NULL, false,
1379
0
        (struct internal_reloc *) NULL));
1380
0
      if (internal_relocs == NULL)
1381
0
  return false;
1382
1383
0
      ocontents = NULL;
1384
0
      irelscanend = internal_relocs + o->reloc_count;
1385
0
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1386
0
  {
1387
0
    struct internal_syment sym;
1388
1389
#ifdef COFF_WITH_PE
1390
0
    if (irelscan->r_type != R_SH_IMM32
1391
0
        && irelscan->r_type != R_SH_IMAGEBASE
1392
0
        && irelscan->r_type != R_SH_IMM32CE)
1393
#else
1394
0
    if (irelscan->r_type != R_SH_IMM32)
1395
0
#endif
1396
0
      continue;
1397
1398
0
    bfd_coff_swap_sym_in (abfd,
1399
0
        ((bfd_byte *) obj_coff_external_syms (abfd)
1400
0
         + (irelscan->r_symndx
1401
0
            * bfd_coff_symesz (abfd))),
1402
0
        &sym);
1403
0
    if (sym.n_sclass != C_EXT
1404
0
        && sym.n_scnum == sec->target_index
1405
0
        && ((bfd_vma) sym.n_value <= addr
1406
0
      || (bfd_vma) sym.n_value >= toaddr))
1407
0
      {
1408
0
        bfd_vma val;
1409
1410
0
        if (ocontents == NULL)
1411
0
    {
1412
0
      if (coff_section_data (abfd, o)->contents != NULL)
1413
0
        ocontents = coff_section_data (abfd, o)->contents;
1414
0
      else
1415
0
        {
1416
0
          if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1417
0
      return false;
1418
          /* We always cache the section contents.
1419
       Perhaps, if info->keep_memory is FALSE, we
1420
       should free them, if we are permitted to,
1421
       when we leave sh_coff_relax_section.  */
1422
0
          coff_section_data (abfd, o)->contents = ocontents;
1423
0
        }
1424
0
    }
1425
1426
0
        val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1427
0
        val += sym.n_value;
1428
0
        if (val > addr && val < toaddr)
1429
0
    bfd_put_32 (abfd, val - count,
1430
0
          ocontents + irelscan->r_vaddr - o->vma);
1431
0
      }
1432
0
  }
1433
0
    }
1434
1435
  /* Adjusting the internal symbols will not work if something has
1436
     already retrieved the generic symbols.  It would be possible to
1437
     make this work by adjusting the generic symbols at the same time.
1438
     However, this case should not arise in normal usage.  */
1439
0
  if (obj_symbols (abfd) != NULL
1440
0
      || obj_raw_syments (abfd) != NULL)
1441
0
    {
1442
0
      _bfd_error_handler
1443
0
  (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
1444
0
      bfd_set_error (bfd_error_invalid_operation);
1445
0
      return false;
1446
0
    }
1447
1448
  /* Adjust all the symbols.  */
1449
0
  sym_hash = obj_coff_sym_hashes (abfd);
1450
0
  symesz = bfd_coff_symesz (abfd);
1451
0
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
1452
0
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
1453
0
  while (esym < esymend)
1454
0
    {
1455
0
      struct internal_syment isym;
1456
1457
0
      bfd_coff_swap_sym_in (abfd, esym, &isym);
1458
1459
0
      if (isym.n_scnum == sec->target_index
1460
0
    && (bfd_vma) isym.n_value > addr
1461
0
    && (bfd_vma) isym.n_value < toaddr)
1462
0
  {
1463
0
    isym.n_value -= count;
1464
1465
0
    bfd_coff_swap_sym_out (abfd, &isym, esym);
1466
1467
0
    if (*sym_hash != NULL)
1468
0
      {
1469
0
        BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1470
0
        || (*sym_hash)->root.type == bfd_link_hash_defweak);
1471
0
        BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1472
0
        && (*sym_hash)->root.u.def.value < toaddr);
1473
0
        (*sym_hash)->root.u.def.value -= count;
1474
0
      }
1475
0
  }
1476
1477
0
      esym += (isym.n_numaux + 1) * symesz;
1478
0
      sym_hash += isym.n_numaux + 1;
1479
0
    }
1480
1481
  /* See if we can move the ALIGN reloc forward.  We have adjusted
1482
     r_vaddr for it already.  */
1483
0
  if (irelalign != NULL)
1484
0
    {
1485
0
      bfd_vma alignto, alignaddr;
1486
1487
0
      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1488
0
      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1489
0
           1 << irelalign->r_offset);
1490
0
      if (alignto != alignaddr)
1491
0
  {
1492
    /* Tail recursion.  */
1493
0
    return sh_relax_delete_bytes (abfd, sec, alignaddr,
1494
0
          (int) (alignto - alignaddr));
1495
0
  }
1496
0
    }
1497
1498
0
  return true;
1499
0
}
Unexecuted instantiation: coff-sh.c:sh_relax_delete_bytes
Unexecuted instantiation: pe-sh.c:sh_relax_delete_bytes
Unexecuted instantiation: pei-sh.c:sh_relax_delete_bytes
1500

1501
/* This is yet another version of the SH opcode table, used to rapidly
1502
   get information about a particular instruction.  */
1503
1504
/* The opcode map is represented by an array of these structures.  The
1505
   array is indexed by the high order four bits in the instruction.  */
1506
1507
struct sh_major_opcode
1508
{
1509
  /* A pointer to the instruction list.  This is an array which
1510
     contains all the instructions with this major opcode.  */
1511
  const struct sh_minor_opcode *minor_opcodes;
1512
  /* The number of elements in minor_opcodes.  */
1513
  unsigned short count;
1514
};
1515
1516
/* This structure holds information for a set of SH opcodes.  The
1517
   instruction code is anded with the mask value, and the resulting
1518
   value is used to search the order opcode list.  */
1519
1520
struct sh_minor_opcode
1521
{
1522
  /* The sorted opcode list.  */
1523
  const struct sh_opcode *opcodes;
1524
  /* The number of elements in opcodes.  */
1525
  unsigned short count;
1526
  /* The mask value to use when searching the opcode list.  */
1527
  unsigned short mask;
1528
};
1529
1530
/* This structure holds information for an SH instruction.  An array
1531
   of these structures is sorted in order by opcode.  */
1532
1533
struct sh_opcode
1534
{
1535
  /* The code for this instruction, after it has been anded with the
1536
     mask value in the sh_major_opcode structure.  */
1537
  unsigned short opcode;
1538
  /* Flags for this instruction.  */
1539
  unsigned long flags;
1540
};
1541
1542
/* Flag which appear in the sh_opcode structure.  */
1543
1544
/* This instruction loads a value from memory.  */
1545
0
#define LOAD (0x1)
1546
1547
/* This instruction stores a value to memory.  */
1548
0
#define STORE (0x2)
1549
1550
/* This instruction is a branch.  */
1551
0
#define BRANCH (0x4)
1552
1553
/* This instruction has a delay slot.  */
1554
0
#define DELAY (0x8)
1555
1556
/* This instruction uses the value in the register in the field at
1557
   mask 0x0f00 of the instruction.  */
1558
0
#define USES1 (0x10)
1559
0
#define USES1_REG(x) ((x & 0x0f00) >> 8)
1560
1561
/* This instruction uses the value in the register in the field at
1562
   mask 0x00f0 of the instruction.  */
1563
0
#define USES2 (0x20)
1564
0
#define USES2_REG(x) ((x & 0x00f0) >> 4)
1565
1566
/* This instruction uses the value in register 0.  */
1567
0
#define USESR0 (0x40)
1568
1569
/* This instruction sets the value in the register in the field at
1570
   mask 0x0f00 of the instruction.  */
1571
0
#define SETS1 (0x80)
1572
0
#define SETS1_REG(x) ((x & 0x0f00) >> 8)
1573
1574
/* This instruction sets the value in the register in the field at
1575
   mask 0x00f0 of the instruction.  */
1576
0
#define SETS2 (0x100)
1577
0
#define SETS2_REG(x) ((x & 0x00f0) >> 4)
1578
1579
/* This instruction sets register 0.  */
1580
0
#define SETSR0 (0x200)
1581
1582
/* This instruction sets a special register.  */
1583
0
#define SETSSP (0x400)
1584
1585
/* This instruction uses a special register.  */
1586
0
#define USESSP (0x800)
1587
1588
/* This instruction uses the floating point register in the field at
1589
   mask 0x0f00 of the instruction.  */
1590
0
#define USESF1 (0x1000)
1591
0
#define USESF1_REG(x) ((x & 0x0f00) >> 8)
1592
1593
/* This instruction uses the floating point register in the field at
1594
   mask 0x00f0 of the instruction.  */
1595
0
#define USESF2 (0x2000)
1596
0
#define USESF2_REG(x) ((x & 0x00f0) >> 4)
1597
1598
/* This instruction uses floating point register 0.  */
1599
0
#define USESF0 (0x4000)
1600
1601
/* This instruction sets the floating point register in the field at
1602
   mask 0x0f00 of the instruction.  */
1603
0
#define SETSF1 (0x8000)
1604
0
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1605
1606
0
#define USESAS (0x10000)
1607
0
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1608
0
#define USESR8 (0x20000)
1609
0
#define SETSAS (0x40000)
1610
0
#define SETSAS_REG(x) USESAS_REG (x)
1611
1612
#define MAP(a) a, sizeof a / sizeof a[0]
1613
1614
#ifndef COFF_IMAGE_WITH_PE
1615
1616
/* The opcode maps.  */
1617
1618
static const struct sh_opcode sh_opcode00[] =
1619
{
1620
  { 0x0008, SETSSP },     /* clrt */
1621
  { 0x0009, 0 },      /* nop */
1622
  { 0x000b, BRANCH | DELAY | USESSP },  /* rts */
1623
  { 0x0018, SETSSP },     /* sett */
1624
  { 0x0019, SETSSP },     /* div0u */
1625
  { 0x001b, 0 },      /* sleep */
1626
  { 0x0028, SETSSP },     /* clrmac */
1627
  { 0x002b, BRANCH | DELAY | SETSSP },  /* rte */
1628
  { 0x0038, USESSP | SETSSP },    /* ldtlb */
1629
  { 0x0048, SETSSP },     /* clrs */
1630
  { 0x0058, SETSSP }      /* sets */
1631
};
1632
1633
static const struct sh_opcode sh_opcode01[] =
1634
{
1635
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },  /* bsrf rn */
1636
  { 0x000a, SETS1 | USESSP },     /* sts mach,rn */
1637
  { 0x001a, SETS1 | USESSP },     /* sts macl,rn */
1638
  { 0x0023, BRANCH | DELAY | USES1 },   /* braf rn */
1639
  { 0x0029, SETS1 | USESSP },     /* movt rn */
1640
  { 0x002a, SETS1 | USESSP },     /* sts pr,rn */
1641
  { 0x005a, SETS1 | USESSP },     /* sts fpul,rn */
1642
  { 0x006a, SETS1 | USESSP },     /* sts fpscr,rn / sts dsr,rn */
1643
  { 0x0083, LOAD | USES1 },     /* pref @rn */
1644
  { 0x007a, SETS1 | USESSP },     /* sts a0,rn */
1645
  { 0x008a, SETS1 | USESSP },     /* sts x0,rn */
1646
  { 0x009a, SETS1 | USESSP },     /* sts x1,rn */
1647
  { 0x00aa, SETS1 | USESSP },     /* sts y0,rn */
1648
  { 0x00ba, SETS1 | USESSP }      /* sts y1,rn */
1649
};
1650
1651
static const struct sh_opcode sh_opcode02[] =
1652
{
1653
  { 0x0002, SETS1 | USESSP },     /* stc <special_reg>,rn */
1654
  { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1655
  { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1656
  { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1657
  { 0x0007, SETSSP | USES1 | USES2 },   /* mul.l rm,rn */
1658
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },  /* mov.b @(r0,rm),rn */
1659
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },  /* mov.w @(r0,rm),rn */
1660
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },  /* mov.l @(r0,rm),rn */
1661
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1662
};
1663
1664
static const struct sh_minor_opcode sh_opcode0[] =
1665
{
1666
  { MAP (sh_opcode00), 0xffff },
1667
  { MAP (sh_opcode01), 0xf0ff },
1668
  { MAP (sh_opcode02), 0xf00f }
1669
};
1670
1671
static const struct sh_opcode sh_opcode10[] =
1672
{
1673
  { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1674
};
1675
1676
static const struct sh_minor_opcode sh_opcode1[] =
1677
{
1678
  { MAP (sh_opcode10), 0xf000 }
1679
};
1680
1681
static const struct sh_opcode sh_opcode20[] =
1682
{
1683
  { 0x2000, STORE | USES1 | USES2 },    /* mov.b rm,@rn */
1684
  { 0x2001, STORE | USES1 | USES2 },    /* mov.w rm,@rn */
1685
  { 0x2002, STORE | USES1 | USES2 },    /* mov.l rm,@rn */
1686
  { 0x2004, STORE | SETS1 | USES1 | USES2 },  /* mov.b rm,@-rn */
1687
  { 0x2005, STORE | SETS1 | USES1 | USES2 },  /* mov.w rm,@-rn */
1688
  { 0x2006, STORE | SETS1 | USES1 | USES2 },  /* mov.l rm,@-rn */
1689
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },  /* div0s */
1690
  { 0x2008, SETSSP | USES1 | USES2 },   /* tst rm,rn */
1691
  { 0x2009, SETS1 | USES1 | USES2 },    /* and rm,rn */
1692
  { 0x200a, SETS1 | USES1 | USES2 },    /* xor rm,rn */
1693
  { 0x200b, SETS1 | USES1 | USES2 },    /* or rm,rn */
1694
  { 0x200c, SETSSP | USES1 | USES2 },   /* cmp/str rm,rn */
1695
  { 0x200d, SETS1 | USES1 | USES2 },    /* xtrct rm,rn */
1696
  { 0x200e, SETSSP | USES1 | USES2 },   /* mulu.w rm,rn */
1697
  { 0x200f, SETSSP | USES1 | USES2 }    /* muls.w rm,rn */
1698
};
1699
1700
static const struct sh_minor_opcode sh_opcode2[] =
1701
{
1702
  { MAP (sh_opcode20), 0xf00f }
1703
};
1704
1705
static const struct sh_opcode sh_opcode30[] =
1706
{
1707
  { 0x3000, SETSSP | USES1 | USES2 },   /* cmp/eq rm,rn */
1708
  { 0x3002, SETSSP | USES1 | USES2 },   /* cmp/hs rm,rn */
1709
  { 0x3003, SETSSP | USES1 | USES2 },   /* cmp/ge rm,rn */
1710
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },  /* div1 rm,rn */
1711
  { 0x3005, SETSSP | USES1 | USES2 },   /* dmulu.l rm,rn */
1712
  { 0x3006, SETSSP | USES1 | USES2 },   /* cmp/hi rm,rn */
1713
  { 0x3007, SETSSP | USES1 | USES2 },   /* cmp/gt rm,rn */
1714
  { 0x3008, SETS1 | USES1 | USES2 },    /* sub rm,rn */
1715
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1716
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1717
  { 0x300c, SETS1 | USES1 | USES2 },    /* add rm,rn */
1718
  { 0x300d, SETSSP | USES1 | USES2 },   /* dmuls.l rm,rn */
1719
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1720
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }  /* addv rm,rn */
1721
};
1722
1723
static const struct sh_minor_opcode sh_opcode3[] =
1724
{
1725
  { MAP (sh_opcode30), 0xf00f }
1726
};
1727
1728
static const struct sh_opcode sh_opcode40[] =
1729
{
1730
  { 0x4000, SETS1 | SETSSP | USES1 },   /* shll rn */
1731
  { 0x4001, SETS1 | SETSSP | USES1 },   /* shlr rn */
1732
  { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1733
  { 0x4004, SETS1 | SETSSP | USES1 },   /* rotl rn */
1734
  { 0x4005, SETS1 | SETSSP | USES1 },   /* rotr rn */
1735
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,mach */
1736
  { 0x4008, SETS1 | USES1 },      /* shll2 rn */
1737
  { 0x4009, SETS1 | USES1 },      /* shlr2 rn */
1738
  { 0x400a, SETSSP | USES1 },     /* lds rm,mach */
1739
  { 0x400b, BRANCH | DELAY | USES1 },   /* jsr @rn */
1740
  { 0x4010, SETS1 | SETSSP | USES1 },   /* dt rn */
1741
  { 0x4011, SETSSP | USES1 },     /* cmp/pz rn */
1742
  { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1743
  { 0x4014, SETSSP | USES1 },     /* setrc rm */
1744
  { 0x4015, SETSSP | USES1 },     /* cmp/pl rn */
1745
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,macl */
1746
  { 0x4018, SETS1 | USES1 },      /* shll8 rn */
1747
  { 0x4019, SETS1 | USES1 },      /* shlr8 rn */
1748
  { 0x401a, SETSSP | USES1 },     /* lds rm,macl */
1749
  { 0x401b, LOAD | SETSSP | USES1 },    /* tas.b @rn */
1750
  { 0x4020, SETS1 | SETSSP | USES1 },   /* shal rn */
1751
  { 0x4021, SETS1 | SETSSP | USES1 },   /* shar rn */
1752
  { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1753
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },  /* rotcl rn */
1754
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },  /* rotcr rn */
1755
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,pr */
1756
  { 0x4028, SETS1 | USES1 },      /* shll16 rn */
1757
  { 0x4029, SETS1 | USES1 },      /* shlr16 rn */
1758
  { 0x402a, SETSSP | USES1 },     /* lds rm,pr */
1759
  { 0x402b, BRANCH | DELAY | USES1 },   /* jmp @rn */
1760
  { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1761
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,fpul */
1762
  { 0x405a, SETSSP | USES1 },     /* lds.l rm,fpul */
1763
  { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1764
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,fpscr / dsr */
1765
  { 0x406a, SETSSP | USES1 },     /* lds rm,fpscr / lds rm,dsr */
1766
  { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1767
  { 0x4076, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,a0 */
1768
  { 0x407a, SETSSP | USES1 },     /* lds.l rm,a0 */
1769
  { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1770
  { 0x4086, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,x0 */
1771
  { 0x408a, SETSSP | USES1 },     /* lds.l rm,x0 */
1772
  { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1773
  { 0x4096, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,x1 */
1774
  { 0x409a, SETSSP | USES1 },     /* lds.l rm,x1 */
1775
  { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1776
  { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,y0 */
1777
  { 0x40aa, SETSSP | USES1 },     /* lds.l rm,y0 */
1778
  { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1779
  { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },  /* lds.l @rm+,y1 */
1780
  { 0x40ba, SETSSP | USES1 }      /* lds.l rm,y1 */
1781
};
1782
1783
static const struct sh_opcode sh_opcode41[] =
1784
{
1785
  { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1786
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },  /* ldc.l @rm+,<special_reg> */
1787
  { 0x400c, SETS1 | USES1 | USES2 },    /* shad rm,rn */
1788
  { 0x400d, SETS1 | USES1 | USES2 },    /* shld rm,rn */
1789
  { 0x400e, SETSSP | USES1 },     /* ldc rm,<special_reg> */
1790
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1791
};
1792
1793
static const struct sh_minor_opcode sh_opcode4[] =
1794
{
1795
  { MAP (sh_opcode40), 0xf0ff },
1796
  { MAP (sh_opcode41), 0xf00f }
1797
};
1798
1799
static const struct sh_opcode sh_opcode50[] =
1800
{
1801
  { 0x5000, LOAD | SETS1 | USES2 }  /* mov.l @(disp,rm),rn */
1802
};
1803
1804
static const struct sh_minor_opcode sh_opcode5[] =
1805
{
1806
  { MAP (sh_opcode50), 0xf000 }
1807
};
1808
1809
static const struct sh_opcode sh_opcode60[] =
1810
{
1811
  { 0x6000, LOAD | SETS1 | USES2 },   /* mov.b @rm,rn */
1812
  { 0x6001, LOAD | SETS1 | USES2 },   /* mov.w @rm,rn */
1813
  { 0x6002, LOAD | SETS1 | USES2 },   /* mov.l @rm,rn */
1814
  { 0x6003, SETS1 | USES2 },      /* mov rm,rn */
1815
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1816
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1817
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1818
  { 0x6007, SETS1 | USES2 },      /* not rm,rn */
1819
  { 0x6008, SETS1 | USES2 },      /* swap.b rm,rn */
1820
  { 0x6009, SETS1 | USES2 },      /* swap.w rm,rn */
1821
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },  /* negc rm,rn */
1822
  { 0x600b, SETS1 | USES2 },      /* neg rm,rn */
1823
  { 0x600c, SETS1 | USES2 },      /* extu.b rm,rn */
1824
  { 0x600d, SETS1 | USES2 },      /* extu.w rm,rn */
1825
  { 0x600e, SETS1 | USES2 },      /* exts.b rm,rn */
1826
  { 0x600f, SETS1 | USES2 }     /* exts.w rm,rn */
1827
};
1828
1829
static const struct sh_minor_opcode sh_opcode6[] =
1830
{
1831
  { MAP (sh_opcode60), 0xf00f }
1832
};
1833
1834
static const struct sh_opcode sh_opcode70[] =
1835
{
1836
  { 0x7000, SETS1 | USES1 }   /* add #imm,rn */
1837
};
1838
1839
static const struct sh_minor_opcode sh_opcode7[] =
1840
{
1841
  { MAP (sh_opcode70), 0xf000 }
1842
};
1843
1844
static const struct sh_opcode sh_opcode80[] =
1845
{
1846
  { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1847
  { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1848
  { 0x8200, SETSSP },     /* setrc #imm */
1849
  { 0x8400, LOAD | SETSR0 | USES2 },  /* mov.b @(disp,rm),r0 */
1850
  { 0x8500, LOAD | SETSR0 | USES2 },  /* mov.w @(disp,rn),r0 */
1851
  { 0x8800, SETSSP | USESR0 },    /* cmp/eq #imm,r0 */
1852
  { 0x8900, BRANCH | USESSP },    /* bt label */
1853
  { 0x8b00, BRANCH | USESSP },    /* bf label */
1854
  { 0x8c00, SETSSP },     /* ldrs @(disp,pc) */
1855
  { 0x8d00, BRANCH | DELAY | USESSP },  /* bt/s label */
1856
  { 0x8e00, SETSSP },     /* ldre @(disp,pc) */
1857
  { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1858
};
1859
1860
static const struct sh_minor_opcode sh_opcode8[] =
1861
{
1862
  { MAP (sh_opcode80), 0xff00 }
1863
};
1864
1865
static const struct sh_opcode sh_opcode90[] =
1866
{
1867
  { 0x9000, LOAD | SETS1 }  /* mov.w @(disp,pc),rn */
1868
};
1869
1870
static const struct sh_minor_opcode sh_opcode9[] =
1871
{
1872
  { MAP (sh_opcode90), 0xf000 }
1873
};
1874
1875
static const struct sh_opcode sh_opcodea0[] =
1876
{
1877
  { 0xa000, BRANCH | DELAY }  /* bra label */
1878
};
1879
1880
static const struct sh_minor_opcode sh_opcodea[] =
1881
{
1882
  { MAP (sh_opcodea0), 0xf000 }
1883
};
1884
1885
static const struct sh_opcode sh_opcodeb0[] =
1886
{
1887
  { 0xb000, BRANCH | DELAY }  /* bsr label */
1888
};
1889
1890
static const struct sh_minor_opcode sh_opcodeb[] =
1891
{
1892
  { MAP (sh_opcodeb0), 0xf000 }
1893
};
1894
1895
static const struct sh_opcode sh_opcodec0[] =
1896
{
1897
  { 0xc000, STORE | USESR0 | USESSP },    /* mov.b r0,@(disp,gbr) */
1898
  { 0xc100, STORE | USESR0 | USESSP },    /* mov.w r0,@(disp,gbr) */
1899
  { 0xc200, STORE | USESR0 | USESSP },    /* mov.l r0,@(disp,gbr) */
1900
  { 0xc300, BRANCH | USESSP },      /* trapa #imm */
1901
  { 0xc400, LOAD | SETSR0 | USESSP },   /* mov.b @(disp,gbr),r0 */
1902
  { 0xc500, LOAD | SETSR0 | USESSP },   /* mov.w @(disp,gbr),r0 */
1903
  { 0xc600, LOAD | SETSR0 | USESSP },   /* mov.l @(disp,gbr),r0 */
1904
  { 0xc700, SETSR0 },       /* mova @(disp,pc),r0 */
1905
  { 0xc800, SETSSP | USESR0 },      /* tst #imm,r0 */
1906
  { 0xc900, SETSR0 | USESR0 },      /* and #imm,r0 */
1907
  { 0xca00, SETSR0 | USESR0 },      /* xor #imm,r0 */
1908
  { 0xcb00, SETSR0 | USESR0 },      /* or #imm,r0 */
1909
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },  /* tst.b #imm,@(r0,gbr) */
1910
  { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1911
  { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1912
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }  /* or.b #imm,@(r0,gbr) */
1913
};
1914
1915
static const struct sh_minor_opcode sh_opcodec[] =
1916
{
1917
  { MAP (sh_opcodec0), 0xff00 }
1918
};
1919
1920
static const struct sh_opcode sh_opcoded0[] =
1921
{
1922
  { 0xd000, LOAD | SETS1 }    /* mov.l @(disp,pc),rn */
1923
};
1924
1925
static const struct sh_minor_opcode sh_opcoded[] =
1926
{
1927
  { MAP (sh_opcoded0), 0xf000 }
1928
};
1929
1930
static const struct sh_opcode sh_opcodee0[] =
1931
{
1932
  { 0xe000, SETS1 }   /* mov #imm,rn */
1933
};
1934
1935
static const struct sh_minor_opcode sh_opcodee[] =
1936
{
1937
  { MAP (sh_opcodee0), 0xf000 }
1938
};
1939
1940
static const struct sh_opcode sh_opcodef0[] =
1941
{
1942
  { 0xf000, SETSF1 | USESF1 | USESF2 },   /* fadd fm,fn */
1943
  { 0xf001, SETSF1 | USESF1 | USESF2 },   /* fsub fm,fn */
1944
  { 0xf002, SETSF1 | USESF1 | USESF2 },   /* fmul fm,fn */
1945
  { 0xf003, SETSF1 | USESF1 | USESF2 },   /* fdiv fm,fn */
1946
  { 0xf004, SETSSP | USESF1 | USESF2 },   /* fcmp/eq fm,fn */
1947
  { 0xf005, SETSSP | USESF1 | USESF2 },   /* fcmp/gt fm,fn */
1948
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1949
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },  /* fmov.s fm,@(r0,rn) */
1950
  { 0xf008, LOAD | SETSF1 | USES2 },    /* fmov.s @rm,fn */
1951
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },  /* fmov.s @rm+,fn */
1952
  { 0xf00a, STORE | USES1 | USESF2 },   /* fmov.s fm,@rn */
1953
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1954
  { 0xf00c, SETSF1 | USESF2 },      /* fmov fm,fn */
1955
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1956
};
1957
1958
static const struct sh_opcode sh_opcodef1[] =
1959
{
1960
  { 0xf00d, SETSF1 | USESSP },  /* fsts fpul,fn */
1961
  { 0xf01d, SETSSP | USESF1 },  /* flds fn,fpul */
1962
  { 0xf02d, SETSF1 | USESSP },  /* float fpul,fn */
1963
  { 0xf03d, SETSSP | USESF1 },  /* ftrc fn,fpul */
1964
  { 0xf04d, SETSF1 | USESF1 },  /* fneg fn */
1965
  { 0xf05d, SETSF1 | USESF1 },  /* fabs fn */
1966
  { 0xf06d, SETSF1 | USESF1 },  /* fsqrt fn */
1967
  { 0xf07d, SETSSP | USESF1 },  /* ftst/nan fn */
1968
  { 0xf08d, SETSF1 },   /* fldi0 fn */
1969
  { 0xf09d, SETSF1 }    /* fldi1 fn */
1970
};
1971
1972
static const struct sh_minor_opcode sh_opcodef[] =
1973
{
1974
  { MAP (sh_opcodef0), 0xf00f },
1975
  { MAP (sh_opcodef1), 0xf0ff }
1976
};
1977
1978
static struct sh_major_opcode sh_opcodes[] =
1979
{
1980
  { MAP (sh_opcode0) },
1981
  { MAP (sh_opcode1) },
1982
  { MAP (sh_opcode2) },
1983
  { MAP (sh_opcode3) },
1984
  { MAP (sh_opcode4) },
1985
  { MAP (sh_opcode5) },
1986
  { MAP (sh_opcode6) },
1987
  { MAP (sh_opcode7) },
1988
  { MAP (sh_opcode8) },
1989
  { MAP (sh_opcode9) },
1990
  { MAP (sh_opcodea) },
1991
  { MAP (sh_opcodeb) },
1992
  { MAP (sh_opcodec) },
1993
  { MAP (sh_opcoded) },
1994
  { MAP (sh_opcodee) },
1995
  { MAP (sh_opcodef) }
1996
};
1997
1998
/* The double data transfer / parallel processing insns are not
1999
   described here.  This will cause sh_align_load_span to leave them alone.  */
2000
2001
static const struct sh_opcode sh_dsp_opcodef0[] =
2002
{
2003
  { 0xf400, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @-as,ds */
2004
  { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2005
  { 0xf404, USESAS | LOAD | SETSSP },   /* movs.x @as,ds */
2006
  { 0xf405, USESAS | STORE | USESSP },    /* movs.x ds,@as */
2007
  { 0xf408, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @as+,ds */
2008
  { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2009
  { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2010
  { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2011
};
2012
2013
static const struct sh_minor_opcode sh_dsp_opcodef[] =
2014
{
2015
  { MAP (sh_dsp_opcodef0), 0xfc0d }
2016
};
2017
2018
/* Given an instruction, return a pointer to the corresponding
2019
   sh_opcode structure.  Return NULL if the instruction is not
2020
   recognized.  */
2021
2022
static const struct sh_opcode *
2023
sh_insn_info (unsigned int insn)
2024
0
{
2025
0
  const struct sh_major_opcode *maj;
2026
0
  const struct sh_minor_opcode *min, *minend;
2027
2028
0
  maj = &sh_opcodes[(insn & 0xf000) >> 12];
2029
0
  min = maj->minor_opcodes;
2030
0
  minend = min + maj->count;
2031
0
  for (; min < minend; min++)
2032
0
    {
2033
0
      unsigned int l;
2034
0
      const struct sh_opcode *op, *opend;
2035
2036
0
      l = insn & min->mask;
2037
0
      op = min->opcodes;
2038
0
      opend = op + min->count;
2039
2040
      /* Since the opcodes tables are sorted, we could use a binary
2041
   search here if the count were above some cutoff value.  */
2042
0
      for (; op < opend; op++)
2043
0
  if (op->opcode == l)
2044
0
    return op;
2045
0
    }
2046
2047
0
  return NULL;
2048
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_info
Unexecuted instantiation: pe-sh.c:sh_insn_info
2049
2050
/* See whether an instruction uses a general purpose register.  */
2051
2052
static bool
2053
sh_insn_uses_reg (unsigned int insn,
2054
      const struct sh_opcode *op,
2055
      unsigned int reg)
2056
0
{
2057
0
  unsigned int f;
2058
2059
0
  f = op->flags;
2060
2061
0
  if ((f & USES1) != 0
2062
0
      && USES1_REG (insn) == reg)
2063
0
    return true;
2064
0
  if ((f & USES2) != 0
2065
0
      && USES2_REG (insn) == reg)
2066
0
    return true;
2067
0
  if ((f & USESR0) != 0
2068
0
      && reg == 0)
2069
0
    return true;
2070
0
  if ((f & USESAS) && reg == USESAS_REG (insn))
2071
0
    return true;
2072
0
  if ((f & USESR8) && reg == 8)
2073
0
    return true;
2074
2075
0
  return false;
2076
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_reg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_reg
2077
2078
/* See whether an instruction sets a general purpose register.  */
2079
2080
static bool
2081
sh_insn_sets_reg (unsigned int insn,
2082
      const struct sh_opcode *op,
2083
      unsigned int reg)
2084
0
{
2085
0
  unsigned int f;
2086
2087
0
  f = op->flags;
2088
2089
0
  if ((f & SETS1) != 0
2090
0
      && SETS1_REG (insn) == reg)
2091
0
    return true;
2092
0
  if ((f & SETS2) != 0
2093
0
      && SETS2_REG (insn) == reg)
2094
0
    return true;
2095
0
  if ((f & SETSR0) != 0
2096
0
      && reg == 0)
2097
0
    return true;
2098
0
  if ((f & SETSAS) && reg == SETSAS_REG (insn))
2099
0
    return true;
2100
2101
0
  return false;
2102
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_sets_reg
Unexecuted instantiation: pe-sh.c:sh_insn_sets_reg
2103
2104
/* See whether an instruction uses or sets a general purpose register */
2105
2106
static bool
2107
sh_insn_uses_or_sets_reg (unsigned int insn,
2108
        const struct sh_opcode *op,
2109
        unsigned int reg)
2110
0
{
2111
0
  if (sh_insn_uses_reg (insn, op, reg))
2112
0
    return true;
2113
2114
0
  return sh_insn_sets_reg (insn, op, reg);
2115
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_or_sets_reg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_or_sets_reg
2116
2117
/* See whether an instruction uses a floating point register.  */
2118
2119
static bool
2120
sh_insn_uses_freg (unsigned int insn,
2121
       const struct sh_opcode *op,
2122
       unsigned int freg)
2123
0
{
2124
0
  unsigned int f;
2125
2126
0
  f = op->flags;
2127
2128
  /* We can't tell if this is a double-precision insn, so just play safe
2129
     and assume that it might be.  So not only have we test FREG against
2130
     itself, but also even FREG against FREG+1 - if the using insn uses
2131
     just the low part of a double precision value - but also an odd
2132
     FREG against FREG-1 -  if the setting insn sets just the low part
2133
     of a double precision value.
2134
     So what this all boils down to is that we have to ignore the lowest
2135
     bit of the register number.  */
2136
2137
0
  if ((f & USESF1) != 0
2138
0
      && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2139
0
    return true;
2140
0
  if ((f & USESF2) != 0
2141
0
      && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2142
0
    return true;
2143
0
  if ((f & USESF0) != 0
2144
0
      && freg == 0)
2145
0
    return true;
2146
2147
0
  return false;
2148
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_freg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_freg
2149
2150
/* See whether an instruction sets a floating point register.  */
2151
2152
static bool
2153
sh_insn_sets_freg (unsigned int insn,
2154
       const struct sh_opcode *op,
2155
       unsigned int freg)
2156
0
{
2157
0
  unsigned int f;
2158
2159
0
  f = op->flags;
2160
2161
  /* We can't tell if this is a double-precision insn, so just play safe
2162
     and assume that it might be.  So not only have we test FREG against
2163
     itself, but also even FREG against FREG+1 - if the using insn uses
2164
     just the low part of a double precision value - but also an odd
2165
     FREG against FREG-1 -  if the setting insn sets just the low part
2166
     of a double precision value.
2167
     So what this all boils down to is that we have to ignore the lowest
2168
     bit of the register number.  */
2169
2170
0
  if ((f & SETSF1) != 0
2171
0
      && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2172
0
    return true;
2173
2174
0
  return false;
2175
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_sets_freg
Unexecuted instantiation: pe-sh.c:sh_insn_sets_freg
2176
2177
/* See whether an instruction uses or sets a floating point register */
2178
2179
static bool
2180
sh_insn_uses_or_sets_freg (unsigned int insn,
2181
         const struct sh_opcode *op,
2182
         unsigned int reg)
2183
0
{
2184
0
  if (sh_insn_uses_freg (insn, op, reg))
2185
0
    return true;
2186
2187
0
  return sh_insn_sets_freg (insn, op, reg);
2188
0
}
Unexecuted instantiation: coff-sh.c:sh_insn_uses_or_sets_freg
Unexecuted instantiation: pe-sh.c:sh_insn_uses_or_sets_freg
2189
2190
/* See whether instructions I1 and I2 conflict, assuming I1 comes
2191
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
2192
   This should return TRUE if there is a conflict, or FALSE if the
2193
   instructions can be swapped safely.  */
2194
2195
static bool
2196
sh_insns_conflict (unsigned int i1,
2197
       const struct sh_opcode *op1,
2198
       unsigned int i2,
2199
       const struct sh_opcode *op2)
2200
0
{
2201
0
  unsigned int f1, f2;
2202
2203
0
  f1 = op1->flags;
2204
0
  f2 = op2->flags;
2205
2206
  /* Load of fpscr conflicts with floating point operations.
2207
     FIXME: shouldn't test raw opcodes here.  */
2208
0
  if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2209
0
      || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2210
0
    return true;
2211
2212
0
  if ((f1 & (BRANCH | DELAY)) != 0
2213
0
      || (f2 & (BRANCH | DELAY)) != 0)
2214
0
    return true;
2215
2216
0
  if (((f1 | f2) & SETSSP)
2217
0
      && (f1 & (SETSSP | USESSP))
2218
0
      && (f2 & (SETSSP | USESSP)))
2219
0
    return true;
2220
2221
0
  if ((f1 & SETS1) != 0
2222
0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2223
0
    return true;
2224
0
  if ((f1 & SETS2) != 0
2225
0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2226
0
    return true;
2227
0
  if ((f1 & SETSR0) != 0
2228
0
      && sh_insn_uses_or_sets_reg (i2, op2, 0))
2229
0
    return true;
2230
0
  if ((f1 & SETSAS)
2231
0
      && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2232
0
    return true;
2233
0
  if ((f1 & SETSF1) != 0
2234
0
      && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2235
0
    return true;
2236
2237
0
  if ((f2 & SETS1) != 0
2238
0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2239
0
    return true;
2240
0
  if ((f2 & SETS2) != 0
2241
0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2242
0
    return true;
2243
0
  if ((f2 & SETSR0) != 0
2244
0
      && sh_insn_uses_or_sets_reg (i1, op1, 0))
2245
0
    return true;
2246
0
  if ((f2 & SETSAS)
2247
0
      && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2248
0
    return true;
2249
0
  if ((f2 & SETSF1) != 0
2250
0
      && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2251
0
    return true;
2252
2253
  /* The instructions do not conflict.  */
2254
0
  return false;
2255
0
}
Unexecuted instantiation: coff-sh.c:sh_insns_conflict
Unexecuted instantiation: pe-sh.c:sh_insns_conflict
2256
2257
/* I1 is a load instruction, and I2 is some other instruction.  Return
2258
   TRUE if I1 loads a register which I2 uses.  */
2259
2260
static bool
2261
sh_load_use (unsigned int i1,
2262
       const struct sh_opcode *op1,
2263
       unsigned int i2,
2264
       const struct sh_opcode *op2)
2265
0
{
2266
0
  unsigned int f1;
2267
2268
0
  f1 = op1->flags;
2269
2270
0
  if ((f1 & LOAD) == 0)
2271
0
    return false;
2272
2273
  /* If both SETS1 and SETSSP are set, that means a load to a special
2274
     register using postincrement addressing mode, which we don't care
2275
     about here.  */
2276
0
  if ((f1 & SETS1) != 0
2277
0
      && (f1 & SETSSP) == 0
2278
0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2279
0
    return true;
2280
2281
0
  if ((f1 & SETSR0) != 0
2282
0
      && sh_insn_uses_reg (i2, op2, 0))
2283
0
    return true;
2284
2285
0
  if ((f1 & SETSF1) != 0
2286
0
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2287
0
    return true;
2288
2289
0
  return false;
2290
0
}
Unexecuted instantiation: coff-sh.c:sh_load_use
Unexecuted instantiation: pe-sh.c:sh_load_use
2291
2292
/* Try to align loads and stores within a span of memory.  This is
2293
   called by both the ELF and the COFF sh targets.  ABFD and SEC are
2294
   the BFD and section we are examining.  CONTENTS is the contents of
2295
   the section.  SWAP is the routine to call to swap two instructions.
2296
   RELOCS is a pointer to the internal relocation information, to be
2297
   passed to SWAP.  PLABEL is a pointer to the current label in a
2298
   sorted list of labels; LABEL_END is the end of the list.  START and
2299
   STOP are the range of memory to examine.  If a swap is made,
2300
   *PSWAPPED is set to TRUE.  */
2301
2302
#ifdef COFF_WITH_PE
2303
static
2304
#endif
2305
bool
2306
_bfd_sh_align_load_span (bfd *abfd,
2307
       asection *sec,
2308
       bfd_byte *contents,
2309
       bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2310
       void * relocs,
2311
       bfd_vma **plabel,
2312
       bfd_vma *label_end,
2313
       bfd_vma start,
2314
       bfd_vma stop,
2315
       bool *pswapped)
2316
0
{
2317
0
  int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2318
0
       || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2319
0
  bfd_vma i;
2320
2321
  /* The SH4 has a Harvard architecture, hence aligning loads is not
2322
     desirable.  In fact, it is counter-productive, since it interferes
2323
     with the schedules generated by the compiler.  */
2324
0
  if (abfd->arch_info->mach == bfd_mach_sh4)
2325
0
    return true;
2326
2327
  /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2328
     instructions.  */
2329
0
  if (dsp)
2330
0
    {
2331
0
      sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2332
0
      sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
2333
0
    }
2334
2335
  /* Instructions should be aligned on 2 byte boundaries.  */
2336
0
  if ((start & 1) == 1)
2337
0
    ++start;
2338
2339
  /* Now look through the unaligned addresses.  */
2340
0
  i = start;
2341
0
  if ((i & 2) == 0)
2342
0
    i += 2;
2343
0
  for (; i < stop; i += 4)
2344
0
    {
2345
0
      unsigned int insn;
2346
0
      const struct sh_opcode *op;
2347
0
      unsigned int prev_insn = 0;
2348
0
      const struct sh_opcode *prev_op = NULL;
2349
2350
0
      insn = bfd_get_16 (abfd, contents + i);
2351
0
      op = sh_insn_info (insn);
2352
0
      if (op == NULL
2353
0
    || (op->flags & (LOAD | STORE)) == 0)
2354
0
  continue;
2355
2356
      /* This is a load or store which is not on a four byte boundary.  */
2357
2358
0
      while (*plabel < label_end && **plabel < i)
2359
0
  ++*plabel;
2360
2361
0
      if (i > start)
2362
0
  {
2363
0
    prev_insn = bfd_get_16 (abfd, contents + i - 2);
2364
    /* If INSN is the field b of a parallel processing insn, it is not
2365
       a load / store after all.  Note that the test here might mistake
2366
       the field_b of a pcopy insn for the starting code of a parallel
2367
       processing insn; this might miss a swapping opportunity, but at
2368
       least we're on the safe side.  */
2369
0
    if (dsp && (prev_insn & 0xfc00) == 0xf800)
2370
0
      continue;
2371
2372
    /* Check if prev_insn is actually the field b of a parallel
2373
       processing insn.  Again, this can give a spurious match
2374
       after a pcopy.  */
2375
0
    if (dsp && i - 2 > start)
2376
0
      {
2377
0
        unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2378
2379
0
        if ((pprev_insn & 0xfc00) == 0xf800)
2380
0
    prev_op = NULL;
2381
0
        else
2382
0
    prev_op = sh_insn_info (prev_insn);
2383
0
      }
2384
0
    else
2385
0
      prev_op = sh_insn_info (prev_insn);
2386
2387
    /* If the load/store instruction is in a delay slot, we
2388
       can't swap.  */
2389
0
    if (prev_op == NULL
2390
0
        || (prev_op->flags & DELAY) != 0)
2391
0
      continue;
2392
0
  }
2393
0
      if (i > start
2394
0
    && (*plabel >= label_end || **plabel != i)
2395
0
    && prev_op != NULL
2396
0
    && (prev_op->flags & (LOAD | STORE)) == 0
2397
0
    && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2398
0
  {
2399
0
    bool ok;
2400
2401
    /* The load/store instruction does not have a label, and
2402
       there is a previous instruction; PREV_INSN is not
2403
       itself a load/store instruction, and PREV_INSN and
2404
       INSN do not conflict.  */
2405
2406
0
    ok = true;
2407
2408
0
    if (i >= start + 4)
2409
0
      {
2410
0
        unsigned int prev2_insn;
2411
0
        const struct sh_opcode *prev2_op;
2412
2413
0
        prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2414
0
        prev2_op = sh_insn_info (prev2_insn);
2415
2416
        /* If the instruction before PREV_INSN has a delay
2417
     slot--that is, PREV_INSN is in a delay slot--we
2418
     can not swap.  */
2419
0
        if (prev2_op == NULL
2420
0
      || (prev2_op->flags & DELAY) != 0)
2421
0
    ok = false;
2422
2423
        /* If the instruction before PREV_INSN is a load,
2424
     and it sets a register which INSN uses, then
2425
     putting INSN immediately after PREV_INSN will
2426
     cause a pipeline bubble, so there is no point to
2427
     making the swap.  */
2428
0
        if (ok
2429
0
      && (prev2_op->flags & LOAD) != 0
2430
0
      && sh_load_use (prev2_insn, prev2_op, insn, op))
2431
0
    ok = false;
2432
0
      }
2433
2434
0
    if (ok)
2435
0
      {
2436
0
        if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2437
0
    return false;
2438
0
        *pswapped = true;
2439
0
        continue;
2440
0
      }
2441
0
  }
2442
2443
0
      while (*plabel < label_end && **plabel < i + 2)
2444
0
  ++*plabel;
2445
2446
0
      if (i + 2 < stop
2447
0
    && (*plabel >= label_end || **plabel != i + 2))
2448
0
  {
2449
0
    unsigned int next_insn;
2450
0
    const struct sh_opcode *next_op;
2451
2452
    /* There is an instruction after the load/store
2453
       instruction, and it does not have a label.  */
2454
0
    next_insn = bfd_get_16 (abfd, contents + i + 2);
2455
0
    next_op = sh_insn_info (next_insn);
2456
0
    if (next_op != NULL
2457
0
        && (next_op->flags & (LOAD | STORE)) == 0
2458
0
        && ! sh_insns_conflict (insn, op, next_insn, next_op))
2459
0
      {
2460
0
        bool ok;
2461
2462
        /* NEXT_INSN is not itself a load/store instruction,
2463
     and it does not conflict with INSN.  */
2464
2465
0
        ok = true;
2466
2467
        /* If PREV_INSN is a load, and it sets a register
2468
     which NEXT_INSN uses, then putting NEXT_INSN
2469
     immediately after PREV_INSN will cause a pipeline
2470
     bubble, so there is no reason to make this swap.  */
2471
0
        if (prev_op != NULL
2472
0
      && (prev_op->flags & LOAD) != 0
2473
0
      && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2474
0
    ok = false;
2475
2476
        /* If INSN is a load, and it sets a register which
2477
     the insn after NEXT_INSN uses, then doing the
2478
     swap will cause a pipeline bubble, so there is no
2479
     reason to make the swap.  However, if the insn
2480
     after NEXT_INSN is itself a load or store
2481
     instruction, then it is misaligned, so
2482
     optimistically hope that it will be swapped
2483
     itself, and just live with the pipeline bubble if
2484
     it isn't.  */
2485
0
        if (ok
2486
0
      && i + 4 < stop
2487
0
      && (op->flags & LOAD) != 0)
2488
0
    {
2489
0
      unsigned int next2_insn;
2490
0
      const struct sh_opcode *next2_op;
2491
2492
0
      next2_insn = bfd_get_16 (abfd, contents + i + 4);
2493
0
      next2_op = sh_insn_info (next2_insn);
2494
0
      if (next2_op == NULL
2495
0
          || ((next2_op->flags & (LOAD | STORE)) == 0
2496
0
        && sh_load_use (insn, op, next2_insn, next2_op)))
2497
0
        ok = false;
2498
0
    }
2499
2500
0
        if (ok)
2501
0
    {
2502
0
      if (! (*swap) (abfd, sec, relocs, contents, i))
2503
0
        return false;
2504
0
      *pswapped = true;
2505
0
      continue;
2506
0
    }
2507
0
      }
2508
0
  }
2509
0
    }
2510
2511
0
  return true;
2512
0
}
Unexecuted instantiation: _bfd_sh_align_load_span
Unexecuted instantiation: pe-sh.c:sh_align_load_span
2513
#endif /* not COFF_IMAGE_WITH_PE */
2514
2515
/* Swap two SH instructions.  */
2516
2517
static bool
2518
sh_swap_insns (bfd *      abfd,
2519
         asection * sec,
2520
         void *     relocs,
2521
         bfd_byte * contents,
2522
         bfd_vma    addr)
2523
0
{
2524
0
  struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2525
0
  unsigned short i1, i2;
2526
0
  struct internal_reloc *irel, *irelend;
2527
2528
  /* Swap the instructions themselves.  */
2529
0
  i1 = bfd_get_16 (abfd, contents + addr);
2530
0
  i2 = bfd_get_16 (abfd, contents + addr + 2);
2531
0
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2532
0
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2533
2534
  /* Adjust all reloc addresses.  */
2535
0
  irelend = internal_relocs + sec->reloc_count;
2536
0
  for (irel = internal_relocs; irel < irelend; irel++)
2537
0
    {
2538
0
      int type, add;
2539
2540
      /* There are a few special types of relocs that we don't want to
2541
   adjust.  These relocs do not apply to the instruction itself,
2542
   but are only associated with the address.  */
2543
0
      type = irel->r_type;
2544
0
      if (type == R_SH_ALIGN
2545
0
    || type == R_SH_CODE
2546
0
    || type == R_SH_DATA
2547
0
    || type == R_SH_LABEL)
2548
0
  continue;
2549
2550
      /* If an R_SH_USES reloc points to one of the addresses being
2551
   swapped, we must adjust it.  It would be incorrect to do this
2552
   for a jump, though, since we want to execute both
2553
   instructions after the jump.  (We have avoided swapping
2554
   around a label, so the jump will not wind up executing an
2555
   instruction it shouldn't).  */
2556
0
      if (type == R_SH_USES)
2557
0
  {
2558
0
    bfd_vma off;
2559
2560
0
    off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2561
0
    if (off == addr)
2562
0
      irel->r_offset += 2;
2563
0
    else if (off == addr + 2)
2564
0
      irel->r_offset -= 2;
2565
0
  }
2566
2567
0
      if (irel->r_vaddr - sec->vma == addr)
2568
0
  {
2569
0
    irel->r_vaddr += 2;
2570
0
    add = -2;
2571
0
  }
2572
0
      else if (irel->r_vaddr - sec->vma == addr + 2)
2573
0
  {
2574
0
    irel->r_vaddr -= 2;
2575
0
    add = 2;
2576
0
  }
2577
0
      else
2578
0
  add = 0;
2579
2580
0
      if (add != 0)
2581
0
  {
2582
0
    bfd_byte *loc;
2583
0
    unsigned short insn, oinsn;
2584
0
    bool overflow;
2585
2586
0
    loc = contents + irel->r_vaddr - sec->vma;
2587
0
    overflow = false;
2588
0
    switch (type)
2589
0
      {
2590
0
      default:
2591
0
        break;
2592
2593
0
      case R_SH_PCDISP8BY2:
2594
0
      case R_SH_PCRELIMM8BY2:
2595
0
        insn = bfd_get_16 (abfd, loc);
2596
0
        oinsn = insn;
2597
0
        insn += add / 2;
2598
0
        if ((oinsn & 0xff00) != (insn & 0xff00))
2599
0
    overflow = true;
2600
0
        bfd_put_16 (abfd, (bfd_vma) insn, loc);
2601
0
        break;
2602
2603
0
      case R_SH_PCDISP:
2604
0
        insn = bfd_get_16 (abfd, loc);
2605
0
        oinsn = insn;
2606
0
        insn += add / 2;
2607
0
        if ((oinsn & 0xf000) != (insn & 0xf000))
2608
0
    overflow = true;
2609
0
        bfd_put_16 (abfd, (bfd_vma) insn, loc);
2610
0
        break;
2611
2612
0
      case R_SH_PCRELIMM8BY4:
2613
        /* This reloc ignores the least significant 3 bits of
2614
     the program counter before adding in the offset.
2615
     This means that if ADDR is at an even address, the
2616
     swap will not affect the offset.  If ADDR is an at an
2617
     odd address, then the instruction will be crossing a
2618
     four byte boundary, and must be adjusted.  */
2619
0
        if ((addr & 3) != 0)
2620
0
    {
2621
0
      insn = bfd_get_16 (abfd, loc);
2622
0
      oinsn = insn;
2623
0
      insn += add / 2;
2624
0
      if ((oinsn & 0xff00) != (insn & 0xff00))
2625
0
        overflow = true;
2626
0
      bfd_put_16 (abfd, (bfd_vma) insn, loc);
2627
0
    }
2628
2629
0
        break;
2630
0
      }
2631
2632
0
    if (overflow)
2633
0
      {
2634
0
        _bfd_error_handler
2635
    /* xgettext: c-format */
2636
0
    (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2637
0
     abfd, (uint64_t) irel->r_vaddr);
2638
0
        bfd_set_error (bfd_error_bad_value);
2639
0
        return false;
2640
0
      }
2641
0
  }
2642
0
    }
2643
2644
0
  return true;
2645
0
}
Unexecuted instantiation: coff-sh.c:sh_swap_insns
Unexecuted instantiation: pe-sh.c:sh_swap_insns
Unexecuted instantiation: pei-sh.c:sh_swap_insns
2646
2647
/* Look for loads and stores which we can align to four byte
2648
   boundaries.  See the longer comment above sh_relax_section for why
2649
   this is desirable.  This sets *PSWAPPED if some instruction was
2650
   swapped.  */
2651
2652
static bool
2653
sh_align_loads (bfd *abfd,
2654
    asection *sec,
2655
    struct internal_reloc *internal_relocs,
2656
    bfd_byte *contents,
2657
    bool *pswapped)
2658
0
{
2659
0
  struct internal_reloc *irel, *irelend;
2660
0
  bfd_vma *labels = NULL;
2661
0
  bfd_vma *label, *label_end;
2662
0
  bfd_size_type amt;
2663
2664
0
  *pswapped = false;
2665
2666
0
  irelend = internal_relocs + sec->reloc_count;
2667
2668
  /* Get all the addresses with labels on them.  */
2669
0
  amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2670
0
  labels = (bfd_vma *) bfd_malloc (amt);
2671
0
  if (labels == NULL)
2672
0
    goto error_return;
2673
0
  label_end = labels;
2674
0
  for (irel = internal_relocs; irel < irelend; irel++)
2675
0
    {
2676
0
      if (irel->r_type == R_SH_LABEL)
2677
0
  {
2678
0
    *label_end = irel->r_vaddr - sec->vma;
2679
0
    ++label_end;
2680
0
  }
2681
0
    }
2682
2683
  /* Note that the assembler currently always outputs relocs in
2684
     address order.  If that ever changes, this code will need to sort
2685
     the label values and the relocs.  */
2686
2687
0
  label = labels;
2688
2689
0
  for (irel = internal_relocs; irel < irelend; irel++)
2690
0
    {
2691
0
      bfd_vma start, stop;
2692
2693
0
      if (irel->r_type != R_SH_CODE)
2694
0
  continue;
2695
2696
0
      start = irel->r_vaddr - sec->vma;
2697
2698
0
      for (irel++; irel < irelend; irel++)
2699
0
  if (irel->r_type == R_SH_DATA)
2700
0
    break;
2701
0
      if (irel < irelend)
2702
0
  stop = irel->r_vaddr - sec->vma;
2703
0
      else
2704
0
  stop = sec->size;
2705
2706
0
      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2707
0
             internal_relocs, &label,
2708
0
             label_end, start, stop, pswapped))
2709
0
  goto error_return;
2710
0
    }
2711
2712
0
  free (labels);
2713
2714
0
  return true;
2715
2716
0
 error_return:
2717
0
  free (labels);
2718
0
  return false;
2719
0
}
Unexecuted instantiation: coff-sh.c:sh_align_loads
Unexecuted instantiation: pe-sh.c:sh_align_loads
Unexecuted instantiation: pei-sh.c:sh_align_loads
2720

2721
/* This is a modification of _bfd_coff_generic_relocate_section, which
2722
   will handle SH relaxing.  */
2723
2724
static bool
2725
sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2726
         struct bfd_link_info *info,
2727
         bfd *input_bfd,
2728
         asection *input_section,
2729
         bfd_byte *contents,
2730
         struct internal_reloc *relocs,
2731
         struct internal_syment *syms,
2732
         asection **sections)
2733
0
{
2734
0
  struct internal_reloc *rel;
2735
0
  struct internal_reloc *relend;
2736
2737
0
  rel = relocs;
2738
0
  relend = rel + input_section->reloc_count;
2739
0
  for (; rel < relend; rel++)
2740
0
    {
2741
0
      long symndx;
2742
0
      struct coff_link_hash_entry *h;
2743
0
      struct internal_syment *sym;
2744
0
      bfd_vma addend;
2745
0
      bfd_vma val;
2746
0
      reloc_howto_type *howto;
2747
0
      bfd_reloc_status_type rstat;
2748
2749
      /* Almost all relocs have to do with relaxing.  If any work must
2750
   be done for them, it has been done in sh_relax_section.  */
2751
0
      if (rel->r_type != R_SH_IMM32
2752
#ifdef COFF_WITH_PE
2753
0
    && rel->r_type != R_SH_IMM32CE
2754
0
    && rel->r_type != R_SH_IMAGEBASE
2755
#endif
2756
0
    && rel->r_type != R_SH_PCDISP)
2757
0
  continue;
2758
2759
0
      symndx = rel->r_symndx;
2760
2761
0
      if (symndx == -1)
2762
0
  {
2763
0
    h = NULL;
2764
0
    sym = NULL;
2765
0
  }
2766
0
      else
2767
0
  {
2768
0
    if (symndx < 0
2769
0
        || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2770
0
      {
2771
0
        _bfd_error_handler
2772
    /* xgettext: c-format */
2773
0
    (_("%pB: illegal symbol index %ld in relocs"),
2774
0
     input_bfd, symndx);
2775
0
        bfd_set_error (bfd_error_bad_value);
2776
0
        return false;
2777
0
      }
2778
0
    h = obj_coff_sym_hashes (input_bfd)[symndx];
2779
0
    sym = syms + symndx;
2780
0
  }
2781
2782
0
      if (sym != NULL && sym->n_scnum != 0)
2783
0
  addend = - sym->n_value;
2784
0
      else
2785
0
  addend = 0;
2786
2787
0
      if (rel->r_type == R_SH_PCDISP)
2788
0
  addend -= 4;
2789
2790
0
      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2791
0
  howto = NULL;
2792
0
      else
2793
0
  howto = &sh_coff_howtos[rel->r_type];
2794
2795
0
      if (howto == NULL)
2796
0
  {
2797
0
    bfd_set_error (bfd_error_bad_value);
2798
0
    return false;
2799
0
  }
2800
2801
#ifdef COFF_WITH_PE
2802
0
      if (rel->r_type == R_SH_IMAGEBASE)
2803
0
  addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2804
#endif
2805
2806
0
      val = 0;
2807
2808
0
      if (h == NULL)
2809
0
  {
2810
0
    asection *sec;
2811
2812
    /* There is nothing to do for an internal PCDISP reloc.  */
2813
0
    if (rel->r_type == R_SH_PCDISP)
2814
0
      continue;
2815
2816
0
    if (symndx == -1)
2817
0
      {
2818
0
        sec = bfd_abs_section_ptr;
2819
0
        val = 0;
2820
0
      }
2821
0
    else
2822
0
      {
2823
0
        sec = sections[symndx];
2824
0
        val = (sec->output_section->vma
2825
0
         + sec->output_offset
2826
0
         + sym->n_value
2827
0
         - sec->vma);
2828
0
      }
2829
0
  }
2830
0
      else
2831
0
  {
2832
0
    if (h->root.type == bfd_link_hash_defined
2833
0
        || h->root.type == bfd_link_hash_defweak)
2834
0
      {
2835
0
        asection *sec;
2836
2837
0
        sec = h->root.u.def.section;
2838
0
        val = (h->root.u.def.value
2839
0
         + sec->output_section->vma
2840
0
         + sec->output_offset);
2841
0
      }
2842
0
    else if (! bfd_link_relocatable (info))
2843
0
      (*info->callbacks->undefined_symbol)
2844
0
        (info, h->root.root.string, input_bfd, input_section,
2845
0
         rel->r_vaddr - input_section->vma, true);
2846
0
  }
2847
2848
0
      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2849
0
          contents,
2850
0
          rel->r_vaddr - input_section->vma,
2851
0
          val, addend);
2852
2853
0
      switch (rstat)
2854
0
  {
2855
0
  default:
2856
0
    abort ();
2857
0
  case bfd_reloc_ok:
2858
0
    break;
2859
0
  case bfd_reloc_overflow:
2860
0
    {
2861
0
      const char *name;
2862
0
      char buf[SYMNMLEN + 1];
2863
2864
0
      if (symndx == -1)
2865
0
        name = "*ABS*";
2866
0
      else if (h != NULL)
2867
0
        name = NULL;
2868
0
      else if (sym->_n._n_n._n_zeroes == 0
2869
0
         && sym->_n._n_n._n_offset != 0)
2870
0
        {
2871
0
    if (sym->_n._n_n._n_offset < obj_coff_strings_len (input_bfd))
2872
0
      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2873
0
    else
2874
0
      name = "?";
2875
0
        }
2876
0
      else
2877
0
        {
2878
0
    strncpy (buf, sym->_n._n_name, SYMNMLEN);
2879
0
    buf[SYMNMLEN] = '\0';
2880
0
    name = buf;
2881
0
        }
2882
2883
0
      (*info->callbacks->reloc_overflow)
2884
0
        (info, (h ? &h->root : NULL), name, howto->name,
2885
0
         (bfd_vma) 0, input_bfd, input_section,
2886
0
         rel->r_vaddr - input_section->vma);
2887
0
    }
2888
0
  }
2889
0
    }
2890
2891
0
  return true;
2892
0
}
Unexecuted instantiation: coff-sh.c:sh_relocate_section
Unexecuted instantiation: pe-sh.c:sh_relocate_section
Unexecuted instantiation: pei-sh.c:sh_relocate_section
2893
2894
/* This is a version of bfd_generic_get_relocated_section_contents
2895
   which uses sh_relocate_section.  */
2896
2897
static bfd_byte *
2898
sh_coff_get_relocated_section_contents (bfd *output_bfd,
2899
          struct bfd_link_info *link_info,
2900
          struct bfd_link_order *link_order,
2901
          bfd_byte *data,
2902
          bool relocatable,
2903
          asymbol **symbols)
2904
131
{
2905
131
  asection *input_section = link_order->u.indirect.section;
2906
131
  bfd *input_bfd = input_section->owner;
2907
131
  asection **sections = NULL;
2908
131
  struct internal_reloc *internal_relocs = NULL;
2909
131
  struct internal_syment *internal_syms = NULL;
2910
2911
  /* We only need to handle the case of relaxing, or of having a
2912
     particular set of section contents, specially.  */
2913
131
  if (relocatable
2914
131
      || coff_section_data (input_bfd, input_section) == NULL
2915
131
      || coff_section_data (input_bfd, input_section)->contents == NULL)
2916
131
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2917
131
                   link_order, data,
2918
131
                   relocatable,
2919
131
                   symbols);
2920
2921
0
  bfd_byte *orig_data = data;
2922
0
  if (data == NULL)
2923
0
    {
2924
0
      data = bfd_malloc (input_section->size);
2925
0
      if (data == NULL)
2926
0
  return NULL;
2927
0
    }
2928
0
  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2929
0
    (size_t) input_section->size);
2930
2931
0
  if ((input_section->flags & SEC_RELOC) != 0
2932
0
      && input_section->reloc_count > 0)
2933
0
    {
2934
0
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2935
0
      bfd_byte *esym, *esymend;
2936
0
      struct internal_syment *isymp;
2937
0
      asection **secpp;
2938
0
      bfd_size_type amt;
2939
2940
0
      if (! _bfd_coff_get_external_symbols (input_bfd))
2941
0
  goto error_return;
2942
2943
0
      internal_relocs = (_bfd_coff_read_internal_relocs
2944
0
       (input_bfd, input_section, false, (bfd_byte *) NULL,
2945
0
        false, (struct internal_reloc *) NULL));
2946
0
      if (internal_relocs == NULL)
2947
0
  goto error_return;
2948
2949
0
      amt = obj_raw_syment_count (input_bfd);
2950
0
      amt *= sizeof (struct internal_syment);
2951
0
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
2952
0
      if (internal_syms == NULL)
2953
0
  goto error_return;
2954
2955
0
      amt = obj_raw_syment_count (input_bfd);
2956
0
      amt *= sizeof (asection *);
2957
0
      sections = (asection **) bfd_malloc (amt);
2958
0
      if (sections == NULL)
2959
0
  goto error_return;
2960
2961
0
      isymp = internal_syms;
2962
0
      secpp = sections;
2963
0
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2964
0
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2965
0
      while (esym < esymend)
2966
0
  {
2967
0
    bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2968
2969
0
    if (isymp->n_scnum != 0)
2970
0
      *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2971
0
    else
2972
0
      {
2973
0
        if (isymp->n_value == 0)
2974
0
    *secpp = bfd_und_section_ptr;
2975
0
        else
2976
0
    *secpp = bfd_com_section_ptr;
2977
0
      }
2978
2979
0
    esym += (isymp->n_numaux + 1) * symesz;
2980
0
    secpp += isymp->n_numaux + 1;
2981
0
    isymp += isymp->n_numaux + 1;
2982
0
  }
2983
2984
0
      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2985
0
         input_section, data, internal_relocs,
2986
0
         internal_syms, sections))
2987
0
  goto error_return;
2988
2989
0
      free (sections);
2990
0
      sections = NULL;
2991
0
      free (internal_syms);
2992
0
      internal_syms = NULL;
2993
0
      free (internal_relocs);
2994
0
      internal_relocs = NULL;
2995
0
    }
2996
2997
0
  return data;
2998
2999
0
 error_return:
3000
0
  free (internal_relocs);
3001
0
  free (internal_syms);
3002
0
  free (sections);
3003
0
  if (orig_data == NULL)
3004
0
    free (data);
3005
0
  return NULL;
3006
0
}
coff-sh.c:sh_coff_get_relocated_section_contents
Line
Count
Source
2904
98
{
2905
98
  asection *input_section = link_order->u.indirect.section;
2906
98
  bfd *input_bfd = input_section->owner;
2907
98
  asection **sections = NULL;
2908
98
  struct internal_reloc *internal_relocs = NULL;
2909
98
  struct internal_syment *internal_syms = NULL;
2910
2911
  /* We only need to handle the case of relaxing, or of having a
2912
     particular set of section contents, specially.  */
2913
98
  if (relocatable
2914
98
      || coff_section_data (input_bfd, input_section) == NULL
2915
98
      || coff_section_data (input_bfd, input_section)->contents == NULL)
2916
98
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2917
98
                   link_order, data,
2918
98
                   relocatable,
2919
98
                   symbols);
2920
2921
0
  bfd_byte *orig_data = data;
2922
0
  if (data == NULL)
2923
0
    {
2924
0
      data = bfd_malloc (input_section->size);
2925
0
      if (data == NULL)
2926
0
  return NULL;
2927
0
    }
2928
0
  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2929
0
    (size_t) input_section->size);
2930
2931
0
  if ((input_section->flags & SEC_RELOC) != 0
2932
0
      && input_section->reloc_count > 0)
2933
0
    {
2934
0
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2935
0
      bfd_byte *esym, *esymend;
2936
0
      struct internal_syment *isymp;
2937
0
      asection **secpp;
2938
0
      bfd_size_type amt;
2939
2940
0
      if (! _bfd_coff_get_external_symbols (input_bfd))
2941
0
  goto error_return;
2942
2943
0
      internal_relocs = (_bfd_coff_read_internal_relocs
2944
0
       (input_bfd, input_section, false, (bfd_byte *) NULL,
2945
0
        false, (struct internal_reloc *) NULL));
2946
0
      if (internal_relocs == NULL)
2947
0
  goto error_return;
2948
2949
0
      amt = obj_raw_syment_count (input_bfd);
2950
0
      amt *= sizeof (struct internal_syment);
2951
0
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
2952
0
      if (internal_syms == NULL)
2953
0
  goto error_return;
2954
2955
0
      amt = obj_raw_syment_count (input_bfd);
2956
0
      amt *= sizeof (asection *);
2957
0
      sections = (asection **) bfd_malloc (amt);
2958
0
      if (sections == NULL)
2959
0
  goto error_return;
2960
2961
0
      isymp = internal_syms;
2962
0
      secpp = sections;
2963
0
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2964
0
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2965
0
      while (esym < esymend)
2966
0
  {
2967
0
    bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2968
2969
0
    if (isymp->n_scnum != 0)
2970
0
      *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2971
0
    else
2972
0
      {
2973
0
        if (isymp->n_value == 0)
2974
0
    *secpp = bfd_und_section_ptr;
2975
0
        else
2976
0
    *secpp = bfd_com_section_ptr;
2977
0
      }
2978
2979
0
    esym += (isymp->n_numaux + 1) * symesz;
2980
0
    secpp += isymp->n_numaux + 1;
2981
0
    isymp += isymp->n_numaux + 1;
2982
0
  }
2983
2984
0
      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2985
0
         input_section, data, internal_relocs,
2986
0
         internal_syms, sections))
2987
0
  goto error_return;
2988
2989
0
      free (sections);
2990
0
      sections = NULL;
2991
0
      free (internal_syms);
2992
0
      internal_syms = NULL;
2993
0
      free (internal_relocs);
2994
0
      internal_relocs = NULL;
2995
0
    }
2996
2997
0
  return data;
2998
2999
0
 error_return:
3000
0
  free (internal_relocs);
3001
0
  free (internal_syms);
3002
0
  free (sections);
3003
0
  if (orig_data == NULL)
3004
0
    free (data);
3005
0
  return NULL;
3006
0
}
pe-sh.c:sh_coff_get_relocated_section_contents
Line
Count
Source
2904
33
{
2905
33
  asection *input_section = link_order->u.indirect.section;
2906
33
  bfd *input_bfd = input_section->owner;
2907
33
  asection **sections = NULL;
2908
33
  struct internal_reloc *internal_relocs = NULL;
2909
33
  struct internal_syment *internal_syms = NULL;
2910
2911
  /* We only need to handle the case of relaxing, or of having a
2912
     particular set of section contents, specially.  */
2913
33
  if (relocatable
2914
33
      || coff_section_data (input_bfd, input_section) == NULL
2915
33
      || coff_section_data (input_bfd, input_section)->contents == NULL)
2916
33
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2917
33
                   link_order, data,
2918
33
                   relocatable,
2919
33
                   symbols);
2920
2921
0
  bfd_byte *orig_data = data;
2922
0
  if (data == NULL)
2923
0
    {
2924
0
      data = bfd_malloc (input_section->size);
2925
0
      if (data == NULL)
2926
0
  return NULL;
2927
0
    }
2928
0
  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2929
0
    (size_t) input_section->size);
2930
2931
0
  if ((input_section->flags & SEC_RELOC) != 0
2932
0
      && input_section->reloc_count > 0)
2933
0
    {
2934
0
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2935
0
      bfd_byte *esym, *esymend;
2936
0
      struct internal_syment *isymp;
2937
0
      asection **secpp;
2938
0
      bfd_size_type amt;
2939
2940
0
      if (! _bfd_coff_get_external_symbols (input_bfd))
2941
0
  goto error_return;
2942
2943
0
      internal_relocs = (_bfd_coff_read_internal_relocs
2944
0
       (input_bfd, input_section, false, (bfd_byte *) NULL,
2945
0
        false, (struct internal_reloc *) NULL));
2946
0
      if (internal_relocs == NULL)
2947
0
  goto error_return;
2948
2949
0
      amt = obj_raw_syment_count (input_bfd);
2950
0
      amt *= sizeof (struct internal_syment);
2951
0
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
2952
0
      if (internal_syms == NULL)
2953
0
  goto error_return;
2954
2955
0
      amt = obj_raw_syment_count (input_bfd);
2956
0
      amt *= sizeof (asection *);
2957
0
      sections = (asection **) bfd_malloc (amt);
2958
0
      if (sections == NULL)
2959
0
  goto error_return;
2960
2961
0
      isymp = internal_syms;
2962
0
      secpp = sections;
2963
0
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2964
0
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2965
0
      while (esym < esymend)
2966
0
  {
2967
0
    bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2968
2969
0
    if (isymp->n_scnum != 0)
2970
0
      *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2971
0
    else
2972
0
      {
2973
0
        if (isymp->n_value == 0)
2974
0
    *secpp = bfd_und_section_ptr;
2975
0
        else
2976
0
    *secpp = bfd_com_section_ptr;
2977
0
      }
2978
2979
0
    esym += (isymp->n_numaux + 1) * symesz;
2980
0
    secpp += isymp->n_numaux + 1;
2981
0
    isymp += isymp->n_numaux + 1;
2982
0
  }
2983
2984
0
      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2985
0
         input_section, data, internal_relocs,
2986
0
         internal_syms, sections))
2987
0
  goto error_return;
2988
2989
0
      free (sections);
2990
0
      sections = NULL;
2991
0
      free (internal_syms);
2992
0
      internal_syms = NULL;
2993
0
      free (internal_relocs);
2994
0
      internal_relocs = NULL;
2995
0
    }
2996
2997
0
  return data;
2998
2999
0
 error_return:
3000
0
  free (internal_relocs);
3001
0
  free (internal_syms);
3002
0
  free (sections);
3003
0
  if (orig_data == NULL)
3004
0
    free (data);
3005
0
  return NULL;
3006
0
}
Unexecuted instantiation: pei-sh.c:sh_coff_get_relocated_section_contents
3007
3008
/* The target vectors.  */
3009
3010
#ifndef TARGET_SHL_SYM
3011
CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3012
#endif
3013
3014
#ifdef TARGET_SHL_SYM
3015
#define TARGET_SYM TARGET_SHL_SYM
3016
#else
3017
#define TARGET_SYM sh_coff_le_vec
3018
#endif
3019
3020
#ifndef TARGET_SHL_NAME
3021
#define TARGET_SHL_NAME "coff-shl"
3022
#endif
3023
3024
#ifdef COFF_WITH_PE
3025
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3026
             SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3027
#else
3028
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3029
             0, '_', NULL, COFF_SWAP_TABLE)
3030
#endif
3031
3032
#ifndef TARGET_SHL_SYM
3033
3034
/* Some people want versions of the SH COFF target which do not align
3035
   to 16 byte boundaries.  We implement that by adding a couple of new
3036
   target vectors.  These are just like the ones above, but they
3037
   change the default section alignment.  To generate them in the
3038
   assembler, use -small.  To use them in the linker, use -b
3039
   coff-sh{l}-small and -oformat coff-sh{l}-small.
3040
3041
   Yes, this is a horrible hack.  A general solution for setting
3042
   section alignment in COFF is rather complex.  ELF handles this
3043
   correctly.  */
3044
3045
/* Only recognize the small versions if the target was not defaulted.
3046
   Otherwise we won't recognize the non default endianness.  */
3047
3048
static bfd_cleanup
3049
coff_small_object_p (bfd *abfd)
3050
6.82M
{
3051
6.82M
  if (abfd->target_defaulted)
3052
207k
    {
3053
207k
      bfd_set_error (bfd_error_wrong_format);
3054
207k
      return NULL;
3055
207k
    }
3056
6.61M
  return coff_object_p (abfd);
3057
6.82M
}
3058
3059
/* Set the section alignment for the small versions.  */
3060
3061
static bool
3062
coff_small_new_section_hook (bfd *abfd, asection *section)
3063
5.07M
{
3064
5.07M
  if (! coff_new_section_hook (abfd, section))
3065
0
    return false;
3066
3067
  /* We must align to at least a four byte boundary, because longword
3068
     accesses must be on a four byte boundary.  */
3069
5.07M
  if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3070
5.05M
    section->alignment_power = 2;
3071
3072
5.07M
  return true;
3073
5.07M
}
3074
3075
/* This is copied from bfd_coff_std_swap_table so that we can change
3076
   the default section alignment power.  */
3077
3078
static const bfd_coff_backend_data bfd_coff_small_swap_table =
3079
{
3080
  coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3081
  coff_swap_aux_out, coff_swap_sym_out,
3082
  coff_swap_lineno_out, coff_swap_reloc_out,
3083
  coff_swap_filehdr_out, coff_swap_aouthdr_out,
3084
  coff_swap_scnhdr_out,
3085
  FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3086
#ifdef COFF_LONG_FILENAMES
3087
  true,
3088
#else
3089
  false,
3090
#endif
3091
  COFF_DEFAULT_LONG_SECTION_NAMES,
3092
  2,
3093
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3094
  true,
3095
#else
3096
  false,
3097
#endif
3098
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3099
  4,
3100
#else
3101
  2,
3102
#endif
3103
  32768,
3104
  coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3105
  coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3106
  coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3107
  coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3108
  coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3109
  coff_classify_symbol, coff_compute_section_file_positions,
3110
  coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3111
  coff_adjust_symndx,
3112
  coff_link_output_has_begun, coff_final_link_postscript,
3113
  bfd_pe_print_pdata
3114
};
3115
3116
#define coff_small_close_and_cleanup \
3117
  coff_close_and_cleanup
3118
#define coff_small_bfd_free_cached_info \
3119
  coff_bfd_free_cached_info
3120
#define coff_small_get_section_contents \
3121
  coff_get_section_contents
3122
3123
extern const bfd_target sh_coff_small_le_vec;
3124
3125
const bfd_target sh_coff_small_vec =
3126
{
3127
  "coff-sh-small",    /* name */
3128
  bfd_target_coff_flavour,
3129
  BFD_ENDIAN_BIG,   /* data byte order is big */
3130
  BFD_ENDIAN_BIG,   /* header byte order is big */
3131
3132
  (HAS_RELOC | EXEC_P   /* object flags */
3133
   | HAS_LINENO | HAS_DEBUG
3134
   | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3135
3136
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3137
  '_',        /* leading symbol underscore */
3138
  '/',        /* ar_pad_char */
3139
  15,       /* ar_max_namelen */
3140
  0,        /* match priority.  */
3141
  TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */
3142
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3143
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3144
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3145
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3146
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3147
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3148
3149
  {       /* bfd_check_format */
3150
    _bfd_dummy_target,
3151
    coff_small_object_p,
3152
    bfd_generic_archive_p,
3153
    _bfd_dummy_target
3154
  },
3155
  {       /* bfd_set_format */
3156
    _bfd_bool_bfd_false_error,
3157
    coff_mkobject,
3158
    _bfd_generic_mkarchive,
3159
    _bfd_bool_bfd_false_error
3160
  },
3161
  {       /* bfd_write_contents */
3162
    _bfd_bool_bfd_false_error,
3163
    coff_write_object_contents,
3164
    _bfd_write_archive_contents,
3165
    _bfd_bool_bfd_false_error
3166
  },
3167
3168
  BFD_JUMP_TABLE_GENERIC (coff_small),
3169
  BFD_JUMP_TABLE_COPY (coff),
3170
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3171
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3172
  BFD_JUMP_TABLE_SYMBOLS (coff),
3173
  BFD_JUMP_TABLE_RELOCS (coff),
3174
  BFD_JUMP_TABLE_WRITE (coff),
3175
  BFD_JUMP_TABLE_LINK (coff),
3176
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3177
3178
  &sh_coff_small_le_vec,
3179
3180
  &bfd_coff_small_swap_table
3181
};
3182
3183
const bfd_target sh_coff_small_le_vec =
3184
{
3185
  "coff-shl-small",   /* name */
3186
  bfd_target_coff_flavour,
3187
  BFD_ENDIAN_LITTLE,    /* data byte order is little */
3188
  BFD_ENDIAN_LITTLE,    /* header byte order is little endian too*/
3189
3190
  (HAS_RELOC | EXEC_P   /* object flags */
3191
   | HAS_LINENO | HAS_DEBUG
3192
   | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3193
3194
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3195
  '_',        /* leading symbol underscore */
3196
  '/',        /* ar_pad_char */
3197
  15,       /* ar_max_namelen */
3198
  0,        /* match priority.  */
3199
  TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */
3200
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3201
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3202
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3203
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3204
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3205
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3206
3207
  {       /* bfd_check_format */
3208
    _bfd_dummy_target,
3209
    coff_small_object_p,
3210
    bfd_generic_archive_p,
3211
    _bfd_dummy_target
3212
  },
3213
  {       /* bfd_set_format */
3214
    _bfd_bool_bfd_false_error,
3215
    coff_mkobject,
3216
    _bfd_generic_mkarchive,
3217
    _bfd_bool_bfd_false_error
3218
  },
3219
  {       /* bfd_write_contents */
3220
    _bfd_bool_bfd_false_error,
3221
    coff_write_object_contents,
3222
    _bfd_write_archive_contents,
3223
    _bfd_bool_bfd_false_error
3224
  },
3225
3226
  BFD_JUMP_TABLE_GENERIC (coff_small),
3227
  BFD_JUMP_TABLE_COPY (coff),
3228
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3229
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3230
  BFD_JUMP_TABLE_SYMBOLS (coff),
3231
  BFD_JUMP_TABLE_RELOCS (coff),
3232
  BFD_JUMP_TABLE_WRITE (coff),
3233
  BFD_JUMP_TABLE_LINK (coff),
3234
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3235
3236
  &sh_coff_small_vec,
3237
3238
  &bfd_coff_small_swap_table
3239
};
3240
#endif