/src/binutils-gdb/bfd/coff-sh.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* BFD back-end for Renesas Super-H COFF binaries. |
2 | | Copyright (C) 1993-2025 Free Software Foundation, Inc. |
3 | | Contributed by Cygnus Support. |
4 | | Written by Steve Chamberlain, <sac@cygnus.com>. |
5 | | Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>. |
6 | | |
7 | | This file is part of BFD, the Binary File Descriptor library. |
8 | | |
9 | | This program is free software; you can redistribute it and/or modify |
10 | | it under the terms of the GNU General Public License as published by |
11 | | the Free Software Foundation; either version 3 of the License, or |
12 | | (at your option) any later version. |
13 | | |
14 | | This program is distributed in the hope that it will be useful, |
15 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | | GNU General Public License for more details. |
18 | | |
19 | | You should have received a copy of the GNU General Public License |
20 | | along with this program; if not, write to the Free Software |
21 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
22 | | MA 02110-1301, USA. */ |
23 | | |
24 | | #include "sysdep.h" |
25 | | #include "bfd.h" |
26 | | #include "libiberty.h" |
27 | | #include "libbfd.h" |
28 | | #include "bfdlink.h" |
29 | | #include "coff/sh.h" |
30 | | #include "coff/internal.h" |
31 | | |
32 | | #undef bfd_pe_print_pdata |
33 | | |
34 | | #ifdef COFF_WITH_PE |
35 | | #include "coff/pe.h" |
36 | | |
37 | | #ifndef COFF_IMAGE_WITH_PE |
38 | | static bool sh_align_load_span |
39 | | (bfd *, asection *, bfd_byte *, |
40 | | bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma), |
41 | | void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *); |
42 | | |
43 | 0 | #define _bfd_sh_align_load_span sh_align_load_span |
44 | | #endif |
45 | | |
46 | | #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata |
47 | | |
48 | | #else |
49 | | |
50 | | #define bfd_pe_print_pdata NULL |
51 | | |
52 | | #endif /* COFF_WITH_PE. */ |
53 | | |
54 | | #include "libcoff.h" |
55 | | |
56 | | /* Internal functions. */ |
57 | | |
58 | | #ifdef COFF_WITH_PE |
59 | | /* Can't build import tables with 2**4 alignment. */ |
60 | 981k | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2 |
61 | | #else |
62 | | /* Default section alignment to 2**4. */ |
63 | 26.2M | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4 |
64 | | #endif |
65 | | |
66 | | #ifdef COFF_IMAGE_WITH_PE |
67 | | /* Align PE executables. */ |
68 | 0 | #define COFF_PAGE_SIZE 0x1000 |
69 | | #endif |
70 | | |
71 | | /* Generate long file names. */ |
72 | | #define COFF_LONG_FILENAMES |
73 | | |
74 | | #ifdef COFF_WITH_PE |
75 | | /* Return TRUE if this relocation should |
76 | | appear in the output .reloc section. */ |
77 | | |
78 | | static bool |
79 | | in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED, |
80 | | reloc_howto_type * howto) |
81 | 0 | { |
82 | 0 | return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; |
83 | 0 | } Unexecuted instantiation: pe-sh.c:in_reloc_p Unexecuted instantiation: pei-sh.c:in_reloc_p |
84 | | #endif |
85 | | |
86 | | static bfd_reloc_status_type |
87 | | sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
88 | | static bool |
89 | | sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, |
90 | | bfd_byte *, struct internal_reloc *, |
91 | | struct internal_syment *, asection **); |
92 | | static bool |
93 | | sh_align_loads (bfd *, asection *, struct internal_reloc *, |
94 | | bfd_byte *, bool *); |
95 | | |
96 | | /* The supported relocations. There are a lot of relocations defined |
97 | | in coff/internal.h which we do not expect to ever see. */ |
98 | | static reloc_howto_type sh_coff_howtos[] = |
99 | | { |
100 | | EMPTY_HOWTO (0), |
101 | | EMPTY_HOWTO (1), |
102 | | #ifdef COFF_WITH_PE |
103 | | /* Windows CE */ |
104 | | HOWTO (R_SH_IMM32CE, /* type */ |
105 | | 0, /* rightshift */ |
106 | | 4, /* size */ |
107 | | 32, /* bitsize */ |
108 | | false, /* pc_relative */ |
109 | | 0, /* bitpos */ |
110 | | complain_overflow_bitfield, /* complain_on_overflow */ |
111 | | sh_reloc, /* special_function */ |
112 | | "r_imm32ce", /* name */ |
113 | | true, /* partial_inplace */ |
114 | | 0xffffffff, /* src_mask */ |
115 | | 0xffffffff, /* dst_mask */ |
116 | | false), /* pcrel_offset */ |
117 | | #else |
118 | | EMPTY_HOWTO (2), |
119 | | #endif |
120 | | EMPTY_HOWTO (3), /* R_SH_PCREL8 */ |
121 | | EMPTY_HOWTO (4), /* R_SH_PCREL16 */ |
122 | | EMPTY_HOWTO (5), /* R_SH_HIGH8 */ |
123 | | EMPTY_HOWTO (6), /* R_SH_IMM24 */ |
124 | | EMPTY_HOWTO (7), /* R_SH_LOW16 */ |
125 | | EMPTY_HOWTO (8), |
126 | | EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ |
127 | | |
128 | | HOWTO (R_SH_PCDISP8BY2, /* type */ |
129 | | 1, /* rightshift */ |
130 | | 2, /* size */ |
131 | | 8, /* bitsize */ |
132 | | true, /* pc_relative */ |
133 | | 0, /* bitpos */ |
134 | | complain_overflow_signed, /* complain_on_overflow */ |
135 | | sh_reloc, /* special_function */ |
136 | | "r_pcdisp8by2", /* name */ |
137 | | true, /* partial_inplace */ |
138 | | 0xff, /* src_mask */ |
139 | | 0xff, /* dst_mask */ |
140 | | true), /* pcrel_offset */ |
141 | | |
142 | | EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ |
143 | | |
144 | | HOWTO (R_SH_PCDISP, /* type */ |
145 | | 1, /* rightshift */ |
146 | | 2, /* size */ |
147 | | 12, /* bitsize */ |
148 | | true, /* pc_relative */ |
149 | | 0, /* bitpos */ |
150 | | complain_overflow_signed, /* complain_on_overflow */ |
151 | | sh_reloc, /* special_function */ |
152 | | "r_pcdisp12by2", /* name */ |
153 | | true, /* partial_inplace */ |
154 | | 0xfff, /* src_mask */ |
155 | | 0xfff, /* dst_mask */ |
156 | | true), /* pcrel_offset */ |
157 | | |
158 | | EMPTY_HOWTO (13), |
159 | | |
160 | | HOWTO (R_SH_IMM32, /* type */ |
161 | | 0, /* rightshift */ |
162 | | 4, /* size */ |
163 | | 32, /* bitsize */ |
164 | | false, /* pc_relative */ |
165 | | 0, /* bitpos */ |
166 | | complain_overflow_bitfield, /* complain_on_overflow */ |
167 | | sh_reloc, /* special_function */ |
168 | | "r_imm32", /* name */ |
169 | | true, /* partial_inplace */ |
170 | | 0xffffffff, /* src_mask */ |
171 | | 0xffffffff, /* dst_mask */ |
172 | | false), /* pcrel_offset */ |
173 | | |
174 | | EMPTY_HOWTO (15), |
175 | | #ifdef COFF_WITH_PE |
176 | | HOWTO (R_SH_IMAGEBASE, /* type */ |
177 | | 0, /* rightshift */ |
178 | | 4, /* size */ |
179 | | 32, /* bitsize */ |
180 | | false, /* pc_relative */ |
181 | | 0, /* bitpos */ |
182 | | complain_overflow_bitfield, /* complain_on_overflow */ |
183 | | sh_reloc, /* special_function */ |
184 | | "rva32", /* name */ |
185 | | true, /* partial_inplace */ |
186 | | 0xffffffff, /* src_mask */ |
187 | | 0xffffffff, /* dst_mask */ |
188 | | false), /* pcrel_offset */ |
189 | | #else |
190 | | EMPTY_HOWTO (16), /* R_SH_IMM8 */ |
191 | | #endif |
192 | | EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ |
193 | | EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ |
194 | | EMPTY_HOWTO (19), /* R_SH_IMM4 */ |
195 | | EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ |
196 | | EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ |
197 | | |
198 | | HOWTO (R_SH_PCRELIMM8BY2, /* type */ |
199 | | 1, /* rightshift */ |
200 | | 2, /* size */ |
201 | | 8, /* bitsize */ |
202 | | true, /* pc_relative */ |
203 | | 0, /* bitpos */ |
204 | | complain_overflow_unsigned, /* complain_on_overflow */ |
205 | | sh_reloc, /* special_function */ |
206 | | "r_pcrelimm8by2", /* name */ |
207 | | true, /* partial_inplace */ |
208 | | 0xff, /* src_mask */ |
209 | | 0xff, /* dst_mask */ |
210 | | true), /* pcrel_offset */ |
211 | | |
212 | | HOWTO (R_SH_PCRELIMM8BY4, /* type */ |
213 | | 2, /* rightshift */ |
214 | | 2, /* size */ |
215 | | 8, /* bitsize */ |
216 | | true, /* pc_relative */ |
217 | | 0, /* bitpos */ |
218 | | complain_overflow_unsigned, /* complain_on_overflow */ |
219 | | sh_reloc, /* special_function */ |
220 | | "r_pcrelimm8by4", /* name */ |
221 | | true, /* partial_inplace */ |
222 | | 0xff, /* src_mask */ |
223 | | 0xff, /* dst_mask */ |
224 | | true), /* pcrel_offset */ |
225 | | |
226 | | HOWTO (R_SH_IMM16, /* type */ |
227 | | 0, /* rightshift */ |
228 | | 2, /* size */ |
229 | | 16, /* bitsize */ |
230 | | false, /* pc_relative */ |
231 | | 0, /* bitpos */ |
232 | | complain_overflow_bitfield, /* complain_on_overflow */ |
233 | | sh_reloc, /* special_function */ |
234 | | "r_imm16", /* name */ |
235 | | true, /* partial_inplace */ |
236 | | 0xffff, /* src_mask */ |
237 | | 0xffff, /* dst_mask */ |
238 | | false), /* pcrel_offset */ |
239 | | |
240 | | HOWTO (R_SH_SWITCH16, /* type */ |
241 | | 0, /* rightshift */ |
242 | | 2, /* size */ |
243 | | 16, /* bitsize */ |
244 | | false, /* pc_relative */ |
245 | | 0, /* bitpos */ |
246 | | complain_overflow_bitfield, /* complain_on_overflow */ |
247 | | sh_reloc, /* special_function */ |
248 | | "r_switch16", /* name */ |
249 | | true, /* partial_inplace */ |
250 | | 0xffff, /* src_mask */ |
251 | | 0xffff, /* dst_mask */ |
252 | | false), /* pcrel_offset */ |
253 | | |
254 | | HOWTO (R_SH_SWITCH32, /* type */ |
255 | | 0, /* rightshift */ |
256 | | 4, /* size */ |
257 | | 32, /* bitsize */ |
258 | | false, /* pc_relative */ |
259 | | 0, /* bitpos */ |
260 | | complain_overflow_bitfield, /* complain_on_overflow */ |
261 | | sh_reloc, /* special_function */ |
262 | | "r_switch32", /* name */ |
263 | | true, /* partial_inplace */ |
264 | | 0xffffffff, /* src_mask */ |
265 | | 0xffffffff, /* dst_mask */ |
266 | | false), /* pcrel_offset */ |
267 | | |
268 | | HOWTO (R_SH_USES, /* type */ |
269 | | 0, /* rightshift */ |
270 | | 2, /* size */ |
271 | | 16, /* bitsize */ |
272 | | false, /* pc_relative */ |
273 | | 0, /* bitpos */ |
274 | | complain_overflow_bitfield, /* complain_on_overflow */ |
275 | | sh_reloc, /* special_function */ |
276 | | "r_uses", /* name */ |
277 | | true, /* partial_inplace */ |
278 | | 0xffff, /* src_mask */ |
279 | | 0xffff, /* dst_mask */ |
280 | | false), /* pcrel_offset */ |
281 | | |
282 | | HOWTO (R_SH_COUNT, /* type */ |
283 | | 0, /* rightshift */ |
284 | | 4, /* size */ |
285 | | 32, /* bitsize */ |
286 | | false, /* pc_relative */ |
287 | | 0, /* bitpos */ |
288 | | complain_overflow_bitfield, /* complain_on_overflow */ |
289 | | sh_reloc, /* special_function */ |
290 | | "r_count", /* name */ |
291 | | true, /* partial_inplace */ |
292 | | 0xffffffff, /* src_mask */ |
293 | | 0xffffffff, /* dst_mask */ |
294 | | false), /* pcrel_offset */ |
295 | | |
296 | | HOWTO (R_SH_ALIGN, /* type */ |
297 | | 0, /* rightshift */ |
298 | | 4, /* size */ |
299 | | 32, /* bitsize */ |
300 | | false, /* pc_relative */ |
301 | | 0, /* bitpos */ |
302 | | complain_overflow_bitfield, /* complain_on_overflow */ |
303 | | sh_reloc, /* special_function */ |
304 | | "r_align", /* name */ |
305 | | true, /* partial_inplace */ |
306 | | 0xffffffff, /* src_mask */ |
307 | | 0xffffffff, /* dst_mask */ |
308 | | false), /* pcrel_offset */ |
309 | | |
310 | | HOWTO (R_SH_CODE, /* type */ |
311 | | 0, /* rightshift */ |
312 | | 4, /* size */ |
313 | | 32, /* bitsize */ |
314 | | false, /* pc_relative */ |
315 | | 0, /* bitpos */ |
316 | | complain_overflow_bitfield, /* complain_on_overflow */ |
317 | | sh_reloc, /* special_function */ |
318 | | "r_code", /* name */ |
319 | | true, /* partial_inplace */ |
320 | | 0xffffffff, /* src_mask */ |
321 | | 0xffffffff, /* dst_mask */ |
322 | | false), /* pcrel_offset */ |
323 | | |
324 | | HOWTO (R_SH_DATA, /* type */ |
325 | | 0, /* rightshift */ |
326 | | 4, /* size */ |
327 | | 32, /* bitsize */ |
328 | | false, /* pc_relative */ |
329 | | 0, /* bitpos */ |
330 | | complain_overflow_bitfield, /* complain_on_overflow */ |
331 | | sh_reloc, /* special_function */ |
332 | | "r_data", /* name */ |
333 | | true, /* partial_inplace */ |
334 | | 0xffffffff, /* src_mask */ |
335 | | 0xffffffff, /* dst_mask */ |
336 | | false), /* pcrel_offset */ |
337 | | |
338 | | HOWTO (R_SH_LABEL, /* type */ |
339 | | 0, /* rightshift */ |
340 | | 4, /* size */ |
341 | | 32, /* bitsize */ |
342 | | false, /* pc_relative */ |
343 | | 0, /* bitpos */ |
344 | | complain_overflow_bitfield, /* complain_on_overflow */ |
345 | | sh_reloc, /* special_function */ |
346 | | "r_label", /* name */ |
347 | | true, /* partial_inplace */ |
348 | | 0xffffffff, /* src_mask */ |
349 | | 0xffffffff, /* dst_mask */ |
350 | | false), /* pcrel_offset */ |
351 | | |
352 | | HOWTO (R_SH_SWITCH8, /* type */ |
353 | | 0, /* rightshift */ |
354 | | 1, /* size */ |
355 | | 8, /* bitsize */ |
356 | | false, /* pc_relative */ |
357 | | 0, /* bitpos */ |
358 | | complain_overflow_bitfield, /* complain_on_overflow */ |
359 | | sh_reloc, /* special_function */ |
360 | | "r_switch8", /* name */ |
361 | | true, /* partial_inplace */ |
362 | | 0xff, /* src_mask */ |
363 | | 0xff, /* dst_mask */ |
364 | | false) /* pcrel_offset */ |
365 | | }; |
366 | | |
367 | 6.32k | #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) |
368 | | |
369 | | /* Check for a bad magic number. */ |
370 | 17.6M | #define BADMAG(x) SHBADMAG(x) |
371 | | |
372 | | /* Customize coffcode.h (this is not currently used). */ |
373 | | #define SH 1 |
374 | | |
375 | | /* FIXME: This should not be set here. */ |
376 | | #define __A_MAGIC_SET__ |
377 | | |
378 | | #ifndef COFF_WITH_PE |
379 | | /* Swap the r_offset field in and out. */ |
380 | 4.57k | #define SWAP_IN_RELOC_OFFSET H_GET_32 |
381 | 0 | #define SWAP_OUT_RELOC_OFFSET H_PUT_32 |
382 | | |
383 | | /* Swap out extra information in the reloc structure. */ |
384 | | #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ |
385 | 0 | do \ |
386 | 0 | { \ |
387 | 0 | dst->r_stuff[0] = 'S'; \ |
388 | 0 | dst->r_stuff[1] = 'C'; \ |
389 | 0 | } \ |
390 | 0 | while (0) |
391 | | #endif |
392 | | |
393 | | /* Get the value of a symbol, when performing a relocation. */ |
394 | | |
395 | | static long |
396 | | get_symbol_value (asymbol *symbol) |
397 | 0 | { |
398 | 0 | bfd_vma relocation; |
399 | |
|
400 | 0 | if (bfd_is_com_section (symbol->section)) |
401 | 0 | relocation = 0; |
402 | 0 | else |
403 | 0 | relocation = (symbol->value + |
404 | 0 | symbol->section->output_section->vma + |
405 | 0 | symbol->section->output_offset); |
406 | |
|
407 | 0 | return relocation; |
408 | 0 | } Unexecuted instantiation: coff-sh.c:get_symbol_value Unexecuted instantiation: pe-sh.c:get_symbol_value Unexecuted instantiation: pei-sh.c:get_symbol_value |
409 | | |
410 | | #ifdef COFF_WITH_PE |
411 | | /* Convert an rtype to howto for the COFF backend linker. |
412 | | Copied from coff-i386. */ |
413 | | #define coff_rtype_to_howto coff_sh_rtype_to_howto |
414 | | |
415 | | |
416 | | static reloc_howto_type * |
417 | | coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED, |
418 | | asection * sec, |
419 | | struct internal_reloc * rel, |
420 | | struct coff_link_hash_entry * h, |
421 | | struct internal_syment * sym, |
422 | | bfd_vma * addendp) |
423 | 0 | { |
424 | 0 | reloc_howto_type * howto; |
425 | |
|
426 | 0 | howto = sh_coff_howtos + rel->r_type; |
427 | |
|
428 | 0 | *addendp = 0; |
429 | |
|
430 | 0 | if (howto->pc_relative) |
431 | 0 | *addendp += sec->vma; |
432 | |
|
433 | 0 | if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) |
434 | 0 | { |
435 | | /* This is a common symbol. The section contents include the |
436 | | size (sym->n_value) as an addend. The relocate_section |
437 | | function will be adding in the final value of the symbol. We |
438 | | need to subtract out the current size in order to get the |
439 | | correct result. */ |
440 | 0 | BFD_ASSERT (h != NULL); |
441 | 0 | } |
442 | |
|
443 | 0 | if (howto->pc_relative) |
444 | 0 | { |
445 | 0 | *addendp -= 4; |
446 | | |
447 | | /* If the symbol is defined, then the generic code is going to |
448 | | add back the symbol value in order to cancel out an |
449 | | adjustment it made to the addend. However, we set the addend |
450 | | to 0 at the start of this function. We need to adjust here, |
451 | | to avoid the adjustment the generic code will make. FIXME: |
452 | | This is getting a bit hackish. */ |
453 | 0 | if (sym != NULL && sym->n_scnum != 0) |
454 | 0 | *addendp -= sym->n_value; |
455 | 0 | } |
456 | |
|
457 | 0 | if (rel->r_type == R_SH_IMAGEBASE) |
458 | 0 | *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; |
459 | |
|
460 | 0 | return howto; |
461 | 0 | } Unexecuted instantiation: pe-sh.c:coff_sh_rtype_to_howto Unexecuted instantiation: pei-sh.c:coff_sh_rtype_to_howto |
462 | | |
463 | | #endif /* COFF_WITH_PE */ |
464 | | |
465 | | /* This structure is used to map BFD reloc codes to SH PE relocs. */ |
466 | | struct shcoff_reloc_map |
467 | | { |
468 | | bfd_reloc_code_real_type bfd_reloc_val; |
469 | | unsigned char shcoff_reloc_val; |
470 | | }; |
471 | | |
472 | | #ifdef COFF_WITH_PE |
473 | | /* An array mapping BFD reloc codes to SH PE relocs. */ |
474 | | static const struct shcoff_reloc_map sh_reloc_map[] = |
475 | | { |
476 | | { BFD_RELOC_32, R_SH_IMM32CE }, |
477 | | { BFD_RELOC_RVA, R_SH_IMAGEBASE }, |
478 | | { BFD_RELOC_CTOR, R_SH_IMM32CE }, |
479 | | }; |
480 | | #else |
481 | | /* An array mapping BFD reloc codes to SH PE relocs. */ |
482 | | static const struct shcoff_reloc_map sh_reloc_map[] = |
483 | | { |
484 | | { BFD_RELOC_32, R_SH_IMM32 }, |
485 | | { BFD_RELOC_CTOR, R_SH_IMM32 }, |
486 | | }; |
487 | | #endif |
488 | | |
489 | | /* Given a BFD reloc code, return the howto structure for the |
490 | | corresponding SH PE reloc. */ |
491 | | #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup |
492 | | #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup |
493 | | |
494 | | static reloc_howto_type * |
495 | | sh_coff_reloc_type_lookup (bfd *abfd, |
496 | | bfd_reloc_code_real_type code) |
497 | 16.6k | { |
498 | 16.6k | unsigned int i; |
499 | | |
500 | 36.8k | for (i = ARRAY_SIZE (sh_reloc_map); i--;) |
501 | 36.8k | if (sh_reloc_map[i].bfd_reloc_val == code) |
502 | 16.6k | return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; |
503 | | |
504 | 0 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
505 | 0 | abfd, (unsigned int) code); |
506 | 0 | return NULL; |
507 | 16.6k | } Unexecuted instantiation: coff-sh.c:sh_coff_reloc_type_lookup Unexecuted instantiation: pe-sh.c:sh_coff_reloc_type_lookup pei-sh.c:sh_coff_reloc_type_lookup Line | Count | Source | 497 | 16.6k | { | 498 | 16.6k | unsigned int i; | 499 | | | 500 | 36.8k | for (i = ARRAY_SIZE (sh_reloc_map); i--;) | 501 | 36.8k | if (sh_reloc_map[i].bfd_reloc_val == code) | 502 | 16.6k | return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; | 503 | | | 504 | 0 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), | 505 | 0 | abfd, (unsigned int) code); | 506 | 0 | return NULL; | 507 | 16.6k | } |
|
508 | | |
509 | | static reloc_howto_type * |
510 | | sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
511 | | const char *r_name) |
512 | 0 | { |
513 | 0 | unsigned int i; |
514 | |
|
515 | 0 | for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) |
516 | 0 | if (sh_coff_howtos[i].name != NULL |
517 | 0 | && strcasecmp (sh_coff_howtos[i].name, r_name) == 0) |
518 | 0 | return &sh_coff_howtos[i]; |
519 | | |
520 | 0 | return NULL; |
521 | 0 | } Unexecuted instantiation: coff-sh.c:sh_coff_reloc_name_lookup Unexecuted instantiation: pe-sh.c:sh_coff_reloc_name_lookup Unexecuted instantiation: pei-sh.c:sh_coff_reloc_name_lookup |
522 | | |
523 | | /* This macro is used in coffcode.h to get the howto corresponding to |
524 | | an internal reloc. */ |
525 | | |
526 | | #define RTYPE2HOWTO(relent, internal) \ |
527 | 6.32k | ((relent)->howto = \ |
528 | 6.32k | ((internal)->r_type < SH_COFF_HOWTO_COUNT \ |
529 | 6.32k | ? &sh_coff_howtos[(internal)->r_type] \ |
530 | 6.32k | : (reloc_howto_type *) NULL)) |
531 | | |
532 | | /* This is the same as the macro in coffcode.h, except that it copies |
533 | | r_offset into reloc_entry->addend for some relocs. */ |
534 | | #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \ |
535 | 6.32k | { \ |
536 | 6.32k | coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \ |
537 | 6.32k | if (ptr && bfd_asymbol_bfd (ptr) != abfd) \ |
538 | 6.32k | coffsym = (obj_symbols (abfd) \ |
539 | 0 | + (cache_ptr->sym_ptr_ptr - symbols)); \ |
540 | 6.32k | else if (ptr) \ |
541 | 6.32k | coffsym = coff_symbol_from (ptr); \ |
542 | 6.32k | if (coffsym != (coff_symbol_type *) NULL \ |
543 | 6.32k | && coffsym->native->u.syment.n_scnum == 0) \ |
544 | 6.32k | cache_ptr->addend = 0; \ |
545 | 6.32k | else if (ptr && bfd_asymbol_bfd (ptr) == abfd \ |
546 | 5.27k | && ptr->section != (asection *) NULL) \ |
547 | 5.27k | cache_ptr->addend = - (ptr->section->vma \ |
548 | 634 | + COFF_PE_ADDEND_BIAS (ptr)); \ |
549 | 5.27k | else \ |
550 | 5.27k | cache_ptr->addend = 0; \ |
551 | 6.32k | if ((reloc).r_type == R_SH_SWITCH8 \ |
552 | 6.32k | || (reloc).r_type == R_SH_SWITCH16 \ |
553 | 6.32k | || (reloc).r_type == R_SH_SWITCH32 \ |
554 | 6.32k | || (reloc).r_type == R_SH_USES \ |
555 | 6.32k | || (reloc).r_type == R_SH_COUNT \ |
556 | 6.32k | || (reloc).r_type == R_SH_ALIGN) \ |
557 | 6.32k | cache_ptr->addend = (reloc).r_offset; \ |
558 | 6.32k | } |
559 | | |
560 | | /* This is the howto function for the SH relocations. */ |
561 | | |
562 | | static bfd_reloc_status_type |
563 | | sh_reloc (bfd * abfd, |
564 | | arelent * reloc_entry, |
565 | | asymbol * symbol_in, |
566 | | void * data, |
567 | | asection * input_section, |
568 | | bfd * output_bfd, |
569 | | char ** error_message ATTRIBUTE_UNUSED) |
570 | 11 | { |
571 | 11 | bfd_vma insn; |
572 | 11 | bfd_vma sym_value; |
573 | 11 | unsigned short r_type; |
574 | 11 | bfd_vma addr = reloc_entry->address; |
575 | 11 | bfd_byte *hit_data = addr + (bfd_byte *) data; |
576 | | |
577 | 11 | r_type = reloc_entry->howto->type; |
578 | | |
579 | 11 | if (output_bfd != NULL) |
580 | 0 | { |
581 | | /* Partial linking--do nothing. */ |
582 | 0 | reloc_entry->address += input_section->output_offset; |
583 | 0 | return bfd_reloc_ok; |
584 | 0 | } |
585 | | |
586 | | /* Almost all relocs have to do with relaxing. If any work must be |
587 | | done for them, it has been done in sh_relax_section. */ |
588 | 11 | if (r_type != R_SH_IMM32 |
589 | | #ifdef COFF_WITH_PE |
590 | 2 | && r_type != R_SH_IMM32CE |
591 | 0 | && r_type != R_SH_IMAGEBASE |
592 | | #endif |
593 | 11 | && (r_type != R_SH_PCDISP |
594 | 6 | || (symbol_in->flags & BSF_LOCAL) != 0)) |
595 | 4 | return bfd_reloc_ok; |
596 | | |
597 | 7 | if (symbol_in != NULL |
598 | 7 | && bfd_is_und_section (symbol_in->section)) |
599 | 2 | return bfd_reloc_undefined; |
600 | | |
601 | 5 | if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, |
602 | 5 | addr)) |
603 | 5 | return bfd_reloc_outofrange; |
604 | | |
605 | 0 | sym_value = get_symbol_value (symbol_in); |
606 | |
|
607 | 0 | switch (r_type) |
608 | 0 | { |
609 | 0 | case R_SH_IMM32: |
610 | | #ifdef COFF_WITH_PE |
611 | 0 | case R_SH_IMM32CE: |
612 | | #endif |
613 | 0 | insn = bfd_get_32 (abfd, hit_data); |
614 | 0 | insn += sym_value + reloc_entry->addend; |
615 | 0 | bfd_put_32 (abfd, insn, hit_data); |
616 | 0 | break; |
617 | | #ifdef COFF_WITH_PE |
618 | 0 | case R_SH_IMAGEBASE: |
619 | 0 | insn = bfd_get_32 (abfd, hit_data); |
620 | 0 | insn += sym_value + reloc_entry->addend; |
621 | 0 | insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; |
622 | 0 | bfd_put_32 (abfd, insn, hit_data); |
623 | 0 | break; |
624 | 0 | #endif |
625 | 0 | case R_SH_PCDISP: |
626 | 0 | insn = bfd_get_16 (abfd, hit_data); |
627 | 0 | sym_value += reloc_entry->addend; |
628 | 0 | sym_value -= (input_section->output_section->vma |
629 | 0 | + input_section->output_offset |
630 | 0 | + addr |
631 | 0 | + 4); |
632 | 0 | sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1; |
633 | 0 | insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff); |
634 | 0 | bfd_put_16 (abfd, insn, hit_data); |
635 | 0 | if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0) |
636 | 0 | return bfd_reloc_overflow; |
637 | 0 | break; |
638 | 0 | default: |
639 | 0 | abort (); |
640 | 0 | break; |
641 | 0 | } |
642 | | |
643 | 0 | return bfd_reloc_ok; |
644 | 0 | } Line | Count | Source | 570 | 9 | { | 571 | 9 | bfd_vma insn; | 572 | 9 | bfd_vma sym_value; | 573 | 9 | unsigned short r_type; | 574 | 9 | bfd_vma addr = reloc_entry->address; | 575 | 9 | bfd_byte *hit_data = addr + (bfd_byte *) data; | 576 | | | 577 | 9 | r_type = reloc_entry->howto->type; | 578 | | | 579 | 9 | if (output_bfd != NULL) | 580 | 0 | { | 581 | | /* Partial linking--do nothing. */ | 582 | 0 | reloc_entry->address += input_section->output_offset; | 583 | 0 | return bfd_reloc_ok; | 584 | 0 | } | 585 | | | 586 | | /* Almost all relocs have to do with relaxing. If any work must be | 587 | | done for them, it has been done in sh_relax_section. */ | 588 | 9 | if (r_type != R_SH_IMM32 | 589 | | #ifdef COFF_WITH_PE | 590 | | && r_type != R_SH_IMM32CE | 591 | | && r_type != R_SH_IMAGEBASE | 592 | | #endif | 593 | 9 | && (r_type != R_SH_PCDISP | 594 | 6 | || (symbol_in->flags & BSF_LOCAL) != 0)) | 595 | 4 | return bfd_reloc_ok; | 596 | | | 597 | 5 | if (symbol_in != NULL | 598 | 5 | && bfd_is_und_section (symbol_in->section)) | 599 | 2 | return bfd_reloc_undefined; | 600 | | | 601 | 3 | if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, | 602 | 3 | addr)) | 603 | 3 | return bfd_reloc_outofrange; | 604 | | | 605 | 0 | sym_value = get_symbol_value (symbol_in); | 606 | |
| 607 | 0 | switch (r_type) | 608 | 0 | { | 609 | 0 | case R_SH_IMM32: | 610 | | #ifdef COFF_WITH_PE | 611 | | case R_SH_IMM32CE: | 612 | | #endif | 613 | 0 | insn = bfd_get_32 (abfd, hit_data); | 614 | 0 | insn += sym_value + reloc_entry->addend; | 615 | 0 | bfd_put_32 (abfd, insn, hit_data); | 616 | 0 | break; | 617 | | #ifdef COFF_WITH_PE | 618 | | case R_SH_IMAGEBASE: | 619 | | insn = bfd_get_32 (abfd, hit_data); | 620 | | insn += sym_value + reloc_entry->addend; | 621 | | insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; | 622 | | bfd_put_32 (abfd, insn, hit_data); | 623 | | break; | 624 | | #endif | 625 | 0 | case R_SH_PCDISP: | 626 | 0 | insn = bfd_get_16 (abfd, hit_data); | 627 | 0 | sym_value += reloc_entry->addend; | 628 | 0 | sym_value -= (input_section->output_section->vma | 629 | 0 | + input_section->output_offset | 630 | 0 | + addr | 631 | 0 | + 4); | 632 | 0 | sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1; | 633 | 0 | insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff); | 634 | 0 | bfd_put_16 (abfd, insn, hit_data); | 635 | 0 | if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0) | 636 | 0 | return bfd_reloc_overflow; | 637 | 0 | break; | 638 | 0 | default: | 639 | 0 | abort (); | 640 | 0 | break; | 641 | 0 | } | 642 | | | 643 | 0 | return bfd_reloc_ok; | 644 | 0 | } |
Line | Count | Source | 570 | 2 | { | 571 | 2 | bfd_vma insn; | 572 | 2 | bfd_vma sym_value; | 573 | 2 | unsigned short r_type; | 574 | 2 | bfd_vma addr = reloc_entry->address; | 575 | 2 | bfd_byte *hit_data = addr + (bfd_byte *) data; | 576 | | | 577 | 2 | r_type = reloc_entry->howto->type; | 578 | | | 579 | 2 | if (output_bfd != NULL) | 580 | 0 | { | 581 | | /* Partial linking--do nothing. */ | 582 | 0 | reloc_entry->address += input_section->output_offset; | 583 | 0 | return bfd_reloc_ok; | 584 | 0 | } | 585 | | | 586 | | /* Almost all relocs have to do with relaxing. If any work must be | 587 | | done for them, it has been done in sh_relax_section. */ | 588 | 2 | if (r_type != R_SH_IMM32 | 589 | 2 | #ifdef COFF_WITH_PE | 590 | 2 | && r_type != R_SH_IMM32CE | 591 | 2 | && r_type != R_SH_IMAGEBASE | 592 | 2 | #endif | 593 | 2 | && (r_type != R_SH_PCDISP | 594 | 0 | || (symbol_in->flags & BSF_LOCAL) != 0)) | 595 | 0 | return bfd_reloc_ok; | 596 | | | 597 | 2 | if (symbol_in != NULL | 598 | 2 | && bfd_is_und_section (symbol_in->section)) | 599 | 0 | return bfd_reloc_undefined; | 600 | | | 601 | 2 | if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, | 602 | 2 | addr)) | 603 | 2 | return bfd_reloc_outofrange; | 604 | | | 605 | 0 | sym_value = get_symbol_value (symbol_in); | 606 | |
| 607 | 0 | switch (r_type) | 608 | 0 | { | 609 | 0 | case R_SH_IMM32: | 610 | 0 | #ifdef COFF_WITH_PE | 611 | 0 | case R_SH_IMM32CE: | 612 | 0 | #endif | 613 | 0 | insn = bfd_get_32 (abfd, hit_data); | 614 | 0 | insn += sym_value + reloc_entry->addend; | 615 | 0 | bfd_put_32 (abfd, insn, hit_data); | 616 | 0 | break; | 617 | 0 | #ifdef COFF_WITH_PE | 618 | 0 | case R_SH_IMAGEBASE: | 619 | 0 | insn = bfd_get_32 (abfd, hit_data); | 620 | 0 | insn += sym_value + reloc_entry->addend; | 621 | 0 | insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; | 622 | 0 | bfd_put_32 (abfd, insn, hit_data); | 623 | 0 | break; | 624 | 0 | #endif | 625 | 0 | case R_SH_PCDISP: | 626 | 0 | insn = bfd_get_16 (abfd, hit_data); | 627 | 0 | sym_value += reloc_entry->addend; | 628 | 0 | sym_value -= (input_section->output_section->vma | 629 | 0 | + input_section->output_offset | 630 | 0 | + addr | 631 | 0 | + 4); | 632 | 0 | sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1; | 633 | 0 | insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff); | 634 | 0 | bfd_put_16 (abfd, insn, hit_data); | 635 | 0 | if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0) | 636 | 0 | return bfd_reloc_overflow; | 637 | 0 | break; | 638 | 0 | default: | 639 | 0 | abort (); | 640 | 0 | break; | 641 | 0 | } | 642 | | | 643 | 0 | return bfd_reloc_ok; | 644 | 0 | } |
Unexecuted instantiation: pei-sh.c:sh_reloc |
645 | | |
646 | | #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match |
647 | | |
648 | | /* We can do relaxing. */ |
649 | | #define coff_bfd_relax_section sh_relax_section |
650 | | |
651 | | /* We use the special COFF backend linker. */ |
652 | | #define coff_relocate_section sh_relocate_section |
653 | | |
654 | | /* When relaxing, we need to use special code to get the relocated |
655 | | section contents. */ |
656 | | #define coff_bfd_get_relocated_section_contents \ |
657 | | sh_coff_get_relocated_section_contents |
658 | | |
659 | | #include "coffcode.h" |
660 | | |
661 | | static bool |
662 | | sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int); |
663 | | |
664 | | /* This function handles relaxing on the SH. |
665 | | |
666 | | Function calls on the SH look like this: |
667 | | |
668 | | movl L1,r0 |
669 | | ... |
670 | | jsr @r0 |
671 | | ... |
672 | | L1: |
673 | | .long function |
674 | | |
675 | | The compiler and assembler will cooperate to create R_SH_USES |
676 | | relocs on the jsr instructions. The r_offset field of the |
677 | | R_SH_USES reloc is the PC relative offset to the instruction which |
678 | | loads the register (the r_offset field is computed as though it |
679 | | were a jump instruction, so the offset value is actually from four |
680 | | bytes past the instruction). The linker can use this reloc to |
681 | | determine just which function is being called, and thus decide |
682 | | whether it is possible to replace the jsr with a bsr. |
683 | | |
684 | | If multiple function calls are all based on a single register load |
685 | | (i.e., the same function is called multiple times), the compiler |
686 | | guarantees that each function call will have an R_SH_USES reloc. |
687 | | Therefore, if the linker is able to convert each R_SH_USES reloc |
688 | | which refers to that address, it can safely eliminate the register |
689 | | load. |
690 | | |
691 | | When the assembler creates an R_SH_USES reloc, it examines it to |
692 | | determine which address is being loaded (L1 in the above example). |
693 | | It then counts the number of references to that address, and |
694 | | creates an R_SH_COUNT reloc at that address. The r_offset field of |
695 | | the R_SH_COUNT reloc will be the number of references. If the |
696 | | linker is able to eliminate a register load, it can use the |
697 | | R_SH_COUNT reloc to see whether it can also eliminate the function |
698 | | address. |
699 | | |
700 | | SH relaxing also handles another, unrelated, matter. On the SH, if |
701 | | a load or store instruction is not aligned on a four byte boundary, |
702 | | the memory cycle interferes with the 32 bit instruction fetch, |
703 | | causing a one cycle bubble in the pipeline. Therefore, we try to |
704 | | align load and store instructions on four byte boundaries if we |
705 | | can, by swapping them with one of the adjacent instructions. */ |
706 | | |
707 | | static bool |
708 | | sh_relax_section (bfd *abfd, |
709 | | asection *sec, |
710 | | struct bfd_link_info *link_info, |
711 | | bool *again) |
712 | 0 | { |
713 | 0 | struct internal_reloc *internal_relocs; |
714 | 0 | bool have_code; |
715 | 0 | struct internal_reloc *irel, *irelend; |
716 | 0 | bfd_byte *contents = NULL; |
717 | |
|
718 | 0 | *again = false; |
719 | |
|
720 | 0 | if (bfd_link_relocatable (link_info) |
721 | 0 | || (sec->flags & SEC_HAS_CONTENTS) == 0 |
722 | 0 | || (sec->flags & SEC_RELOC) == 0 |
723 | 0 | || sec->reloc_count == 0) |
724 | 0 | return true; |
725 | | |
726 | 0 | if (coff_section_data (abfd, sec) == NULL) |
727 | 0 | { |
728 | 0 | size_t amt = sizeof (struct coff_section_tdata); |
729 | 0 | sec->used_by_bfd = bfd_zalloc (abfd, amt); |
730 | 0 | if (sec->used_by_bfd == NULL) |
731 | 0 | return false; |
732 | 0 | } |
733 | | |
734 | 0 | internal_relocs = (_bfd_coff_read_internal_relocs |
735 | 0 | (abfd, sec, link_info->keep_memory, |
736 | 0 | (bfd_byte *) NULL, false, |
737 | 0 | (struct internal_reloc *) NULL)); |
738 | 0 | if (internal_relocs == NULL) |
739 | 0 | goto error_return; |
740 | | |
741 | 0 | have_code = false; |
742 | |
|
743 | 0 | irelend = internal_relocs + sec->reloc_count; |
744 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
745 | 0 | { |
746 | 0 | bfd_vma laddr, paddr, symval; |
747 | 0 | unsigned short insn; |
748 | 0 | struct internal_reloc *irelfn, *irelscan, *irelcount; |
749 | 0 | struct internal_syment sym; |
750 | 0 | bfd_signed_vma foff; |
751 | |
|
752 | 0 | if (irel->r_type == R_SH_CODE) |
753 | 0 | have_code = true; |
754 | |
|
755 | 0 | if (irel->r_type != R_SH_USES) |
756 | 0 | continue; |
757 | | |
758 | | /* Get the section contents. */ |
759 | 0 | if (contents == NULL) |
760 | 0 | { |
761 | 0 | if (coff_section_data (abfd, sec)->contents != NULL) |
762 | 0 | contents = coff_section_data (abfd, sec)->contents; |
763 | 0 | else |
764 | 0 | { |
765 | 0 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
766 | 0 | goto error_return; |
767 | 0 | } |
768 | 0 | } |
769 | | |
770 | | /* The r_offset field of the R_SH_USES reloc will point us to |
771 | | the register load. The 4 is because the r_offset field is |
772 | | computed as though it were a jump offset, which are based |
773 | | from 4 bytes after the jump instruction. */ |
774 | 0 | laddr = irel->r_vaddr - sec->vma + 4; |
775 | | /* Careful to sign extend the 32-bit offset. */ |
776 | 0 | laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; |
777 | 0 | if (laddr >= sec->size) |
778 | 0 | { |
779 | | /* xgettext: c-format */ |
780 | 0 | _bfd_error_handler |
781 | 0 | (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"), |
782 | 0 | abfd, (uint64_t) irel->r_vaddr); |
783 | 0 | continue; |
784 | 0 | } |
785 | 0 | insn = bfd_get_16 (abfd, contents + laddr); |
786 | | |
787 | | /* If the instruction is not mov.l NN,rN, we don't know what to do. */ |
788 | 0 | if ((insn & 0xf000) != 0xd000) |
789 | 0 | { |
790 | 0 | _bfd_error_handler |
791 | | /* xgettext: c-format */ |
792 | 0 | (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"), |
793 | 0 | abfd, (uint64_t) irel->r_vaddr, insn); |
794 | 0 | continue; |
795 | 0 | } |
796 | | |
797 | | /* Get the address from which the register is being loaded. The |
798 | | displacement in the mov.l instruction is quadrupled. It is a |
799 | | displacement from four bytes after the movl instruction, but, |
800 | | before adding in the PC address, two least significant bits |
801 | | of the PC are cleared. We assume that the section is aligned |
802 | | on a four byte boundary. */ |
803 | 0 | paddr = insn & 0xff; |
804 | 0 | paddr *= 4; |
805 | 0 | paddr += (laddr + 4) &~ (bfd_vma) 3; |
806 | 0 | if (paddr >= sec->size) |
807 | 0 | { |
808 | 0 | _bfd_error_handler |
809 | | /* xgettext: c-format */ |
810 | 0 | (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"), |
811 | 0 | abfd, (uint64_t) irel->r_vaddr); |
812 | 0 | continue; |
813 | 0 | } |
814 | | |
815 | | /* Get the reloc for the address from which the register is |
816 | | being loaded. This reloc will tell us which function is |
817 | | actually being called. */ |
818 | 0 | paddr += sec->vma; |
819 | 0 | for (irelfn = internal_relocs; irelfn < irelend; irelfn++) |
820 | 0 | if (irelfn->r_vaddr == paddr |
821 | | #ifdef COFF_WITH_PE |
822 | 0 | && (irelfn->r_type == R_SH_IMM32 |
823 | 0 | || irelfn->r_type == R_SH_IMM32CE |
824 | 0 | || irelfn->r_type == R_SH_IMAGEBASE) |
825 | | |
826 | | #else |
827 | 0 | && irelfn->r_type == R_SH_IMM32 |
828 | | #endif |
829 | 0 | ) |
830 | 0 | break; |
831 | 0 | if (irelfn >= irelend) |
832 | 0 | { |
833 | 0 | _bfd_error_handler |
834 | | /* xgettext: c-format */ |
835 | 0 | (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"), |
836 | 0 | abfd, (uint64_t) paddr); |
837 | 0 | continue; |
838 | 0 | } |
839 | | |
840 | | /* Get the value of the symbol referred to by the reloc. */ |
841 | 0 | if (! _bfd_coff_get_external_symbols (abfd)) |
842 | 0 | goto error_return; |
843 | 0 | bfd_coff_swap_sym_in (abfd, |
844 | 0 | ((bfd_byte *) obj_coff_external_syms (abfd) |
845 | 0 | + (irelfn->r_symndx |
846 | 0 | * bfd_coff_symesz (abfd))), |
847 | 0 | &sym); |
848 | 0 | if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) |
849 | 0 | { |
850 | 0 | _bfd_error_handler |
851 | | /* xgettext: c-format */ |
852 | 0 | (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"), |
853 | 0 | abfd, (uint64_t) paddr); |
854 | 0 | continue; |
855 | 0 | } |
856 | | |
857 | 0 | if (sym.n_sclass != C_EXT) |
858 | 0 | { |
859 | 0 | symval = (sym.n_value |
860 | 0 | - sec->vma |
861 | 0 | + sec->output_section->vma |
862 | 0 | + sec->output_offset); |
863 | 0 | } |
864 | 0 | else |
865 | 0 | { |
866 | 0 | struct coff_link_hash_entry *h; |
867 | |
|
868 | 0 | h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; |
869 | 0 | BFD_ASSERT (h != NULL); |
870 | 0 | if (h->root.type != bfd_link_hash_defined |
871 | 0 | && h->root.type != bfd_link_hash_defweak) |
872 | 0 | { |
873 | | /* This appears to be a reference to an undefined |
874 | | symbol. Just ignore it--it will be caught by the |
875 | | regular reloc processing. */ |
876 | 0 | continue; |
877 | 0 | } |
878 | | |
879 | 0 | symval = (h->root.u.def.value |
880 | 0 | + h->root.u.def.section->output_section->vma |
881 | 0 | + h->root.u.def.section->output_offset); |
882 | 0 | } |
883 | | |
884 | 0 | symval += bfd_get_32 (abfd, contents + paddr - sec->vma); |
885 | | |
886 | | /* See if this function call can be shortened. */ |
887 | 0 | foff = (symval |
888 | 0 | - (irel->r_vaddr |
889 | 0 | - sec->vma |
890 | 0 | + sec->output_section->vma |
891 | 0 | + sec->output_offset |
892 | 0 | + 4)); |
893 | 0 | if (foff < -0x1000 || foff >= 0x1000) |
894 | 0 | { |
895 | | /* After all that work, we can't shorten this function call. */ |
896 | 0 | continue; |
897 | 0 | } |
898 | | |
899 | | /* Shorten the function call. */ |
900 | | |
901 | | /* For simplicity of coding, we are going to modify the section |
902 | | contents, the section relocs, and the BFD symbol table. We |
903 | | must tell the rest of the code not to free up this |
904 | | information. It would be possible to instead create a table |
905 | | of changes which have to be made, as is done in coff-mips.c; |
906 | | that would be more work, but would require less memory when |
907 | | the linker is run. */ |
908 | | |
909 | 0 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
910 | 0 | coff_section_data (abfd, sec)->contents = contents; |
911 | | |
912 | | /* Replace the jsr with a bsr. */ |
913 | | |
914 | | /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and |
915 | | replace the jsr with a bsr. */ |
916 | 0 | irel->r_type = R_SH_PCDISP; |
917 | 0 | irel->r_symndx = irelfn->r_symndx; |
918 | 0 | if (sym.n_sclass != C_EXT) |
919 | 0 | { |
920 | | /* If this needs to be changed because of future relaxing, |
921 | | it will be handled here like other internal PCDISP |
922 | | relocs. */ |
923 | 0 | bfd_put_16 (abfd, |
924 | 0 | (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), |
925 | 0 | contents + irel->r_vaddr - sec->vma); |
926 | 0 | } |
927 | 0 | else |
928 | 0 | { |
929 | | /* We can't fully resolve this yet, because the external |
930 | | symbol value may be changed by future relaxing. We let |
931 | | the final link phase handle it. */ |
932 | 0 | bfd_put_16 (abfd, (bfd_vma) 0xb000, |
933 | 0 | contents + irel->r_vaddr - sec->vma); |
934 | 0 | } |
935 | | |
936 | | /* See if there is another R_SH_USES reloc referring to the same |
937 | | register load. */ |
938 | 0 | for (irelscan = internal_relocs; irelscan < irelend; irelscan++) |
939 | 0 | if (irelscan->r_type == R_SH_USES |
940 | 0 | && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) |
941 | 0 | break; |
942 | 0 | if (irelscan < irelend) |
943 | 0 | { |
944 | | /* Some other function call depends upon this register load, |
945 | | and we have not yet converted that function call. |
946 | | Indeed, we may never be able to convert it. There is |
947 | | nothing else we can do at this point. */ |
948 | 0 | continue; |
949 | 0 | } |
950 | | |
951 | | /* Look for a R_SH_COUNT reloc on the location where the |
952 | | function address is stored. Do this before deleting any |
953 | | bytes, to avoid confusion about the address. */ |
954 | 0 | for (irelcount = internal_relocs; irelcount < irelend; irelcount++) |
955 | 0 | if (irelcount->r_vaddr == paddr |
956 | 0 | && irelcount->r_type == R_SH_COUNT) |
957 | 0 | break; |
958 | | |
959 | | /* Delete the register load. */ |
960 | 0 | if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) |
961 | 0 | goto error_return; |
962 | | |
963 | | /* That will change things, so, just in case it permits some |
964 | | other function call to come within range, we should relax |
965 | | again. Note that this is not required, and it may be slow. */ |
966 | 0 | *again = true; |
967 | | |
968 | | /* Now check whether we got a COUNT reloc. */ |
969 | 0 | if (irelcount >= irelend) |
970 | 0 | { |
971 | 0 | _bfd_error_handler |
972 | | /* xgettext: c-format */ |
973 | 0 | (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"), |
974 | 0 | abfd, (uint64_t) paddr); |
975 | 0 | continue; |
976 | 0 | } |
977 | | |
978 | | /* The number of uses is stored in the r_offset field. We've |
979 | | just deleted one. */ |
980 | 0 | if (irelcount->r_offset == 0) |
981 | 0 | { |
982 | | /* xgettext: c-format */ |
983 | 0 | _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"), |
984 | 0 | abfd, (uint64_t) paddr); |
985 | 0 | continue; |
986 | 0 | } |
987 | | |
988 | 0 | --irelcount->r_offset; |
989 | | |
990 | | /* If there are no more uses, we can delete the address. Reload |
991 | | the address from irelfn, in case it was changed by the |
992 | | previous call to sh_relax_delete_bytes. */ |
993 | 0 | if (irelcount->r_offset == 0) |
994 | 0 | { |
995 | 0 | if (! sh_relax_delete_bytes (abfd, sec, |
996 | 0 | irelfn->r_vaddr - sec->vma, 4)) |
997 | 0 | goto error_return; |
998 | 0 | } |
999 | | |
1000 | | /* We've done all we can with that function call. */ |
1001 | 0 | } |
1002 | | |
1003 | | /* Look for load and store instructions that we can align on four |
1004 | | byte boundaries. */ |
1005 | 0 | if (have_code) |
1006 | 0 | { |
1007 | 0 | bool swapped; |
1008 | | |
1009 | | /* Get the section contents. */ |
1010 | 0 | if (contents == NULL) |
1011 | 0 | { |
1012 | 0 | if (coff_section_data (abfd, sec)->contents != NULL) |
1013 | 0 | contents = coff_section_data (abfd, sec)->contents; |
1014 | 0 | else |
1015 | 0 | { |
1016 | 0 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
1017 | 0 | goto error_return; |
1018 | 0 | } |
1019 | 0 | } |
1020 | | |
1021 | 0 | if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) |
1022 | 0 | goto error_return; |
1023 | | |
1024 | 0 | if (swapped) |
1025 | 0 | { |
1026 | 0 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
1027 | 0 | coff_section_data (abfd, sec)->contents = contents; |
1028 | 0 | } |
1029 | 0 | } |
1030 | | |
1031 | 0 | if (internal_relocs != NULL |
1032 | 0 | && internal_relocs != coff_section_data (abfd, sec)->relocs) |
1033 | 0 | { |
1034 | 0 | if (! link_info->keep_memory) |
1035 | 0 | free (internal_relocs); |
1036 | 0 | else |
1037 | 0 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
1038 | 0 | } |
1039 | |
|
1040 | 0 | if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) |
1041 | 0 | { |
1042 | 0 | if (! link_info->keep_memory) |
1043 | 0 | free (contents); |
1044 | 0 | else |
1045 | | /* Cache the section contents for coff_link_input_bfd. */ |
1046 | 0 | coff_section_data (abfd, sec)->contents = contents; |
1047 | 0 | } |
1048 | |
|
1049 | 0 | return true; |
1050 | | |
1051 | 0 | error_return: |
1052 | 0 | if (internal_relocs != coff_section_data (abfd, sec)->relocs) |
1053 | 0 | free (internal_relocs); |
1054 | 0 | if (contents != coff_section_data (abfd, sec)->contents) |
1055 | 0 | free (contents); |
1056 | 0 | return false; |
1057 | 0 | } Unexecuted instantiation: coff-sh.c:sh_relax_section Unexecuted instantiation: pe-sh.c:sh_relax_section Unexecuted instantiation: pei-sh.c:sh_relax_section |
1058 | | |
1059 | | /* Delete some bytes from a section while relaxing. */ |
1060 | | |
1061 | | static bool |
1062 | | sh_relax_delete_bytes (bfd *abfd, |
1063 | | asection *sec, |
1064 | | bfd_vma addr, |
1065 | | int count) |
1066 | 0 | { |
1067 | 0 | bfd_byte *contents; |
1068 | 0 | struct internal_reloc *irel, *irelend; |
1069 | 0 | struct internal_reloc *irelalign; |
1070 | 0 | bfd_vma toaddr; |
1071 | 0 | bfd_byte *esym, *esymend; |
1072 | 0 | bfd_size_type symesz; |
1073 | 0 | struct coff_link_hash_entry **sym_hash; |
1074 | 0 | asection *o; |
1075 | |
|
1076 | 0 | contents = coff_section_data (abfd, sec)->contents; |
1077 | | |
1078 | | /* The deletion must stop at the next ALIGN reloc for an alignment |
1079 | | power larger than the number of bytes we are deleting. */ |
1080 | |
|
1081 | 0 | irelalign = NULL; |
1082 | 0 | toaddr = sec->size; |
1083 | |
|
1084 | 0 | irel = coff_section_data (abfd, sec)->relocs; |
1085 | 0 | irelend = irel + sec->reloc_count; |
1086 | 0 | for (; irel < irelend; irel++) |
1087 | 0 | { |
1088 | 0 | if (irel->r_type == R_SH_ALIGN |
1089 | 0 | && irel->r_vaddr - sec->vma > addr |
1090 | 0 | && count < (1 << irel->r_offset)) |
1091 | 0 | { |
1092 | 0 | irelalign = irel; |
1093 | 0 | toaddr = irel->r_vaddr - sec->vma; |
1094 | 0 | break; |
1095 | 0 | } |
1096 | 0 | } |
1097 | | |
1098 | | /* Actually delete the bytes. */ |
1099 | 0 | memmove (contents + addr, contents + addr + count, |
1100 | 0 | (size_t) (toaddr - addr - count)); |
1101 | 0 | if (irelalign == NULL) |
1102 | 0 | sec->size -= count; |
1103 | 0 | else |
1104 | 0 | { |
1105 | 0 | int i; |
1106 | |
|
1107 | 0 | #define NOP_OPCODE (0x0009) |
1108 | |
|
1109 | 0 | BFD_ASSERT ((count & 1) == 0); |
1110 | 0 | for (i = 0; i < count; i += 2) |
1111 | 0 | bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
1112 | 0 | } |
1113 | | |
1114 | | /* Adjust all the relocs. */ |
1115 | 0 | for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) |
1116 | 0 | { |
1117 | 0 | bfd_vma nraddr, stop; |
1118 | 0 | bfd_vma start = 0; |
1119 | 0 | int insn = 0; |
1120 | 0 | struct internal_syment sym; |
1121 | 0 | int off, adjust, oinsn; |
1122 | 0 | bfd_signed_vma voff = 0; |
1123 | 0 | bool overflow; |
1124 | | |
1125 | | /* Get the new reloc address. */ |
1126 | 0 | nraddr = irel->r_vaddr - sec->vma; |
1127 | 0 | if ((irel->r_vaddr - sec->vma > addr |
1128 | 0 | && irel->r_vaddr - sec->vma < toaddr) |
1129 | 0 | || (irel->r_type == R_SH_ALIGN |
1130 | 0 | && irel->r_vaddr - sec->vma == toaddr)) |
1131 | 0 | nraddr -= count; |
1132 | | |
1133 | | /* See if this reloc was for the bytes we have deleted, in which |
1134 | | case we no longer care about it. Don't delete relocs which |
1135 | | represent addresses, though. */ |
1136 | 0 | if (irel->r_vaddr - sec->vma >= addr |
1137 | 0 | && irel->r_vaddr - sec->vma < addr + count |
1138 | 0 | && irel->r_type != R_SH_ALIGN |
1139 | 0 | && irel->r_type != R_SH_CODE |
1140 | 0 | && irel->r_type != R_SH_DATA |
1141 | 0 | && irel->r_type != R_SH_LABEL) |
1142 | 0 | irel->r_type = R_SH_UNUSED; |
1143 | | |
1144 | | /* If this is a PC relative reloc, see if the range it covers |
1145 | | includes the bytes we have deleted. */ |
1146 | 0 | switch (irel->r_type) |
1147 | 0 | { |
1148 | 0 | default: |
1149 | 0 | break; |
1150 | | |
1151 | 0 | case R_SH_PCDISP8BY2: |
1152 | 0 | case R_SH_PCDISP: |
1153 | 0 | case R_SH_PCRELIMM8BY2: |
1154 | 0 | case R_SH_PCRELIMM8BY4: |
1155 | 0 | start = irel->r_vaddr - sec->vma; |
1156 | 0 | insn = bfd_get_16 (abfd, contents + nraddr); |
1157 | 0 | break; |
1158 | 0 | } |
1159 | | |
1160 | 0 | switch (irel->r_type) |
1161 | 0 | { |
1162 | 0 | default: |
1163 | 0 | start = stop = addr; |
1164 | 0 | break; |
1165 | | |
1166 | 0 | case R_SH_IMM32: |
1167 | | #ifdef COFF_WITH_PE |
1168 | 0 | case R_SH_IMM32CE: |
1169 | 0 | case R_SH_IMAGEBASE: |
1170 | 0 | #endif |
1171 | | /* If this reloc is against a symbol defined in this |
1172 | | section, and the symbol will not be adjusted below, we |
1173 | | must check the addend to see it will put the value in |
1174 | | range to be adjusted, and hence must be changed. */ |
1175 | 0 | bfd_coff_swap_sym_in (abfd, |
1176 | 0 | ((bfd_byte *) obj_coff_external_syms (abfd) |
1177 | 0 | + (irel->r_symndx |
1178 | 0 | * bfd_coff_symesz (abfd))), |
1179 | 0 | &sym); |
1180 | 0 | if (sym.n_sclass != C_EXT |
1181 | 0 | && sym.n_scnum == sec->target_index |
1182 | 0 | && ((bfd_vma) sym.n_value <= addr |
1183 | 0 | || (bfd_vma) sym.n_value >= toaddr)) |
1184 | 0 | { |
1185 | 0 | bfd_vma val; |
1186 | |
|
1187 | 0 | val = bfd_get_32 (abfd, contents + nraddr); |
1188 | 0 | val += sym.n_value; |
1189 | 0 | if (val > addr && val < toaddr) |
1190 | 0 | bfd_put_32 (abfd, val - count, contents + nraddr); |
1191 | 0 | } |
1192 | 0 | start = stop = addr; |
1193 | 0 | break; |
1194 | | |
1195 | 0 | case R_SH_PCDISP8BY2: |
1196 | 0 | off = insn & 0xff; |
1197 | 0 | if (off & 0x80) |
1198 | 0 | off -= 0x100; |
1199 | 0 | stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
1200 | 0 | break; |
1201 | | |
1202 | 0 | case R_SH_PCDISP: |
1203 | 0 | bfd_coff_swap_sym_in (abfd, |
1204 | 0 | ((bfd_byte *) obj_coff_external_syms (abfd) |
1205 | 0 | + (irel->r_symndx |
1206 | 0 | * bfd_coff_symesz (abfd))), |
1207 | 0 | &sym); |
1208 | 0 | if (sym.n_sclass == C_EXT) |
1209 | 0 | start = stop = addr; |
1210 | 0 | else |
1211 | 0 | { |
1212 | 0 | off = insn & 0xfff; |
1213 | 0 | if (off & 0x800) |
1214 | 0 | off -= 0x1000; |
1215 | 0 | stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
1216 | 0 | } |
1217 | 0 | break; |
1218 | | |
1219 | 0 | case R_SH_PCRELIMM8BY2: |
1220 | 0 | off = insn & 0xff; |
1221 | 0 | stop = start + 4 + off * 2; |
1222 | 0 | break; |
1223 | | |
1224 | 0 | case R_SH_PCRELIMM8BY4: |
1225 | 0 | off = insn & 0xff; |
1226 | 0 | stop = (start &~ (bfd_vma) 3) + 4 + off * 4; |
1227 | 0 | break; |
1228 | | |
1229 | 0 | case R_SH_SWITCH8: |
1230 | 0 | case R_SH_SWITCH16: |
1231 | 0 | case R_SH_SWITCH32: |
1232 | | /* These relocs types represent |
1233 | | .word L2-L1 |
1234 | | The r_offset field holds the difference between the reloc |
1235 | | address and L1. That is the start of the reloc, and |
1236 | | adding in the contents gives us the top. We must adjust |
1237 | | both the r_offset field and the section contents. */ |
1238 | |
|
1239 | 0 | start = irel->r_vaddr - sec->vma; |
1240 | 0 | stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); |
1241 | |
|
1242 | 0 | if (start > addr |
1243 | 0 | && start < toaddr |
1244 | 0 | && (stop <= addr || stop >= toaddr)) |
1245 | 0 | irel->r_offset += count; |
1246 | 0 | else if (stop > addr |
1247 | 0 | && stop < toaddr |
1248 | 0 | && (start <= addr || start >= toaddr)) |
1249 | 0 | irel->r_offset -= count; |
1250 | |
|
1251 | 0 | start = stop; |
1252 | |
|
1253 | 0 | if (irel->r_type == R_SH_SWITCH16) |
1254 | 0 | voff = bfd_get_signed_16 (abfd, contents + nraddr); |
1255 | 0 | else if (irel->r_type == R_SH_SWITCH8) |
1256 | 0 | voff = bfd_get_8 (abfd, contents + nraddr); |
1257 | 0 | else |
1258 | 0 | voff = bfd_get_signed_32 (abfd, contents + nraddr); |
1259 | 0 | stop = (bfd_vma) ((bfd_signed_vma) start + voff); |
1260 | |
|
1261 | 0 | break; |
1262 | | |
1263 | 0 | case R_SH_USES: |
1264 | 0 | start = irel->r_vaddr - sec->vma; |
1265 | 0 | stop = (bfd_vma) ((bfd_signed_vma) start |
1266 | 0 | + (long) irel->r_offset |
1267 | 0 | + 4); |
1268 | 0 | break; |
1269 | 0 | } |
1270 | | |
1271 | 0 | if (start > addr |
1272 | 0 | && start < toaddr |
1273 | 0 | && (stop <= addr || stop >= toaddr)) |
1274 | 0 | adjust = count; |
1275 | 0 | else if (stop > addr |
1276 | 0 | && stop < toaddr |
1277 | 0 | && (start <= addr || start >= toaddr)) |
1278 | 0 | adjust = - count; |
1279 | 0 | else |
1280 | 0 | adjust = 0; |
1281 | |
|
1282 | 0 | if (adjust != 0) |
1283 | 0 | { |
1284 | 0 | oinsn = insn; |
1285 | 0 | overflow = false; |
1286 | 0 | switch (irel->r_type) |
1287 | 0 | { |
1288 | 0 | default: |
1289 | 0 | abort (); |
1290 | 0 | break; |
1291 | | |
1292 | 0 | case R_SH_PCDISP8BY2: |
1293 | 0 | case R_SH_PCRELIMM8BY2: |
1294 | 0 | insn += adjust / 2; |
1295 | 0 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
1296 | 0 | overflow = true; |
1297 | 0 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
1298 | 0 | break; |
1299 | | |
1300 | 0 | case R_SH_PCDISP: |
1301 | 0 | insn += adjust / 2; |
1302 | 0 | if ((oinsn & 0xf000) != (insn & 0xf000)) |
1303 | 0 | overflow = true; |
1304 | 0 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
1305 | 0 | break; |
1306 | | |
1307 | 0 | case R_SH_PCRELIMM8BY4: |
1308 | 0 | BFD_ASSERT (adjust == count || count >= 4); |
1309 | 0 | if (count >= 4) |
1310 | 0 | insn += adjust / 4; |
1311 | 0 | else |
1312 | 0 | { |
1313 | 0 | if ((irel->r_vaddr & 3) == 0) |
1314 | 0 | ++insn; |
1315 | 0 | } |
1316 | 0 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
1317 | 0 | overflow = true; |
1318 | 0 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
1319 | 0 | break; |
1320 | | |
1321 | 0 | case R_SH_SWITCH8: |
1322 | 0 | voff += adjust; |
1323 | 0 | if (voff < 0 || voff >= 0xff) |
1324 | 0 | overflow = true; |
1325 | 0 | bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); |
1326 | 0 | break; |
1327 | | |
1328 | 0 | case R_SH_SWITCH16: |
1329 | 0 | voff += adjust; |
1330 | 0 | if (voff < - 0x8000 || voff >= 0x8000) |
1331 | 0 | overflow = true; |
1332 | 0 | bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); |
1333 | 0 | break; |
1334 | | |
1335 | 0 | case R_SH_SWITCH32: |
1336 | 0 | voff += adjust; |
1337 | 0 | bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); |
1338 | 0 | break; |
1339 | | |
1340 | 0 | case R_SH_USES: |
1341 | 0 | irel->r_offset += adjust; |
1342 | 0 | break; |
1343 | 0 | } |
1344 | | |
1345 | 0 | if (overflow) |
1346 | 0 | { |
1347 | 0 | _bfd_error_handler |
1348 | | /* xgettext: c-format */ |
1349 | 0 | (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), |
1350 | 0 | abfd, (uint64_t) irel->r_vaddr); |
1351 | 0 | bfd_set_error (bfd_error_bad_value); |
1352 | 0 | return false; |
1353 | 0 | } |
1354 | 0 | } |
1355 | | |
1356 | 0 | irel->r_vaddr = nraddr + sec->vma; |
1357 | 0 | } |
1358 | | |
1359 | | /* Look through all the other sections. If there contain any IMM32 |
1360 | | relocs against internal symbols which we are not going to adjust |
1361 | | below, we may need to adjust the addends. */ |
1362 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
1363 | 0 | { |
1364 | 0 | struct internal_reloc *internal_relocs; |
1365 | 0 | struct internal_reloc *irelscan, *irelscanend; |
1366 | 0 | bfd_byte *ocontents; |
1367 | |
|
1368 | 0 | if (o == sec |
1369 | 0 | || (o->flags & SEC_HAS_CONTENTS) == 0 |
1370 | 0 | || (o->flags & SEC_RELOC) == 0 |
1371 | 0 | || o->reloc_count == 0) |
1372 | 0 | continue; |
1373 | | |
1374 | | /* We always cache the relocs. Perhaps, if info->keep_memory is |
1375 | | FALSE, we should free them, if we are permitted to, when we |
1376 | | leave sh_coff_relax_section. */ |
1377 | 0 | internal_relocs = (_bfd_coff_read_internal_relocs |
1378 | 0 | (abfd, o, true, (bfd_byte *) NULL, false, |
1379 | 0 | (struct internal_reloc *) NULL)); |
1380 | 0 | if (internal_relocs == NULL) |
1381 | 0 | return false; |
1382 | | |
1383 | 0 | ocontents = NULL; |
1384 | 0 | irelscanend = internal_relocs + o->reloc_count; |
1385 | 0 | for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) |
1386 | 0 | { |
1387 | 0 | struct internal_syment sym; |
1388 | |
|
1389 | | #ifdef COFF_WITH_PE |
1390 | 0 | if (irelscan->r_type != R_SH_IMM32 |
1391 | 0 | && irelscan->r_type != R_SH_IMAGEBASE |
1392 | 0 | && irelscan->r_type != R_SH_IMM32CE) |
1393 | | #else |
1394 | 0 | if (irelscan->r_type != R_SH_IMM32) |
1395 | 0 | #endif |
1396 | 0 | continue; |
1397 | | |
1398 | 0 | bfd_coff_swap_sym_in (abfd, |
1399 | 0 | ((bfd_byte *) obj_coff_external_syms (abfd) |
1400 | 0 | + (irelscan->r_symndx |
1401 | 0 | * bfd_coff_symesz (abfd))), |
1402 | 0 | &sym); |
1403 | 0 | if (sym.n_sclass != C_EXT |
1404 | 0 | && sym.n_scnum == sec->target_index |
1405 | 0 | && ((bfd_vma) sym.n_value <= addr |
1406 | 0 | || (bfd_vma) sym.n_value >= toaddr)) |
1407 | 0 | { |
1408 | 0 | bfd_vma val; |
1409 | |
|
1410 | 0 | if (ocontents == NULL) |
1411 | 0 | { |
1412 | 0 | if (coff_section_data (abfd, o)->contents != NULL) |
1413 | 0 | ocontents = coff_section_data (abfd, o)->contents; |
1414 | 0 | else |
1415 | 0 | { |
1416 | 0 | if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) |
1417 | 0 | return false; |
1418 | | /* We always cache the section contents. |
1419 | | Perhaps, if info->keep_memory is FALSE, we |
1420 | | should free them, if we are permitted to, |
1421 | | when we leave sh_coff_relax_section. */ |
1422 | 0 | coff_section_data (abfd, o)->contents = ocontents; |
1423 | 0 | } |
1424 | 0 | } |
1425 | | |
1426 | 0 | val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); |
1427 | 0 | val += sym.n_value; |
1428 | 0 | if (val > addr && val < toaddr) |
1429 | 0 | bfd_put_32 (abfd, val - count, |
1430 | 0 | ocontents + irelscan->r_vaddr - o->vma); |
1431 | 0 | } |
1432 | 0 | } |
1433 | 0 | } |
1434 | | |
1435 | | /* Adjusting the internal symbols will not work if something has |
1436 | | already retrieved the generic symbols. It would be possible to |
1437 | | make this work by adjusting the generic symbols at the same time. |
1438 | | However, this case should not arise in normal usage. */ |
1439 | 0 | if (obj_symbols (abfd) != NULL |
1440 | 0 | || obj_raw_syments (abfd) != NULL) |
1441 | 0 | { |
1442 | 0 | _bfd_error_handler |
1443 | 0 | (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd); |
1444 | 0 | bfd_set_error (bfd_error_invalid_operation); |
1445 | 0 | return false; |
1446 | 0 | } |
1447 | | |
1448 | | /* Adjust all the symbols. */ |
1449 | 0 | sym_hash = obj_coff_sym_hashes (abfd); |
1450 | 0 | symesz = bfd_coff_symesz (abfd); |
1451 | 0 | esym = (bfd_byte *) obj_coff_external_syms (abfd); |
1452 | 0 | esymend = esym + obj_raw_syment_count (abfd) * symesz; |
1453 | 0 | while (esym < esymend) |
1454 | 0 | { |
1455 | 0 | struct internal_syment isym; |
1456 | |
|
1457 | 0 | bfd_coff_swap_sym_in (abfd, esym, &isym); |
1458 | |
|
1459 | 0 | if (isym.n_scnum == sec->target_index |
1460 | 0 | && (bfd_vma) isym.n_value > addr |
1461 | 0 | && (bfd_vma) isym.n_value < toaddr) |
1462 | 0 | { |
1463 | 0 | isym.n_value -= count; |
1464 | |
|
1465 | 0 | bfd_coff_swap_sym_out (abfd, &isym, esym); |
1466 | |
|
1467 | 0 | if (*sym_hash != NULL) |
1468 | 0 | { |
1469 | 0 | BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined |
1470 | 0 | || (*sym_hash)->root.type == bfd_link_hash_defweak); |
1471 | 0 | BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr |
1472 | 0 | && (*sym_hash)->root.u.def.value < toaddr); |
1473 | 0 | (*sym_hash)->root.u.def.value -= count; |
1474 | 0 | } |
1475 | 0 | } |
1476 | |
|
1477 | 0 | esym += (isym.n_numaux + 1) * symesz; |
1478 | 0 | sym_hash += isym.n_numaux + 1; |
1479 | 0 | } |
1480 | | |
1481 | | /* See if we can move the ALIGN reloc forward. We have adjusted |
1482 | | r_vaddr for it already. */ |
1483 | 0 | if (irelalign != NULL) |
1484 | 0 | { |
1485 | 0 | bfd_vma alignto, alignaddr; |
1486 | |
|
1487 | 0 | alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); |
1488 | 0 | alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, |
1489 | 0 | 1 << irelalign->r_offset); |
1490 | 0 | if (alignto != alignaddr) |
1491 | 0 | { |
1492 | | /* Tail recursion. */ |
1493 | 0 | return sh_relax_delete_bytes (abfd, sec, alignaddr, |
1494 | 0 | (int) (alignto - alignaddr)); |
1495 | 0 | } |
1496 | 0 | } |
1497 | | |
1498 | 0 | return true; |
1499 | 0 | } Unexecuted instantiation: coff-sh.c:sh_relax_delete_bytes Unexecuted instantiation: pe-sh.c:sh_relax_delete_bytes Unexecuted instantiation: pei-sh.c:sh_relax_delete_bytes |
1500 | | |
1501 | | /* This is yet another version of the SH opcode table, used to rapidly |
1502 | | get information about a particular instruction. */ |
1503 | | |
1504 | | /* The opcode map is represented by an array of these structures. The |
1505 | | array is indexed by the high order four bits in the instruction. */ |
1506 | | |
1507 | | struct sh_major_opcode |
1508 | | { |
1509 | | /* A pointer to the instruction list. This is an array which |
1510 | | contains all the instructions with this major opcode. */ |
1511 | | const struct sh_minor_opcode *minor_opcodes; |
1512 | | /* The number of elements in minor_opcodes. */ |
1513 | | unsigned short count; |
1514 | | }; |
1515 | | |
1516 | | /* This structure holds information for a set of SH opcodes. The |
1517 | | instruction code is anded with the mask value, and the resulting |
1518 | | value is used to search the order opcode list. */ |
1519 | | |
1520 | | struct sh_minor_opcode |
1521 | | { |
1522 | | /* The sorted opcode list. */ |
1523 | | const struct sh_opcode *opcodes; |
1524 | | /* The number of elements in opcodes. */ |
1525 | | unsigned short count; |
1526 | | /* The mask value to use when searching the opcode list. */ |
1527 | | unsigned short mask; |
1528 | | }; |
1529 | | |
1530 | | /* This structure holds information for an SH instruction. An array |
1531 | | of these structures is sorted in order by opcode. */ |
1532 | | |
1533 | | struct sh_opcode |
1534 | | { |
1535 | | /* The code for this instruction, after it has been anded with the |
1536 | | mask value in the sh_major_opcode structure. */ |
1537 | | unsigned short opcode; |
1538 | | /* Flags for this instruction. */ |
1539 | | unsigned long flags; |
1540 | | }; |
1541 | | |
1542 | | /* Flag which appear in the sh_opcode structure. */ |
1543 | | |
1544 | | /* This instruction loads a value from memory. */ |
1545 | 0 | #define LOAD (0x1) |
1546 | | |
1547 | | /* This instruction stores a value to memory. */ |
1548 | 0 | #define STORE (0x2) |
1549 | | |
1550 | | /* This instruction is a branch. */ |
1551 | 0 | #define BRANCH (0x4) |
1552 | | |
1553 | | /* This instruction has a delay slot. */ |
1554 | 0 | #define DELAY (0x8) |
1555 | | |
1556 | | /* This instruction uses the value in the register in the field at |
1557 | | mask 0x0f00 of the instruction. */ |
1558 | 0 | #define USES1 (0x10) |
1559 | 0 | #define USES1_REG(x) ((x & 0x0f00) >> 8) |
1560 | | |
1561 | | /* This instruction uses the value in the register in the field at |
1562 | | mask 0x00f0 of the instruction. */ |
1563 | 0 | #define USES2 (0x20) |
1564 | 0 | #define USES2_REG(x) ((x & 0x00f0) >> 4) |
1565 | | |
1566 | | /* This instruction uses the value in register 0. */ |
1567 | 0 | #define USESR0 (0x40) |
1568 | | |
1569 | | /* This instruction sets the value in the register in the field at |
1570 | | mask 0x0f00 of the instruction. */ |
1571 | 0 | #define SETS1 (0x80) |
1572 | 0 | #define SETS1_REG(x) ((x & 0x0f00) >> 8) |
1573 | | |
1574 | | /* This instruction sets the value in the register in the field at |
1575 | | mask 0x00f0 of the instruction. */ |
1576 | 0 | #define SETS2 (0x100) |
1577 | 0 | #define SETS2_REG(x) ((x & 0x00f0) >> 4) |
1578 | | |
1579 | | /* This instruction sets register 0. */ |
1580 | 0 | #define SETSR0 (0x200) |
1581 | | |
1582 | | /* This instruction sets a special register. */ |
1583 | 0 | #define SETSSP (0x400) |
1584 | | |
1585 | | /* This instruction uses a special register. */ |
1586 | 0 | #define USESSP (0x800) |
1587 | | |
1588 | | /* This instruction uses the floating point register in the field at |
1589 | | mask 0x0f00 of the instruction. */ |
1590 | 0 | #define USESF1 (0x1000) |
1591 | 0 | #define USESF1_REG(x) ((x & 0x0f00) >> 8) |
1592 | | |
1593 | | /* This instruction uses the floating point register in the field at |
1594 | | mask 0x00f0 of the instruction. */ |
1595 | 0 | #define USESF2 (0x2000) |
1596 | 0 | #define USESF2_REG(x) ((x & 0x00f0) >> 4) |
1597 | | |
1598 | | /* This instruction uses floating point register 0. */ |
1599 | 0 | #define USESF0 (0x4000) |
1600 | | |
1601 | | /* This instruction sets the floating point register in the field at |
1602 | | mask 0x0f00 of the instruction. */ |
1603 | 0 | #define SETSF1 (0x8000) |
1604 | 0 | #define SETSF1_REG(x) ((x & 0x0f00) >> 8) |
1605 | | |
1606 | 0 | #define USESAS (0x10000) |
1607 | 0 | #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) |
1608 | 0 | #define USESR8 (0x20000) |
1609 | 0 | #define SETSAS (0x40000) |
1610 | 0 | #define SETSAS_REG(x) USESAS_REG (x) |
1611 | | |
1612 | | #define MAP(a) a, sizeof a / sizeof a[0] |
1613 | | |
1614 | | #ifndef COFF_IMAGE_WITH_PE |
1615 | | |
1616 | | /* The opcode maps. */ |
1617 | | |
1618 | | static const struct sh_opcode sh_opcode00[] = |
1619 | | { |
1620 | | { 0x0008, SETSSP }, /* clrt */ |
1621 | | { 0x0009, 0 }, /* nop */ |
1622 | | { 0x000b, BRANCH | DELAY | USESSP }, /* rts */ |
1623 | | { 0x0018, SETSSP }, /* sett */ |
1624 | | { 0x0019, SETSSP }, /* div0u */ |
1625 | | { 0x001b, 0 }, /* sleep */ |
1626 | | { 0x0028, SETSSP }, /* clrmac */ |
1627 | | { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */ |
1628 | | { 0x0038, USESSP | SETSSP }, /* ldtlb */ |
1629 | | { 0x0048, SETSSP }, /* clrs */ |
1630 | | { 0x0058, SETSSP } /* sets */ |
1631 | | }; |
1632 | | |
1633 | | static const struct sh_opcode sh_opcode01[] = |
1634 | | { |
1635 | | { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */ |
1636 | | { 0x000a, SETS1 | USESSP }, /* sts mach,rn */ |
1637 | | { 0x001a, SETS1 | USESSP }, /* sts macl,rn */ |
1638 | | { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */ |
1639 | | { 0x0029, SETS1 | USESSP }, /* movt rn */ |
1640 | | { 0x002a, SETS1 | USESSP }, /* sts pr,rn */ |
1641 | | { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */ |
1642 | | { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */ |
1643 | | { 0x0083, LOAD | USES1 }, /* pref @rn */ |
1644 | | { 0x007a, SETS1 | USESSP }, /* sts a0,rn */ |
1645 | | { 0x008a, SETS1 | USESSP }, /* sts x0,rn */ |
1646 | | { 0x009a, SETS1 | USESSP }, /* sts x1,rn */ |
1647 | | { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */ |
1648 | | { 0x00ba, SETS1 | USESSP } /* sts y1,rn */ |
1649 | | }; |
1650 | | |
1651 | | static const struct sh_opcode sh_opcode02[] = |
1652 | | { |
1653 | | { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */ |
1654 | | { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */ |
1655 | | { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */ |
1656 | | { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */ |
1657 | | { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */ |
1658 | | { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */ |
1659 | | { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */ |
1660 | | { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */ |
1661 | | { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ |
1662 | | }; |
1663 | | |
1664 | | static const struct sh_minor_opcode sh_opcode0[] = |
1665 | | { |
1666 | | { MAP (sh_opcode00), 0xffff }, |
1667 | | { MAP (sh_opcode01), 0xf0ff }, |
1668 | | { MAP (sh_opcode02), 0xf00f } |
1669 | | }; |
1670 | | |
1671 | | static const struct sh_opcode sh_opcode10[] = |
1672 | | { |
1673 | | { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */ |
1674 | | }; |
1675 | | |
1676 | | static const struct sh_minor_opcode sh_opcode1[] = |
1677 | | { |
1678 | | { MAP (sh_opcode10), 0xf000 } |
1679 | | }; |
1680 | | |
1681 | | static const struct sh_opcode sh_opcode20[] = |
1682 | | { |
1683 | | { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */ |
1684 | | { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */ |
1685 | | { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */ |
1686 | | { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */ |
1687 | | { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */ |
1688 | | { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */ |
1689 | | { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */ |
1690 | | { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */ |
1691 | | { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */ |
1692 | | { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */ |
1693 | | { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */ |
1694 | | { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */ |
1695 | | { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */ |
1696 | | { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */ |
1697 | | { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */ |
1698 | | }; |
1699 | | |
1700 | | static const struct sh_minor_opcode sh_opcode2[] = |
1701 | | { |
1702 | | { MAP (sh_opcode20), 0xf00f } |
1703 | | }; |
1704 | | |
1705 | | static const struct sh_opcode sh_opcode30[] = |
1706 | | { |
1707 | | { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */ |
1708 | | { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */ |
1709 | | { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */ |
1710 | | { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */ |
1711 | | { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */ |
1712 | | { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */ |
1713 | | { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */ |
1714 | | { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */ |
1715 | | { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ |
1716 | | { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */ |
1717 | | { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */ |
1718 | | { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */ |
1719 | | { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ |
1720 | | { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */ |
1721 | | }; |
1722 | | |
1723 | | static const struct sh_minor_opcode sh_opcode3[] = |
1724 | | { |
1725 | | { MAP (sh_opcode30), 0xf00f } |
1726 | | }; |
1727 | | |
1728 | | static const struct sh_opcode sh_opcode40[] = |
1729 | | { |
1730 | | { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */ |
1731 | | { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */ |
1732 | | { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */ |
1733 | | { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */ |
1734 | | { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */ |
1735 | | { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */ |
1736 | | { 0x4008, SETS1 | USES1 }, /* shll2 rn */ |
1737 | | { 0x4009, SETS1 | USES1 }, /* shlr2 rn */ |
1738 | | { 0x400a, SETSSP | USES1 }, /* lds rm,mach */ |
1739 | | { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */ |
1740 | | { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */ |
1741 | | { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */ |
1742 | | { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */ |
1743 | | { 0x4014, SETSSP | USES1 }, /* setrc rm */ |
1744 | | { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */ |
1745 | | { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */ |
1746 | | { 0x4018, SETS1 | USES1 }, /* shll8 rn */ |
1747 | | { 0x4019, SETS1 | USES1 }, /* shlr8 rn */ |
1748 | | { 0x401a, SETSSP | USES1 }, /* lds rm,macl */ |
1749 | | { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */ |
1750 | | { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */ |
1751 | | { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */ |
1752 | | { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */ |
1753 | | { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */ |
1754 | | { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */ |
1755 | | { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */ |
1756 | | { 0x4028, SETS1 | USES1 }, /* shll16 rn */ |
1757 | | { 0x4029, SETS1 | USES1 }, /* shlr16 rn */ |
1758 | | { 0x402a, SETSSP | USES1 }, /* lds rm,pr */ |
1759 | | { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */ |
1760 | | { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */ |
1761 | | { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */ |
1762 | | { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */ |
1763 | | { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */ |
1764 | | { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */ |
1765 | | { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */ |
1766 | | { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */ |
1767 | | { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */ |
1768 | | { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */ |
1769 | | { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */ |
1770 | | { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */ |
1771 | | { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */ |
1772 | | { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */ |
1773 | | { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */ |
1774 | | { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */ |
1775 | | { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */ |
1776 | | { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */ |
1777 | | { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */ |
1778 | | { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */ |
1779 | | { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */ |
1780 | | { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */ |
1781 | | }; |
1782 | | |
1783 | | static const struct sh_opcode sh_opcode41[] = |
1784 | | { |
1785 | | { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */ |
1786 | | { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */ |
1787 | | { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */ |
1788 | | { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */ |
1789 | | { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */ |
1790 | | { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ |
1791 | | }; |
1792 | | |
1793 | | static const struct sh_minor_opcode sh_opcode4[] = |
1794 | | { |
1795 | | { MAP (sh_opcode40), 0xf0ff }, |
1796 | | { MAP (sh_opcode41), 0xf00f } |
1797 | | }; |
1798 | | |
1799 | | static const struct sh_opcode sh_opcode50[] = |
1800 | | { |
1801 | | { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */ |
1802 | | }; |
1803 | | |
1804 | | static const struct sh_minor_opcode sh_opcode5[] = |
1805 | | { |
1806 | | { MAP (sh_opcode50), 0xf000 } |
1807 | | }; |
1808 | | |
1809 | | static const struct sh_opcode sh_opcode60[] = |
1810 | | { |
1811 | | { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */ |
1812 | | { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */ |
1813 | | { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */ |
1814 | | { 0x6003, SETS1 | USES2 }, /* mov rm,rn */ |
1815 | | { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */ |
1816 | | { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */ |
1817 | | { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */ |
1818 | | { 0x6007, SETS1 | USES2 }, /* not rm,rn */ |
1819 | | { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */ |
1820 | | { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */ |
1821 | | { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */ |
1822 | | { 0x600b, SETS1 | USES2 }, /* neg rm,rn */ |
1823 | | { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */ |
1824 | | { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */ |
1825 | | { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */ |
1826 | | { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */ |
1827 | | }; |
1828 | | |
1829 | | static const struct sh_minor_opcode sh_opcode6[] = |
1830 | | { |
1831 | | { MAP (sh_opcode60), 0xf00f } |
1832 | | }; |
1833 | | |
1834 | | static const struct sh_opcode sh_opcode70[] = |
1835 | | { |
1836 | | { 0x7000, SETS1 | USES1 } /* add #imm,rn */ |
1837 | | }; |
1838 | | |
1839 | | static const struct sh_minor_opcode sh_opcode7[] = |
1840 | | { |
1841 | | { MAP (sh_opcode70), 0xf000 } |
1842 | | }; |
1843 | | |
1844 | | static const struct sh_opcode sh_opcode80[] = |
1845 | | { |
1846 | | { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */ |
1847 | | { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */ |
1848 | | { 0x8200, SETSSP }, /* setrc #imm */ |
1849 | | { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */ |
1850 | | { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */ |
1851 | | { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */ |
1852 | | { 0x8900, BRANCH | USESSP }, /* bt label */ |
1853 | | { 0x8b00, BRANCH | USESSP }, /* bf label */ |
1854 | | { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */ |
1855 | | { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */ |
1856 | | { 0x8e00, SETSSP }, /* ldre @(disp,pc) */ |
1857 | | { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */ |
1858 | | }; |
1859 | | |
1860 | | static const struct sh_minor_opcode sh_opcode8[] = |
1861 | | { |
1862 | | { MAP (sh_opcode80), 0xff00 } |
1863 | | }; |
1864 | | |
1865 | | static const struct sh_opcode sh_opcode90[] = |
1866 | | { |
1867 | | { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */ |
1868 | | }; |
1869 | | |
1870 | | static const struct sh_minor_opcode sh_opcode9[] = |
1871 | | { |
1872 | | { MAP (sh_opcode90), 0xf000 } |
1873 | | }; |
1874 | | |
1875 | | static const struct sh_opcode sh_opcodea0[] = |
1876 | | { |
1877 | | { 0xa000, BRANCH | DELAY } /* bra label */ |
1878 | | }; |
1879 | | |
1880 | | static const struct sh_minor_opcode sh_opcodea[] = |
1881 | | { |
1882 | | { MAP (sh_opcodea0), 0xf000 } |
1883 | | }; |
1884 | | |
1885 | | static const struct sh_opcode sh_opcodeb0[] = |
1886 | | { |
1887 | | { 0xb000, BRANCH | DELAY } /* bsr label */ |
1888 | | }; |
1889 | | |
1890 | | static const struct sh_minor_opcode sh_opcodeb[] = |
1891 | | { |
1892 | | { MAP (sh_opcodeb0), 0xf000 } |
1893 | | }; |
1894 | | |
1895 | | static const struct sh_opcode sh_opcodec0[] = |
1896 | | { |
1897 | | { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */ |
1898 | | { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */ |
1899 | | { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */ |
1900 | | { 0xc300, BRANCH | USESSP }, /* trapa #imm */ |
1901 | | { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */ |
1902 | | { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */ |
1903 | | { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */ |
1904 | | { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */ |
1905 | | { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */ |
1906 | | { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */ |
1907 | | { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */ |
1908 | | { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */ |
1909 | | { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */ |
1910 | | { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */ |
1911 | | { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */ |
1912 | | { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */ |
1913 | | }; |
1914 | | |
1915 | | static const struct sh_minor_opcode sh_opcodec[] = |
1916 | | { |
1917 | | { MAP (sh_opcodec0), 0xff00 } |
1918 | | }; |
1919 | | |
1920 | | static const struct sh_opcode sh_opcoded0[] = |
1921 | | { |
1922 | | { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */ |
1923 | | }; |
1924 | | |
1925 | | static const struct sh_minor_opcode sh_opcoded[] = |
1926 | | { |
1927 | | { MAP (sh_opcoded0), 0xf000 } |
1928 | | }; |
1929 | | |
1930 | | static const struct sh_opcode sh_opcodee0[] = |
1931 | | { |
1932 | | { 0xe000, SETS1 } /* mov #imm,rn */ |
1933 | | }; |
1934 | | |
1935 | | static const struct sh_minor_opcode sh_opcodee[] = |
1936 | | { |
1937 | | { MAP (sh_opcodee0), 0xf000 } |
1938 | | }; |
1939 | | |
1940 | | static const struct sh_opcode sh_opcodef0[] = |
1941 | | { |
1942 | | { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */ |
1943 | | { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */ |
1944 | | { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */ |
1945 | | { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */ |
1946 | | { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */ |
1947 | | { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */ |
1948 | | { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */ |
1949 | | { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */ |
1950 | | { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */ |
1951 | | { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */ |
1952 | | { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */ |
1953 | | { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */ |
1954 | | { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */ |
1955 | | { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */ |
1956 | | }; |
1957 | | |
1958 | | static const struct sh_opcode sh_opcodef1[] = |
1959 | | { |
1960 | | { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */ |
1961 | | { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */ |
1962 | | { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */ |
1963 | | { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */ |
1964 | | { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */ |
1965 | | { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */ |
1966 | | { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */ |
1967 | | { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */ |
1968 | | { 0xf08d, SETSF1 }, /* fldi0 fn */ |
1969 | | { 0xf09d, SETSF1 } /* fldi1 fn */ |
1970 | | }; |
1971 | | |
1972 | | static const struct sh_minor_opcode sh_opcodef[] = |
1973 | | { |
1974 | | { MAP (sh_opcodef0), 0xf00f }, |
1975 | | { MAP (sh_opcodef1), 0xf0ff } |
1976 | | }; |
1977 | | |
1978 | | static struct sh_major_opcode sh_opcodes[] = |
1979 | | { |
1980 | | { MAP (sh_opcode0) }, |
1981 | | { MAP (sh_opcode1) }, |
1982 | | { MAP (sh_opcode2) }, |
1983 | | { MAP (sh_opcode3) }, |
1984 | | { MAP (sh_opcode4) }, |
1985 | | { MAP (sh_opcode5) }, |
1986 | | { MAP (sh_opcode6) }, |
1987 | | { MAP (sh_opcode7) }, |
1988 | | { MAP (sh_opcode8) }, |
1989 | | { MAP (sh_opcode9) }, |
1990 | | { MAP (sh_opcodea) }, |
1991 | | { MAP (sh_opcodeb) }, |
1992 | | { MAP (sh_opcodec) }, |
1993 | | { MAP (sh_opcoded) }, |
1994 | | { MAP (sh_opcodee) }, |
1995 | | { MAP (sh_opcodef) } |
1996 | | }; |
1997 | | |
1998 | | /* The double data transfer / parallel processing insns are not |
1999 | | described here. This will cause sh_align_load_span to leave them alone. */ |
2000 | | |
2001 | | static const struct sh_opcode sh_dsp_opcodef0[] = |
2002 | | { |
2003 | | { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */ |
2004 | | { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */ |
2005 | | { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */ |
2006 | | { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */ |
2007 | | { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */ |
2008 | | { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */ |
2009 | | { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */ |
2010 | | { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */ |
2011 | | }; |
2012 | | |
2013 | | static const struct sh_minor_opcode sh_dsp_opcodef[] = |
2014 | | { |
2015 | | { MAP (sh_dsp_opcodef0), 0xfc0d } |
2016 | | }; |
2017 | | |
2018 | | /* Given an instruction, return a pointer to the corresponding |
2019 | | sh_opcode structure. Return NULL if the instruction is not |
2020 | | recognized. */ |
2021 | | |
2022 | | static const struct sh_opcode * |
2023 | | sh_insn_info (unsigned int insn) |
2024 | 0 | { |
2025 | 0 | const struct sh_major_opcode *maj; |
2026 | 0 | const struct sh_minor_opcode *min, *minend; |
2027 | |
|
2028 | 0 | maj = &sh_opcodes[(insn & 0xf000) >> 12]; |
2029 | 0 | min = maj->minor_opcodes; |
2030 | 0 | minend = min + maj->count; |
2031 | 0 | for (; min < minend; min++) |
2032 | 0 | { |
2033 | 0 | unsigned int l; |
2034 | 0 | const struct sh_opcode *op, *opend; |
2035 | |
|
2036 | 0 | l = insn & min->mask; |
2037 | 0 | op = min->opcodes; |
2038 | 0 | opend = op + min->count; |
2039 | | |
2040 | | /* Since the opcodes tables are sorted, we could use a binary |
2041 | | search here if the count were above some cutoff value. */ |
2042 | 0 | for (; op < opend; op++) |
2043 | 0 | if (op->opcode == l) |
2044 | 0 | return op; |
2045 | 0 | } |
2046 | | |
2047 | 0 | return NULL; |
2048 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_info Unexecuted instantiation: pe-sh.c:sh_insn_info |
2049 | | |
2050 | | /* See whether an instruction uses a general purpose register. */ |
2051 | | |
2052 | | static bool |
2053 | | sh_insn_uses_reg (unsigned int insn, |
2054 | | const struct sh_opcode *op, |
2055 | | unsigned int reg) |
2056 | 0 | { |
2057 | 0 | unsigned int f; |
2058 | |
|
2059 | 0 | f = op->flags; |
2060 | |
|
2061 | 0 | if ((f & USES1) != 0 |
2062 | 0 | && USES1_REG (insn) == reg) |
2063 | 0 | return true; |
2064 | 0 | if ((f & USES2) != 0 |
2065 | 0 | && USES2_REG (insn) == reg) |
2066 | 0 | return true; |
2067 | 0 | if ((f & USESR0) != 0 |
2068 | 0 | && reg == 0) |
2069 | 0 | return true; |
2070 | 0 | if ((f & USESAS) && reg == USESAS_REG (insn)) |
2071 | 0 | return true; |
2072 | 0 | if ((f & USESR8) && reg == 8) |
2073 | 0 | return true; |
2074 | | |
2075 | 0 | return false; |
2076 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_uses_reg Unexecuted instantiation: pe-sh.c:sh_insn_uses_reg |
2077 | | |
2078 | | /* See whether an instruction sets a general purpose register. */ |
2079 | | |
2080 | | static bool |
2081 | | sh_insn_sets_reg (unsigned int insn, |
2082 | | const struct sh_opcode *op, |
2083 | | unsigned int reg) |
2084 | 0 | { |
2085 | 0 | unsigned int f; |
2086 | |
|
2087 | 0 | f = op->flags; |
2088 | |
|
2089 | 0 | if ((f & SETS1) != 0 |
2090 | 0 | && SETS1_REG (insn) == reg) |
2091 | 0 | return true; |
2092 | 0 | if ((f & SETS2) != 0 |
2093 | 0 | && SETS2_REG (insn) == reg) |
2094 | 0 | return true; |
2095 | 0 | if ((f & SETSR0) != 0 |
2096 | 0 | && reg == 0) |
2097 | 0 | return true; |
2098 | 0 | if ((f & SETSAS) && reg == SETSAS_REG (insn)) |
2099 | 0 | return true; |
2100 | | |
2101 | 0 | return false; |
2102 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_sets_reg Unexecuted instantiation: pe-sh.c:sh_insn_sets_reg |
2103 | | |
2104 | | /* See whether an instruction uses or sets a general purpose register */ |
2105 | | |
2106 | | static bool |
2107 | | sh_insn_uses_or_sets_reg (unsigned int insn, |
2108 | | const struct sh_opcode *op, |
2109 | | unsigned int reg) |
2110 | 0 | { |
2111 | 0 | if (sh_insn_uses_reg (insn, op, reg)) |
2112 | 0 | return true; |
2113 | | |
2114 | 0 | return sh_insn_sets_reg (insn, op, reg); |
2115 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_uses_or_sets_reg Unexecuted instantiation: pe-sh.c:sh_insn_uses_or_sets_reg |
2116 | | |
2117 | | /* See whether an instruction uses a floating point register. */ |
2118 | | |
2119 | | static bool |
2120 | | sh_insn_uses_freg (unsigned int insn, |
2121 | | const struct sh_opcode *op, |
2122 | | unsigned int freg) |
2123 | 0 | { |
2124 | 0 | unsigned int f; |
2125 | |
|
2126 | 0 | f = op->flags; |
2127 | | |
2128 | | /* We can't tell if this is a double-precision insn, so just play safe |
2129 | | and assume that it might be. So not only have we test FREG against |
2130 | | itself, but also even FREG against FREG+1 - if the using insn uses |
2131 | | just the low part of a double precision value - but also an odd |
2132 | | FREG against FREG-1 - if the setting insn sets just the low part |
2133 | | of a double precision value. |
2134 | | So what this all boils down to is that we have to ignore the lowest |
2135 | | bit of the register number. */ |
2136 | |
|
2137 | 0 | if ((f & USESF1) != 0 |
2138 | 0 | && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) |
2139 | 0 | return true; |
2140 | 0 | if ((f & USESF2) != 0 |
2141 | 0 | && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) |
2142 | 0 | return true; |
2143 | 0 | if ((f & USESF0) != 0 |
2144 | 0 | && freg == 0) |
2145 | 0 | return true; |
2146 | | |
2147 | 0 | return false; |
2148 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_uses_freg Unexecuted instantiation: pe-sh.c:sh_insn_uses_freg |
2149 | | |
2150 | | /* See whether an instruction sets a floating point register. */ |
2151 | | |
2152 | | static bool |
2153 | | sh_insn_sets_freg (unsigned int insn, |
2154 | | const struct sh_opcode *op, |
2155 | | unsigned int freg) |
2156 | 0 | { |
2157 | 0 | unsigned int f; |
2158 | |
|
2159 | 0 | f = op->flags; |
2160 | | |
2161 | | /* We can't tell if this is a double-precision insn, so just play safe |
2162 | | and assume that it might be. So not only have we test FREG against |
2163 | | itself, but also even FREG against FREG+1 - if the using insn uses |
2164 | | just the low part of a double precision value - but also an odd |
2165 | | FREG against FREG-1 - if the setting insn sets just the low part |
2166 | | of a double precision value. |
2167 | | So what this all boils down to is that we have to ignore the lowest |
2168 | | bit of the register number. */ |
2169 | |
|
2170 | 0 | if ((f & SETSF1) != 0 |
2171 | 0 | && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) |
2172 | 0 | return true; |
2173 | | |
2174 | 0 | return false; |
2175 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_sets_freg Unexecuted instantiation: pe-sh.c:sh_insn_sets_freg |
2176 | | |
2177 | | /* See whether an instruction uses or sets a floating point register */ |
2178 | | |
2179 | | static bool |
2180 | | sh_insn_uses_or_sets_freg (unsigned int insn, |
2181 | | const struct sh_opcode *op, |
2182 | | unsigned int reg) |
2183 | 0 | { |
2184 | 0 | if (sh_insn_uses_freg (insn, op, reg)) |
2185 | 0 | return true; |
2186 | | |
2187 | 0 | return sh_insn_sets_freg (insn, op, reg); |
2188 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insn_uses_or_sets_freg Unexecuted instantiation: pe-sh.c:sh_insn_uses_or_sets_freg |
2189 | | |
2190 | | /* See whether instructions I1 and I2 conflict, assuming I1 comes |
2191 | | before I2. OP1 and OP2 are the corresponding sh_opcode structures. |
2192 | | This should return TRUE if there is a conflict, or FALSE if the |
2193 | | instructions can be swapped safely. */ |
2194 | | |
2195 | | static bool |
2196 | | sh_insns_conflict (unsigned int i1, |
2197 | | const struct sh_opcode *op1, |
2198 | | unsigned int i2, |
2199 | | const struct sh_opcode *op2) |
2200 | 0 | { |
2201 | 0 | unsigned int f1, f2; |
2202 | |
|
2203 | 0 | f1 = op1->flags; |
2204 | 0 | f2 = op2->flags; |
2205 | | |
2206 | | /* Load of fpscr conflicts with floating point operations. |
2207 | | FIXME: shouldn't test raw opcodes here. */ |
2208 | 0 | if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) |
2209 | 0 | || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) |
2210 | 0 | return true; |
2211 | | |
2212 | 0 | if ((f1 & (BRANCH | DELAY)) != 0 |
2213 | 0 | || (f2 & (BRANCH | DELAY)) != 0) |
2214 | 0 | return true; |
2215 | | |
2216 | 0 | if (((f1 | f2) & SETSSP) |
2217 | 0 | && (f1 & (SETSSP | USESSP)) |
2218 | 0 | && (f2 & (SETSSP | USESSP))) |
2219 | 0 | return true; |
2220 | | |
2221 | 0 | if ((f1 & SETS1) != 0 |
2222 | 0 | && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) |
2223 | 0 | return true; |
2224 | 0 | if ((f1 & SETS2) != 0 |
2225 | 0 | && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) |
2226 | 0 | return true; |
2227 | 0 | if ((f1 & SETSR0) != 0 |
2228 | 0 | && sh_insn_uses_or_sets_reg (i2, op2, 0)) |
2229 | 0 | return true; |
2230 | 0 | if ((f1 & SETSAS) |
2231 | 0 | && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) |
2232 | 0 | return true; |
2233 | 0 | if ((f1 & SETSF1) != 0 |
2234 | 0 | && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) |
2235 | 0 | return true; |
2236 | | |
2237 | 0 | if ((f2 & SETS1) != 0 |
2238 | 0 | && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) |
2239 | 0 | return true; |
2240 | 0 | if ((f2 & SETS2) != 0 |
2241 | 0 | && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) |
2242 | 0 | return true; |
2243 | 0 | if ((f2 & SETSR0) != 0 |
2244 | 0 | && sh_insn_uses_or_sets_reg (i1, op1, 0)) |
2245 | 0 | return true; |
2246 | 0 | if ((f2 & SETSAS) |
2247 | 0 | && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) |
2248 | 0 | return true; |
2249 | 0 | if ((f2 & SETSF1) != 0 |
2250 | 0 | && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) |
2251 | 0 | return true; |
2252 | | |
2253 | | /* The instructions do not conflict. */ |
2254 | 0 | return false; |
2255 | 0 | } Unexecuted instantiation: coff-sh.c:sh_insns_conflict Unexecuted instantiation: pe-sh.c:sh_insns_conflict |
2256 | | |
2257 | | /* I1 is a load instruction, and I2 is some other instruction. Return |
2258 | | TRUE if I1 loads a register which I2 uses. */ |
2259 | | |
2260 | | static bool |
2261 | | sh_load_use (unsigned int i1, |
2262 | | const struct sh_opcode *op1, |
2263 | | unsigned int i2, |
2264 | | const struct sh_opcode *op2) |
2265 | 0 | { |
2266 | 0 | unsigned int f1; |
2267 | |
|
2268 | 0 | f1 = op1->flags; |
2269 | |
|
2270 | 0 | if ((f1 & LOAD) == 0) |
2271 | 0 | return false; |
2272 | | |
2273 | | /* If both SETS1 and SETSSP are set, that means a load to a special |
2274 | | register using postincrement addressing mode, which we don't care |
2275 | | about here. */ |
2276 | 0 | if ((f1 & SETS1) != 0 |
2277 | 0 | && (f1 & SETSSP) == 0 |
2278 | 0 | && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) |
2279 | 0 | return true; |
2280 | | |
2281 | 0 | if ((f1 & SETSR0) != 0 |
2282 | 0 | && sh_insn_uses_reg (i2, op2, 0)) |
2283 | 0 | return true; |
2284 | | |
2285 | 0 | if ((f1 & SETSF1) != 0 |
2286 | 0 | && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) |
2287 | 0 | return true; |
2288 | | |
2289 | 0 | return false; |
2290 | 0 | } Unexecuted instantiation: coff-sh.c:sh_load_use Unexecuted instantiation: pe-sh.c:sh_load_use |
2291 | | |
2292 | | /* Try to align loads and stores within a span of memory. This is |
2293 | | called by both the ELF and the COFF sh targets. ABFD and SEC are |
2294 | | the BFD and section we are examining. CONTENTS is the contents of |
2295 | | the section. SWAP is the routine to call to swap two instructions. |
2296 | | RELOCS is a pointer to the internal relocation information, to be |
2297 | | passed to SWAP. PLABEL is a pointer to the current label in a |
2298 | | sorted list of labels; LABEL_END is the end of the list. START and |
2299 | | STOP are the range of memory to examine. If a swap is made, |
2300 | | *PSWAPPED is set to TRUE. */ |
2301 | | |
2302 | | #ifdef COFF_WITH_PE |
2303 | | static |
2304 | | #endif |
2305 | | bool |
2306 | | _bfd_sh_align_load_span (bfd *abfd, |
2307 | | asection *sec, |
2308 | | bfd_byte *contents, |
2309 | | bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma), |
2310 | | void * relocs, |
2311 | | bfd_vma **plabel, |
2312 | | bfd_vma *label_end, |
2313 | | bfd_vma start, |
2314 | | bfd_vma stop, |
2315 | | bool *pswapped) |
2316 | 0 | { |
2317 | 0 | int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp |
2318 | 0 | || abfd->arch_info->mach == bfd_mach_sh3_dsp); |
2319 | 0 | bfd_vma i; |
2320 | | |
2321 | | /* The SH4 has a Harvard architecture, hence aligning loads is not |
2322 | | desirable. In fact, it is counter-productive, since it interferes |
2323 | | with the schedules generated by the compiler. */ |
2324 | 0 | if (abfd->arch_info->mach == bfd_mach_sh4) |
2325 | 0 | return true; |
2326 | | |
2327 | | /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP |
2328 | | instructions. */ |
2329 | 0 | if (dsp) |
2330 | 0 | { |
2331 | 0 | sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; |
2332 | 0 | sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0]; |
2333 | 0 | } |
2334 | | |
2335 | | /* Instructions should be aligned on 2 byte boundaries. */ |
2336 | 0 | if ((start & 1) == 1) |
2337 | 0 | ++start; |
2338 | | |
2339 | | /* Now look through the unaligned addresses. */ |
2340 | 0 | i = start; |
2341 | 0 | if ((i & 2) == 0) |
2342 | 0 | i += 2; |
2343 | 0 | for (; i < stop; i += 4) |
2344 | 0 | { |
2345 | 0 | unsigned int insn; |
2346 | 0 | const struct sh_opcode *op; |
2347 | 0 | unsigned int prev_insn = 0; |
2348 | 0 | const struct sh_opcode *prev_op = NULL; |
2349 | |
|
2350 | 0 | insn = bfd_get_16 (abfd, contents + i); |
2351 | 0 | op = sh_insn_info (insn); |
2352 | 0 | if (op == NULL |
2353 | 0 | || (op->flags & (LOAD | STORE)) == 0) |
2354 | 0 | continue; |
2355 | | |
2356 | | /* This is a load or store which is not on a four byte boundary. */ |
2357 | | |
2358 | 0 | while (*plabel < label_end && **plabel < i) |
2359 | 0 | ++*plabel; |
2360 | |
|
2361 | 0 | if (i > start) |
2362 | 0 | { |
2363 | 0 | prev_insn = bfd_get_16 (abfd, contents + i - 2); |
2364 | | /* If INSN is the field b of a parallel processing insn, it is not |
2365 | | a load / store after all. Note that the test here might mistake |
2366 | | the field_b of a pcopy insn for the starting code of a parallel |
2367 | | processing insn; this might miss a swapping opportunity, but at |
2368 | | least we're on the safe side. */ |
2369 | 0 | if (dsp && (prev_insn & 0xfc00) == 0xf800) |
2370 | 0 | continue; |
2371 | | |
2372 | | /* Check if prev_insn is actually the field b of a parallel |
2373 | | processing insn. Again, this can give a spurious match |
2374 | | after a pcopy. */ |
2375 | 0 | if (dsp && i - 2 > start) |
2376 | 0 | { |
2377 | 0 | unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); |
2378 | |
|
2379 | 0 | if ((pprev_insn & 0xfc00) == 0xf800) |
2380 | 0 | prev_op = NULL; |
2381 | 0 | else |
2382 | 0 | prev_op = sh_insn_info (prev_insn); |
2383 | 0 | } |
2384 | 0 | else |
2385 | 0 | prev_op = sh_insn_info (prev_insn); |
2386 | | |
2387 | | /* If the load/store instruction is in a delay slot, we |
2388 | | can't swap. */ |
2389 | 0 | if (prev_op == NULL |
2390 | 0 | || (prev_op->flags & DELAY) != 0) |
2391 | 0 | continue; |
2392 | 0 | } |
2393 | 0 | if (i > start |
2394 | 0 | && (*plabel >= label_end || **plabel != i) |
2395 | 0 | && prev_op != NULL |
2396 | 0 | && (prev_op->flags & (LOAD | STORE)) == 0 |
2397 | 0 | && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) |
2398 | 0 | { |
2399 | 0 | bool ok; |
2400 | | |
2401 | | /* The load/store instruction does not have a label, and |
2402 | | there is a previous instruction; PREV_INSN is not |
2403 | | itself a load/store instruction, and PREV_INSN and |
2404 | | INSN do not conflict. */ |
2405 | |
|
2406 | 0 | ok = true; |
2407 | |
|
2408 | 0 | if (i >= start + 4) |
2409 | 0 | { |
2410 | 0 | unsigned int prev2_insn; |
2411 | 0 | const struct sh_opcode *prev2_op; |
2412 | |
|
2413 | 0 | prev2_insn = bfd_get_16 (abfd, contents + i - 4); |
2414 | 0 | prev2_op = sh_insn_info (prev2_insn); |
2415 | | |
2416 | | /* If the instruction before PREV_INSN has a delay |
2417 | | slot--that is, PREV_INSN is in a delay slot--we |
2418 | | can not swap. */ |
2419 | 0 | if (prev2_op == NULL |
2420 | 0 | || (prev2_op->flags & DELAY) != 0) |
2421 | 0 | ok = false; |
2422 | | |
2423 | | /* If the instruction before PREV_INSN is a load, |
2424 | | and it sets a register which INSN uses, then |
2425 | | putting INSN immediately after PREV_INSN will |
2426 | | cause a pipeline bubble, so there is no point to |
2427 | | making the swap. */ |
2428 | 0 | if (ok |
2429 | 0 | && (prev2_op->flags & LOAD) != 0 |
2430 | 0 | && sh_load_use (prev2_insn, prev2_op, insn, op)) |
2431 | 0 | ok = false; |
2432 | 0 | } |
2433 | |
|
2434 | 0 | if (ok) |
2435 | 0 | { |
2436 | 0 | if (! (*swap) (abfd, sec, relocs, contents, i - 2)) |
2437 | 0 | return false; |
2438 | 0 | *pswapped = true; |
2439 | 0 | continue; |
2440 | 0 | } |
2441 | 0 | } |
2442 | | |
2443 | 0 | while (*plabel < label_end && **plabel < i + 2) |
2444 | 0 | ++*plabel; |
2445 | |
|
2446 | 0 | if (i + 2 < stop |
2447 | 0 | && (*plabel >= label_end || **plabel != i + 2)) |
2448 | 0 | { |
2449 | 0 | unsigned int next_insn; |
2450 | 0 | const struct sh_opcode *next_op; |
2451 | | |
2452 | | /* There is an instruction after the load/store |
2453 | | instruction, and it does not have a label. */ |
2454 | 0 | next_insn = bfd_get_16 (abfd, contents + i + 2); |
2455 | 0 | next_op = sh_insn_info (next_insn); |
2456 | 0 | if (next_op != NULL |
2457 | 0 | && (next_op->flags & (LOAD | STORE)) == 0 |
2458 | 0 | && ! sh_insns_conflict (insn, op, next_insn, next_op)) |
2459 | 0 | { |
2460 | 0 | bool ok; |
2461 | | |
2462 | | /* NEXT_INSN is not itself a load/store instruction, |
2463 | | and it does not conflict with INSN. */ |
2464 | |
|
2465 | 0 | ok = true; |
2466 | | |
2467 | | /* If PREV_INSN is a load, and it sets a register |
2468 | | which NEXT_INSN uses, then putting NEXT_INSN |
2469 | | immediately after PREV_INSN will cause a pipeline |
2470 | | bubble, so there is no reason to make this swap. */ |
2471 | 0 | if (prev_op != NULL |
2472 | 0 | && (prev_op->flags & LOAD) != 0 |
2473 | 0 | && sh_load_use (prev_insn, prev_op, next_insn, next_op)) |
2474 | 0 | ok = false; |
2475 | | |
2476 | | /* If INSN is a load, and it sets a register which |
2477 | | the insn after NEXT_INSN uses, then doing the |
2478 | | swap will cause a pipeline bubble, so there is no |
2479 | | reason to make the swap. However, if the insn |
2480 | | after NEXT_INSN is itself a load or store |
2481 | | instruction, then it is misaligned, so |
2482 | | optimistically hope that it will be swapped |
2483 | | itself, and just live with the pipeline bubble if |
2484 | | it isn't. */ |
2485 | 0 | if (ok |
2486 | 0 | && i + 4 < stop |
2487 | 0 | && (op->flags & LOAD) != 0) |
2488 | 0 | { |
2489 | 0 | unsigned int next2_insn; |
2490 | 0 | const struct sh_opcode *next2_op; |
2491 | |
|
2492 | 0 | next2_insn = bfd_get_16 (abfd, contents + i + 4); |
2493 | 0 | next2_op = sh_insn_info (next2_insn); |
2494 | 0 | if (next2_op == NULL |
2495 | 0 | || ((next2_op->flags & (LOAD | STORE)) == 0 |
2496 | 0 | && sh_load_use (insn, op, next2_insn, next2_op))) |
2497 | 0 | ok = false; |
2498 | 0 | } |
2499 | |
|
2500 | 0 | if (ok) |
2501 | 0 | { |
2502 | 0 | if (! (*swap) (abfd, sec, relocs, contents, i)) |
2503 | 0 | return false; |
2504 | 0 | *pswapped = true; |
2505 | 0 | continue; |
2506 | 0 | } |
2507 | 0 | } |
2508 | 0 | } |
2509 | 0 | } |
2510 | | |
2511 | 0 | return true; |
2512 | 0 | } Unexecuted instantiation: _bfd_sh_align_load_span Unexecuted instantiation: pe-sh.c:sh_align_load_span |
2513 | | #endif /* not COFF_IMAGE_WITH_PE */ |
2514 | | |
2515 | | /* Swap two SH instructions. */ |
2516 | | |
2517 | | static bool |
2518 | | sh_swap_insns (bfd * abfd, |
2519 | | asection * sec, |
2520 | | void * relocs, |
2521 | | bfd_byte * contents, |
2522 | | bfd_vma addr) |
2523 | 0 | { |
2524 | 0 | struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; |
2525 | 0 | unsigned short i1, i2; |
2526 | 0 | struct internal_reloc *irel, *irelend; |
2527 | | |
2528 | | /* Swap the instructions themselves. */ |
2529 | 0 | i1 = bfd_get_16 (abfd, contents + addr); |
2530 | 0 | i2 = bfd_get_16 (abfd, contents + addr + 2); |
2531 | 0 | bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); |
2532 | 0 | bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); |
2533 | | |
2534 | | /* Adjust all reloc addresses. */ |
2535 | 0 | irelend = internal_relocs + sec->reloc_count; |
2536 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
2537 | 0 | { |
2538 | 0 | int type, add; |
2539 | | |
2540 | | /* There are a few special types of relocs that we don't want to |
2541 | | adjust. These relocs do not apply to the instruction itself, |
2542 | | but are only associated with the address. */ |
2543 | 0 | type = irel->r_type; |
2544 | 0 | if (type == R_SH_ALIGN |
2545 | 0 | || type == R_SH_CODE |
2546 | 0 | || type == R_SH_DATA |
2547 | 0 | || type == R_SH_LABEL) |
2548 | 0 | continue; |
2549 | | |
2550 | | /* If an R_SH_USES reloc points to one of the addresses being |
2551 | | swapped, we must adjust it. It would be incorrect to do this |
2552 | | for a jump, though, since we want to execute both |
2553 | | instructions after the jump. (We have avoided swapping |
2554 | | around a label, so the jump will not wind up executing an |
2555 | | instruction it shouldn't). */ |
2556 | 0 | if (type == R_SH_USES) |
2557 | 0 | { |
2558 | 0 | bfd_vma off; |
2559 | |
|
2560 | 0 | off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; |
2561 | 0 | if (off == addr) |
2562 | 0 | irel->r_offset += 2; |
2563 | 0 | else if (off == addr + 2) |
2564 | 0 | irel->r_offset -= 2; |
2565 | 0 | } |
2566 | |
|
2567 | 0 | if (irel->r_vaddr - sec->vma == addr) |
2568 | 0 | { |
2569 | 0 | irel->r_vaddr += 2; |
2570 | 0 | add = -2; |
2571 | 0 | } |
2572 | 0 | else if (irel->r_vaddr - sec->vma == addr + 2) |
2573 | 0 | { |
2574 | 0 | irel->r_vaddr -= 2; |
2575 | 0 | add = 2; |
2576 | 0 | } |
2577 | 0 | else |
2578 | 0 | add = 0; |
2579 | |
|
2580 | 0 | if (add != 0) |
2581 | 0 | { |
2582 | 0 | bfd_byte *loc; |
2583 | 0 | unsigned short insn, oinsn; |
2584 | 0 | bool overflow; |
2585 | |
|
2586 | 0 | loc = contents + irel->r_vaddr - sec->vma; |
2587 | 0 | overflow = false; |
2588 | 0 | switch (type) |
2589 | 0 | { |
2590 | 0 | default: |
2591 | 0 | break; |
2592 | | |
2593 | 0 | case R_SH_PCDISP8BY2: |
2594 | 0 | case R_SH_PCRELIMM8BY2: |
2595 | 0 | insn = bfd_get_16 (abfd, loc); |
2596 | 0 | oinsn = insn; |
2597 | 0 | insn += add / 2; |
2598 | 0 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
2599 | 0 | overflow = true; |
2600 | 0 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
2601 | 0 | break; |
2602 | | |
2603 | 0 | case R_SH_PCDISP: |
2604 | 0 | insn = bfd_get_16 (abfd, loc); |
2605 | 0 | oinsn = insn; |
2606 | 0 | insn += add / 2; |
2607 | 0 | if ((oinsn & 0xf000) != (insn & 0xf000)) |
2608 | 0 | overflow = true; |
2609 | 0 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
2610 | 0 | break; |
2611 | | |
2612 | 0 | case R_SH_PCRELIMM8BY4: |
2613 | | /* This reloc ignores the least significant 3 bits of |
2614 | | the program counter before adding in the offset. |
2615 | | This means that if ADDR is at an even address, the |
2616 | | swap will not affect the offset. If ADDR is an at an |
2617 | | odd address, then the instruction will be crossing a |
2618 | | four byte boundary, and must be adjusted. */ |
2619 | 0 | if ((addr & 3) != 0) |
2620 | 0 | { |
2621 | 0 | insn = bfd_get_16 (abfd, loc); |
2622 | 0 | oinsn = insn; |
2623 | 0 | insn += add / 2; |
2624 | 0 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
2625 | 0 | overflow = true; |
2626 | 0 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
2627 | 0 | } |
2628 | |
|
2629 | 0 | break; |
2630 | 0 | } |
2631 | | |
2632 | 0 | if (overflow) |
2633 | 0 | { |
2634 | 0 | _bfd_error_handler |
2635 | | /* xgettext: c-format */ |
2636 | 0 | (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), |
2637 | 0 | abfd, (uint64_t) irel->r_vaddr); |
2638 | 0 | bfd_set_error (bfd_error_bad_value); |
2639 | 0 | return false; |
2640 | 0 | } |
2641 | 0 | } |
2642 | 0 | } |
2643 | | |
2644 | 0 | return true; |
2645 | 0 | } Unexecuted instantiation: coff-sh.c:sh_swap_insns Unexecuted instantiation: pe-sh.c:sh_swap_insns Unexecuted instantiation: pei-sh.c:sh_swap_insns |
2646 | | |
2647 | | /* Look for loads and stores which we can align to four byte |
2648 | | boundaries. See the longer comment above sh_relax_section for why |
2649 | | this is desirable. This sets *PSWAPPED if some instruction was |
2650 | | swapped. */ |
2651 | | |
2652 | | static bool |
2653 | | sh_align_loads (bfd *abfd, |
2654 | | asection *sec, |
2655 | | struct internal_reloc *internal_relocs, |
2656 | | bfd_byte *contents, |
2657 | | bool *pswapped) |
2658 | 0 | { |
2659 | 0 | struct internal_reloc *irel, *irelend; |
2660 | 0 | bfd_vma *labels = NULL; |
2661 | 0 | bfd_vma *label, *label_end; |
2662 | 0 | bfd_size_type amt; |
2663 | |
|
2664 | 0 | *pswapped = false; |
2665 | |
|
2666 | 0 | irelend = internal_relocs + sec->reloc_count; |
2667 | | |
2668 | | /* Get all the addresses with labels on them. */ |
2669 | 0 | amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); |
2670 | 0 | labels = (bfd_vma *) bfd_malloc (amt); |
2671 | 0 | if (labels == NULL) |
2672 | 0 | goto error_return; |
2673 | 0 | label_end = labels; |
2674 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
2675 | 0 | { |
2676 | 0 | if (irel->r_type == R_SH_LABEL) |
2677 | 0 | { |
2678 | 0 | *label_end = irel->r_vaddr - sec->vma; |
2679 | 0 | ++label_end; |
2680 | 0 | } |
2681 | 0 | } |
2682 | | |
2683 | | /* Note that the assembler currently always outputs relocs in |
2684 | | address order. If that ever changes, this code will need to sort |
2685 | | the label values and the relocs. */ |
2686 | |
|
2687 | 0 | label = labels; |
2688 | |
|
2689 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
2690 | 0 | { |
2691 | 0 | bfd_vma start, stop; |
2692 | |
|
2693 | 0 | if (irel->r_type != R_SH_CODE) |
2694 | 0 | continue; |
2695 | | |
2696 | 0 | start = irel->r_vaddr - sec->vma; |
2697 | |
|
2698 | 0 | for (irel++; irel < irelend; irel++) |
2699 | 0 | if (irel->r_type == R_SH_DATA) |
2700 | 0 | break; |
2701 | 0 | if (irel < irelend) |
2702 | 0 | stop = irel->r_vaddr - sec->vma; |
2703 | 0 | else |
2704 | 0 | stop = sec->size; |
2705 | |
|
2706 | 0 | if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, |
2707 | 0 | internal_relocs, &label, |
2708 | 0 | label_end, start, stop, pswapped)) |
2709 | 0 | goto error_return; |
2710 | 0 | } |
2711 | | |
2712 | 0 | free (labels); |
2713 | |
|
2714 | 0 | return true; |
2715 | | |
2716 | 0 | error_return: |
2717 | 0 | free (labels); |
2718 | 0 | return false; |
2719 | 0 | } Unexecuted instantiation: coff-sh.c:sh_align_loads Unexecuted instantiation: pe-sh.c:sh_align_loads Unexecuted instantiation: pei-sh.c:sh_align_loads |
2720 | | |
2721 | | /* This is a modification of _bfd_coff_generic_relocate_section, which |
2722 | | will handle SH relaxing. */ |
2723 | | |
2724 | | static bool |
2725 | | sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
2726 | | struct bfd_link_info *info, |
2727 | | bfd *input_bfd, |
2728 | | asection *input_section, |
2729 | | bfd_byte *contents, |
2730 | | struct internal_reloc *relocs, |
2731 | | struct internal_syment *syms, |
2732 | | asection **sections) |
2733 | 0 | { |
2734 | 0 | struct internal_reloc *rel; |
2735 | 0 | struct internal_reloc *relend; |
2736 | |
|
2737 | 0 | rel = relocs; |
2738 | 0 | relend = rel + input_section->reloc_count; |
2739 | 0 | for (; rel < relend; rel++) |
2740 | 0 | { |
2741 | 0 | long symndx; |
2742 | 0 | struct coff_link_hash_entry *h; |
2743 | 0 | struct internal_syment *sym; |
2744 | 0 | bfd_vma addend; |
2745 | 0 | bfd_vma val; |
2746 | 0 | reloc_howto_type *howto; |
2747 | 0 | bfd_reloc_status_type rstat; |
2748 | | |
2749 | | /* Almost all relocs have to do with relaxing. If any work must |
2750 | | be done for them, it has been done in sh_relax_section. */ |
2751 | 0 | if (rel->r_type != R_SH_IMM32 |
2752 | | #ifdef COFF_WITH_PE |
2753 | 0 | && rel->r_type != R_SH_IMM32CE |
2754 | 0 | && rel->r_type != R_SH_IMAGEBASE |
2755 | | #endif |
2756 | 0 | && rel->r_type != R_SH_PCDISP) |
2757 | 0 | continue; |
2758 | | |
2759 | 0 | symndx = rel->r_symndx; |
2760 | |
|
2761 | 0 | if (symndx == -1) |
2762 | 0 | { |
2763 | 0 | h = NULL; |
2764 | 0 | sym = NULL; |
2765 | 0 | } |
2766 | 0 | else |
2767 | 0 | { |
2768 | 0 | if (symndx < 0 |
2769 | 0 | || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) |
2770 | 0 | { |
2771 | 0 | _bfd_error_handler |
2772 | | /* xgettext: c-format */ |
2773 | 0 | (_("%pB: illegal symbol index %ld in relocs"), |
2774 | 0 | input_bfd, symndx); |
2775 | 0 | bfd_set_error (bfd_error_bad_value); |
2776 | 0 | return false; |
2777 | 0 | } |
2778 | 0 | h = obj_coff_sym_hashes (input_bfd)[symndx]; |
2779 | 0 | sym = syms + symndx; |
2780 | 0 | } |
2781 | | |
2782 | 0 | if (sym != NULL && sym->n_scnum != 0) |
2783 | 0 | addend = - sym->n_value; |
2784 | 0 | else |
2785 | 0 | addend = 0; |
2786 | |
|
2787 | 0 | if (rel->r_type == R_SH_PCDISP) |
2788 | 0 | addend -= 4; |
2789 | |
|
2790 | 0 | if (rel->r_type >= SH_COFF_HOWTO_COUNT) |
2791 | 0 | howto = NULL; |
2792 | 0 | else |
2793 | 0 | howto = &sh_coff_howtos[rel->r_type]; |
2794 | |
|
2795 | 0 | if (howto == NULL) |
2796 | 0 | { |
2797 | 0 | bfd_set_error (bfd_error_bad_value); |
2798 | 0 | return false; |
2799 | 0 | } |
2800 | | |
2801 | | #ifdef COFF_WITH_PE |
2802 | 0 | if (rel->r_type == R_SH_IMAGEBASE) |
2803 | 0 | addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; |
2804 | | #endif |
2805 | |
|
2806 | 0 | val = 0; |
2807 | |
|
2808 | 0 | if (h == NULL) |
2809 | 0 | { |
2810 | 0 | asection *sec; |
2811 | | |
2812 | | /* There is nothing to do for an internal PCDISP reloc. */ |
2813 | 0 | if (rel->r_type == R_SH_PCDISP) |
2814 | 0 | continue; |
2815 | | |
2816 | 0 | if (symndx == -1) |
2817 | 0 | { |
2818 | 0 | sec = bfd_abs_section_ptr; |
2819 | 0 | val = 0; |
2820 | 0 | } |
2821 | 0 | else |
2822 | 0 | { |
2823 | 0 | sec = sections[symndx]; |
2824 | 0 | val = (sec->output_section->vma |
2825 | 0 | + sec->output_offset |
2826 | 0 | + sym->n_value |
2827 | 0 | - sec->vma); |
2828 | 0 | } |
2829 | 0 | } |
2830 | 0 | else |
2831 | 0 | { |
2832 | 0 | if (h->root.type == bfd_link_hash_defined |
2833 | 0 | || h->root.type == bfd_link_hash_defweak) |
2834 | 0 | { |
2835 | 0 | asection *sec; |
2836 | |
|
2837 | 0 | sec = h->root.u.def.section; |
2838 | 0 | val = (h->root.u.def.value |
2839 | 0 | + sec->output_section->vma |
2840 | 0 | + sec->output_offset); |
2841 | 0 | } |
2842 | 0 | else if (! bfd_link_relocatable (info)) |
2843 | 0 | (*info->callbacks->undefined_symbol) |
2844 | 0 | (info, h->root.root.string, input_bfd, input_section, |
2845 | 0 | rel->r_vaddr - input_section->vma, true); |
2846 | 0 | } |
2847 | | |
2848 | 0 | rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, |
2849 | 0 | contents, |
2850 | 0 | rel->r_vaddr - input_section->vma, |
2851 | 0 | val, addend); |
2852 | |
|
2853 | 0 | switch (rstat) |
2854 | 0 | { |
2855 | 0 | default: |
2856 | 0 | abort (); |
2857 | 0 | case bfd_reloc_ok: |
2858 | 0 | break; |
2859 | 0 | case bfd_reloc_overflow: |
2860 | 0 | { |
2861 | 0 | const char *name; |
2862 | 0 | char buf[SYMNMLEN + 1]; |
2863 | |
|
2864 | 0 | if (symndx == -1) |
2865 | 0 | name = "*ABS*"; |
2866 | 0 | else if (h != NULL) |
2867 | 0 | name = NULL; |
2868 | 0 | else if (sym->_n._n_n._n_zeroes == 0 |
2869 | 0 | && sym->_n._n_n._n_offset != 0) |
2870 | 0 | { |
2871 | 0 | if (sym->_n._n_n._n_offset < obj_coff_strings_len (input_bfd)) |
2872 | 0 | name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; |
2873 | 0 | else |
2874 | 0 | name = "?"; |
2875 | 0 | } |
2876 | 0 | else |
2877 | 0 | { |
2878 | 0 | strncpy (buf, sym->_n._n_name, SYMNMLEN); |
2879 | 0 | buf[SYMNMLEN] = '\0'; |
2880 | 0 | name = buf; |
2881 | 0 | } |
2882 | |
|
2883 | 0 | (*info->callbacks->reloc_overflow) |
2884 | 0 | (info, (h ? &h->root : NULL), name, howto->name, |
2885 | 0 | (bfd_vma) 0, input_bfd, input_section, |
2886 | 0 | rel->r_vaddr - input_section->vma); |
2887 | 0 | } |
2888 | 0 | } |
2889 | 0 | } |
2890 | | |
2891 | 0 | return true; |
2892 | 0 | } Unexecuted instantiation: coff-sh.c:sh_relocate_section Unexecuted instantiation: pe-sh.c:sh_relocate_section Unexecuted instantiation: pei-sh.c:sh_relocate_section |
2893 | | |
2894 | | /* This is a version of bfd_generic_get_relocated_section_contents |
2895 | | which uses sh_relocate_section. */ |
2896 | | |
2897 | | static bfd_byte * |
2898 | | sh_coff_get_relocated_section_contents (bfd *output_bfd, |
2899 | | struct bfd_link_info *link_info, |
2900 | | struct bfd_link_order *link_order, |
2901 | | bfd_byte *data, |
2902 | | bool relocatable, |
2903 | | asymbol **symbols) |
2904 | 131 | { |
2905 | 131 | asection *input_section = link_order->u.indirect.section; |
2906 | 131 | bfd *input_bfd = input_section->owner; |
2907 | 131 | asection **sections = NULL; |
2908 | 131 | struct internal_reloc *internal_relocs = NULL; |
2909 | 131 | struct internal_syment *internal_syms = NULL; |
2910 | | |
2911 | | /* We only need to handle the case of relaxing, or of having a |
2912 | | particular set of section contents, specially. */ |
2913 | 131 | if (relocatable |
2914 | 131 | || coff_section_data (input_bfd, input_section) == NULL |
2915 | 131 | || coff_section_data (input_bfd, input_section)->contents == NULL) |
2916 | 131 | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, |
2917 | 131 | link_order, data, |
2918 | 131 | relocatable, |
2919 | 131 | symbols); |
2920 | | |
2921 | 0 | bfd_byte *orig_data = data; |
2922 | 0 | if (data == NULL) |
2923 | 0 | { |
2924 | 0 | data = bfd_malloc (input_section->size); |
2925 | 0 | if (data == NULL) |
2926 | 0 | return NULL; |
2927 | 0 | } |
2928 | 0 | memcpy (data, coff_section_data (input_bfd, input_section)->contents, |
2929 | 0 | (size_t) input_section->size); |
2930 | |
|
2931 | 0 | if ((input_section->flags & SEC_RELOC) != 0 |
2932 | 0 | && input_section->reloc_count > 0) |
2933 | 0 | { |
2934 | 0 | bfd_size_type symesz = bfd_coff_symesz (input_bfd); |
2935 | 0 | bfd_byte *esym, *esymend; |
2936 | 0 | struct internal_syment *isymp; |
2937 | 0 | asection **secpp; |
2938 | 0 | bfd_size_type amt; |
2939 | |
|
2940 | 0 | if (! _bfd_coff_get_external_symbols (input_bfd)) |
2941 | 0 | goto error_return; |
2942 | | |
2943 | 0 | internal_relocs = (_bfd_coff_read_internal_relocs |
2944 | 0 | (input_bfd, input_section, false, (bfd_byte *) NULL, |
2945 | 0 | false, (struct internal_reloc *) NULL)); |
2946 | 0 | if (internal_relocs == NULL) |
2947 | 0 | goto error_return; |
2948 | | |
2949 | 0 | amt = obj_raw_syment_count (input_bfd); |
2950 | 0 | amt *= sizeof (struct internal_syment); |
2951 | 0 | internal_syms = (struct internal_syment *) bfd_malloc (amt); |
2952 | 0 | if (internal_syms == NULL) |
2953 | 0 | goto error_return; |
2954 | | |
2955 | 0 | amt = obj_raw_syment_count (input_bfd); |
2956 | 0 | amt *= sizeof (asection *); |
2957 | 0 | sections = (asection **) bfd_malloc (amt); |
2958 | 0 | if (sections == NULL) |
2959 | 0 | goto error_return; |
2960 | | |
2961 | 0 | isymp = internal_syms; |
2962 | 0 | secpp = sections; |
2963 | 0 | esym = (bfd_byte *) obj_coff_external_syms (input_bfd); |
2964 | 0 | esymend = esym + obj_raw_syment_count (input_bfd) * symesz; |
2965 | 0 | while (esym < esymend) |
2966 | 0 | { |
2967 | 0 | bfd_coff_swap_sym_in (input_bfd, esym, isymp); |
2968 | |
|
2969 | 0 | if (isymp->n_scnum != 0) |
2970 | 0 | *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); |
2971 | 0 | else |
2972 | 0 | { |
2973 | 0 | if (isymp->n_value == 0) |
2974 | 0 | *secpp = bfd_und_section_ptr; |
2975 | 0 | else |
2976 | 0 | *secpp = bfd_com_section_ptr; |
2977 | 0 | } |
2978 | |
|
2979 | 0 | esym += (isymp->n_numaux + 1) * symesz; |
2980 | 0 | secpp += isymp->n_numaux + 1; |
2981 | 0 | isymp += isymp->n_numaux + 1; |
2982 | 0 | } |
2983 | |
|
2984 | 0 | if (! sh_relocate_section (output_bfd, link_info, input_bfd, |
2985 | 0 | input_section, data, internal_relocs, |
2986 | 0 | internal_syms, sections)) |
2987 | 0 | goto error_return; |
2988 | | |
2989 | 0 | free (sections); |
2990 | 0 | sections = NULL; |
2991 | 0 | free (internal_syms); |
2992 | 0 | internal_syms = NULL; |
2993 | 0 | free (internal_relocs); |
2994 | 0 | internal_relocs = NULL; |
2995 | 0 | } |
2996 | | |
2997 | 0 | return data; |
2998 | | |
2999 | 0 | error_return: |
3000 | 0 | free (internal_relocs); |
3001 | 0 | free (internal_syms); |
3002 | 0 | free (sections); |
3003 | 0 | if (orig_data == NULL) |
3004 | 0 | free (data); |
3005 | 0 | return NULL; |
3006 | 0 | } coff-sh.c:sh_coff_get_relocated_section_contents Line | Count | Source | 2904 | 98 | { | 2905 | 98 | asection *input_section = link_order->u.indirect.section; | 2906 | 98 | bfd *input_bfd = input_section->owner; | 2907 | 98 | asection **sections = NULL; | 2908 | 98 | struct internal_reloc *internal_relocs = NULL; | 2909 | 98 | struct internal_syment *internal_syms = NULL; | 2910 | | | 2911 | | /* We only need to handle the case of relaxing, or of having a | 2912 | | particular set of section contents, specially. */ | 2913 | 98 | if (relocatable | 2914 | 98 | || coff_section_data (input_bfd, input_section) == NULL | 2915 | 98 | || coff_section_data (input_bfd, input_section)->contents == NULL) | 2916 | 98 | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, | 2917 | 98 | link_order, data, | 2918 | 98 | relocatable, | 2919 | 98 | symbols); | 2920 | | | 2921 | 0 | bfd_byte *orig_data = data; | 2922 | 0 | if (data == NULL) | 2923 | 0 | { | 2924 | 0 | data = bfd_malloc (input_section->size); | 2925 | 0 | if (data == NULL) | 2926 | 0 | return NULL; | 2927 | 0 | } | 2928 | 0 | memcpy (data, coff_section_data (input_bfd, input_section)->contents, | 2929 | 0 | (size_t) input_section->size); | 2930 | |
| 2931 | 0 | if ((input_section->flags & SEC_RELOC) != 0 | 2932 | 0 | && input_section->reloc_count > 0) | 2933 | 0 | { | 2934 | 0 | bfd_size_type symesz = bfd_coff_symesz (input_bfd); | 2935 | 0 | bfd_byte *esym, *esymend; | 2936 | 0 | struct internal_syment *isymp; | 2937 | 0 | asection **secpp; | 2938 | 0 | bfd_size_type amt; | 2939 | |
| 2940 | 0 | if (! _bfd_coff_get_external_symbols (input_bfd)) | 2941 | 0 | goto error_return; | 2942 | | | 2943 | 0 | internal_relocs = (_bfd_coff_read_internal_relocs | 2944 | 0 | (input_bfd, input_section, false, (bfd_byte *) NULL, | 2945 | 0 | false, (struct internal_reloc *) NULL)); | 2946 | 0 | if (internal_relocs == NULL) | 2947 | 0 | goto error_return; | 2948 | | | 2949 | 0 | amt = obj_raw_syment_count (input_bfd); | 2950 | 0 | amt *= sizeof (struct internal_syment); | 2951 | 0 | internal_syms = (struct internal_syment *) bfd_malloc (amt); | 2952 | 0 | if (internal_syms == NULL) | 2953 | 0 | goto error_return; | 2954 | | | 2955 | 0 | amt = obj_raw_syment_count (input_bfd); | 2956 | 0 | amt *= sizeof (asection *); | 2957 | 0 | sections = (asection **) bfd_malloc (amt); | 2958 | 0 | if (sections == NULL) | 2959 | 0 | goto error_return; | 2960 | | | 2961 | 0 | isymp = internal_syms; | 2962 | 0 | secpp = sections; | 2963 | 0 | esym = (bfd_byte *) obj_coff_external_syms (input_bfd); | 2964 | 0 | esymend = esym + obj_raw_syment_count (input_bfd) * symesz; | 2965 | 0 | while (esym < esymend) | 2966 | 0 | { | 2967 | 0 | bfd_coff_swap_sym_in (input_bfd, esym, isymp); | 2968 | |
| 2969 | 0 | if (isymp->n_scnum != 0) | 2970 | 0 | *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); | 2971 | 0 | else | 2972 | 0 | { | 2973 | 0 | if (isymp->n_value == 0) | 2974 | 0 | *secpp = bfd_und_section_ptr; | 2975 | 0 | else | 2976 | 0 | *secpp = bfd_com_section_ptr; | 2977 | 0 | } | 2978 | |
| 2979 | 0 | esym += (isymp->n_numaux + 1) * symesz; | 2980 | 0 | secpp += isymp->n_numaux + 1; | 2981 | 0 | isymp += isymp->n_numaux + 1; | 2982 | 0 | } | 2983 | |
| 2984 | 0 | if (! sh_relocate_section (output_bfd, link_info, input_bfd, | 2985 | 0 | input_section, data, internal_relocs, | 2986 | 0 | internal_syms, sections)) | 2987 | 0 | goto error_return; | 2988 | | | 2989 | 0 | free (sections); | 2990 | 0 | sections = NULL; | 2991 | 0 | free (internal_syms); | 2992 | 0 | internal_syms = NULL; | 2993 | 0 | free (internal_relocs); | 2994 | 0 | internal_relocs = NULL; | 2995 | 0 | } | 2996 | | | 2997 | 0 | return data; | 2998 | | | 2999 | 0 | error_return: | 3000 | 0 | free (internal_relocs); | 3001 | 0 | free (internal_syms); | 3002 | 0 | free (sections); | 3003 | 0 | if (orig_data == NULL) | 3004 | 0 | free (data); | 3005 | 0 | return NULL; | 3006 | 0 | } |
pe-sh.c:sh_coff_get_relocated_section_contents Line | Count | Source | 2904 | 33 | { | 2905 | 33 | asection *input_section = link_order->u.indirect.section; | 2906 | 33 | bfd *input_bfd = input_section->owner; | 2907 | 33 | asection **sections = NULL; | 2908 | 33 | struct internal_reloc *internal_relocs = NULL; | 2909 | 33 | struct internal_syment *internal_syms = NULL; | 2910 | | | 2911 | | /* We only need to handle the case of relaxing, or of having a | 2912 | | particular set of section contents, specially. */ | 2913 | 33 | if (relocatable | 2914 | 33 | || coff_section_data (input_bfd, input_section) == NULL | 2915 | 33 | || coff_section_data (input_bfd, input_section)->contents == NULL) | 2916 | 33 | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, | 2917 | 33 | link_order, data, | 2918 | 33 | relocatable, | 2919 | 33 | symbols); | 2920 | | | 2921 | 0 | bfd_byte *orig_data = data; | 2922 | 0 | if (data == NULL) | 2923 | 0 | { | 2924 | 0 | data = bfd_malloc (input_section->size); | 2925 | 0 | if (data == NULL) | 2926 | 0 | return NULL; | 2927 | 0 | } | 2928 | 0 | memcpy (data, coff_section_data (input_bfd, input_section)->contents, | 2929 | 0 | (size_t) input_section->size); | 2930 | |
| 2931 | 0 | if ((input_section->flags & SEC_RELOC) != 0 | 2932 | 0 | && input_section->reloc_count > 0) | 2933 | 0 | { | 2934 | 0 | bfd_size_type symesz = bfd_coff_symesz (input_bfd); | 2935 | 0 | bfd_byte *esym, *esymend; | 2936 | 0 | struct internal_syment *isymp; | 2937 | 0 | asection **secpp; | 2938 | 0 | bfd_size_type amt; | 2939 | |
| 2940 | 0 | if (! _bfd_coff_get_external_symbols (input_bfd)) | 2941 | 0 | goto error_return; | 2942 | | | 2943 | 0 | internal_relocs = (_bfd_coff_read_internal_relocs | 2944 | 0 | (input_bfd, input_section, false, (bfd_byte *) NULL, | 2945 | 0 | false, (struct internal_reloc *) NULL)); | 2946 | 0 | if (internal_relocs == NULL) | 2947 | 0 | goto error_return; | 2948 | | | 2949 | 0 | amt = obj_raw_syment_count (input_bfd); | 2950 | 0 | amt *= sizeof (struct internal_syment); | 2951 | 0 | internal_syms = (struct internal_syment *) bfd_malloc (amt); | 2952 | 0 | if (internal_syms == NULL) | 2953 | 0 | goto error_return; | 2954 | | | 2955 | 0 | amt = obj_raw_syment_count (input_bfd); | 2956 | 0 | amt *= sizeof (asection *); | 2957 | 0 | sections = (asection **) bfd_malloc (amt); | 2958 | 0 | if (sections == NULL) | 2959 | 0 | goto error_return; | 2960 | | | 2961 | 0 | isymp = internal_syms; | 2962 | 0 | secpp = sections; | 2963 | 0 | esym = (bfd_byte *) obj_coff_external_syms (input_bfd); | 2964 | 0 | esymend = esym + obj_raw_syment_count (input_bfd) * symesz; | 2965 | 0 | while (esym < esymend) | 2966 | 0 | { | 2967 | 0 | bfd_coff_swap_sym_in (input_bfd, esym, isymp); | 2968 | |
| 2969 | 0 | if (isymp->n_scnum != 0) | 2970 | 0 | *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); | 2971 | 0 | else | 2972 | 0 | { | 2973 | 0 | if (isymp->n_value == 0) | 2974 | 0 | *secpp = bfd_und_section_ptr; | 2975 | 0 | else | 2976 | 0 | *secpp = bfd_com_section_ptr; | 2977 | 0 | } | 2978 | |
| 2979 | 0 | esym += (isymp->n_numaux + 1) * symesz; | 2980 | 0 | secpp += isymp->n_numaux + 1; | 2981 | 0 | isymp += isymp->n_numaux + 1; | 2982 | 0 | } | 2983 | |
| 2984 | 0 | if (! sh_relocate_section (output_bfd, link_info, input_bfd, | 2985 | 0 | input_section, data, internal_relocs, | 2986 | 0 | internal_syms, sections)) | 2987 | 0 | goto error_return; | 2988 | | | 2989 | 0 | free (sections); | 2990 | 0 | sections = NULL; | 2991 | 0 | free (internal_syms); | 2992 | 0 | internal_syms = NULL; | 2993 | 0 | free (internal_relocs); | 2994 | 0 | internal_relocs = NULL; | 2995 | 0 | } | 2996 | | | 2997 | 0 | return data; | 2998 | | | 2999 | 0 | error_return: | 3000 | 0 | free (internal_relocs); | 3001 | 0 | free (internal_syms); | 3002 | 0 | free (sections); | 3003 | 0 | if (orig_data == NULL) | 3004 | 0 | free (data); | 3005 | 0 | return NULL; | 3006 | 0 | } |
Unexecuted instantiation: pei-sh.c:sh_coff_get_relocated_section_contents |
3007 | | |
3008 | | /* The target vectors. */ |
3009 | | |
3010 | | #ifndef TARGET_SHL_SYM |
3011 | | CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) |
3012 | | #endif |
3013 | | |
3014 | | #ifdef TARGET_SHL_SYM |
3015 | | #define TARGET_SYM TARGET_SHL_SYM |
3016 | | #else |
3017 | | #define TARGET_SYM sh_coff_le_vec |
3018 | | #endif |
3019 | | |
3020 | | #ifndef TARGET_SHL_NAME |
3021 | | #define TARGET_SHL_NAME "coff-shl" |
3022 | | #endif |
3023 | | |
3024 | | #ifdef COFF_WITH_PE |
3025 | | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, |
3026 | | SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); |
3027 | | #else |
3028 | | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, |
3029 | | 0, '_', NULL, COFF_SWAP_TABLE) |
3030 | | #endif |
3031 | | |
3032 | | #ifndef TARGET_SHL_SYM |
3033 | | |
3034 | | /* Some people want versions of the SH COFF target which do not align |
3035 | | to 16 byte boundaries. We implement that by adding a couple of new |
3036 | | target vectors. These are just like the ones above, but they |
3037 | | change the default section alignment. To generate them in the |
3038 | | assembler, use -small. To use them in the linker, use -b |
3039 | | coff-sh{l}-small and -oformat coff-sh{l}-small. |
3040 | | |
3041 | | Yes, this is a horrible hack. A general solution for setting |
3042 | | section alignment in COFF is rather complex. ELF handles this |
3043 | | correctly. */ |
3044 | | |
3045 | | /* Only recognize the small versions if the target was not defaulted. |
3046 | | Otherwise we won't recognize the non default endianness. */ |
3047 | | |
3048 | | static bfd_cleanup |
3049 | | coff_small_object_p (bfd *abfd) |
3050 | 6.82M | { |
3051 | 6.82M | if (abfd->target_defaulted) |
3052 | 207k | { |
3053 | 207k | bfd_set_error (bfd_error_wrong_format); |
3054 | 207k | return NULL; |
3055 | 207k | } |
3056 | 6.61M | return coff_object_p (abfd); |
3057 | 6.82M | } |
3058 | | |
3059 | | /* Set the section alignment for the small versions. */ |
3060 | | |
3061 | | static bool |
3062 | | coff_small_new_section_hook (bfd *abfd, asection *section) |
3063 | 5.07M | { |
3064 | 5.07M | if (! coff_new_section_hook (abfd, section)) |
3065 | 0 | return false; |
3066 | | |
3067 | | /* We must align to at least a four byte boundary, because longword |
3068 | | accesses must be on a four byte boundary. */ |
3069 | 5.07M | if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) |
3070 | 5.05M | section->alignment_power = 2; |
3071 | | |
3072 | 5.07M | return true; |
3073 | 5.07M | } |
3074 | | |
3075 | | /* This is copied from bfd_coff_std_swap_table so that we can change |
3076 | | the default section alignment power. */ |
3077 | | |
3078 | | static const bfd_coff_backend_data bfd_coff_small_swap_table = |
3079 | | { |
3080 | | coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, |
3081 | | coff_swap_aux_out, coff_swap_sym_out, |
3082 | | coff_swap_lineno_out, coff_swap_reloc_out, |
3083 | | coff_swap_filehdr_out, coff_swap_aouthdr_out, |
3084 | | coff_swap_scnhdr_out, |
3085 | | FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, |
3086 | | #ifdef COFF_LONG_FILENAMES |
3087 | | true, |
3088 | | #else |
3089 | | false, |
3090 | | #endif |
3091 | | COFF_DEFAULT_LONG_SECTION_NAMES, |
3092 | | 2, |
3093 | | #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS |
3094 | | true, |
3095 | | #else |
3096 | | false, |
3097 | | #endif |
3098 | | #ifdef COFF_DEBUG_STRING_WIDE_PREFIX |
3099 | | 4, |
3100 | | #else |
3101 | | 2, |
3102 | | #endif |
3103 | | 32768, |
3104 | | coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, |
3105 | | coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, |
3106 | | coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, |
3107 | | coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, |
3108 | | coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, |
3109 | | coff_classify_symbol, coff_compute_section_file_positions, |
3110 | | coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, |
3111 | | coff_adjust_symndx, |
3112 | | coff_link_output_has_begun, coff_final_link_postscript, |
3113 | | bfd_pe_print_pdata |
3114 | | }; |
3115 | | |
3116 | | #define coff_small_close_and_cleanup \ |
3117 | | coff_close_and_cleanup |
3118 | | #define coff_small_bfd_free_cached_info \ |
3119 | | coff_bfd_free_cached_info |
3120 | | #define coff_small_get_section_contents \ |
3121 | | coff_get_section_contents |
3122 | | |
3123 | | extern const bfd_target sh_coff_small_le_vec; |
3124 | | |
3125 | | const bfd_target sh_coff_small_vec = |
3126 | | { |
3127 | | "coff-sh-small", /* name */ |
3128 | | bfd_target_coff_flavour, |
3129 | | BFD_ENDIAN_BIG, /* data byte order is big */ |
3130 | | BFD_ENDIAN_BIG, /* header byte order is big */ |
3131 | | |
3132 | | (HAS_RELOC | EXEC_P /* object flags */ |
3133 | | | HAS_LINENO | HAS_DEBUG |
3134 | | | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), |
3135 | | |
3136 | | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), |
3137 | | '_', /* leading symbol underscore */ |
3138 | | '/', /* ar_pad_char */ |
3139 | | 15, /* ar_max_namelen */ |
3140 | | 0, /* match priority. */ |
3141 | | TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */ |
3142 | | bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
3143 | | bfd_getb32, bfd_getb_signed_32, bfd_putb32, |
3144 | | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ |
3145 | | bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
3146 | | bfd_getb32, bfd_getb_signed_32, bfd_putb32, |
3147 | | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ |
3148 | | |
3149 | | { /* bfd_check_format */ |
3150 | | _bfd_dummy_target, |
3151 | | coff_small_object_p, |
3152 | | bfd_generic_archive_p, |
3153 | | _bfd_dummy_target |
3154 | | }, |
3155 | | { /* bfd_set_format */ |
3156 | | _bfd_bool_bfd_false_error, |
3157 | | coff_mkobject, |
3158 | | _bfd_generic_mkarchive, |
3159 | | _bfd_bool_bfd_false_error |
3160 | | }, |
3161 | | { /* bfd_write_contents */ |
3162 | | _bfd_bool_bfd_false_error, |
3163 | | coff_write_object_contents, |
3164 | | _bfd_write_archive_contents, |
3165 | | _bfd_bool_bfd_false_error |
3166 | | }, |
3167 | | |
3168 | | BFD_JUMP_TABLE_GENERIC (coff_small), |
3169 | | BFD_JUMP_TABLE_COPY (coff), |
3170 | | BFD_JUMP_TABLE_CORE (_bfd_nocore), |
3171 | | BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), |
3172 | | BFD_JUMP_TABLE_SYMBOLS (coff), |
3173 | | BFD_JUMP_TABLE_RELOCS (coff), |
3174 | | BFD_JUMP_TABLE_WRITE (coff), |
3175 | | BFD_JUMP_TABLE_LINK (coff), |
3176 | | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), |
3177 | | |
3178 | | &sh_coff_small_le_vec, |
3179 | | |
3180 | | &bfd_coff_small_swap_table |
3181 | | }; |
3182 | | |
3183 | | const bfd_target sh_coff_small_le_vec = |
3184 | | { |
3185 | | "coff-shl-small", /* name */ |
3186 | | bfd_target_coff_flavour, |
3187 | | BFD_ENDIAN_LITTLE, /* data byte order is little */ |
3188 | | BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/ |
3189 | | |
3190 | | (HAS_RELOC | EXEC_P /* object flags */ |
3191 | | | HAS_LINENO | HAS_DEBUG |
3192 | | | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), |
3193 | | |
3194 | | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), |
3195 | | '_', /* leading symbol underscore */ |
3196 | | '/', /* ar_pad_char */ |
3197 | | 15, /* ar_max_namelen */ |
3198 | | 0, /* match priority. */ |
3199 | | TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */ |
3200 | | bfd_getl64, bfd_getl_signed_64, bfd_putl64, |
3201 | | bfd_getl32, bfd_getl_signed_32, bfd_putl32, |
3202 | | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ |
3203 | | bfd_getl64, bfd_getl_signed_64, bfd_putl64, |
3204 | | bfd_getl32, bfd_getl_signed_32, bfd_putl32, |
3205 | | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ |
3206 | | |
3207 | | { /* bfd_check_format */ |
3208 | | _bfd_dummy_target, |
3209 | | coff_small_object_p, |
3210 | | bfd_generic_archive_p, |
3211 | | _bfd_dummy_target |
3212 | | }, |
3213 | | { /* bfd_set_format */ |
3214 | | _bfd_bool_bfd_false_error, |
3215 | | coff_mkobject, |
3216 | | _bfd_generic_mkarchive, |
3217 | | _bfd_bool_bfd_false_error |
3218 | | }, |
3219 | | { /* bfd_write_contents */ |
3220 | | _bfd_bool_bfd_false_error, |
3221 | | coff_write_object_contents, |
3222 | | _bfd_write_archive_contents, |
3223 | | _bfd_bool_bfd_false_error |
3224 | | }, |
3225 | | |
3226 | | BFD_JUMP_TABLE_GENERIC (coff_small), |
3227 | | BFD_JUMP_TABLE_COPY (coff), |
3228 | | BFD_JUMP_TABLE_CORE (_bfd_nocore), |
3229 | | BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), |
3230 | | BFD_JUMP_TABLE_SYMBOLS (coff), |
3231 | | BFD_JUMP_TABLE_RELOCS (coff), |
3232 | | BFD_JUMP_TABLE_WRITE (coff), |
3233 | | BFD_JUMP_TABLE_LINK (coff), |
3234 | | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), |
3235 | | |
3236 | | &sh_coff_small_vec, |
3237 | | |
3238 | | &bfd_coff_small_swap_table |
3239 | | }; |
3240 | | #endif |