Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/bfd/elf32-m68hc1x.c
Line
Count
Source (jump to first uncovered line)
1
/* Motorola 68HC11/HC12-specific support for 32-bit ELF
2
   Copyright (C) 1999-2025 Free Software Foundation, Inc.
3
   Contributed by Stephane Carrez (stcarrez@nerim.fr)
4
5
   This file is part of BFD, the Binary File Descriptor library.
6
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
22
#include "sysdep.h"
23
#include "bfd.h"
24
#include "bfdlink.h"
25
#include "libbfd.h"
26
#include "elf-bfd.h"
27
#include "elf32-m68hc1x.h"
28
#include "elf/m68hc11.h"
29
#include "opcode/m68hc11.h"
30
#include "libiberty.h"
31
32
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
33
0
  ((struct elf32_m68hc11_stub_hash_entry *) \
34
0
   bfd_hash_lookup ((table), (string), (create), (copy)))
35
36
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37
  (const char *stub_name,
38
   asection *section,
39
   struct m68hc11_elf_link_hash_table *htab);
40
41
static struct bfd_hash_entry *stub_hash_newfunc
42
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
43
44
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45
            const char* name, bfd_vma value,
46
            asection* sec);
47
48
static bool m68hc11_elf_export_one_stub
49
  (struct bfd_hash_entry *gen_entry, void *in_arg);
50
51
static void scan_sections_for_abi (bfd*, asection*, void *);
52
53
struct m68hc11_scan_param
54
{
55
   struct m68hc11_page_info* pinfo;
56
   bool use_memory_banks;
57
};
58
59
60
/* Destroy a 68HC11/68HC12 ELF linker hash table.  */
61
62
static void
63
m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
64
0
{
65
0
  struct m68hc11_elf_link_hash_table *ret
66
0
    = (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
67
68
0
  bfd_hash_table_free (ret->stub_hash_table);
69
0
  free (ret->stub_hash_table);
70
0
  _bfd_elf_link_hash_table_free (obfd);
71
0
}
72
73
/* Create a 68HC11/68HC12 ELF linker hash table.  */
74
75
struct m68hc11_elf_link_hash_table*
76
m68hc11_elf_hash_table_create (bfd *abfd)
77
0
{
78
0
  struct m68hc11_elf_link_hash_table *ret;
79
0
  size_t amt = sizeof (struct m68hc11_elf_link_hash_table);
80
81
0
  ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
82
0
  if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
83
0
    return NULL;
84
85
0
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
86
0
              _bfd_elf_link_hash_newfunc,
87
0
              sizeof (struct elf_link_hash_entry)))
88
0
    {
89
0
      free (ret);
90
0
      return NULL;
91
0
    }
92
93
  /* Init the stub hash table too.  */
94
0
  amt = sizeof (struct bfd_hash_table);
95
0
  ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
96
0
  if (ret->stub_hash_table == NULL)
97
0
    {
98
0
      _bfd_elf_link_hash_table_free (abfd);
99
0
      return NULL;
100
0
    }
101
0
  if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
102
0
          sizeof (struct elf32_m68hc11_stub_hash_entry)))
103
0
    {
104
0
      free (ret->stub_hash_table);
105
0
      _bfd_elf_link_hash_table_free (abfd);
106
0
      return NULL;
107
0
    }
108
0
  ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
109
110
0
  return ret;
111
0
}
112
113
/* Assorted hash table functions.  */
114
115
/* Initialize an entry in the stub hash table.  */
116
117
static struct bfd_hash_entry *
118
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
119
       const char *string)
120
0
{
121
  /* Allocate the structure if it has not already been allocated by a
122
     subclass.  */
123
0
  if (entry == NULL)
124
0
    {
125
0
      entry = bfd_hash_allocate (table,
126
0
         sizeof (struct elf32_m68hc11_stub_hash_entry));
127
0
      if (entry == NULL)
128
0
  return entry;
129
0
    }
130
131
  /* Call the allocation method of the superclass.  */
132
0
  entry = bfd_hash_newfunc (entry, table, string);
133
0
  if (entry != NULL)
134
0
    {
135
0
      struct elf32_m68hc11_stub_hash_entry *eh;
136
137
      /* Initialize the local fields.  */
138
0
      eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
139
0
      eh->stub_sec = NULL;
140
0
      eh->stub_offset = 0;
141
0
      eh->target_value = 0;
142
0
      eh->target_section = NULL;
143
0
    }
144
145
0
  return entry;
146
0
}
147
148
/* Add a new stub entry to the stub hash.  Not all fields of the new
149
   stub entry are initialised.  */
150
151
static struct elf32_m68hc11_stub_hash_entry *
152
m68hc12_add_stub (const char *stub_name, asection *section,
153
      struct m68hc11_elf_link_hash_table *htab)
154
0
{
155
0
  struct elf32_m68hc11_stub_hash_entry *stub_entry;
156
157
  /* Enter this entry into the linker stub hash table.  */
158
0
  stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
159
0
           true, false);
160
0
  if (stub_entry == NULL)
161
0
    {
162
      /* xgettext:c-format */
163
0
      _bfd_error_handler (_("%pB: cannot create stub entry %s"),
164
0
        section->owner, stub_name);
165
0
      return NULL;
166
0
    }
167
168
0
  if (htab->stub_section == 0)
169
0
    {
170
0
      htab->stub_section = (*htab->add_stub_section) (".tramp",
171
0
                  htab->tramp_section);
172
0
    }
173
174
0
  stub_entry->stub_sec = htab->stub_section;
175
0
  stub_entry->stub_offset = 0;
176
0
  return stub_entry;
177
0
}
178
179
/* Hook called by the linker routine which adds symbols from an object
180
   file.  We use it for identify far symbols and force a loading of
181
   the trampoline handler.  */
182
183
bool
184
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
185
             Elf_Internal_Sym *sym,
186
             const char **namep ATTRIBUTE_UNUSED,
187
             flagword *flagsp ATTRIBUTE_UNUSED,
188
             asection **secp ATTRIBUTE_UNUSED,
189
             bfd_vma *valp ATTRIBUTE_UNUSED)
190
0
{
191
0
  if (sym->st_other & STO_M68HC12_FAR)
192
0
    {
193
0
      struct elf_link_hash_entry *h;
194
195
0
      h = (struct elf_link_hash_entry *)
196
0
  bfd_link_hash_lookup (info->hash, "__far_trampoline",
197
0
            false, false, false);
198
0
      if (h == NULL)
199
0
  {
200
0
    struct bfd_link_hash_entry* entry = NULL;
201
202
0
    _bfd_generic_link_add_one_symbol (info, abfd,
203
0
              "__far_trampoline",
204
0
              BSF_GLOBAL,
205
0
              bfd_und_section_ptr,
206
0
              (bfd_vma) 0, (const char*) NULL,
207
0
              false, false, &entry);
208
0
  }
209
210
0
    }
211
0
  return true;
212
0
}
213
214
/* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
215
   STO_M68HC12_INTERRUPT.  */
216
217
void
218
elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
219
              unsigned int st_other,
220
              bool definition,
221
              bool dynamic ATTRIBUTE_UNUSED)
222
0
{
223
0
  if (definition)
224
0
    h->other = ((st_other & ~ELF_ST_VISIBILITY (-1))
225
0
    | ELF_ST_VISIBILITY (h->other));
226
0
}
227
228
/* External entry points for sizing and building linker stubs.  */
229
230
/* Set up various things so that we can make a list of input sections
231
   for each output section included in the link.  Returns -1 on error,
232
   0 when no stubs will be needed, and 1 on success.  */
233
234
int
235
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
236
0
{
237
0
  bfd *input_bfd;
238
0
  unsigned int bfd_count;
239
0
  unsigned int top_id, top_index;
240
0
  asection *section;
241
0
  asection **input_list, **list;
242
0
  size_t amt;
243
0
  asection *text_section;
244
0
  struct m68hc11_elf_link_hash_table *htab;
245
246
0
  htab = m68hc11_elf_hash_table (info);
247
0
  if (htab == NULL)
248
0
    return -1;
249
250
0
  if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
251
0
    return 0;
252
253
  /* Count the number of input BFDs and find the top input section id.
254
     Also search for an existing ".tramp" section so that we know
255
     where generated trampolines must go.  Default to ".text" if we
256
     can't find it.  */
257
0
  htab->tramp_section = 0;
258
0
  text_section = 0;
259
0
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
260
0
       input_bfd != NULL;
261
0
       input_bfd = input_bfd->link.next)
262
0
    {
263
0
      bfd_count += 1;
264
0
      for (section = input_bfd->sections;
265
0
     section != NULL;
266
0
     section = section->next)
267
0
  {
268
0
    const char *name = bfd_section_name (section);
269
270
0
    if (!strcmp (name, ".tramp"))
271
0
      htab->tramp_section = section;
272
273
0
    if (!strcmp (name, ".text"))
274
0
      text_section = section;
275
276
0
    if (top_id < section->id)
277
0
      top_id = section->id;
278
0
  }
279
0
    }
280
0
  htab->bfd_count = bfd_count;
281
0
  if (htab->tramp_section == 0)
282
0
    htab->tramp_section = text_section;
283
284
  /* We can't use output_bfd->section_count here to find the top output
285
     section index as some sections may have been removed, and
286
     strip_excluded_output_sections doesn't renumber the indices.  */
287
0
  for (section = output_bfd->sections, top_index = 0;
288
0
       section != NULL;
289
0
       section = section->next)
290
0
    {
291
0
      if (top_index < section->index)
292
0
  top_index = section->index;
293
0
    }
294
295
0
  htab->top_index = top_index;
296
0
  amt = sizeof (asection *) * (top_index + 1);
297
0
  input_list = (asection **) bfd_malloc (amt);
298
0
  htab->input_list = input_list;
299
0
  if (input_list == NULL)
300
0
    return -1;
301
302
  /* For sections we aren't interested in, mark their entries with a
303
     value we can check later.  */
304
0
  list = input_list + top_index;
305
0
  do
306
0
    *list = bfd_abs_section_ptr;
307
0
  while (list-- != input_list);
308
309
0
  for (section = output_bfd->sections;
310
0
       section != NULL;
311
0
       section = section->next)
312
0
    {
313
0
      if ((section->flags & SEC_CODE) != 0)
314
0
  input_list[section->index] = NULL;
315
0
    }
316
317
0
  return 1;
318
0
}
319
320
/* Determine and set the size of the stub section for a final link.
321
322
   The basic idea here is to examine all the relocations looking for
323
   PC-relative calls to a target that is unreachable with a "bl"
324
   instruction.  */
325
326
bool
327
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
328
        struct bfd_link_info *info,
329
        asection * (*add_stub_section) (const char*, asection*))
330
0
{
331
0
  bfd *input_bfd;
332
0
  asection *section;
333
0
  Elf_Internal_Sym *local_syms, **all_local_syms;
334
0
  unsigned int bfd_indx, bfd_count;
335
0
  size_t amt;
336
0
  asection *stub_sec;
337
0
  struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
338
339
0
  if (htab == NULL)
340
0
    return false;
341
342
  /* Stash our params away.  */
343
0
  htab->stub_bfd = stub_bfd;
344
0
  htab->add_stub_section = add_stub_section;
345
346
  /* Count the number of input BFDs and find the top input section id.  */
347
0
  for (input_bfd = info->input_bfds, bfd_count = 0;
348
0
       input_bfd != NULL;
349
0
       input_bfd = input_bfd->link.next)
350
0
    bfd_count += 1;
351
352
  /* We want to read in symbol extension records only once.  To do this
353
     we need to read in the local symbols in parallel and save them for
354
     later use; so hold pointers to the local symbols in an array.  */
355
0
  amt = sizeof (Elf_Internal_Sym *) * bfd_count;
356
0
  all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
357
0
  if (all_local_syms == NULL)
358
0
    return false;
359
360
  /* Walk over all the input BFDs, swapping in local symbols.  */
361
0
  for (input_bfd = info->input_bfds, bfd_indx = 0;
362
0
       input_bfd != NULL;
363
0
       input_bfd = input_bfd->link.next, bfd_indx++)
364
0
    {
365
0
      Elf_Internal_Shdr *symtab_hdr;
366
367
      /* We'll need the symbol table in a second.  */
368
0
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
369
0
      if (symtab_hdr->sh_info == 0)
370
0
  continue;
371
372
      /* We need an array of the local symbols attached to the input bfd.  */
373
0
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
374
0
      if (local_syms == NULL)
375
0
  {
376
0
    local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
377
0
               symtab_hdr->sh_info, 0,
378
0
               NULL, NULL, NULL);
379
    /* Cache them for elf_link_input_bfd.  */
380
0
    symtab_hdr->contents = (unsigned char *) local_syms;
381
0
  }
382
0
      if (local_syms == NULL)
383
0
  {
384
0
    free (all_local_syms);
385
0
    return false;
386
0
  }
387
388
0
      all_local_syms[bfd_indx] = local_syms;
389
0
    }
390
391
0
  for (input_bfd = info->input_bfds, bfd_indx = 0;
392
0
       input_bfd != NULL;
393
0
       input_bfd = input_bfd->link.next, bfd_indx++)
394
0
    {
395
0
      Elf_Internal_Shdr *symtab_hdr;
396
0
      struct elf_link_hash_entry ** sym_hashes;
397
398
0
      sym_hashes = elf_sym_hashes (input_bfd);
399
400
      /* We'll need the symbol table in a second.  */
401
0
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
402
0
      if (symtab_hdr->sh_info == 0)
403
0
  continue;
404
405
0
      local_syms = all_local_syms[bfd_indx];
406
407
      /* Walk over each section attached to the input bfd.  */
408
0
      for (section = input_bfd->sections;
409
0
     section != NULL;
410
0
     section = section->next)
411
0
  {
412
0
    Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
413
414
    /* If there aren't any relocs, then there's nothing more
415
       to do.  */
416
0
    if ((section->flags & SEC_RELOC) == 0
417
0
        || section->reloc_count == 0)
418
0
      continue;
419
420
    /* If this section is a link-once section that will be
421
       discarded, then don't create any stubs.  */
422
0
    if (section->output_section == NULL
423
0
        || section->output_section->owner != output_bfd)
424
0
      continue;
425
426
    /* Get the relocs.  */
427
0
    internal_relocs
428
0
      = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
429
0
           (Elf_Internal_Rela *) NULL,
430
0
           info->keep_memory);
431
0
    if (internal_relocs == NULL)
432
0
      goto error_ret_free_local;
433
434
    /* Now examine each relocation.  */
435
0
    irela = internal_relocs;
436
0
    irelaend = irela + section->reloc_count;
437
0
    for (; irela < irelaend; irela++)
438
0
      {
439
0
        unsigned int r_type, r_indx;
440
0
        struct elf32_m68hc11_stub_hash_entry *stub_entry;
441
0
        asection *sym_sec;
442
0
        bfd_vma sym_value;
443
0
        struct elf_link_hash_entry *hash;
444
0
        const char *stub_name;
445
0
        Elf_Internal_Sym *sym;
446
447
0
        r_type = ELF32_R_TYPE (irela->r_info);
448
449
        /* Only look at 16-bit relocs.  */
450
0
        if (r_type != (unsigned int) R_M68HC11_16)
451
0
    continue;
452
453
        /* Now determine the call target, its name, value,
454
     section.  */
455
0
        r_indx = ELF32_R_SYM (irela->r_info);
456
0
        if (r_indx < symtab_hdr->sh_info)
457
0
    {
458
      /* It's a local symbol.  */
459
0
      Elf_Internal_Shdr *hdr;
460
0
      bool is_far;
461
462
0
      sym = local_syms + r_indx;
463
0
      is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
464
0
      if (!is_far)
465
0
        continue;
466
467
0
      if (sym->st_shndx >= elf_numsections (input_bfd))
468
0
        sym_sec = NULL;
469
0
      else
470
0
        {
471
0
          hdr = elf_elfsections (input_bfd)[sym->st_shndx];
472
0
          sym_sec = hdr->bfd_section;
473
0
        }
474
0
      stub_name = (bfd_elf_string_from_elf_section
475
0
             (input_bfd, symtab_hdr->sh_link,
476
0
        sym->st_name));
477
0
      sym_value = sym->st_value;
478
0
      hash = NULL;
479
0
    }
480
0
        else
481
0
    {
482
      /* It's an external symbol.  */
483
0
      int e_indx;
484
485
0
      e_indx = r_indx - symtab_hdr->sh_info;
486
0
      hash = (struct elf_link_hash_entry *)
487
0
        (sym_hashes[e_indx]);
488
489
0
      while (hash->root.type == bfd_link_hash_indirect
490
0
       || hash->root.type == bfd_link_hash_warning)
491
0
        hash = ((struct elf_link_hash_entry *)
492
0
          hash->root.u.i.link);
493
494
0
      if (hash->root.type == bfd_link_hash_defined
495
0
          || hash->root.type == bfd_link_hash_defweak
496
0
          || hash->root.type == bfd_link_hash_new)
497
0
        {
498
0
          if (!(hash->other & STO_M68HC12_FAR))
499
0
      continue;
500
0
        }
501
0
      else if (hash->root.type == bfd_link_hash_undefweak)
502
0
        {
503
0
          continue;
504
0
        }
505
0
      else if (hash->root.type == bfd_link_hash_undefined)
506
0
        {
507
0
          continue;
508
0
        }
509
0
      else
510
0
        {
511
0
          bfd_set_error (bfd_error_bad_value);
512
0
          goto error_ret_free_internal;
513
0
        }
514
0
      sym_sec = hash->root.u.def.section;
515
0
      sym_value = hash->root.u.def.value;
516
0
      stub_name = hash->root.root.string;
517
0
    }
518
519
0
        if (!stub_name)
520
0
    goto error_ret_free_internal;
521
522
0
        stub_entry = m68hc12_stub_hash_lookup
523
0
    (htab->stub_hash_table,
524
0
     stub_name,
525
0
     false, false);
526
0
        if (stub_entry == NULL)
527
0
    {
528
0
      if (add_stub_section == 0)
529
0
        continue;
530
531
0
      stub_entry = m68hc12_add_stub (stub_name, section, htab);
532
0
      if (stub_entry == NULL)
533
0
        {
534
0
        error_ret_free_internal:
535
0
          if (elf_section_data (section)->relocs == NULL)
536
0
      free (internal_relocs);
537
0
          goto error_ret_free_local;
538
0
        }
539
0
    }
540
541
0
        stub_entry->target_value = sym_value;
542
0
        stub_entry->target_section = sym_sec;
543
0
      }
544
545
    /* We're done with the internal relocs, free them.  */
546
0
    if (elf_section_data (section)->relocs == NULL)
547
0
      free (internal_relocs);
548
0
  }
549
0
    }
550
551
0
  if (add_stub_section)
552
0
    {
553
      /* OK, we've added some stubs.  Find out the new size of the
554
   stub sections.  */
555
0
      for (stub_sec = htab->stub_bfd->sections;
556
0
     stub_sec != NULL;
557
0
     stub_sec = stub_sec->next)
558
0
  {
559
0
    stub_sec->size = 0;
560
0
  }
561
562
0
      bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
563
0
    }
564
0
  free (all_local_syms);
565
0
  return true;
566
567
0
 error_ret_free_local:
568
0
  free (all_local_syms);
569
0
  return false;
570
0
}
571
572
/* Export the trampoline addresses in the symbol table.  */
573
static bool
574
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
575
0
{
576
0
  struct bfd_link_info *info;
577
0
  struct m68hc11_elf_link_hash_table *htab;
578
0
  struct elf32_m68hc11_stub_hash_entry *stub_entry;
579
0
  char* name;
580
0
  bool result;
581
582
0
  info = (struct bfd_link_info *) in_arg;
583
0
  htab = m68hc11_elf_hash_table (info);
584
0
  if (htab == NULL)
585
0
    return false;
586
587
  /* Massage our args to the form they really have.  */
588
0
  stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
589
590
  /* Generate the trampoline according to HC11 or HC12.  */
591
0
  result = (* htab->build_one_stub) (gen_entry, in_arg);
592
593
  /* Make a printable name that does not conflict with the real function.  */
594
0
  name = concat ("tramp.", stub_entry->root.string, NULL);
595
596
  /* Export the symbol for debugging/disassembling.  */
597
0
  m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
598
0
        stub_entry->stub_offset,
599
0
        stub_entry->stub_sec);
600
0
  free (name);
601
0
  return result;
602
0
}
603
604
/* Export a symbol or set its value and section.  */
605
static void
606
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
607
      const char *name, bfd_vma value, asection *sec)
608
0
{
609
0
  struct elf_link_hash_entry *h;
610
611
0
  h = (struct elf_link_hash_entry *)
612
0
    bfd_link_hash_lookup (info->hash, name, false, false, false);
613
0
  if (h == NULL)
614
0
    {
615
0
      _bfd_generic_link_add_one_symbol (info, abfd,
616
0
          name,
617
0
          BSF_GLOBAL,
618
0
          sec,
619
0
          value,
620
0
          (const char*) NULL,
621
0
          true, false, NULL);
622
0
    }
623
0
  else
624
0
    {
625
0
      h->root.type = bfd_link_hash_defined;
626
0
      h->root.u.def.value = value;
627
0
      h->root.u.def.section = sec;
628
0
    }
629
0
}
630
631
632
/* Build all the stubs associated with the current output file.  The
633
   stubs are kept in a hash table attached to the main linker hash
634
   table.  This function is called via m68hc12elf_finish in the
635
   linker.  */
636
637
bool
638
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
639
0
{
640
0
  asection *stub_sec;
641
0
  struct bfd_hash_table *table;
642
0
  struct m68hc11_elf_link_hash_table *htab;
643
0
  struct m68hc11_scan_param param;
644
645
0
  m68hc11_elf_get_bank_parameters (info);
646
0
  htab = m68hc11_elf_hash_table (info);
647
0
  if (htab == NULL)
648
0
    return false;
649
650
0
  for (stub_sec = htab->stub_bfd->sections;
651
0
       stub_sec != NULL;
652
0
       stub_sec = stub_sec->next)
653
0
    {
654
0
      bfd_size_type size;
655
656
      /* Allocate memory to hold the linker stubs.  */
657
0
      size = stub_sec->size;
658
0
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
659
0
      if (stub_sec->contents == NULL && size != 0)
660
0
  return false;
661
0
      stub_sec->alloced = 1;
662
0
      stub_sec->size = 0;
663
0
    }
664
665
  /* Build the stubs as directed by the stub hash table.  */
666
0
  table = htab->stub_hash_table;
667
0
  bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
668
669
  /* Scan the output sections to see if we use the memory banks.
670
     If so, export the symbols that define how the memory banks
671
     are mapped.  This is used by gdb and the simulator to obtain
672
     the information.  It can be used by programs to burn the eprom
673
     at the good addresses.  */
674
0
  param.use_memory_banks = false;
675
0
  param.pinfo = &htab->pinfo;
676
0
  bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
677
0
  if (param.use_memory_banks)
678
0
    {
679
0
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
680
0
            htab->pinfo.bank_physical,
681
0
            bfd_abs_section_ptr);
682
0
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
683
0
            htab->pinfo.bank_virtual,
684
0
            bfd_abs_section_ptr);
685
0
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
686
0
            htab->pinfo.bank_size,
687
0
            bfd_abs_section_ptr);
688
0
    }
689
690
0
  return true;
691
0
}
692
693
void
694
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
695
0
{
696
0
  unsigned i;
697
0
  struct m68hc11_page_info *pinfo;
698
0
  struct bfd_link_hash_entry *h;
699
0
  struct m68hc11_elf_link_hash_table *htab;
700
701
0
  htab = m68hc11_elf_hash_table (info);
702
0
  if (htab == NULL)
703
0
    return;
704
705
0
  pinfo = & htab->pinfo;
706
0
  if (pinfo->bank_param_initialized)
707
0
    return;
708
709
0
  pinfo->bank_virtual = M68HC12_BANK_VIRT;
710
0
  pinfo->bank_mask = M68HC12_BANK_MASK;
711
0
  pinfo->bank_physical = M68HC12_BANK_BASE;
712
0
  pinfo->bank_shift = M68HC12_BANK_SHIFT;
713
0
  pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
714
715
0
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
716
0
          false, false, true);
717
0
  if (h != (struct bfd_link_hash_entry*) NULL
718
0
      && h->type == bfd_link_hash_defined)
719
0
    pinfo->bank_physical = (h->u.def.value
720
0
          + h->u.def.section->output_section->vma
721
0
          + h->u.def.section->output_offset);
722
723
0
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
724
0
          false, false, true);
725
0
  if (h != (struct bfd_link_hash_entry*) NULL
726
0
      && h->type == bfd_link_hash_defined)
727
0
    pinfo->bank_virtual = (h->u.def.value
728
0
         + h->u.def.section->output_section->vma
729
0
         + h->u.def.section->output_offset);
730
731
0
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
732
0
          false, false, true);
733
0
  if (h != (struct bfd_link_hash_entry*) NULL
734
0
      && h->type == bfd_link_hash_defined)
735
0
    pinfo->bank_size = (h->u.def.value
736
0
      + h->u.def.section->output_section->vma
737
0
      + h->u.def.section->output_offset);
738
739
0
  pinfo->bank_shift = 0;
740
0
  for (i = pinfo->bank_size; i != 0; i >>= 1)
741
0
    pinfo->bank_shift++;
742
0
  pinfo->bank_shift--;
743
0
  pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
744
0
  pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
745
0
  pinfo->bank_param_initialized = 1;
746
747
0
  h = bfd_link_hash_lookup (info->hash, "__far_trampoline", false,
748
0
          false, true);
749
0
  if (h != (struct bfd_link_hash_entry*) NULL
750
0
      && h->type == bfd_link_hash_defined)
751
0
    pinfo->trampoline_addr = (h->u.def.value
752
0
            + h->u.def.section->output_section->vma
753
0
            + h->u.def.section->output_offset);
754
0
}
755
756
/* Return 1 if the address is in banked memory.
757
   This can be applied to a virtual address and to a physical address.  */
758
int
759
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
760
0
{
761
0
  if (addr >= pinfo->bank_virtual)
762
0
    return 1;
763
764
0
  if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
765
0
    return 1;
766
767
0
  return 0;
768
0
}
769
770
/* Return the physical address seen by the processor, taking
771
   into account banked memory.  */
772
bfd_vma
773
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
774
0
{
775
0
  if (addr < pinfo->bank_virtual)
776
0
    return addr;
777
778
  /* Map the address to the memory bank.  */
779
0
  addr -= pinfo->bank_virtual;
780
0
  addr &= pinfo->bank_mask;
781
0
  addr += pinfo->bank_physical;
782
0
  return addr;
783
0
}
784
785
/* Return the page number corresponding to an address in banked memory.  */
786
bfd_vma
787
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
788
0
{
789
0
  if (addr < pinfo->bank_virtual)
790
0
    return 0;
791
792
  /* Map the address to the memory bank.  */
793
0
  addr -= pinfo->bank_virtual;
794
0
  addr >>= pinfo->bank_shift;
795
0
  addr &= 0x0ff;
796
0
  return addr;
797
0
}
798
799
/* This function is used for relocs which are only used for relaxing,
800
   which the linker should otherwise ignore.  */
801
802
bfd_reloc_status_type
803
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
804
        arelent *reloc_entry,
805
        asymbol *symbol ATTRIBUTE_UNUSED,
806
        void *data ATTRIBUTE_UNUSED,
807
        asection *input_section,
808
        bfd *output_bfd,
809
        char **error_message ATTRIBUTE_UNUSED)
810
0
{
811
0
  if (output_bfd != NULL)
812
0
    reloc_entry->address += input_section->output_offset;
813
0
  return bfd_reloc_ok;
814
0
}
815
816
bfd_reloc_status_type
817
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
818
         arelent *reloc_entry,
819
         asymbol *symbol,
820
         void *data ATTRIBUTE_UNUSED,
821
         asection *input_section,
822
         bfd *output_bfd,
823
         char **error_message ATTRIBUTE_UNUSED)
824
0
{
825
0
  if (output_bfd != (bfd *) NULL
826
0
      && (symbol->flags & BSF_SECTION_SYM) == 0
827
0
      && (! reloc_entry->howto->partial_inplace
828
0
    || reloc_entry->addend == 0))
829
0
    {
830
0
      reloc_entry->address += input_section->output_offset;
831
0
      return bfd_reloc_ok;
832
0
    }
833
834
0
  if (output_bfd != NULL)
835
0
    return bfd_reloc_continue;
836
837
0
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
838
0
    return bfd_reloc_outofrange;
839
840
0
  abort();
841
0
}
842
843
/* Look through the relocs for a section during the first phase.
844
   Since we don't do .gots or .plts, we just need to consider the
845
   virtual table relocs for gc.  */
846
847
bool
848
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
849
          asection *sec, const Elf_Internal_Rela *relocs)
850
0
{
851
0
  Elf_Internal_Shdr *   symtab_hdr;
852
0
  struct elf_link_hash_entry ** sym_hashes;
853
0
  const Elf_Internal_Rela * rel;
854
0
  const Elf_Internal_Rela * rel_end;
855
856
0
  if (bfd_link_relocatable (info))
857
0
    return true;
858
859
0
  symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
860
0
  sym_hashes = elf_sym_hashes (abfd);
861
0
  rel_end = relocs + sec->reloc_count;
862
863
0
  for (rel = relocs; rel < rel_end; rel++)
864
0
    {
865
0
      struct elf_link_hash_entry * h;
866
0
      unsigned long r_symndx;
867
868
0
      r_symndx = ELF32_R_SYM (rel->r_info);
869
870
0
      if (r_symndx < symtab_hdr->sh_info)
871
0
  h = NULL;
872
0
      else
873
0
  {
874
0
    h = sym_hashes [r_symndx - symtab_hdr->sh_info];
875
0
    while (h->root.type == bfd_link_hash_indirect
876
0
     || h->root.type == bfd_link_hash_warning)
877
0
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
878
0
  }
879
880
0
      switch (ELF32_R_TYPE (rel->r_info))
881
0
  {
882
  /* This relocation describes the C++ object vtable hierarchy.
883
     Reconstruct it for later use during GC.  */
884
0
  case R_M68HC11_GNU_VTINHERIT:
885
0
    if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
886
0
      return false;
887
0
    break;
888
889
  /* This relocation describes which C++ vtable entries are actually
890
     used.  Record for later use during GC.  */
891
0
  case R_M68HC11_GNU_VTENTRY:
892
0
    if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
893
0
      return false;
894
0
    break;
895
0
  }
896
0
    }
897
898
0
  return true;
899
0
}
900
901
static bool ATTRIBUTE_PRINTF (6, 7)
902
reloc_warning (struct bfd_link_info *info, const char *name, bfd *input_bfd,
903
         asection *input_section, const Elf_Internal_Rela *rel,
904
         const char *fmt, ...)
905
0
{
906
0
  va_list ap;
907
0
  char *buf;
908
0
  int ret;
909
910
0
  va_start (ap, fmt);
911
0
  ret = vasprintf (&buf, fmt, ap);
912
0
  va_end (ap);
913
0
  if (ret < 0)
914
0
    {
915
0
      bfd_set_error (bfd_error_no_memory);
916
0
      return false;
917
0
    }
918
0
  info->callbacks->warning (info, buf, name, input_bfd, input_section,
919
0
          rel->r_offset);
920
0
  free (buf);
921
0
  return true;
922
0
}
923
924
/* Relocate a 68hc11/68hc12 ELF section.  */
925
int
926
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
927
        struct bfd_link_info *info,
928
        bfd *input_bfd, asection *input_section,
929
        bfd_byte *contents, Elf_Internal_Rela *relocs,
930
        Elf_Internal_Sym *local_syms,
931
        asection **local_sections)
932
0
{
933
0
  Elf_Internal_Shdr *symtab_hdr;
934
0
  struct elf_link_hash_entry **sym_hashes;
935
0
  Elf_Internal_Rela *rel, *relend;
936
0
  const char *name = NULL;
937
0
  struct m68hc11_page_info *pinfo;
938
0
  const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
939
0
  struct m68hc11_elf_link_hash_table *htab;
940
0
  unsigned long e_flags;
941
942
0
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
943
0
  sym_hashes = elf_sym_hashes (input_bfd);
944
0
  e_flags = elf_elfheader (input_bfd)->e_flags;
945
946
0
  htab = m68hc11_elf_hash_table (info);
947
0
  if (htab == NULL)
948
0
    return false;
949
950
  /* Get memory bank parameters.  */
951
0
  m68hc11_elf_get_bank_parameters (info);
952
953
0
  pinfo = & htab->pinfo;
954
0
  rel = relocs;
955
0
  relend = relocs + input_section->reloc_count;
956
957
0
  for (; rel < relend; rel++)
958
0
    {
959
0
      int r_type;
960
0
      arelent arel;
961
0
      reloc_howto_type *howto;
962
0
      unsigned long r_symndx;
963
0
      Elf_Internal_Sym *sym;
964
0
      asection *sec;
965
0
      bfd_vma relocation = 0;
966
0
      bfd_reloc_status_type r = bfd_reloc_undefined;
967
0
      bfd_vma phys_page;
968
0
      bfd_vma phys_addr;
969
0
      bfd_vma insn_addr;
970
0
      bfd_vma insn_page;
971
0
      bool is_far = false;
972
0
      bool is_xgate_symbol = false;
973
0
      bool is_section_symbol = false;
974
0
      struct elf_link_hash_entry *h;
975
0
      bfd_vma val;
976
0
      const char *msg;
977
978
0
      r_symndx = ELF32_R_SYM (rel->r_info);
979
0
      r_type = ELF32_R_TYPE (rel->r_info);
980
981
0
      if (r_type == R_M68HC11_GNU_VTENTRY
982
0
    || r_type == R_M68HC11_GNU_VTINHERIT)
983
0
  continue;
984
985
0
      if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel))
986
0
  continue;
987
0
      howto = arel.howto;
988
989
0
      h = NULL;
990
0
      sym = NULL;
991
0
      sec = NULL;
992
0
      if (r_symndx < symtab_hdr->sh_info)
993
0
  {
994
0
    sym = local_syms + r_symndx;
995
0
    sec = local_sections[r_symndx];
996
0
    relocation = (sec->output_section->vma
997
0
      + sec->output_offset
998
0
      + sym->st_value);
999
0
    is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
1000
0
    is_xgate_symbol = (sym && (sym->st_target_internal));
1001
0
    is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
1002
0
  }
1003
0
      else
1004
0
  {
1005
0
    bool unresolved_reloc, warned, ignored;
1006
1007
0
    RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1008
0
           r_symndx, symtab_hdr, sym_hashes,
1009
0
           h, sec, relocation, unresolved_reloc,
1010
0
           warned, ignored);
1011
1012
0
    is_far = (h && (h->other & STO_M68HC12_FAR));
1013
0
    is_xgate_symbol = (h && (h->target_internal));
1014
0
  }
1015
1016
0
      if (sec != NULL && discarded_section (sec))
1017
0
  RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1018
0
           rel, 1, relend, howto, 0, contents);
1019
1020
0
      if (bfd_link_relocatable (info))
1021
0
  {
1022
    /* This is a relocatable link.  We don't have to change
1023
       anything, unless the reloc is against a section symbol,
1024
       in which case we have to adjust according to where the
1025
       section symbol winds up in the output section.  */
1026
0
    if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1027
0
      rel->r_addend += sec->output_offset;
1028
0
    continue;
1029
0
  }
1030
1031
0
      if (h != NULL)
1032
0
  name = h->root.root.string;
1033
0
      else
1034
0
  {
1035
0
    name = (bfd_elf_string_from_elf_section
1036
0
      (input_bfd, symtab_hdr->sh_link, sym->st_name));
1037
0
    if (name == NULL || *name == '\0')
1038
0
      name = bfd_section_name (sec);
1039
0
  }
1040
1041
0
      if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1042
0
  {
1043
0
    struct elf32_m68hc11_stub_hash_entry* stub;
1044
1045
0
    stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1046
0
             name, false, false);
1047
0
    if (stub)
1048
0
      {
1049
0
        relocation = stub->stub_offset
1050
0
    + stub->stub_sec->output_section->vma
1051
0
    + stub->stub_sec->output_offset;
1052
0
        is_far = false;
1053
0
      }
1054
0
  }
1055
1056
      /* Do the memory bank mapping.  */
1057
0
      phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1058
0
      phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1059
0
      switch (r_type)
1060
0
  {
1061
0
  case R_M68HC12_LO8XG:
1062
    /* This relocation is specific to XGATE IMM16 calls and will precede
1063
       a HI8. tc-m68hc11 only generates them in pairs.
1064
       Leave the relocation to the HI8XG step.  */
1065
0
    r = bfd_reloc_ok;
1066
0
    r_type = R_M68HC11_NONE;
1067
0
    break;
1068
1069
0
  case R_M68HC12_HI8XG:
1070
    /* This relocation is specific to XGATE IMM16 calls and must follow
1071
       a LO8XG. Does not actually check that it was a LO8XG.
1072
       Adjusts high and low bytes.  */
1073
0
    relocation = phys_addr;
1074
0
    if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
1075
0
        && (relocation >= 0x2000))
1076
0
      relocation += 0xc000; /* HARDCODED RAM offset for XGATE.  */
1077
1078
    /* Fetch 16 bit value including low byte in previous insn.  */
1079
0
    val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
1080
0
      | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
1081
1082
    /* Add on value to preserve carry, then write zero to high byte.  */
1083
0
    relocation += val;
1084
1085
    /* Write out top byte.  */
1086
0
    bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
1087
0
         (bfd_byte*) contents + rel->r_offset);
1088
1089
    /* Write out low byte to previous instruction.  */
1090
0
    bfd_put_8 (input_bfd, relocation & 0xff,
1091
0
         (bfd_byte*) contents + rel->r_offset - 2);
1092
1093
    /* Mark as relocation completed.  */
1094
0
    r = bfd_reloc_ok;
1095
0
    r_type = R_M68HC11_NONE;
1096
0
    break;
1097
1098
  /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
1099
     assembler directives. %hi does not support carry.  */
1100
0
  case R_M68HC11_HI8:
1101
0
  case R_M68HC11_LO8:
1102
0
    relocation = phys_addr;
1103
0
    break;
1104
1105
0
  case R_M68HC11_24:
1106
    /* Reloc used by 68HC12 call instruction.  */
1107
0
    bfd_put_16 (input_bfd, phys_addr,
1108
0
          (bfd_byte*) contents + rel->r_offset);
1109
0
    bfd_put_8 (input_bfd, phys_page,
1110
0
         (bfd_byte*) contents + rel->r_offset + 2);
1111
0
    r = bfd_reloc_ok;
1112
0
    r_type = R_M68HC11_NONE;
1113
0
    break;
1114
1115
0
  case R_M68HC11_NONE:
1116
0
    r = bfd_reloc_ok;
1117
0
    break;
1118
1119
0
  case R_M68HC11_LO16:
1120
    /* Reloc generated by %addr(expr) gas to obtain the
1121
       address as mapped in the memory bank window.  */
1122
0
    relocation = phys_addr;
1123
0
    break;
1124
1125
0
  case R_M68HC11_PAGE:
1126
    /* Reloc generated by %page(expr) gas to obtain the
1127
       page number associated with the address.  */
1128
0
    relocation = phys_page;
1129
0
    break;
1130
1131
0
  case R_M68HC11_16:
1132
0
    if (is_far)
1133
0
      {
1134
0
        if (!reloc_warning (info, name, input_bfd, input_section, rel,
1135
0
          _("reference to the far symbol `%s' using a "
1136
0
            "wrong relocation may result in incorrect "
1137
0
            "execution"), name))
1138
0
    return false;
1139
0
      }
1140
1141
    /* Get virtual address of instruction having the relocation.  */
1142
0
    insn_addr = input_section->output_section->vma
1143
0
      + input_section->output_offset
1144
0
      + rel->r_offset;
1145
1146
0
    insn_page = m68hc11_phys_page (pinfo, insn_addr);
1147
1148
   /* If we are linking an S12 instruction against an XGATE symbol, we
1149
      need to change the offset of the symbol value so that it's correct
1150
      from the S12's perspective.  */
1151
0
    if (is_xgate_symbol)
1152
0
      {
1153
        /* The ram in the global space is mapped to 0x2000 in the 16-bit
1154
     address space for S12 and 0xE000 in the 16-bit address space
1155
     for XGATE.  */
1156
0
        if (relocation >= 0xE000)
1157
0
    {
1158
      /* We offset the address by the difference
1159
         between these two mappings.  */
1160
0
      relocation -= 0xC000;
1161
0
      break;
1162
0
    }
1163
0
        else
1164
0
    {
1165
0
      if (!reloc_warning (info, name, input_bfd, input_section, rel,
1166
0
              _("XGATE address (%lx) is not within "
1167
0
          "shared RAM(0xE000-0xFFFF), therefore "
1168
0
          "you must manually offset the address, "
1169
0
          "and possibly manage the page, in your "
1170
0
          "code."), (long) phys_addr))
1171
0
        return false;
1172
0
      break;
1173
0
    }
1174
0
      }
1175
1176
0
    if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1177
0
        && m68hc11_addr_is_banked (pinfo, insn_addr)
1178
0
        && phys_page != insn_page
1179
0
        && !(e_flags & E_M68HC11_NO_BANK_WARNING))
1180
0
      {
1181
0
        if (!reloc_warning (info, name, input_bfd, input_section, rel,
1182
0
          _("banked address [%lx:%04lx] (%lx) is not "
1183
0
            "in the same bank as current banked "
1184
0
            "address [%lx:%04lx] (%lx)"),
1185
0
          (long) phys_page, (long) phys_addr,
1186
0
          (long) (relocation + rel->r_addend),
1187
0
          (long) insn_page,
1188
0
          (long) m68hc11_phys_addr (pinfo, insn_addr),
1189
0
          (long) insn_addr))
1190
0
    return false;
1191
0
        break;
1192
0
      }
1193
1194
0
    if (phys_page != 0 && insn_page == 0)
1195
0
      {
1196
0
        if (!reloc_warning (info, name, input_bfd, input_section, rel,
1197
0
          _("reference to a banked address [%lx:%04lx] "
1198
0
            "in the normal address space at %04lx"),
1199
0
          (long) phys_page, (long) phys_addr,
1200
0
          (long) insn_addr))
1201
0
    return false;
1202
0
        relocation = phys_addr;
1203
0
        break;
1204
0
      }
1205
1206
    /* If this is a banked address use the phys_addr so that
1207
       we stay in the banked window.  */
1208
0
    if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1209
0
      relocation = phys_addr;
1210
0
    break;
1211
0
  }
1212
1213
      /* If we are linking an XGATE instruction against an S12 symbol, we
1214
   need to change the offset of the symbol value so that it's correct
1215
   from the XGATE's perspective.  */
1216
0
      if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
1217
0
    || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
1218
0
  {
1219
    /* We can only offset S12 addresses that lie within the non-paged
1220
       area of RAM.  */
1221
0
    if (!is_xgate_symbol && !is_section_symbol)
1222
0
      {
1223
        /* The ram in the global space is mapped to 0x2000 and stops at
1224
     0x4000 in the 16-bit address space for S12 and 0xE000 in the
1225
     16-bit address space for XGATE.  */
1226
0
        if (relocation >= 0x2000 && relocation < 0x4000)
1227
     /* We offset the address by the difference
1228
       between these two mappings.  */
1229
0
    relocation += 0xC000;
1230
0
        else
1231
0
    {
1232
0
      if (!reloc_warning (info, name, input_bfd, input_section, rel,
1233
0
              _("S12 address (%lx) is not within "
1234
0
          "shared RAM(0x2000-0x4000), therefore "
1235
0
          "you must manually offset the address "
1236
0
          "in your code"), (long) phys_addr))
1237
0
        return false;
1238
0
      break;
1239
0
    }
1240
0
      }
1241
0
  }
1242
1243
0
      if (r_type != R_M68HC11_NONE)
1244
0
  {
1245
0
    if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
1246
0
      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1247
0
              contents, rel->r_offset,
1248
0
              relocation - 2, rel->r_addend);
1249
0
    else
1250
0
      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1251
0
            contents, rel->r_offset,
1252
0
            relocation, rel->r_addend);
1253
0
  }
1254
1255
0
      if (r != bfd_reloc_ok)
1256
0
  {
1257
0
    switch (r)
1258
0
      {
1259
0
      case bfd_reloc_overflow:
1260
0
        (*info->callbacks->reloc_overflow)
1261
0
    (info, NULL, name, howto->name, (bfd_vma) 0,
1262
0
     input_bfd, input_section, rel->r_offset);
1263
0
        break;
1264
1265
0
      case bfd_reloc_undefined:
1266
0
        (*info->callbacks->undefined_symbol)
1267
0
    (info, name, input_bfd, input_section, rel->r_offset, true);
1268
0
        break;
1269
1270
0
      case bfd_reloc_outofrange:
1271
0
        msg = _ ("internal error: out of range error");
1272
0
        goto common_error;
1273
1274
0
      case bfd_reloc_notsupported:
1275
0
        msg = _ ("internal error: unsupported relocation error");
1276
0
        goto common_error;
1277
1278
0
      case bfd_reloc_dangerous:
1279
0
        msg = _ ("internal error: dangerous error");
1280
0
        goto common_error;
1281
1282
0
      default:
1283
0
        msg = _ ("internal error: unknown error");
1284
        /* fall through */
1285
1286
0
      common_error:
1287
0
        (*info->callbacks->warning) (info, msg, name, input_bfd,
1288
0
             input_section, rel->r_offset);
1289
0
        break;
1290
0
      }
1291
0
  }
1292
0
    }
1293
1294
0
  return true;
1295
0
}
1296
1297
1298

1299
/* Set and control ELF flags in ELF header.  */
1300
1301
bool
1302
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1303
0
{
1304
0
  BFD_ASSERT (!elf_flags_init (abfd)
1305
0
        || elf_elfheader (abfd)->e_flags == flags);
1306
1307
0
  elf_elfheader (abfd)->e_flags = flags;
1308
0
  elf_flags_init (abfd) = true;
1309
0
  return true;
1310
0
}
1311
1312
/* Merge backend specific data from an object file to the output
1313
   object file when linking.  */
1314
1315
bool
1316
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1317
0
{
1318
0
  bfd *obfd = info->output_bfd;
1319
0
  flagword old_flags;
1320
0
  flagword new_flags;
1321
0
  bool ok = true;
1322
1323
  /* Check if we have the same endianness */
1324
0
  if (!_bfd_generic_verify_endian_match (ibfd, info))
1325
0
    return false;
1326
1327
0
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1328
0
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1329
0
    return true;
1330
1331
0
  new_flags = elf_elfheader (ibfd)->e_flags;
1332
0
  elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1333
0
  old_flags = elf_elfheader (obfd)->e_flags;
1334
1335
0
  if (! elf_flags_init (obfd))
1336
0
    {
1337
0
      elf_flags_init (obfd) = true;
1338
0
      elf_elfheader (obfd)->e_flags = new_flags;
1339
0
      elf_elfheader (obfd)->e_ident[EI_CLASS]
1340
0
  = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1341
1342
0
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1343
0
    && bfd_get_arch_info (obfd)->the_default)
1344
0
  {
1345
0
    if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1346
0
           bfd_get_mach (ibfd)))
1347
0
      return false;
1348
0
  }
1349
1350
0
      return true;
1351
0
    }
1352
1353
  /* Check ABI compatibility.  */
1354
0
  if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1355
0
    {
1356
0
      _bfd_error_handler
1357
0
  (_("%pB: linking files compiled for 16-bit integers (-mshort) "
1358
0
     "and others for 32-bit integers"), ibfd);
1359
0
      ok = false;
1360
0
    }
1361
0
  if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1362
0
    {
1363
0
      _bfd_error_handler
1364
0
  (_("%pB: linking files compiled for 32-bit double (-fshort-double) "
1365
0
     "and others for 64-bit double"), ibfd);
1366
0
      ok = false;
1367
0
    }
1368
1369
  /* Processor compatibility.  */
1370
0
  if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1371
0
    {
1372
0
      _bfd_error_handler
1373
0
  (_("%pB: linking files compiled for HCS12 with "
1374
0
     "others compiled for HC12"), ibfd);
1375
0
      ok = false;
1376
0
    }
1377
0
  new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1378
0
         | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1379
1380
0
  elf_elfheader (obfd)->e_flags = new_flags;
1381
1382
0
  new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1383
0
  old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1384
1385
  /* Warn about any other mismatches */
1386
0
  if (new_flags != old_flags)
1387
0
    {
1388
0
      _bfd_error_handler
1389
  /* xgettext:c-format */
1390
0
  (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
1391
0
   ibfd, new_flags, old_flags);
1392
0
      ok = false;
1393
0
    }
1394
1395
0
  if (! ok)
1396
0
    {
1397
0
      bfd_set_error (bfd_error_bad_value);
1398
0
      return false;
1399
0
    }
1400
1401
0
  return true;
1402
0
}
1403
1404
bool
1405
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1406
67
{
1407
67
  FILE *file = (FILE *) ptr;
1408
1409
67
  BFD_ASSERT (abfd != NULL && ptr != NULL);
1410
1411
  /* Print normal ELF private data.  */
1412
67
  _bfd_elf_print_private_bfd_data (abfd, ptr);
1413
1414
  /* xgettext:c-format */
1415
67
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1416
1417
67
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1418
22
    fprintf (file, _("[abi=32-bit int, "));
1419
45
  else
1420
45
    fprintf (file, _("[abi=16-bit int, "));
1421
1422
67
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1423
2
    fprintf (file, _("64-bit double, "));
1424
65
  else
1425
65
    fprintf (file, _("32-bit double, "));
1426
1427
67
  if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1428
8
    fprintf (file, _("cpu=HC11]"));
1429
59
  else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1430
3
    fprintf (file, _("cpu=HCS12]"));
1431
56
  else
1432
56
    fprintf (file, _("cpu=HC12]"));
1433
1434
67
  if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1435
2
    fprintf (file, _(" [memory=bank-model]"));
1436
65
  else
1437
65
    fprintf (file, _(" [memory=flat]"));
1438
1439
67
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
1440
39
    fprintf (file, _(" [XGATE RAM offsetting]"));
1441
1442
67
  fputc ('\n', file);
1443
1444
67
  return true;
1445
67
}
1446
1447
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1448
           asection *asect, void *arg)
1449
0
{
1450
0
  struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1451
1452
0
  if (asect->vma >= p->pinfo->bank_virtual)
1453
0
    p->use_memory_banks = true;
1454
0
}
1455
1456
/* Tweak the OSABI field of the elf header.  */
1457
1458
bool
1459
elf32_m68hc11_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
1460
0
{
1461
0
  struct m68hc11_scan_param param;
1462
0
  struct m68hc11_elf_link_hash_table *htab;
1463
1464
0
  if (!_bfd_elf_init_file_header (abfd, link_info))
1465
0
    return false;
1466
1467
0
  if (link_info == NULL)
1468
0
    return true;
1469
1470
0
  htab = m68hc11_elf_hash_table (link_info);
1471
0
  if (htab == NULL)
1472
0
    return true;
1473
1474
0
  m68hc11_elf_get_bank_parameters (link_info);
1475
1476
0
  param.use_memory_banks = false;
1477
0
  param.pinfo = & htab->pinfo;
1478
1479
0
  bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1480
1481
0
  if (param.use_memory_banks)
1482
0
    {
1483
0
      Elf_Internal_Ehdr * i_ehdrp;
1484
1485
0
      i_ehdrp = elf_elfheader (abfd);
1486
0
      i_ehdrp->e_flags |= E_M68HC12_BANKS;
1487
0
    }
1488
0
  return true;
1489
0
}