/src/binutils-gdb/bfd/elf32-m68hc1x.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Motorola 68HC11/HC12-specific support for 32-bit ELF |
2 | | Copyright (C) 1999-2025 Free Software Foundation, Inc. |
3 | | Contributed by Stephane Carrez (stcarrez@nerim.fr) |
4 | | |
5 | | This file is part of BFD, the Binary File Descriptor library. |
6 | | |
7 | | This program is free software; you can redistribute it and/or modify |
8 | | it under the terms of the GNU General Public License as published by |
9 | | the Free Software Foundation; either version 3 of the License, or |
10 | | (at your option) any later version. |
11 | | |
12 | | This program is distributed in the hope that it will be useful, |
13 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | GNU General Public License for more details. |
16 | | |
17 | | You should have received a copy of the GNU General Public License |
18 | | along with this program; if not, write to the Free Software |
19 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
20 | | MA 02110-1301, USA. */ |
21 | | |
22 | | #include "sysdep.h" |
23 | | #include "bfd.h" |
24 | | #include "bfdlink.h" |
25 | | #include "libbfd.h" |
26 | | #include "elf-bfd.h" |
27 | | #include "elf32-m68hc1x.h" |
28 | | #include "elf/m68hc11.h" |
29 | | #include "opcode/m68hc11.h" |
30 | | #include "libiberty.h" |
31 | | |
32 | | #define m68hc12_stub_hash_lookup(table, string, create, copy) \ |
33 | 0 | ((struct elf32_m68hc11_stub_hash_entry *) \ |
34 | 0 | bfd_hash_lookup ((table), (string), (create), (copy))) |
35 | | |
36 | | static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub |
37 | | (const char *stub_name, |
38 | | asection *section, |
39 | | struct m68hc11_elf_link_hash_table *htab); |
40 | | |
41 | | static struct bfd_hash_entry *stub_hash_newfunc |
42 | | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
43 | | |
44 | | static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, |
45 | | const char* name, bfd_vma value, |
46 | | asection* sec); |
47 | | |
48 | | static bool m68hc11_elf_export_one_stub |
49 | | (struct bfd_hash_entry *gen_entry, void *in_arg); |
50 | | |
51 | | static void scan_sections_for_abi (bfd*, asection*, void *); |
52 | | |
53 | | struct m68hc11_scan_param |
54 | | { |
55 | | struct m68hc11_page_info* pinfo; |
56 | | bool use_memory_banks; |
57 | | }; |
58 | | |
59 | | |
60 | | /* Destroy a 68HC11/68HC12 ELF linker hash table. */ |
61 | | |
62 | | static void |
63 | | m68hc11_elf_bfd_link_hash_table_free (bfd *obfd) |
64 | 0 | { |
65 | 0 | struct m68hc11_elf_link_hash_table *ret |
66 | 0 | = (struct m68hc11_elf_link_hash_table *) obfd->link.hash; |
67 | |
|
68 | 0 | bfd_hash_table_free (ret->stub_hash_table); |
69 | 0 | free (ret->stub_hash_table); |
70 | 0 | _bfd_elf_link_hash_table_free (obfd); |
71 | 0 | } |
72 | | |
73 | | /* Create a 68HC11/68HC12 ELF linker hash table. */ |
74 | | |
75 | | struct m68hc11_elf_link_hash_table* |
76 | | m68hc11_elf_hash_table_create (bfd *abfd) |
77 | 0 | { |
78 | 0 | struct m68hc11_elf_link_hash_table *ret; |
79 | 0 | size_t amt = sizeof (struct m68hc11_elf_link_hash_table); |
80 | |
|
81 | 0 | ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt); |
82 | 0 | if (ret == (struct m68hc11_elf_link_hash_table *) NULL) |
83 | 0 | return NULL; |
84 | | |
85 | 0 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
86 | 0 | _bfd_elf_link_hash_newfunc, |
87 | 0 | sizeof (struct elf_link_hash_entry))) |
88 | 0 | { |
89 | 0 | free (ret); |
90 | 0 | return NULL; |
91 | 0 | } |
92 | | |
93 | | /* Init the stub hash table too. */ |
94 | 0 | amt = sizeof (struct bfd_hash_table); |
95 | 0 | ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); |
96 | 0 | if (ret->stub_hash_table == NULL) |
97 | 0 | { |
98 | 0 | _bfd_elf_link_hash_table_free (abfd); |
99 | 0 | return NULL; |
100 | 0 | } |
101 | 0 | if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, |
102 | 0 | sizeof (struct elf32_m68hc11_stub_hash_entry))) |
103 | 0 | { |
104 | 0 | free (ret->stub_hash_table); |
105 | 0 | _bfd_elf_link_hash_table_free (abfd); |
106 | 0 | return NULL; |
107 | 0 | } |
108 | 0 | ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free; |
109 | |
|
110 | 0 | return ret; |
111 | 0 | } |
112 | | |
113 | | /* Assorted hash table functions. */ |
114 | | |
115 | | /* Initialize an entry in the stub hash table. */ |
116 | | |
117 | | static struct bfd_hash_entry * |
118 | | stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, |
119 | | const char *string) |
120 | 0 | { |
121 | | /* Allocate the structure if it has not already been allocated by a |
122 | | subclass. */ |
123 | 0 | if (entry == NULL) |
124 | 0 | { |
125 | 0 | entry = bfd_hash_allocate (table, |
126 | 0 | sizeof (struct elf32_m68hc11_stub_hash_entry)); |
127 | 0 | if (entry == NULL) |
128 | 0 | return entry; |
129 | 0 | } |
130 | | |
131 | | /* Call the allocation method of the superclass. */ |
132 | 0 | entry = bfd_hash_newfunc (entry, table, string); |
133 | 0 | if (entry != NULL) |
134 | 0 | { |
135 | 0 | struct elf32_m68hc11_stub_hash_entry *eh; |
136 | | |
137 | | /* Initialize the local fields. */ |
138 | 0 | eh = (struct elf32_m68hc11_stub_hash_entry *) entry; |
139 | 0 | eh->stub_sec = NULL; |
140 | 0 | eh->stub_offset = 0; |
141 | 0 | eh->target_value = 0; |
142 | 0 | eh->target_section = NULL; |
143 | 0 | } |
144 | |
|
145 | 0 | return entry; |
146 | 0 | } |
147 | | |
148 | | /* Add a new stub entry to the stub hash. Not all fields of the new |
149 | | stub entry are initialised. */ |
150 | | |
151 | | static struct elf32_m68hc11_stub_hash_entry * |
152 | | m68hc12_add_stub (const char *stub_name, asection *section, |
153 | | struct m68hc11_elf_link_hash_table *htab) |
154 | 0 | { |
155 | 0 | struct elf32_m68hc11_stub_hash_entry *stub_entry; |
156 | | |
157 | | /* Enter this entry into the linker stub hash table. */ |
158 | 0 | stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, |
159 | 0 | true, false); |
160 | 0 | if (stub_entry == NULL) |
161 | 0 | { |
162 | | /* xgettext:c-format */ |
163 | 0 | _bfd_error_handler (_("%pB: cannot create stub entry %s"), |
164 | 0 | section->owner, stub_name); |
165 | 0 | return NULL; |
166 | 0 | } |
167 | | |
168 | 0 | if (htab->stub_section == 0) |
169 | 0 | { |
170 | 0 | htab->stub_section = (*htab->add_stub_section) (".tramp", |
171 | 0 | htab->tramp_section); |
172 | 0 | } |
173 | |
|
174 | 0 | stub_entry->stub_sec = htab->stub_section; |
175 | 0 | stub_entry->stub_offset = 0; |
176 | 0 | return stub_entry; |
177 | 0 | } |
178 | | |
179 | | /* Hook called by the linker routine which adds symbols from an object |
180 | | file. We use it for identify far symbols and force a loading of |
181 | | the trampoline handler. */ |
182 | | |
183 | | bool |
184 | | elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
185 | | Elf_Internal_Sym *sym, |
186 | | const char **namep ATTRIBUTE_UNUSED, |
187 | | flagword *flagsp ATTRIBUTE_UNUSED, |
188 | | asection **secp ATTRIBUTE_UNUSED, |
189 | | bfd_vma *valp ATTRIBUTE_UNUSED) |
190 | 0 | { |
191 | 0 | if (sym->st_other & STO_M68HC12_FAR) |
192 | 0 | { |
193 | 0 | struct elf_link_hash_entry *h; |
194 | |
|
195 | 0 | h = (struct elf_link_hash_entry *) |
196 | 0 | bfd_link_hash_lookup (info->hash, "__far_trampoline", |
197 | 0 | false, false, false); |
198 | 0 | if (h == NULL) |
199 | 0 | { |
200 | 0 | struct bfd_link_hash_entry* entry = NULL; |
201 | |
|
202 | 0 | _bfd_generic_link_add_one_symbol (info, abfd, |
203 | 0 | "__far_trampoline", |
204 | 0 | BSF_GLOBAL, |
205 | 0 | bfd_und_section_ptr, |
206 | 0 | (bfd_vma) 0, (const char*) NULL, |
207 | 0 | false, false, &entry); |
208 | 0 | } |
209 | |
|
210 | 0 | } |
211 | 0 | return true; |
212 | 0 | } |
213 | | |
214 | | /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and |
215 | | STO_M68HC12_INTERRUPT. */ |
216 | | |
217 | | void |
218 | | elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h, |
219 | | unsigned int st_other, |
220 | | bool definition, |
221 | | bool dynamic ATTRIBUTE_UNUSED) |
222 | 0 | { |
223 | 0 | if (definition) |
224 | 0 | h->other = ((st_other & ~ELF_ST_VISIBILITY (-1)) |
225 | 0 | | ELF_ST_VISIBILITY (h->other)); |
226 | 0 | } |
227 | | |
228 | | /* External entry points for sizing and building linker stubs. */ |
229 | | |
230 | | /* Set up various things so that we can make a list of input sections |
231 | | for each output section included in the link. Returns -1 on error, |
232 | | 0 when no stubs will be needed, and 1 on success. */ |
233 | | |
234 | | int |
235 | | elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
236 | 0 | { |
237 | 0 | bfd *input_bfd; |
238 | 0 | unsigned int bfd_count; |
239 | 0 | unsigned int top_id, top_index; |
240 | 0 | asection *section; |
241 | 0 | asection **input_list, **list; |
242 | 0 | size_t amt; |
243 | 0 | asection *text_section; |
244 | 0 | struct m68hc11_elf_link_hash_table *htab; |
245 | |
|
246 | 0 | htab = m68hc11_elf_hash_table (info); |
247 | 0 | if (htab == NULL) |
248 | 0 | return -1; |
249 | | |
250 | 0 | if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour) |
251 | 0 | return 0; |
252 | | |
253 | | /* Count the number of input BFDs and find the top input section id. |
254 | | Also search for an existing ".tramp" section so that we know |
255 | | where generated trampolines must go. Default to ".text" if we |
256 | | can't find it. */ |
257 | 0 | htab->tramp_section = 0; |
258 | 0 | text_section = 0; |
259 | 0 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; |
260 | 0 | input_bfd != NULL; |
261 | 0 | input_bfd = input_bfd->link.next) |
262 | 0 | { |
263 | 0 | bfd_count += 1; |
264 | 0 | for (section = input_bfd->sections; |
265 | 0 | section != NULL; |
266 | 0 | section = section->next) |
267 | 0 | { |
268 | 0 | const char *name = bfd_section_name (section); |
269 | |
|
270 | 0 | if (!strcmp (name, ".tramp")) |
271 | 0 | htab->tramp_section = section; |
272 | |
|
273 | 0 | if (!strcmp (name, ".text")) |
274 | 0 | text_section = section; |
275 | |
|
276 | 0 | if (top_id < section->id) |
277 | 0 | top_id = section->id; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | htab->bfd_count = bfd_count; |
281 | 0 | if (htab->tramp_section == 0) |
282 | 0 | htab->tramp_section = text_section; |
283 | | |
284 | | /* We can't use output_bfd->section_count here to find the top output |
285 | | section index as some sections may have been removed, and |
286 | | strip_excluded_output_sections doesn't renumber the indices. */ |
287 | 0 | for (section = output_bfd->sections, top_index = 0; |
288 | 0 | section != NULL; |
289 | 0 | section = section->next) |
290 | 0 | { |
291 | 0 | if (top_index < section->index) |
292 | 0 | top_index = section->index; |
293 | 0 | } |
294 | |
|
295 | 0 | htab->top_index = top_index; |
296 | 0 | amt = sizeof (asection *) * (top_index + 1); |
297 | 0 | input_list = (asection **) bfd_malloc (amt); |
298 | 0 | htab->input_list = input_list; |
299 | 0 | if (input_list == NULL) |
300 | 0 | return -1; |
301 | | |
302 | | /* For sections we aren't interested in, mark their entries with a |
303 | | value we can check later. */ |
304 | 0 | list = input_list + top_index; |
305 | 0 | do |
306 | 0 | *list = bfd_abs_section_ptr; |
307 | 0 | while (list-- != input_list); |
308 | |
|
309 | 0 | for (section = output_bfd->sections; |
310 | 0 | section != NULL; |
311 | 0 | section = section->next) |
312 | 0 | { |
313 | 0 | if ((section->flags & SEC_CODE) != 0) |
314 | 0 | input_list[section->index] = NULL; |
315 | 0 | } |
316 | |
|
317 | 0 | return 1; |
318 | 0 | } |
319 | | |
320 | | /* Determine and set the size of the stub section for a final link. |
321 | | |
322 | | The basic idea here is to examine all the relocations looking for |
323 | | PC-relative calls to a target that is unreachable with a "bl" |
324 | | instruction. */ |
325 | | |
326 | | bool |
327 | | elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, |
328 | | struct bfd_link_info *info, |
329 | | asection * (*add_stub_section) (const char*, asection*)) |
330 | 0 | { |
331 | 0 | bfd *input_bfd; |
332 | 0 | asection *section; |
333 | 0 | Elf_Internal_Sym *local_syms, **all_local_syms; |
334 | 0 | unsigned int bfd_indx, bfd_count; |
335 | 0 | size_t amt; |
336 | 0 | asection *stub_sec; |
337 | 0 | struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); |
338 | |
|
339 | 0 | if (htab == NULL) |
340 | 0 | return false; |
341 | | |
342 | | /* Stash our params away. */ |
343 | 0 | htab->stub_bfd = stub_bfd; |
344 | 0 | htab->add_stub_section = add_stub_section; |
345 | | |
346 | | /* Count the number of input BFDs and find the top input section id. */ |
347 | 0 | for (input_bfd = info->input_bfds, bfd_count = 0; |
348 | 0 | input_bfd != NULL; |
349 | 0 | input_bfd = input_bfd->link.next) |
350 | 0 | bfd_count += 1; |
351 | | |
352 | | /* We want to read in symbol extension records only once. To do this |
353 | | we need to read in the local symbols in parallel and save them for |
354 | | later use; so hold pointers to the local symbols in an array. */ |
355 | 0 | amt = sizeof (Elf_Internal_Sym *) * bfd_count; |
356 | 0 | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); |
357 | 0 | if (all_local_syms == NULL) |
358 | 0 | return false; |
359 | | |
360 | | /* Walk over all the input BFDs, swapping in local symbols. */ |
361 | 0 | for (input_bfd = info->input_bfds, bfd_indx = 0; |
362 | 0 | input_bfd != NULL; |
363 | 0 | input_bfd = input_bfd->link.next, bfd_indx++) |
364 | 0 | { |
365 | 0 | Elf_Internal_Shdr *symtab_hdr; |
366 | | |
367 | | /* We'll need the symbol table in a second. */ |
368 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
369 | 0 | if (symtab_hdr->sh_info == 0) |
370 | 0 | continue; |
371 | | |
372 | | /* We need an array of the local symbols attached to the input bfd. */ |
373 | 0 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
374 | 0 | if (local_syms == NULL) |
375 | 0 | { |
376 | 0 | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
377 | 0 | symtab_hdr->sh_info, 0, |
378 | 0 | NULL, NULL, NULL); |
379 | | /* Cache them for elf_link_input_bfd. */ |
380 | 0 | symtab_hdr->contents = (unsigned char *) local_syms; |
381 | 0 | } |
382 | 0 | if (local_syms == NULL) |
383 | 0 | { |
384 | 0 | free (all_local_syms); |
385 | 0 | return false; |
386 | 0 | } |
387 | | |
388 | 0 | all_local_syms[bfd_indx] = local_syms; |
389 | 0 | } |
390 | | |
391 | 0 | for (input_bfd = info->input_bfds, bfd_indx = 0; |
392 | 0 | input_bfd != NULL; |
393 | 0 | input_bfd = input_bfd->link.next, bfd_indx++) |
394 | 0 | { |
395 | 0 | Elf_Internal_Shdr *symtab_hdr; |
396 | 0 | struct elf_link_hash_entry ** sym_hashes; |
397 | |
|
398 | 0 | sym_hashes = elf_sym_hashes (input_bfd); |
399 | | |
400 | | /* We'll need the symbol table in a second. */ |
401 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
402 | 0 | if (symtab_hdr->sh_info == 0) |
403 | 0 | continue; |
404 | | |
405 | 0 | local_syms = all_local_syms[bfd_indx]; |
406 | | |
407 | | /* Walk over each section attached to the input bfd. */ |
408 | 0 | for (section = input_bfd->sections; |
409 | 0 | section != NULL; |
410 | 0 | section = section->next) |
411 | 0 | { |
412 | 0 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
413 | | |
414 | | /* If there aren't any relocs, then there's nothing more |
415 | | to do. */ |
416 | 0 | if ((section->flags & SEC_RELOC) == 0 |
417 | 0 | || section->reloc_count == 0) |
418 | 0 | continue; |
419 | | |
420 | | /* If this section is a link-once section that will be |
421 | | discarded, then don't create any stubs. */ |
422 | 0 | if (section->output_section == NULL |
423 | 0 | || section->output_section->owner != output_bfd) |
424 | 0 | continue; |
425 | | |
426 | | /* Get the relocs. */ |
427 | 0 | internal_relocs |
428 | 0 | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
429 | 0 | (Elf_Internal_Rela *) NULL, |
430 | 0 | info->keep_memory); |
431 | 0 | if (internal_relocs == NULL) |
432 | 0 | goto error_ret_free_local; |
433 | | |
434 | | /* Now examine each relocation. */ |
435 | 0 | irela = internal_relocs; |
436 | 0 | irelaend = irela + section->reloc_count; |
437 | 0 | for (; irela < irelaend; irela++) |
438 | 0 | { |
439 | 0 | unsigned int r_type, r_indx; |
440 | 0 | struct elf32_m68hc11_stub_hash_entry *stub_entry; |
441 | 0 | asection *sym_sec; |
442 | 0 | bfd_vma sym_value; |
443 | 0 | struct elf_link_hash_entry *hash; |
444 | 0 | const char *stub_name; |
445 | 0 | Elf_Internal_Sym *sym; |
446 | |
|
447 | 0 | r_type = ELF32_R_TYPE (irela->r_info); |
448 | | |
449 | | /* Only look at 16-bit relocs. */ |
450 | 0 | if (r_type != (unsigned int) R_M68HC11_16) |
451 | 0 | continue; |
452 | | |
453 | | /* Now determine the call target, its name, value, |
454 | | section. */ |
455 | 0 | r_indx = ELF32_R_SYM (irela->r_info); |
456 | 0 | if (r_indx < symtab_hdr->sh_info) |
457 | 0 | { |
458 | | /* It's a local symbol. */ |
459 | 0 | Elf_Internal_Shdr *hdr; |
460 | 0 | bool is_far; |
461 | |
|
462 | 0 | sym = local_syms + r_indx; |
463 | 0 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
464 | 0 | if (!is_far) |
465 | 0 | continue; |
466 | | |
467 | 0 | if (sym->st_shndx >= elf_numsections (input_bfd)) |
468 | 0 | sym_sec = NULL; |
469 | 0 | else |
470 | 0 | { |
471 | 0 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; |
472 | 0 | sym_sec = hdr->bfd_section; |
473 | 0 | } |
474 | 0 | stub_name = (bfd_elf_string_from_elf_section |
475 | 0 | (input_bfd, symtab_hdr->sh_link, |
476 | 0 | sym->st_name)); |
477 | 0 | sym_value = sym->st_value; |
478 | 0 | hash = NULL; |
479 | 0 | } |
480 | 0 | else |
481 | 0 | { |
482 | | /* It's an external symbol. */ |
483 | 0 | int e_indx; |
484 | |
|
485 | 0 | e_indx = r_indx - symtab_hdr->sh_info; |
486 | 0 | hash = (struct elf_link_hash_entry *) |
487 | 0 | (sym_hashes[e_indx]); |
488 | |
|
489 | 0 | while (hash->root.type == bfd_link_hash_indirect |
490 | 0 | || hash->root.type == bfd_link_hash_warning) |
491 | 0 | hash = ((struct elf_link_hash_entry *) |
492 | 0 | hash->root.u.i.link); |
493 | |
|
494 | 0 | if (hash->root.type == bfd_link_hash_defined |
495 | 0 | || hash->root.type == bfd_link_hash_defweak |
496 | 0 | || hash->root.type == bfd_link_hash_new) |
497 | 0 | { |
498 | 0 | if (!(hash->other & STO_M68HC12_FAR)) |
499 | 0 | continue; |
500 | 0 | } |
501 | 0 | else if (hash->root.type == bfd_link_hash_undefweak) |
502 | 0 | { |
503 | 0 | continue; |
504 | 0 | } |
505 | 0 | else if (hash->root.type == bfd_link_hash_undefined) |
506 | 0 | { |
507 | 0 | continue; |
508 | 0 | } |
509 | 0 | else |
510 | 0 | { |
511 | 0 | bfd_set_error (bfd_error_bad_value); |
512 | 0 | goto error_ret_free_internal; |
513 | 0 | } |
514 | 0 | sym_sec = hash->root.u.def.section; |
515 | 0 | sym_value = hash->root.u.def.value; |
516 | 0 | stub_name = hash->root.root.string; |
517 | 0 | } |
518 | | |
519 | 0 | if (!stub_name) |
520 | 0 | goto error_ret_free_internal; |
521 | | |
522 | 0 | stub_entry = m68hc12_stub_hash_lookup |
523 | 0 | (htab->stub_hash_table, |
524 | 0 | stub_name, |
525 | 0 | false, false); |
526 | 0 | if (stub_entry == NULL) |
527 | 0 | { |
528 | 0 | if (add_stub_section == 0) |
529 | 0 | continue; |
530 | | |
531 | 0 | stub_entry = m68hc12_add_stub (stub_name, section, htab); |
532 | 0 | if (stub_entry == NULL) |
533 | 0 | { |
534 | 0 | error_ret_free_internal: |
535 | 0 | if (elf_section_data (section)->relocs == NULL) |
536 | 0 | free (internal_relocs); |
537 | 0 | goto error_ret_free_local; |
538 | 0 | } |
539 | 0 | } |
540 | | |
541 | 0 | stub_entry->target_value = sym_value; |
542 | 0 | stub_entry->target_section = sym_sec; |
543 | 0 | } |
544 | | |
545 | | /* We're done with the internal relocs, free them. */ |
546 | 0 | if (elf_section_data (section)->relocs == NULL) |
547 | 0 | free (internal_relocs); |
548 | 0 | } |
549 | 0 | } |
550 | | |
551 | 0 | if (add_stub_section) |
552 | 0 | { |
553 | | /* OK, we've added some stubs. Find out the new size of the |
554 | | stub sections. */ |
555 | 0 | for (stub_sec = htab->stub_bfd->sections; |
556 | 0 | stub_sec != NULL; |
557 | 0 | stub_sec = stub_sec->next) |
558 | 0 | { |
559 | 0 | stub_sec->size = 0; |
560 | 0 | } |
561 | |
|
562 | 0 | bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); |
563 | 0 | } |
564 | 0 | free (all_local_syms); |
565 | 0 | return true; |
566 | | |
567 | 0 | error_ret_free_local: |
568 | 0 | free (all_local_syms); |
569 | 0 | return false; |
570 | 0 | } |
571 | | |
572 | | /* Export the trampoline addresses in the symbol table. */ |
573 | | static bool |
574 | | m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
575 | 0 | { |
576 | 0 | struct bfd_link_info *info; |
577 | 0 | struct m68hc11_elf_link_hash_table *htab; |
578 | 0 | struct elf32_m68hc11_stub_hash_entry *stub_entry; |
579 | 0 | char* name; |
580 | 0 | bool result; |
581 | |
|
582 | 0 | info = (struct bfd_link_info *) in_arg; |
583 | 0 | htab = m68hc11_elf_hash_table (info); |
584 | 0 | if (htab == NULL) |
585 | 0 | return false; |
586 | | |
587 | | /* Massage our args to the form they really have. */ |
588 | 0 | stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; |
589 | | |
590 | | /* Generate the trampoline according to HC11 or HC12. */ |
591 | 0 | result = (* htab->build_one_stub) (gen_entry, in_arg); |
592 | | |
593 | | /* Make a printable name that does not conflict with the real function. */ |
594 | 0 | name = concat ("tramp.", stub_entry->root.string, NULL); |
595 | | |
596 | | /* Export the symbol for debugging/disassembling. */ |
597 | 0 | m68hc11_elf_set_symbol (htab->stub_bfd, info, name, |
598 | 0 | stub_entry->stub_offset, |
599 | 0 | stub_entry->stub_sec); |
600 | 0 | free (name); |
601 | 0 | return result; |
602 | 0 | } |
603 | | |
604 | | /* Export a symbol or set its value and section. */ |
605 | | static void |
606 | | m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, |
607 | | const char *name, bfd_vma value, asection *sec) |
608 | 0 | { |
609 | 0 | struct elf_link_hash_entry *h; |
610 | |
|
611 | 0 | h = (struct elf_link_hash_entry *) |
612 | 0 | bfd_link_hash_lookup (info->hash, name, false, false, false); |
613 | 0 | if (h == NULL) |
614 | 0 | { |
615 | 0 | _bfd_generic_link_add_one_symbol (info, abfd, |
616 | 0 | name, |
617 | 0 | BSF_GLOBAL, |
618 | 0 | sec, |
619 | 0 | value, |
620 | 0 | (const char*) NULL, |
621 | 0 | true, false, NULL); |
622 | 0 | } |
623 | 0 | else |
624 | 0 | { |
625 | 0 | h->root.type = bfd_link_hash_defined; |
626 | 0 | h->root.u.def.value = value; |
627 | 0 | h->root.u.def.section = sec; |
628 | 0 | } |
629 | 0 | } |
630 | | |
631 | | |
632 | | /* Build all the stubs associated with the current output file. The |
633 | | stubs are kept in a hash table attached to the main linker hash |
634 | | table. This function is called via m68hc12elf_finish in the |
635 | | linker. */ |
636 | | |
637 | | bool |
638 | | elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) |
639 | 0 | { |
640 | 0 | asection *stub_sec; |
641 | 0 | struct bfd_hash_table *table; |
642 | 0 | struct m68hc11_elf_link_hash_table *htab; |
643 | 0 | struct m68hc11_scan_param param; |
644 | |
|
645 | 0 | m68hc11_elf_get_bank_parameters (info); |
646 | 0 | htab = m68hc11_elf_hash_table (info); |
647 | 0 | if (htab == NULL) |
648 | 0 | return false; |
649 | | |
650 | 0 | for (stub_sec = htab->stub_bfd->sections; |
651 | 0 | stub_sec != NULL; |
652 | 0 | stub_sec = stub_sec->next) |
653 | 0 | { |
654 | 0 | bfd_size_type size; |
655 | | |
656 | | /* Allocate memory to hold the linker stubs. */ |
657 | 0 | size = stub_sec->size; |
658 | 0 | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); |
659 | 0 | if (stub_sec->contents == NULL && size != 0) |
660 | 0 | return false; |
661 | 0 | stub_sec->alloced = 1; |
662 | 0 | stub_sec->size = 0; |
663 | 0 | } |
664 | | |
665 | | /* Build the stubs as directed by the stub hash table. */ |
666 | 0 | table = htab->stub_hash_table; |
667 | 0 | bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); |
668 | | |
669 | | /* Scan the output sections to see if we use the memory banks. |
670 | | If so, export the symbols that define how the memory banks |
671 | | are mapped. This is used by gdb and the simulator to obtain |
672 | | the information. It can be used by programs to burn the eprom |
673 | | at the good addresses. */ |
674 | 0 | param.use_memory_banks = false; |
675 | 0 | param.pinfo = &htab->pinfo; |
676 | 0 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); |
677 | 0 | if (param.use_memory_banks) |
678 | 0 | { |
679 | 0 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, |
680 | 0 | htab->pinfo.bank_physical, |
681 | 0 | bfd_abs_section_ptr); |
682 | 0 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, |
683 | 0 | htab->pinfo.bank_virtual, |
684 | 0 | bfd_abs_section_ptr); |
685 | 0 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, |
686 | 0 | htab->pinfo.bank_size, |
687 | 0 | bfd_abs_section_ptr); |
688 | 0 | } |
689 | |
|
690 | 0 | return true; |
691 | 0 | } |
692 | | |
693 | | void |
694 | | m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) |
695 | 0 | { |
696 | 0 | unsigned i; |
697 | 0 | struct m68hc11_page_info *pinfo; |
698 | 0 | struct bfd_link_hash_entry *h; |
699 | 0 | struct m68hc11_elf_link_hash_table *htab; |
700 | |
|
701 | 0 | htab = m68hc11_elf_hash_table (info); |
702 | 0 | if (htab == NULL) |
703 | 0 | return; |
704 | | |
705 | 0 | pinfo = & htab->pinfo; |
706 | 0 | if (pinfo->bank_param_initialized) |
707 | 0 | return; |
708 | | |
709 | 0 | pinfo->bank_virtual = M68HC12_BANK_VIRT; |
710 | 0 | pinfo->bank_mask = M68HC12_BANK_MASK; |
711 | 0 | pinfo->bank_physical = M68HC12_BANK_BASE; |
712 | 0 | pinfo->bank_shift = M68HC12_BANK_SHIFT; |
713 | 0 | pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; |
714 | |
|
715 | 0 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, |
716 | 0 | false, false, true); |
717 | 0 | if (h != (struct bfd_link_hash_entry*) NULL |
718 | 0 | && h->type == bfd_link_hash_defined) |
719 | 0 | pinfo->bank_physical = (h->u.def.value |
720 | 0 | + h->u.def.section->output_section->vma |
721 | 0 | + h->u.def.section->output_offset); |
722 | |
|
723 | 0 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, |
724 | 0 | false, false, true); |
725 | 0 | if (h != (struct bfd_link_hash_entry*) NULL |
726 | 0 | && h->type == bfd_link_hash_defined) |
727 | 0 | pinfo->bank_virtual = (h->u.def.value |
728 | 0 | + h->u.def.section->output_section->vma |
729 | 0 | + h->u.def.section->output_offset); |
730 | |
|
731 | 0 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, |
732 | 0 | false, false, true); |
733 | 0 | if (h != (struct bfd_link_hash_entry*) NULL |
734 | 0 | && h->type == bfd_link_hash_defined) |
735 | 0 | pinfo->bank_size = (h->u.def.value |
736 | 0 | + h->u.def.section->output_section->vma |
737 | 0 | + h->u.def.section->output_offset); |
738 | |
|
739 | 0 | pinfo->bank_shift = 0; |
740 | 0 | for (i = pinfo->bank_size; i != 0; i >>= 1) |
741 | 0 | pinfo->bank_shift++; |
742 | 0 | pinfo->bank_shift--; |
743 | 0 | pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; |
744 | 0 | pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; |
745 | 0 | pinfo->bank_param_initialized = 1; |
746 | |
|
747 | 0 | h = bfd_link_hash_lookup (info->hash, "__far_trampoline", false, |
748 | 0 | false, true); |
749 | 0 | if (h != (struct bfd_link_hash_entry*) NULL |
750 | 0 | && h->type == bfd_link_hash_defined) |
751 | 0 | pinfo->trampoline_addr = (h->u.def.value |
752 | 0 | + h->u.def.section->output_section->vma |
753 | 0 | + h->u.def.section->output_offset); |
754 | 0 | } |
755 | | |
756 | | /* Return 1 if the address is in banked memory. |
757 | | This can be applied to a virtual address and to a physical address. */ |
758 | | int |
759 | | m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) |
760 | 0 | { |
761 | 0 | if (addr >= pinfo->bank_virtual) |
762 | 0 | return 1; |
763 | | |
764 | 0 | if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) |
765 | 0 | return 1; |
766 | | |
767 | 0 | return 0; |
768 | 0 | } |
769 | | |
770 | | /* Return the physical address seen by the processor, taking |
771 | | into account banked memory. */ |
772 | | bfd_vma |
773 | | m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) |
774 | 0 | { |
775 | 0 | if (addr < pinfo->bank_virtual) |
776 | 0 | return addr; |
777 | | |
778 | | /* Map the address to the memory bank. */ |
779 | 0 | addr -= pinfo->bank_virtual; |
780 | 0 | addr &= pinfo->bank_mask; |
781 | 0 | addr += pinfo->bank_physical; |
782 | 0 | return addr; |
783 | 0 | } |
784 | | |
785 | | /* Return the page number corresponding to an address in banked memory. */ |
786 | | bfd_vma |
787 | | m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) |
788 | 0 | { |
789 | 0 | if (addr < pinfo->bank_virtual) |
790 | 0 | return 0; |
791 | | |
792 | | /* Map the address to the memory bank. */ |
793 | 0 | addr -= pinfo->bank_virtual; |
794 | 0 | addr >>= pinfo->bank_shift; |
795 | 0 | addr &= 0x0ff; |
796 | 0 | return addr; |
797 | 0 | } |
798 | | |
799 | | /* This function is used for relocs which are only used for relaxing, |
800 | | which the linker should otherwise ignore. */ |
801 | | |
802 | | bfd_reloc_status_type |
803 | | m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
804 | | arelent *reloc_entry, |
805 | | asymbol *symbol ATTRIBUTE_UNUSED, |
806 | | void *data ATTRIBUTE_UNUSED, |
807 | | asection *input_section, |
808 | | bfd *output_bfd, |
809 | | char **error_message ATTRIBUTE_UNUSED) |
810 | 0 | { |
811 | 0 | if (output_bfd != NULL) |
812 | 0 | reloc_entry->address += input_section->output_offset; |
813 | 0 | return bfd_reloc_ok; |
814 | 0 | } |
815 | | |
816 | | bfd_reloc_status_type |
817 | | m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
818 | | arelent *reloc_entry, |
819 | | asymbol *symbol, |
820 | | void *data ATTRIBUTE_UNUSED, |
821 | | asection *input_section, |
822 | | bfd *output_bfd, |
823 | | char **error_message ATTRIBUTE_UNUSED) |
824 | 0 | { |
825 | 0 | if (output_bfd != (bfd *) NULL |
826 | 0 | && (symbol->flags & BSF_SECTION_SYM) == 0 |
827 | 0 | && (! reloc_entry->howto->partial_inplace |
828 | 0 | || reloc_entry->addend == 0)) |
829 | 0 | { |
830 | 0 | reloc_entry->address += input_section->output_offset; |
831 | 0 | return bfd_reloc_ok; |
832 | 0 | } |
833 | | |
834 | 0 | if (output_bfd != NULL) |
835 | 0 | return bfd_reloc_continue; |
836 | | |
837 | 0 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
838 | 0 | return bfd_reloc_outofrange; |
839 | | |
840 | 0 | abort(); |
841 | 0 | } |
842 | | |
843 | | /* Look through the relocs for a section during the first phase. |
844 | | Since we don't do .gots or .plts, we just need to consider the |
845 | | virtual table relocs for gc. */ |
846 | | |
847 | | bool |
848 | | elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, |
849 | | asection *sec, const Elf_Internal_Rela *relocs) |
850 | 0 | { |
851 | 0 | Elf_Internal_Shdr * symtab_hdr; |
852 | 0 | struct elf_link_hash_entry ** sym_hashes; |
853 | 0 | const Elf_Internal_Rela * rel; |
854 | 0 | const Elf_Internal_Rela * rel_end; |
855 | |
|
856 | 0 | if (bfd_link_relocatable (info)) |
857 | 0 | return true; |
858 | | |
859 | 0 | symtab_hdr = & elf_tdata (abfd)->symtab_hdr; |
860 | 0 | sym_hashes = elf_sym_hashes (abfd); |
861 | 0 | rel_end = relocs + sec->reloc_count; |
862 | |
|
863 | 0 | for (rel = relocs; rel < rel_end; rel++) |
864 | 0 | { |
865 | 0 | struct elf_link_hash_entry * h; |
866 | 0 | unsigned long r_symndx; |
867 | |
|
868 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
869 | |
|
870 | 0 | if (r_symndx < symtab_hdr->sh_info) |
871 | 0 | h = NULL; |
872 | 0 | else |
873 | 0 | { |
874 | 0 | h = sym_hashes [r_symndx - symtab_hdr->sh_info]; |
875 | 0 | while (h->root.type == bfd_link_hash_indirect |
876 | 0 | || h->root.type == bfd_link_hash_warning) |
877 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
878 | 0 | } |
879 | |
|
880 | 0 | switch (ELF32_R_TYPE (rel->r_info)) |
881 | 0 | { |
882 | | /* This relocation describes the C++ object vtable hierarchy. |
883 | | Reconstruct it for later use during GC. */ |
884 | 0 | case R_M68HC11_GNU_VTINHERIT: |
885 | 0 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
886 | 0 | return false; |
887 | 0 | break; |
888 | | |
889 | | /* This relocation describes which C++ vtable entries are actually |
890 | | used. Record for later use during GC. */ |
891 | 0 | case R_M68HC11_GNU_VTENTRY: |
892 | 0 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
893 | 0 | return false; |
894 | 0 | break; |
895 | 0 | } |
896 | 0 | } |
897 | | |
898 | 0 | return true; |
899 | 0 | } |
900 | | |
901 | | static bool ATTRIBUTE_PRINTF (6, 7) |
902 | | reloc_warning (struct bfd_link_info *info, const char *name, bfd *input_bfd, |
903 | | asection *input_section, const Elf_Internal_Rela *rel, |
904 | | const char *fmt, ...) |
905 | 0 | { |
906 | 0 | va_list ap; |
907 | 0 | char *buf; |
908 | 0 | int ret; |
909 | |
|
910 | 0 | va_start (ap, fmt); |
911 | 0 | ret = vasprintf (&buf, fmt, ap); |
912 | 0 | va_end (ap); |
913 | 0 | if (ret < 0) |
914 | 0 | { |
915 | 0 | bfd_set_error (bfd_error_no_memory); |
916 | 0 | return false; |
917 | 0 | } |
918 | 0 | info->callbacks->warning (info, buf, name, input_bfd, input_section, |
919 | 0 | rel->r_offset); |
920 | 0 | free (buf); |
921 | 0 | return true; |
922 | 0 | } |
923 | | |
924 | | /* Relocate a 68hc11/68hc12 ELF section. */ |
925 | | int |
926 | | elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
927 | | struct bfd_link_info *info, |
928 | | bfd *input_bfd, asection *input_section, |
929 | | bfd_byte *contents, Elf_Internal_Rela *relocs, |
930 | | Elf_Internal_Sym *local_syms, |
931 | | asection **local_sections) |
932 | 0 | { |
933 | 0 | Elf_Internal_Shdr *symtab_hdr; |
934 | 0 | struct elf_link_hash_entry **sym_hashes; |
935 | 0 | Elf_Internal_Rela *rel, *relend; |
936 | 0 | const char *name = NULL; |
937 | 0 | struct m68hc11_page_info *pinfo; |
938 | 0 | const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); |
939 | 0 | struct m68hc11_elf_link_hash_table *htab; |
940 | 0 | unsigned long e_flags; |
941 | |
|
942 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
943 | 0 | sym_hashes = elf_sym_hashes (input_bfd); |
944 | 0 | e_flags = elf_elfheader (input_bfd)->e_flags; |
945 | |
|
946 | 0 | htab = m68hc11_elf_hash_table (info); |
947 | 0 | if (htab == NULL) |
948 | 0 | return false; |
949 | | |
950 | | /* Get memory bank parameters. */ |
951 | 0 | m68hc11_elf_get_bank_parameters (info); |
952 | |
|
953 | 0 | pinfo = & htab->pinfo; |
954 | 0 | rel = relocs; |
955 | 0 | relend = relocs + input_section->reloc_count; |
956 | |
|
957 | 0 | for (; rel < relend; rel++) |
958 | 0 | { |
959 | 0 | int r_type; |
960 | 0 | arelent arel; |
961 | 0 | reloc_howto_type *howto; |
962 | 0 | unsigned long r_symndx; |
963 | 0 | Elf_Internal_Sym *sym; |
964 | 0 | asection *sec; |
965 | 0 | bfd_vma relocation = 0; |
966 | 0 | bfd_reloc_status_type r = bfd_reloc_undefined; |
967 | 0 | bfd_vma phys_page; |
968 | 0 | bfd_vma phys_addr; |
969 | 0 | bfd_vma insn_addr; |
970 | 0 | bfd_vma insn_page; |
971 | 0 | bool is_far = false; |
972 | 0 | bool is_xgate_symbol = false; |
973 | 0 | bool is_section_symbol = false; |
974 | 0 | struct elf_link_hash_entry *h; |
975 | 0 | bfd_vma val; |
976 | 0 | const char *msg; |
977 | |
|
978 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
979 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
980 | |
|
981 | 0 | if (r_type == R_M68HC11_GNU_VTENTRY |
982 | 0 | || r_type == R_M68HC11_GNU_VTINHERIT) |
983 | 0 | continue; |
984 | | |
985 | 0 | if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel)) |
986 | 0 | continue; |
987 | 0 | howto = arel.howto; |
988 | |
|
989 | 0 | h = NULL; |
990 | 0 | sym = NULL; |
991 | 0 | sec = NULL; |
992 | 0 | if (r_symndx < symtab_hdr->sh_info) |
993 | 0 | { |
994 | 0 | sym = local_syms + r_symndx; |
995 | 0 | sec = local_sections[r_symndx]; |
996 | 0 | relocation = (sec->output_section->vma |
997 | 0 | + sec->output_offset |
998 | 0 | + sym->st_value); |
999 | 0 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
1000 | 0 | is_xgate_symbol = (sym && (sym->st_target_internal)); |
1001 | 0 | is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION; |
1002 | 0 | } |
1003 | 0 | else |
1004 | 0 | { |
1005 | 0 | bool unresolved_reloc, warned, ignored; |
1006 | |
|
1007 | 0 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
1008 | 0 | r_symndx, symtab_hdr, sym_hashes, |
1009 | 0 | h, sec, relocation, unresolved_reloc, |
1010 | 0 | warned, ignored); |
1011 | | |
1012 | 0 | is_far = (h && (h->other & STO_M68HC12_FAR)); |
1013 | 0 | is_xgate_symbol = (h && (h->target_internal)); |
1014 | 0 | } |
1015 | | |
1016 | 0 | if (sec != NULL && discarded_section (sec)) |
1017 | 0 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
1018 | 0 | rel, 1, relend, howto, 0, contents); |
1019 | |
|
1020 | 0 | if (bfd_link_relocatable (info)) |
1021 | 0 | { |
1022 | | /* This is a relocatable link. We don't have to change |
1023 | | anything, unless the reloc is against a section symbol, |
1024 | | in which case we have to adjust according to where the |
1025 | | section symbol winds up in the output section. */ |
1026 | 0 | if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
1027 | 0 | rel->r_addend += sec->output_offset; |
1028 | 0 | continue; |
1029 | 0 | } |
1030 | | |
1031 | 0 | if (h != NULL) |
1032 | 0 | name = h->root.root.string; |
1033 | 0 | else |
1034 | 0 | { |
1035 | 0 | name = (bfd_elf_string_from_elf_section |
1036 | 0 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
1037 | 0 | if (name == NULL || *name == '\0') |
1038 | 0 | name = bfd_section_name (sec); |
1039 | 0 | } |
1040 | |
|
1041 | 0 | if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) |
1042 | 0 | { |
1043 | 0 | struct elf32_m68hc11_stub_hash_entry* stub; |
1044 | |
|
1045 | 0 | stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, |
1046 | 0 | name, false, false); |
1047 | 0 | if (stub) |
1048 | 0 | { |
1049 | 0 | relocation = stub->stub_offset |
1050 | 0 | + stub->stub_sec->output_section->vma |
1051 | 0 | + stub->stub_sec->output_offset; |
1052 | 0 | is_far = false; |
1053 | 0 | } |
1054 | 0 | } |
1055 | | |
1056 | | /* Do the memory bank mapping. */ |
1057 | 0 | phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); |
1058 | 0 | phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); |
1059 | 0 | switch (r_type) |
1060 | 0 | { |
1061 | 0 | case R_M68HC12_LO8XG: |
1062 | | /* This relocation is specific to XGATE IMM16 calls and will precede |
1063 | | a HI8. tc-m68hc11 only generates them in pairs. |
1064 | | Leave the relocation to the HI8XG step. */ |
1065 | 0 | r = bfd_reloc_ok; |
1066 | 0 | r_type = R_M68HC11_NONE; |
1067 | 0 | break; |
1068 | | |
1069 | 0 | case R_M68HC12_HI8XG: |
1070 | | /* This relocation is specific to XGATE IMM16 calls and must follow |
1071 | | a LO8XG. Does not actually check that it was a LO8XG. |
1072 | | Adjusts high and low bytes. */ |
1073 | 0 | relocation = phys_addr; |
1074 | 0 | if ((e_flags & E_M68HC11_XGATE_RAMOFFSET) |
1075 | 0 | && (relocation >= 0x2000)) |
1076 | 0 | relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */ |
1077 | | |
1078 | | /* Fetch 16 bit value including low byte in previous insn. */ |
1079 | 0 | val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8) |
1080 | 0 | | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2); |
1081 | | |
1082 | | /* Add on value to preserve carry, then write zero to high byte. */ |
1083 | 0 | relocation += val; |
1084 | | |
1085 | | /* Write out top byte. */ |
1086 | 0 | bfd_put_8 (input_bfd, (relocation >> 8) & 0xff, |
1087 | 0 | (bfd_byte*) contents + rel->r_offset); |
1088 | | |
1089 | | /* Write out low byte to previous instruction. */ |
1090 | 0 | bfd_put_8 (input_bfd, relocation & 0xff, |
1091 | 0 | (bfd_byte*) contents + rel->r_offset - 2); |
1092 | | |
1093 | | /* Mark as relocation completed. */ |
1094 | 0 | r = bfd_reloc_ok; |
1095 | 0 | r_type = R_M68HC11_NONE; |
1096 | 0 | break; |
1097 | | |
1098 | | /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr) |
1099 | | assembler directives. %hi does not support carry. */ |
1100 | 0 | case R_M68HC11_HI8: |
1101 | 0 | case R_M68HC11_LO8: |
1102 | 0 | relocation = phys_addr; |
1103 | 0 | break; |
1104 | | |
1105 | 0 | case R_M68HC11_24: |
1106 | | /* Reloc used by 68HC12 call instruction. */ |
1107 | 0 | bfd_put_16 (input_bfd, phys_addr, |
1108 | 0 | (bfd_byte*) contents + rel->r_offset); |
1109 | 0 | bfd_put_8 (input_bfd, phys_page, |
1110 | 0 | (bfd_byte*) contents + rel->r_offset + 2); |
1111 | 0 | r = bfd_reloc_ok; |
1112 | 0 | r_type = R_M68HC11_NONE; |
1113 | 0 | break; |
1114 | | |
1115 | 0 | case R_M68HC11_NONE: |
1116 | 0 | r = bfd_reloc_ok; |
1117 | 0 | break; |
1118 | | |
1119 | 0 | case R_M68HC11_LO16: |
1120 | | /* Reloc generated by %addr(expr) gas to obtain the |
1121 | | address as mapped in the memory bank window. */ |
1122 | 0 | relocation = phys_addr; |
1123 | 0 | break; |
1124 | | |
1125 | 0 | case R_M68HC11_PAGE: |
1126 | | /* Reloc generated by %page(expr) gas to obtain the |
1127 | | page number associated with the address. */ |
1128 | 0 | relocation = phys_page; |
1129 | 0 | break; |
1130 | | |
1131 | 0 | case R_M68HC11_16: |
1132 | 0 | if (is_far) |
1133 | 0 | { |
1134 | 0 | if (!reloc_warning (info, name, input_bfd, input_section, rel, |
1135 | 0 | _("reference to the far symbol `%s' using a " |
1136 | 0 | "wrong relocation may result in incorrect " |
1137 | 0 | "execution"), name)) |
1138 | 0 | return false; |
1139 | 0 | } |
1140 | | |
1141 | | /* Get virtual address of instruction having the relocation. */ |
1142 | 0 | insn_addr = input_section->output_section->vma |
1143 | 0 | + input_section->output_offset |
1144 | 0 | + rel->r_offset; |
1145 | |
|
1146 | 0 | insn_page = m68hc11_phys_page (pinfo, insn_addr); |
1147 | | |
1148 | | /* If we are linking an S12 instruction against an XGATE symbol, we |
1149 | | need to change the offset of the symbol value so that it's correct |
1150 | | from the S12's perspective. */ |
1151 | 0 | if (is_xgate_symbol) |
1152 | 0 | { |
1153 | | /* The ram in the global space is mapped to 0x2000 in the 16-bit |
1154 | | address space for S12 and 0xE000 in the 16-bit address space |
1155 | | for XGATE. */ |
1156 | 0 | if (relocation >= 0xE000) |
1157 | 0 | { |
1158 | | /* We offset the address by the difference |
1159 | | between these two mappings. */ |
1160 | 0 | relocation -= 0xC000; |
1161 | 0 | break; |
1162 | 0 | } |
1163 | 0 | else |
1164 | 0 | { |
1165 | 0 | if (!reloc_warning (info, name, input_bfd, input_section, rel, |
1166 | 0 | _("XGATE address (%lx) is not within " |
1167 | 0 | "shared RAM(0xE000-0xFFFF), therefore " |
1168 | 0 | "you must manually offset the address, " |
1169 | 0 | "and possibly manage the page, in your " |
1170 | 0 | "code."), (long) phys_addr)) |
1171 | 0 | return false; |
1172 | 0 | break; |
1173 | 0 | } |
1174 | 0 | } |
1175 | | |
1176 | 0 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) |
1177 | 0 | && m68hc11_addr_is_banked (pinfo, insn_addr) |
1178 | 0 | && phys_page != insn_page |
1179 | 0 | && !(e_flags & E_M68HC11_NO_BANK_WARNING)) |
1180 | 0 | { |
1181 | 0 | if (!reloc_warning (info, name, input_bfd, input_section, rel, |
1182 | 0 | _("banked address [%lx:%04lx] (%lx) is not " |
1183 | 0 | "in the same bank as current banked " |
1184 | 0 | "address [%lx:%04lx] (%lx)"), |
1185 | 0 | (long) phys_page, (long) phys_addr, |
1186 | 0 | (long) (relocation + rel->r_addend), |
1187 | 0 | (long) insn_page, |
1188 | 0 | (long) m68hc11_phys_addr (pinfo, insn_addr), |
1189 | 0 | (long) insn_addr)) |
1190 | 0 | return false; |
1191 | 0 | break; |
1192 | 0 | } |
1193 | | |
1194 | 0 | if (phys_page != 0 && insn_page == 0) |
1195 | 0 | { |
1196 | 0 | if (!reloc_warning (info, name, input_bfd, input_section, rel, |
1197 | 0 | _("reference to a banked address [%lx:%04lx] " |
1198 | 0 | "in the normal address space at %04lx"), |
1199 | 0 | (long) phys_page, (long) phys_addr, |
1200 | 0 | (long) insn_addr)) |
1201 | 0 | return false; |
1202 | 0 | relocation = phys_addr; |
1203 | 0 | break; |
1204 | 0 | } |
1205 | | |
1206 | | /* If this is a banked address use the phys_addr so that |
1207 | | we stay in the banked window. */ |
1208 | 0 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) |
1209 | 0 | relocation = phys_addr; |
1210 | 0 | break; |
1211 | 0 | } |
1212 | | |
1213 | | /* If we are linking an XGATE instruction against an S12 symbol, we |
1214 | | need to change the offset of the symbol value so that it's correct |
1215 | | from the XGATE's perspective. */ |
1216 | 0 | if (!strcmp (howto->name, "R_XGATE_IMM8_LO") |
1217 | 0 | || !strcmp (howto->name, "R_XGATE_IMM8_HI")) |
1218 | 0 | { |
1219 | | /* We can only offset S12 addresses that lie within the non-paged |
1220 | | area of RAM. */ |
1221 | 0 | if (!is_xgate_symbol && !is_section_symbol) |
1222 | 0 | { |
1223 | | /* The ram in the global space is mapped to 0x2000 and stops at |
1224 | | 0x4000 in the 16-bit address space for S12 and 0xE000 in the |
1225 | | 16-bit address space for XGATE. */ |
1226 | 0 | if (relocation >= 0x2000 && relocation < 0x4000) |
1227 | | /* We offset the address by the difference |
1228 | | between these two mappings. */ |
1229 | 0 | relocation += 0xC000; |
1230 | 0 | else |
1231 | 0 | { |
1232 | 0 | if (!reloc_warning (info, name, input_bfd, input_section, rel, |
1233 | 0 | _("S12 address (%lx) is not within " |
1234 | 0 | "shared RAM(0x2000-0x4000), therefore " |
1235 | 0 | "you must manually offset the address " |
1236 | 0 | "in your code"), (long) phys_addr)) |
1237 | 0 | return false; |
1238 | 0 | break; |
1239 | 0 | } |
1240 | 0 | } |
1241 | 0 | } |
1242 | | |
1243 | 0 | if (r_type != R_M68HC11_NONE) |
1244 | 0 | { |
1245 | 0 | if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10)) |
1246 | 0 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, |
1247 | 0 | contents, rel->r_offset, |
1248 | 0 | relocation - 2, rel->r_addend); |
1249 | 0 | else |
1250 | 0 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, |
1251 | 0 | contents, rel->r_offset, |
1252 | 0 | relocation, rel->r_addend); |
1253 | 0 | } |
1254 | |
|
1255 | 0 | if (r != bfd_reloc_ok) |
1256 | 0 | { |
1257 | 0 | switch (r) |
1258 | 0 | { |
1259 | 0 | case bfd_reloc_overflow: |
1260 | 0 | (*info->callbacks->reloc_overflow) |
1261 | 0 | (info, NULL, name, howto->name, (bfd_vma) 0, |
1262 | 0 | input_bfd, input_section, rel->r_offset); |
1263 | 0 | break; |
1264 | | |
1265 | 0 | case bfd_reloc_undefined: |
1266 | 0 | (*info->callbacks->undefined_symbol) |
1267 | 0 | (info, name, input_bfd, input_section, rel->r_offset, true); |
1268 | 0 | break; |
1269 | | |
1270 | 0 | case bfd_reloc_outofrange: |
1271 | 0 | msg = _ ("internal error: out of range error"); |
1272 | 0 | goto common_error; |
1273 | | |
1274 | 0 | case bfd_reloc_notsupported: |
1275 | 0 | msg = _ ("internal error: unsupported relocation error"); |
1276 | 0 | goto common_error; |
1277 | | |
1278 | 0 | case bfd_reloc_dangerous: |
1279 | 0 | msg = _ ("internal error: dangerous error"); |
1280 | 0 | goto common_error; |
1281 | | |
1282 | 0 | default: |
1283 | 0 | msg = _ ("internal error: unknown error"); |
1284 | | /* fall through */ |
1285 | |
|
1286 | 0 | common_error: |
1287 | 0 | (*info->callbacks->warning) (info, msg, name, input_bfd, |
1288 | 0 | input_section, rel->r_offset); |
1289 | 0 | break; |
1290 | 0 | } |
1291 | 0 | } |
1292 | 0 | } |
1293 | | |
1294 | 0 | return true; |
1295 | 0 | } |
1296 | | |
1297 | | |
1298 | | |
1299 | | /* Set and control ELF flags in ELF header. */ |
1300 | | |
1301 | | bool |
1302 | | _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) |
1303 | 0 | { |
1304 | 0 | BFD_ASSERT (!elf_flags_init (abfd) |
1305 | 0 | || elf_elfheader (abfd)->e_flags == flags); |
1306 | |
|
1307 | 0 | elf_elfheader (abfd)->e_flags = flags; |
1308 | 0 | elf_flags_init (abfd) = true; |
1309 | 0 | return true; |
1310 | 0 | } |
1311 | | |
1312 | | /* Merge backend specific data from an object file to the output |
1313 | | object file when linking. */ |
1314 | | |
1315 | | bool |
1316 | | _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
1317 | 0 | { |
1318 | 0 | bfd *obfd = info->output_bfd; |
1319 | 0 | flagword old_flags; |
1320 | 0 | flagword new_flags; |
1321 | 0 | bool ok = true; |
1322 | | |
1323 | | /* Check if we have the same endianness */ |
1324 | 0 | if (!_bfd_generic_verify_endian_match (ibfd, info)) |
1325 | 0 | return false; |
1326 | | |
1327 | 0 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
1328 | 0 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
1329 | 0 | return true; |
1330 | | |
1331 | 0 | new_flags = elf_elfheader (ibfd)->e_flags; |
1332 | 0 | elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; |
1333 | 0 | old_flags = elf_elfheader (obfd)->e_flags; |
1334 | |
|
1335 | 0 | if (! elf_flags_init (obfd)) |
1336 | 0 | { |
1337 | 0 | elf_flags_init (obfd) = true; |
1338 | 0 | elf_elfheader (obfd)->e_flags = new_flags; |
1339 | 0 | elf_elfheader (obfd)->e_ident[EI_CLASS] |
1340 | 0 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; |
1341 | |
|
1342 | 0 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
1343 | 0 | && bfd_get_arch_info (obfd)->the_default) |
1344 | 0 | { |
1345 | 0 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
1346 | 0 | bfd_get_mach (ibfd))) |
1347 | 0 | return false; |
1348 | 0 | } |
1349 | | |
1350 | 0 | return true; |
1351 | 0 | } |
1352 | | |
1353 | | /* Check ABI compatibility. */ |
1354 | 0 | if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) |
1355 | 0 | { |
1356 | 0 | _bfd_error_handler |
1357 | 0 | (_("%pB: linking files compiled for 16-bit integers (-mshort) " |
1358 | 0 | "and others for 32-bit integers"), ibfd); |
1359 | 0 | ok = false; |
1360 | 0 | } |
1361 | 0 | if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) |
1362 | 0 | { |
1363 | 0 | _bfd_error_handler |
1364 | 0 | (_("%pB: linking files compiled for 32-bit double (-fshort-double) " |
1365 | 0 | "and others for 64-bit double"), ibfd); |
1366 | 0 | ok = false; |
1367 | 0 | } |
1368 | | |
1369 | | /* Processor compatibility. */ |
1370 | 0 | if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) |
1371 | 0 | { |
1372 | 0 | _bfd_error_handler |
1373 | 0 | (_("%pB: linking files compiled for HCS12 with " |
1374 | 0 | "others compiled for HC12"), ibfd); |
1375 | 0 | ok = false; |
1376 | 0 | } |
1377 | 0 | new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) |
1378 | 0 | | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); |
1379 | |
|
1380 | 0 | elf_elfheader (obfd)->e_flags = new_flags; |
1381 | |
|
1382 | 0 | new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
1383 | 0 | old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
1384 | | |
1385 | | /* Warn about any other mismatches */ |
1386 | 0 | if (new_flags != old_flags) |
1387 | 0 | { |
1388 | 0 | _bfd_error_handler |
1389 | | /* xgettext:c-format */ |
1390 | 0 | (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"), |
1391 | 0 | ibfd, new_flags, old_flags); |
1392 | 0 | ok = false; |
1393 | 0 | } |
1394 | |
|
1395 | 0 | if (! ok) |
1396 | 0 | { |
1397 | 0 | bfd_set_error (bfd_error_bad_value); |
1398 | 0 | return false; |
1399 | 0 | } |
1400 | | |
1401 | 0 | return true; |
1402 | 0 | } |
1403 | | |
1404 | | bool |
1405 | | _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
1406 | 67 | { |
1407 | 67 | FILE *file = (FILE *) ptr; |
1408 | | |
1409 | 67 | BFD_ASSERT (abfd != NULL && ptr != NULL); |
1410 | | |
1411 | | /* Print normal ELF private data. */ |
1412 | 67 | _bfd_elf_print_private_bfd_data (abfd, ptr); |
1413 | | |
1414 | | /* xgettext:c-format */ |
1415 | 67 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
1416 | | |
1417 | 67 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) |
1418 | 22 | fprintf (file, _("[abi=32-bit int, ")); |
1419 | 45 | else |
1420 | 45 | fprintf (file, _("[abi=16-bit int, ")); |
1421 | | |
1422 | 67 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) |
1423 | 2 | fprintf (file, _("64-bit double, ")); |
1424 | 65 | else |
1425 | 65 | fprintf (file, _("32-bit double, ")); |
1426 | | |
1427 | 67 | if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) |
1428 | 8 | fprintf (file, _("cpu=HC11]")); |
1429 | 59 | else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) |
1430 | 3 | fprintf (file, _("cpu=HCS12]")); |
1431 | 56 | else |
1432 | 56 | fprintf (file, _("cpu=HC12]")); |
1433 | | |
1434 | 67 | if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) |
1435 | 2 | fprintf (file, _(" [memory=bank-model]")); |
1436 | 65 | else |
1437 | 65 | fprintf (file, _(" [memory=flat]")); |
1438 | | |
1439 | 67 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET) |
1440 | 39 | fprintf (file, _(" [XGATE RAM offsetting]")); |
1441 | | |
1442 | 67 | fputc ('\n', file); |
1443 | | |
1444 | 67 | return true; |
1445 | 67 | } |
1446 | | |
1447 | | static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, |
1448 | | asection *asect, void *arg) |
1449 | 0 | { |
1450 | 0 | struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; |
1451 | |
|
1452 | 0 | if (asect->vma >= p->pinfo->bank_virtual) |
1453 | 0 | p->use_memory_banks = true; |
1454 | 0 | } |
1455 | | |
1456 | | /* Tweak the OSABI field of the elf header. */ |
1457 | | |
1458 | | bool |
1459 | | elf32_m68hc11_init_file_header (bfd *abfd, struct bfd_link_info *link_info) |
1460 | 0 | { |
1461 | 0 | struct m68hc11_scan_param param; |
1462 | 0 | struct m68hc11_elf_link_hash_table *htab; |
1463 | |
|
1464 | 0 | if (!_bfd_elf_init_file_header (abfd, link_info)) |
1465 | 0 | return false; |
1466 | | |
1467 | 0 | if (link_info == NULL) |
1468 | 0 | return true; |
1469 | | |
1470 | 0 | htab = m68hc11_elf_hash_table (link_info); |
1471 | 0 | if (htab == NULL) |
1472 | 0 | return true; |
1473 | | |
1474 | 0 | m68hc11_elf_get_bank_parameters (link_info); |
1475 | |
|
1476 | 0 | param.use_memory_banks = false; |
1477 | 0 | param.pinfo = & htab->pinfo; |
1478 | |
|
1479 | 0 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); |
1480 | |
|
1481 | 0 | if (param.use_memory_banks) |
1482 | 0 | { |
1483 | 0 | Elf_Internal_Ehdr * i_ehdrp; |
1484 | |
|
1485 | 0 | i_ehdrp = elf_elfheader (abfd); |
1486 | 0 | i_ehdrp->e_flags |= E_M68HC12_BANKS; |
1487 | 0 | } |
1488 | 0 | return true; |
1489 | 0 | } |