/src/binutils-gdb/bfd/elf32-hppa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* BFD back-end for HP PA-RISC ELF files. |
2 | | Copyright (C) 1990-2025 Free Software Foundation, Inc. |
3 | | |
4 | | Original code by |
5 | | Center for Software Science |
6 | | Department of Computer Science |
7 | | University of Utah |
8 | | Largely rewritten by Alan Modra <alan@linuxcare.com.au> |
9 | | Naming cleanup by Carlos O'Donell <carlos@systemhalted.org> |
10 | | TLS support written by Randolph Chung <tausq@debian.org> |
11 | | |
12 | | This file is part of BFD, the Binary File Descriptor library. |
13 | | |
14 | | This program is free software; you can redistribute it and/or modify |
15 | | it under the terms of the GNU General Public License as published by |
16 | | the Free Software Foundation; either version 3 of the License, or |
17 | | (at your option) any later version. |
18 | | |
19 | | This program is distributed in the hope that it will be useful, |
20 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
21 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
22 | | GNU General Public License for more details. |
23 | | |
24 | | You should have received a copy of the GNU General Public License |
25 | | along with this program; if not, write to the Free Software |
26 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
27 | | MA 02110-1301, USA. */ |
28 | | |
29 | | #include "sysdep.h" |
30 | | #include "bfd.h" |
31 | | #include "libbfd.h" |
32 | | #include "elf-bfd.h" |
33 | | #include "elf/hppa.h" |
34 | | #include "libhppa.h" |
35 | | #include "elf32-hppa.h" |
36 | | #define ARCH_SIZE 32 |
37 | | #include "elf32-hppa.h" |
38 | | #include "elf-hppa.h" |
39 | | |
40 | | /* In order to gain some understanding of code in this file without |
41 | | knowing all the intricate details of the linker, note the |
42 | | following: |
43 | | |
44 | | Functions named elf32_hppa_* are called by external routines, other |
45 | | functions are only called locally. elf32_hppa_* functions appear |
46 | | in this file more or less in the order in which they are called |
47 | | from external routines. eg. elf32_hppa_check_relocs is called |
48 | | early in the link process, elf32_hppa_finish_dynamic_sections is |
49 | | one of the last functions. */ |
50 | | |
51 | | /* We use two hash tables to hold information for linking PA ELF objects. |
52 | | |
53 | | The first is the elf32_hppa_link_hash_table which is derived |
54 | | from the standard ELF linker hash table. We use this as a place to |
55 | | attach other hash tables and static information. |
56 | | |
57 | | The second is the stub hash table which is derived from the |
58 | | base BFD hash table. The stub hash table holds the information |
59 | | necessary to build the linker stubs during a link. |
60 | | |
61 | | There are a number of different stubs generated by the linker. |
62 | | |
63 | | Long branch stub: |
64 | | : ldil LR'X,%r1 |
65 | | : be,n RR'X(%sr4,%r1) |
66 | | |
67 | | PIC long branch stub: |
68 | | : b,l .+8,%r1 |
69 | | : addil LR'X - ($PIC_pcrel$0 - 4),%r1 |
70 | | : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) |
71 | | |
72 | | Import stub to call shared library routine from normal object file |
73 | | (single sub-space version) |
74 | | : addil LR'lt_ptr+ltoff,%dp ; get PLT address |
75 | | : ldo RR'lt_ptr+ltoff(%r1),%r22 ; |
76 | | : ldw 0(%r22),%r21 ; get procedure entry point |
77 | | : bv %r0(%r21) |
78 | | : ldw 4(%r22),%r19 ; get new dlt value. |
79 | | |
80 | | Import stub to call shared library routine from shared library |
81 | | (single sub-space version) |
82 | | : addil LR'ltoff,%r19 ; get PLT address |
83 | | : ldo RR'ltoff(%r1),%r22 |
84 | | : ldw 0(%r22),%r21 ; get procedure entry point |
85 | | : bv %r0(%r21) |
86 | | : ldw 4(%r22),%r19 ; get new dlt value. |
87 | | |
88 | | Import stub to call shared library routine from normal object file |
89 | | (multiple sub-space support) |
90 | | : addil LR'lt_ptr+ltoff,%dp ; get PLT address |
91 | | : ldo RR'lt_ptr+ltoff(%r1),%r22 ; |
92 | | : ldw 0(%r22),%r21 ; get procedure entry point |
93 | | : ldsid (%r21),%r1 ; get target sid |
94 | | : ldw 4(%r22),%r19 ; get new dlt value. |
95 | | : mtsp %r1,%sr0 |
96 | | : be 0(%sr0,%r21) ; branch to target |
97 | | : stw %rp,-24(%sp) ; save rp |
98 | | |
99 | | Import stub to call shared library routine from shared library |
100 | | (multiple sub-space support) |
101 | | : addil LR'ltoff,%r19 ; get PLT address |
102 | | : ldo RR'ltoff(%r1),%r22 |
103 | | : ldw 0(%r22),%r21 ; get procedure entry point |
104 | | : ldsid (%r21),%r1 ; get target sid |
105 | | : ldw 4(%r22),%r19 ; get new dlt value. |
106 | | : mtsp %r1,%sr0 |
107 | | : be 0(%sr0,%r21) ; branch to target |
108 | | : stw %rp,-24(%sp) ; save rp |
109 | | |
110 | | Export stub to return from shared lib routine (multiple sub-space support) |
111 | | One of these is created for each exported procedure in a shared |
112 | | library (and stored in the shared lib). Shared lib routines are |
113 | | called via the first instruction in the export stub so that we can |
114 | | do an inter-space return. Not required for single sub-space. |
115 | | : bl,n X,%rp ; trap the return |
116 | | : nop |
117 | | : ldw -24(%sp),%rp ; restore the original rp |
118 | | : ldsid (%rp),%r1 |
119 | | : mtsp %r1,%sr0 |
120 | | : be,n 0(%sr0,%rp) ; inter-space return. */ |
121 | | |
122 | | |
123 | | /* Variable names follow a coding style. |
124 | | Please follow this (Apps Hungarian) style: |
125 | | |
126 | | Structure/Variable Prefix |
127 | | elf_link_hash_table "etab" |
128 | | elf_link_hash_entry "eh" |
129 | | |
130 | | elf32_hppa_link_hash_table "htab" |
131 | | elf32_hppa_link_hash_entry "hh" |
132 | | |
133 | | bfd_hash_table "btab" |
134 | | bfd_hash_entry "bh" |
135 | | |
136 | | bfd_hash_table containing stubs "bstab" |
137 | | elf32_hppa_stub_hash_entry "hsh" |
138 | | |
139 | | Always remember to use GNU Coding Style. */ |
140 | | |
141 | 0 | #define PLT_ENTRY_SIZE 8 |
142 | 0 | #define GOT_ENTRY_SIZE 4 |
143 | 0 | #define LONG_BRANCH_STUB_SIZE 8 |
144 | 0 | #define LONG_BRANCH_SHARED_STUB_SIZE 12 |
145 | 0 | #define IMPORT_STUB_SIZE 20 |
146 | 0 | #define IMPORT_SHARED_STUB_SIZE 32 |
147 | 0 | #define EXPORT_STUB_SIZE 24 |
148 | 0 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
149 | | |
150 | | static const bfd_byte plt_stub[] = |
151 | | { |
152 | | 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */ |
153 | | 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */ |
154 | | 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ |
155 | | #define PLT_STUB_ENTRY (3*4) |
156 | | 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ |
157 | | 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ |
158 | | 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ |
159 | | 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ |
160 | | }; |
161 | | |
162 | | /* Section name for stubs is the associated section name plus this |
163 | | string. */ |
164 | 0 | #define STUB_SUFFIX ".stub" |
165 | | |
166 | | /* We don't need to copy certain PC- or GP-relative dynamic relocs |
167 | | into a shared object's dynamic section. All the relocs of the |
168 | | limited class we are interested in, are absolute. */ |
169 | | #ifndef RELATIVE_DYNRELOCS |
170 | | #define RELATIVE_DYNRELOCS 0 |
171 | 0 | #define IS_ABSOLUTE_RELOC(r_type) 1 |
172 | 0 | #define pc_dynrelocs(hh) 0 |
173 | | #endif |
174 | | |
175 | | /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
176 | | copying dynamic variables from a shared lib into an app's dynbss |
177 | | section, and instead use a dynamic relocation to point into the |
178 | | shared lib. */ |
179 | 0 | #define ELIMINATE_COPY_RELOCS 1 |
180 | | |
181 | | enum elf32_hppa_stub_type |
182 | | { |
183 | | hppa_stub_long_branch, |
184 | | hppa_stub_long_branch_shared, |
185 | | hppa_stub_import, |
186 | | hppa_stub_import_shared, |
187 | | hppa_stub_export, |
188 | | hppa_stub_none |
189 | | }; |
190 | | |
191 | | struct elf32_hppa_stub_hash_entry |
192 | | { |
193 | | /* Base hash table entry structure. */ |
194 | | struct bfd_hash_entry bh_root; |
195 | | |
196 | | /* The stub section. */ |
197 | | asection *stub_sec; |
198 | | |
199 | | /* Offset within stub_sec of the beginning of this stub. */ |
200 | | bfd_vma stub_offset; |
201 | | |
202 | | /* Given the symbol's value and its section we can determine its final |
203 | | value when building the stubs (so the stub knows where to jump. */ |
204 | | bfd_vma target_value; |
205 | | asection *target_section; |
206 | | |
207 | | enum elf32_hppa_stub_type stub_type; |
208 | | |
209 | | /* The symbol table entry, if any, that this was derived from. */ |
210 | | struct elf32_hppa_link_hash_entry *hh; |
211 | | |
212 | | /* Where this stub is being called from, or, in the case of combined |
213 | | stub sections, the first input section in the group. */ |
214 | | asection *id_sec; |
215 | | }; |
216 | | |
217 | | enum _tls_type |
218 | | { |
219 | | GOT_UNKNOWN = 0, |
220 | | GOT_NORMAL = 1, |
221 | | GOT_TLS_GD = 2, |
222 | | GOT_TLS_LDM = 4, |
223 | | GOT_TLS_IE = 8 |
224 | | }; |
225 | | |
226 | | struct elf32_hppa_link_hash_entry |
227 | | { |
228 | | struct elf_link_hash_entry eh; |
229 | | |
230 | | /* A pointer to the most recently used stub hash entry against this |
231 | | symbol. */ |
232 | | struct elf32_hppa_stub_hash_entry *hsh_cache; |
233 | | |
234 | | ENUM_BITFIELD (_tls_type) tls_type : 8; |
235 | | |
236 | | /* Set if this symbol is used by a plabel reloc. */ |
237 | | unsigned int plabel:1; |
238 | | }; |
239 | | |
240 | | struct elf32_hppa_link_hash_table |
241 | | { |
242 | | /* The main hash table. */ |
243 | | struct elf_link_hash_table etab; |
244 | | |
245 | | /* The stub hash table. */ |
246 | | struct bfd_hash_table bstab; |
247 | | |
248 | | /* Linker stub bfd. */ |
249 | | bfd *stub_bfd; |
250 | | |
251 | | /* Linker call-backs. */ |
252 | | asection * (*add_stub_section) (const char *, asection *); |
253 | | void (*layout_sections_again) (void); |
254 | | |
255 | | /* Array to keep track of which stub sections have been created, and |
256 | | information on stub grouping. */ |
257 | | struct map_stub |
258 | | { |
259 | | /* This is the section to which stubs in the group will be |
260 | | attached. */ |
261 | | asection *link_sec; |
262 | | /* The stub section. */ |
263 | | asection *stub_sec; |
264 | | } *stub_group; |
265 | | |
266 | | /* Assorted information used by elf32_hppa_size_stubs. */ |
267 | | unsigned int bfd_count; |
268 | | unsigned int top_index; |
269 | | asection **input_list; |
270 | | Elf_Internal_Sym **all_local_syms; |
271 | | |
272 | | /* Used during a final link to store the base of the text and data |
273 | | segments so that we can perform SEGREL relocations. */ |
274 | | bfd_vma text_segment_base; |
275 | | bfd_vma data_segment_base; |
276 | | |
277 | | /* Whether we support multiple sub-spaces for shared libs. */ |
278 | | unsigned int multi_subspace:1; |
279 | | |
280 | | /* Flags set when various size branches are detected. Used to |
281 | | select suitable defaults for the stub group size. */ |
282 | | unsigned int has_12bit_branch:1; |
283 | | unsigned int has_17bit_branch:1; |
284 | | unsigned int has_22bit_branch:1; |
285 | | |
286 | | /* Set if we need a .plt stub to support lazy dynamic linking. */ |
287 | | unsigned int need_plt_stub:1; |
288 | | |
289 | | /* Data for LDM relocations. */ |
290 | | union |
291 | | { |
292 | | bfd_signed_vma refcount; |
293 | | bfd_vma offset; |
294 | | } tls_ldm_got; |
295 | | }; |
296 | | |
297 | | /* Various hash macros and functions. */ |
298 | | #define hppa_link_hash_table(p) \ |
299 | 0 | ((is_elf_hash_table ((p)->hash) \ |
300 | 0 | && elf_hash_table_id (elf_hash_table (p)) == HPPA32_ELF_DATA) \ |
301 | 0 | ? (struct elf32_hppa_link_hash_table *) (p)->hash : NULL) |
302 | | |
303 | | #define hppa_elf_hash_entry(ent) \ |
304 | 0 | ((struct elf32_hppa_link_hash_entry *)(ent)) |
305 | | |
306 | | #define hppa_stub_hash_entry(ent) \ |
307 | 0 | ((struct elf32_hppa_stub_hash_entry *)(ent)) |
308 | | |
309 | | #define hppa_stub_hash_lookup(table, string, create, copy) \ |
310 | 0 | ((struct elf32_hppa_stub_hash_entry *) \ |
311 | 0 | bfd_hash_lookup ((table), (string), (create), (copy))) |
312 | | |
313 | | #define hppa_elf_local_got_tls_type(abfd) \ |
314 | 0 | ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2))) |
315 | | |
316 | | #define hh_name(hh) \ |
317 | 0 | (hh ? hh->eh.root.root.string : "<undef>") |
318 | | |
319 | | #define eh_name(eh) \ |
320 | 0 | (eh ? eh->root.root.string : "<undef>") |
321 | | |
322 | | /* Assorted hash table functions. */ |
323 | | |
324 | | /* Initialize an entry in the stub hash table. */ |
325 | | |
326 | | static struct bfd_hash_entry * |
327 | | stub_hash_newfunc (struct bfd_hash_entry *entry, |
328 | | struct bfd_hash_table *table, |
329 | | const char *string) |
330 | 0 | { |
331 | | /* Allocate the structure if it has not already been allocated by a |
332 | | subclass. */ |
333 | 0 | if (entry == NULL) |
334 | 0 | { |
335 | 0 | entry = bfd_hash_allocate (table, |
336 | 0 | sizeof (struct elf32_hppa_stub_hash_entry)); |
337 | 0 | if (entry == NULL) |
338 | 0 | return entry; |
339 | 0 | } |
340 | | |
341 | | /* Call the allocation method of the superclass. */ |
342 | 0 | entry = bfd_hash_newfunc (entry, table, string); |
343 | 0 | if (entry != NULL) |
344 | 0 | { |
345 | 0 | struct elf32_hppa_stub_hash_entry *hsh; |
346 | | |
347 | | /* Initialize the local fields. */ |
348 | 0 | hsh = hppa_stub_hash_entry (entry); |
349 | 0 | hsh->stub_sec = NULL; |
350 | 0 | hsh->stub_offset = 0; |
351 | 0 | hsh->target_value = 0; |
352 | 0 | hsh->target_section = NULL; |
353 | 0 | hsh->stub_type = hppa_stub_long_branch; |
354 | 0 | hsh->hh = NULL; |
355 | 0 | hsh->id_sec = NULL; |
356 | 0 | } |
357 | |
|
358 | 0 | return entry; |
359 | 0 | } |
360 | | |
361 | | /* Initialize an entry in the link hash table. */ |
362 | | |
363 | | static struct bfd_hash_entry * |
364 | | hppa_link_hash_newfunc (struct bfd_hash_entry *entry, |
365 | | struct bfd_hash_table *table, |
366 | | const char *string) |
367 | 0 | { |
368 | | /* Allocate the structure if it has not already been allocated by a |
369 | | subclass. */ |
370 | 0 | if (entry == NULL) |
371 | 0 | { |
372 | 0 | entry = bfd_hash_allocate (table, |
373 | 0 | sizeof (struct elf32_hppa_link_hash_entry)); |
374 | 0 | if (entry == NULL) |
375 | 0 | return entry; |
376 | 0 | } |
377 | | |
378 | | /* Call the allocation method of the superclass. */ |
379 | 0 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
380 | 0 | if (entry != NULL) |
381 | 0 | { |
382 | 0 | struct elf32_hppa_link_hash_entry *hh; |
383 | | |
384 | | /* Initialize the local fields. */ |
385 | 0 | hh = hppa_elf_hash_entry (entry); |
386 | 0 | hh->hsh_cache = NULL; |
387 | 0 | hh->plabel = 0; |
388 | 0 | hh->tls_type = GOT_UNKNOWN; |
389 | 0 | } |
390 | |
|
391 | 0 | return entry; |
392 | 0 | } |
393 | | |
394 | | /* Free the derived linker hash table. */ |
395 | | |
396 | | static void |
397 | | elf32_hppa_link_hash_table_free (bfd *obfd) |
398 | 0 | { |
399 | 0 | struct elf32_hppa_link_hash_table *htab |
400 | 0 | = (struct elf32_hppa_link_hash_table *) obfd->link.hash; |
401 | |
|
402 | 0 | bfd_hash_table_free (&htab->bstab); |
403 | 0 | _bfd_elf_link_hash_table_free (obfd); |
404 | 0 | } |
405 | | |
406 | | /* Create the derived linker hash table. The PA ELF port uses the derived |
407 | | hash table to keep information specific to the PA ELF linker (without |
408 | | using static variables). */ |
409 | | |
410 | | static struct bfd_link_hash_table * |
411 | | elf32_hppa_link_hash_table_create (bfd *abfd) |
412 | 0 | { |
413 | 0 | struct elf32_hppa_link_hash_table *htab; |
414 | 0 | size_t amt = sizeof (*htab); |
415 | |
|
416 | 0 | htab = bfd_zmalloc (amt); |
417 | 0 | if (htab == NULL) |
418 | 0 | return NULL; |
419 | | |
420 | 0 | if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, |
421 | 0 | sizeof (struct elf32_hppa_link_hash_entry))) |
422 | 0 | { |
423 | 0 | free (htab); |
424 | 0 | return NULL; |
425 | 0 | } |
426 | | |
427 | | /* Init the stub hash table too. */ |
428 | 0 | if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, |
429 | 0 | sizeof (struct elf32_hppa_stub_hash_entry))) |
430 | 0 | { |
431 | 0 | _bfd_elf_link_hash_table_free (abfd); |
432 | 0 | return NULL; |
433 | 0 | } |
434 | 0 | htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free; |
435 | 0 | htab->etab.dt_pltgot_required = true; |
436 | |
|
437 | 0 | htab->text_segment_base = (bfd_vma) -1; |
438 | 0 | htab->data_segment_base = (bfd_vma) -1; |
439 | 0 | return &htab->etab.root; |
440 | 0 | } |
441 | | |
442 | | /* Initialize the linker stubs BFD so that we can use it for linker |
443 | | created dynamic sections. */ |
444 | | |
445 | | void |
446 | | elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info) |
447 | 0 | { |
448 | 0 | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
449 | |
|
450 | 0 | elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32; |
451 | 0 | htab->etab.dynobj = abfd; |
452 | 0 | } |
453 | | |
454 | | /* Build a name for an entry in the stub hash table. */ |
455 | | |
456 | | static char * |
457 | | hppa_stub_name (const asection *input_section, |
458 | | const asection *sym_sec, |
459 | | const struct elf32_hppa_link_hash_entry *hh, |
460 | | const Elf_Internal_Rela *rela) |
461 | 0 | { |
462 | 0 | char *stub_name; |
463 | 0 | bfd_size_type len; |
464 | |
|
465 | 0 | if (hh) |
466 | 0 | { |
467 | 0 | len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1; |
468 | 0 | stub_name = bfd_malloc (len); |
469 | 0 | if (stub_name != NULL) |
470 | 0 | sprintf (stub_name, "%08x_%s+%x", |
471 | 0 | input_section->id & 0xffffffff, |
472 | 0 | hh_name (hh), |
473 | 0 | (int) rela->r_addend & 0xffffffff); |
474 | 0 | } |
475 | 0 | else |
476 | 0 | { |
477 | 0 | len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; |
478 | 0 | stub_name = bfd_malloc (len); |
479 | 0 | if (stub_name != NULL) |
480 | 0 | sprintf (stub_name, "%08x_%x:%x+%x", |
481 | 0 | input_section->id & 0xffffffff, |
482 | 0 | sym_sec->id & 0xffffffff, |
483 | 0 | (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, |
484 | 0 | (int) rela->r_addend & 0xffffffff); |
485 | 0 | } |
486 | 0 | return stub_name; |
487 | 0 | } |
488 | | |
489 | | /* Look up an entry in the stub hash. Stub entries are cached because |
490 | | creating the stub name takes a bit of time. */ |
491 | | |
492 | | static struct elf32_hppa_stub_hash_entry * |
493 | | hppa_get_stub_entry (const asection *input_section, |
494 | | const asection *sym_sec, |
495 | | struct elf32_hppa_link_hash_entry *hh, |
496 | | const Elf_Internal_Rela *rela, |
497 | | struct elf32_hppa_link_hash_table *htab) |
498 | 0 | { |
499 | 0 | struct elf32_hppa_stub_hash_entry *hsh_entry; |
500 | 0 | const asection *id_sec; |
501 | | |
502 | | /* If this input section is part of a group of sections sharing one |
503 | | stub section, then use the id of the first section in the group. |
504 | | Stub names need to include a section id, as there may well be |
505 | | more than one stub used to reach say, printf, and we need to |
506 | | distinguish between them. */ |
507 | 0 | id_sec = htab->stub_group[input_section->id].link_sec; |
508 | 0 | if (id_sec == NULL) |
509 | 0 | return NULL; |
510 | | |
511 | 0 | if (hh != NULL && hh->hsh_cache != NULL |
512 | 0 | && hh->hsh_cache->hh == hh |
513 | 0 | && hh->hsh_cache->id_sec == id_sec) |
514 | 0 | { |
515 | 0 | hsh_entry = hh->hsh_cache; |
516 | 0 | } |
517 | 0 | else |
518 | 0 | { |
519 | 0 | char *stub_name; |
520 | |
|
521 | 0 | stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); |
522 | 0 | if (stub_name == NULL) |
523 | 0 | return NULL; |
524 | | |
525 | 0 | hsh_entry = hppa_stub_hash_lookup (&htab->bstab, |
526 | 0 | stub_name, false, false); |
527 | 0 | if (hh != NULL) |
528 | 0 | hh->hsh_cache = hsh_entry; |
529 | |
|
530 | 0 | free (stub_name); |
531 | 0 | } |
532 | | |
533 | 0 | return hsh_entry; |
534 | 0 | } |
535 | | |
536 | | /* Add a new stub entry to the stub hash. Not all fields of the new |
537 | | stub entry are initialised. */ |
538 | | |
539 | | static struct elf32_hppa_stub_hash_entry * |
540 | | hppa_add_stub (const char *stub_name, |
541 | | asection *section, |
542 | | struct elf32_hppa_link_hash_table *htab) |
543 | 0 | { |
544 | 0 | asection *link_sec; |
545 | 0 | asection *stub_sec; |
546 | 0 | struct elf32_hppa_stub_hash_entry *hsh; |
547 | |
|
548 | 0 | link_sec = htab->stub_group[section->id].link_sec; |
549 | 0 | stub_sec = htab->stub_group[section->id].stub_sec; |
550 | 0 | if (stub_sec == NULL) |
551 | 0 | { |
552 | 0 | stub_sec = htab->stub_group[link_sec->id].stub_sec; |
553 | 0 | if (stub_sec == NULL) |
554 | 0 | { |
555 | 0 | size_t namelen; |
556 | 0 | bfd_size_type len; |
557 | 0 | char *s_name; |
558 | |
|
559 | 0 | namelen = strlen (link_sec->name); |
560 | 0 | len = namelen + sizeof (STUB_SUFFIX); |
561 | 0 | s_name = bfd_alloc (htab->stub_bfd, len); |
562 | 0 | if (s_name == NULL) |
563 | 0 | return NULL; |
564 | | |
565 | 0 | memcpy (s_name, link_sec->name, namelen); |
566 | 0 | memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); |
567 | 0 | stub_sec = (*htab->add_stub_section) (s_name, link_sec); |
568 | 0 | if (stub_sec == NULL) |
569 | 0 | return NULL; |
570 | 0 | htab->stub_group[link_sec->id].stub_sec = stub_sec; |
571 | 0 | } |
572 | 0 | htab->stub_group[section->id].stub_sec = stub_sec; |
573 | 0 | } |
574 | | |
575 | | /* Enter this entry into the linker stub hash table. */ |
576 | 0 | hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, |
577 | 0 | true, false); |
578 | 0 | if (hsh == NULL) |
579 | 0 | { |
580 | | /* xgettext:c-format */ |
581 | 0 | _bfd_error_handler (_("%pB: cannot create stub entry %s"), |
582 | 0 | section->owner, stub_name); |
583 | 0 | return NULL; |
584 | 0 | } |
585 | | |
586 | 0 | hsh->stub_sec = stub_sec; |
587 | 0 | hsh->stub_offset = 0; |
588 | 0 | hsh->id_sec = link_sec; |
589 | 0 | return hsh; |
590 | 0 | } |
591 | | |
592 | | /* Determine the type of stub needed, if any, for a call. */ |
593 | | |
594 | | static enum elf32_hppa_stub_type |
595 | | hppa_type_of_stub (asection *input_sec, |
596 | | const Elf_Internal_Rela *rela, |
597 | | struct elf32_hppa_link_hash_entry *hh, |
598 | | bfd_vma destination, |
599 | | struct bfd_link_info *info) |
600 | 0 | { |
601 | 0 | bfd_vma location; |
602 | 0 | bfd_vma branch_offset; |
603 | 0 | bfd_vma max_branch_offset; |
604 | 0 | unsigned int r_type; |
605 | |
|
606 | 0 | if (hh != NULL |
607 | 0 | && hh->eh.plt.offset != (bfd_vma) -1 |
608 | 0 | && hh->eh.dynindx != -1 |
609 | 0 | && !hh->plabel |
610 | 0 | && (bfd_link_pic (info) |
611 | 0 | || !hh->eh.def_regular |
612 | 0 | || hh->eh.root.type == bfd_link_hash_defweak)) |
613 | 0 | { |
614 | | /* We need an import stub. Decide between hppa_stub_import |
615 | | and hppa_stub_import_shared later. */ |
616 | 0 | return hppa_stub_import; |
617 | 0 | } |
618 | | |
619 | 0 | if (destination == (bfd_vma) -1) |
620 | 0 | return hppa_stub_none; |
621 | | |
622 | | /* Determine where the call point is. */ |
623 | 0 | location = (input_sec->output_offset |
624 | 0 | + input_sec->output_section->vma |
625 | 0 | + rela->r_offset); |
626 | |
|
627 | 0 | branch_offset = destination - location - 8; |
628 | 0 | r_type = ELF32_R_TYPE (rela->r_info); |
629 | | |
630 | | /* Determine if a long branch stub is needed. parisc branch offsets |
631 | | are relative to the second instruction past the branch, ie. +8 |
632 | | bytes on from the branch instruction location. The offset is |
633 | | signed and counts in units of 4 bytes. */ |
634 | 0 | if (r_type == (unsigned int) R_PARISC_PCREL17F) |
635 | 0 | max_branch_offset = (1 << (17 - 1)) << 2; |
636 | | |
637 | 0 | else if (r_type == (unsigned int) R_PARISC_PCREL12F) |
638 | 0 | max_branch_offset = (1 << (12 - 1)) << 2; |
639 | | |
640 | 0 | else /* R_PARISC_PCREL22F. */ |
641 | 0 | max_branch_offset = (1 << (22 - 1)) << 2; |
642 | |
|
643 | 0 | if (branch_offset + max_branch_offset >= 2*max_branch_offset) |
644 | 0 | return hppa_stub_long_branch; |
645 | | |
646 | 0 | return hppa_stub_none; |
647 | 0 | } |
648 | | |
649 | | /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. |
650 | | IN_ARG contains the link info pointer. */ |
651 | | |
652 | 0 | #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ |
653 | 0 | #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ |
654 | | |
655 | | #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ |
656 | 0 | #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ |
657 | | #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ |
658 | | |
659 | 0 | #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ |
660 | | #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ |
661 | | #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ |
662 | | #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ |
663 | | |
664 | 0 | #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ |
665 | | #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ |
666 | | |
667 | 0 | #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */ |
668 | | #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */ |
669 | | #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */ |
670 | | |
671 | | #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ |
672 | | #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ |
673 | | #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ |
674 | | #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ |
675 | | |
676 | 0 | #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */ |
677 | 0 | #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ |
678 | | #define NOP 0x08000240 /* nop */ |
679 | | #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ |
680 | | #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ |
681 | | #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ |
682 | | |
683 | | #ifndef R19_STUBS |
684 | | #define R19_STUBS 1 |
685 | | #endif |
686 | | |
687 | | #if R19_STUBS |
688 | | #define LDW_R1_DLT LDW_R1_R19 |
689 | | #else |
690 | | #define LDW_R1_DLT LDW_R1_DP |
691 | | #endif |
692 | | |
693 | | static bool |
694 | | hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) |
695 | 0 | { |
696 | 0 | struct elf32_hppa_stub_hash_entry *hsh; |
697 | 0 | struct bfd_link_info *info; |
698 | 0 | struct elf32_hppa_link_hash_table *htab; |
699 | 0 | asection *stub_sec; |
700 | 0 | bfd *stub_bfd; |
701 | 0 | bfd_byte *loc; |
702 | 0 | bfd_vma sym_value; |
703 | 0 | bfd_vma insn; |
704 | 0 | bfd_vma off; |
705 | 0 | int val; |
706 | 0 | int size; |
707 | | |
708 | | /* Massage our args to the form they really have. */ |
709 | 0 | hsh = hppa_stub_hash_entry (bh); |
710 | 0 | info = (struct bfd_link_info *)in_arg; |
711 | |
|
712 | 0 | htab = hppa_link_hash_table (info); |
713 | 0 | if (htab == NULL) |
714 | 0 | return false; |
715 | | |
716 | 0 | stub_sec = hsh->stub_sec; |
717 | | |
718 | | /* Make a note of the offset within the stubs for this entry. */ |
719 | 0 | hsh->stub_offset = stub_sec->size; |
720 | 0 | loc = stub_sec->contents + hsh->stub_offset; |
721 | |
|
722 | 0 | stub_bfd = stub_sec->owner; |
723 | |
|
724 | 0 | switch (hsh->stub_type) |
725 | 0 | { |
726 | 0 | case hppa_stub_long_branch: |
727 | | /* Fail if the target section could not be assigned to an output |
728 | | section. The user should fix his linker script. */ |
729 | 0 | if (hsh->target_section->output_section == NULL |
730 | 0 | && info->non_contiguous_regions) |
731 | 0 | info->callbacks->fatal (_("%P: Could not assign `%pA' to an output " |
732 | 0 | "section. Retry without " |
733 | 0 | "--enable-non-contiguous-regions.\n"), |
734 | 0 | hsh->target_section); |
735 | | |
736 | | /* Create the long branch. A long branch is formed with "ldil" |
737 | | loading the upper bits of the target address into a register, |
738 | | then branching with "be" which adds in the lower bits. |
739 | | The "be" has its delay slot nullified. */ |
740 | 0 | sym_value = (hsh->target_value |
741 | 0 | + hsh->target_section->output_offset |
742 | 0 | + hsh->target_section->output_section->vma); |
743 | |
|
744 | 0 | val = hppa_field_adjust (sym_value, 0, e_lrsel); |
745 | 0 | insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); |
746 | 0 | bfd_put_32 (stub_bfd, insn, loc); |
747 | |
|
748 | 0 | val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; |
749 | 0 | insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); |
750 | 0 | bfd_put_32 (stub_bfd, insn, loc + 4); |
751 | |
|
752 | 0 | size = LONG_BRANCH_STUB_SIZE; |
753 | 0 | break; |
754 | | |
755 | 0 | case hppa_stub_long_branch_shared: |
756 | | /* Fail if the target section could not be assigned to an output |
757 | | section. The user should fix his linker script. */ |
758 | 0 | if (hsh->target_section->output_section == NULL |
759 | 0 | && info->non_contiguous_regions) |
760 | 0 | info->callbacks->fatal (_("%P: Could not assign `%pA' to an output " |
761 | 0 | "section. Retry without " |
762 | 0 | "--enable-non-contiguous-regions.\n"), |
763 | 0 | hsh->target_section); |
764 | | |
765 | | /* Branches are relative. This is where we are going to. */ |
766 | 0 | sym_value = (hsh->target_value |
767 | 0 | + hsh->target_section->output_offset |
768 | 0 | + hsh->target_section->output_section->vma); |
769 | | |
770 | | /* And this is where we are coming from, more or less. */ |
771 | 0 | sym_value -= (hsh->stub_offset |
772 | 0 | + stub_sec->output_offset |
773 | 0 | + stub_sec->output_section->vma); |
774 | |
|
775 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); |
776 | 0 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); |
777 | 0 | insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); |
778 | 0 | bfd_put_32 (stub_bfd, insn, loc + 4); |
779 | |
|
780 | 0 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; |
781 | 0 | insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); |
782 | 0 | bfd_put_32 (stub_bfd, insn, loc + 8); |
783 | 0 | size = LONG_BRANCH_SHARED_STUB_SIZE; |
784 | 0 | break; |
785 | | |
786 | 0 | case hppa_stub_import: |
787 | 0 | case hppa_stub_import_shared: |
788 | 0 | off = hsh->hh->eh.plt.offset; |
789 | 0 | if (off >= (bfd_vma) -2) |
790 | 0 | abort (); |
791 | | |
792 | 0 | off &= ~ (bfd_vma) 1; |
793 | 0 | sym_value = (off |
794 | 0 | + htab->etab.splt->output_offset |
795 | 0 | + htab->etab.splt->output_section->vma |
796 | 0 | - elf_gp (htab->etab.splt->output_section->owner)); |
797 | |
|
798 | 0 | insn = ADDIL_DP; |
799 | 0 | #if R19_STUBS |
800 | 0 | if (hsh->stub_type == hppa_stub_import_shared) |
801 | 0 | insn = ADDIL_R19; |
802 | 0 | #endif |
803 | | |
804 | | /* Load function descriptor address into register %r22. It is |
805 | | sometimes needed for lazy binding. */ |
806 | 0 | val = hppa_field_adjust (sym_value, 0, e_lrsel), |
807 | 0 | insn = hppa_rebuild_insn ((int) insn, val, 21); |
808 | 0 | bfd_put_32 (stub_bfd, insn, loc); |
809 | |
|
810 | 0 | val = hppa_field_adjust (sym_value, 0, e_rrsel); |
811 | 0 | insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14); |
812 | 0 | bfd_put_32 (stub_bfd, insn, loc + 4); |
813 | |
|
814 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8); |
815 | |
|
816 | 0 | if (htab->multi_subspace) |
817 | 0 | { |
818 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); |
819 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16); |
820 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20); |
821 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24); |
822 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28); |
823 | |
|
824 | 0 | size = IMPORT_SHARED_STUB_SIZE; |
825 | 0 | } |
826 | 0 | else |
827 | 0 | { |
828 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12); |
829 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16); |
830 | |
|
831 | 0 | size = IMPORT_STUB_SIZE; |
832 | 0 | } |
833 | |
|
834 | 0 | break; |
835 | | |
836 | 0 | case hppa_stub_export: |
837 | | /* Fail if the target section could not be assigned to an output |
838 | | section. The user should fix his linker script. */ |
839 | 0 | if (hsh->target_section->output_section == NULL |
840 | 0 | && info->non_contiguous_regions) |
841 | 0 | info->callbacks->fatal (_("%P: Could not assign `%pA' to an output " |
842 | 0 | "section. Retry without " |
843 | 0 | "--enable-non-contiguous-regions.\n"), |
844 | 0 | hsh->target_section); |
845 | | |
846 | | /* Branches are relative. This is where we are going to. */ |
847 | 0 | sym_value = (hsh->target_value |
848 | 0 | + hsh->target_section->output_offset |
849 | 0 | + hsh->target_section->output_section->vma); |
850 | | |
851 | | /* And this is where we are coming from. */ |
852 | 0 | sym_value -= (hsh->stub_offset |
853 | 0 | + stub_sec->output_offset |
854 | 0 | + stub_sec->output_section->vma); |
855 | |
|
856 | 0 | if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) |
857 | 0 | && (!htab->has_22bit_branch |
858 | 0 | || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) |
859 | 0 | { |
860 | 0 | _bfd_error_handler |
861 | | /* xgettext:c-format */ |
862 | 0 | (_("%pB(%pA+%#" PRIx64 "): " |
863 | 0 | "cannot reach %s, recompile with -ffunction-sections"), |
864 | 0 | hsh->target_section->owner, |
865 | 0 | stub_sec, |
866 | 0 | (uint64_t) hsh->stub_offset, |
867 | 0 | hsh->bh_root.string); |
868 | 0 | bfd_set_error (bfd_error_bad_value); |
869 | 0 | return false; |
870 | 0 | } |
871 | | |
872 | 0 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; |
873 | 0 | if (!htab->has_22bit_branch) |
874 | 0 | insn = hppa_rebuild_insn ((int) BL_RP, val, 17); |
875 | 0 | else |
876 | 0 | insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); |
877 | 0 | bfd_put_32 (stub_bfd, insn, loc); |
878 | |
|
879 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); |
880 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); |
881 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); |
882 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); |
883 | 0 | bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); |
884 | | |
885 | | /* Point the function symbol at the stub. */ |
886 | 0 | hsh->hh->eh.root.u.def.section = stub_sec; |
887 | 0 | hsh->hh->eh.root.u.def.value = stub_sec->size; |
888 | |
|
889 | 0 | size = EXPORT_STUB_SIZE; |
890 | 0 | break; |
891 | | |
892 | 0 | default: |
893 | 0 | BFD_FAIL (); |
894 | 0 | return false; |
895 | 0 | } |
896 | | |
897 | 0 | stub_sec->size += size; |
898 | 0 | return true; |
899 | 0 | } |
900 | | |
901 | | #undef LDIL_R1 |
902 | | #undef BE_SR4_R1 |
903 | | #undef BL_R1 |
904 | | #undef ADDIL_R1 |
905 | | #undef DEPI_R1 |
906 | | #undef LDW_R1_R21 |
907 | | #undef LDW_R1_DLT |
908 | | #undef LDW_R1_R19 |
909 | | #undef ADDIL_R19 |
910 | | #undef LDW_R1_DP |
911 | | #undef LDSID_R21_R1 |
912 | | #undef MTSP_R1 |
913 | | #undef BE_SR0_R21 |
914 | | #undef STW_RP |
915 | | #undef BV_R0_R21 |
916 | | #undef BL_RP |
917 | | #undef NOP |
918 | | #undef LDW_RP |
919 | | #undef LDSID_RP_R1 |
920 | | #undef BE_SR0_RP |
921 | | |
922 | | /* As above, but don't actually build the stub. Just bump offset so |
923 | | we know stub section sizes. */ |
924 | | |
925 | | static bool |
926 | | hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) |
927 | 0 | { |
928 | 0 | struct elf32_hppa_stub_hash_entry *hsh; |
929 | 0 | struct elf32_hppa_link_hash_table *htab; |
930 | 0 | int size; |
931 | | |
932 | | /* Massage our args to the form they really have. */ |
933 | 0 | hsh = hppa_stub_hash_entry (bh); |
934 | 0 | htab = in_arg; |
935 | |
|
936 | 0 | if (hsh->stub_type == hppa_stub_long_branch) |
937 | 0 | size = LONG_BRANCH_STUB_SIZE; |
938 | 0 | else if (hsh->stub_type == hppa_stub_long_branch_shared) |
939 | 0 | size = LONG_BRANCH_SHARED_STUB_SIZE; |
940 | 0 | else if (hsh->stub_type == hppa_stub_export) |
941 | 0 | size = EXPORT_STUB_SIZE; |
942 | 0 | else /* hppa_stub_import or hppa_stub_import_shared. */ |
943 | 0 | { |
944 | 0 | if (htab->multi_subspace) |
945 | 0 | size = IMPORT_SHARED_STUB_SIZE; |
946 | 0 | else |
947 | 0 | size = IMPORT_STUB_SIZE; |
948 | 0 | } |
949 | |
|
950 | 0 | hsh->stub_sec->size += size; |
951 | 0 | return true; |
952 | 0 | } |
953 | | |
954 | | /* Return nonzero if ABFD represents an HPPA ELF32 file. |
955 | | Additionally we set the default architecture and machine. */ |
956 | | |
957 | | static bool |
958 | | elf32_hppa_object_p (bfd *abfd) |
959 | 763 | { |
960 | 763 | Elf_Internal_Ehdr * i_ehdrp; |
961 | 763 | unsigned int flags; |
962 | | |
963 | 763 | i_ehdrp = elf_elfheader (abfd); |
964 | 763 | if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) |
965 | 14 | { |
966 | | /* GCC on hppa-linux produces binaries with OSABI=GNU, |
967 | | but the kernel produces corefiles with OSABI=SysV. */ |
968 | 14 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU && |
969 | 14 | i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ |
970 | 0 | return false; |
971 | 14 | } |
972 | 749 | else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) |
973 | 6 | { |
974 | | /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, |
975 | | but the kernel produces corefiles with OSABI=SysV. */ |
976 | 6 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && |
977 | 6 | i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ |
978 | 0 | return false; |
979 | 6 | } |
980 | 743 | else |
981 | 743 | { |
982 | 743 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) |
983 | 0 | return false; |
984 | 743 | } |
985 | | |
986 | 763 | flags = i_ehdrp->e_flags; |
987 | 763 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
988 | 763 | { |
989 | 0 | case EFA_PARISC_1_0: |
990 | 0 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); |
991 | 12 | case EFA_PARISC_1_1: |
992 | 12 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); |
993 | 0 | case EFA_PARISC_2_0: |
994 | 0 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); |
995 | 0 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: |
996 | 0 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); |
997 | 763 | } |
998 | 751 | return true; |
999 | 763 | } |
1000 | | |
1001 | | /* Create the .plt and .got sections, and set up our hash table |
1002 | | short-cuts to various dynamic sections. */ |
1003 | | |
1004 | | static bool |
1005 | | elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
1006 | 0 | { |
1007 | 0 | struct elf32_hppa_link_hash_table *htab; |
1008 | 0 | struct elf_link_hash_entry *eh; |
1009 | | |
1010 | | /* Don't try to create the .plt and .got twice. */ |
1011 | 0 | htab = hppa_link_hash_table (info); |
1012 | 0 | if (htab == NULL) |
1013 | 0 | return false; |
1014 | 0 | if (htab->etab.splt != NULL) |
1015 | 0 | return true; |
1016 | | |
1017 | | /* Call the generic code to do most of the work. */ |
1018 | 0 | if (! _bfd_elf_create_dynamic_sections (abfd, info)) |
1019 | 0 | return false; |
1020 | | |
1021 | | /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main |
1022 | | application, because __canonicalize_funcptr_for_compare needs it. */ |
1023 | 0 | eh = elf_hash_table (info)->hgot; |
1024 | 0 | eh->forced_local = 0; |
1025 | 0 | eh->other = STV_DEFAULT; |
1026 | 0 | return bfd_elf_link_record_dynamic_symbol (info, eh); |
1027 | 0 | } |
1028 | | |
1029 | | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
1030 | | |
1031 | | static void |
1032 | | elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, |
1033 | | struct elf_link_hash_entry *eh_dir, |
1034 | | struct elf_link_hash_entry *eh_ind) |
1035 | 0 | { |
1036 | 0 | struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; |
1037 | |
|
1038 | 0 | hh_dir = hppa_elf_hash_entry (eh_dir); |
1039 | 0 | hh_ind = hppa_elf_hash_entry (eh_ind); |
1040 | |
|
1041 | 0 | if (eh_ind->root.type == bfd_link_hash_indirect) |
1042 | 0 | { |
1043 | 0 | hh_dir->plabel |= hh_ind->plabel; |
1044 | 0 | hh_dir->tls_type |= hh_ind->tls_type; |
1045 | 0 | hh_ind->tls_type = GOT_UNKNOWN; |
1046 | 0 | } |
1047 | |
|
1048 | 0 | _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); |
1049 | 0 | } |
1050 | | |
1051 | | static int |
1052 | | elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1053 | | int r_type, int is_local ATTRIBUTE_UNUSED) |
1054 | 0 | { |
1055 | | /* For now we don't support linker optimizations. */ |
1056 | 0 | return r_type; |
1057 | 0 | } |
1058 | | |
1059 | | /* Return a pointer to the local GOT, PLT and TLS reference counts |
1060 | | for ABFD. Returns NULL if the storage allocation fails. */ |
1061 | | |
1062 | | static bfd_signed_vma * |
1063 | | hppa32_elf_local_refcounts (bfd *abfd) |
1064 | 0 | { |
1065 | 0 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1066 | 0 | bfd_signed_vma *local_refcounts; |
1067 | |
|
1068 | 0 | local_refcounts = elf_local_got_refcounts (abfd); |
1069 | 0 | if (local_refcounts == NULL) |
1070 | 0 | { |
1071 | 0 | bfd_size_type size; |
1072 | | |
1073 | | /* Allocate space for local GOT and PLT reference |
1074 | | counts. Done this way to save polluting elf_obj_tdata |
1075 | | with another target specific pointer. */ |
1076 | 0 | size = symtab_hdr->sh_info; |
1077 | 0 | size *= 2 * sizeof (bfd_signed_vma); |
1078 | | /* Add in space to store the local GOT TLS types. */ |
1079 | 0 | size += symtab_hdr->sh_info; |
1080 | 0 | local_refcounts = bfd_zalloc (abfd, size); |
1081 | 0 | if (local_refcounts == NULL) |
1082 | 0 | return NULL; |
1083 | 0 | elf_local_got_refcounts (abfd) = local_refcounts; |
1084 | 0 | memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN, |
1085 | 0 | symtab_hdr->sh_info); |
1086 | 0 | } |
1087 | 0 | return local_refcounts; |
1088 | 0 | } |
1089 | | |
1090 | | |
1091 | | /* Look through the relocs for a section during the first phase, and |
1092 | | calculate needed space in the global offset table, procedure linkage |
1093 | | table, and dynamic reloc sections. At this point we haven't |
1094 | | necessarily read all the input files. */ |
1095 | | |
1096 | | static bool |
1097 | | elf32_hppa_check_relocs (bfd *abfd, |
1098 | | struct bfd_link_info *info, |
1099 | | asection *sec, |
1100 | | const Elf_Internal_Rela *relocs) |
1101 | 0 | { |
1102 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1103 | 0 | struct elf_link_hash_entry **eh_syms; |
1104 | 0 | const Elf_Internal_Rela *rela; |
1105 | 0 | const Elf_Internal_Rela *rela_end; |
1106 | 0 | struct elf32_hppa_link_hash_table *htab; |
1107 | 0 | asection *sreloc; |
1108 | |
|
1109 | 0 | if (bfd_link_relocatable (info)) |
1110 | 0 | return true; |
1111 | | |
1112 | 0 | htab = hppa_link_hash_table (info); |
1113 | 0 | if (htab == NULL) |
1114 | 0 | return false; |
1115 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1116 | 0 | eh_syms = elf_sym_hashes (abfd); |
1117 | 0 | sreloc = NULL; |
1118 | |
|
1119 | 0 | rela_end = relocs + sec->reloc_count; |
1120 | 0 | for (rela = relocs; rela < rela_end; rela++) |
1121 | 0 | { |
1122 | 0 | enum { |
1123 | 0 | NEED_GOT = 1, |
1124 | 0 | NEED_PLT = 2, |
1125 | 0 | NEED_DYNREL = 4, |
1126 | 0 | PLT_PLABEL = 8 |
1127 | 0 | }; |
1128 | |
|
1129 | 0 | unsigned int r_symndx, r_type; |
1130 | 0 | struct elf32_hppa_link_hash_entry *hh; |
1131 | 0 | int need_entry = 0; |
1132 | |
|
1133 | 0 | r_symndx = ELF32_R_SYM (rela->r_info); |
1134 | |
|
1135 | 0 | if (r_symndx < symtab_hdr->sh_info) |
1136 | 0 | hh = NULL; |
1137 | 0 | else |
1138 | 0 | { |
1139 | 0 | hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); |
1140 | 0 | while (hh->eh.root.type == bfd_link_hash_indirect |
1141 | 0 | || hh->eh.root.type == bfd_link_hash_warning) |
1142 | 0 | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); |
1143 | 0 | } |
1144 | |
|
1145 | 0 | r_type = ELF32_R_TYPE (rela->r_info); |
1146 | 0 | r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL); |
1147 | |
|
1148 | 0 | switch (r_type) |
1149 | 0 | { |
1150 | 0 | case R_PARISC_DLTIND14F: |
1151 | 0 | case R_PARISC_DLTIND14R: |
1152 | 0 | case R_PARISC_DLTIND21L: |
1153 | | /* This symbol requires a global offset table entry. */ |
1154 | 0 | need_entry = NEED_GOT; |
1155 | 0 | break; |
1156 | | |
1157 | 0 | case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ |
1158 | 0 | case R_PARISC_PLABEL21L: |
1159 | 0 | case R_PARISC_PLABEL32: |
1160 | | /* If the addend is non-zero, we break badly. */ |
1161 | 0 | if (rela->r_addend != 0) |
1162 | 0 | abort (); |
1163 | | |
1164 | | /* If we are creating a shared library, then we need to |
1165 | | create a PLT entry for all PLABELs, because PLABELs with |
1166 | | local symbols may be passed via a pointer to another |
1167 | | object. Additionally, output a dynamic relocation |
1168 | | pointing to the PLT entry. |
1169 | | |
1170 | | For executables, the original 32-bit ABI allowed two |
1171 | | different styles of PLABELs (function pointers): For |
1172 | | global functions, the PLABEL word points into the .plt |
1173 | | two bytes past a (function address, gp) pair, and for |
1174 | | local functions the PLABEL points directly at the |
1175 | | function. The magic +2 for the first type allows us to |
1176 | | differentiate between the two. As you can imagine, this |
1177 | | is a real pain when it comes to generating code to call |
1178 | | functions indirectly or to compare function pointers. |
1179 | | We avoid the mess by always pointing a PLABEL into the |
1180 | | .plt, even for local functions. */ |
1181 | 0 | need_entry = PLT_PLABEL | NEED_PLT; |
1182 | 0 | if (bfd_link_pic (info)) |
1183 | 0 | need_entry |= NEED_DYNREL; |
1184 | 0 | break; |
1185 | | |
1186 | 0 | case R_PARISC_PCREL12F: |
1187 | 0 | htab->has_12bit_branch = 1; |
1188 | 0 | goto branch_common; |
1189 | | |
1190 | 0 | case R_PARISC_PCREL17C: |
1191 | 0 | case R_PARISC_PCREL17F: |
1192 | 0 | htab->has_17bit_branch = 1; |
1193 | 0 | goto branch_common; |
1194 | | |
1195 | 0 | case R_PARISC_PCREL22F: |
1196 | 0 | htab->has_22bit_branch = 1; |
1197 | 0 | branch_common: |
1198 | | /* Function calls might need to go through the .plt, and |
1199 | | might require long branch stubs. */ |
1200 | 0 | if (hh == NULL) |
1201 | 0 | { |
1202 | | /* We know local syms won't need a .plt entry, and if |
1203 | | they need a long branch stub we can't guarantee that |
1204 | | we can reach the stub. So just flag an error later |
1205 | | if we're doing a shared link and find we need a long |
1206 | | branch stub. */ |
1207 | 0 | continue; |
1208 | 0 | } |
1209 | 0 | else |
1210 | 0 | { |
1211 | | /* Global symbols will need a .plt entry if they remain |
1212 | | global, and in most cases won't need a long branch |
1213 | | stub. Unfortunately, we have to cater for the case |
1214 | | where a symbol is forced local by versioning, or due |
1215 | | to symbolic linking, and we lose the .plt entry. */ |
1216 | 0 | need_entry = NEED_PLT; |
1217 | 0 | if (hh->eh.type == STT_PARISC_MILLI) |
1218 | 0 | need_entry = 0; |
1219 | 0 | } |
1220 | 0 | break; |
1221 | | |
1222 | 0 | case R_PARISC_SEGBASE: /* Used to set segment base. */ |
1223 | 0 | case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ |
1224 | 0 | case R_PARISC_PCREL14F: /* PC relative load/store. */ |
1225 | 0 | case R_PARISC_PCREL14R: |
1226 | 0 | case R_PARISC_PCREL17R: /* External branches. */ |
1227 | 0 | case R_PARISC_PCREL21L: /* As above, and for load/store too. */ |
1228 | 0 | case R_PARISC_PCREL32: |
1229 | | /* We don't need to propagate the relocation if linking a |
1230 | | shared object since these are section relative. */ |
1231 | 0 | continue; |
1232 | | |
1233 | 0 | case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ |
1234 | 0 | case R_PARISC_DPREL14R: |
1235 | 0 | case R_PARISC_DPREL21L: |
1236 | 0 | if (bfd_link_pic (info)) |
1237 | 0 | { |
1238 | 0 | _bfd_error_handler |
1239 | | /* xgettext:c-format */ |
1240 | 0 | (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"), |
1241 | 0 | abfd, |
1242 | 0 | elf_hppa_howto_table[r_type].name); |
1243 | 0 | bfd_set_error (bfd_error_bad_value); |
1244 | 0 | return false; |
1245 | 0 | } |
1246 | | /* Fall through. */ |
1247 | | |
1248 | 0 | case R_PARISC_DIR17F: /* Used for external branches. */ |
1249 | 0 | case R_PARISC_DIR17R: |
1250 | 0 | case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ |
1251 | 0 | case R_PARISC_DIR14R: |
1252 | 0 | case R_PARISC_DIR21L: /* As above, and for ext branches too. */ |
1253 | 0 | case R_PARISC_DIR32: /* .word relocs. */ |
1254 | | /* We may want to output a dynamic relocation later. */ |
1255 | 0 | need_entry = NEED_DYNREL; |
1256 | 0 | break; |
1257 | | |
1258 | | /* This relocation describes the C++ object vtable hierarchy. |
1259 | | Reconstruct it for later use during GC. */ |
1260 | 0 | case R_PARISC_GNU_VTINHERIT: |
1261 | 0 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) |
1262 | 0 | return false; |
1263 | 0 | continue; |
1264 | | |
1265 | | /* This relocation describes which C++ vtable entries are actually |
1266 | | used. Record for later use during GC. */ |
1267 | 0 | case R_PARISC_GNU_VTENTRY: |
1268 | 0 | if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) |
1269 | 0 | return false; |
1270 | 0 | continue; |
1271 | | |
1272 | 0 | case R_PARISC_TLS_GD21L: |
1273 | 0 | case R_PARISC_TLS_GD14R: |
1274 | 0 | case R_PARISC_TLS_LDM21L: |
1275 | 0 | case R_PARISC_TLS_LDM14R: |
1276 | 0 | need_entry = NEED_GOT; |
1277 | 0 | break; |
1278 | | |
1279 | 0 | case R_PARISC_TLS_IE21L: |
1280 | 0 | case R_PARISC_TLS_IE14R: |
1281 | 0 | if (bfd_link_dll (info)) |
1282 | 0 | info->flags |= DF_STATIC_TLS; |
1283 | 0 | need_entry = NEED_GOT; |
1284 | 0 | break; |
1285 | | |
1286 | 0 | default: |
1287 | 0 | continue; |
1288 | 0 | } |
1289 | | |
1290 | | /* Now carry out our orders. */ |
1291 | 0 | if (need_entry & NEED_GOT) |
1292 | 0 | { |
1293 | 0 | int tls_type = GOT_NORMAL; |
1294 | |
|
1295 | 0 | switch (r_type) |
1296 | 0 | { |
1297 | 0 | default: |
1298 | 0 | break; |
1299 | 0 | case R_PARISC_TLS_GD21L: |
1300 | 0 | case R_PARISC_TLS_GD14R: |
1301 | 0 | tls_type = GOT_TLS_GD; |
1302 | 0 | break; |
1303 | 0 | case R_PARISC_TLS_LDM21L: |
1304 | 0 | case R_PARISC_TLS_LDM14R: |
1305 | 0 | tls_type = GOT_TLS_LDM; |
1306 | 0 | break; |
1307 | 0 | case R_PARISC_TLS_IE21L: |
1308 | 0 | case R_PARISC_TLS_IE14R: |
1309 | 0 | tls_type = GOT_TLS_IE; |
1310 | 0 | break; |
1311 | 0 | } |
1312 | | |
1313 | | /* Allocate space for a GOT entry, as well as a dynamic |
1314 | | relocation for this entry. */ |
1315 | 0 | if (htab->etab.sgot == NULL) |
1316 | 0 | { |
1317 | 0 | if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) |
1318 | 0 | return false; |
1319 | 0 | } |
1320 | | |
1321 | 0 | if (hh != NULL) |
1322 | 0 | { |
1323 | 0 | if (tls_type == GOT_TLS_LDM) |
1324 | 0 | htab->tls_ldm_got.refcount += 1; |
1325 | 0 | else |
1326 | 0 | hh->eh.got.refcount += 1; |
1327 | 0 | hh->tls_type |= tls_type; |
1328 | 0 | } |
1329 | 0 | else |
1330 | 0 | { |
1331 | 0 | bfd_signed_vma *local_got_refcounts; |
1332 | | |
1333 | | /* This is a global offset table entry for a local symbol. */ |
1334 | 0 | local_got_refcounts = hppa32_elf_local_refcounts (abfd); |
1335 | 0 | if (local_got_refcounts == NULL) |
1336 | 0 | return false; |
1337 | 0 | if (tls_type == GOT_TLS_LDM) |
1338 | 0 | htab->tls_ldm_got.refcount += 1; |
1339 | 0 | else |
1340 | 0 | local_got_refcounts[r_symndx] += 1; |
1341 | |
|
1342 | 0 | hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type; |
1343 | 0 | } |
1344 | 0 | } |
1345 | | |
1346 | 0 | if (need_entry & NEED_PLT) |
1347 | 0 | { |
1348 | | /* If we are creating a shared library, and this is a reloc |
1349 | | against a weak symbol or a global symbol in a dynamic |
1350 | | object, then we will be creating an import stub and a |
1351 | | .plt entry for the symbol. Similarly, on a normal link |
1352 | | to symbols defined in a dynamic object we'll need the |
1353 | | import stub and a .plt entry. We don't know yet whether |
1354 | | the symbol is defined or not, so make an entry anyway and |
1355 | | clean up later in adjust_dynamic_symbol. */ |
1356 | 0 | if ((sec->flags & SEC_ALLOC) != 0) |
1357 | 0 | { |
1358 | 0 | if (hh != NULL) |
1359 | 0 | { |
1360 | 0 | hh->eh.needs_plt = 1; |
1361 | 0 | hh->eh.plt.refcount += 1; |
1362 | | |
1363 | | /* If this .plt entry is for a plabel, mark it so |
1364 | | that adjust_dynamic_symbol will keep the entry |
1365 | | even if it appears to be local. */ |
1366 | 0 | if (need_entry & PLT_PLABEL) |
1367 | 0 | hh->plabel = 1; |
1368 | 0 | } |
1369 | 0 | else if (need_entry & PLT_PLABEL) |
1370 | 0 | { |
1371 | 0 | bfd_signed_vma *local_got_refcounts; |
1372 | 0 | bfd_signed_vma *local_plt_refcounts; |
1373 | |
|
1374 | 0 | local_got_refcounts = hppa32_elf_local_refcounts (abfd); |
1375 | 0 | if (local_got_refcounts == NULL) |
1376 | 0 | return false; |
1377 | 0 | local_plt_refcounts = (local_got_refcounts |
1378 | 0 | + symtab_hdr->sh_info); |
1379 | 0 | local_plt_refcounts[r_symndx] += 1; |
1380 | 0 | } |
1381 | 0 | } |
1382 | 0 | } |
1383 | | |
1384 | 0 | if ((need_entry & NEED_DYNREL) != 0 |
1385 | 0 | && (sec->flags & SEC_ALLOC) != 0) |
1386 | 0 | { |
1387 | | /* Flag this symbol as having a non-got, non-plt reference |
1388 | | so that we generate copy relocs if it turns out to be |
1389 | | dynamic. */ |
1390 | 0 | if (hh != NULL) |
1391 | 0 | hh->eh.non_got_ref = 1; |
1392 | | |
1393 | | /* If we are creating a shared library then we need to copy |
1394 | | the reloc into the shared library. However, if we are |
1395 | | linking with -Bsymbolic, we need only copy absolute |
1396 | | relocs or relocs against symbols that are not defined in |
1397 | | an object we are including in the link. PC- or DP- or |
1398 | | DLT-relative relocs against any local sym or global sym |
1399 | | with DEF_REGULAR set, can be discarded. At this point we |
1400 | | have not seen all the input files, so it is possible that |
1401 | | DEF_REGULAR is not set now but will be set later (it is |
1402 | | never cleared). We account for that possibility below by |
1403 | | storing information in the dyn_relocs field of the |
1404 | | hash table entry. |
1405 | | |
1406 | | A similar situation to the -Bsymbolic case occurs when |
1407 | | creating shared libraries and symbol visibility changes |
1408 | | render the symbol local. |
1409 | | |
1410 | | As it turns out, all the relocs we will be creating here |
1411 | | are absolute, so we cannot remove them on -Bsymbolic |
1412 | | links or visibility changes anyway. A STUB_REL reloc |
1413 | | is absolute too, as in that case it is the reloc in the |
1414 | | stub we will be creating, rather than copying the PCREL |
1415 | | reloc in the branch. |
1416 | | |
1417 | | If on the other hand, we are creating an executable, we |
1418 | | may need to keep relocations for symbols satisfied by a |
1419 | | dynamic library if we manage to avoid copy relocs for the |
1420 | | symbol. */ |
1421 | 0 | if ((bfd_link_pic (info) |
1422 | 0 | && (IS_ABSOLUTE_RELOC (r_type) |
1423 | 0 | || (hh != NULL |
1424 | 0 | && (!SYMBOLIC_BIND (info, &hh->eh) |
1425 | 0 | || hh->eh.root.type == bfd_link_hash_defweak |
1426 | 0 | || !hh->eh.def_regular)))) |
1427 | 0 | || (ELIMINATE_COPY_RELOCS |
1428 | 0 | && !bfd_link_pic (info) |
1429 | 0 | && hh != NULL |
1430 | 0 | && (hh->eh.root.type == bfd_link_hash_defweak |
1431 | 0 | || !hh->eh.def_regular))) |
1432 | 0 | { |
1433 | 0 | struct elf_dyn_relocs *hdh_p; |
1434 | 0 | struct elf_dyn_relocs **hdh_head; |
1435 | | |
1436 | | /* Create a reloc section in dynobj and make room for |
1437 | | this reloc. */ |
1438 | 0 | if (sreloc == NULL) |
1439 | 0 | { |
1440 | 0 | sreloc = _bfd_elf_make_dynamic_reloc_section |
1441 | 0 | (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ true); |
1442 | |
|
1443 | 0 | if (sreloc == NULL) |
1444 | 0 | { |
1445 | 0 | bfd_set_error (bfd_error_bad_value); |
1446 | 0 | return false; |
1447 | 0 | } |
1448 | 0 | } |
1449 | | |
1450 | | /* If this is a global symbol, we count the number of |
1451 | | relocations we need for this symbol. */ |
1452 | 0 | if (hh != NULL) |
1453 | 0 | { |
1454 | 0 | hdh_head = &hh->eh.dyn_relocs; |
1455 | 0 | } |
1456 | 0 | else |
1457 | 0 | { |
1458 | | /* Track dynamic relocs needed for local syms too. |
1459 | | We really need local syms available to do this |
1460 | | easily. Oh well. */ |
1461 | 0 | asection *sr; |
1462 | 0 | void *vpp; |
1463 | 0 | Elf_Internal_Sym *isym; |
1464 | |
|
1465 | 0 | isym = bfd_sym_from_r_symndx (&htab->etab.sym_cache, |
1466 | 0 | abfd, r_symndx); |
1467 | 0 | if (isym == NULL) |
1468 | 0 | return false; |
1469 | | |
1470 | 0 | sr = bfd_section_from_elf_index (abfd, isym->st_shndx); |
1471 | 0 | if (sr == NULL) |
1472 | 0 | sr = sec; |
1473 | |
|
1474 | 0 | vpp = &elf_section_data (sr)->local_dynrel; |
1475 | 0 | hdh_head = (struct elf_dyn_relocs **) vpp; |
1476 | 0 | } |
1477 | | |
1478 | 0 | hdh_p = *hdh_head; |
1479 | 0 | if (hdh_p == NULL || hdh_p->sec != sec) |
1480 | 0 | { |
1481 | 0 | hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); |
1482 | 0 | if (hdh_p == NULL) |
1483 | 0 | return false; |
1484 | 0 | hdh_p->next = *hdh_head; |
1485 | 0 | *hdh_head = hdh_p; |
1486 | 0 | hdh_p->sec = sec; |
1487 | 0 | hdh_p->count = 0; |
1488 | | #if RELATIVE_DYNRELOCS |
1489 | | hdh_p->pc_count = 0; |
1490 | | #endif |
1491 | 0 | } |
1492 | | |
1493 | 0 | hdh_p->count += 1; |
1494 | | #if RELATIVE_DYNRELOCS |
1495 | | if (!IS_ABSOLUTE_RELOC (rtype)) |
1496 | | hdh_p->pc_count += 1; |
1497 | | #endif |
1498 | 0 | } |
1499 | 0 | } |
1500 | 0 | } |
1501 | | |
1502 | 0 | return true; |
1503 | 0 | } |
1504 | | |
1505 | | /* Return the section that should be marked against garbage collection |
1506 | | for a given relocation. */ |
1507 | | |
1508 | | static asection * |
1509 | | elf32_hppa_gc_mark_hook (asection *sec, |
1510 | | struct bfd_link_info *info, |
1511 | | Elf_Internal_Rela *rela, |
1512 | | struct elf_link_hash_entry *hh, |
1513 | | Elf_Internal_Sym *sym) |
1514 | 0 | { |
1515 | 0 | if (hh != NULL) |
1516 | 0 | switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) |
1517 | 0 | { |
1518 | 0 | case R_PARISC_GNU_VTINHERIT: |
1519 | 0 | case R_PARISC_GNU_VTENTRY: |
1520 | 0 | return NULL; |
1521 | 0 | } |
1522 | | |
1523 | 0 | return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym); |
1524 | 0 | } |
1525 | | |
1526 | | /* Support for core dump NOTE sections. */ |
1527 | | |
1528 | | static bool |
1529 | | elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
1530 | 0 | { |
1531 | 0 | int offset; |
1532 | 0 | size_t size; |
1533 | |
|
1534 | 0 | switch (note->descsz) |
1535 | 0 | { |
1536 | 0 | default: |
1537 | 0 | return false; |
1538 | | |
1539 | 0 | case 396: /* Linux/hppa */ |
1540 | | /* pr_cursig */ |
1541 | 0 | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
1542 | | |
1543 | | /* pr_pid */ |
1544 | 0 | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
1545 | | |
1546 | | /* pr_reg */ |
1547 | 0 | offset = 72; |
1548 | 0 | size = 320; |
1549 | |
|
1550 | 0 | break; |
1551 | 0 | } |
1552 | | |
1553 | | /* Make a ".reg/999" section. */ |
1554 | 0 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
1555 | 0 | size, note->descpos + offset); |
1556 | 0 | } |
1557 | | |
1558 | | static bool |
1559 | | elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
1560 | 0 | { |
1561 | 0 | switch (note->descsz) |
1562 | 0 | { |
1563 | 0 | default: |
1564 | 0 | return false; |
1565 | | |
1566 | 0 | case 124: /* Linux/hppa elf_prpsinfo. */ |
1567 | 0 | elf_tdata (abfd)->core->program |
1568 | 0 | = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
1569 | 0 | elf_tdata (abfd)->core->command |
1570 | 0 | = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
1571 | 0 | } |
1572 | | |
1573 | | /* Note that for some reason, a spurious space is tacked |
1574 | | onto the end of the args in some (at least one anyway) |
1575 | | implementations, so strip it off if it exists. */ |
1576 | 0 | { |
1577 | 0 | char *command = elf_tdata (abfd)->core->command; |
1578 | 0 | int n = strlen (command); |
1579 | |
|
1580 | 0 | if (0 < n && command[n - 1] == ' ') |
1581 | 0 | command[n - 1] = '\0'; |
1582 | 0 | } |
1583 | |
|
1584 | 0 | return true; |
1585 | 0 | } |
1586 | | |
1587 | | /* Our own version of hide_symbol, so that we can keep plt entries for |
1588 | | plabels. */ |
1589 | | |
1590 | | static void |
1591 | | elf32_hppa_hide_symbol (struct bfd_link_info *info, |
1592 | | struct elf_link_hash_entry *eh, |
1593 | | bool force_local) |
1594 | 0 | { |
1595 | 0 | if (force_local) |
1596 | 0 | { |
1597 | 0 | eh->forced_local = 1; |
1598 | 0 | if (eh->dynindx != -1) |
1599 | 0 | { |
1600 | 0 | eh->dynindx = -1; |
1601 | 0 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
1602 | 0 | eh->dynstr_index); |
1603 | 0 | } |
1604 | | |
1605 | | /* PR 16082: Remove version information from hidden symbol. */ |
1606 | 0 | eh->verinfo.verdef = NULL; |
1607 | 0 | eh->verinfo.vertree = NULL; |
1608 | 0 | } |
1609 | | |
1610 | | /* STT_GNU_IFUNC symbol must go through PLT. */ |
1611 | 0 | if (! hppa_elf_hash_entry (eh)->plabel |
1612 | 0 | && eh->type != STT_GNU_IFUNC) |
1613 | 0 | { |
1614 | 0 | eh->needs_plt = 0; |
1615 | 0 | eh->plt = elf_hash_table (info)->init_plt_offset; |
1616 | 0 | } |
1617 | 0 | } |
1618 | | |
1619 | | /* Return true if we have dynamic relocs against H or any of its weak |
1620 | | aliases, that apply to read-only sections. Cannot be used after |
1621 | | size_dynamic_sections. */ |
1622 | | |
1623 | | static bool |
1624 | | alias_readonly_dynrelocs (struct elf_link_hash_entry *eh) |
1625 | 0 | { |
1626 | 0 | struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
1627 | 0 | do |
1628 | 0 | { |
1629 | 0 | if (_bfd_elf_readonly_dynrelocs (&hh->eh)) |
1630 | 0 | return true; |
1631 | 0 | hh = hppa_elf_hash_entry (hh->eh.u.alias); |
1632 | 0 | } while (hh != NULL && &hh->eh != eh); |
1633 | | |
1634 | 0 | return false; |
1635 | 0 | } |
1636 | | |
1637 | | /* Adjust a symbol defined by a dynamic object and referenced by a |
1638 | | regular object. The current definition is in some section of the |
1639 | | dynamic object, but we're not including those sections. We have to |
1640 | | change the definition to something the rest of the link can |
1641 | | understand. */ |
1642 | | |
1643 | | static bool |
1644 | | elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, |
1645 | | struct elf_link_hash_entry *eh) |
1646 | 0 | { |
1647 | 0 | struct elf32_hppa_link_hash_table *htab; |
1648 | 0 | asection *sec, *srel; |
1649 | | |
1650 | | /* If this is a function, put it in the procedure linkage table. We |
1651 | | will fill in the contents of the procedure linkage table later. */ |
1652 | 0 | if (eh->type == STT_FUNC |
1653 | 0 | || eh->needs_plt) |
1654 | 0 | { |
1655 | 0 | bool local = (SYMBOL_CALLS_LOCAL (info, eh) |
1656 | 0 | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)); |
1657 | | /* Discard dyn_relocs when non-pic if we've decided that a |
1658 | | function symbol is local. */ |
1659 | 0 | if (!bfd_link_pic (info) && local) |
1660 | 0 | eh->dyn_relocs = NULL; |
1661 | | |
1662 | | /* If the symbol is used by a plabel, we must allocate a PLT slot. |
1663 | | The refcounts are not reliable when it has been hidden since |
1664 | | hide_symbol can be called before the plabel flag is set. */ |
1665 | 0 | if (hppa_elf_hash_entry (eh)->plabel) |
1666 | 0 | eh->plt.refcount = 1; |
1667 | | |
1668 | | /* Note that unlike some other backends, the refcount is not |
1669 | | incremented for a non-call (and non-plabel) function reference. */ |
1670 | 0 | else if (eh->plt.refcount <= 0 |
1671 | 0 | || local) |
1672 | 0 | { |
1673 | | /* The .plt entry is not needed when: |
1674 | | a) Garbage collection has removed all references to the |
1675 | | symbol, or |
1676 | | b) We know for certain the symbol is defined in this |
1677 | | object, and it's not a weak definition, nor is the symbol |
1678 | | used by a plabel relocation. Either this object is the |
1679 | | application or we are doing a shared symbolic link. */ |
1680 | 0 | eh->plt.offset = (bfd_vma) -1; |
1681 | 0 | eh->needs_plt = 0; |
1682 | 0 | } |
1683 | | |
1684 | | /* Unlike other targets, elf32-hppa.c does not define a function |
1685 | | symbol in a non-pic executable on PLT stub code, so we don't |
1686 | | have a local definition in that case. ie. dyn_relocs can't |
1687 | | be discarded. */ |
1688 | | |
1689 | | /* Function symbols can't have copy relocs. */ |
1690 | 0 | return true; |
1691 | 0 | } |
1692 | 0 | else |
1693 | 0 | eh->plt.offset = (bfd_vma) -1; |
1694 | | |
1695 | 0 | htab = hppa_link_hash_table (info); |
1696 | 0 | if (htab == NULL) |
1697 | 0 | return false; |
1698 | | |
1699 | | /* If this is a weak symbol, and there is a real definition, the |
1700 | | processor independent code will have arranged for us to see the |
1701 | | real definition first, and we can just use the same value. */ |
1702 | 0 | if (eh->is_weakalias) |
1703 | 0 | { |
1704 | 0 | struct elf_link_hash_entry *def = weakdef (eh); |
1705 | 0 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
1706 | 0 | eh->root.u.def.section = def->root.u.def.section; |
1707 | 0 | eh->root.u.def.value = def->root.u.def.value; |
1708 | 0 | if (def->root.u.def.section == htab->etab.sdynbss |
1709 | 0 | || def->root.u.def.section == htab->etab.sdynrelro) |
1710 | 0 | eh->dyn_relocs = NULL; |
1711 | 0 | return true; |
1712 | 0 | } |
1713 | | |
1714 | | /* This is a reference to a symbol defined by a dynamic object which |
1715 | | is not a function. */ |
1716 | | |
1717 | | /* If we are creating a shared library, we must presume that the |
1718 | | only references to the symbol are via the global offset table. |
1719 | | For such cases we need not do anything here; the relocations will |
1720 | | be handled correctly by relocate_section. */ |
1721 | 0 | if (bfd_link_pic (info)) |
1722 | 0 | return true; |
1723 | | |
1724 | | /* If there are no references to this symbol that do not use the |
1725 | | GOT, we don't need to generate a copy reloc. */ |
1726 | 0 | if (!eh->non_got_ref) |
1727 | 0 | return true; |
1728 | | |
1729 | | /* If -z nocopyreloc was given, we won't generate them either. */ |
1730 | 0 | if (info->nocopyreloc) |
1731 | 0 | return true; |
1732 | | |
1733 | | /* If we don't find any dynamic relocs in read-only sections, then |
1734 | | we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
1735 | 0 | if (ELIMINATE_COPY_RELOCS |
1736 | 0 | && !alias_readonly_dynrelocs (eh)) |
1737 | 0 | return true; |
1738 | | |
1739 | | /* We must allocate the symbol in our .dynbss section, which will |
1740 | | become part of the .bss section of the executable. There will be |
1741 | | an entry for this symbol in the .dynsym section. The dynamic |
1742 | | object will contain position independent code, so all references |
1743 | | from the dynamic object to this symbol will go through the global |
1744 | | offset table. The dynamic linker will use the .dynsym entry to |
1745 | | determine the address it must put in the global offset table, so |
1746 | | both the dynamic object and the regular object will refer to the |
1747 | | same memory location for the variable. */ |
1748 | 0 | if ((eh->root.u.def.section->flags & SEC_READONLY) != 0) |
1749 | 0 | { |
1750 | 0 | sec = htab->etab.sdynrelro; |
1751 | 0 | srel = htab->etab.sreldynrelro; |
1752 | 0 | } |
1753 | 0 | else |
1754 | 0 | { |
1755 | 0 | sec = htab->etab.sdynbss; |
1756 | 0 | srel = htab->etab.srelbss; |
1757 | 0 | } |
1758 | 0 | if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0) |
1759 | 0 | { |
1760 | | /* We must generate a COPY reloc to tell the dynamic linker to |
1761 | | copy the initial value out of the dynamic object and into the |
1762 | | runtime process image. */ |
1763 | 0 | srel->size += sizeof (Elf32_External_Rela); |
1764 | 0 | eh->needs_copy = 1; |
1765 | 0 | } |
1766 | | |
1767 | | /* We no longer want dyn_relocs. */ |
1768 | 0 | eh->dyn_relocs = NULL; |
1769 | 0 | return _bfd_elf_adjust_dynamic_copy (info, eh, sec); |
1770 | 0 | } |
1771 | | |
1772 | | /* If EH is undefined, make it dynamic if that makes sense. */ |
1773 | | |
1774 | | static bool |
1775 | | ensure_undef_dynamic (struct bfd_link_info *info, |
1776 | | struct elf_link_hash_entry *eh) |
1777 | 0 | { |
1778 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
1779 | |
|
1780 | 0 | if (htab->dynamic_sections_created |
1781 | 0 | && (eh->root.type == bfd_link_hash_undefweak |
1782 | 0 | || eh->root.type == bfd_link_hash_undefined) |
1783 | 0 | && eh->dynindx == -1 |
1784 | 0 | && !eh->forced_local |
1785 | 0 | && eh->type != STT_PARISC_MILLI |
1786 | 0 | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh) |
1787 | 0 | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) |
1788 | 0 | return bfd_elf_link_record_dynamic_symbol (info, eh); |
1789 | 0 | return true; |
1790 | 0 | } |
1791 | | |
1792 | | /* Allocate space in the .plt for entries that won't have relocations. |
1793 | | ie. plabel entries. */ |
1794 | | |
1795 | | static bool |
1796 | | allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) |
1797 | 0 | { |
1798 | 0 | struct bfd_link_info *info; |
1799 | 0 | struct elf32_hppa_link_hash_table *htab; |
1800 | 0 | struct elf32_hppa_link_hash_entry *hh; |
1801 | 0 | asection *sec; |
1802 | |
|
1803 | 0 | if (eh->root.type == bfd_link_hash_indirect) |
1804 | 0 | return true; |
1805 | | |
1806 | 0 | info = (struct bfd_link_info *) inf; |
1807 | 0 | hh = hppa_elf_hash_entry (eh); |
1808 | 0 | htab = hppa_link_hash_table (info); |
1809 | 0 | if (htab == NULL) |
1810 | 0 | return false; |
1811 | | |
1812 | 0 | if (htab->etab.dynamic_sections_created |
1813 | 0 | && eh->plt.refcount > 0) |
1814 | 0 | { |
1815 | 0 | if (!ensure_undef_dynamic (info, eh)) |
1816 | 0 | return false; |
1817 | | |
1818 | 0 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh)) |
1819 | 0 | { |
1820 | | /* Allocate these later. From this point on, h->plabel |
1821 | | means that the plt entry is only used by a plabel. |
1822 | | We'll be using a normal plt entry for this symbol, so |
1823 | | clear the plabel indicator. */ |
1824 | |
|
1825 | 0 | hh->plabel = 0; |
1826 | 0 | } |
1827 | 0 | else if (hh->plabel) |
1828 | 0 | { |
1829 | | /* Make an entry in the .plt section for plabel references |
1830 | | that won't have a .plt entry for other reasons. */ |
1831 | 0 | sec = htab->etab.splt; |
1832 | 0 | eh->plt.offset = sec->size; |
1833 | 0 | sec->size += PLT_ENTRY_SIZE; |
1834 | 0 | if (bfd_link_pic (info)) |
1835 | 0 | htab->etab.srelplt->size += sizeof (Elf32_External_Rela); |
1836 | 0 | } |
1837 | 0 | else |
1838 | 0 | { |
1839 | | /* No .plt entry needed. */ |
1840 | 0 | eh->plt.offset = (bfd_vma) -1; |
1841 | 0 | eh->needs_plt = 0; |
1842 | 0 | } |
1843 | 0 | } |
1844 | 0 | else |
1845 | 0 | { |
1846 | 0 | eh->plt.offset = (bfd_vma) -1; |
1847 | 0 | eh->needs_plt = 0; |
1848 | 0 | } |
1849 | | |
1850 | 0 | return true; |
1851 | 0 | } |
1852 | | |
1853 | | /* Calculate size of GOT entries for symbol given its TLS_TYPE. */ |
1854 | | |
1855 | | static inline unsigned int |
1856 | | got_entries_needed (int tls_type) |
1857 | 0 | { |
1858 | 0 | unsigned int need = 0; |
1859 | |
|
1860 | 0 | if ((tls_type & GOT_NORMAL) != 0) |
1861 | 0 | need += GOT_ENTRY_SIZE; |
1862 | 0 | if ((tls_type & GOT_TLS_GD) != 0) |
1863 | 0 | need += GOT_ENTRY_SIZE * 2; |
1864 | 0 | if ((tls_type & GOT_TLS_IE) != 0) |
1865 | 0 | need += GOT_ENTRY_SIZE; |
1866 | 0 | return need; |
1867 | 0 | } |
1868 | | |
1869 | | /* Calculate size of relocs needed for symbol given its TLS_TYPE and |
1870 | | NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be |
1871 | | calculated at link time. DTPREL_KNOWN says the same for a DTPREL |
1872 | | offset. */ |
1873 | | |
1874 | | static inline unsigned int |
1875 | | got_relocs_needed (int tls_type, unsigned int need, |
1876 | | bool dtprel_known, bool tprel_known) |
1877 | 0 | { |
1878 | | /* All the entries we allocated need relocs. |
1879 | | Except for GD and IE with local symbols. */ |
1880 | 0 | if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known) |
1881 | 0 | need -= GOT_ENTRY_SIZE; |
1882 | 0 | if ((tls_type & GOT_TLS_IE) != 0 && tprel_known) |
1883 | 0 | need -= GOT_ENTRY_SIZE; |
1884 | 0 | return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE; |
1885 | 0 | } |
1886 | | |
1887 | | /* Allocate space in .plt, .got and associated reloc sections for |
1888 | | global syms. */ |
1889 | | |
1890 | | static bool |
1891 | | allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) |
1892 | 0 | { |
1893 | 0 | struct bfd_link_info *info; |
1894 | 0 | struct elf32_hppa_link_hash_table *htab; |
1895 | 0 | asection *sec; |
1896 | 0 | struct elf32_hppa_link_hash_entry *hh; |
1897 | 0 | struct elf_dyn_relocs *hdh_p; |
1898 | |
|
1899 | 0 | if (eh->root.type == bfd_link_hash_indirect) |
1900 | 0 | return true; |
1901 | | |
1902 | 0 | info = inf; |
1903 | 0 | htab = hppa_link_hash_table (info); |
1904 | 0 | if (htab == NULL) |
1905 | 0 | return false; |
1906 | | |
1907 | 0 | hh = hppa_elf_hash_entry (eh); |
1908 | |
|
1909 | 0 | if (htab->etab.dynamic_sections_created |
1910 | 0 | && eh->plt.offset != (bfd_vma) -1 |
1911 | 0 | && !hh->plabel |
1912 | 0 | && eh->plt.refcount > 0) |
1913 | 0 | { |
1914 | | /* Make an entry in the .plt section. */ |
1915 | 0 | sec = htab->etab.splt; |
1916 | 0 | eh->plt.offset = sec->size; |
1917 | 0 | sec->size += PLT_ENTRY_SIZE; |
1918 | | |
1919 | | /* We also need to make an entry in the .rela.plt section. */ |
1920 | 0 | htab->etab.srelplt->size += sizeof (Elf32_External_Rela); |
1921 | 0 | htab->need_plt_stub = 1; |
1922 | 0 | } |
1923 | |
|
1924 | 0 | if (eh->got.refcount > 0) |
1925 | 0 | { |
1926 | 0 | unsigned int need; |
1927 | |
|
1928 | 0 | if (!ensure_undef_dynamic (info, eh)) |
1929 | 0 | return false; |
1930 | | |
1931 | 0 | sec = htab->etab.sgot; |
1932 | 0 | eh->got.offset = sec->size; |
1933 | 0 | need = got_entries_needed (hh->tls_type); |
1934 | 0 | sec->size += need; |
1935 | 0 | if (htab->etab.dynamic_sections_created |
1936 | 0 | && (bfd_link_dll (info) |
1937 | 0 | || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0) |
1938 | 0 | || (eh->dynindx != -1 |
1939 | 0 | && !SYMBOL_REFERENCES_LOCAL (info, eh))) |
1940 | 0 | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) |
1941 | 0 | { |
1942 | 0 | bool local = SYMBOL_REFERENCES_LOCAL (info, eh); |
1943 | 0 | htab->etab.srelgot->size |
1944 | 0 | += got_relocs_needed (hh->tls_type, need, local, |
1945 | 0 | local && bfd_link_executable (info)); |
1946 | 0 | } |
1947 | 0 | } |
1948 | 0 | else |
1949 | 0 | eh->got.offset = (bfd_vma) -1; |
1950 | | |
1951 | | /* If no dynamic sections we can't have dynamic relocs. */ |
1952 | 0 | if (!htab->etab.dynamic_sections_created) |
1953 | 0 | eh->dyn_relocs = NULL; |
1954 | | |
1955 | | /* Discard relocs on undefined syms with non-default visibility. */ |
1956 | 0 | else if ((eh->root.type == bfd_link_hash_undefined |
1957 | 0 | && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) |
1958 | 0 | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) |
1959 | 0 | eh->dyn_relocs = NULL; |
1960 | |
|
1961 | 0 | if (eh->dyn_relocs == NULL) |
1962 | 0 | return true; |
1963 | | |
1964 | | /* If this is a -Bsymbolic shared link, then we need to discard all |
1965 | | space allocated for dynamic pc-relative relocs against symbols |
1966 | | defined in a regular object. For the normal shared case, discard |
1967 | | space for relocs that have become local due to symbol visibility |
1968 | | changes. */ |
1969 | 0 | if (bfd_link_pic (info)) |
1970 | 0 | { |
1971 | | #if RELATIVE_DYNRELOCS |
1972 | | if (SYMBOL_CALLS_LOCAL (info, eh)) |
1973 | | { |
1974 | | struct elf_dyn_relocs **hdh_pp; |
1975 | | |
1976 | | for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) |
1977 | | { |
1978 | | hdh_p->count -= hdh_p->pc_count; |
1979 | | hdh_p->pc_count = 0; |
1980 | | if (hdh_p->count == 0) |
1981 | | *hdh_pp = hdh_p->next; |
1982 | | else |
1983 | | hdh_pp = &hdh_p->next; |
1984 | | } |
1985 | | } |
1986 | | #endif |
1987 | |
|
1988 | 0 | if (eh->dyn_relocs != NULL) |
1989 | 0 | { |
1990 | 0 | if (!ensure_undef_dynamic (info, eh)) |
1991 | 0 | return false; |
1992 | 0 | } |
1993 | 0 | } |
1994 | 0 | else if (ELIMINATE_COPY_RELOCS) |
1995 | 0 | { |
1996 | | /* For the non-shared case, discard space for relocs against |
1997 | | symbols which turn out to need copy relocs or are not |
1998 | | dynamic. */ |
1999 | |
|
2000 | 0 | if (eh->dynamic_adjusted |
2001 | 0 | && !eh->def_regular |
2002 | 0 | && !ELF_COMMON_DEF_P (eh)) |
2003 | 0 | { |
2004 | 0 | if (!ensure_undef_dynamic (info, eh)) |
2005 | 0 | return false; |
2006 | | |
2007 | 0 | if (eh->dynindx == -1) |
2008 | 0 | eh->dyn_relocs = NULL; |
2009 | 0 | } |
2010 | 0 | else |
2011 | 0 | eh->dyn_relocs = NULL; |
2012 | 0 | } |
2013 | | |
2014 | | /* Finally, allocate space. */ |
2015 | 0 | for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next) |
2016 | 0 | { |
2017 | 0 | asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; |
2018 | 0 | sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); |
2019 | 0 | } |
2020 | |
|
2021 | 0 | return true; |
2022 | 0 | } |
2023 | | |
2024 | | /* This function is called via elf_link_hash_traverse to force |
2025 | | millicode symbols local so they do not end up as globals in the |
2026 | | dynamic symbol table. We ought to be able to do this in |
2027 | | adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called |
2028 | | for all dynamic symbols. Arguably, this is a bug in |
2029 | | elf_adjust_dynamic_symbol. */ |
2030 | | |
2031 | | static bool |
2032 | | clobber_millicode_symbols (struct elf_link_hash_entry *eh, |
2033 | | void *info) |
2034 | 0 | { |
2035 | 0 | if (eh->type == STT_PARISC_MILLI |
2036 | 0 | && !eh->forced_local) |
2037 | 0 | elf32_hppa_hide_symbol ((struct bfd_link_info *) info, eh, true); |
2038 | 0 | return true; |
2039 | 0 | } |
2040 | | |
2041 | | /* Set the sizes of the dynamic sections. */ |
2042 | | |
2043 | | static bool |
2044 | | elf32_hppa_late_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
2045 | | struct bfd_link_info *info) |
2046 | 0 | { |
2047 | 0 | struct elf32_hppa_link_hash_table *htab; |
2048 | 0 | bfd *dynobj; |
2049 | 0 | bfd *ibfd; |
2050 | 0 | asection *sec; |
2051 | 0 | bool relocs; |
2052 | |
|
2053 | 0 | htab = hppa_link_hash_table (info); |
2054 | 0 | if (htab == NULL) |
2055 | 0 | return false; |
2056 | | |
2057 | 0 | dynobj = htab->etab.dynobj; |
2058 | 0 | if (dynobj == NULL) |
2059 | 0 | return true; |
2060 | | |
2061 | 0 | if (htab->etab.dynamic_sections_created) |
2062 | 0 | { |
2063 | | /* Set the contents of the .interp section to the interpreter. */ |
2064 | 0 | if (bfd_link_executable (info) && !info->nointerp) |
2065 | 0 | { |
2066 | 0 | sec = bfd_get_linker_section (dynobj, ".interp"); |
2067 | 0 | if (sec == NULL) |
2068 | 0 | abort (); |
2069 | 0 | sec->size = sizeof ELF_DYNAMIC_INTERPRETER; |
2070 | 0 | sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
2071 | 0 | sec->alloced = 1; |
2072 | 0 | } |
2073 | | |
2074 | | /* Force millicode symbols local. */ |
2075 | 0 | elf_link_hash_traverse (&htab->etab, |
2076 | 0 | clobber_millicode_symbols, |
2077 | 0 | info); |
2078 | 0 | } |
2079 | | |
2080 | | /* Set up .got and .plt offsets for local syms, and space for local |
2081 | | dynamic relocs. */ |
2082 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
2083 | 0 | { |
2084 | 0 | bfd_signed_vma *local_got; |
2085 | 0 | bfd_signed_vma *end_local_got; |
2086 | 0 | bfd_signed_vma *local_plt; |
2087 | 0 | bfd_signed_vma *end_local_plt; |
2088 | 0 | bfd_size_type locsymcount; |
2089 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2090 | 0 | asection *srel; |
2091 | 0 | char *local_tls_type; |
2092 | |
|
2093 | 0 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
2094 | 0 | continue; |
2095 | | |
2096 | 0 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
2097 | 0 | { |
2098 | 0 | struct elf_dyn_relocs *hdh_p; |
2099 | |
|
2100 | 0 | for (hdh_p = ((struct elf_dyn_relocs *) |
2101 | 0 | elf_section_data (sec)->local_dynrel); |
2102 | 0 | hdh_p != NULL; |
2103 | 0 | hdh_p = hdh_p->next) |
2104 | 0 | { |
2105 | 0 | if (!bfd_is_abs_section (hdh_p->sec) |
2106 | 0 | && bfd_is_abs_section (hdh_p->sec->output_section)) |
2107 | 0 | { |
2108 | | /* Input section has been discarded, either because |
2109 | | it is a copy of a linkonce section or due to |
2110 | | linker script /DISCARD/, so we'll be discarding |
2111 | | the relocs too. */ |
2112 | 0 | } |
2113 | 0 | else if (hdh_p->count != 0) |
2114 | 0 | { |
2115 | 0 | srel = elf_section_data (hdh_p->sec)->sreloc; |
2116 | 0 | srel->size += hdh_p->count * sizeof (Elf32_External_Rela); |
2117 | 0 | if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) |
2118 | 0 | info->flags |= DF_TEXTREL; |
2119 | 0 | } |
2120 | 0 | } |
2121 | 0 | } |
2122 | |
|
2123 | 0 | local_got = elf_local_got_refcounts (ibfd); |
2124 | 0 | if (!local_got) |
2125 | 0 | continue; |
2126 | | |
2127 | 0 | symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
2128 | 0 | locsymcount = symtab_hdr->sh_info; |
2129 | 0 | end_local_got = local_got + locsymcount; |
2130 | 0 | local_tls_type = hppa_elf_local_got_tls_type (ibfd); |
2131 | 0 | sec = htab->etab.sgot; |
2132 | 0 | srel = htab->etab.srelgot; |
2133 | 0 | for (; local_got < end_local_got; ++local_got) |
2134 | 0 | { |
2135 | 0 | if (*local_got > 0) |
2136 | 0 | { |
2137 | 0 | unsigned int need; |
2138 | |
|
2139 | 0 | *local_got = sec->size; |
2140 | 0 | need = got_entries_needed (*local_tls_type); |
2141 | 0 | sec->size += need; |
2142 | 0 | if (bfd_link_dll (info) |
2143 | 0 | || (bfd_link_pic (info) |
2144 | 0 | && (*local_tls_type & GOT_NORMAL) != 0)) |
2145 | 0 | htab->etab.srelgot->size |
2146 | 0 | += got_relocs_needed (*local_tls_type, need, true, |
2147 | 0 | bfd_link_executable (info)); |
2148 | 0 | } |
2149 | 0 | else |
2150 | 0 | *local_got = (bfd_vma) -1; |
2151 | |
|
2152 | 0 | ++local_tls_type; |
2153 | 0 | } |
2154 | |
|
2155 | 0 | local_plt = end_local_got; |
2156 | 0 | end_local_plt = local_plt + locsymcount; |
2157 | 0 | if (! htab->etab.dynamic_sections_created) |
2158 | 0 | { |
2159 | | /* Won't be used, but be safe. */ |
2160 | 0 | for (; local_plt < end_local_plt; ++local_plt) |
2161 | 0 | *local_plt = (bfd_vma) -1; |
2162 | 0 | } |
2163 | 0 | else |
2164 | 0 | { |
2165 | 0 | sec = htab->etab.splt; |
2166 | 0 | srel = htab->etab.srelplt; |
2167 | 0 | for (; local_plt < end_local_plt; ++local_plt) |
2168 | 0 | { |
2169 | 0 | if (*local_plt > 0) |
2170 | 0 | { |
2171 | 0 | *local_plt = sec->size; |
2172 | 0 | sec->size += PLT_ENTRY_SIZE; |
2173 | 0 | if (bfd_link_pic (info)) |
2174 | 0 | srel->size += sizeof (Elf32_External_Rela); |
2175 | 0 | } |
2176 | 0 | else |
2177 | 0 | *local_plt = (bfd_vma) -1; |
2178 | 0 | } |
2179 | 0 | } |
2180 | 0 | } |
2181 | |
|
2182 | 0 | if (htab->tls_ldm_got.refcount > 0) |
2183 | 0 | { |
2184 | | /* Allocate 2 got entries and 1 dynamic reloc for |
2185 | | R_PARISC_TLS_DTPMOD32 relocs. */ |
2186 | 0 | htab->tls_ldm_got.offset = htab->etab.sgot->size; |
2187 | 0 | htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2); |
2188 | 0 | htab->etab.srelgot->size += sizeof (Elf32_External_Rela); |
2189 | 0 | } |
2190 | 0 | else |
2191 | 0 | htab->tls_ldm_got.offset = -1; |
2192 | | |
2193 | | /* Do all the .plt entries without relocs first. The dynamic linker |
2194 | | uses the last .plt reloc to find the end of the .plt (and hence |
2195 | | the start of the .got) for lazy linking. */ |
2196 | 0 | elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); |
2197 | | |
2198 | | /* Allocate global sym .plt and .got entries, and space for global |
2199 | | sym dynamic relocs. */ |
2200 | 0 | elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); |
2201 | | |
2202 | | /* The check_relocs and adjust_dynamic_symbol entry points have |
2203 | | determined the sizes of the various dynamic sections. Allocate |
2204 | | memory for them. */ |
2205 | 0 | relocs = false; |
2206 | 0 | for (sec = dynobj->sections; sec != NULL; sec = sec->next) |
2207 | 0 | { |
2208 | 0 | if ((sec->flags & SEC_LINKER_CREATED) == 0) |
2209 | 0 | continue; |
2210 | | |
2211 | 0 | if (sec == htab->etab.splt) |
2212 | 0 | { |
2213 | 0 | if (htab->need_plt_stub) |
2214 | 0 | { |
2215 | | /* Make space for the plt stub at the end of the .plt |
2216 | | section. We want this stub right at the end, up |
2217 | | against the .got section. */ |
2218 | 0 | int gotalign = bfd_section_alignment (htab->etab.sgot); |
2219 | 0 | int align = gotalign > 3 ? gotalign : 3; |
2220 | 0 | bfd_size_type mask; |
2221 | |
|
2222 | 0 | (void) bfd_link_align_section (sec, align); |
2223 | 0 | mask = ((bfd_size_type) 1 << gotalign) - 1; |
2224 | 0 | sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; |
2225 | 0 | } |
2226 | 0 | } |
2227 | 0 | else if (sec == htab->etab.sgot |
2228 | 0 | || sec == htab->etab.sdynbss |
2229 | 0 | || sec == htab->etab.sdynrelro) |
2230 | 0 | ; |
2231 | 0 | else if (startswith (bfd_section_name (sec), ".rela")) |
2232 | 0 | { |
2233 | 0 | if (sec->size != 0) |
2234 | 0 | { |
2235 | | /* Remember whether there are any reloc sections other |
2236 | | than .rela.plt. */ |
2237 | 0 | if (sec != htab->etab.srelplt) |
2238 | 0 | relocs = true; |
2239 | | |
2240 | | /* We use the reloc_count field as a counter if we need |
2241 | | to copy relocs into the output file. */ |
2242 | 0 | sec->reloc_count = 0; |
2243 | 0 | } |
2244 | 0 | } |
2245 | 0 | else |
2246 | 0 | { |
2247 | | /* It's not one of our sections, so don't allocate space. */ |
2248 | 0 | continue; |
2249 | 0 | } |
2250 | | |
2251 | 0 | if (sec->size == 0) |
2252 | 0 | { |
2253 | | /* If we don't need this section, strip it from the |
2254 | | output file. This is mostly to handle .rela.bss and |
2255 | | .rela.plt. We must create both sections in |
2256 | | create_dynamic_sections, because they must be created |
2257 | | before the linker maps input sections to output |
2258 | | sections. The linker does that before |
2259 | | adjust_dynamic_symbol is called, and it is that |
2260 | | function which decides whether anything needs to go |
2261 | | into these sections. */ |
2262 | 0 | sec->flags |= SEC_EXCLUDE; |
2263 | 0 | continue; |
2264 | 0 | } |
2265 | | |
2266 | 0 | if ((sec->flags & SEC_HAS_CONTENTS) == 0) |
2267 | 0 | continue; |
2268 | | |
2269 | | /* Allocate memory for the section contents. Zero it, because |
2270 | | we may not fill in all the reloc sections. */ |
2271 | 0 | sec->contents = bfd_zalloc (dynobj, sec->size); |
2272 | 0 | if (sec->contents == NULL) |
2273 | 0 | return false; |
2274 | 0 | sec->alloced = 1; |
2275 | 0 | } |
2276 | | |
2277 | 0 | return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); |
2278 | 0 | } |
2279 | | |
2280 | | /* External entry points for sizing and building linker stubs. */ |
2281 | | |
2282 | | /* Set up various things so that we can make a list of input sections |
2283 | | for each output section included in the link. Returns -1 on error, |
2284 | | 0 when no stubs will be needed, and 1 on success. */ |
2285 | | |
2286 | | int |
2287 | | elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
2288 | 0 | { |
2289 | 0 | bfd *input_bfd; |
2290 | 0 | unsigned int bfd_count; |
2291 | 0 | unsigned int top_id, top_index; |
2292 | 0 | asection *section; |
2293 | 0 | asection **input_list, **list; |
2294 | 0 | size_t amt; |
2295 | 0 | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
2296 | |
|
2297 | 0 | if (htab == NULL) |
2298 | 0 | return -1; |
2299 | | |
2300 | | /* Count the number of input BFDs and find the top input section id. */ |
2301 | 0 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; |
2302 | 0 | input_bfd != NULL; |
2303 | 0 | input_bfd = input_bfd->link.next) |
2304 | 0 | { |
2305 | 0 | bfd_count += 1; |
2306 | 0 | for (section = input_bfd->sections; |
2307 | 0 | section != NULL; |
2308 | 0 | section = section->next) |
2309 | 0 | { |
2310 | 0 | if (top_id < section->id) |
2311 | 0 | top_id = section->id; |
2312 | 0 | } |
2313 | 0 | } |
2314 | 0 | htab->bfd_count = bfd_count; |
2315 | |
|
2316 | 0 | amt = sizeof (struct map_stub) * (top_id + 1); |
2317 | 0 | htab->stub_group = bfd_zmalloc (amt); |
2318 | 0 | if (htab->stub_group == NULL) |
2319 | 0 | return -1; |
2320 | | |
2321 | | /* We can't use output_bfd->section_count here to find the top output |
2322 | | section index as some sections may have been removed, and |
2323 | | strip_excluded_output_sections doesn't renumber the indices. */ |
2324 | 0 | for (section = output_bfd->sections, top_index = 0; |
2325 | 0 | section != NULL; |
2326 | 0 | section = section->next) |
2327 | 0 | { |
2328 | 0 | if (top_index < section->index) |
2329 | 0 | top_index = section->index; |
2330 | 0 | } |
2331 | |
|
2332 | 0 | htab->top_index = top_index; |
2333 | 0 | amt = sizeof (asection *) * (top_index + 1); |
2334 | 0 | input_list = bfd_malloc (amt); |
2335 | 0 | htab->input_list = input_list; |
2336 | 0 | if (input_list == NULL) |
2337 | 0 | return -1; |
2338 | | |
2339 | | /* For sections we aren't interested in, mark their entries with a |
2340 | | value we can check later. */ |
2341 | 0 | list = input_list + top_index; |
2342 | 0 | do |
2343 | 0 | *list = bfd_abs_section_ptr; |
2344 | 0 | while (list-- != input_list); |
2345 | |
|
2346 | 0 | for (section = output_bfd->sections; |
2347 | 0 | section != NULL; |
2348 | 0 | section = section->next) |
2349 | 0 | { |
2350 | 0 | if ((section->flags & SEC_CODE) != 0) |
2351 | 0 | input_list[section->index] = NULL; |
2352 | 0 | } |
2353 | |
|
2354 | 0 | return 1; |
2355 | 0 | } |
2356 | | |
2357 | | /* The linker repeatedly calls this function for each input section, |
2358 | | in the order that input sections are linked into output sections. |
2359 | | Build lists of input sections to determine groupings between which |
2360 | | we may insert linker stubs. */ |
2361 | | |
2362 | | void |
2363 | | elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) |
2364 | 0 | { |
2365 | 0 | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
2366 | |
|
2367 | 0 | if (htab == NULL) |
2368 | 0 | return; |
2369 | | |
2370 | 0 | if (isec->output_section->index <= htab->top_index) |
2371 | 0 | { |
2372 | 0 | asection **list = htab->input_list + isec->output_section->index; |
2373 | 0 | if (*list != bfd_abs_section_ptr) |
2374 | 0 | { |
2375 | | /* Steal the link_sec pointer for our list. */ |
2376 | 0 | #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) |
2377 | | /* This happens to make the list in reverse order, |
2378 | | which is what we want. */ |
2379 | 0 | PREV_SEC (isec) = *list; |
2380 | 0 | *list = isec; |
2381 | 0 | } |
2382 | 0 | } |
2383 | 0 | } |
2384 | | |
2385 | | /* See whether we can group stub sections together. Grouping stub |
2386 | | sections may result in fewer stubs. More importantly, we need to |
2387 | | put all .init* and .fini* stubs at the beginning of the .init or |
2388 | | .fini output sections respectively, because glibc splits the |
2389 | | _init and _fini functions into multiple parts. Putting a stub in |
2390 | | the middle of a function is not a good idea. */ |
2391 | | |
2392 | | static void |
2393 | | group_sections (struct elf32_hppa_link_hash_table *htab, |
2394 | | bfd_size_type stub_group_size, |
2395 | | bool stubs_always_before_branch) |
2396 | 0 | { |
2397 | 0 | asection **list = htab->input_list + htab->top_index; |
2398 | 0 | do |
2399 | 0 | { |
2400 | 0 | asection *tail = *list; |
2401 | 0 | if (tail == bfd_abs_section_ptr) |
2402 | 0 | continue; |
2403 | 0 | while (tail != NULL) |
2404 | 0 | { |
2405 | 0 | asection *curr; |
2406 | 0 | asection *prev; |
2407 | 0 | bfd_size_type total; |
2408 | 0 | bool big_sec; |
2409 | |
|
2410 | 0 | curr = tail; |
2411 | 0 | total = tail->size; |
2412 | 0 | big_sec = total >= stub_group_size; |
2413 | |
|
2414 | 0 | while ((prev = PREV_SEC (curr)) != NULL |
2415 | 0 | && ((total += curr->output_offset - prev->output_offset) |
2416 | 0 | < stub_group_size)) |
2417 | 0 | curr = prev; |
2418 | | |
2419 | | /* OK, the size from the start of CURR to the end is less |
2420 | | than 240000 bytes and thus can be handled by one stub |
2421 | | section. (or the tail section is itself larger than |
2422 | | 240000 bytes, in which case we may be toast.) |
2423 | | We should really be keeping track of the total size of |
2424 | | stubs added here, as stubs contribute to the final output |
2425 | | section size. That's a little tricky, and this way will |
2426 | | only break if stubs added total more than 22144 bytes, or |
2427 | | 2768 long branch stubs. It seems unlikely for more than |
2428 | | 2768 different functions to be called, especially from |
2429 | | code only 240000 bytes long. This limit used to be |
2430 | | 250000, but c++ code tends to generate lots of little |
2431 | | functions, and sometimes violated the assumption. */ |
2432 | 0 | do |
2433 | 0 | { |
2434 | 0 | prev = PREV_SEC (tail); |
2435 | | /* Set up this stub group. */ |
2436 | 0 | htab->stub_group[tail->id].link_sec = curr; |
2437 | 0 | } |
2438 | 0 | while (tail != curr && (tail = prev) != NULL); |
2439 | | |
2440 | | /* But wait, there's more! Input sections up to 240000 |
2441 | | bytes before the stub section can be handled by it too. |
2442 | | Don't do this if we have a really large section after the |
2443 | | stubs, as adding more stubs increases the chance that |
2444 | | branches may not reach into the stub section. */ |
2445 | 0 | if (!stubs_always_before_branch && !big_sec) |
2446 | 0 | { |
2447 | 0 | total = 0; |
2448 | 0 | while (prev != NULL |
2449 | 0 | && ((total += tail->output_offset - prev->output_offset) |
2450 | 0 | < stub_group_size)) |
2451 | 0 | { |
2452 | 0 | tail = prev; |
2453 | 0 | prev = PREV_SEC (tail); |
2454 | 0 | htab->stub_group[tail->id].link_sec = curr; |
2455 | 0 | } |
2456 | 0 | } |
2457 | 0 | tail = prev; |
2458 | 0 | } |
2459 | 0 | } |
2460 | 0 | while (list-- != htab->input_list); |
2461 | 0 | free (htab->input_list); |
2462 | 0 | #undef PREV_SEC |
2463 | 0 | } |
2464 | | |
2465 | | /* Read in all local syms for all input bfds, and create hash entries |
2466 | | for export stubs if we are building a multi-subspace shared lib. |
2467 | | Returns -1 on error, 1 if export stubs created, 0 otherwise. */ |
2468 | | |
2469 | | static int |
2470 | | get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) |
2471 | 0 | { |
2472 | 0 | unsigned int bfd_indx; |
2473 | 0 | Elf_Internal_Sym *local_syms, **all_local_syms; |
2474 | 0 | int stub_changed = 0; |
2475 | 0 | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
2476 | |
|
2477 | 0 | if (htab == NULL) |
2478 | 0 | return -1; |
2479 | | |
2480 | | /* We want to read in symbol extension records only once. To do this |
2481 | | we need to read in the local symbols in parallel and save them for |
2482 | | later use; so hold pointers to the local symbols in an array. */ |
2483 | 0 | size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; |
2484 | 0 | all_local_syms = bfd_zmalloc (amt); |
2485 | 0 | htab->all_local_syms = all_local_syms; |
2486 | 0 | if (all_local_syms == NULL) |
2487 | 0 | return -1; |
2488 | | |
2489 | | /* Walk over all the input BFDs, swapping in local symbols. |
2490 | | If we are creating a shared library, create hash entries for the |
2491 | | export stubs. */ |
2492 | 0 | for (bfd_indx = 0; |
2493 | 0 | input_bfd != NULL; |
2494 | 0 | input_bfd = input_bfd->link.next, bfd_indx++) |
2495 | 0 | { |
2496 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2497 | | |
2498 | | /* We'll need the symbol table in a second. */ |
2499 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2500 | 0 | if (symtab_hdr->sh_info == 0) |
2501 | 0 | continue; |
2502 | | |
2503 | | /* We need an array of the local symbols attached to the input bfd. */ |
2504 | 0 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
2505 | 0 | if (local_syms == NULL) |
2506 | 0 | { |
2507 | 0 | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
2508 | 0 | symtab_hdr->sh_info, 0, |
2509 | 0 | NULL, NULL, NULL); |
2510 | | /* Cache them for elf_link_input_bfd. */ |
2511 | 0 | symtab_hdr->contents = (unsigned char *) local_syms; |
2512 | 0 | } |
2513 | 0 | if (local_syms == NULL) |
2514 | 0 | return -1; |
2515 | | |
2516 | 0 | all_local_syms[bfd_indx] = local_syms; |
2517 | |
|
2518 | 0 | if (bfd_link_pic (info) && htab->multi_subspace) |
2519 | 0 | { |
2520 | 0 | struct elf_link_hash_entry **eh_syms; |
2521 | 0 | struct elf_link_hash_entry **eh_symend; |
2522 | 0 | unsigned int symcount; |
2523 | |
|
2524 | 0 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
2525 | 0 | - symtab_hdr->sh_info); |
2526 | 0 | eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); |
2527 | 0 | eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); |
2528 | | |
2529 | | /* Look through the global syms for functions; We need to |
2530 | | build export stubs for all globally visible functions. */ |
2531 | 0 | for (; eh_syms < eh_symend; eh_syms++) |
2532 | 0 | { |
2533 | 0 | struct elf32_hppa_link_hash_entry *hh; |
2534 | |
|
2535 | 0 | hh = hppa_elf_hash_entry (*eh_syms); |
2536 | |
|
2537 | 0 | while (hh->eh.root.type == bfd_link_hash_indirect |
2538 | 0 | || hh->eh.root.type == bfd_link_hash_warning) |
2539 | 0 | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); |
2540 | | |
2541 | | /* At this point in the link, undefined syms have been |
2542 | | resolved, so we need to check that the symbol was |
2543 | | defined in this BFD. */ |
2544 | 0 | if ((hh->eh.root.type == bfd_link_hash_defined |
2545 | 0 | || hh->eh.root.type == bfd_link_hash_defweak) |
2546 | 0 | && hh->eh.type == STT_FUNC |
2547 | 0 | && hh->eh.root.u.def.section->output_section != NULL |
2548 | 0 | && (hh->eh.root.u.def.section->output_section->owner |
2549 | 0 | == output_bfd) |
2550 | 0 | && hh->eh.root.u.def.section->owner == input_bfd |
2551 | 0 | && hh->eh.def_regular |
2552 | 0 | && !hh->eh.forced_local |
2553 | 0 | && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) |
2554 | 0 | { |
2555 | 0 | asection *sec; |
2556 | 0 | const char *stub_name; |
2557 | 0 | struct elf32_hppa_stub_hash_entry *hsh; |
2558 | |
|
2559 | 0 | sec = hh->eh.root.u.def.section; |
2560 | 0 | stub_name = hh_name (hh); |
2561 | 0 | hsh = hppa_stub_hash_lookup (&htab->bstab, |
2562 | 0 | stub_name, |
2563 | 0 | false, false); |
2564 | 0 | if (hsh == NULL) |
2565 | 0 | { |
2566 | 0 | hsh = hppa_add_stub (stub_name, sec, htab); |
2567 | 0 | if (!hsh) |
2568 | 0 | return -1; |
2569 | | |
2570 | 0 | hsh->target_value = hh->eh.root.u.def.value; |
2571 | 0 | hsh->target_section = hh->eh.root.u.def.section; |
2572 | 0 | hsh->stub_type = hppa_stub_export; |
2573 | 0 | hsh->hh = hh; |
2574 | 0 | stub_changed = 1; |
2575 | 0 | } |
2576 | 0 | else |
2577 | 0 | { |
2578 | | /* xgettext:c-format */ |
2579 | 0 | _bfd_error_handler (_("%pB: duplicate export stub %s"), |
2580 | 0 | input_bfd, stub_name); |
2581 | 0 | } |
2582 | 0 | } |
2583 | 0 | } |
2584 | 0 | } |
2585 | 0 | } |
2586 | | |
2587 | 0 | return stub_changed; |
2588 | 0 | } |
2589 | | |
2590 | | /* Determine and set the size of the stub section for a final link. |
2591 | | |
2592 | | The basic idea here is to examine all the relocations looking for |
2593 | | PC-relative calls to a target that is unreachable with a "bl" |
2594 | | instruction. */ |
2595 | | |
2596 | | bool |
2597 | | elf32_hppa_size_stubs |
2598 | | (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, |
2599 | | bool multi_subspace, bfd_signed_vma group_size, |
2600 | | asection * (*add_stub_section) (const char *, asection *), |
2601 | | void (*layout_sections_again) (void)) |
2602 | 0 | { |
2603 | 0 | bfd_size_type stub_group_size; |
2604 | 0 | bool stubs_always_before_branch; |
2605 | 0 | bool stub_changed; |
2606 | 0 | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
2607 | |
|
2608 | 0 | if (htab == NULL) |
2609 | 0 | return false; |
2610 | | |
2611 | | /* Stash our params away. */ |
2612 | 0 | htab->stub_bfd = stub_bfd; |
2613 | 0 | htab->multi_subspace = multi_subspace; |
2614 | 0 | htab->add_stub_section = add_stub_section; |
2615 | 0 | htab->layout_sections_again = layout_sections_again; |
2616 | 0 | stubs_always_before_branch = group_size < 0; |
2617 | 0 | if (group_size < 0) |
2618 | 0 | stub_group_size = -group_size; |
2619 | 0 | else |
2620 | 0 | stub_group_size = group_size; |
2621 | 0 | if (stub_group_size == 1) |
2622 | 0 | { |
2623 | | /* Default values. */ |
2624 | 0 | if (stubs_always_before_branch) |
2625 | 0 | { |
2626 | 0 | stub_group_size = 7680000; |
2627 | 0 | if (htab->has_17bit_branch || htab->multi_subspace) |
2628 | 0 | stub_group_size = 240000; |
2629 | 0 | if (htab->has_12bit_branch) |
2630 | 0 | stub_group_size = 7500; |
2631 | 0 | } |
2632 | 0 | else |
2633 | 0 | { |
2634 | 0 | stub_group_size = 6971392; |
2635 | 0 | if (htab->has_17bit_branch || htab->multi_subspace) |
2636 | 0 | stub_group_size = 217856; |
2637 | 0 | if (htab->has_12bit_branch) |
2638 | 0 | stub_group_size = 6808; |
2639 | 0 | } |
2640 | 0 | } |
2641 | |
|
2642 | 0 | group_sections (htab, stub_group_size, stubs_always_before_branch); |
2643 | |
|
2644 | 0 | switch (get_local_syms (output_bfd, info->input_bfds, info)) |
2645 | 0 | { |
2646 | 0 | default: |
2647 | 0 | if (htab->all_local_syms) |
2648 | 0 | goto error_ret_free_local; |
2649 | 0 | return false; |
2650 | | |
2651 | 0 | case 0: |
2652 | 0 | stub_changed = false; |
2653 | 0 | break; |
2654 | | |
2655 | 0 | case 1: |
2656 | 0 | stub_changed = true; |
2657 | 0 | break; |
2658 | 0 | } |
2659 | | |
2660 | 0 | while (1) |
2661 | 0 | { |
2662 | 0 | bfd *input_bfd; |
2663 | 0 | unsigned int bfd_indx; |
2664 | 0 | asection *stub_sec; |
2665 | |
|
2666 | 0 | for (input_bfd = info->input_bfds, bfd_indx = 0; |
2667 | 0 | input_bfd != NULL; |
2668 | 0 | input_bfd = input_bfd->link.next, bfd_indx++) |
2669 | 0 | { |
2670 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2671 | 0 | asection *section; |
2672 | 0 | Elf_Internal_Sym *local_syms; |
2673 | | |
2674 | | /* We'll need the symbol table in a second. */ |
2675 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2676 | 0 | if (symtab_hdr->sh_info == 0) |
2677 | 0 | continue; |
2678 | | |
2679 | 0 | local_syms = htab->all_local_syms[bfd_indx]; |
2680 | | |
2681 | | /* Walk over each section attached to the input bfd. */ |
2682 | 0 | for (section = input_bfd->sections; |
2683 | 0 | section != NULL; |
2684 | 0 | section = section->next) |
2685 | 0 | { |
2686 | 0 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
2687 | | |
2688 | | /* If there aren't any relocs, then there's nothing more |
2689 | | to do. */ |
2690 | 0 | if ((section->flags & SEC_RELOC) == 0 |
2691 | 0 | || (section->flags & SEC_ALLOC) == 0 |
2692 | 0 | || (section->flags & SEC_LOAD) == 0 |
2693 | 0 | || (section->flags & SEC_CODE) == 0 |
2694 | 0 | || section->reloc_count == 0) |
2695 | 0 | continue; |
2696 | | |
2697 | | /* If this section is a link-once section that will be |
2698 | | discarded, then don't create any stubs. */ |
2699 | 0 | if (section->output_section == NULL |
2700 | 0 | || section->output_section->owner != output_bfd) |
2701 | 0 | continue; |
2702 | | |
2703 | | /* Get the relocs. */ |
2704 | 0 | internal_relocs |
2705 | 0 | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, |
2706 | 0 | info->keep_memory); |
2707 | 0 | if (internal_relocs == NULL) |
2708 | 0 | goto error_ret_free_local; |
2709 | | |
2710 | | /* Now examine each relocation. */ |
2711 | 0 | irela = internal_relocs; |
2712 | 0 | irelaend = irela + section->reloc_count; |
2713 | 0 | for (; irela < irelaend; irela++) |
2714 | 0 | { |
2715 | 0 | unsigned int r_type, r_indx; |
2716 | 0 | enum elf32_hppa_stub_type stub_type; |
2717 | 0 | struct elf32_hppa_stub_hash_entry *hsh; |
2718 | 0 | asection *sym_sec; |
2719 | 0 | bfd_vma sym_value; |
2720 | 0 | bfd_vma destination; |
2721 | 0 | struct elf32_hppa_link_hash_entry *hh; |
2722 | 0 | char *stub_name; |
2723 | 0 | const asection *id_sec; |
2724 | |
|
2725 | 0 | r_type = ELF32_R_TYPE (irela->r_info); |
2726 | 0 | r_indx = ELF32_R_SYM (irela->r_info); |
2727 | |
|
2728 | 0 | if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) |
2729 | 0 | { |
2730 | 0 | bfd_set_error (bfd_error_bad_value); |
2731 | 0 | error_ret_free_internal: |
2732 | 0 | if (elf_section_data (section)->relocs == NULL) |
2733 | 0 | free (internal_relocs); |
2734 | 0 | goto error_ret_free_local; |
2735 | 0 | } |
2736 | | |
2737 | | /* Only look for stubs on call instructions. */ |
2738 | 0 | if (r_type != (unsigned int) R_PARISC_PCREL12F |
2739 | 0 | && r_type != (unsigned int) R_PARISC_PCREL17F |
2740 | 0 | && r_type != (unsigned int) R_PARISC_PCREL22F) |
2741 | 0 | continue; |
2742 | | |
2743 | | /* Now determine the call target, its name, value, |
2744 | | section. */ |
2745 | 0 | sym_sec = NULL; |
2746 | 0 | sym_value = 0; |
2747 | 0 | destination = -1; |
2748 | 0 | hh = NULL; |
2749 | 0 | if (r_indx < symtab_hdr->sh_info) |
2750 | 0 | { |
2751 | | /* It's a local symbol. */ |
2752 | 0 | Elf_Internal_Sym *sym; |
2753 | 0 | Elf_Internal_Shdr *hdr; |
2754 | 0 | unsigned int shndx; |
2755 | |
|
2756 | 0 | sym = local_syms + r_indx; |
2757 | 0 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) |
2758 | 0 | sym_value = sym->st_value; |
2759 | 0 | shndx = sym->st_shndx; |
2760 | 0 | if (shndx < elf_numsections (input_bfd)) |
2761 | 0 | { |
2762 | 0 | hdr = elf_elfsections (input_bfd)[shndx]; |
2763 | 0 | sym_sec = hdr->bfd_section; |
2764 | 0 | destination = (sym_value + irela->r_addend |
2765 | 0 | + sym_sec->output_offset |
2766 | 0 | + sym_sec->output_section->vma); |
2767 | 0 | } |
2768 | 0 | } |
2769 | 0 | else |
2770 | 0 | { |
2771 | | /* It's an external symbol. */ |
2772 | 0 | int e_indx; |
2773 | |
|
2774 | 0 | e_indx = r_indx - symtab_hdr->sh_info; |
2775 | 0 | hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); |
2776 | |
|
2777 | 0 | while (hh->eh.root.type == bfd_link_hash_indirect |
2778 | 0 | || hh->eh.root.type == bfd_link_hash_warning) |
2779 | 0 | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); |
2780 | |
|
2781 | 0 | if (hh->eh.root.type == bfd_link_hash_defined |
2782 | 0 | || hh->eh.root.type == bfd_link_hash_defweak) |
2783 | 0 | { |
2784 | 0 | sym_sec = hh->eh.root.u.def.section; |
2785 | 0 | sym_value = hh->eh.root.u.def.value; |
2786 | 0 | if (sym_sec->output_section != NULL) |
2787 | 0 | destination = (sym_value + irela->r_addend |
2788 | 0 | + sym_sec->output_offset |
2789 | 0 | + sym_sec->output_section->vma); |
2790 | 0 | } |
2791 | 0 | else if (hh->eh.root.type == bfd_link_hash_undefweak) |
2792 | 0 | { |
2793 | 0 | if (! bfd_link_pic (info)) |
2794 | 0 | continue; |
2795 | 0 | } |
2796 | 0 | else if (hh->eh.root.type == bfd_link_hash_undefined) |
2797 | 0 | { |
2798 | 0 | if (! (info->unresolved_syms_in_objects == RM_IGNORE |
2799 | 0 | && (ELF_ST_VISIBILITY (hh->eh.other) |
2800 | 0 | == STV_DEFAULT) |
2801 | 0 | && hh->eh.type != STT_PARISC_MILLI)) |
2802 | 0 | continue; |
2803 | 0 | } |
2804 | 0 | else |
2805 | 0 | { |
2806 | 0 | bfd_set_error (bfd_error_bad_value); |
2807 | 0 | goto error_ret_free_internal; |
2808 | 0 | } |
2809 | 0 | } |
2810 | | |
2811 | | /* Determine what (if any) linker stub is needed. */ |
2812 | 0 | stub_type = hppa_type_of_stub (section, irela, hh, |
2813 | 0 | destination, info); |
2814 | 0 | if (stub_type == hppa_stub_none) |
2815 | 0 | continue; |
2816 | | |
2817 | | /* Support for grouping stub sections. */ |
2818 | 0 | id_sec = htab->stub_group[section->id].link_sec; |
2819 | | |
2820 | | /* Get the name of this stub. */ |
2821 | 0 | stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); |
2822 | 0 | if (!stub_name) |
2823 | 0 | goto error_ret_free_internal; |
2824 | | |
2825 | 0 | hsh = hppa_stub_hash_lookup (&htab->bstab, |
2826 | 0 | stub_name, |
2827 | 0 | false, false); |
2828 | 0 | if (hsh != NULL) |
2829 | 0 | { |
2830 | | /* The proper stub has already been created. */ |
2831 | 0 | free (stub_name); |
2832 | 0 | continue; |
2833 | 0 | } |
2834 | | |
2835 | 0 | hsh = hppa_add_stub (stub_name, section, htab); |
2836 | 0 | if (hsh == NULL) |
2837 | 0 | { |
2838 | 0 | free (stub_name); |
2839 | 0 | goto error_ret_free_internal; |
2840 | 0 | } |
2841 | | |
2842 | 0 | hsh->target_value = sym_value; |
2843 | 0 | hsh->target_section = sym_sec; |
2844 | 0 | hsh->stub_type = stub_type; |
2845 | 0 | if (bfd_link_pic (info)) |
2846 | 0 | { |
2847 | 0 | if (stub_type == hppa_stub_import) |
2848 | 0 | hsh->stub_type = hppa_stub_import_shared; |
2849 | 0 | else if (stub_type == hppa_stub_long_branch) |
2850 | 0 | hsh->stub_type = hppa_stub_long_branch_shared; |
2851 | 0 | } |
2852 | 0 | hsh->hh = hh; |
2853 | 0 | stub_changed = true; |
2854 | 0 | } |
2855 | | |
2856 | | /* We're done with the internal relocs, free them. */ |
2857 | 0 | if (elf_section_data (section)->relocs == NULL) |
2858 | 0 | free (internal_relocs); |
2859 | 0 | } |
2860 | 0 | } |
2861 | | |
2862 | 0 | if (!stub_changed) |
2863 | 0 | break; |
2864 | | |
2865 | | /* OK, we've added some stubs. Find out the new size of the |
2866 | | stub sections. */ |
2867 | 0 | for (stub_sec = htab->stub_bfd->sections; |
2868 | 0 | stub_sec != NULL; |
2869 | 0 | stub_sec = stub_sec->next) |
2870 | 0 | if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) |
2871 | 0 | stub_sec->size = 0; |
2872 | |
|
2873 | 0 | bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); |
2874 | | |
2875 | | /* Ask the linker to do its stuff. */ |
2876 | 0 | (*htab->layout_sections_again) (); |
2877 | 0 | stub_changed = false; |
2878 | 0 | } |
2879 | | |
2880 | 0 | free (htab->all_local_syms); |
2881 | 0 | return true; |
2882 | | |
2883 | 0 | error_ret_free_local: |
2884 | 0 | free (htab->all_local_syms); |
2885 | 0 | return false; |
2886 | 0 | } |
2887 | | |
2888 | | /* For a final link, this function is called after we have sized the |
2889 | | stubs to provide a value for __gp. */ |
2890 | | |
2891 | | bool |
2892 | | elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) |
2893 | 0 | { |
2894 | 0 | struct bfd_link_hash_entry *h; |
2895 | 0 | asection *sec = NULL; |
2896 | 0 | bfd_vma gp_val = 0; |
2897 | |
|
2898 | 0 | h = bfd_link_hash_lookup (info->hash, "$global$", false, false, false); |
2899 | |
|
2900 | 0 | if (h != NULL |
2901 | 0 | && (h->type == bfd_link_hash_defined |
2902 | 0 | || h->type == bfd_link_hash_defweak)) |
2903 | 0 | { |
2904 | 0 | gp_val = h->u.def.value; |
2905 | 0 | sec = h->u.def.section; |
2906 | 0 | } |
2907 | 0 | else |
2908 | 0 | { |
2909 | 0 | asection *splt = bfd_get_section_by_name (abfd, ".plt"); |
2910 | 0 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
2911 | | |
2912 | | /* Choose to point our LTP at, in this order, one of .plt, .got, |
2913 | | or .data, if these sections exist. In the case of choosing |
2914 | | .plt try to make the LTP ideal for addressing anywhere in the |
2915 | | .plt or .got with a 14 bit signed offset. Typically, the end |
2916 | | of the .plt is the start of the .got, so choose .plt + 0x2000 |
2917 | | if either the .plt or .got is larger than 0x2000. If both |
2918 | | the .plt and .got are smaller than 0x2000, choose the end of |
2919 | | the .plt section. */ |
2920 | 0 | sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 |
2921 | 0 | ? NULL : splt; |
2922 | 0 | if (sec != NULL) |
2923 | 0 | { |
2924 | 0 | gp_val = sec->size; |
2925 | 0 | if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) |
2926 | 0 | { |
2927 | 0 | gp_val = 0x2000; |
2928 | 0 | } |
2929 | 0 | } |
2930 | 0 | else |
2931 | 0 | { |
2932 | 0 | sec = sgot; |
2933 | 0 | if (sec != NULL) |
2934 | 0 | { |
2935 | 0 | if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) |
2936 | 0 | { |
2937 | | /* We know we don't have a .plt. If .got is large, |
2938 | | offset our LTP. */ |
2939 | 0 | if (sec->size > 0x2000) |
2940 | 0 | gp_val = 0x2000; |
2941 | 0 | } |
2942 | 0 | } |
2943 | 0 | else |
2944 | 0 | { |
2945 | | /* No .plt or .got. Who cares what the LTP is? */ |
2946 | 0 | sec = bfd_get_section_by_name (abfd, ".data"); |
2947 | 0 | } |
2948 | 0 | } |
2949 | |
|
2950 | 0 | if (h != NULL) |
2951 | 0 | { |
2952 | 0 | h->type = bfd_link_hash_defined; |
2953 | 0 | h->u.def.value = gp_val; |
2954 | 0 | if (sec != NULL) |
2955 | 0 | h->u.def.section = sec; |
2956 | 0 | else |
2957 | 0 | h->u.def.section = bfd_abs_section_ptr; |
2958 | 0 | } |
2959 | 0 | } |
2960 | |
|
2961 | 0 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
2962 | 0 | { |
2963 | 0 | if (sec != NULL && sec->output_section != NULL) |
2964 | 0 | gp_val += sec->output_section->vma + sec->output_offset; |
2965 | |
|
2966 | 0 | elf_gp (abfd) = gp_val; |
2967 | 0 | } |
2968 | 0 | return true; |
2969 | 0 | } |
2970 | | |
2971 | | /* Build all the stubs associated with the current output file. The |
2972 | | stubs are kept in a hash table attached to the main linker hash |
2973 | | table. We also set up the .plt entries for statically linked PIC |
2974 | | functions here. This function is called via hppaelf_finish in the |
2975 | | linker. */ |
2976 | | |
2977 | | bool |
2978 | | elf32_hppa_build_stubs (struct bfd_link_info *info) |
2979 | 0 | { |
2980 | 0 | asection *stub_sec; |
2981 | 0 | struct bfd_hash_table *table; |
2982 | 0 | struct elf32_hppa_link_hash_table *htab; |
2983 | |
|
2984 | 0 | htab = hppa_link_hash_table (info); |
2985 | 0 | if (htab == NULL) |
2986 | 0 | return false; |
2987 | | |
2988 | 0 | for (stub_sec = htab->stub_bfd->sections; |
2989 | 0 | stub_sec != NULL; |
2990 | 0 | stub_sec = stub_sec->next) |
2991 | 0 | if ((stub_sec->flags & SEC_LINKER_CREATED) == 0 |
2992 | 0 | && stub_sec->size != 0) |
2993 | 0 | { |
2994 | | /* Allocate memory to hold the linker stubs. */ |
2995 | 0 | stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size); |
2996 | 0 | if (stub_sec->contents == NULL) |
2997 | 0 | return false; |
2998 | 0 | stub_sec->alloced = 1; |
2999 | 0 | stub_sec->size = 0; |
3000 | 0 | } |
3001 | | |
3002 | | /* Build the stubs as directed by the stub hash table. */ |
3003 | 0 | table = &htab->bstab; |
3004 | 0 | bfd_hash_traverse (table, hppa_build_one_stub, info); |
3005 | |
|
3006 | 0 | return true; |
3007 | 0 | } |
3008 | | |
3009 | | /* Return the base vma address which should be subtracted from the real |
3010 | | address when resolving a dtpoff relocation. |
3011 | | This is PT_TLS segment p_vaddr. */ |
3012 | | |
3013 | | static bfd_vma |
3014 | | dtpoff_base (struct bfd_link_info *info) |
3015 | 0 | { |
3016 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
3017 | 0 | if (elf_hash_table (info)->tls_sec == NULL) |
3018 | 0 | return 0; |
3019 | 0 | return elf_hash_table (info)->tls_sec->vma; |
3020 | 0 | } |
3021 | | |
3022 | | /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */ |
3023 | | |
3024 | | static bfd_vma |
3025 | | tpoff (struct bfd_link_info *info, bfd_vma address) |
3026 | 0 | { |
3027 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
3028 | | |
3029 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
3030 | 0 | if (htab->tls_sec == NULL) |
3031 | 0 | return 0; |
3032 | | /* hppa TLS ABI is variant I and static TLS block start just after |
3033 | | tcbhead structure which has 2 pointer fields. */ |
3034 | 0 | return (address - htab->tls_sec->vma |
3035 | 0 | + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power)); |
3036 | 0 | } |
3037 | | |
3038 | | /* Perform a final link. */ |
3039 | | |
3040 | | static bool |
3041 | | elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) |
3042 | 0 | { |
3043 | 0 | struct stat buf; |
3044 | | |
3045 | | /* Invoke the regular ELF linker to do all the work. */ |
3046 | 0 | if (!bfd_elf_final_link (abfd, info)) |
3047 | 0 | return false; |
3048 | | |
3049 | | /* If we're producing a final executable, sort the contents of the |
3050 | | unwind section. */ |
3051 | 0 | if (bfd_link_relocatable (info)) |
3052 | 0 | return true; |
3053 | | |
3054 | | /* Do not attempt to sort non-regular files. This is here |
3055 | | especially for configure scripts and kernel builds which run |
3056 | | tests with "ld [...] -o /dev/null". */ |
3057 | 0 | if (stat (bfd_get_filename (abfd), &buf) != 0 |
3058 | 0 | || !S_ISREG(buf.st_mode)) |
3059 | 0 | return true; |
3060 | | |
3061 | 0 | return elf_hppa_sort_unwind (abfd); |
3062 | 0 | } |
3063 | | |
3064 | | /* Record the lowest address for the data and text segments. */ |
3065 | | |
3066 | | static void |
3067 | | hppa_record_segment_addr (bfd *abfd, asection *section, void *data) |
3068 | 0 | { |
3069 | 0 | struct elf32_hppa_link_hash_table *htab; |
3070 | |
|
3071 | 0 | htab = (struct elf32_hppa_link_hash_table*) data; |
3072 | 0 | if (htab == NULL) |
3073 | 0 | return; |
3074 | | |
3075 | 0 | if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) |
3076 | 0 | { |
3077 | 0 | bfd_vma value; |
3078 | 0 | Elf_Internal_Phdr *p; |
3079 | |
|
3080 | 0 | p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); |
3081 | 0 | BFD_ASSERT (p != NULL); |
3082 | 0 | value = p->p_vaddr; |
3083 | |
|
3084 | 0 | if ((section->flags & SEC_READONLY) != 0) |
3085 | 0 | { |
3086 | 0 | if (value < htab->text_segment_base) |
3087 | 0 | htab->text_segment_base = value; |
3088 | 0 | } |
3089 | 0 | else |
3090 | 0 | { |
3091 | 0 | if (value < htab->data_segment_base) |
3092 | 0 | htab->data_segment_base = value; |
3093 | 0 | } |
3094 | 0 | } |
3095 | 0 | } |
3096 | | |
3097 | | /* Perform a relocation as part of a final link. */ |
3098 | | |
3099 | | static bfd_reloc_status_type |
3100 | | final_link_relocate (asection *input_section, |
3101 | | bfd_byte *contents, |
3102 | | const Elf_Internal_Rela *rela, |
3103 | | bfd_vma value, |
3104 | | struct elf32_hppa_link_hash_table *htab, |
3105 | | asection *sym_sec, |
3106 | | struct elf32_hppa_link_hash_entry *hh, |
3107 | | struct bfd_link_info *info) |
3108 | 0 | { |
3109 | 0 | unsigned int insn; |
3110 | 0 | unsigned int r_type = ELF32_R_TYPE (rela->r_info); |
3111 | 0 | unsigned int orig_r_type = r_type; |
3112 | 0 | reloc_howto_type *howto = elf_hppa_howto_table + r_type; |
3113 | 0 | int r_format; |
3114 | 0 | enum hppa_reloc_field_selector_type_alt r_field; |
3115 | 0 | bfd *input_bfd = input_section->owner; |
3116 | 0 | bfd_vma offset = rela->r_offset; |
3117 | 0 | bfd_vma max_branch_offset = 0; |
3118 | 0 | bfd_byte *hit_data = contents + offset; |
3119 | 0 | bfd_signed_vma addend = rela->r_addend; |
3120 | 0 | bfd_vma location; |
3121 | 0 | struct elf32_hppa_stub_hash_entry *hsh = NULL; |
3122 | 0 | int val; |
3123 | |
|
3124 | 0 | if (r_type == R_PARISC_NONE) |
3125 | 0 | return bfd_reloc_ok; |
3126 | | |
3127 | 0 | insn = bfd_get_32 (input_bfd, hit_data); |
3128 | | |
3129 | | /* Find out where we are and where we're going. */ |
3130 | 0 | location = (offset + |
3131 | 0 | input_section->output_offset + |
3132 | 0 | input_section->output_section->vma); |
3133 | | |
3134 | | /* If we are not building a shared library, convert DLTIND relocs to |
3135 | | DPREL relocs. */ |
3136 | 0 | if (!bfd_link_pic (info)) |
3137 | 0 | { |
3138 | 0 | switch (r_type) |
3139 | 0 | { |
3140 | 0 | case R_PARISC_DLTIND21L: |
3141 | 0 | case R_PARISC_TLS_GD21L: |
3142 | 0 | case R_PARISC_TLS_LDM21L: |
3143 | 0 | case R_PARISC_TLS_IE21L: |
3144 | 0 | r_type = R_PARISC_DPREL21L; |
3145 | 0 | break; |
3146 | | |
3147 | 0 | case R_PARISC_DLTIND14R: |
3148 | 0 | case R_PARISC_TLS_GD14R: |
3149 | 0 | case R_PARISC_TLS_LDM14R: |
3150 | 0 | case R_PARISC_TLS_IE14R: |
3151 | 0 | r_type = R_PARISC_DPREL14R; |
3152 | 0 | break; |
3153 | | |
3154 | 0 | case R_PARISC_DLTIND14F: |
3155 | 0 | r_type = R_PARISC_DPREL14F; |
3156 | 0 | break; |
3157 | 0 | } |
3158 | 0 | } |
3159 | | |
3160 | 0 | switch (r_type) |
3161 | 0 | { |
3162 | 0 | case R_PARISC_PCREL12F: |
3163 | 0 | case R_PARISC_PCREL17F: |
3164 | 0 | case R_PARISC_PCREL22F: |
3165 | | /* If this call should go via the plt, find the import stub in |
3166 | | the stub hash. */ |
3167 | 0 | if (sym_sec == NULL |
3168 | 0 | || sym_sec->output_section == NULL |
3169 | 0 | || (hh != NULL |
3170 | 0 | && hh->eh.plt.offset != (bfd_vma) -1 |
3171 | 0 | && hh->eh.dynindx != -1 |
3172 | 0 | && !hh->plabel |
3173 | 0 | && (bfd_link_pic (info) |
3174 | 0 | || !hh->eh.def_regular |
3175 | 0 | || hh->eh.root.type == bfd_link_hash_defweak))) |
3176 | 0 | { |
3177 | 0 | hsh = hppa_get_stub_entry (input_section, sym_sec, |
3178 | 0 | hh, rela, htab); |
3179 | 0 | if (hsh != NULL) |
3180 | 0 | { |
3181 | 0 | value = (hsh->stub_offset |
3182 | 0 | + hsh->stub_sec->output_offset |
3183 | 0 | + hsh->stub_sec->output_section->vma); |
3184 | 0 | addend = 0; |
3185 | 0 | } |
3186 | 0 | else if (sym_sec == NULL && hh != NULL |
3187 | 0 | && hh->eh.root.type == bfd_link_hash_undefweak) |
3188 | 0 | { |
3189 | | /* It's OK if undefined weak. Calls to undefined weak |
3190 | | symbols behave as if the "called" function |
3191 | | immediately returns. We can thus call to a weak |
3192 | | function without first checking whether the function |
3193 | | is defined. */ |
3194 | 0 | value = location; |
3195 | 0 | addend = 8; |
3196 | 0 | } |
3197 | 0 | else |
3198 | 0 | return bfd_reloc_undefined; |
3199 | 0 | } |
3200 | | /* Fall thru. */ |
3201 | | |
3202 | 0 | case R_PARISC_PCREL21L: |
3203 | 0 | case R_PARISC_PCREL17C: |
3204 | 0 | case R_PARISC_PCREL17R: |
3205 | 0 | case R_PARISC_PCREL14R: |
3206 | 0 | case R_PARISC_PCREL14F: |
3207 | 0 | case R_PARISC_PCREL32: |
3208 | | /* Make it a pc relative offset. */ |
3209 | 0 | value -= location; |
3210 | 0 | addend -= 8; |
3211 | 0 | break; |
3212 | | |
3213 | 0 | case R_PARISC_DPREL21L: |
3214 | 0 | case R_PARISC_DPREL14R: |
3215 | 0 | case R_PARISC_DPREL14F: |
3216 | | /* Convert instructions that use the linkage table pointer (r19) to |
3217 | | instructions that use the global data pointer (dp). This is the |
3218 | | most efficient way of using PIC code in an incomplete executable, |
3219 | | but the user must follow the standard runtime conventions for |
3220 | | accessing data for this to work. */ |
3221 | 0 | if (orig_r_type != r_type) |
3222 | 0 | { |
3223 | 0 | if (r_type == R_PARISC_DPREL21L) |
3224 | 0 | { |
3225 | | /* GCC sometimes uses a register other than r19 for the |
3226 | | operation, so we must convert any addil instruction |
3227 | | that uses this relocation. */ |
3228 | 0 | if ((insn & 0xfc000000) == OP_ADDIL << 26) |
3229 | 0 | insn = ADDIL_DP; |
3230 | 0 | else |
3231 | | /* We must have a ldil instruction. It's too hard to find |
3232 | | and convert the associated add instruction, so issue an |
3233 | | error. */ |
3234 | 0 | _bfd_error_handler |
3235 | | /* xgettext:c-format */ |
3236 | 0 | (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x " |
3237 | 0 | "is not supported in a non-shared link"), |
3238 | 0 | input_bfd, |
3239 | 0 | input_section, |
3240 | 0 | (uint64_t) offset, |
3241 | 0 | howto->name, |
3242 | 0 | insn); |
3243 | 0 | } |
3244 | 0 | else if (r_type == R_PARISC_DPREL14F) |
3245 | 0 | { |
3246 | | /* This must be a format 1 load/store. Change the base |
3247 | | register to dp. */ |
3248 | 0 | insn = (insn & 0xfc1ffff) | (27 << 21); |
3249 | 0 | } |
3250 | 0 | } |
3251 | | |
3252 | | /* For all the DP relative relocations, we need to examine the symbol's |
3253 | | section. If it has no section or if it's a code section, then |
3254 | | "data pointer relative" makes no sense. In that case we don't |
3255 | | adjust the "value", and for 21 bit addil instructions, we change the |
3256 | | source addend register from %dp to %r0. This situation commonly |
3257 | | arises for undefined weak symbols and when a variable's "constness" |
3258 | | is declared differently from the way the variable is defined. For |
3259 | | instance: "extern int foo" with foo defined as "const int foo". */ |
3260 | 0 | if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0) |
3261 | 0 | { |
3262 | 0 | if ((insn & ((0x3fu << 26) | (0x1f << 21))) |
3263 | 0 | == ((OP_ADDIL << 26) | (27 << 21))) |
3264 | 0 | { |
3265 | 0 | insn &= ~ (0x1f << 21); |
3266 | 0 | } |
3267 | | /* Now try to make things easy for the dynamic linker. */ |
3268 | |
|
3269 | 0 | break; |
3270 | 0 | } |
3271 | | /* Fall thru. */ |
3272 | | |
3273 | 0 | case R_PARISC_DLTIND21L: |
3274 | 0 | case R_PARISC_DLTIND14R: |
3275 | 0 | case R_PARISC_DLTIND14F: |
3276 | 0 | case R_PARISC_TLS_GD21L: |
3277 | 0 | case R_PARISC_TLS_LDM21L: |
3278 | 0 | case R_PARISC_TLS_IE21L: |
3279 | 0 | case R_PARISC_TLS_GD14R: |
3280 | 0 | case R_PARISC_TLS_LDM14R: |
3281 | 0 | case R_PARISC_TLS_IE14R: |
3282 | 0 | value -= elf_gp (input_section->output_section->owner); |
3283 | 0 | break; |
3284 | | |
3285 | 0 | case R_PARISC_SEGREL32: |
3286 | 0 | if ((sym_sec->flags & SEC_CODE) != 0) |
3287 | 0 | value -= htab->text_segment_base; |
3288 | 0 | else |
3289 | 0 | value -= htab->data_segment_base; |
3290 | 0 | break; |
3291 | | |
3292 | 0 | default: |
3293 | 0 | break; |
3294 | 0 | } |
3295 | | |
3296 | 0 | switch (r_type) |
3297 | 0 | { |
3298 | 0 | case R_PARISC_DIR32: |
3299 | 0 | case R_PARISC_DIR14F: |
3300 | 0 | case R_PARISC_DIR17F: |
3301 | 0 | case R_PARISC_PCREL17C: |
3302 | 0 | case R_PARISC_PCREL14F: |
3303 | 0 | case R_PARISC_PCREL32: |
3304 | 0 | case R_PARISC_DPREL14F: |
3305 | 0 | case R_PARISC_PLABEL32: |
3306 | 0 | case R_PARISC_DLTIND14F: |
3307 | 0 | case R_PARISC_SEGBASE: |
3308 | 0 | case R_PARISC_SEGREL32: |
3309 | 0 | case R_PARISC_TLS_DTPMOD32: |
3310 | 0 | case R_PARISC_TLS_DTPOFF32: |
3311 | 0 | case R_PARISC_TLS_TPREL32: |
3312 | 0 | r_field = e_fsel; |
3313 | 0 | break; |
3314 | | |
3315 | 0 | case R_PARISC_DLTIND21L: |
3316 | 0 | case R_PARISC_PCREL21L: |
3317 | 0 | case R_PARISC_PLABEL21L: |
3318 | 0 | r_field = e_lsel; |
3319 | 0 | break; |
3320 | | |
3321 | 0 | case R_PARISC_DIR21L: |
3322 | 0 | case R_PARISC_DPREL21L: |
3323 | 0 | case R_PARISC_TLS_GD21L: |
3324 | 0 | case R_PARISC_TLS_LDM21L: |
3325 | 0 | case R_PARISC_TLS_LDO21L: |
3326 | 0 | case R_PARISC_TLS_IE21L: |
3327 | 0 | case R_PARISC_TLS_LE21L: |
3328 | 0 | r_field = e_lrsel; |
3329 | 0 | break; |
3330 | | |
3331 | 0 | case R_PARISC_PCREL17R: |
3332 | 0 | case R_PARISC_PCREL14R: |
3333 | 0 | case R_PARISC_PLABEL14R: |
3334 | 0 | case R_PARISC_DLTIND14R: |
3335 | 0 | r_field = e_rsel; |
3336 | 0 | break; |
3337 | | |
3338 | 0 | case R_PARISC_DIR17R: |
3339 | 0 | case R_PARISC_DIR14R: |
3340 | 0 | case R_PARISC_DPREL14R: |
3341 | 0 | case R_PARISC_TLS_GD14R: |
3342 | 0 | case R_PARISC_TLS_LDM14R: |
3343 | 0 | case R_PARISC_TLS_LDO14R: |
3344 | 0 | case R_PARISC_TLS_IE14R: |
3345 | 0 | case R_PARISC_TLS_LE14R: |
3346 | 0 | r_field = e_rrsel; |
3347 | 0 | break; |
3348 | | |
3349 | 0 | case R_PARISC_PCREL12F: |
3350 | 0 | case R_PARISC_PCREL17F: |
3351 | 0 | case R_PARISC_PCREL22F: |
3352 | 0 | r_field = e_fsel; |
3353 | |
|
3354 | 0 | if (r_type == (unsigned int) R_PARISC_PCREL17F) |
3355 | 0 | { |
3356 | 0 | max_branch_offset = (1 << (17-1)) << 2; |
3357 | 0 | } |
3358 | 0 | else if (r_type == (unsigned int) R_PARISC_PCREL12F) |
3359 | 0 | { |
3360 | 0 | max_branch_offset = (1 << (12-1)) << 2; |
3361 | 0 | } |
3362 | 0 | else |
3363 | 0 | { |
3364 | 0 | max_branch_offset = (1 << (22-1)) << 2; |
3365 | 0 | } |
3366 | | |
3367 | | /* sym_sec is NULL on undefined weak syms or when shared on |
3368 | | undefined syms. We've already checked for a stub for the |
3369 | | shared undefined case. */ |
3370 | 0 | if (sym_sec == NULL) |
3371 | 0 | break; |
3372 | | |
3373 | | /* If the branch is out of reach, then redirect the |
3374 | | call to the local stub for this function. */ |
3375 | 0 | if (value + addend + max_branch_offset >= 2*max_branch_offset) |
3376 | 0 | { |
3377 | 0 | hsh = hppa_get_stub_entry (input_section, sym_sec, |
3378 | 0 | hh, rela, htab); |
3379 | 0 | if (hsh == NULL) |
3380 | 0 | return bfd_reloc_undefined; |
3381 | | |
3382 | | /* Munge up the value and addend so that we call the stub |
3383 | | rather than the procedure directly. */ |
3384 | 0 | value = (hsh->stub_offset |
3385 | 0 | + hsh->stub_sec->output_offset |
3386 | 0 | + hsh->stub_sec->output_section->vma |
3387 | 0 | - location); |
3388 | 0 | addend = -8; |
3389 | 0 | } |
3390 | 0 | break; |
3391 | | |
3392 | | /* Something we don't know how to handle. */ |
3393 | 0 | default: |
3394 | 0 | return bfd_reloc_notsupported; |
3395 | 0 | } |
3396 | | |
3397 | | /* Make sure we can reach the stub. */ |
3398 | 0 | if (max_branch_offset != 0 |
3399 | 0 | && value + addend + max_branch_offset >= 2*max_branch_offset) |
3400 | 0 | { |
3401 | 0 | _bfd_error_handler |
3402 | | /* xgettext:c-format */ |
3403 | 0 | (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, " |
3404 | 0 | "recompile with -ffunction-sections"), |
3405 | 0 | input_bfd, |
3406 | 0 | input_section, |
3407 | 0 | (uint64_t) offset, |
3408 | 0 | hsh->bh_root.string); |
3409 | 0 | bfd_set_error (bfd_error_bad_value); |
3410 | 0 | return bfd_reloc_notsupported; |
3411 | 0 | } |
3412 | | |
3413 | 0 | val = hppa_field_adjust (value, addend, r_field); |
3414 | |
|
3415 | 0 | switch (r_type) |
3416 | 0 | { |
3417 | 0 | case R_PARISC_PCREL12F: |
3418 | 0 | case R_PARISC_PCREL17C: |
3419 | 0 | case R_PARISC_PCREL17F: |
3420 | 0 | case R_PARISC_PCREL17R: |
3421 | 0 | case R_PARISC_PCREL22F: |
3422 | 0 | case R_PARISC_DIR17F: |
3423 | 0 | case R_PARISC_DIR17R: |
3424 | | /* This is a branch. Divide the offset by four. |
3425 | | Note that we need to decide whether it's a branch or |
3426 | | otherwise by inspecting the reloc. Inspecting insn won't |
3427 | | work as insn might be from a .word directive. */ |
3428 | 0 | val >>= 2; |
3429 | 0 | break; |
3430 | | |
3431 | 0 | default: |
3432 | 0 | break; |
3433 | 0 | } |
3434 | | |
3435 | 0 | switch (r_type) |
3436 | 0 | { |
3437 | 0 | case R_PARISC_DIR32: |
3438 | 0 | case R_PARISC_SECREL32: |
3439 | 0 | case R_PARISC_SEGBASE: |
3440 | 0 | case R_PARISC_SEGREL32: |
3441 | 0 | case R_PARISC_PLABEL32: |
3442 | | /* These relocations apply to data. */ |
3443 | 0 | r_format = howto->bitsize; |
3444 | 0 | break; |
3445 | | |
3446 | 0 | default: |
3447 | 0 | r_format = bfd_hppa_insn2fmt (input_bfd, insn); |
3448 | 0 | switch (r_format) |
3449 | 0 | { |
3450 | 0 | case 10: |
3451 | 0 | case -10: |
3452 | 0 | if (val & 7) |
3453 | 0 | { |
3454 | 0 | _bfd_error_handler |
3455 | | /* xgettext:c-format */ |
3456 | 0 | (_("%pB(%pA+%#" PRIx64 "): displacement %#x for insn %#x " |
3457 | 0 | "is not a multiple of 8 (gp %#x)"), |
3458 | 0 | input_bfd, |
3459 | 0 | input_section, |
3460 | 0 | (uint64_t) offset, |
3461 | 0 | val, |
3462 | 0 | insn, |
3463 | 0 | (unsigned int) elf_gp (input_section->output_section->owner)); |
3464 | 0 | bfd_set_error (bfd_error_bad_value); |
3465 | 0 | return bfd_reloc_notsupported; |
3466 | 0 | } |
3467 | 0 | break; |
3468 | | |
3469 | 0 | case -11: |
3470 | 0 | case -16: |
3471 | 0 | if (val & 3) |
3472 | 0 | { |
3473 | 0 | _bfd_error_handler |
3474 | | /* xgettext:c-format */ |
3475 | 0 | (_("%pB(%pA+%#" PRIx64 "): displacement %#x for insn %#x " |
3476 | 0 | "is not a multiple of 4 (gp %#x)"), |
3477 | 0 | input_bfd, |
3478 | 0 | input_section, |
3479 | 0 | (uint64_t) offset, |
3480 | 0 | val, |
3481 | 0 | insn, |
3482 | 0 | (unsigned int) elf_gp (input_section->output_section->owner)); |
3483 | 0 | bfd_set_error (bfd_error_bad_value); |
3484 | 0 | return bfd_reloc_notsupported; |
3485 | 0 | } |
3486 | 0 | break; |
3487 | | |
3488 | 0 | default: |
3489 | 0 | break; |
3490 | 0 | } |
3491 | 0 | break; |
3492 | 0 | } |
3493 | 0 | insn = hppa_rebuild_insn (insn, val, r_format); |
3494 | | |
3495 | | /* Update the instruction word. */ |
3496 | 0 | bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); |
3497 | 0 | return bfd_reloc_ok; |
3498 | 0 | } |
3499 | | |
3500 | | /* Relocate an HPPA ELF section. */ |
3501 | | |
3502 | | static int |
3503 | | elf32_hppa_relocate_section (bfd *output_bfd, |
3504 | | struct bfd_link_info *info, |
3505 | | bfd *input_bfd, |
3506 | | asection *input_section, |
3507 | | bfd_byte *contents, |
3508 | | Elf_Internal_Rela *relocs, |
3509 | | Elf_Internal_Sym *local_syms, |
3510 | | asection **local_sections) |
3511 | 0 | { |
3512 | 0 | bfd_vma *local_got_offsets; |
3513 | 0 | struct elf32_hppa_link_hash_table *htab; |
3514 | 0 | Elf_Internal_Shdr *symtab_hdr; |
3515 | 0 | Elf_Internal_Rela *rela; |
3516 | 0 | Elf_Internal_Rela *relend; |
3517 | |
|
3518 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
3519 | |
|
3520 | 0 | htab = hppa_link_hash_table (info); |
3521 | 0 | if (htab == NULL) |
3522 | 0 | return false; |
3523 | | |
3524 | 0 | local_got_offsets = elf_local_got_offsets (input_bfd); |
3525 | |
|
3526 | 0 | rela = relocs; |
3527 | 0 | relend = relocs + input_section->reloc_count; |
3528 | 0 | for (; rela < relend; rela++) |
3529 | 0 | { |
3530 | 0 | unsigned int r_type; |
3531 | 0 | reloc_howto_type *howto; |
3532 | 0 | unsigned int r_symndx; |
3533 | 0 | struct elf32_hppa_link_hash_entry *hh; |
3534 | 0 | Elf_Internal_Sym *sym; |
3535 | 0 | asection *sym_sec; |
3536 | 0 | bfd_vma relocation; |
3537 | 0 | bfd_reloc_status_type rstatus; |
3538 | 0 | const char *sym_name; |
3539 | 0 | bool plabel; |
3540 | 0 | bool warned_undef; |
3541 | |
|
3542 | 0 | r_type = ELF32_R_TYPE (rela->r_info); |
3543 | 0 | if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) |
3544 | 0 | { |
3545 | 0 | bfd_set_error (bfd_error_bad_value); |
3546 | 0 | return false; |
3547 | 0 | } |
3548 | 0 | if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY |
3549 | 0 | || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) |
3550 | 0 | continue; |
3551 | | |
3552 | 0 | r_symndx = ELF32_R_SYM (rela->r_info); |
3553 | 0 | hh = NULL; |
3554 | 0 | sym = NULL; |
3555 | 0 | sym_sec = NULL; |
3556 | 0 | warned_undef = false; |
3557 | 0 | if (r_symndx < symtab_hdr->sh_info) |
3558 | 0 | { |
3559 | | /* This is a local symbol, h defaults to NULL. */ |
3560 | 0 | sym = local_syms + r_symndx; |
3561 | 0 | sym_sec = local_sections[r_symndx]; |
3562 | 0 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela); |
3563 | 0 | } |
3564 | 0 | else |
3565 | 0 | { |
3566 | 0 | struct elf_link_hash_entry *eh; |
3567 | 0 | bool unresolved_reloc, ignored; |
3568 | 0 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); |
3569 | |
|
3570 | 0 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela, |
3571 | 0 | r_symndx, symtab_hdr, sym_hashes, |
3572 | 0 | eh, sym_sec, relocation, |
3573 | 0 | unresolved_reloc, warned_undef, |
3574 | 0 | ignored); |
3575 | | |
3576 | 0 | if (!bfd_link_relocatable (info) |
3577 | 0 | && relocation == 0 |
3578 | 0 | && eh->root.type != bfd_link_hash_defined |
3579 | 0 | && eh->root.type != bfd_link_hash_defweak |
3580 | 0 | && eh->root.type != bfd_link_hash_undefweak) |
3581 | 0 | { |
3582 | 0 | if (info->unresolved_syms_in_objects == RM_IGNORE |
3583 | 0 | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT |
3584 | 0 | && eh->type == STT_PARISC_MILLI) |
3585 | 0 | { |
3586 | 0 | (*info->callbacks->undefined_symbol) |
3587 | 0 | (info, eh_name (eh), input_bfd, |
3588 | 0 | input_section, rela->r_offset, false); |
3589 | 0 | warned_undef = true; |
3590 | 0 | } |
3591 | 0 | } |
3592 | 0 | hh = hppa_elf_hash_entry (eh); |
3593 | 0 | } |
3594 | | |
3595 | 0 | if (sym_sec != NULL && discarded_section (sym_sec)) |
3596 | 0 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
3597 | 0 | rela, 1, relend, |
3598 | 0 | elf_hppa_howto_table + r_type, 0, |
3599 | 0 | contents); |
3600 | |
|
3601 | 0 | if (bfd_link_relocatable (info)) |
3602 | 0 | continue; |
3603 | | |
3604 | | /* Do any required modifications to the relocation value, and |
3605 | | determine what types of dynamic info we need to output, if |
3606 | | any. */ |
3607 | 0 | plabel = 0; |
3608 | 0 | switch (r_type) |
3609 | 0 | { |
3610 | 0 | case R_PARISC_DLTIND14F: |
3611 | 0 | case R_PARISC_DLTIND14R: |
3612 | 0 | case R_PARISC_DLTIND21L: |
3613 | 0 | { |
3614 | 0 | bfd_vma off; |
3615 | 0 | bool do_got = false; |
3616 | 0 | bool reloc = bfd_link_pic (info); |
3617 | | |
3618 | | /* Relocation is to the entry for this symbol in the |
3619 | | global offset table. */ |
3620 | 0 | if (hh != NULL) |
3621 | 0 | { |
3622 | 0 | bool dyn; |
3623 | |
|
3624 | 0 | off = hh->eh.got.offset; |
3625 | 0 | dyn = htab->etab.dynamic_sections_created; |
3626 | 0 | reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh) |
3627 | 0 | && (reloc |
3628 | 0 | || (hh->eh.dynindx != -1 |
3629 | 0 | && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))); |
3630 | 0 | if (!reloc |
3631 | 0 | || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, |
3632 | 0 | bfd_link_pic (info), |
3633 | 0 | &hh->eh)) |
3634 | 0 | { |
3635 | | /* If we aren't going to call finish_dynamic_symbol, |
3636 | | then we need to handle initialisation of the .got |
3637 | | entry and create needed relocs here. Since the |
3638 | | offset must always be a multiple of 4, we use the |
3639 | | least significant bit to record whether we have |
3640 | | initialised it already. */ |
3641 | 0 | if ((off & 1) != 0) |
3642 | 0 | off &= ~1; |
3643 | 0 | else |
3644 | 0 | { |
3645 | 0 | hh->eh.got.offset |= 1; |
3646 | 0 | do_got = true; |
3647 | 0 | } |
3648 | 0 | } |
3649 | 0 | } |
3650 | 0 | else |
3651 | 0 | { |
3652 | | /* Local symbol case. */ |
3653 | 0 | if (local_got_offsets == NULL) |
3654 | 0 | abort (); |
3655 | | |
3656 | 0 | off = local_got_offsets[r_symndx]; |
3657 | | |
3658 | | /* The offset must always be a multiple of 4. We use |
3659 | | the least significant bit to record whether we have |
3660 | | already generated the necessary reloc. */ |
3661 | 0 | if ((off & 1) != 0) |
3662 | 0 | off &= ~1; |
3663 | 0 | else |
3664 | 0 | { |
3665 | 0 | local_got_offsets[r_symndx] |= 1; |
3666 | 0 | do_got = true; |
3667 | 0 | } |
3668 | 0 | } |
3669 | | |
3670 | 0 | if (do_got) |
3671 | 0 | { |
3672 | 0 | if (reloc) |
3673 | 0 | { |
3674 | | /* Output a dynamic relocation for this GOT entry. |
3675 | | In this case it is relative to the base of the |
3676 | | object because the symbol index is zero. */ |
3677 | 0 | Elf_Internal_Rela outrel; |
3678 | 0 | bfd_byte *loc; |
3679 | 0 | asection *sec = htab->etab.srelgot; |
3680 | |
|
3681 | 0 | outrel.r_offset = (off |
3682 | 0 | + htab->etab.sgot->output_offset |
3683 | 0 | + htab->etab.sgot->output_section->vma); |
3684 | 0 | outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); |
3685 | 0 | outrel.r_addend = relocation; |
3686 | 0 | loc = sec->contents; |
3687 | 0 | loc += sec->reloc_count++ * sizeof (Elf32_External_Rela); |
3688 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
3689 | 0 | } |
3690 | 0 | else |
3691 | 0 | bfd_put_32 (output_bfd, relocation, |
3692 | 0 | htab->etab.sgot->contents + off); |
3693 | 0 | } |
3694 | |
|
3695 | 0 | if (off >= (bfd_vma) -2) |
3696 | 0 | abort (); |
3697 | | |
3698 | | /* Add the base of the GOT to the relocation value. */ |
3699 | 0 | relocation = (off |
3700 | 0 | + htab->etab.sgot->output_offset |
3701 | 0 | + htab->etab.sgot->output_section->vma); |
3702 | 0 | } |
3703 | 0 | break; |
3704 | | |
3705 | 0 | case R_PARISC_SEGREL32: |
3706 | | /* If this is the first SEGREL relocation, then initialize |
3707 | | the segment base values. */ |
3708 | 0 | if (htab->text_segment_base == (bfd_vma) -1) |
3709 | 0 | bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); |
3710 | 0 | break; |
3711 | | |
3712 | 0 | case R_PARISC_PLABEL14R: |
3713 | 0 | case R_PARISC_PLABEL21L: |
3714 | 0 | case R_PARISC_PLABEL32: |
3715 | 0 | if (htab->etab.dynamic_sections_created) |
3716 | 0 | { |
3717 | 0 | bfd_vma off; |
3718 | 0 | bool do_plt = 0; |
3719 | | /* If we have a global symbol with a PLT slot, then |
3720 | | redirect this relocation to it. */ |
3721 | 0 | if (hh != NULL) |
3722 | 0 | { |
3723 | 0 | off = hh->eh.plt.offset; |
3724 | 0 | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, |
3725 | 0 | bfd_link_pic (info), |
3726 | 0 | &hh->eh)) |
3727 | 0 | { |
3728 | | /* In a non-shared link, adjust_dynamic_symbol |
3729 | | isn't called for symbols forced local. We |
3730 | | need to write out the plt entry here. */ |
3731 | 0 | if ((off & 1) != 0) |
3732 | 0 | off &= ~1; |
3733 | 0 | else |
3734 | 0 | { |
3735 | 0 | hh->eh.plt.offset |= 1; |
3736 | 0 | do_plt = 1; |
3737 | 0 | } |
3738 | 0 | } |
3739 | 0 | } |
3740 | 0 | else |
3741 | 0 | { |
3742 | 0 | bfd_vma *local_plt_offsets; |
3743 | |
|
3744 | 0 | if (local_got_offsets == NULL) |
3745 | 0 | abort (); |
3746 | | |
3747 | 0 | local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; |
3748 | 0 | off = local_plt_offsets[r_symndx]; |
3749 | | |
3750 | | /* As for the local .got entry case, we use the last |
3751 | | bit to record whether we've already initialised |
3752 | | this local .plt entry. */ |
3753 | 0 | if ((off & 1) != 0) |
3754 | 0 | off &= ~1; |
3755 | 0 | else |
3756 | 0 | { |
3757 | 0 | local_plt_offsets[r_symndx] |= 1; |
3758 | 0 | do_plt = 1; |
3759 | 0 | } |
3760 | 0 | } |
3761 | | |
3762 | 0 | if (do_plt) |
3763 | 0 | { |
3764 | 0 | if (bfd_link_pic (info)) |
3765 | 0 | { |
3766 | | /* Output a dynamic IPLT relocation for this |
3767 | | PLT entry. */ |
3768 | 0 | Elf_Internal_Rela outrel; |
3769 | 0 | bfd_byte *loc; |
3770 | 0 | asection *s = htab->etab.srelplt; |
3771 | |
|
3772 | 0 | outrel.r_offset = (off |
3773 | 0 | + htab->etab.splt->output_offset |
3774 | 0 | + htab->etab.splt->output_section->vma); |
3775 | 0 | outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); |
3776 | 0 | outrel.r_addend = relocation; |
3777 | 0 | loc = s->contents; |
3778 | 0 | loc += s->reloc_count++ * sizeof (Elf32_External_Rela); |
3779 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
3780 | 0 | } |
3781 | 0 | else |
3782 | 0 | { |
3783 | 0 | bfd_put_32 (output_bfd, |
3784 | 0 | relocation, |
3785 | 0 | htab->etab.splt->contents + off); |
3786 | 0 | bfd_put_32 (output_bfd, |
3787 | 0 | elf_gp (htab->etab.splt->output_section->owner), |
3788 | 0 | htab->etab.splt->contents + off + 4); |
3789 | 0 | } |
3790 | 0 | } |
3791 | |
|
3792 | 0 | if (off >= (bfd_vma) -2) |
3793 | 0 | abort (); |
3794 | | |
3795 | | /* PLABELs contain function pointers. Relocation is to |
3796 | | the entry for the function in the .plt. The magic +2 |
3797 | | offset signals to $$dyncall that the function pointer |
3798 | | is in the .plt and thus has a gp pointer too. |
3799 | | Exception: Undefined PLABELs should have a value of |
3800 | | zero. */ |
3801 | 0 | if (hh == NULL |
3802 | 0 | || (hh->eh.root.type != bfd_link_hash_undefweak |
3803 | 0 | && hh->eh.root.type != bfd_link_hash_undefined)) |
3804 | 0 | { |
3805 | 0 | relocation = (off |
3806 | 0 | + htab->etab.splt->output_offset |
3807 | 0 | + htab->etab.splt->output_section->vma |
3808 | 0 | + 2); |
3809 | 0 | } |
3810 | 0 | plabel = 1; |
3811 | 0 | } |
3812 | | /* Fall through. */ |
3813 | | |
3814 | 0 | case R_PARISC_DIR17F: |
3815 | 0 | case R_PARISC_DIR17R: |
3816 | 0 | case R_PARISC_DIR14F: |
3817 | 0 | case R_PARISC_DIR14R: |
3818 | 0 | case R_PARISC_DIR21L: |
3819 | 0 | case R_PARISC_DPREL14F: |
3820 | 0 | case R_PARISC_DPREL14R: |
3821 | 0 | case R_PARISC_DPREL21L: |
3822 | 0 | case R_PARISC_DIR32: |
3823 | 0 | if ((input_section->flags & SEC_ALLOC) == 0) |
3824 | 0 | break; |
3825 | | |
3826 | 0 | if (bfd_link_pic (info) |
3827 | 0 | ? ((hh == NULL |
3828 | 0 | || hh->eh.dyn_relocs != NULL) |
3829 | 0 | && ((hh != NULL && pc_dynrelocs (hh)) |
3830 | 0 | || IS_ABSOLUTE_RELOC (r_type))) |
3831 | 0 | : (hh != NULL |
3832 | 0 | && hh->eh.dyn_relocs != NULL)) |
3833 | 0 | { |
3834 | 0 | Elf_Internal_Rela outrel; |
3835 | 0 | bool skip; |
3836 | 0 | asection *sreloc; |
3837 | 0 | bfd_byte *loc; |
3838 | | |
3839 | | /* When generating a shared object, these relocations |
3840 | | are copied into the output file to be resolved at run |
3841 | | time. */ |
3842 | |
|
3843 | 0 | outrel.r_addend = rela->r_addend; |
3844 | 0 | outrel.r_offset = |
3845 | 0 | _bfd_elf_section_offset (output_bfd, info, input_section, |
3846 | 0 | rela->r_offset); |
3847 | 0 | skip = (outrel.r_offset == (bfd_vma) -1 |
3848 | 0 | || outrel.r_offset == (bfd_vma) -2); |
3849 | 0 | outrel.r_offset += (input_section->output_offset |
3850 | 0 | + input_section->output_section->vma); |
3851 | |
|
3852 | 0 | if (skip) |
3853 | 0 | { |
3854 | 0 | memset (&outrel, 0, sizeof (outrel)); |
3855 | 0 | } |
3856 | 0 | else if (hh != NULL |
3857 | 0 | && hh->eh.dynindx != -1 |
3858 | 0 | && (plabel |
3859 | 0 | || !IS_ABSOLUTE_RELOC (r_type) |
3860 | 0 | || !bfd_link_pic (info) |
3861 | 0 | || !SYMBOLIC_BIND (info, &hh->eh) |
3862 | 0 | || !hh->eh.def_regular)) |
3863 | 0 | { |
3864 | 0 | outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type); |
3865 | 0 | } |
3866 | 0 | else /* It's a local symbol, or one marked to become local. */ |
3867 | 0 | { |
3868 | 0 | int indx = 0; |
3869 | | |
3870 | | /* Add the absolute offset of the symbol. */ |
3871 | 0 | outrel.r_addend += relocation; |
3872 | | |
3873 | | /* Global plabels need to be processed by the |
3874 | | dynamic linker so that functions have at most one |
3875 | | fptr. For this reason, we need to differentiate |
3876 | | between global and local plabels, which we do by |
3877 | | providing the function symbol for a global plabel |
3878 | | reloc, and no symbol for local plabels. */ |
3879 | 0 | if (! plabel |
3880 | 0 | && sym_sec != NULL |
3881 | 0 | && sym_sec->output_section != NULL |
3882 | 0 | && ! bfd_is_abs_section (sym_sec)) |
3883 | 0 | { |
3884 | 0 | asection *osec; |
3885 | |
|
3886 | 0 | osec = sym_sec->output_section; |
3887 | 0 | indx = elf_section_data (osec)->dynindx; |
3888 | 0 | if (indx == 0) |
3889 | 0 | { |
3890 | 0 | osec = htab->etab.text_index_section; |
3891 | 0 | indx = elf_section_data (osec)->dynindx; |
3892 | 0 | } |
3893 | 0 | BFD_ASSERT (indx != 0); |
3894 | | |
3895 | | /* We are turning this relocation into one |
3896 | | against a section symbol, so subtract out the |
3897 | | output section's address but not the offset |
3898 | | of the input section in the output section. */ |
3899 | 0 | outrel.r_addend -= osec->vma; |
3900 | 0 | } |
3901 | |
|
3902 | 0 | outrel.r_info = ELF32_R_INFO (indx, r_type); |
3903 | 0 | } |
3904 | 0 | sreloc = elf_section_data (input_section)->sreloc; |
3905 | 0 | if (sreloc == NULL) |
3906 | 0 | abort (); |
3907 | | |
3908 | 0 | loc = sreloc->contents; |
3909 | 0 | loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); |
3910 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
3911 | 0 | } |
3912 | 0 | break; |
3913 | | |
3914 | 0 | case R_PARISC_TLS_LDM21L: |
3915 | 0 | case R_PARISC_TLS_LDM14R: |
3916 | 0 | { |
3917 | 0 | bfd_vma off; |
3918 | |
|
3919 | 0 | off = htab->tls_ldm_got.offset; |
3920 | 0 | if (off & 1) |
3921 | 0 | off &= ~1; |
3922 | 0 | else |
3923 | 0 | { |
3924 | 0 | Elf_Internal_Rela outrel; |
3925 | 0 | bfd_byte *loc; |
3926 | |
|
3927 | 0 | outrel.r_offset = (off |
3928 | 0 | + htab->etab.sgot->output_section->vma |
3929 | 0 | + htab->etab.sgot->output_offset); |
3930 | 0 | outrel.r_addend = 0; |
3931 | 0 | outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32); |
3932 | 0 | loc = htab->etab.srelgot->contents; |
3933 | 0 | loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela); |
3934 | |
|
3935 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
3936 | 0 | htab->tls_ldm_got.offset |= 1; |
3937 | 0 | } |
3938 | | |
3939 | | /* Add the base of the GOT to the relocation value. */ |
3940 | 0 | relocation = (off |
3941 | 0 | + htab->etab.sgot->output_offset |
3942 | 0 | + htab->etab.sgot->output_section->vma); |
3943 | |
|
3944 | 0 | break; |
3945 | 0 | } |
3946 | | |
3947 | 0 | case R_PARISC_TLS_LDO21L: |
3948 | 0 | case R_PARISC_TLS_LDO14R: |
3949 | 0 | relocation -= dtpoff_base (info); |
3950 | 0 | break; |
3951 | | |
3952 | 0 | case R_PARISC_TLS_GD21L: |
3953 | 0 | case R_PARISC_TLS_GD14R: |
3954 | 0 | case R_PARISC_TLS_IE21L: |
3955 | 0 | case R_PARISC_TLS_IE14R: |
3956 | 0 | { |
3957 | 0 | bfd_vma off; |
3958 | 0 | int indx; |
3959 | 0 | char tls_type; |
3960 | |
|
3961 | 0 | indx = 0; |
3962 | 0 | if (hh != NULL) |
3963 | 0 | { |
3964 | 0 | if (!htab->etab.dynamic_sections_created |
3965 | 0 | || hh->eh.dynindx == -1 |
3966 | 0 | || SYMBOL_REFERENCES_LOCAL (info, &hh->eh) |
3967 | 0 | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)) |
3968 | | /* This is actually a static link, or it is a |
3969 | | -Bsymbolic link and the symbol is defined |
3970 | | locally, or the symbol was forced to be local |
3971 | | because of a version file. */ |
3972 | 0 | ; |
3973 | 0 | else |
3974 | 0 | indx = hh->eh.dynindx; |
3975 | 0 | off = hh->eh.got.offset; |
3976 | 0 | tls_type = hh->tls_type; |
3977 | 0 | } |
3978 | 0 | else |
3979 | 0 | { |
3980 | 0 | off = local_got_offsets[r_symndx]; |
3981 | 0 | tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx]; |
3982 | 0 | } |
3983 | |
|
3984 | 0 | if (tls_type == GOT_UNKNOWN) |
3985 | 0 | abort (); |
3986 | | |
3987 | 0 | if ((off & 1) != 0) |
3988 | 0 | off &= ~1; |
3989 | 0 | else |
3990 | 0 | { |
3991 | 0 | bool need_relocs = false; |
3992 | 0 | Elf_Internal_Rela outrel; |
3993 | 0 | bfd_byte *loc = NULL; |
3994 | 0 | int cur_off = off; |
3995 | | |
3996 | | /* The GOT entries have not been initialized yet. Do it |
3997 | | now, and emit any relocations. If both an IE GOT and a |
3998 | | GD GOT are necessary, we emit the GD first. */ |
3999 | |
|
4000 | 0 | if (indx != 0 |
4001 | 0 | || (bfd_link_dll (info) |
4002 | 0 | && (hh == NULL |
4003 | 0 | || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))) |
4004 | 0 | { |
4005 | 0 | need_relocs = true; |
4006 | 0 | loc = htab->etab.srelgot->contents; |
4007 | 0 | loc += (htab->etab.srelgot->reloc_count |
4008 | 0 | * sizeof (Elf32_External_Rela)); |
4009 | 0 | } |
4010 | |
|
4011 | 0 | if (tls_type & GOT_TLS_GD) |
4012 | 0 | { |
4013 | 0 | if (need_relocs) |
4014 | 0 | { |
4015 | 0 | outrel.r_offset |
4016 | 0 | = (cur_off |
4017 | 0 | + htab->etab.sgot->output_section->vma |
4018 | 0 | + htab->etab.sgot->output_offset); |
4019 | 0 | outrel.r_info |
4020 | 0 | = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32); |
4021 | 0 | outrel.r_addend = 0; |
4022 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
4023 | 0 | htab->etab.srelgot->reloc_count++; |
4024 | 0 | loc += sizeof (Elf32_External_Rela); |
4025 | 0 | bfd_put_32 (output_bfd, 0, |
4026 | 0 | htab->etab.sgot->contents + cur_off); |
4027 | 0 | } |
4028 | 0 | else |
4029 | | /* If we are not emitting relocations for a |
4030 | | general dynamic reference, then we must be in a |
4031 | | static link or an executable link with the |
4032 | | symbol binding locally. Mark it as belonging |
4033 | | to module 1, the executable. */ |
4034 | 0 | bfd_put_32 (output_bfd, 1, |
4035 | 0 | htab->etab.sgot->contents + cur_off); |
4036 | |
|
4037 | 0 | if (indx != 0) |
4038 | 0 | { |
4039 | 0 | outrel.r_info |
4040 | 0 | = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32); |
4041 | 0 | outrel.r_offset += 4; |
4042 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
4043 | 0 | htab->etab.srelgot->reloc_count++; |
4044 | 0 | loc += sizeof (Elf32_External_Rela); |
4045 | 0 | bfd_put_32 (output_bfd, 0, |
4046 | 0 | htab->etab.sgot->contents + cur_off + 4); |
4047 | 0 | } |
4048 | 0 | else |
4049 | 0 | bfd_put_32 (output_bfd, relocation - dtpoff_base (info), |
4050 | 0 | htab->etab.sgot->contents + cur_off + 4); |
4051 | 0 | cur_off += 8; |
4052 | 0 | } |
4053 | |
|
4054 | 0 | if (tls_type & GOT_TLS_IE) |
4055 | 0 | { |
4056 | 0 | if (need_relocs |
4057 | 0 | && !(bfd_link_executable (info) |
4058 | 0 | && SYMBOL_REFERENCES_LOCAL (info, &hh->eh))) |
4059 | 0 | { |
4060 | 0 | outrel.r_offset |
4061 | 0 | = (cur_off |
4062 | 0 | + htab->etab.sgot->output_section->vma |
4063 | 0 | + htab->etab.sgot->output_offset); |
4064 | 0 | outrel.r_info = ELF32_R_INFO (indx, |
4065 | 0 | R_PARISC_TLS_TPREL32); |
4066 | 0 | if (indx == 0) |
4067 | 0 | outrel.r_addend = relocation - dtpoff_base (info); |
4068 | 0 | else |
4069 | 0 | outrel.r_addend = 0; |
4070 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
4071 | 0 | htab->etab.srelgot->reloc_count++; |
4072 | 0 | loc += sizeof (Elf32_External_Rela); |
4073 | 0 | } |
4074 | 0 | else |
4075 | 0 | bfd_put_32 (output_bfd, tpoff (info, relocation), |
4076 | 0 | htab->etab.sgot->contents + cur_off); |
4077 | 0 | cur_off += 4; |
4078 | 0 | } |
4079 | |
|
4080 | 0 | if (hh != NULL) |
4081 | 0 | hh->eh.got.offset |= 1; |
4082 | 0 | else |
4083 | 0 | local_got_offsets[r_symndx] |= 1; |
4084 | 0 | } |
4085 | |
|
4086 | 0 | if ((tls_type & GOT_NORMAL) != 0 |
4087 | 0 | && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0) |
4088 | 0 | { |
4089 | 0 | if (hh != NULL) |
4090 | 0 | _bfd_error_handler (_("%s has both normal and TLS relocs"), |
4091 | 0 | hh_name (hh)); |
4092 | 0 | else |
4093 | 0 | { |
4094 | 0 | Elf_Internal_Sym *isym |
4095 | 0 | = bfd_sym_from_r_symndx (&htab->etab.sym_cache, |
4096 | 0 | input_bfd, r_symndx); |
4097 | 0 | if (isym == NULL) |
4098 | 0 | return false; |
4099 | 0 | sym_name |
4100 | 0 | = bfd_elf_string_from_elf_section (input_bfd, |
4101 | 0 | symtab_hdr->sh_link, |
4102 | 0 | isym->st_name); |
4103 | 0 | if (sym_name == NULL) |
4104 | 0 | return false; |
4105 | 0 | if (*sym_name == '\0') |
4106 | 0 | sym_name = bfd_section_name (sym_sec); |
4107 | 0 | _bfd_error_handler |
4108 | 0 | (_("%pB:%s has both normal and TLS relocs"), |
4109 | 0 | input_bfd, sym_name); |
4110 | 0 | } |
4111 | 0 | bfd_set_error (bfd_error_bad_value); |
4112 | 0 | return false; |
4113 | 0 | } |
4114 | | |
4115 | 0 | if ((tls_type & GOT_TLS_GD) |
4116 | 0 | && r_type != R_PARISC_TLS_GD21L |
4117 | 0 | && r_type != R_PARISC_TLS_GD14R) |
4118 | 0 | off += 2 * GOT_ENTRY_SIZE; |
4119 | | |
4120 | | /* Add the base of the GOT to the relocation value. */ |
4121 | 0 | relocation = (off |
4122 | 0 | + htab->etab.sgot->output_offset |
4123 | 0 | + htab->etab.sgot->output_section->vma); |
4124 | |
|
4125 | 0 | break; |
4126 | 0 | } |
4127 | | |
4128 | 0 | case R_PARISC_TLS_LE21L: |
4129 | 0 | case R_PARISC_TLS_LE14R: |
4130 | 0 | { |
4131 | 0 | relocation = tpoff (info, relocation); |
4132 | 0 | break; |
4133 | 0 | } |
4134 | 0 | break; |
4135 | | |
4136 | 0 | default: |
4137 | 0 | break; |
4138 | 0 | } |
4139 | | |
4140 | 0 | rstatus = final_link_relocate (input_section, contents, rela, relocation, |
4141 | 0 | htab, sym_sec, hh, info); |
4142 | |
|
4143 | 0 | if (rstatus == bfd_reloc_ok) |
4144 | 0 | continue; |
4145 | | |
4146 | 0 | if (hh != NULL) |
4147 | 0 | sym_name = hh_name (hh); |
4148 | 0 | else |
4149 | 0 | { |
4150 | 0 | sym_name = bfd_elf_string_from_elf_section (input_bfd, |
4151 | 0 | symtab_hdr->sh_link, |
4152 | 0 | sym->st_name); |
4153 | 0 | if (sym_name == NULL) |
4154 | 0 | return false; |
4155 | 0 | if (*sym_name == '\0') |
4156 | 0 | sym_name = bfd_section_name (sym_sec); |
4157 | 0 | } |
4158 | | |
4159 | 0 | howto = elf_hppa_howto_table + r_type; |
4160 | |
|
4161 | 0 | if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported) |
4162 | 0 | { |
4163 | 0 | if (rstatus == bfd_reloc_notsupported || !warned_undef) |
4164 | 0 | { |
4165 | 0 | _bfd_error_handler |
4166 | | /* xgettext:c-format */ |
4167 | 0 | (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"), |
4168 | 0 | input_bfd, |
4169 | 0 | input_section, |
4170 | 0 | (uint64_t) rela->r_offset, |
4171 | 0 | howto->name, |
4172 | 0 | sym_name); |
4173 | 0 | bfd_set_error (bfd_error_bad_value); |
4174 | 0 | return false; |
4175 | 0 | } |
4176 | 0 | } |
4177 | 0 | else |
4178 | 0 | (*info->callbacks->reloc_overflow) |
4179 | 0 | (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name, |
4180 | 0 | (bfd_vma) 0, input_bfd, input_section, rela->r_offset); |
4181 | 0 | } |
4182 | | |
4183 | 0 | return true; |
4184 | 0 | } |
4185 | | |
4186 | | /* Finish up dynamic symbol handling. We set the contents of various |
4187 | | dynamic sections here. */ |
4188 | | |
4189 | | static bool |
4190 | | elf32_hppa_finish_dynamic_symbol (bfd *output_bfd, |
4191 | | struct bfd_link_info *info, |
4192 | | struct elf_link_hash_entry *eh, |
4193 | | Elf_Internal_Sym *sym) |
4194 | 0 | { |
4195 | 0 | struct elf32_hppa_link_hash_table *htab; |
4196 | 0 | Elf_Internal_Rela rela; |
4197 | 0 | bfd_byte *loc; |
4198 | |
|
4199 | 0 | htab = hppa_link_hash_table (info); |
4200 | |
|
4201 | 0 | if (eh->plt.offset != (bfd_vma) -1) |
4202 | 0 | { |
4203 | 0 | bfd_vma value; |
4204 | |
|
4205 | 0 | if (eh->plt.offset & 1) |
4206 | 0 | abort (); |
4207 | | |
4208 | | /* This symbol has an entry in the procedure linkage table. Set |
4209 | | it up. |
4210 | | |
4211 | | The format of a plt entry is |
4212 | | <funcaddr> |
4213 | | <__gp> |
4214 | | */ |
4215 | 0 | value = 0; |
4216 | 0 | if (eh->root.type == bfd_link_hash_defined |
4217 | 0 | || eh->root.type == bfd_link_hash_defweak) |
4218 | 0 | { |
4219 | 0 | value = eh->root.u.def.value; |
4220 | 0 | if (eh->root.u.def.section->output_section != NULL) |
4221 | 0 | value += (eh->root.u.def.section->output_offset |
4222 | 0 | + eh->root.u.def.section->output_section->vma); |
4223 | 0 | } |
4224 | | |
4225 | | /* Create a dynamic IPLT relocation for this entry. */ |
4226 | 0 | rela.r_offset = (eh->plt.offset |
4227 | 0 | + htab->etab.splt->output_offset |
4228 | 0 | + htab->etab.splt->output_section->vma); |
4229 | 0 | if (eh->dynindx != -1) |
4230 | 0 | { |
4231 | 0 | rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT); |
4232 | 0 | rela.r_addend = 0; |
4233 | 0 | } |
4234 | 0 | else |
4235 | 0 | { |
4236 | | /* This symbol has been marked to become local, and is |
4237 | | used by a plabel so must be kept in the .plt. */ |
4238 | 0 | rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); |
4239 | 0 | rela.r_addend = value; |
4240 | 0 | } |
4241 | |
|
4242 | 0 | loc = htab->etab.srelplt->contents; |
4243 | 0 | loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela); |
4244 | 0 | bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc); |
4245 | |
|
4246 | 0 | if (!eh->def_regular) |
4247 | 0 | { |
4248 | | /* Mark the symbol as undefined, rather than as defined in |
4249 | | the .plt section. Leave the value alone. */ |
4250 | 0 | sym->st_shndx = SHN_UNDEF; |
4251 | 0 | } |
4252 | 0 | } |
4253 | | |
4254 | 0 | if (eh->got.offset != (bfd_vma) -1 |
4255 | 0 | && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0 |
4256 | 0 | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) |
4257 | 0 | { |
4258 | 0 | bool is_dyn = (eh->dynindx != -1 |
4259 | 0 | && !SYMBOL_REFERENCES_LOCAL (info, eh)); |
4260 | |
|
4261 | 0 | if (is_dyn || bfd_link_pic (info)) |
4262 | 0 | { |
4263 | | /* This symbol has an entry in the global offset table. Set |
4264 | | it up. */ |
4265 | |
|
4266 | 0 | rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1) |
4267 | 0 | + htab->etab.sgot->output_offset |
4268 | 0 | + htab->etab.sgot->output_section->vma); |
4269 | | |
4270 | | /* If this is a -Bsymbolic link and the symbol is defined |
4271 | | locally or was forced to be local because of a version |
4272 | | file, we just want to emit a RELATIVE reloc. The entry |
4273 | | in the global offset table will already have been |
4274 | | initialized in the relocate_section function. */ |
4275 | 0 | if (!is_dyn |
4276 | 0 | && (eh->root.type == bfd_link_hash_defined |
4277 | 0 | || eh->root.type == bfd_link_hash_defweak)) |
4278 | 0 | { |
4279 | 0 | rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); |
4280 | 0 | rela.r_addend = (eh->root.u.def.value |
4281 | 0 | + eh->root.u.def.section->output_offset |
4282 | 0 | + eh->root.u.def.section->output_section->vma); |
4283 | 0 | } |
4284 | 0 | else |
4285 | 0 | { |
4286 | 0 | if ((eh->got.offset & 1) != 0) |
4287 | 0 | abort (); |
4288 | | |
4289 | 0 | bfd_put_32 (output_bfd, 0, |
4290 | 0 | htab->etab.sgot->contents + (eh->got.offset & ~1)); |
4291 | 0 | rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32); |
4292 | 0 | rela.r_addend = 0; |
4293 | 0 | } |
4294 | | |
4295 | 0 | loc = htab->etab.srelgot->contents; |
4296 | 0 | loc += (htab->etab.srelgot->reloc_count++ |
4297 | 0 | * sizeof (Elf32_External_Rela)); |
4298 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
4299 | 0 | } |
4300 | 0 | } |
4301 | | |
4302 | 0 | if (eh->needs_copy) |
4303 | 0 | { |
4304 | 0 | asection *sec; |
4305 | | |
4306 | | /* This symbol needs a copy reloc. Set it up. */ |
4307 | |
|
4308 | 0 | if (! (eh->dynindx != -1 |
4309 | 0 | && (eh->root.type == bfd_link_hash_defined |
4310 | 0 | || eh->root.type == bfd_link_hash_defweak))) |
4311 | 0 | abort (); |
4312 | | |
4313 | 0 | rela.r_offset = (eh->root.u.def.value |
4314 | 0 | + eh->root.u.def.section->output_offset |
4315 | 0 | + eh->root.u.def.section->output_section->vma); |
4316 | 0 | rela.r_addend = 0; |
4317 | 0 | rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY); |
4318 | 0 | if (eh->root.u.def.section == htab->etab.sdynrelro) |
4319 | 0 | sec = htab->etab.sreldynrelro; |
4320 | 0 | else |
4321 | 0 | sec = htab->etab.srelbss; |
4322 | 0 | loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela); |
4323 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
4324 | 0 | } |
4325 | | |
4326 | | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
4327 | 0 | if (eh == htab->etab.hdynamic || eh == htab->etab.hgot) |
4328 | 0 | { |
4329 | 0 | sym->st_shndx = SHN_ABS; |
4330 | 0 | } |
4331 | |
|
4332 | 0 | return true; |
4333 | 0 | } |
4334 | | |
4335 | | /* Used to decide how to sort relocs in an optimal manner for the |
4336 | | dynamic linker, before writing them out. */ |
4337 | | |
4338 | | static enum elf_reloc_type_class |
4339 | | elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
4340 | | const asection *rel_sec ATTRIBUTE_UNUSED, |
4341 | | const Elf_Internal_Rela *rela) |
4342 | 0 | { |
4343 | | /* Handle TLS relocs first; we don't want them to be marked |
4344 | | relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)" |
4345 | | check below. */ |
4346 | 0 | switch ((int) ELF32_R_TYPE (rela->r_info)) |
4347 | 0 | { |
4348 | 0 | case R_PARISC_TLS_DTPMOD32: |
4349 | 0 | case R_PARISC_TLS_DTPOFF32: |
4350 | 0 | case R_PARISC_TLS_TPREL32: |
4351 | 0 | return reloc_class_normal; |
4352 | 0 | } |
4353 | | |
4354 | 0 | if (ELF32_R_SYM (rela->r_info) == STN_UNDEF) |
4355 | 0 | return reloc_class_relative; |
4356 | | |
4357 | 0 | switch ((int) ELF32_R_TYPE (rela->r_info)) |
4358 | 0 | { |
4359 | 0 | case R_PARISC_IPLT: |
4360 | 0 | return reloc_class_plt; |
4361 | 0 | case R_PARISC_COPY: |
4362 | 0 | return reloc_class_copy; |
4363 | 0 | default: |
4364 | 0 | return reloc_class_normal; |
4365 | 0 | } |
4366 | 0 | } |
4367 | | |
4368 | | /* Finish up the dynamic sections. */ |
4369 | | |
4370 | | static bool |
4371 | | elf32_hppa_finish_dynamic_sections (bfd *output_bfd, |
4372 | | struct bfd_link_info *info) |
4373 | 0 | { |
4374 | 0 | bfd *dynobj; |
4375 | 0 | struct elf32_hppa_link_hash_table *htab; |
4376 | 0 | asection *sdyn; |
4377 | 0 | asection * sgot; |
4378 | |
|
4379 | 0 | htab = hppa_link_hash_table (info); |
4380 | 0 | if (htab == NULL) |
4381 | 0 | return false; |
4382 | | |
4383 | 0 | dynobj = htab->etab.dynobj; |
4384 | |
|
4385 | 0 | sgot = htab->etab.sgot; |
4386 | | /* A broken linker script might have discarded the dynamic sections. |
4387 | | Catch this here so that we do not seg-fault later on. */ |
4388 | 0 | if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) |
4389 | 0 | return false; |
4390 | | |
4391 | 0 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
4392 | |
|
4393 | 0 | if (htab->etab.dynamic_sections_created) |
4394 | 0 | { |
4395 | 0 | Elf32_External_Dyn *dyncon, *dynconend; |
4396 | |
|
4397 | 0 | if (sdyn == NULL) |
4398 | 0 | abort (); |
4399 | | |
4400 | 0 | dyncon = (Elf32_External_Dyn *) sdyn->contents; |
4401 | 0 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
4402 | 0 | for (; dyncon < dynconend; dyncon++) |
4403 | 0 | { |
4404 | 0 | Elf_Internal_Dyn dyn; |
4405 | 0 | asection *s; |
4406 | |
|
4407 | 0 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); |
4408 | |
|
4409 | 0 | switch (dyn.d_tag) |
4410 | 0 | { |
4411 | 0 | default: |
4412 | 0 | continue; |
4413 | | |
4414 | 0 | case DT_PLTGOT: |
4415 | | /* Use PLTGOT to set the GOT register. */ |
4416 | 0 | dyn.d_un.d_ptr = elf_gp (output_bfd); |
4417 | 0 | break; |
4418 | | |
4419 | 0 | case DT_JMPREL: |
4420 | 0 | s = htab->etab.srelplt; |
4421 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
4422 | 0 | break; |
4423 | | |
4424 | 0 | case DT_PLTRELSZ: |
4425 | 0 | s = htab->etab.srelplt; |
4426 | 0 | dyn.d_un.d_val = s->size; |
4427 | 0 | break; |
4428 | 0 | } |
4429 | | |
4430 | 0 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
4431 | 0 | } |
4432 | 0 | } |
4433 | | |
4434 | 0 | if (sgot != NULL && sgot->size != 0) |
4435 | 0 | { |
4436 | | /* Fill in the first entry in the global offset table. |
4437 | | We use it to point to our dynamic section, if we have one. */ |
4438 | 0 | bfd_put_32 (output_bfd, |
4439 | 0 | sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0, |
4440 | 0 | sgot->contents); |
4441 | | |
4442 | | /* The second entry is reserved for use by the dynamic linker. */ |
4443 | 0 | memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); |
4444 | | |
4445 | | /* Set .got entry size. */ |
4446 | 0 | elf_section_data (sgot->output_section) |
4447 | 0 | ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; |
4448 | 0 | } |
4449 | |
|
4450 | 0 | if (htab->etab.splt != NULL && htab->etab.splt->size != 0) |
4451 | 0 | { |
4452 | | /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the |
4453 | | plt stubs and as such the section does not hold a table of fixed-size |
4454 | | entries. */ |
4455 | 0 | elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0; |
4456 | |
|
4457 | 0 | if (htab->need_plt_stub) |
4458 | 0 | { |
4459 | | /* Set up the .plt stub. */ |
4460 | 0 | memcpy (htab->etab.splt->contents |
4461 | 0 | + htab->etab.splt->size - sizeof (plt_stub), |
4462 | 0 | plt_stub, sizeof (plt_stub)); |
4463 | |
|
4464 | 0 | if ((htab->etab.splt->output_offset |
4465 | 0 | + htab->etab.splt->output_section->vma |
4466 | 0 | + htab->etab.splt->size) |
4467 | 0 | != (sgot->output_offset |
4468 | 0 | + sgot->output_section->vma)) |
4469 | 0 | { |
4470 | 0 | _bfd_error_handler |
4471 | 0 | (_(".got section not immediately after .plt section")); |
4472 | 0 | return false; |
4473 | 0 | } |
4474 | 0 | } |
4475 | 0 | } |
4476 | | |
4477 | 0 | return true; |
4478 | 0 | } |
4479 | | |
4480 | | /* Called when writing out an object file to decide the type of a |
4481 | | symbol. */ |
4482 | | static int |
4483 | | elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) |
4484 | 0 | { |
4485 | 0 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) |
4486 | 0 | return STT_PARISC_MILLI; |
4487 | 0 | else |
4488 | 0 | return type; |
4489 | 0 | } |
4490 | | |
4491 | | /* Misc BFD support code. */ |
4492 | | #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name |
4493 | | #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup |
4494 | | #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup |
4495 | | #define elf_info_to_howto elf_hppa_info_to_howto |
4496 | | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel |
4497 | | |
4498 | | /* Stuff for the BFD linker. */ |
4499 | | #define bfd_elf32_bfd_final_link elf32_hppa_final_link |
4500 | | #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create |
4501 | | #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol |
4502 | | #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol |
4503 | | #define elf_backend_check_relocs elf32_hppa_check_relocs |
4504 | | #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible |
4505 | | #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections |
4506 | | #define elf_backend_fake_sections elf_hppa_fake_sections |
4507 | | #define elf_backend_relocate_section elf32_hppa_relocate_section |
4508 | | #define elf_backend_hide_symbol elf32_hppa_hide_symbol |
4509 | | #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol |
4510 | | #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections |
4511 | | #define elf_backend_late_size_sections elf32_hppa_late_size_sections |
4512 | | #define elf_backend_init_index_section _bfd_elf_init_1_index_section |
4513 | | #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook |
4514 | | #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus |
4515 | | #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo |
4516 | | #define elf_backend_object_p elf32_hppa_object_p |
4517 | | #define elf_backend_final_write_processing elf_hppa_final_write_processing |
4518 | | #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type |
4519 | | #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class |
4520 | | #define elf_backend_action_discarded elf_hppa_action_discarded |
4521 | | |
4522 | | #define elf_backend_can_gc_sections 1 |
4523 | | #define elf_backend_can_refcount 1 |
4524 | | #define elf_backend_plt_alignment 2 |
4525 | | #define elf_backend_want_got_plt 0 |
4526 | | #define elf_backend_plt_readonly 0 |
4527 | | #define elf_backend_want_plt_sym 0 |
4528 | | #define elf_backend_got_header_size 8 |
4529 | | #define elf_backend_want_dynrelro 1 |
4530 | | #define elf_backend_rela_normal 1 |
4531 | | #define elf_backend_dtrel_excludes_plt 1 |
4532 | | #define elf_backend_no_page_alias 1 |
4533 | | |
4534 | | #define TARGET_BIG_SYM hppa_elf32_vec |
4535 | | #define TARGET_BIG_NAME "elf32-hppa" |
4536 | | #define ELF_ARCH bfd_arch_hppa |
4537 | | #define ELF_TARGET_ID HPPA32_ELF_DATA |
4538 | | #define ELF_MACHINE_CODE EM_PARISC |
4539 | | #define ELF_MAXPAGESIZE 0x1000 |
4540 | | #define ELF_OSABI ELFOSABI_HPUX |
4541 | | #define elf32_bed elf32_hppa_hpux_bed |
4542 | | |
4543 | | #include "elf32-target.h" |
4544 | | |
4545 | | #undef TARGET_BIG_SYM |
4546 | | #define TARGET_BIG_SYM hppa_elf32_linux_vec |
4547 | | #undef TARGET_BIG_NAME |
4548 | | #define TARGET_BIG_NAME "elf32-hppa-linux" |
4549 | | #undef ELF_OSABI |
4550 | | #define ELF_OSABI ELFOSABI_GNU |
4551 | | #undef elf32_bed |
4552 | | #define elf32_bed elf32_hppa_linux_bed |
4553 | | |
4554 | | #include "elf32-target.h" |
4555 | | |
4556 | | #undef TARGET_BIG_SYM |
4557 | | #define TARGET_BIG_SYM hppa_elf32_nbsd_vec |
4558 | | #undef TARGET_BIG_NAME |
4559 | | #define TARGET_BIG_NAME "elf32-hppa-netbsd" |
4560 | | #undef ELF_OSABI |
4561 | | #define ELF_OSABI ELFOSABI_NETBSD |
4562 | | #undef elf32_bed |
4563 | | #define elf32_bed elf32_hppa_netbsd_bed |
4564 | | |
4565 | | #include "elf32-target.h" |