Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/bfd/elf32-m68k.c
Line
Count
Source (jump to first uncovered line)
1
/* Motorola 68k series support for 32-bit ELF
2
   Copyright (C) 1993-2025 Free Software Foundation, Inc.
3
4
   This file is part of BFD, the Binary File Descriptor library.
5
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 3 of the License, or
9
   (at your option) any later version.
10
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19
   MA 02110-1301, USA.  */
20
21
#include "sysdep.h"
22
#include "bfd.h"
23
#include "bfdlink.h"
24
#include "libbfd.h"
25
#include "elf-bfd.h"
26
#include "elf/m68k.h"
27
#include "opcode/m68k.h"
28
#include "cpu-m68k.h"
29
#include "elf32-m68k.h"
30
31
static bool
32
elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33
34
static reloc_howto_type howto_table[] =
35
{
36
  HOWTO(R_68K_NONE,   0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE",    false, 0, 0x00000000,false),
37
  HOWTO(R_68K_32,   0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",    false, 0, 0xffffffff,false),
38
  HOWTO(R_68K_16,   0, 2,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",    false, 0, 0x0000ffff,false),
39
  HOWTO(R_68K_8,    0, 1, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",   false, 0, 0x000000ff,false),
40
  HOWTO(R_68K_PC32,   0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",    false, 0, 0xffffffff,true),
41
  HOWTO(R_68K_PC16,   0, 2,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16",    false, 0, 0x0000ffff,true),
42
  HOWTO(R_68K_PC8,    0, 1, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8",   false, 0, 0x000000ff,true),
43
  HOWTO(R_68K_GOT32,    0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",   false, 0, 0xffffffff,true),
44
  HOWTO(R_68K_GOT16,    0, 2,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16",   false, 0, 0x0000ffff,true),
45
  HOWTO(R_68K_GOT8,   0, 1, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8",    false, 0, 0x000000ff,true),
46
  HOWTO(R_68K_GOT32O,   0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",    false, 0, 0xffffffff,false),
47
  HOWTO(R_68K_GOT16O,   0, 2,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O",    false, 0, 0x0000ffff,false),
48
  HOWTO(R_68K_GOT8O,    0, 1, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O",   false, 0, 0x000000ff,false),
49
  HOWTO(R_68K_PLT32,    0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",   false, 0, 0xffffffff,true),
50
  HOWTO(R_68K_PLT16,    0, 2,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16",   false, 0, 0x0000ffff,true),
51
  HOWTO(R_68K_PLT8,   0, 1, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8",    false, 0, 0x000000ff,true),
52
  HOWTO(R_68K_PLT32O,   0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",    false, 0, 0xffffffff,false),
53
  HOWTO(R_68K_PLT16O,   0, 2,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O",    false, 0, 0x0000ffff,false),
54
  HOWTO(R_68K_PLT8O,    0, 1, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O",   false, 0, 0x000000ff,false),
55
  HOWTO(R_68K_COPY,   0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY",    false, 0, 0xffffffff,false),
56
  HOWTO(R_68K_GLOB_DAT,   0, 4,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  false, 0, 0xffffffff,false),
57
  HOWTO(R_68K_JMP_SLOT,   0, 4,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  false, 0, 0xffffffff,false),
58
  HOWTO(R_68K_RELATIVE,   0, 4,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE",  false, 0, 0xffffffff,false),
59
  /* GNU extension to record C++ vtable hierarchy.  */
60
  HOWTO (R_68K_GNU_VTINHERIT, /* type */
61
   0,     /* rightshift */
62
   4,     /* size */
63
   0,     /* bitsize */
64
   false,     /* pc_relative */
65
   0,     /* bitpos */
66
   complain_overflow_dont, /* complain_on_overflow */
67
   NULL,      /* special_function */
68
   "R_68K_GNU_VTINHERIT", /* name */
69
   false,     /* partial_inplace */
70
   0,     /* src_mask */
71
   0,     /* dst_mask */
72
   false),
73
  /* GNU extension to record C++ vtable member usage.  */
74
  HOWTO (R_68K_GNU_VTENTRY, /* type */
75
   0,     /* rightshift */
76
   4,     /* size */
77
   0,     /* bitsize */
78
   false,     /* pc_relative */
79
   0,     /* bitpos */
80
   complain_overflow_dont, /* complain_on_overflow */
81
   _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82
   "R_68K_GNU_VTENTRY", /* name */
83
   false,     /* partial_inplace */
84
   0,     /* src_mask */
85
   0,     /* dst_mask */
86
   false),
87
88
  /* TLS general dynamic variable reference.  */
89
  HOWTO (R_68K_TLS_GD32,  /* type */
90
   0,     /* rightshift */
91
   4,     /* size */
92
   32,      /* bitsize */
93
   false,     /* pc_relative */
94
   0,     /* bitpos */
95
   complain_overflow_bitfield, /* complain_on_overflow */
96
   bfd_elf_generic_reloc, /* special_function */
97
   "R_68K_TLS_GD32",  /* name */
98
   false,     /* partial_inplace */
99
   0,     /* src_mask */
100
   0xffffffff,    /* dst_mask */
101
   false),    /* pcrel_offset */
102
103
  HOWTO (R_68K_TLS_GD16,  /* type */
104
   0,     /* rightshift */
105
   2,     /* size */
106
   16,      /* bitsize */
107
   false,     /* pc_relative */
108
   0,     /* bitpos */
109
   complain_overflow_signed, /* complain_on_overflow */
110
   bfd_elf_generic_reloc, /* special_function */
111
   "R_68K_TLS_GD16",  /* name */
112
   false,     /* partial_inplace */
113
   0,     /* src_mask */
114
   0x0000ffff,    /* dst_mask */
115
   false),    /* pcrel_offset */
116
117
  HOWTO (R_68K_TLS_GD8,   /* type */
118
   0,     /* rightshift */
119
   1,     /* size */
120
   8,     /* bitsize */
121
   false,     /* pc_relative */
122
   0,     /* bitpos */
123
   complain_overflow_signed, /* complain_on_overflow */
124
   bfd_elf_generic_reloc, /* special_function */
125
   "R_68K_TLS_GD8", /* name */
126
   false,     /* partial_inplace */
127
   0,     /* src_mask */
128
   0x000000ff,    /* dst_mask */
129
   false),    /* pcrel_offset */
130
131
  /* TLS local dynamic variable reference.  */
132
  HOWTO (R_68K_TLS_LDM32, /* type */
133
   0,     /* rightshift */
134
   4,     /* size */
135
   32,      /* bitsize */
136
   false,     /* pc_relative */
137
   0,     /* bitpos */
138
   complain_overflow_bitfield, /* complain_on_overflow */
139
   bfd_elf_generic_reloc, /* special_function */
140
   "R_68K_TLS_LDM32", /* name */
141
   false,     /* partial_inplace */
142
   0,     /* src_mask */
143
   0xffffffff,    /* dst_mask */
144
   false),    /* pcrel_offset */
145
146
  HOWTO (R_68K_TLS_LDM16, /* type */
147
   0,     /* rightshift */
148
   2,     /* size */
149
   16,      /* bitsize */
150
   false,     /* pc_relative */
151
   0,     /* bitpos */
152
   complain_overflow_signed, /* complain_on_overflow */
153
   bfd_elf_generic_reloc, /* special_function */
154
   "R_68K_TLS_LDM16", /* name */
155
   false,     /* partial_inplace */
156
   0,     /* src_mask */
157
   0x0000ffff,    /* dst_mask */
158
   false),    /* pcrel_offset */
159
160
  HOWTO (R_68K_TLS_LDM8,    /* type */
161
   0,     /* rightshift */
162
   1,     /* size */
163
   8,     /* bitsize */
164
   false,     /* pc_relative */
165
   0,     /* bitpos */
166
   complain_overflow_signed, /* complain_on_overflow */
167
   bfd_elf_generic_reloc, /* special_function */
168
   "R_68K_TLS_LDM8",  /* name */
169
   false,     /* partial_inplace */
170
   0,     /* src_mask */
171
   0x000000ff,    /* dst_mask */
172
   false),    /* pcrel_offset */
173
174
  HOWTO (R_68K_TLS_LDO32, /* type */
175
   0,     /* rightshift */
176
   4,     /* size */
177
   32,      /* bitsize */
178
   false,     /* pc_relative */
179
   0,     /* bitpos */
180
   complain_overflow_bitfield, /* complain_on_overflow */
181
   bfd_elf_generic_reloc, /* special_function */
182
   "R_68K_TLS_LDO32", /* name */
183
   false,     /* partial_inplace */
184
   0,     /* src_mask */
185
   0xffffffff,    /* dst_mask */
186
   false),    /* pcrel_offset */
187
188
  HOWTO (R_68K_TLS_LDO16, /* type */
189
   0,     /* rightshift */
190
   2,     /* size */
191
   16,      /* bitsize */
192
   false,     /* pc_relative */
193
   0,     /* bitpos */
194
   complain_overflow_signed, /* complain_on_overflow */
195
   bfd_elf_generic_reloc, /* special_function */
196
   "R_68K_TLS_LDO16", /* name */
197
   false,     /* partial_inplace */
198
   0,     /* src_mask */
199
   0x0000ffff,    /* dst_mask */
200
   false),    /* pcrel_offset */
201
202
  HOWTO (R_68K_TLS_LDO8,    /* type */
203
   0,     /* rightshift */
204
   1,     /* size */
205
   8,     /* bitsize */
206
   false,     /* pc_relative */
207
   0,     /* bitpos */
208
   complain_overflow_signed, /* complain_on_overflow */
209
   bfd_elf_generic_reloc, /* special_function */
210
   "R_68K_TLS_LDO8",  /* name */
211
   false,     /* partial_inplace */
212
   0,     /* src_mask */
213
   0x000000ff,    /* dst_mask */
214
   false),    /* pcrel_offset */
215
216
  /* TLS initial execution variable reference.  */
217
  HOWTO (R_68K_TLS_IE32,  /* type */
218
   0,     /* rightshift */
219
   4,     /* size */
220
   32,      /* bitsize */
221
   false,     /* pc_relative */
222
   0,     /* bitpos */
223
   complain_overflow_bitfield, /* complain_on_overflow */
224
   bfd_elf_generic_reloc, /* special_function */
225
   "R_68K_TLS_IE32",  /* name */
226
   false,     /* partial_inplace */
227
   0,     /* src_mask */
228
   0xffffffff,    /* dst_mask */
229
   false),    /* pcrel_offset */
230
231
  HOWTO (R_68K_TLS_IE16,  /* type */
232
   0,     /* rightshift */
233
   2,     /* size */
234
   16,      /* bitsize */
235
   false,     /* pc_relative */
236
   0,     /* bitpos */
237
   complain_overflow_signed, /* complain_on_overflow */
238
   bfd_elf_generic_reloc, /* special_function */
239
   "R_68K_TLS_IE16",  /* name */
240
   false,     /* partial_inplace */
241
   0,     /* src_mask */
242
   0x0000ffff,    /* dst_mask */
243
   false),    /* pcrel_offset */
244
245
  HOWTO (R_68K_TLS_IE8,   /* type */
246
   0,     /* rightshift */
247
   1,     /* size */
248
   8,     /* bitsize */
249
   false,     /* pc_relative */
250
   0,     /* bitpos */
251
   complain_overflow_signed, /* complain_on_overflow */
252
   bfd_elf_generic_reloc, /* special_function */
253
   "R_68K_TLS_IE8", /* name */
254
   false,     /* partial_inplace */
255
   0,     /* src_mask */
256
   0x000000ff,    /* dst_mask */
257
   false),    /* pcrel_offset */
258
259
  /* TLS local execution variable reference.  */
260
  HOWTO (R_68K_TLS_LE32,  /* type */
261
   0,     /* rightshift */
262
   4,     /* size */
263
   32,      /* bitsize */
264
   false,     /* pc_relative */
265
   0,     /* bitpos */
266
   complain_overflow_bitfield, /* complain_on_overflow */
267
   bfd_elf_generic_reloc, /* special_function */
268
   "R_68K_TLS_LE32",  /* name */
269
   false,     /* partial_inplace */
270
   0,     /* src_mask */
271
   0xffffffff,    /* dst_mask */
272
   false),    /* pcrel_offset */
273
274
  HOWTO (R_68K_TLS_LE16,  /* type */
275
   0,     /* rightshift */
276
   2,     /* size */
277
   16,      /* bitsize */
278
   false,     /* pc_relative */
279
   0,     /* bitpos */
280
   complain_overflow_signed, /* complain_on_overflow */
281
   bfd_elf_generic_reloc, /* special_function */
282
   "R_68K_TLS_LE16",  /* name */
283
   false,     /* partial_inplace */
284
   0,     /* src_mask */
285
   0x0000ffff,    /* dst_mask */
286
   false),    /* pcrel_offset */
287
288
  HOWTO (R_68K_TLS_LE8,   /* type */
289
   0,     /* rightshift */
290
   1,     /* size */
291
   8,     /* bitsize */
292
   false,     /* pc_relative */
293
   0,     /* bitpos */
294
   complain_overflow_signed, /* complain_on_overflow */
295
   bfd_elf_generic_reloc, /* special_function */
296
   "R_68K_TLS_LE8", /* name */
297
   false,     /* partial_inplace */
298
   0,     /* src_mask */
299
   0x000000ff,    /* dst_mask */
300
   false),    /* pcrel_offset */
301
302
  /* TLS GD/LD dynamic relocations.  */
303
  HOWTO (R_68K_TLS_DTPMOD32,  /* type */
304
   0,     /* rightshift */
305
   4,     /* size */
306
   32,      /* bitsize */
307
   false,     /* pc_relative */
308
   0,     /* bitpos */
309
   complain_overflow_dont, /* complain_on_overflow */
310
   bfd_elf_generic_reloc, /* special_function */
311
   "R_68K_TLS_DTPMOD32",  /* name */
312
   false,     /* partial_inplace */
313
   0,     /* src_mask */
314
   0xffffffff,    /* dst_mask */
315
   false),    /* pcrel_offset */
316
317
  HOWTO (R_68K_TLS_DTPREL32,  /* type */
318
   0,     /* rightshift */
319
   4,     /* size */
320
   32,      /* bitsize */
321
   false,     /* pc_relative */
322
   0,     /* bitpos */
323
   complain_overflow_dont, /* complain_on_overflow */
324
   bfd_elf_generic_reloc, /* special_function */
325
   "R_68K_TLS_DTPREL32",  /* name */
326
   false,     /* partial_inplace */
327
   0,     /* src_mask */
328
   0xffffffff,    /* dst_mask */
329
   false),    /* pcrel_offset */
330
331
  HOWTO (R_68K_TLS_TPREL32, /* type */
332
   0,     /* rightshift */
333
   4,     /* size */
334
   32,      /* bitsize */
335
   false,     /* pc_relative */
336
   0,     /* bitpos */
337
   complain_overflow_dont, /* complain_on_overflow */
338
   bfd_elf_generic_reloc, /* special_function */
339
   "R_68K_TLS_TPREL32", /* name */
340
   false,     /* partial_inplace */
341
   0,     /* src_mask */
342
   0xffffffff,    /* dst_mask */
343
   false),    /* pcrel_offset */
344
};
345
346
static bool
347
rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348
0
{
349
0
  unsigned int indx = ELF32_R_TYPE (dst->r_info);
350
351
0
  if (indx >= (unsigned int) R_68K_max)
352
0
    {
353
      /* xgettext:c-format */
354
0
      _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
355
0
        abfd, indx);
356
0
      bfd_set_error (bfd_error_bad_value);
357
0
      return false;
358
0
    }
359
0
  cache_ptr->howto = &howto_table[indx];
360
0
  return true;
361
0
}
362
363
#define elf_info_to_howto rtype_to_howto
364
365
static const struct
366
{
367
  bfd_reloc_code_real_type bfd_val;
368
  int elf_val;
369
}
370
  reloc_map[] =
371
{
372
  { BFD_RELOC_NONE, R_68K_NONE },
373
  { BFD_RELOC_32, R_68K_32 },
374
  { BFD_RELOC_16, R_68K_16 },
375
  { BFD_RELOC_8, R_68K_8 },
376
  { BFD_RELOC_32_PCREL, R_68K_PC32 },
377
  { BFD_RELOC_16_PCREL, R_68K_PC16 },
378
  { BFD_RELOC_8_PCREL, R_68K_PC8 },
379
  { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
380
  { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
381
  { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
382
  { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
383
  { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
384
  { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
385
  { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
386
  { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
387
  { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
388
  { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
389
  { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
390
  { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
391
  { BFD_RELOC_NONE, R_68K_COPY },
392
  { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
393
  { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
394
  { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
395
  { BFD_RELOC_CTOR, R_68K_32 },
396
  { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
397
  { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
398
  { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
399
  { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
400
  { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
401
  { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
402
  { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
403
  { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
404
  { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
405
  { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
406
  { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
407
  { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
408
  { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
409
  { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
410
  { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
411
  { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
412
  { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413
};
414
415
static reloc_howto_type *
416
reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
417
       bfd_reloc_code_real_type code)
418
0
{
419
0
  unsigned int i;
420
0
  for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
421
0
    {
422
0
      if (reloc_map[i].bfd_val == code)
423
0
  return &howto_table[reloc_map[i].elf_val];
424
0
    }
425
0
  return 0;
426
0
}
427
428
static reloc_howto_type *
429
reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
430
0
{
431
0
  unsigned int i;
432
433
0
  for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
434
0
    if (howto_table[i].name != NULL
435
0
  && strcasecmp (howto_table[i].name, r_name) == 0)
436
0
      return &howto_table[i];
437
438
0
  return NULL;
439
0
}
440
441
#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
442
#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
443
#define ELF_ARCH bfd_arch_m68k
444
#define ELF_TARGET_ID M68K_ELF_DATA
445

446
/* Functions for the m68k ELF linker.  */
447
448
/* The name of the dynamic interpreter.  This is put in the .interp
449
   section.  */
450
451
0
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
452
453
/* Describes one of the various PLT styles.  */
454
455
struct elf_m68k_plt_info
456
{
457
  /* The size of each PLT entry.  */
458
  bfd_vma size;
459
460
  /* The template for the first PLT entry.  */
461
  const bfd_byte *plt0_entry;
462
463
  /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
464
     The comments by each member indicate the value that the relocation
465
     is against.  */
466
  struct {
467
    unsigned int got4; /* .got + 4 */
468
    unsigned int got8; /* .got + 8 */
469
  } plt0_relocs;
470
471
  /* The template for a symbol's PLT entry.  */
472
  const bfd_byte *symbol_entry;
473
474
  /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
475
     The comments by each member indicate the value that the relocation
476
     is against.  */
477
  struct {
478
    unsigned int got; /* the symbol's .got.plt entry */
479
    unsigned int plt; /* .plt */
480
  } symbol_relocs;
481
482
  /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
483
     The stub starts with "move.l #relocoffset,%d0".  */
484
  bfd_vma symbol_resolve_entry;
485
};
486
487
/* The size in bytes of an entry in the procedure linkage table.  */
488
489
#define PLT_ENTRY_SIZE 20
490
491
/* The first entry in a procedure linkage table looks like this.  See
492
   the SVR4 ABI m68k supplement to see how this works.  */
493
494
static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
495
{
496
  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
497
  0, 0, 0, 2,     /* + (.got + 4) - . */
498
  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
499
  0, 0, 0, 2,     /* + (.got + 8) - . */
500
  0, 0, 0, 0      /* pad out to 20 bytes.  */
501
};
502
503
/* Subsequent entries in a procedure linkage table look like this.  */
504
505
static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
506
{
507
  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
508
  0, 0, 0, 2,     /* + (.got.plt entry) - . */
509
  0x2f, 0x3c,     /* move.l #offset,-(%sp) */
510
  0, 0, 0, 0,     /* + reloc index */
511
  0x60, 0xff,     /* bra.l .plt */
512
  0, 0, 0, 0      /* + .plt - . */
513
};
514
515
static const struct elf_m68k_plt_info elf_m68k_plt_info =
516
{
517
  PLT_ENTRY_SIZE,
518
  elf_m68k_plt0_entry, { 4, 12 },
519
  elf_m68k_plt_entry, { 4, 16 }, 8
520
};
521
522
#define ISAB_PLT_ENTRY_SIZE 24
523
524
static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
525
{
526
  0x20, 0x3c,     /* move.l #offset,%d0 */
527
  0, 0, 0, 0,     /* + (.got + 4) - . */
528
  0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
529
  0x20, 0x3c,     /* move.l #offset,%d0 */
530
  0, 0, 0, 0,     /* + (.got + 8) - . */
531
  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
532
  0x4e, 0xd0,     /* jmp (%a0) */
533
  0x4e, 0x71      /* nop */
534
};
535
536
/* Subsequent entries in a procedure linkage table look like this.  */
537
538
static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
539
{
540
  0x20, 0x3c,     /* move.l #offset,%d0 */
541
  0, 0, 0, 0,     /* + (.got.plt entry) - . */
542
  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
543
  0x4e, 0xd0,     /* jmp (%a0) */
544
  0x2f, 0x3c,     /* move.l #offset,-(%sp) */
545
  0, 0, 0, 0,     /* + reloc index */
546
  0x60, 0xff,     /* bra.l .plt */
547
  0, 0, 0, 0      /* + .plt - . */
548
};
549
550
static const struct elf_m68k_plt_info elf_isab_plt_info =
551
{
552
  ISAB_PLT_ENTRY_SIZE,
553
  elf_isab_plt0_entry, { 2, 12 },
554
  elf_isab_plt_entry, { 2, 20 }, 12
555
};
556
557
#define ISAC_PLT_ENTRY_SIZE 24
558
559
static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
560
{
561
  0x20, 0x3c,     /* move.l #offset,%d0 */
562
  0, 0, 0, 0,     /* replaced with .got + 4 - . */
563
  0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
564
  0x20, 0x3c,     /* move.l #offset,%d0 */
565
  0, 0, 0, 0,     /* replaced with .got + 8 - . */
566
  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
567
  0x4e, 0xd0,     /* jmp (%a0) */
568
  0x4e, 0x71      /* nop */
569
};
570
571
/* Subsequent entries in a procedure linkage table look like this.  */
572
573
static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
574
{
575
  0x20, 0x3c,     /* move.l #offset,%d0 */
576
  0, 0, 0, 0,     /* replaced with (.got entry) - . */
577
  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
578
  0x4e, 0xd0,     /* jmp (%a0) */
579
  0x2f, 0x3c,     /* move.l #offset,-(%sp) */
580
  0, 0, 0, 0,     /* replaced with offset into relocation table */
581
  0x61, 0xff,     /* bsr.l .plt */
582
  0, 0, 0, 0      /* replaced with .plt - . */
583
};
584
585
static const struct elf_m68k_plt_info elf_isac_plt_info =
586
{
587
  ISAC_PLT_ENTRY_SIZE,
588
  elf_isac_plt0_entry, { 2, 12},
589
  elf_isac_plt_entry, { 2, 20 }, 12
590
};
591
592
#define CPU32_PLT_ENTRY_SIZE 24
593
/* Procedure linkage table entries for the cpu32 */
594
static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
595
{
596
  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
597
  0, 0, 0, 2,     /* + (.got + 4) - . */
598
  0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
599
  0, 0, 0, 2,     /* + (.got + 8) - . */
600
  0x4e, 0xd1,     /* jmp %a1@ */
601
  0, 0, 0, 0,     /* pad out to 24 bytes.  */
602
  0, 0
603
};
604
605
static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
606
{
607
  0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
608
  0, 0, 0, 2,      /* + (.got.plt entry) - . */
609
  0x4e, 0xd1,      /* jmp %a1@ */
610
  0x2f, 0x3c,      /* move.l #offset,-(%sp) */
611
  0, 0, 0, 0,      /* + reloc index */
612
  0x60, 0xff,      /* bra.l .plt */
613
  0, 0, 0, 0,      /* + .plt - . */
614
  0, 0
615
};
616
617
static const struct elf_m68k_plt_info elf_cpu32_plt_info =
618
{
619
  CPU32_PLT_ENTRY_SIZE,
620
  elf_cpu32_plt0_entry, { 4, 12 },
621
  elf_cpu32_plt_entry, { 4, 18 }, 10
622
};
623
624
/* The m68k linker needs to keep track of the number of relocs that it
625
   decides to copy in check_relocs for each symbol.  This is so that it
626
   can discard PC relative relocs if it doesn't need them when linking
627
   with -Bsymbolic.  We store the information in a field extending the
628
   regular ELF linker hash table.  */
629
630
/* This structure keeps track of the number of PC relative relocs we have
631
   copied for a given symbol.  */
632
633
struct elf_m68k_pcrel_relocs_copied
634
{
635
  /* Next section.  */
636
  struct elf_m68k_pcrel_relocs_copied *next;
637
  /* A section in dynobj.  */
638
  asection *section;
639
  /* Number of relocs copied in this section.  */
640
  bfd_size_type count;
641
};
642
643
/* Forward declaration.  */
644
struct elf_m68k_got_entry;
645
646
/* m68k ELF linker hash entry.  */
647
648
struct elf_m68k_link_hash_entry
649
{
650
  struct elf_link_hash_entry root;
651
652
  /* Number of PC relative relocs copied for this symbol.  */
653
  struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
654
655
  /* Key to got_entries.  */
656
  unsigned long got_entry_key;
657
658
  /* List of GOT entries for this symbol.  This list is build during
659
     offset finalization and is used within elf_m68k_finish_dynamic_symbol
660
     to traverse all GOT entries for a particular symbol.
661
662
     ??? We could've used root.got.glist field instead, but having
663
     a separate field is cleaner.  */
664
  struct elf_m68k_got_entry *glist;
665
};
666
667
0
#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
668
669
/* Key part of GOT entry in hashtable.  */
670
struct elf_m68k_got_entry_key
671
{
672
  /* BFD in which this symbol was defined.  NULL for global symbols.  */
673
  const bfd *bfd;
674
675
  /* Symbol index.  Either local symbol index or h->got_entry_key.  */
676
  unsigned long symndx;
677
678
  /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
679
     R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
680
681
     From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
682
     matters.  That is, we distinguish between, say, R_68K_GOT16O
683
     and R_68K_GOT32O when allocating offsets, but they are considered to be
684
     the same when searching got->entries.  */
685
  enum elf_m68k_reloc_type type;
686
};
687
688
/* Size of the GOT offset suitable for relocation.  */
689
enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
690
691
/* Entry of the GOT.  */
692
struct elf_m68k_got_entry
693
{
694
  /* GOT entries are put into a got->entries hashtable.  This is the key.  */
695
  struct elf_m68k_got_entry_key key_;
696
697
  /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
698
  union
699
  {
700
    struct
701
    {
702
      /* Number of times this entry is referenced.  */
703
      bfd_vma refcount;
704
    } s1;
705
706
    struct
707
    {
708
      /* Offset from the start of .got section.  To calculate offset relative
709
   to GOT pointer one should subtract got->offset from this value.  */
710
      bfd_vma offset;
711
712
      /* Pointer to the next GOT entry for this global symbol.
713
   Symbols have at most one entry in one GOT, but might
714
   have entries in more than one GOT.
715
   Root of this list is h->glist.
716
   NULL for local symbols.  */
717
      struct elf_m68k_got_entry *next;
718
    } s2;
719
  } u;
720
};
721
722
/* Return representative type for relocation R_TYPE.
723
   This is used to avoid enumerating many relocations in comparisons,
724
   switches etc.  */
725
726
static enum elf_m68k_reloc_type
727
elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
728
0
{
729
0
  switch (r_type)
730
0
    {
731
      /* In most cases R_68K_GOTx relocations require the very same
732
   handling as R_68K_GOT32O relocation.  In cases when we need
733
   to distinguish between the two, we use explicitly compare against
734
   r_type.  */
735
0
    case R_68K_GOT32:
736
0
    case R_68K_GOT16:
737
0
    case R_68K_GOT8:
738
0
    case R_68K_GOT32O:
739
0
    case R_68K_GOT16O:
740
0
    case R_68K_GOT8O:
741
0
      return R_68K_GOT32O;
742
743
0
    case R_68K_TLS_GD32:
744
0
    case R_68K_TLS_GD16:
745
0
    case R_68K_TLS_GD8:
746
0
      return R_68K_TLS_GD32;
747
748
0
    case R_68K_TLS_LDM32:
749
0
    case R_68K_TLS_LDM16:
750
0
    case R_68K_TLS_LDM8:
751
0
      return R_68K_TLS_LDM32;
752
753
0
    case R_68K_TLS_IE32:
754
0
    case R_68K_TLS_IE16:
755
0
    case R_68K_TLS_IE8:
756
0
      return R_68K_TLS_IE32;
757
758
0
    default:
759
0
      BFD_ASSERT (false);
760
0
      return 0;
761
0
    }
762
0
}
763
764
/* Return size of the GOT entry offset for relocation R_TYPE.  */
765
766
static enum elf_m68k_got_offset_size
767
elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
768
0
{
769
0
  switch (r_type)
770
0
    {
771
0
    case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
772
0
    case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
773
0
    case R_68K_TLS_IE32:
774
0
      return R_32;
775
776
0
    case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
777
0
    case R_68K_TLS_IE16:
778
0
      return R_16;
779
780
0
    case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
781
0
    case R_68K_TLS_IE8:
782
0
      return R_8;
783
784
0
    default:
785
0
      BFD_ASSERT (false);
786
0
      return 0;
787
0
    }
788
0
}
789
790
/* Return number of GOT entries we need to allocate in GOT for
791
   relocation R_TYPE.  */
792
793
static bfd_vma
794
elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
795
0
{
796
0
  switch (elf_m68k_reloc_got_type (r_type))
797
0
    {
798
0
    case R_68K_GOT32O:
799
0
    case R_68K_TLS_IE32:
800
0
      return 1;
801
802
0
    case R_68K_TLS_GD32:
803
0
    case R_68K_TLS_LDM32:
804
0
      return 2;
805
806
0
    default:
807
0
      BFD_ASSERT (false);
808
0
      return 0;
809
0
    }
810
0
}
811
812
/* Return TRUE if relocation R_TYPE is a TLS one.  */
813
814
static bool
815
elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
816
0
{
817
0
  switch (r_type)
818
0
    {
819
0
    case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
820
0
    case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
821
0
    case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
822
0
    case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
823
0
    case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
824
0
    case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
825
0
      return true;
826
827
0
    default:
828
0
      return false;
829
0
    }
830
0
}
831
832
/* Data structure representing a single GOT.  */
833
struct elf_m68k_got
834
{
835
  /* Hashtable of 'struct elf_m68k_got_entry's.
836
     Starting size of this table is the maximum number of
837
     R_68K_GOT8O entries.  */
838
  htab_t entries;
839
840
  /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
841
     several GOT slots.
842
843
     n_slots[R_8] is the count of R_8 slots in this GOT.
844
     n_slots[R_16] is the cumulative count of R_8 and R_16 slots
845
     in this GOT.
846
     n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
847
     in this GOT.  This is the total number of slots.  */
848
  bfd_vma n_slots[R_LAST];
849
850
  /* Number of local (entry->key_.h == NULL) slots in this GOT.
851
     This is only used to properly calculate size of .rela.got section;
852
     see elf_m68k_partition_multi_got.  */
853
  bfd_vma local_n_slots;
854
855
  /* Offset of this GOT relative to beginning of .got section.  */
856
  bfd_vma offset;
857
};
858
859
/* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
860
struct elf_m68k_bfd2got_entry
861
{
862
  /* BFD.  */
863
  const bfd *bfd;
864
865
  /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
866
     GOT structure.  After partitioning several BFD's might [and often do]
867
     share a single GOT.  */
868
  struct elf_m68k_got *got;
869
};
870
871
/* The main data structure holding all the pieces.  */
872
struct elf_m68k_multi_got
873
{
874
  /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
875
     here, then it doesn't need a GOT (this includes the case of a BFD
876
     having an empty GOT).
877
878
     ??? This hashtable can be replaced by an array indexed by bfd->id.  */
879
  htab_t bfd2got;
880
881
  /* Next symndx to assign a global symbol.
882
     h->got_entry_key is initialized from this counter.  */
883
  unsigned long global_symndx;
884
};
885
886
/* m68k ELF linker hash table.  */
887
888
struct elf_m68k_link_hash_table
889
{
890
  struct elf_link_hash_table root;
891
892
  /* The PLT format used by this link, or NULL if the format has not
893
     yet been chosen.  */
894
  const struct elf_m68k_plt_info *plt_info;
895
896
  /* True, if GP is loaded within each function which uses it.
897
     Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
898
  bool local_gp_p;
899
900
  /* Switch controlling use of negative offsets to double the size of GOTs.  */
901
  bool use_neg_got_offsets_p;
902
903
  /* Switch controlling generation of multiple GOTs.  */
904
  bool allow_multigot_p;
905
906
  /* Multi-GOT data structure.  */
907
  struct elf_m68k_multi_got multi_got_;
908
};
909
910
/* Get the m68k ELF linker hash table from a link_info structure.  */
911
912
#define elf_m68k_hash_table(p) \
913
0
  ((is_elf_hash_table ((p)->hash)          \
914
0
    && elf_hash_table_id (elf_hash_table (p)) == M68K_ELF_DATA)   \
915
0
   ? (struct elf_m68k_link_hash_table *) (p)->hash : NULL)
916
917
/* Shortcut to multi-GOT data.  */
918
0
#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919
920
/* Create an entry in an m68k ELF linker hash table.  */
921
922
static struct bfd_hash_entry *
923
elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924
          struct bfd_hash_table *table,
925
          const char *string)
926
0
{
927
0
  struct bfd_hash_entry *ret = entry;
928
929
  /* Allocate the structure if it has not already been allocated by a
930
     subclass.  */
931
0
  if (ret == NULL)
932
0
    ret = bfd_hash_allocate (table,
933
0
           sizeof (struct elf_m68k_link_hash_entry));
934
0
  if (ret == NULL)
935
0
    return ret;
936
937
  /* Call the allocation method of the superclass.  */
938
0
  ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939
0
  if (ret != NULL)
940
0
    {
941
0
      elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942
0
      elf_m68k_hash_entry (ret)->got_entry_key = 0;
943
0
      elf_m68k_hash_entry (ret)->glist = NULL;
944
0
    }
945
946
0
  return ret;
947
0
}
948
949
/* Destroy an m68k ELF linker hash table.  */
950
951
static void
952
elf_m68k_link_hash_table_free (bfd *obfd)
953
0
{
954
0
  struct elf_m68k_link_hash_table *htab;
955
956
0
  htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957
958
0
  if (htab->multi_got_.bfd2got != NULL)
959
0
    {
960
0
      htab_delete (htab->multi_got_.bfd2got);
961
0
      htab->multi_got_.bfd2got = NULL;
962
0
    }
963
0
  _bfd_elf_link_hash_table_free (obfd);
964
0
}
965
966
/* Create an m68k ELF linker hash table.  */
967
968
static struct bfd_link_hash_table *
969
elf_m68k_link_hash_table_create (bfd *abfd)
970
0
{
971
0
  struct elf_m68k_link_hash_table *ret;
972
0
  size_t amt = sizeof (struct elf_m68k_link_hash_table);
973
974
0
  ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975
0
  if (ret == (struct elf_m68k_link_hash_table *) NULL)
976
0
    return NULL;
977
978
0
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979
0
              elf_m68k_link_hash_newfunc,
980
0
              sizeof (struct elf_m68k_link_hash_entry)))
981
0
    {
982
0
      free (ret);
983
0
      return NULL;
984
0
    }
985
0
  ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
986
987
0
  ret->multi_got_.global_symndx = 1;
988
989
0
  return &ret->root.root;
990
0
}
991
992
/* Set the right machine number.  */
993
994
static bool
995
elf32_m68k_object_p (bfd *abfd)
996
19.6k
{
997
19.6k
  unsigned int mach = 0;
998
19.6k
  unsigned features = 0;
999
19.6k
  flagword eflags = elf_elfheader (abfd)->e_flags;
1000
1001
19.6k
  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1002
1.67k
    features |= m68000;
1003
17.9k
  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1004
1.69k
    features |= cpu32;
1005
16.2k
  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1006
1.67k
    features |= fido_a;
1007
14.5k
  else
1008
14.5k
    {
1009
14.5k
      switch (eflags & EF_M68K_CF_ISA_MASK)
1010
14.5k
  {
1011
746
  case EF_M68K_CF_ISA_A_NODIV:
1012
746
    features |= mcfisa_a;
1013
746
    break;
1014
946
  case EF_M68K_CF_ISA_A:
1015
946
    features |= mcfisa_a|mcfhwdiv;
1016
946
    break;
1017
1.88k
  case EF_M68K_CF_ISA_A_PLUS:
1018
1.88k
    features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1019
1.88k
    break;
1020
1.42k
  case EF_M68K_CF_ISA_B_NOUSP:
1021
1.42k
    features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1022
1.42k
    break;
1023
1.39k
  case EF_M68K_CF_ISA_B:
1024
1.39k
    features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1025
1.39k
    break;
1026
1.19k
  case EF_M68K_CF_ISA_C:
1027
1.19k
    features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1028
1.19k
    break;
1029
475
  case EF_M68K_CF_ISA_C_NODIV:
1030
475
    features |= mcfisa_a|mcfisa_c|mcfusp;
1031
475
    break;
1032
14.5k
  }
1033
14.5k
      switch (eflags & EF_M68K_CF_MAC_MASK)
1034
14.5k
  {
1035
4.02k
  case EF_M68K_CF_MAC:
1036
4.02k
    features |= mcfmac;
1037
4.02k
    break;
1038
4.70k
  case EF_M68K_CF_EMAC:
1039
4.70k
    features |= mcfemac;
1040
4.70k
    break;
1041
14.5k
  }
1042
14.5k
      if (eflags & EF_M68K_CF_FLOAT)
1043
6.41k
  features |= cfloat;
1044
14.5k
    }
1045
1046
19.6k
  mach = bfd_m68k_features_to_mach (features);
1047
19.6k
  bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1048
1049
19.6k
  return true;
1050
19.6k
}
1051
1052
/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1053
   field based on the machine number.  */
1054
1055
static bool
1056
elf_m68k_final_write_processing (bfd *abfd)
1057
0
{
1058
0
  int mach = bfd_get_mach (abfd);
1059
0
  unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1060
1061
0
  if (!e_flags)
1062
0
    {
1063
0
      unsigned int arch_mask;
1064
1065
0
      arch_mask = bfd_m68k_mach_to_features (mach);
1066
1067
0
      if (arch_mask & m68000)
1068
0
  e_flags = EF_M68K_M68000;
1069
0
      else if (arch_mask & cpu32)
1070
0
  e_flags = EF_M68K_CPU32;
1071
0
      else if (arch_mask & fido_a)
1072
0
  e_flags = EF_M68K_FIDO;
1073
0
      else
1074
0
  {
1075
0
    switch (arch_mask
1076
0
      & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1077
0
      {
1078
0
      case mcfisa_a:
1079
0
        e_flags |= EF_M68K_CF_ISA_A_NODIV;
1080
0
        break;
1081
0
      case mcfisa_a | mcfhwdiv:
1082
0
        e_flags |= EF_M68K_CF_ISA_A;
1083
0
        break;
1084
0
      case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1085
0
        e_flags |= EF_M68K_CF_ISA_A_PLUS;
1086
0
        break;
1087
0
      case mcfisa_a | mcfisa_b | mcfhwdiv:
1088
0
        e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1089
0
        break;
1090
0
      case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1091
0
        e_flags |= EF_M68K_CF_ISA_B;
1092
0
        break;
1093
0
      case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1094
0
        e_flags |= EF_M68K_CF_ISA_C;
1095
0
        break;
1096
0
      case mcfisa_a | mcfisa_c | mcfusp:
1097
0
        e_flags |= EF_M68K_CF_ISA_C_NODIV;
1098
0
        break;
1099
0
      }
1100
0
    if (arch_mask & mcfmac)
1101
0
      e_flags |= EF_M68K_CF_MAC;
1102
0
    else if (arch_mask & mcfemac)
1103
0
      e_flags |= EF_M68K_CF_EMAC;
1104
0
    if (arch_mask & cfloat)
1105
0
      e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1106
0
  }
1107
0
      elf_elfheader (abfd)->e_flags = e_flags;
1108
0
    }
1109
0
  return _bfd_elf_final_write_processing (abfd);
1110
0
}
1111
1112
/* Keep m68k-specific flags in the ELF header.  */
1113
1114
static bool
1115
elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1116
0
{
1117
0
  elf_elfheader (abfd)->e_flags = flags;
1118
0
  elf_flags_init (abfd) = true;
1119
0
  return true;
1120
0
}
1121
1122
/* Merge object attributes from IBFD into OBFD.  Warn if
1123
   there are conflicting attributes. */
1124
static bool
1125
m68k_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
1126
0
{
1127
0
  bfd *obfd = info->output_bfd;
1128
0
  obj_attribute *in_attr, *in_attrs;
1129
0
  obj_attribute *out_attr, *out_attrs;
1130
0
  bool ret = true;
1131
1132
0
  in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
1133
0
  out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
1134
1135
0
  in_attr = &in_attrs[Tag_GNU_M68K_ABI_FP];
1136
0
  out_attr = &out_attrs[Tag_GNU_M68K_ABI_FP];
1137
1138
0
  if (in_attr->i != out_attr->i)
1139
0
    {
1140
0
      int in_fp = in_attr->i & 3;
1141
0
      int out_fp = out_attr->i & 3;
1142
0
      static bfd *last_fp;
1143
1144
0
      if (in_fp == 0)
1145
0
  ;
1146
0
      else if (out_fp == 0)
1147
0
  {
1148
0
    out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
1149
0
    out_attr->i ^= in_fp;
1150
0
    last_fp = ibfd;
1151
0
  }
1152
0
      else if (out_fp == 1 && in_fp == 2)
1153
0
  {
1154
0
    _bfd_error_handler
1155
      /* xgettext:c-format */
1156
0
      (_("%pB uses hard float, %pB uses soft float"),
1157
0
       last_fp, ibfd);
1158
0
    ret = false;
1159
0
  }
1160
0
      else if (out_fp == 2 && in_fp == 1)
1161
0
  {
1162
0
    _bfd_error_handler
1163
      /* xgettext:c-format */
1164
0
      (_("%pB uses hard float, %pB uses soft float"),
1165
0
       ibfd, last_fp);
1166
0
    ret = false;
1167
0
  }
1168
0
    }
1169
1170
0
  if (!ret)
1171
0
    {
1172
0
      out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
1173
0
      bfd_set_error (bfd_error_bad_value);
1174
0
      return false;
1175
0
    }
1176
1177
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
1178
0
  return _bfd_elf_merge_object_attributes (ibfd, info);
1179
0
}
1180
1181
/* Merge backend specific data from an object file to the output
1182
   object file when linking.  */
1183
static bool
1184
elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1185
0
{
1186
0
  bfd *obfd = info->output_bfd;
1187
0
  flagword out_flags;
1188
0
  flagword in_flags;
1189
0
  flagword out_isa;
1190
0
  flagword in_isa;
1191
0
  const bfd_arch_info_type *arch_info;
1192
1193
0
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1194
0
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1195
    /* PR 24523: For non-ELF files do not try to merge any private
1196
       data, but also do not prevent the link from succeeding.  */
1197
0
    return true;
1198
1199
  /* Get the merged machine.  This checks for incompatibility between
1200
     Coldfire & non-Coldfire flags, incompability between different
1201
     Coldfire ISAs, and incompability between different MAC types.  */
1202
0
  arch_info = bfd_arch_get_compatible (ibfd, obfd, false);
1203
0
  if (!arch_info)
1204
0
    return false;
1205
1206
0
  bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1207
1208
0
  if (!m68k_elf_merge_obj_attributes (ibfd, info))
1209
0
    return false;
1210
1211
0
  in_flags = elf_elfheader (ibfd)->e_flags;
1212
0
  if (!elf_flags_init (obfd))
1213
0
    {
1214
0
      elf_flags_init (obfd) = true;
1215
0
      out_flags = in_flags;
1216
0
    }
1217
0
  else
1218
0
    {
1219
0
      out_flags = elf_elfheader (obfd)->e_flags;
1220
0
      unsigned int variant_mask;
1221
1222
0
      if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1223
0
  variant_mask = 0;
1224
0
      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1225
0
  variant_mask = 0;
1226
0
      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1227
0
  variant_mask = 0;
1228
0
      else
1229
0
  variant_mask = EF_M68K_CF_ISA_MASK;
1230
1231
0
      in_isa = (in_flags & variant_mask);
1232
0
      out_isa = (out_flags & variant_mask);
1233
0
      if (in_isa > out_isa)
1234
0
  out_flags ^= in_isa ^ out_isa;
1235
0
      if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1236
0
     && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1237
0
    || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1238
0
        && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1239
0
  out_flags = EF_M68K_FIDO;
1240
0
      else
1241
0
      out_flags |= in_flags ^ in_isa;
1242
0
    }
1243
0
  elf_elfheader (obfd)->e_flags = out_flags;
1244
1245
0
  return true;
1246
0
}
1247
1248
/* Display the flags field.  */
1249
1250
static bool
1251
elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1252
85
{
1253
85
  FILE *file = (FILE *) ptr;
1254
85
  flagword eflags = elf_elfheader (abfd)->e_flags;
1255
1256
85
  BFD_ASSERT (abfd != NULL && ptr != NULL);
1257
1258
  /* Print normal ELF private data.  */
1259
85
  _bfd_elf_print_private_bfd_data (abfd, ptr);
1260
1261
  /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1262
1263
  /* xgettext:c-format */
1264
85
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1265
1266
85
  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1267
2
    fprintf (file, " [m68000]");
1268
83
  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1269
2
    fprintf (file, " [cpu32]");
1270
81
  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1271
2
    fprintf (file, " [fido]");
1272
79
  else
1273
79
    {
1274
79
      if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1275
10
  fprintf (file, " [cfv4e]");
1276
1277
79
      if (eflags & EF_M68K_CF_ISA_MASK)
1278
35
  {
1279
35
    char const *isa = _("unknown");
1280
35
    char const *mac = _("unknown");
1281
35
    char const *additional = "";
1282
1283
35
    switch (eflags & EF_M68K_CF_ISA_MASK)
1284
35
      {
1285
1
      case EF_M68K_CF_ISA_A_NODIV:
1286
1
        isa = "A";
1287
1
        additional = " [nodiv]";
1288
1
        break;
1289
4
      case EF_M68K_CF_ISA_A:
1290
4
        isa = "A";
1291
4
        break;
1292
2
      case EF_M68K_CF_ISA_A_PLUS:
1293
2
        isa = "A+";
1294
2
        break;
1295
4
      case EF_M68K_CF_ISA_B_NOUSP:
1296
4
        isa = "B";
1297
4
        additional = " [nousp]";
1298
4
        break;
1299
1
      case EF_M68K_CF_ISA_B:
1300
1
        isa = "B";
1301
1
        break;
1302
0
      case EF_M68K_CF_ISA_C:
1303
0
        isa = "C";
1304
0
        break;
1305
1
      case EF_M68K_CF_ISA_C_NODIV:
1306
1
        isa = "C";
1307
1
        additional = " [nodiv]";
1308
1
        break;
1309
35
      }
1310
35
    fprintf (file, " [isa %s]%s", isa, additional);
1311
1312
35
    if (eflags & EF_M68K_CF_FLOAT)
1313
27
      fprintf (file, " [float]");
1314
1315
35
    switch (eflags & EF_M68K_CF_MAC_MASK)
1316
35
      {
1317
5
      case 0:
1318
5
        mac = NULL;
1319
5
        break;
1320
3
      case EF_M68K_CF_MAC:
1321
3
        mac = "mac";
1322
3
        break;
1323
16
      case EF_M68K_CF_EMAC:
1324
16
        mac = "emac";
1325
16
        break;
1326
11
      case EF_M68K_CF_EMAC_B:
1327
11
        mac = "emac_b";
1328
11
        break;
1329
35
      }
1330
35
    if (mac)
1331
30
      fprintf (file, " [%s]", mac);
1332
35
  }
1333
79
    }
1334
1335
85
  fputc ('\n', file);
1336
1337
85
  return true;
1338
85
}
1339
1340
/* Multi-GOT support implementation design:
1341
1342
   Multi-GOT starts in check_relocs hook.  There we scan all
1343
   relocations of a BFD and build a local GOT (struct elf_m68k_got)
1344
   for it.  If a single BFD appears to require too many GOT slots with
1345
   R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1346
   to user.
1347
   After check_relocs has been invoked for each input BFD, we have
1348
   constructed a GOT for each input BFD.
1349
1350
   To minimize total number of GOTs required for a particular output BFD
1351
   (as some environments support only 1 GOT per output object) we try
1352
   to merge some of the GOTs to share an offset space.  Ideally [and in most
1353
   cases] we end up with a single GOT.  In cases when there are too many
1354
   restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1355
   several GOTs, assuming the environment can handle them.
1356
1357
   Partitioning is done in elf_m68k_partition_multi_got.  We start with
1358
   an empty GOT and traverse bfd2got hashtable putting got_entries from
1359
   local GOTs to the new 'big' one.  We do that by constructing an
1360
   intermediate GOT holding all the entries the local GOT has and the big
1361
   GOT lacks.  Then we check if there is room in the big GOT to accomodate
1362
   all the entries from diff.  On success we add those entries to the big
1363
   GOT; on failure we start the new 'big' GOT and retry the adding of
1364
   entries from the local GOT.  Note that this retry will always succeed as
1365
   each local GOT doesn't overflow the limits.  After partitioning we
1366
   end up with each bfd assigned one of the big GOTs.  GOT entries in the
1367
   big GOTs are initialized with GOT offsets.  Note that big GOTs are
1368
   positioned consequently in program space and represent a single huge GOT
1369
   to the outside world.
1370
1371
   After that we get to elf_m68k_relocate_section.  There we
1372
   adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1373
   relocations to refer to appropriate [assigned to current input_bfd]
1374
   big GOT.
1375
1376
   Notes:
1377
1378
   GOT entry type: We have several types of GOT entries.
1379
   * R_8 type is used in entries for symbols that have at least one
1380
   R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1381
   such entries in one GOT.
1382
   * R_16 type is used in entries for symbols that have at least one
1383
   R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1384
   We can have at most 0x4000 such entries in one GOT.
1385
   * R_32 type is used in all other cases.  We can have as many
1386
   such entries in one GOT as we'd like.
1387
   When counting relocations we have to include the count of the smaller
1388
   ranged relocations in the counts of the larger ranged ones in order
1389
   to correctly detect overflow.
1390
1391
   Sorting the GOT: In each GOT starting offsets are assigned to
1392
   R_8 entries, which are followed by R_16 entries, and
1393
   R_32 entries go at the end.  See finalize_got_offsets for details.
1394
1395
   Negative GOT offsets: To double usable offset range of GOTs we use
1396
   negative offsets.  As we assign entries with GOT offsets relative to
1397
   start of .got section, the offset values are positive.  They become
1398
   negative only in relocate_section where got->offset value is
1399
   subtracted from them.
1400
1401
   3 special GOT entries: There are 3 special GOT entries used internally
1402
   by loader.  These entries happen to be placed to .got.plt section,
1403
   so we don't do anything about them in multi-GOT support.
1404
1405
   Memory management: All data except for hashtables
1406
   multi_got->bfd2got and got->entries are allocated on
1407
   elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1408
   to most functions), so we don't need to care to free them.  At the
1409
   moment of allocation hashtables are being linked into main data
1410
   structure (multi_got), all pieces of which are reachable from
1411
   elf_m68k_multi_got (info).  We deallocate them in
1412
   elf_m68k_link_hash_table_free.  */
1413
1414
/* Initialize GOT.  */
1415
1416
static void
1417
elf_m68k_init_got (struct elf_m68k_got *got)
1418
0
{
1419
0
  got->entries = NULL;
1420
0
  got->n_slots[R_8] = 0;
1421
0
  got->n_slots[R_16] = 0;
1422
0
  got->n_slots[R_32] = 0;
1423
0
  got->local_n_slots = 0;
1424
0
  got->offset = (bfd_vma) -1;
1425
0
}
1426
1427
/* Destruct GOT.  */
1428
1429
static void
1430
elf_m68k_clear_got (struct elf_m68k_got *got)
1431
0
{
1432
0
  if (got->entries != NULL)
1433
0
    {
1434
0
      htab_delete (got->entries);
1435
0
      got->entries = NULL;
1436
0
    }
1437
0
}
1438
1439
/* Create and empty GOT structure.  INFO is the context where memory
1440
   should be allocated.  */
1441
1442
static struct elf_m68k_got *
1443
elf_m68k_create_empty_got (struct bfd_link_info *info)
1444
0
{
1445
0
  struct elf_m68k_got *got;
1446
1447
0
  got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1448
0
  if (got == NULL)
1449
0
    return NULL;
1450
1451
0
  elf_m68k_init_got (got);
1452
1453
0
  return got;
1454
0
}
1455
1456
/* Initialize KEY.  */
1457
1458
static void
1459
elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1460
           struct elf_link_hash_entry *h,
1461
           const bfd *abfd, unsigned long symndx,
1462
           enum elf_m68k_reloc_type reloc_type)
1463
0
{
1464
0
  if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1465
    /* All TLS_LDM relocations share a single GOT entry.  */
1466
0
    {
1467
0
      key->bfd = NULL;
1468
0
      key->symndx = 0;
1469
0
    }
1470
0
  else if (h != NULL)
1471
    /* Global symbols are identified with their got_entry_key.  */
1472
0
    {
1473
0
      key->bfd = NULL;
1474
0
      key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1475
0
      BFD_ASSERT (key->symndx != 0);
1476
0
    }
1477
0
  else
1478
    /* Local symbols are identified by BFD they appear in and symndx.  */
1479
0
    {
1480
0
      key->bfd = abfd;
1481
0
      key->symndx = symndx;
1482
0
    }
1483
1484
0
  key->type = reloc_type;
1485
0
}
1486
1487
/* Calculate hash of got_entry.
1488
   ??? Is it good?  */
1489
1490
static hashval_t
1491
elf_m68k_got_entry_hash (const void *_entry)
1492
0
{
1493
0
  const struct elf_m68k_got_entry_key *key;
1494
1495
0
  key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1496
1497
0
  return (key->symndx
1498
0
    + (key->bfd != NULL ? (int) key->bfd->id : -1)
1499
0
    + elf_m68k_reloc_got_type (key->type));
1500
0
}
1501
1502
/* Check if two got entries are equal.  */
1503
1504
static int
1505
elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1506
0
{
1507
0
  const struct elf_m68k_got_entry_key *key1;
1508
0
  const struct elf_m68k_got_entry_key *key2;
1509
1510
0
  key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1511
0
  key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1512
1513
0
  return (key1->bfd == key2->bfd
1514
0
    && key1->symndx == key2->symndx
1515
0
    && (elf_m68k_reloc_got_type (key1->type)
1516
0
        == elf_m68k_reloc_got_type (key2->type)));
1517
0
}
1518
1519
/* When using negative offsets, we allocate one extra R_8, one extra R_16
1520
   and one extra R_32 slots to simplify handling of 2-slot entries during
1521
   offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1522
1523
/* Maximal number of R_8 slots in a single GOT.  */
1524
#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)   \
1525
0
  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p    \
1526
0
   ? (0x40 - 1)              \
1527
0
   : 0x20)
1528
1529
/* Maximal number of R_8 and R_16 slots in a single GOT.  */
1530
#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)    \
1531
0
  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p    \
1532
0
   ? (0x4000 - 2)            \
1533
0
   : 0x2000)
1534
1535
/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1536
   the entry cannot be found.
1537
   FIND_OR_CREATE - search for an existing entry, but create new if there's
1538
   no such.
1539
   MUST_FIND - search for an existing entry and assert that it exist.
1540
   MUST_CREATE - assert that there's no such entry and create new one.  */
1541
enum elf_m68k_get_entry_howto
1542
  {
1543
    SEARCH,
1544
    FIND_OR_CREATE,
1545
    MUST_FIND,
1546
    MUST_CREATE
1547
  };
1548
1549
/* Get or create (depending on HOWTO) entry with KEY in GOT.
1550
   INFO is context in which memory should be allocated (can be NULL if
1551
   HOWTO is SEARCH or MUST_FIND).  */
1552
1553
static struct elf_m68k_got_entry *
1554
elf_m68k_get_got_entry (struct elf_m68k_got *got,
1555
      const struct elf_m68k_got_entry_key *key,
1556
      enum elf_m68k_get_entry_howto howto,
1557
      struct bfd_link_info *info)
1558
0
{
1559
0
  struct elf_m68k_got_entry entry_;
1560
0
  struct elf_m68k_got_entry *entry;
1561
0
  void **ptr;
1562
1563
0
  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1564
1565
0
  if (got->entries == NULL)
1566
    /* This is the first entry in ABFD.  Initialize hashtable.  */
1567
0
    {
1568
0
      if (howto == SEARCH)
1569
0
  return NULL;
1570
1571
0
      got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1572
0
              (info),
1573
0
              elf_m68k_got_entry_hash,
1574
0
              elf_m68k_got_entry_eq, NULL);
1575
0
      if (got->entries == NULL)
1576
0
  {
1577
0
    bfd_set_error (bfd_error_no_memory);
1578
0
    return NULL;
1579
0
  }
1580
0
    }
1581
1582
0
  entry_.key_ = *key;
1583
0
  ptr = htab_find_slot (got->entries, &entry_,
1584
0
      (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1585
0
       : INSERT));
1586
0
  if (ptr == NULL)
1587
0
    {
1588
0
      if (howto == SEARCH)
1589
  /* Entry not found.  */
1590
0
  return NULL;
1591
1592
0
      if (howto == MUST_FIND)
1593
0
  abort ();
1594
1595
      /* We're out of memory.  */
1596
0
      bfd_set_error (bfd_error_no_memory);
1597
0
      return NULL;
1598
0
    }
1599
1600
0
  if (*ptr == NULL)
1601
    /* We didn't find the entry and we're asked to create a new one.  */
1602
0
    {
1603
0
      if (howto == MUST_FIND)
1604
0
  abort ();
1605
1606
0
      BFD_ASSERT (howto != SEARCH);
1607
1608
0
      entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1609
0
      if (entry == NULL)
1610
0
  return NULL;
1611
1612
      /* Initialize new entry.  */
1613
0
      entry->key_ = *key;
1614
1615
0
      entry->u.s1.refcount = 0;
1616
1617
      /* Mark the entry as not initialized.  */
1618
0
      entry->key_.type = R_68K_max;
1619
1620
0
      *ptr = entry;
1621
0
    }
1622
0
  else
1623
    /* We found the entry.  */
1624
0
    {
1625
0
      BFD_ASSERT (howto != MUST_CREATE);
1626
1627
0
      entry = *ptr;
1628
0
    }
1629
1630
0
  return entry;
1631
0
}
1632
1633
/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1634
   Return the value to which ENTRY's type should be set.  */
1635
1636
static enum elf_m68k_reloc_type
1637
elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1638
        enum elf_m68k_reloc_type was,
1639
        enum elf_m68k_reloc_type new_reloc)
1640
0
{
1641
0
  enum elf_m68k_got_offset_size was_size;
1642
0
  enum elf_m68k_got_offset_size new_size;
1643
0
  bfd_vma n_slots;
1644
1645
0
  if (was == R_68K_max)
1646
    /* The type of the entry is not initialized yet.  */
1647
0
    {
1648
      /* Update all got->n_slots counters, including n_slots[R_32].  */
1649
0
      was_size = R_LAST;
1650
1651
0
      was = new_reloc;
1652
0
    }
1653
0
  else
1654
0
    {
1655
      /* !!! We, probably, should emit an error rather then fail on assert
1656
   in such a case.  */
1657
0
      BFD_ASSERT (elf_m68k_reloc_got_type (was)
1658
0
      == elf_m68k_reloc_got_type (new_reloc));
1659
1660
0
      was_size = elf_m68k_reloc_got_offset_size (was);
1661
0
    }
1662
1663
0
  new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1664
0
  n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1665
1666
0
  while (was_size > new_size)
1667
0
    {
1668
0
      --was_size;
1669
0
      got->n_slots[was_size] += n_slots;
1670
0
    }
1671
1672
0
  if (new_reloc > was)
1673
    /* Relocations are ordered from bigger got offset size to lesser,
1674
       so choose the relocation type with lesser offset size.  */
1675
0
    was = new_reloc;
1676
1677
0
  return was;
1678
0
}
1679
1680
/* Add new or update existing entry to GOT.
1681
   H, ABFD, TYPE and SYMNDX is data for the entry.
1682
   INFO is a context where memory should be allocated.  */
1683
1684
static struct elf_m68k_got_entry *
1685
elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1686
         struct elf_link_hash_entry *h,
1687
         const bfd *abfd,
1688
         enum elf_m68k_reloc_type reloc_type,
1689
         unsigned long symndx,
1690
         struct bfd_link_info *info)
1691
0
{
1692
0
  struct elf_m68k_got_entry_key key_;
1693
0
  struct elf_m68k_got_entry *entry;
1694
1695
0
  if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1696
0
    elf_m68k_hash_entry (h)->got_entry_key
1697
0
      = elf_m68k_multi_got (info)->global_symndx++;
1698
1699
0
  elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1700
1701
0
  entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1702
0
  if (entry == NULL)
1703
0
    return NULL;
1704
1705
  /* Determine entry's type and update got->n_slots counters.  */
1706
0
  entry->key_.type = elf_m68k_update_got_entry_type (got,
1707
0
                 entry->key_.type,
1708
0
                 reloc_type);
1709
1710
  /* Update refcount.  */
1711
0
  ++entry->u.s1.refcount;
1712
1713
0
  if (entry->u.s1.refcount == 1)
1714
    /* We see this entry for the first time.  */
1715
0
    {
1716
0
      if (entry->key_.bfd != NULL)
1717
0
  got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1718
0
    }
1719
1720
0
  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1721
1722
0
  if ((got->n_slots[R_8]
1723
0
       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1724
0
      || (got->n_slots[R_16]
1725
0
    > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1726
    /* This BFD has too many relocation.  */
1727
0
    {
1728
0
      if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1729
  /* xgettext:c-format */
1730
0
  _bfd_error_handler (_("%pB: GOT overflow: "
1731
0
            "number of relocations with 8-bit "
1732
0
            "offset > %d"),
1733
0
          abfd,
1734
0
          ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1735
0
      else
1736
  /* xgettext:c-format */
1737
0
  _bfd_error_handler (_("%pB: GOT overflow: "
1738
0
            "number of relocations with 8- or 16-bit "
1739
0
            "offset > %d"),
1740
0
          abfd,
1741
0
          ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1742
1743
0
      return NULL;
1744
0
    }
1745
1746
0
  return entry;
1747
0
}
1748
1749
/* Compute the hash value of the bfd in a bfd2got hash entry.  */
1750
1751
static hashval_t
1752
elf_m68k_bfd2got_entry_hash (const void *entry)
1753
0
{
1754
0
  const struct elf_m68k_bfd2got_entry *e;
1755
1756
0
  e = (const struct elf_m68k_bfd2got_entry *) entry;
1757
1758
0
  return e->bfd->id;
1759
0
}
1760
1761
/* Check whether two hash entries have the same bfd.  */
1762
1763
static int
1764
elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1765
0
{
1766
0
  const struct elf_m68k_bfd2got_entry *e1;
1767
0
  const struct elf_m68k_bfd2got_entry *e2;
1768
1769
0
  e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1770
0
  e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1771
1772
0
  return e1->bfd == e2->bfd;
1773
0
}
1774
1775
/* Destruct a bfd2got entry.  */
1776
1777
static void
1778
elf_m68k_bfd2got_entry_del (void *_entry)
1779
0
{
1780
0
  struct elf_m68k_bfd2got_entry *entry;
1781
1782
0
  entry = (struct elf_m68k_bfd2got_entry *) _entry;
1783
1784
0
  BFD_ASSERT (entry->got != NULL);
1785
0
  elf_m68k_clear_got (entry->got);
1786
0
}
1787
1788
/* Find existing or create new (depending on HOWTO) bfd2got entry in
1789
   MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1790
   memory should be allocated.  */
1791
1792
static struct elf_m68k_bfd2got_entry *
1793
elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1794
          const bfd *abfd,
1795
          enum elf_m68k_get_entry_howto howto,
1796
          struct bfd_link_info *info)
1797
0
{
1798
0
  struct elf_m68k_bfd2got_entry entry_;
1799
0
  void **ptr;
1800
0
  struct elf_m68k_bfd2got_entry *entry;
1801
1802
0
  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1803
1804
0
  if (multi_got->bfd2got == NULL)
1805
    /* This is the first GOT.  Initialize bfd2got.  */
1806
0
    {
1807
0
      if (howto == SEARCH)
1808
0
  return NULL;
1809
1810
0
      multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1811
0
              elf_m68k_bfd2got_entry_eq,
1812
0
              elf_m68k_bfd2got_entry_del);
1813
0
      if (multi_got->bfd2got == NULL)
1814
0
  {
1815
0
    bfd_set_error (bfd_error_no_memory);
1816
0
    return NULL;
1817
0
  }
1818
0
    }
1819
1820
0
  entry_.bfd = abfd;
1821
0
  ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1822
0
      (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1823
0
       : INSERT));
1824
0
  if (ptr == NULL)
1825
0
    {
1826
0
      if (howto == SEARCH)
1827
  /* Entry not found.  */
1828
0
  return NULL;
1829
1830
0
      if (howto == MUST_FIND)
1831
0
  abort ();
1832
1833
      /* We're out of memory.  */
1834
0
      bfd_set_error (bfd_error_no_memory);
1835
0
      return NULL;
1836
0
    }
1837
1838
0
  if (*ptr == NULL)
1839
    /* Entry was not found.  Create new one.  */
1840
0
    {
1841
0
      if (howto == MUST_FIND)
1842
0
  abort ();
1843
1844
0
      BFD_ASSERT (howto != SEARCH);
1845
1846
0
      entry = ((struct elf_m68k_bfd2got_entry *)
1847
0
         bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1848
0
      if (entry == NULL)
1849
0
  return NULL;
1850
1851
0
      entry->bfd = abfd;
1852
1853
0
      entry->got = elf_m68k_create_empty_got (info);
1854
0
      if (entry->got == NULL)
1855
0
  return NULL;
1856
1857
0
      *ptr = entry;
1858
0
    }
1859
0
  else
1860
0
    {
1861
0
      BFD_ASSERT (howto != MUST_CREATE);
1862
1863
      /* Return existing entry.  */
1864
0
      entry = *ptr;
1865
0
    }
1866
1867
0
  return entry;
1868
0
}
1869
1870
struct elf_m68k_can_merge_gots_arg
1871
{
1872
  /* A current_got that we constructing a DIFF against.  */
1873
  struct elf_m68k_got *big;
1874
1875
  /* GOT holding entries not present or that should be changed in
1876
     BIG.  */
1877
  struct elf_m68k_got *diff;
1878
1879
  /* Context where to allocate memory.  */
1880
  struct bfd_link_info *info;
1881
1882
  /* Error flag.  */
1883
  bool error_p;
1884
};
1885
1886
/* Process a single entry from the small GOT to see if it should be added
1887
   or updated in the big GOT.  */
1888
1889
static int
1890
elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1891
0
{
1892
0
  const struct elf_m68k_got_entry *entry1;
1893
0
  struct elf_m68k_can_merge_gots_arg *arg;
1894
0
  const struct elf_m68k_got_entry *entry2;
1895
0
  enum elf_m68k_reloc_type type;
1896
1897
0
  entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1898
0
  arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1899
1900
0
  entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1901
1902
0
  if (entry2 != NULL)
1903
    /* We found an existing entry.  Check if we should update it.  */
1904
0
    {
1905
0
      type = elf_m68k_update_got_entry_type (arg->diff,
1906
0
               entry2->key_.type,
1907
0
               entry1->key_.type);
1908
1909
0
      if (type == entry2->key_.type)
1910
  /* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1911
     To skip creation of difference entry we use the type,
1912
     which we won't see in GOT entries for sure.  */
1913
0
  type = R_68K_max;
1914
0
    }
1915
0
  else
1916
    /* We didn't find the entry.  Add entry1 to DIFF.  */
1917
0
    {
1918
0
      BFD_ASSERT (entry1->key_.type != R_68K_max);
1919
1920
0
      type = elf_m68k_update_got_entry_type (arg->diff,
1921
0
               R_68K_max, entry1->key_.type);
1922
1923
0
      if (entry1->key_.bfd != NULL)
1924
0
  arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1925
0
    }
1926
1927
0
  if (type != R_68K_max)
1928
    /* Create an entry in DIFF.  */
1929
0
    {
1930
0
      struct elf_m68k_got_entry *entry;
1931
1932
0
      entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1933
0
              arg->info);
1934
0
      if (entry == NULL)
1935
0
  {
1936
0
    arg->error_p = true;
1937
0
    return 0;
1938
0
  }
1939
1940
0
      entry->key_.type = type;
1941
0
    }
1942
1943
0
  return 1;
1944
0
}
1945
1946
/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1947
   Construct DIFF GOT holding the entries which should be added or updated
1948
   in BIG GOT to accumulate information from SMALL.
1949
   INFO is the context where memory should be allocated.  */
1950
1951
static bool
1952
elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1953
       const struct elf_m68k_got *small,
1954
       struct bfd_link_info *info,
1955
       struct elf_m68k_got *diff)
1956
0
{
1957
0
  struct elf_m68k_can_merge_gots_arg arg_;
1958
1959
0
  BFD_ASSERT (small->offset == (bfd_vma) -1);
1960
1961
0
  arg_.big = big;
1962
0
  arg_.diff = diff;
1963
0
  arg_.info = info;
1964
0
  arg_.error_p = false;
1965
0
  htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1966
0
  if (arg_.error_p)
1967
0
    {
1968
0
      diff->offset = 0;
1969
0
      return false;
1970
0
    }
1971
1972
  /* Check for overflow.  */
1973
0
  if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1974
0
       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1975
0
      || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1976
0
    > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1977
0
    return false;
1978
1979
0
  return true;
1980
0
}
1981
1982
struct elf_m68k_merge_gots_arg
1983
{
1984
  /* The BIG got.  */
1985
  struct elf_m68k_got *big;
1986
1987
  /* Context where memory should be allocated.  */
1988
  struct bfd_link_info *info;
1989
1990
  /* Error flag.  */
1991
  bool error_p;
1992
};
1993
1994
/* Process a single entry from DIFF got.  Add or update corresponding
1995
   entry in the BIG got.  */
1996
1997
static int
1998
elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1999
0
{
2000
0
  const struct elf_m68k_got_entry *from;
2001
0
  struct elf_m68k_merge_gots_arg *arg;
2002
0
  struct elf_m68k_got_entry *to;
2003
2004
0
  from = (const struct elf_m68k_got_entry *) *entry_ptr;
2005
0
  arg = (struct elf_m68k_merge_gots_arg *) _arg;
2006
2007
0
  to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
2008
0
             arg->info);
2009
0
  if (to == NULL)
2010
0
    {
2011
0
      arg->error_p = true;
2012
0
      return 0;
2013
0
    }
2014
2015
0
  BFD_ASSERT (to->u.s1.refcount == 0);
2016
  /* All we need to merge is TYPE.  */
2017
0
  to->key_.type = from->key_.type;
2018
2019
0
  return 1;
2020
0
}
2021
2022
/* Merge data from DIFF to BIG.  INFO is context where memory should be
2023
   allocated.  */
2024
2025
static bool
2026
elf_m68k_merge_gots (struct elf_m68k_got *big,
2027
         struct elf_m68k_got *diff,
2028
         struct bfd_link_info *info)
2029
0
{
2030
0
  if (diff->entries != NULL)
2031
    /* DIFF is not empty.  Merge it into BIG GOT.  */
2032
0
    {
2033
0
      struct elf_m68k_merge_gots_arg arg_;
2034
2035
      /* Merge entries.  */
2036
0
      arg_.big = big;
2037
0
      arg_.info = info;
2038
0
      arg_.error_p = false;
2039
0
      htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2040
0
      if (arg_.error_p)
2041
0
  return false;
2042
2043
      /* Merge counters.  */
2044
0
      big->n_slots[R_8] += diff->n_slots[R_8];
2045
0
      big->n_slots[R_16] += diff->n_slots[R_16];
2046
0
      big->n_slots[R_32] += diff->n_slots[R_32];
2047
0
      big->local_n_slots += diff->local_n_slots;
2048
0
    }
2049
0
  else
2050
    /* DIFF is empty.  */
2051
0
    {
2052
0
      BFD_ASSERT (diff->n_slots[R_8] == 0);
2053
0
      BFD_ASSERT (diff->n_slots[R_16] == 0);
2054
0
      BFD_ASSERT (diff->n_slots[R_32] == 0);
2055
0
      BFD_ASSERT (diff->local_n_slots == 0);
2056
0
    }
2057
2058
0
  BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2059
0
        || ((big->n_slots[R_8]
2060
0
       <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2061
0
      && (big->n_slots[R_16]
2062
0
          <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2063
2064
0
  return true;
2065
0
}
2066
2067
struct elf_m68k_finalize_got_offsets_arg
2068
{
2069
  /* Ranges of the offsets for GOT entries.
2070
     R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2071
     R_x is R_8, R_16 and R_32.  */
2072
  bfd_vma *offset1;
2073
  bfd_vma *offset2;
2074
2075
  /* Mapping from global symndx to global symbols.
2076
     This is used to build lists of got entries for global symbols.  */
2077
  struct elf_m68k_link_hash_entry **symndx2h;
2078
2079
  bfd_vma n_ldm_entries;
2080
};
2081
2082
/* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2083
   along the way.  */
2084
2085
static int
2086
elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2087
0
{
2088
0
  struct elf_m68k_got_entry *entry;
2089
0
  struct elf_m68k_finalize_got_offsets_arg *arg;
2090
2091
0
  enum elf_m68k_got_offset_size got_offset_size;
2092
0
  bfd_vma entry_size;
2093
2094
0
  entry = (struct elf_m68k_got_entry *) *entry_ptr;
2095
0
  arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2096
2097
  /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2098
0
  BFD_ASSERT (entry->u.s1.refcount == 0);
2099
2100
  /* Get GOT offset size for the entry .  */
2101
0
  got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2102
2103
  /* Calculate entry size in bytes.  */
2104
0
  entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2105
2106
  /* Check if we should switch to negative range of the offsets. */
2107
0
  if (arg->offset1[got_offset_size] + entry_size
2108
0
      > arg->offset2[got_offset_size])
2109
0
    {
2110
      /* Verify that this is the only switch to negative range for
2111
   got_offset_size.  If this assertion fails, then we've miscalculated
2112
   range for got_offset_size entries in
2113
   elf_m68k_finalize_got_offsets.  */
2114
0
      BFD_ASSERT (arg->offset2[got_offset_size]
2115
0
      != arg->offset2[-(int) got_offset_size - 1]);
2116
2117
      /* Switch.  */
2118
0
      arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2119
0
      arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2120
2121
      /* Verify that now we have enough room for the entry.  */
2122
0
      BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2123
0
      <= arg->offset2[got_offset_size]);
2124
0
    }
2125
2126
  /* Assign offset to entry.  */
2127
0
  entry->u.s2.offset = arg->offset1[got_offset_size];
2128
0
  arg->offset1[got_offset_size] += entry_size;
2129
2130
0
  if (entry->key_.bfd == NULL)
2131
    /* Hook up this entry into the list of got_entries of H.  */
2132
0
    {
2133
0
      struct elf_m68k_link_hash_entry *h;
2134
2135
0
      h = arg->symndx2h[entry->key_.symndx];
2136
0
      if (h != NULL)
2137
0
  {
2138
0
    entry->u.s2.next = h->glist;
2139
0
    h->glist = entry;
2140
0
  }
2141
0
      else
2142
  /* This should be the entry for TLS_LDM relocation then.  */
2143
0
  {
2144
0
    BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2145
0
           == R_68K_TLS_LDM32)
2146
0
          && entry->key_.symndx == 0);
2147
2148
0
    ++arg->n_ldm_entries;
2149
0
  }
2150
0
    }
2151
0
  else
2152
    /* This entry is for local symbol.  */
2153
0
    entry->u.s2.next = NULL;
2154
2155
0
  return 1;
2156
0
}
2157
2158
/* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2159
   should use negative offsets.
2160
   Build list of GOT entries for global symbols along the way.
2161
   SYMNDX2H is mapping from global symbol indices to actual
2162
   global symbols.
2163
   Return offset at which next GOT should start.  */
2164
2165
static void
2166
elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2167
             bool use_neg_got_offsets_p,
2168
             struct elf_m68k_link_hash_entry **symndx2h,
2169
             bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2170
0
{
2171
0
  struct elf_m68k_finalize_got_offsets_arg arg_;
2172
0
  bfd_vma offset1_[2 * R_LAST];
2173
0
  bfd_vma offset2_[2 * R_LAST];
2174
0
  int i;
2175
0
  bfd_vma start_offset;
2176
2177
0
  BFD_ASSERT (got->offset != (bfd_vma) -1);
2178
2179
  /* We set entry offsets relative to the .got section (and not the
2180
     start of a particular GOT), so that we can use them in
2181
     finish_dynamic_symbol without needing to know the GOT which they come
2182
     from.  */
2183
2184
  /* Put offset1 in the middle of offset1_, same for offset2.  */
2185
0
  arg_.offset1 = offset1_ + R_LAST;
2186
0
  arg_.offset2 = offset2_ + R_LAST;
2187
2188
0
  start_offset = got->offset;
2189
2190
0
  if (use_neg_got_offsets_p)
2191
    /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2192
0
    i = -(int) R_32 - 1;
2193
0
  else
2194
    /* Setup positives ranges for R_8, R_16 and R_32.  */
2195
0
    i = (int) R_8;
2196
2197
0
  for (; i <= (int) R_32; ++i)
2198
0
    {
2199
0
      int j;
2200
0
      size_t n;
2201
2202
      /* Set beginning of the range of offsets I.  */
2203
0
      arg_.offset1[i] = start_offset;
2204
2205
      /* Calculate number of slots that require I offsets.  */
2206
0
      j = (i >= 0) ? i : -i - 1;
2207
0
      n = (j >= 1) ? got->n_slots[j - 1] : 0;
2208
0
      n = got->n_slots[j] - n;
2209
2210
0
      if (use_neg_got_offsets_p && n != 0)
2211
0
  {
2212
0
    if (i < 0)
2213
      /* We first fill the positive side of the range, so we might
2214
         end up with one empty slot at that side when we can't fit
2215
         whole 2-slot entry.  Account for that at negative side of
2216
         the interval with one additional entry.  */
2217
0
      n = n / 2 + 1;
2218
0
    else
2219
      /* When the number of slots is odd, make positive side of the
2220
         range one entry bigger.  */
2221
0
      n = (n + 1) / 2;
2222
0
  }
2223
2224
      /* N is the number of slots that require I offsets.
2225
   Calculate length of the range for I offsets.  */
2226
0
      n = 4 * n;
2227
2228
      /* Set end of the range.  */
2229
0
      arg_.offset2[i] = start_offset + n;
2230
2231
0
      start_offset = arg_.offset2[i];
2232
0
    }
2233
2234
0
  if (!use_neg_got_offsets_p)
2235
    /* Make sure that if we try to switch to negative offsets in
2236
       elf_m68k_finalize_got_offsets_1, the assert therein will catch
2237
       the bug.  */
2238
0
    for (i = R_8; i <= R_32; ++i)
2239
0
      arg_.offset2[-i - 1] = arg_.offset2[i];
2240
2241
  /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2242
     beginning of GOT depending on use_neg_got_offsets_p.  */
2243
0
  got->offset = arg_.offset1[R_8];
2244
2245
0
  arg_.symndx2h = symndx2h;
2246
0
  arg_.n_ldm_entries = 0;
2247
2248
  /* Assign offsets.  */
2249
0
  htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2250
2251
  /* Check offset ranges we have actually assigned.  */
2252
0
  for (i = (int) R_8; i <= (int) R_32; ++i)
2253
0
    BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2254
2255
0
  *final_offset = start_offset;
2256
0
  *n_ldm_entries = arg_.n_ldm_entries;
2257
0
}
2258
2259
struct elf_m68k_partition_multi_got_arg
2260
{
2261
  /* The GOT we are adding entries to.  Aka big got.  */
2262
  struct elf_m68k_got *current_got;
2263
2264
  /* Offset to assign the next CURRENT_GOT.  */
2265
  bfd_vma offset;
2266
2267
  /* Context where memory should be allocated.  */
2268
  struct bfd_link_info *info;
2269
2270
  /* Total number of slots in the .got section.
2271
     This is used to calculate size of the .got and .rela.got sections.  */
2272
  bfd_vma n_slots;
2273
2274
  /* Difference in numbers of allocated slots in the .got section
2275
     and necessary relocations in the .rela.got section.
2276
     This is used to calculate size of the .rela.got section.  */
2277
  bfd_vma slots_relas_diff;
2278
2279
  /* Error flag.  */
2280
  bool error_p;
2281
2282
  /* Mapping from global symndx to global symbols.
2283
     This is used to build lists of got entries for global symbols.  */
2284
  struct elf_m68k_link_hash_entry **symndx2h;
2285
};
2286
2287
static void
2288
elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2289
0
{
2290
0
  bfd_vma n_ldm_entries;
2291
2292
0
  elf_m68k_finalize_got_offsets (arg->current_got,
2293
0
         (elf_m68k_hash_table (arg->info)
2294
0
          ->use_neg_got_offsets_p),
2295
0
         arg->symndx2h,
2296
0
         &arg->offset, &n_ldm_entries);
2297
2298
0
  arg->n_slots += arg->current_got->n_slots[R_32];
2299
2300
0
  if (!bfd_link_pic (arg->info))
2301
    /* If we are generating a shared object, we need to
2302
       output a R_68K_RELATIVE reloc so that the dynamic
2303
       linker can adjust this GOT entry.  Overwise we
2304
       don't need space in .rela.got for local symbols.  */
2305
0
    arg->slots_relas_diff += arg->current_got->local_n_slots;
2306
2307
  /* @LDM relocations require a 2-slot GOT entry, but only
2308
     one relocation.  Account for that.  */
2309
0
  arg->slots_relas_diff += n_ldm_entries;
2310
2311
0
  BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2312
0
}
2313
2314
2315
/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2316
   or start a new CURRENT_GOT.  */
2317
2318
static int
2319
elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2320
0
{
2321
0
  struct elf_m68k_bfd2got_entry *entry;
2322
0
  struct elf_m68k_partition_multi_got_arg *arg;
2323
0
  struct elf_m68k_got *got;
2324
0
  struct elf_m68k_got diff_;
2325
0
  struct elf_m68k_got *diff;
2326
2327
0
  entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2328
0
  arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2329
2330
0
  got = entry->got;
2331
0
  BFD_ASSERT (got != NULL);
2332
0
  BFD_ASSERT (got->offset == (bfd_vma) -1);
2333
2334
0
  diff = NULL;
2335
2336
0
  if (arg->current_got != NULL)
2337
    /* Construct diff.  */
2338
0
    {
2339
0
      diff = &diff_;
2340
0
      elf_m68k_init_got (diff);
2341
2342
0
      if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2343
0
  {
2344
0
    if (diff->offset == 0)
2345
      /* Offset set to 0 in the diff_ indicates an error.  */
2346
0
      {
2347
0
        arg->error_p = true;
2348
0
        goto final_return;
2349
0
      }
2350
2351
0
    if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2352
0
      {
2353
0
        elf_m68k_clear_got (diff);
2354
        /* Schedule to finish up current_got and start new one.  */
2355
0
        diff = NULL;
2356
0
      }
2357
    /* else
2358
       Merge GOTs no matter what.  If big GOT overflows,
2359
       we'll fail in relocate_section due to truncated relocations.
2360
2361
       ??? May be fail earlier?  E.g., in can_merge_gots.  */
2362
0
  }
2363
0
    }
2364
0
  else
2365
    /* Diff of got against empty current_got is got itself.  */
2366
0
    {
2367
      /* Create empty current_got to put subsequent GOTs to.  */
2368
0
      arg->current_got = elf_m68k_create_empty_got (arg->info);
2369
0
      if (arg->current_got == NULL)
2370
0
  {
2371
0
    arg->error_p = true;
2372
0
    goto final_return;
2373
0
  }
2374
2375
0
      arg->current_got->offset = arg->offset;
2376
2377
0
      diff = got;
2378
0
    }
2379
2380
0
  if (diff != NULL)
2381
0
    {
2382
0
      if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2383
0
  {
2384
0
    arg->error_p = true;
2385
0
    goto final_return;
2386
0
  }
2387
2388
      /* Now we can free GOT.  */
2389
0
      elf_m68k_clear_got (got);
2390
2391
0
      entry->got = arg->current_got;
2392
0
    }
2393
0
  else
2394
0
    {
2395
      /* Finish up current_got.  */
2396
0
      elf_m68k_partition_multi_got_2 (arg);
2397
2398
      /* Schedule to start a new current_got.  */
2399
0
      arg->current_got = NULL;
2400
2401
      /* Retry.  */
2402
0
      if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2403
0
  {
2404
0
    BFD_ASSERT (arg->error_p);
2405
0
    goto final_return;
2406
0
  }
2407
0
    }
2408
2409
0
 final_return:
2410
0
  if (diff != NULL)
2411
0
    elf_m68k_clear_got (diff);
2412
2413
0
  return !arg->error_p;
2414
0
}
2415
2416
/* Helper function to build symndx2h mapping.  */
2417
2418
static bool
2419
elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2420
        void *_arg)
2421
0
{
2422
0
  struct elf_m68k_link_hash_entry *h;
2423
2424
0
  h = elf_m68k_hash_entry (_h);
2425
2426
0
  if (h->got_entry_key != 0)
2427
    /* H has at least one entry in the GOT.  */
2428
0
    {
2429
0
      struct elf_m68k_partition_multi_got_arg *arg;
2430
2431
0
      arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2432
2433
0
      BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2434
0
      arg->symndx2h[h->got_entry_key] = h;
2435
0
    }
2436
2437
0
  return true;
2438
0
}
2439
2440
/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2441
   lists of GOT entries for global symbols.
2442
   Calculate sizes of .got and .rela.got sections.  */
2443
2444
static bool
2445
elf_m68k_partition_multi_got (struct bfd_link_info *info)
2446
0
{
2447
0
  struct elf_m68k_multi_got *multi_got;
2448
0
  struct elf_m68k_partition_multi_got_arg arg_;
2449
2450
0
  multi_got = elf_m68k_multi_got (info);
2451
2452
0
  arg_.current_got = NULL;
2453
0
  arg_.offset = 0;
2454
0
  arg_.info = info;
2455
0
  arg_.n_slots = 0;
2456
0
  arg_.slots_relas_diff = 0;
2457
0
  arg_.error_p = false;
2458
2459
0
  if (multi_got->bfd2got != NULL)
2460
0
    {
2461
      /* Initialize symndx2h mapping.  */
2462
0
      {
2463
0
  arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2464
0
             * sizeof (*arg_.symndx2h));
2465
0
  if (arg_.symndx2h == NULL)
2466
0
    return false;
2467
2468
0
  elf_link_hash_traverse (elf_hash_table (info),
2469
0
        elf_m68k_init_symndx2h_1, &arg_);
2470
0
      }
2471
2472
      /* Partition.  */
2473
0
      htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2474
0
         &arg_);
2475
0
      if (arg_.error_p)
2476
0
  {
2477
0
    free (arg_.symndx2h);
2478
0
    arg_.symndx2h = NULL;
2479
2480
0
    return false;
2481
0
  }
2482
2483
      /* Finish up last current_got.  */
2484
0
      elf_m68k_partition_multi_got_2 (&arg_);
2485
2486
0
      free (arg_.symndx2h);
2487
0
    }
2488
2489
0
  if (elf_hash_table (info)->dynobj != NULL)
2490
    /* Set sizes of .got and .rela.got sections.  */
2491
0
    {
2492
0
      asection *s;
2493
2494
0
      s = elf_hash_table (info)->sgot;
2495
0
      if (s != NULL)
2496
0
  s->size = arg_.offset;
2497
0
      else
2498
0
  BFD_ASSERT (arg_.offset == 0);
2499
2500
0
      BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2501
0
      arg_.n_slots -= arg_.slots_relas_diff;
2502
2503
0
      s = elf_hash_table (info)->srelgot;
2504
0
      if (s != NULL)
2505
0
  s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2506
0
      else
2507
0
  BFD_ASSERT (arg_.n_slots == 0);
2508
0
    }
2509
0
  else
2510
0
    BFD_ASSERT (multi_got->bfd2got == NULL);
2511
2512
0
  return true;
2513
0
}
2514
2515
/* Copy any information related to dynamic linking from a pre-existing
2516
   symbol to a newly created symbol.  Also called to copy flags and
2517
   other back-end info to a weakdef, in which case the symbol is not
2518
   newly created and plt/got refcounts and dynamic indices should not
2519
   be copied.  */
2520
2521
static void
2522
elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2523
             struct elf_link_hash_entry *_dir,
2524
             struct elf_link_hash_entry *_ind)
2525
0
{
2526
0
  struct elf_m68k_link_hash_entry *dir;
2527
0
  struct elf_m68k_link_hash_entry *ind;
2528
2529
0
  _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2530
2531
0
  if (_ind->root.type != bfd_link_hash_indirect)
2532
0
    return;
2533
2534
0
  dir = elf_m68k_hash_entry (_dir);
2535
0
  ind = elf_m68k_hash_entry (_ind);
2536
2537
  /* Any absolute non-dynamic relocations against an indirect or weak
2538
     definition will be against the target symbol.  */
2539
0
  _dir->non_got_ref |= _ind->non_got_ref;
2540
2541
  /* We might have a direct symbol already having entries in the GOTs.
2542
     Update its key only in case indirect symbol has GOT entries and
2543
     assert that both indirect and direct symbols don't have GOT entries
2544
     at the same time.  */
2545
0
  if (ind->got_entry_key != 0)
2546
0
    {
2547
0
      BFD_ASSERT (dir->got_entry_key == 0);
2548
      /* Assert that GOTs aren't partioned yet.  */
2549
0
      BFD_ASSERT (ind->glist == NULL);
2550
2551
0
      dir->got_entry_key = ind->got_entry_key;
2552
0
      ind->got_entry_key = 0;
2553
0
    }
2554
0
}
2555
2556
/* Look through the relocs for a section during the first phase, and
2557
   allocate space in the global offset table or procedure linkage
2558
   table.  */
2559
2560
static bool
2561
elf_m68k_check_relocs (bfd *abfd,
2562
           struct bfd_link_info *info,
2563
           asection *sec,
2564
           const Elf_Internal_Rela *relocs)
2565
0
{
2566
0
  bfd *dynobj;
2567
0
  Elf_Internal_Shdr *symtab_hdr;
2568
0
  struct elf_link_hash_entry **sym_hashes;
2569
0
  const Elf_Internal_Rela *rel;
2570
0
  const Elf_Internal_Rela *rel_end;
2571
0
  asection *sreloc;
2572
0
  struct elf_m68k_got *got;
2573
2574
0
  if (bfd_link_relocatable (info))
2575
0
    return true;
2576
2577
0
  dynobj = elf_hash_table (info)->dynobj;
2578
0
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2579
0
  sym_hashes = elf_sym_hashes (abfd);
2580
2581
0
  sreloc = NULL;
2582
2583
0
  got = NULL;
2584
2585
0
  rel_end = relocs + sec->reloc_count;
2586
0
  for (rel = relocs; rel < rel_end; rel++)
2587
0
    {
2588
0
      unsigned long r_symndx;
2589
0
      struct elf_link_hash_entry *h;
2590
2591
0
      r_symndx = ELF32_R_SYM (rel->r_info);
2592
2593
0
      if (r_symndx < symtab_hdr->sh_info)
2594
0
  h = NULL;
2595
0
      else
2596
0
  {
2597
0
    h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2598
0
    while (h->root.type == bfd_link_hash_indirect
2599
0
     || h->root.type == bfd_link_hash_warning)
2600
0
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
2601
0
  }
2602
2603
0
      switch (ELF32_R_TYPE (rel->r_info))
2604
0
  {
2605
0
  case R_68K_GOT8:
2606
0
  case R_68K_GOT16:
2607
0
  case R_68K_GOT32:
2608
0
    if (h != NULL
2609
0
        && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2610
0
      break;
2611
    /* Fall through.  */
2612
2613
    /* Relative GOT relocations.  */
2614
0
  case R_68K_GOT8O:
2615
0
  case R_68K_GOT16O:
2616
0
  case R_68K_GOT32O:
2617
    /* Fall through.  */
2618
2619
    /* TLS relocations.  */
2620
0
  case R_68K_TLS_GD8:
2621
0
  case R_68K_TLS_GD16:
2622
0
  case R_68K_TLS_GD32:
2623
0
  case R_68K_TLS_LDM8:
2624
0
  case R_68K_TLS_LDM16:
2625
0
  case R_68K_TLS_LDM32:
2626
0
  case R_68K_TLS_IE8:
2627
0
  case R_68K_TLS_IE16:
2628
0
  case R_68K_TLS_IE32:
2629
2630
0
  case R_68K_TLS_TPREL32:
2631
0
  case R_68K_TLS_DTPREL32:
2632
2633
0
    if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2634
0
        && bfd_link_pic (info))
2635
      /* Do the special chorus for libraries with static TLS.  */
2636
0
      info->flags |= DF_STATIC_TLS;
2637
2638
    /* This symbol requires a global offset table entry.  */
2639
2640
0
    if (dynobj == NULL)
2641
0
      {
2642
        /* Create the .got section.  */
2643
0
        elf_hash_table (info)->dynobj = dynobj = abfd;
2644
0
        if (!_bfd_elf_create_got_section (dynobj, info))
2645
0
    return false;
2646
0
      }
2647
2648
0
    if (got == NULL)
2649
0
      {
2650
0
        struct elf_m68k_bfd2got_entry *bfd2got_entry;
2651
2652
0
        bfd2got_entry
2653
0
    = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2654
0
                abfd, FIND_OR_CREATE, info);
2655
0
        if (bfd2got_entry == NULL)
2656
0
    return false;
2657
2658
0
        got = bfd2got_entry->got;
2659
0
        BFD_ASSERT (got != NULL);
2660
0
      }
2661
2662
0
    {
2663
0
      struct elf_m68k_got_entry *got_entry;
2664
2665
      /* Add entry to got.  */
2666
0
      got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2667
0
               ELF32_R_TYPE (rel->r_info),
2668
0
               r_symndx, info);
2669
0
      if (got_entry == NULL)
2670
0
        return false;
2671
2672
0
      if (got_entry->u.s1.refcount == 1)
2673
0
        {
2674
    /* Make sure this symbol is output as a dynamic symbol.  */
2675
0
    if (h != NULL
2676
0
        && h->dynindx == -1
2677
0
        && !h->forced_local)
2678
0
      {
2679
0
        if (!bfd_elf_link_record_dynamic_symbol (info, h))
2680
0
          return false;
2681
0
      }
2682
0
        }
2683
0
    }
2684
2685
0
    break;
2686
2687
0
  case R_68K_PLT8:
2688
0
  case R_68K_PLT16:
2689
0
  case R_68K_PLT32:
2690
    /* This symbol requires a procedure linkage table entry.  We
2691
       actually build the entry in adjust_dynamic_symbol,
2692
       because this might be a case of linking PIC code which is
2693
       never referenced by a dynamic object, in which case we
2694
       don't need to generate a procedure linkage table entry
2695
       after all.  */
2696
2697
    /* If this is a local symbol, we resolve it directly without
2698
       creating a procedure linkage table entry.  */
2699
0
    if (h == NULL)
2700
0
      continue;
2701
2702
0
    h->needs_plt = 1;
2703
0
    h->plt.refcount++;
2704
0
    break;
2705
2706
0
  case R_68K_PLT8O:
2707
0
  case R_68K_PLT16O:
2708
0
  case R_68K_PLT32O:
2709
    /* This symbol requires a procedure linkage table entry.  */
2710
2711
0
    if (h == NULL)
2712
0
      {
2713
        /* It does not make sense to have this relocation for a
2714
     local symbol.  FIXME: does it?  How to handle it if
2715
     it does make sense?  */
2716
0
        bfd_set_error (bfd_error_bad_value);
2717
0
        return false;
2718
0
      }
2719
2720
    /* Make sure this symbol is output as a dynamic symbol.  */
2721
0
    if (h->dynindx == -1
2722
0
        && !h->forced_local)
2723
0
      {
2724
0
        if (!bfd_elf_link_record_dynamic_symbol (info, h))
2725
0
    return false;
2726
0
      }
2727
2728
0
    h->needs_plt = 1;
2729
0
    h->plt.refcount++;
2730
0
    break;
2731
2732
0
  case R_68K_PC8:
2733
0
  case R_68K_PC16:
2734
0
  case R_68K_PC32:
2735
    /* If we are creating a shared library and this is not a local
2736
       symbol, we need to copy the reloc into the shared library.
2737
       However when linking with -Bsymbolic and this is a global
2738
       symbol which is defined in an object we are including in the
2739
       link (i.e., DEF_REGULAR is set), then we can resolve the
2740
       reloc directly.  At this point we have not seen all the input
2741
       files, so it is possible that DEF_REGULAR is not set now but
2742
       will be set later (it is never cleared).  We account for that
2743
       possibility below by storing information in the
2744
       pcrel_relocs_copied field of the hash table entry.  */
2745
0
    if (!(bfd_link_pic (info)
2746
0
    && (sec->flags & SEC_ALLOC) != 0
2747
0
    && h != NULL
2748
0
    && (!SYMBOLIC_BIND (info, h)
2749
0
        || h->root.type == bfd_link_hash_defweak
2750
0
        || !h->def_regular)))
2751
0
      {
2752
0
        if (h != NULL)
2753
0
    {
2754
      /* Make sure a plt entry is created for this symbol if
2755
         it turns out to be a function defined by a dynamic
2756
         object.  */
2757
0
      h->plt.refcount++;
2758
0
    }
2759
0
        break;
2760
0
      }
2761
    /* Fall through.  */
2762
0
  case R_68K_8:
2763
0
  case R_68K_16:
2764
0
  case R_68K_32:
2765
    /* We don't need to handle relocs into sections not going into
2766
       the "real" output.  */
2767
0
    if ((sec->flags & SEC_ALLOC) == 0)
2768
0
        break;
2769
2770
0
    if (h != NULL)
2771
0
      {
2772
        /* Make sure a plt entry is created for this symbol if it
2773
     turns out to be a function defined by a dynamic object.  */
2774
0
        h->plt.refcount++;
2775
2776
0
        if (bfd_link_executable (info))
2777
    /* This symbol needs a non-GOT reference.  */
2778
0
    h->non_got_ref = 1;
2779
0
      }
2780
2781
    /* If we are creating a shared library, we need to copy the
2782
       reloc into the shared library.  */
2783
0
    if (bfd_link_pic (info)
2784
0
        && (h == NULL
2785
0
      || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2786
0
      {
2787
        /* When creating a shared object, we must copy these
2788
     reloc types into the output file.  We create a reloc
2789
     section in dynobj and make room for this reloc.  */
2790
0
        if (sreloc == NULL)
2791
0
    {
2792
0
      sreloc = _bfd_elf_make_dynamic_reloc_section
2793
0
        (sec, dynobj, 2, abfd, /*rela?*/ true);
2794
2795
0
      if (sreloc == NULL)
2796
0
        return false;
2797
0
    }
2798
2799
0
        if (sec->flags & SEC_READONLY
2800
      /* Don't set DF_TEXTREL yet for PC relative
2801
         relocations, they might be discarded later.  */
2802
0
      && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2803
0
           || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2804
0
           || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2805
0
        info->flags |= DF_TEXTREL;
2806
2807
0
        sreloc->size += sizeof (Elf32_External_Rela);
2808
2809
        /* We count the number of PC relative relocations we have
2810
     entered for this symbol, so that we can discard them
2811
     again if, in the -Bsymbolic case, the symbol is later
2812
     defined by a regular object, or, in the normal shared
2813
     case, the symbol is forced to be local.  Note that this
2814
     function is only called if we are using an m68kelf linker
2815
     hash table, which means that h is really a pointer to an
2816
     elf_m68k_link_hash_entry.  */
2817
0
        if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2818
0
      || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2819
0
      || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2820
0
    {
2821
0
      struct elf_m68k_pcrel_relocs_copied *p;
2822
0
      struct elf_m68k_pcrel_relocs_copied **head;
2823
2824
0
      if (h != NULL)
2825
0
        {
2826
0
          struct elf_m68k_link_hash_entry *eh
2827
0
      = elf_m68k_hash_entry (h);
2828
0
          head = &eh->pcrel_relocs_copied;
2829
0
        }
2830
0
      else
2831
0
        {
2832
0
          asection *s;
2833
0
          void *vpp;
2834
0
          Elf_Internal_Sym *isym;
2835
2836
0
          isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->root.sym_cache,
2837
0
                abfd, r_symndx);
2838
0
          if (isym == NULL)
2839
0
      return false;
2840
2841
0
          s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2842
0
          if (s == NULL)
2843
0
      s = sec;
2844
2845
0
          vpp = &elf_section_data (s)->local_dynrel;
2846
0
          head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2847
0
        }
2848
2849
0
      for (p = *head; p != NULL; p = p->next)
2850
0
        if (p->section == sreloc)
2851
0
          break;
2852
2853
0
      if (p == NULL)
2854
0
        {
2855
0
          p = ((struct elf_m68k_pcrel_relocs_copied *)
2856
0
         bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2857
0
          if (p == NULL)
2858
0
      return false;
2859
0
          p->next = *head;
2860
0
          *head = p;
2861
0
          p->section = sreloc;
2862
0
          p->count = 0;
2863
0
        }
2864
2865
0
      ++p->count;
2866
0
    }
2867
0
      }
2868
2869
0
    break;
2870
2871
    /* This relocation describes the C++ object vtable hierarchy.
2872
       Reconstruct it for later use during GC.  */
2873
0
  case R_68K_GNU_VTINHERIT:
2874
0
    if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2875
0
      return false;
2876
0
    break;
2877
2878
    /* This relocation describes which C++ vtable entries are actually
2879
       used.  Record for later use during GC.  */
2880
0
  case R_68K_GNU_VTENTRY:
2881
0
    if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2882
0
      return false;
2883
0
    break;
2884
2885
0
  default:
2886
0
    break;
2887
0
  }
2888
0
    }
2889
2890
0
  return true;
2891
0
}
2892
2893
/* Return the section that should be marked against GC for a given
2894
   relocation.  */
2895
2896
static asection *
2897
elf_m68k_gc_mark_hook (asection *sec,
2898
           struct bfd_link_info *info,
2899
           Elf_Internal_Rela *rel,
2900
           struct elf_link_hash_entry *h,
2901
           Elf_Internal_Sym *sym)
2902
0
{
2903
0
  if (h != NULL)
2904
0
    switch (ELF32_R_TYPE (rel->r_info))
2905
0
      {
2906
0
      case R_68K_GNU_VTINHERIT:
2907
0
      case R_68K_GNU_VTENTRY:
2908
0
  return NULL;
2909
0
      }
2910
2911
0
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2912
0
}
2913

2914
/* Return the type of PLT associated with OUTPUT_BFD.  */
2915
2916
static const struct elf_m68k_plt_info *
2917
elf_m68k_get_plt_info (bfd *output_bfd)
2918
0
{
2919
0
  unsigned int features;
2920
2921
0
  features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2922
0
  if (features & cpu32)
2923
0
    return &elf_cpu32_plt_info;
2924
0
  if (features & mcfisa_b)
2925
0
    return &elf_isab_plt_info;
2926
0
  if (features & mcfisa_c)
2927
0
    return &elf_isac_plt_info;
2928
0
  return &elf_m68k_plt_info;
2929
0
}
2930
2931
/* This function is called after all the input files have been read,
2932
   and the input sections have been assigned to output sections.
2933
   It's a convenient place to determine the PLT style.  */
2934
2935
static bool
2936
elf_m68k_early_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2937
0
{
2938
  /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2939
     sections.  */
2940
0
  if (!elf_m68k_partition_multi_got (info))
2941
0
    return false;
2942
2943
0
  elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2944
0
  return true;
2945
0
}
2946
2947
/* Adjust a symbol defined by a dynamic object and referenced by a
2948
   regular object.  The current definition is in some section of the
2949
   dynamic object, but we're not including those sections.  We have to
2950
   change the definition to something the rest of the link can
2951
   understand.  */
2952
2953
static bool
2954
elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2955
        struct elf_link_hash_entry *h)
2956
0
{
2957
0
  struct elf_m68k_link_hash_table *htab;
2958
0
  bfd *dynobj;
2959
0
  asection *s;
2960
2961
0
  htab = elf_m68k_hash_table (info);
2962
0
  dynobj = htab->root.dynobj;
2963
2964
  /* Make sure we know what is going on here.  */
2965
0
  BFD_ASSERT (dynobj != NULL
2966
0
        && (h->needs_plt
2967
0
      || h->is_weakalias
2968
0
      || (h->def_dynamic
2969
0
          && h->ref_regular
2970
0
          && !h->def_regular)));
2971
2972
  /* If this is a function, put it in the procedure linkage table.  We
2973
     will fill in the contents of the procedure linkage table later,
2974
     when we know the address of the .got section.  */
2975
0
  if (h->type == STT_FUNC
2976
0
      || h->needs_plt)
2977
0
    {
2978
0
      if ((h->plt.refcount <= 0
2979
0
     || SYMBOL_CALLS_LOCAL (info, h)
2980
0
     || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2981
0
    || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2982
0
         && h->root.type == bfd_link_hash_undefweak))
2983
    /* We must always create the plt entry if it was referenced
2984
       by a PLTxxO relocation.  In this case we already recorded
2985
       it as a dynamic symbol.  */
2986
0
    && h->dynindx == -1)
2987
0
  {
2988
    /* This case can occur if we saw a PLTxx reloc in an input
2989
       file, but the symbol was never referred to by a dynamic
2990
       object, or if all references were garbage collected.  In
2991
       such a case, we don't actually need to build a procedure
2992
       linkage table, and we can just do a PCxx reloc instead.  */
2993
0
    h->plt.offset = (bfd_vma) -1;
2994
0
    h->needs_plt = 0;
2995
0
    return true;
2996
0
  }
2997
2998
      /* Make sure this symbol is output as a dynamic symbol.  */
2999
0
      if (h->dynindx == -1
3000
0
    && !h->forced_local)
3001
0
  {
3002
0
    if (! bfd_elf_link_record_dynamic_symbol (info, h))
3003
0
      return false;
3004
0
  }
3005
3006
0
      s = htab->root.splt;
3007
0
      BFD_ASSERT (s != NULL);
3008
3009
      /* If this is the first .plt entry, make room for the special
3010
   first entry.  */
3011
0
      if (s->size == 0)
3012
0
  s->size = htab->plt_info->size;
3013
3014
      /* If this symbol is not defined in a regular file, and we are
3015
   not generating a shared library, then set the symbol to this
3016
   location in the .plt.  This is required to make function
3017
   pointers compare as equal between the normal executable and
3018
   the shared library.  */
3019
0
      if (!bfd_link_pic (info)
3020
0
    && !h->def_regular)
3021
0
  {
3022
0
    h->root.u.def.section = s;
3023
0
    h->root.u.def.value = s->size;
3024
0
  }
3025
3026
0
      h->plt.offset = s->size;
3027
3028
      /* Make room for this entry.  */
3029
0
      s->size += htab->plt_info->size;
3030
3031
      /* We also need to make an entry in the .got.plt section, which
3032
   will be placed in the .got section by the linker script.  */
3033
0
      s = htab->root.sgotplt;
3034
0
      BFD_ASSERT (s != NULL);
3035
0
      s->size += 4;
3036
3037
      /* We also need to make an entry in the .rela.plt section.  */
3038
0
      s = htab->root.srelplt;
3039
0
      BFD_ASSERT (s != NULL);
3040
0
      s->size += sizeof (Elf32_External_Rela);
3041
3042
0
      return true;
3043
0
    }
3044
3045
  /* Reinitialize the plt offset now that it is not used as a reference
3046
     count any more.  */
3047
0
  h->plt.offset = (bfd_vma) -1;
3048
3049
  /* If this is a weak symbol, and there is a real definition, the
3050
     processor independent code will have arranged for us to see the
3051
     real definition first, and we can just use the same value.  */
3052
0
  if (h->is_weakalias)
3053
0
    {
3054
0
      struct elf_link_hash_entry *def = weakdef (h);
3055
0
      BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3056
0
      h->root.u.def.section = def->root.u.def.section;
3057
0
      h->root.u.def.value = def->root.u.def.value;
3058
0
      return true;
3059
0
    }
3060
3061
  /* This is a reference to a symbol defined by a dynamic object which
3062
     is not a function.  */
3063
3064
  /* If we are creating a shared library, we must presume that the
3065
     only references to the symbol are via the global offset table.
3066
     For such cases we need not do anything here; the relocations will
3067
     be handled correctly by relocate_section.  */
3068
0
  if (bfd_link_pic (info))
3069
0
    return true;
3070
3071
  /* If there are no references to this symbol that do not use the
3072
     GOT, we don't need to generate a copy reloc.  */
3073
0
  if (!h->non_got_ref)
3074
0
    return true;
3075
3076
  /* We must allocate the symbol in our .dynbss section, which will
3077
     become part of the .bss section of the executable.  There will be
3078
     an entry for this symbol in the .dynsym section.  The dynamic
3079
     object will contain position independent code, so all references
3080
     from the dynamic object to this symbol will go through the global
3081
     offset table.  The dynamic linker will use the .dynsym entry to
3082
     determine the address it must put in the global offset table, so
3083
     both the dynamic object and the regular object will refer to the
3084
     same memory location for the variable.  */
3085
3086
0
  s = bfd_get_linker_section (dynobj, ".dynbss");
3087
0
  BFD_ASSERT (s != NULL);
3088
3089
  /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3090
     copy the initial value out of the dynamic object and into the
3091
     runtime process image.  We need to remember the offset into the
3092
     .rela.bss section we are going to use.  */
3093
0
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3094
0
    {
3095
0
      asection *srel;
3096
3097
0
      srel = bfd_get_linker_section (dynobj, ".rela.bss");
3098
0
      BFD_ASSERT (srel != NULL);
3099
0
      srel->size += sizeof (Elf32_External_Rela);
3100
0
      h->needs_copy = 1;
3101
0
    }
3102
3103
0
  return _bfd_elf_adjust_dynamic_copy (info, h, s);
3104
0
}
3105
3106
/* Set the sizes of the dynamic sections.  */
3107
3108
static bool
3109
elf_m68k_late_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3110
           struct bfd_link_info *info)
3111
0
{
3112
0
  bfd *dynobj;
3113
0
  asection *s;
3114
0
  bool relocs;
3115
3116
0
  dynobj = elf_hash_table (info)->dynobj;
3117
0
  if (dynobj == NULL)
3118
0
    return true;
3119
3120
0
  if (elf_hash_table (info)->dynamic_sections_created)
3121
0
    {
3122
      /* Set the contents of the .interp section to the interpreter.  */
3123
0
      if (bfd_link_executable (info) && !info->nointerp)
3124
0
  {
3125
0
    s = bfd_get_linker_section (dynobj, ".interp");
3126
0
    BFD_ASSERT (s != NULL);
3127
0
    s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3128
0
    s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3129
0
    s->alloced = 1;
3130
0
  }
3131
0
    }
3132
0
  else
3133
0
    {
3134
      /* We may have created entries in the .rela.got section.
3135
   However, if we are not creating the dynamic sections, we will
3136
   not actually use these entries.  Reset the size of .rela.got,
3137
   which will cause it to get stripped from the output file
3138
   below.  */
3139
0
      s = elf_hash_table (info)->srelgot;
3140
0
      if (s != NULL)
3141
0
  s->size = 0;
3142
0
    }
3143
3144
  /* If this is a -Bsymbolic shared link, then we need to discard all
3145
     PC relative relocs against symbols defined in a regular object.
3146
     For the normal shared case we discard the PC relative relocs
3147
     against symbols that have become local due to visibility changes.
3148
     We allocated space for them in the check_relocs routine, but we
3149
     will not fill them in in the relocate_section routine.  */
3150
0
  if (bfd_link_pic (info))
3151
0
    elf_link_hash_traverse (elf_hash_table (info),
3152
0
          elf_m68k_discard_copies,
3153
0
          info);
3154
3155
  /* The check_relocs and adjust_dynamic_symbol entry points have
3156
     determined the sizes of the various dynamic sections.  Allocate
3157
     memory for them.  */
3158
0
  relocs = false;
3159
0
  for (s = dynobj->sections; s != NULL; s = s->next)
3160
0
    {
3161
0
      const char *name;
3162
3163
0
      if ((s->flags & SEC_LINKER_CREATED) == 0)
3164
0
  continue;
3165
3166
      /* It's OK to base decisions on the section name, because none
3167
   of the dynobj section names depend upon the input files.  */
3168
0
      name = bfd_section_name (s);
3169
3170
0
      if (strcmp (name, ".plt") == 0)
3171
0
  {
3172
    /* Remember whether there is a PLT.  */
3173
0
    ;
3174
0
  }
3175
0
      else if (startswith (name, ".rela"))
3176
0
  {
3177
0
    if (s->size != 0)
3178
0
      {
3179
0
        relocs = true;
3180
3181
        /* We use the reloc_count field as a counter if we need
3182
     to copy relocs into the output file.  */
3183
0
        s->reloc_count = 0;
3184
0
      }
3185
0
  }
3186
0
      else if (! startswith (name, ".got")
3187
0
         && strcmp (name, ".dynbss") != 0)
3188
0
  {
3189
    /* It's not one of our sections, so don't allocate space.  */
3190
0
    continue;
3191
0
  }
3192
3193
0
      if (s->size == 0)
3194
0
  {
3195
    /* If we don't need this section, strip it from the
3196
       output file.  This is mostly to handle .rela.bss and
3197
       .rela.plt.  We must create both sections in
3198
       create_dynamic_sections, because they must be created
3199
       before the linker maps input sections to output
3200
       sections.  The linker does that before
3201
       adjust_dynamic_symbol is called, and it is that
3202
       function which decides whether anything needs to go
3203
       into these sections.  */
3204
0
    s->flags |= SEC_EXCLUDE;
3205
0
    continue;
3206
0
  }
3207
3208
0
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
3209
0
  continue;
3210
3211
      /* Allocate memory for the section contents.  */
3212
      /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3213
   Unused entries should be reclaimed before the section's contents
3214
   are written out, but at the moment this does not happen.  Thus in
3215
   order to prevent writing out garbage, we initialise the section's
3216
   contents to zero.  */
3217
0
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3218
0
      if (s->contents == NULL)
3219
0
  return false;
3220
0
      s->alloced = 1;
3221
0
    }
3222
3223
0
  return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
3224
0
}
3225
3226
/* This function is called via elf_link_hash_traverse if we are
3227
   creating a shared object.  In the -Bsymbolic case it discards the
3228
   space allocated to copy PC relative relocs against symbols which
3229
   are defined in regular objects.  For the normal shared case, it
3230
   discards space for pc-relative relocs that have become local due to
3231
   symbol visibility changes.  We allocated space for them in the
3232
   check_relocs routine, but we won't fill them in in the
3233
   relocate_section routine.
3234
3235
   We also check whether any of the remaining relocations apply
3236
   against a readonly section, and set the DF_TEXTREL flag in this
3237
   case.  */
3238
3239
static bool
3240
elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3241
       void * inf)
3242
0
{
3243
0
  struct bfd_link_info *info = (struct bfd_link_info *) inf;
3244
0
  struct elf_m68k_pcrel_relocs_copied *s;
3245
3246
0
  if (!SYMBOL_CALLS_LOCAL (info, h))
3247
0
    {
3248
0
      if ((info->flags & DF_TEXTREL) == 0)
3249
0
  {
3250
    /* Look for relocations against read-only sections.  */
3251
0
    for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3252
0
         s != NULL;
3253
0
         s = s->next)
3254
0
      if ((s->section->flags & SEC_READONLY) != 0)
3255
0
        {
3256
0
    info->flags |= DF_TEXTREL;
3257
0
    break;
3258
0
        }
3259
0
  }
3260
3261
      /* Make sure undefined weak symbols are output as a dynamic symbol
3262
   in PIEs.  */
3263
0
      if (h->non_got_ref
3264
0
    && h->root.type == bfd_link_hash_undefweak
3265
0
    && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3266
0
    && h->dynindx == -1
3267
0
    && !h->forced_local)
3268
0
  {
3269
0
    if (! bfd_elf_link_record_dynamic_symbol (info, h))
3270
0
      return false;
3271
0
  }
3272
3273
0
      return true;
3274
0
    }
3275
3276
0
  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3277
0
       s != NULL;
3278
0
       s = s->next)
3279
0
    s->section->size -= s->count * sizeof (Elf32_External_Rela);
3280
3281
0
  return true;
3282
0
}
3283
3284
3285
/* Install relocation RELA.  */
3286
3287
static void
3288
elf_m68k_install_rela (bfd *output_bfd,
3289
           asection *srela,
3290
           Elf_Internal_Rela *rela)
3291
0
{
3292
0
  bfd_byte *loc;
3293
3294
0
  loc = srela->contents;
3295
0
  loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3296
0
  bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3297
0
}
3298
3299
/* Find the base offsets for thread-local storage in this object,
3300
   for GD/LD and IE/LE respectively.  */
3301
3302
0
#define DTP_OFFSET 0x8000
3303
0
#define TP_OFFSET  0x7000
3304
3305
static bfd_vma
3306
dtpoff_base (struct bfd_link_info *info)
3307
0
{
3308
  /* If tls_sec is NULL, we should have signalled an error already.  */
3309
0
  if (elf_hash_table (info)->tls_sec == NULL)
3310
0
    return 0;
3311
0
  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3312
0
}
3313
3314
static bfd_vma
3315
tpoff_base (struct bfd_link_info *info)
3316
0
{
3317
  /* If tls_sec is NULL, we should have signalled an error already.  */
3318
0
  if (elf_hash_table (info)->tls_sec == NULL)
3319
0
    return 0;
3320
0
  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3321
0
}
3322
3323
/* Output necessary relocation to handle a symbol during static link.
3324
   This function is called from elf_m68k_relocate_section.  */
3325
3326
static void
3327
elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3328
        bfd *output_bfd,
3329
        enum elf_m68k_reloc_type r_type,
3330
        asection *sgot,
3331
        bfd_vma got_entry_offset,
3332
        bfd_vma relocation)
3333
0
{
3334
0
  switch (elf_m68k_reloc_got_type (r_type))
3335
0
    {
3336
0
    case R_68K_GOT32O:
3337
0
      bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3338
0
      break;
3339
3340
0
    case R_68K_TLS_GD32:
3341
      /* We know the offset within the module,
3342
   put it into the second GOT slot.  */
3343
0
      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3344
0
      sgot->contents + got_entry_offset + 4);
3345
      /* FALLTHRU */
3346
3347
0
    case R_68K_TLS_LDM32:
3348
      /* Mark it as belonging to module 1, the executable.  */
3349
0
      bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3350
0
      break;
3351
3352
0
    case R_68K_TLS_IE32:
3353
0
      bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3354
0
      sgot->contents + got_entry_offset);
3355
0
      break;
3356
3357
0
    default:
3358
0
      BFD_ASSERT (false);
3359
0
    }
3360
0
}
3361
3362
/* Output necessary relocation to handle a local symbol
3363
   during dynamic link.
3364
   This function is called either from elf_m68k_relocate_section
3365
   or from elf_m68k_finish_dynamic_symbol.  */
3366
3367
static void
3368
elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3369
              bfd *output_bfd,
3370
              enum elf_m68k_reloc_type r_type,
3371
              asection *sgot,
3372
              bfd_vma got_entry_offset,
3373
              bfd_vma relocation,
3374
              asection *srela)
3375
0
{
3376
0
  Elf_Internal_Rela outrel;
3377
3378
0
  switch (elf_m68k_reloc_got_type (r_type))
3379
0
    {
3380
0
    case R_68K_GOT32O:
3381
      /* Emit RELATIVE relocation to initialize GOT slot
3382
   at run-time.  */
3383
0
      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3384
0
      outrel.r_addend = relocation;
3385
0
      break;
3386
3387
0
    case R_68K_TLS_GD32:
3388
      /* We know the offset within the module,
3389
   put it into the second GOT slot.  */
3390
0
      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3391
0
      sgot->contents + got_entry_offset + 4);
3392
      /* FALLTHRU */
3393
3394
0
    case R_68K_TLS_LDM32:
3395
      /* We don't know the module number,
3396
   create a relocation for it.  */
3397
0
      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3398
0
      outrel.r_addend = 0;
3399
0
      break;
3400
3401
0
    case R_68K_TLS_IE32:
3402
      /* Emit TPREL relocation to initialize GOT slot
3403
   at run-time.  */
3404
0
      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3405
0
      outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3406
0
      break;
3407
3408
0
    default:
3409
0
      BFD_ASSERT (false);
3410
0
    }
3411
3412
  /* Offset of the GOT entry.  */
3413
0
  outrel.r_offset = (sgot->output_section->vma
3414
0
         + sgot->output_offset
3415
0
         + got_entry_offset);
3416
3417
  /* Install one of the above relocations.  */
3418
0
  elf_m68k_install_rela (output_bfd, srela, &outrel);
3419
3420
0
  bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3421
0
}
3422
3423
/* Relocate an M68K ELF section.  */
3424
3425
static int
3426
elf_m68k_relocate_section (bfd *output_bfd,
3427
         struct bfd_link_info *info,
3428
         bfd *input_bfd,
3429
         asection *input_section,
3430
         bfd_byte *contents,
3431
         Elf_Internal_Rela *relocs,
3432
         Elf_Internal_Sym *local_syms,
3433
         asection **local_sections)
3434
0
{
3435
0
  Elf_Internal_Shdr *symtab_hdr;
3436
0
  struct elf_link_hash_entry **sym_hashes;
3437
0
  asection *sgot;
3438
0
  asection *splt;
3439
0
  asection *sreloc;
3440
0
  asection *srela;
3441
0
  struct elf_m68k_got *got;
3442
0
  Elf_Internal_Rela *rel;
3443
0
  Elf_Internal_Rela *relend;
3444
3445
0
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3446
0
  sym_hashes = elf_sym_hashes (input_bfd);
3447
3448
0
  sgot = NULL;
3449
0
  splt = NULL;
3450
0
  sreloc = NULL;
3451
0
  srela = NULL;
3452
3453
0
  got = NULL;
3454
3455
0
  rel = relocs;
3456
0
  relend = relocs + input_section->reloc_count;
3457
0
  for (; rel < relend; rel++)
3458
0
    {
3459
0
      int r_type;
3460
0
      reloc_howto_type *howto;
3461
0
      unsigned long r_symndx;
3462
0
      struct elf_link_hash_entry *h;
3463
0
      Elf_Internal_Sym *sym;
3464
0
      asection *sec;
3465
0
      bfd_vma relocation;
3466
0
      bool unresolved_reloc;
3467
0
      bfd_reloc_status_type r;
3468
0
      bool resolved_to_zero;
3469
3470
0
      r_type = ELF32_R_TYPE (rel->r_info);
3471
0
      if (r_type < 0 || r_type >= (int) R_68K_max)
3472
0
  {
3473
0
    bfd_set_error (bfd_error_bad_value);
3474
0
    return false;
3475
0
  }
3476
0
      howto = howto_table + r_type;
3477
3478
0
      r_symndx = ELF32_R_SYM (rel->r_info);
3479
3480
0
      h = NULL;
3481
0
      sym = NULL;
3482
0
      sec = NULL;
3483
0
      unresolved_reloc = false;
3484
3485
0
      if (r_symndx < symtab_hdr->sh_info)
3486
0
  {
3487
0
    sym = local_syms + r_symndx;
3488
0
    sec = local_sections[r_symndx];
3489
0
    relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3490
0
  }
3491
0
      else
3492
0
  {
3493
0
    bool warned, ignored;
3494
3495
0
    RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3496
0
           r_symndx, symtab_hdr, sym_hashes,
3497
0
           h, sec, relocation,
3498
0
           unresolved_reloc, warned, ignored);
3499
0
  }
3500
3501
0
      if (sec != NULL && discarded_section (sec))
3502
0
  RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3503
0
           rel, 1, relend, howto, 0, contents);
3504
3505
0
      if (bfd_link_relocatable (info))
3506
0
  continue;
3507
3508
0
      resolved_to_zero = (h != NULL
3509
0
        && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3510
3511
0
      switch (r_type)
3512
0
  {
3513
0
  case R_68K_GOT8:
3514
0
  case R_68K_GOT16:
3515
0
  case R_68K_GOT32:
3516
    /* Relocation is to the address of the entry for this symbol
3517
       in the global offset table.  */
3518
0
    if (h != NULL
3519
0
        && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3520
0
      {
3521
0
        if (elf_m68k_hash_table (info)->local_gp_p)
3522
0
    {
3523
0
      bfd_vma sgot_output_offset;
3524
0
      bfd_vma got_offset;
3525
3526
0
      sgot = elf_hash_table (info)->sgot;
3527
3528
0
      if (sgot != NULL)
3529
0
        sgot_output_offset = sgot->output_offset;
3530
0
      else
3531
        /* In this case we have a reference to
3532
           _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3533
           empty.
3534
           ??? Issue a warning?  */
3535
0
        sgot_output_offset = 0;
3536
3537
0
      if (got == NULL)
3538
0
        {
3539
0
          struct elf_m68k_bfd2got_entry *bfd2got_entry;
3540
3541
0
          bfd2got_entry
3542
0
      = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3543
0
                  input_bfd, SEARCH, NULL);
3544
3545
0
          if (bfd2got_entry != NULL)
3546
0
      {
3547
0
        got = bfd2got_entry->got;
3548
0
        BFD_ASSERT (got != NULL);
3549
3550
0
        got_offset = got->offset;
3551
0
      }
3552
0
          else
3553
      /* In this case we have a reference to
3554
         _GLOBAL_OFFSET_TABLE_, but no other references
3555
         accessing any GOT entries.
3556
         ??? Issue a warning?  */
3557
0
      got_offset = 0;
3558
0
        }
3559
0
      else
3560
0
        got_offset = got->offset;
3561
3562
      /* Adjust GOT pointer to point to the GOT
3563
         assigned to input_bfd.  */
3564
0
      rel->r_addend += sgot_output_offset + got_offset;
3565
0
    }
3566
0
        else
3567
0
    BFD_ASSERT (got == NULL || got->offset == 0);
3568
3569
0
        break;
3570
0
      }
3571
    /* Fall through.  */
3572
0
  case R_68K_GOT8O:
3573
0
  case R_68K_GOT16O:
3574
0
  case R_68K_GOT32O:
3575
3576
0
  case R_68K_TLS_LDM32:
3577
0
  case R_68K_TLS_LDM16:
3578
0
  case R_68K_TLS_LDM8:
3579
3580
0
  case R_68K_TLS_GD8:
3581
0
  case R_68K_TLS_GD16:
3582
0
  case R_68K_TLS_GD32:
3583
3584
0
  case R_68K_TLS_IE8:
3585
0
  case R_68K_TLS_IE16:
3586
0
  case R_68K_TLS_IE32:
3587
3588
    /* Relocation is the offset of the entry for this symbol in
3589
       the global offset table.  */
3590
3591
0
    {
3592
0
      struct elf_m68k_got_entry_key key_;
3593
0
      bfd_vma *off_ptr;
3594
0
      bfd_vma off;
3595
3596
0
      sgot = elf_hash_table (info)->sgot;
3597
0
      BFD_ASSERT (sgot != NULL);
3598
3599
0
      if (got == NULL)
3600
0
        got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3601
0
            input_bfd, MUST_FIND,
3602
0
            NULL)->got;
3603
3604
      /* Get GOT offset for this symbol.  */
3605
0
      elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3606
0
           r_type);
3607
0
      off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3608
0
                 NULL)->u.s2.offset;
3609
0
      off = *off_ptr;
3610
3611
      /* The offset must always be a multiple of 4.  We use
3612
         the least significant bit to record whether we have
3613
         already generated the necessary reloc.  */
3614
0
      if ((off & 1) != 0)
3615
0
        off &= ~1;
3616
0
      else
3617
0
        {
3618
0
    if (h != NULL
3619
        /* @TLSLDM relocations are bounded to the module, in
3620
           which the symbol is defined -- not to the symbol
3621
           itself.  */
3622
0
        && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3623
0
      {
3624
0
        bool dyn;
3625
3626
0
        dyn = elf_hash_table (info)->dynamic_sections_created;
3627
0
        if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3628
0
                bfd_link_pic (info),
3629
0
                h)
3630
0
      || (bfd_link_pic (info)
3631
0
          && SYMBOL_REFERENCES_LOCAL (info, h))
3632
0
      || ((ELF_ST_VISIBILITY (h->other)
3633
0
           || resolved_to_zero)
3634
0
          && h->root.type == bfd_link_hash_undefweak))
3635
0
          {
3636
      /* This is actually a static link, or it is a
3637
         -Bsymbolic link and the symbol is defined
3638
         locally, or the symbol was forced to be local
3639
         because of a version file.  We must initialize
3640
         this entry in the global offset table.  Since
3641
         the offset must always be a multiple of 4, we
3642
         use the least significant bit to record whether
3643
         we have initialized it already.
3644
3645
         When doing a dynamic link, we create a .rela.got
3646
         relocation entry to initialize the value.  This
3647
         is done in the finish_dynamic_symbol routine.  */
3648
3649
0
      elf_m68k_init_got_entry_static (info,
3650
0
              output_bfd,
3651
0
              r_type,
3652
0
              sgot,
3653
0
              off,
3654
0
              relocation);
3655
3656
0
      *off_ptr |= 1;
3657
0
          }
3658
0
        else
3659
0
          unresolved_reloc = false;
3660
0
      }
3661
0
    else if (bfd_link_pic (info)) /* && h == NULL */
3662
      /* Process local symbol during dynamic link.  */
3663
0
      {
3664
0
        srela = elf_hash_table (info)->srelgot;
3665
0
        BFD_ASSERT (srela != NULL);
3666
3667
0
        elf_m68k_init_got_entry_local_shared (info,
3668
0
                output_bfd,
3669
0
                r_type,
3670
0
                sgot,
3671
0
                off,
3672
0
                relocation,
3673
0
                srela);
3674
3675
0
        *off_ptr |= 1;
3676
0
      }
3677
0
    else /* h == NULL && !bfd_link_pic (info) */
3678
0
      {
3679
0
        elf_m68k_init_got_entry_static (info,
3680
0
                output_bfd,
3681
0
                r_type,
3682
0
                sgot,
3683
0
                off,
3684
0
                relocation);
3685
3686
0
        *off_ptr |= 1;
3687
0
      }
3688
0
        }
3689
3690
      /* We don't use elf_m68k_reloc_got_type in the condition below
3691
         because this is the only place where difference between
3692
         R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3693
0
      if (r_type == R_68K_GOT32O
3694
0
    || r_type == R_68K_GOT16O
3695
0
    || r_type == R_68K_GOT8O
3696
0
    || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3697
0
    || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3698
0
    || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3699
0
        {
3700
    /* GOT pointer is adjusted to point to the start/middle
3701
       of local GOT.  Adjust the offset accordingly.  */
3702
0
    BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3703
0
          || off >= got->offset);
3704
3705
0
    if (elf_m68k_hash_table (info)->local_gp_p)
3706
0
      relocation = off - got->offset;
3707
0
    else
3708
0
      {
3709
0
        BFD_ASSERT (got->offset == 0);
3710
0
        relocation = sgot->output_offset + off;
3711
0
      }
3712
3713
    /* This relocation does not use the addend.  */
3714
0
    rel->r_addend = 0;
3715
0
        }
3716
0
      else
3717
0
        relocation = (sgot->output_section->vma + sgot->output_offset
3718
0
          + off);
3719
0
    }
3720
0
    break;
3721
3722
0
  case R_68K_TLS_LDO32:
3723
0
  case R_68K_TLS_LDO16:
3724
0
  case R_68K_TLS_LDO8:
3725
0
    relocation -= dtpoff_base (info);
3726
0
    break;
3727
3728
0
  case R_68K_TLS_LE32:
3729
0
  case R_68K_TLS_LE16:
3730
0
  case R_68K_TLS_LE8:
3731
0
    if (bfd_link_dll (info))
3732
0
      {
3733
0
        _bfd_error_handler
3734
    /* xgettext:c-format */
3735
0
    (_("%pB(%pA+%#" PRIx64 "): "
3736
0
       "%s relocation not permitted in shared object"),
3737
0
     input_bfd, input_section, (uint64_t) rel->r_offset,
3738
0
     howto->name);
3739
3740
0
        return false;
3741
0
      }
3742
0
    else
3743
0
      relocation -= tpoff_base (info);
3744
3745
0
    break;
3746
3747
0
  case R_68K_PLT8:
3748
0
  case R_68K_PLT16:
3749
0
  case R_68K_PLT32:
3750
    /* Relocation is to the entry for this symbol in the
3751
       procedure linkage table.  */
3752
3753
    /* Resolve a PLTxx reloc against a local symbol directly,
3754
       without using the procedure linkage table.  */
3755
0
    if (h == NULL)
3756
0
      break;
3757
3758
0
    if (h->plt.offset == (bfd_vma) -1
3759
0
        || !elf_hash_table (info)->dynamic_sections_created)
3760
0
      {
3761
        /* We didn't make a PLT entry for this symbol.  This
3762
     happens when statically linking PIC code, or when
3763
     using -Bsymbolic.  */
3764
0
        break;
3765
0
      }
3766
3767
0
    splt = elf_hash_table (info)->splt;
3768
0
    BFD_ASSERT (splt != NULL);
3769
3770
0
    relocation = (splt->output_section->vma
3771
0
      + splt->output_offset
3772
0
      + h->plt.offset);
3773
0
    unresolved_reloc = false;
3774
0
    break;
3775
3776
0
  case R_68K_PLT8O:
3777
0
  case R_68K_PLT16O:
3778
0
  case R_68K_PLT32O:
3779
    /* Relocation is the offset of the entry for this symbol in
3780
       the procedure linkage table.  */
3781
0
    BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3782
3783
0
    splt = elf_hash_table (info)->splt;
3784
0
    BFD_ASSERT (splt != NULL);
3785
3786
0
    relocation = h->plt.offset;
3787
0
    unresolved_reloc = false;
3788
3789
    /* This relocation does not use the addend.  */
3790
0
    rel->r_addend = 0;
3791
3792
0
    break;
3793
3794
0
  case R_68K_8:
3795
0
  case R_68K_16:
3796
0
  case R_68K_32:
3797
0
  case R_68K_PC8:
3798
0
  case R_68K_PC16:
3799
0
  case R_68K_PC32:
3800
0
    if (bfd_link_pic (info)
3801
0
        && r_symndx != STN_UNDEF
3802
0
        && (input_section->flags & SEC_ALLOC) != 0
3803
0
        && (h == NULL
3804
0
      || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3805
0
          && !resolved_to_zero)
3806
0
      || h->root.type != bfd_link_hash_undefweak)
3807
0
        && ((r_type != R_68K_PC8
3808
0
       && r_type != R_68K_PC16
3809
0
       && r_type != R_68K_PC32)
3810
0
      || !SYMBOL_CALLS_LOCAL (info, h)))
3811
0
      {
3812
0
        Elf_Internal_Rela outrel;
3813
0
        bfd_byte *loc;
3814
0
        bool skip, relocate;
3815
3816
        /* When generating a shared object, these relocations
3817
     are copied into the output file to be resolved at run
3818
     time.  */
3819
3820
0
        skip = false;
3821
0
        relocate = false;
3822
3823
0
        outrel.r_offset =
3824
0
    _bfd_elf_section_offset (output_bfd, info, input_section,
3825
0
           rel->r_offset);
3826
0
        if (outrel.r_offset == (bfd_vma) -1)
3827
0
    skip = true;
3828
0
        else if (outrel.r_offset == (bfd_vma) -2)
3829
0
    skip = true, relocate = true;
3830
0
        outrel.r_offset += (input_section->output_section->vma
3831
0
          + input_section->output_offset);
3832
3833
0
        if (skip)
3834
0
    memset (&outrel, 0, sizeof outrel);
3835
0
        else if (h != NULL
3836
0
           && h->dynindx != -1
3837
0
           && (r_type == R_68K_PC8
3838
0
         || r_type == R_68K_PC16
3839
0
         || r_type == R_68K_PC32
3840
0
         || !bfd_link_pic (info)
3841
0
         || !SYMBOLIC_BIND (info, h)
3842
0
         || !h->def_regular))
3843
0
    {
3844
0
      outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3845
0
      outrel.r_addend = rel->r_addend;
3846
0
    }
3847
0
        else
3848
0
    {
3849
      /* This symbol is local, or marked to become local.  */
3850
0
      outrel.r_addend = relocation + rel->r_addend;
3851
3852
0
      if (r_type == R_68K_32)
3853
0
        {
3854
0
          relocate = true;
3855
0
          outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3856
0
        }
3857
0
      else
3858
0
        {
3859
0
          long indx;
3860
3861
0
          if (bfd_is_abs_section (sec))
3862
0
      indx = 0;
3863
0
          else if (sec == NULL || sec->owner == NULL)
3864
0
      {
3865
0
        bfd_set_error (bfd_error_bad_value);
3866
0
        return false;
3867
0
      }
3868
0
          else
3869
0
      {
3870
0
        asection *osec;
3871
3872
        /* We are turning this relocation into one
3873
           against a section symbol.  It would be
3874
           proper to subtract the symbol's value,
3875
           osec->vma, from the emitted reloc addend,
3876
           but ld.so expects buggy relocs.  */
3877
0
        osec = sec->output_section;
3878
0
        indx = elf_section_data (osec)->dynindx;
3879
0
        if (indx == 0)
3880
0
          {
3881
0
            struct elf_link_hash_table *htab;
3882
0
            htab = elf_hash_table (info);
3883
0
            osec = htab->text_index_section;
3884
0
            indx = elf_section_data (osec)->dynindx;
3885
0
          }
3886
0
        BFD_ASSERT (indx != 0);
3887
0
      }
3888
3889
0
          outrel.r_info = ELF32_R_INFO (indx, r_type);
3890
0
        }
3891
0
    }
3892
3893
0
        sreloc = elf_section_data (input_section)->sreloc;
3894
0
        if (sreloc == NULL)
3895
0
    abort ();
3896
3897
0
        loc = sreloc->contents;
3898
0
        loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3899
0
        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3900
3901
        /* This reloc will be computed at runtime, so there's no
3902
     need to do anything now, except for R_68K_32
3903
     relocations that have been turned into
3904
     R_68K_RELATIVE.  */
3905
0
        if (!relocate)
3906
0
    continue;
3907
0
      }
3908
3909
0
    break;
3910
3911
0
  case R_68K_GNU_VTINHERIT:
3912
0
  case R_68K_GNU_VTENTRY:
3913
    /* These are no-ops in the end.  */
3914
0
    continue;
3915
3916
0
  default:
3917
0
    break;
3918
0
  }
3919
3920
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3921
   because such sections are not SEC_ALLOC and thus ld.so will
3922
   not process them.  */
3923
0
      if (unresolved_reloc
3924
0
    && !((input_section->flags & SEC_DEBUGGING) != 0
3925
0
         && h->def_dynamic)
3926
0
    && _bfd_elf_section_offset (output_bfd, info, input_section,
3927
0
              rel->r_offset) != (bfd_vma) -1)
3928
0
  {
3929
0
    _bfd_error_handler
3930
      /* xgettext:c-format */
3931
0
      (_("%pB(%pA+%#" PRIx64 "): "
3932
0
         "unresolvable %s relocation against symbol `%s'"),
3933
0
       input_bfd,
3934
0
       input_section,
3935
0
       (uint64_t) rel->r_offset,
3936
0
       howto->name,
3937
0
       h->root.root.string);
3938
0
    return false;
3939
0
  }
3940
3941
0
      if (r_symndx != STN_UNDEF
3942
0
    && r_type != R_68K_NONE
3943
0
    && (h == NULL
3944
0
        || h->root.type == bfd_link_hash_defined
3945
0
        || h->root.type == bfd_link_hash_defweak))
3946
0
  {
3947
0
    char sym_type;
3948
3949
0
    sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3950
3951
0
    if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3952
0
      {
3953
0
        const char *name;
3954
3955
0
        if (h != NULL)
3956
0
    name = h->root.root.string;
3957
0
        else
3958
0
    {
3959
0
      name = (bfd_elf_string_from_elf_section
3960
0
        (input_bfd, symtab_hdr->sh_link, sym->st_name));
3961
0
      if (name == NULL || *name == '\0')
3962
0
        name = bfd_section_name (sec);
3963
0
    }
3964
3965
0
        _bfd_error_handler
3966
0
    ((sym_type == STT_TLS
3967
      /* xgettext:c-format */
3968
0
      ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3969
      /* xgettext:c-format */
3970
0
      : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3971
0
     input_bfd,
3972
0
     input_section,
3973
0
     (uint64_t) rel->r_offset,
3974
0
     howto->name,
3975
0
     name);
3976
0
      }
3977
0
  }
3978
3979
0
      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3980
0
            contents, rel->r_offset,
3981
0
            relocation, rel->r_addend);
3982
3983
0
      if (r != bfd_reloc_ok)
3984
0
  {
3985
0
    const char *name;
3986
3987
0
    if (h != NULL)
3988
0
      name = h->root.root.string;
3989
0
    else
3990
0
      {
3991
0
        name = bfd_elf_string_from_elf_section (input_bfd,
3992
0
                  symtab_hdr->sh_link,
3993
0
                  sym->st_name);
3994
0
        if (name == NULL)
3995
0
    return false;
3996
0
        if (*name == '\0')
3997
0
    name = bfd_section_name (sec);
3998
0
      }
3999
4000
0
    if (r == bfd_reloc_overflow)
4001
0
      (*info->callbacks->reloc_overflow)
4002
0
        (info, (h ? &h->root : NULL), name, howto->name,
4003
0
         (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4004
0
    else
4005
0
      {
4006
0
        _bfd_error_handler
4007
    /* xgettext:c-format */
4008
0
    (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
4009
0
     input_bfd, input_section,
4010
0
     (uint64_t) rel->r_offset, name, (int) r);
4011
0
        return false;
4012
0
      }
4013
0
  }
4014
0
    }
4015
4016
0
  return true;
4017
0
}
4018
4019
/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4020
   into section SEC.  */
4021
4022
static void
4023
elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4024
0
{
4025
  /* Make VALUE PC-relative.  */
4026
0
  value -= sec->output_section->vma + offset;
4027
4028
  /* Apply any in-place addend.  */
4029
0
  value += bfd_get_32 (sec->owner, sec->contents + offset);
4030
4031
0
  bfd_put_32 (sec->owner, value, sec->contents + offset);
4032
0
}
4033
4034
/* Finish up dynamic symbol handling.  We set the contents of various
4035
   dynamic sections here.  */
4036
4037
static bool
4038
elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4039
        struct bfd_link_info *info,
4040
        struct elf_link_hash_entry *h,
4041
        Elf_Internal_Sym *sym)
4042
0
{
4043
0
  bfd *dynobj;
4044
4045
0
  dynobj = elf_hash_table (info)->dynobj;
4046
4047
0
  if (h->plt.offset != (bfd_vma) -1)
4048
0
    {
4049
0
      const struct elf_m68k_plt_info *plt_info;
4050
0
      asection *splt;
4051
0
      asection *sgot;
4052
0
      asection *srela;
4053
0
      bfd_vma plt_index;
4054
0
      bfd_vma got_offset;
4055
0
      Elf_Internal_Rela rela;
4056
0
      bfd_byte *loc;
4057
4058
      /* This symbol has an entry in the procedure linkage table.  Set
4059
   it up.  */
4060
4061
0
      BFD_ASSERT (h->dynindx != -1);
4062
4063
0
      plt_info = elf_m68k_hash_table (info)->plt_info;
4064
0
      splt = elf_hash_table (info)->splt;
4065
0
      sgot = elf_hash_table (info)->sgotplt;
4066
0
      srela = elf_hash_table (info)->srelplt;
4067
0
      BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4068
4069
      /* Get the index in the procedure linkage table which
4070
   corresponds to this symbol.  This is the index of this symbol
4071
   in all the symbols for which we are making plt entries.  The
4072
   first entry in the procedure linkage table is reserved.  */
4073
0
      plt_index = (h->plt.offset / plt_info->size) - 1;
4074
4075
      /* Get the offset into the .got table of the entry that
4076
   corresponds to this function.  Each .got entry is 4 bytes.
4077
   The first three are reserved.  */
4078
0
      got_offset = (plt_index + 3) * 4;
4079
4080
0
      memcpy (splt->contents + h->plt.offset,
4081
0
        plt_info->symbol_entry,
4082
0
        plt_info->size);
4083
4084
0
      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4085
0
           (sgot->output_section->vma
4086
0
            + sgot->output_offset
4087
0
            + got_offset));
4088
4089
0
      bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4090
0
      splt->contents
4091
0
      + h->plt.offset
4092
0
      + plt_info->symbol_resolve_entry + 2);
4093
4094
0
      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4095
0
           splt->output_section->vma);
4096
4097
      /* Fill in the entry in the global offset table.  */
4098
0
      bfd_put_32 (output_bfd,
4099
0
      (splt->output_section->vma
4100
0
       + splt->output_offset
4101
0
       + h->plt.offset
4102
0
       + plt_info->symbol_resolve_entry),
4103
0
      sgot->contents + got_offset);
4104
4105
      /* Fill in the entry in the .rela.plt section.  */
4106
0
      rela.r_offset = (sgot->output_section->vma
4107
0
           + sgot->output_offset
4108
0
           + got_offset);
4109
0
      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4110
0
      rela.r_addend = 0;
4111
0
      loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4112
0
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4113
4114
0
      if (!h->def_regular)
4115
0
  {
4116
    /* Mark the symbol as undefined, rather than as defined in
4117
       the .plt section.  Leave the value alone.  */
4118
0
    sym->st_shndx = SHN_UNDEF;
4119
0
  }
4120
0
    }
4121
4122
0
  if (elf_m68k_hash_entry (h)->glist != NULL)
4123
0
    {
4124
0
      asection *sgot;
4125
0
      asection *srela;
4126
0
      struct elf_m68k_got_entry *got_entry;
4127
4128
      /* This symbol has an entry in the global offset table.  Set it
4129
   up.  */
4130
4131
0
      sgot = elf_hash_table (info)->sgot;
4132
0
      srela = elf_hash_table (info)->srelgot;
4133
0
      BFD_ASSERT (sgot != NULL && srela != NULL);
4134
4135
0
      got_entry = elf_m68k_hash_entry (h)->glist;
4136
4137
0
      while (got_entry != NULL)
4138
0
  {
4139
0
    enum elf_m68k_reloc_type r_type;
4140
0
    bfd_vma got_entry_offset;
4141
4142
0
    r_type = got_entry->key_.type;
4143
0
    got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4144
4145
    /* If this is a -Bsymbolic link, and the symbol is defined
4146
       locally, we just want to emit a RELATIVE reloc.  Likewise if
4147
       the symbol was forced to be local because of a version file.
4148
       The entry in the global offset table already have been
4149
       initialized in the relocate_section function.  */
4150
0
    if (bfd_link_pic (info)
4151
0
        && SYMBOL_REFERENCES_LOCAL (info, h))
4152
0
      {
4153
0
        bfd_vma relocation;
4154
4155
0
        relocation = bfd_get_signed_32 (output_bfd,
4156
0
                (sgot->contents
4157
0
                 + got_entry_offset));
4158
4159
        /* Undo TP bias.  */
4160
0
        switch (elf_m68k_reloc_got_type (r_type))
4161
0
    {
4162
0
    case R_68K_GOT32O:
4163
0
    case R_68K_TLS_LDM32:
4164
0
      break;
4165
4166
0
    case R_68K_TLS_GD32:
4167
      /* The value for this relocation is actually put in
4168
         the second GOT slot.  */
4169
0
      relocation = bfd_get_signed_32 (output_bfd,
4170
0
              (sgot->contents
4171
0
               + got_entry_offset + 4));
4172
0
      relocation += dtpoff_base (info);
4173
0
      break;
4174
4175
0
    case R_68K_TLS_IE32:
4176
0
      relocation += tpoff_base (info);
4177
0
      break;
4178
4179
0
    default:
4180
0
      BFD_ASSERT (false);
4181
0
    }
4182
4183
0
        elf_m68k_init_got_entry_local_shared (info,
4184
0
                output_bfd,
4185
0
                r_type,
4186
0
                sgot,
4187
0
                got_entry_offset,
4188
0
                relocation,
4189
0
                srela);
4190
0
      }
4191
0
    else
4192
0
      {
4193
0
        Elf_Internal_Rela rela;
4194
4195
        /* Put zeros to GOT slots that will be initialized
4196
     at run-time.  */
4197
0
        {
4198
0
    bfd_vma n_slots;
4199
4200
0
    n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4201
0
    while (n_slots--)
4202
0
      bfd_put_32 (output_bfd, (bfd_vma) 0,
4203
0
            (sgot->contents + got_entry_offset
4204
0
             + 4 * n_slots));
4205
0
        }
4206
4207
0
        rela.r_addend = 0;
4208
0
        rela.r_offset = (sgot->output_section->vma
4209
0
             + sgot->output_offset
4210
0
             + got_entry_offset);
4211
4212
0
        switch (elf_m68k_reloc_got_type (r_type))
4213
0
    {
4214
0
    case R_68K_GOT32O:
4215
0
      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4216
0
      elf_m68k_install_rela (output_bfd, srela, &rela);
4217
0
      break;
4218
4219
0
    case R_68K_TLS_GD32:
4220
0
      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4221
0
      elf_m68k_install_rela (output_bfd, srela, &rela);
4222
4223
0
      rela.r_offset += 4;
4224
0
      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4225
0
      elf_m68k_install_rela (output_bfd, srela, &rela);
4226
0
      break;
4227
4228
0
    case R_68K_TLS_IE32:
4229
0
      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4230
0
      elf_m68k_install_rela (output_bfd, srela, &rela);
4231
0
      break;
4232
4233
0
    default:
4234
0
      BFD_ASSERT (false);
4235
0
      break;
4236
0
    }
4237
0
      }
4238
4239
0
    got_entry = got_entry->u.s2.next;
4240
0
  }
4241
0
    }
4242
4243
0
  if (h->needs_copy)
4244
0
    {
4245
0
      asection *s;
4246
0
      Elf_Internal_Rela rela;
4247
0
      bfd_byte *loc;
4248
4249
      /* This symbol needs a copy reloc.  Set it up.  */
4250
4251
0
      BFD_ASSERT (h->dynindx != -1
4252
0
      && (h->root.type == bfd_link_hash_defined
4253
0
          || h->root.type == bfd_link_hash_defweak));
4254
4255
0
      s = bfd_get_linker_section (dynobj, ".rela.bss");
4256
0
      BFD_ASSERT (s != NULL);
4257
4258
0
      rela.r_offset = (h->root.u.def.value
4259
0
           + h->root.u.def.section->output_section->vma
4260
0
           + h->root.u.def.section->output_offset);
4261
0
      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4262
0
      rela.r_addend = 0;
4263
0
      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4264
0
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4265
0
    }
4266
4267
0
  return true;
4268
0
}
4269
4270
/* Finish up the dynamic sections.  */
4271
4272
static bool
4273
elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4274
0
{
4275
0
  bfd *dynobj;
4276
0
  asection *sgot;
4277
0
  asection *sdyn;
4278
4279
0
  dynobj = elf_hash_table (info)->dynobj;
4280
4281
0
  sgot = elf_hash_table (info)->sgotplt;
4282
0
  BFD_ASSERT (sgot != NULL);
4283
0
  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4284
4285
0
  if (elf_hash_table (info)->dynamic_sections_created)
4286
0
    {
4287
0
      asection *splt;
4288
0
      Elf32_External_Dyn *dyncon, *dynconend;
4289
4290
0
      splt = elf_hash_table (info)->splt;
4291
0
      BFD_ASSERT (splt != NULL && sdyn != NULL);
4292
4293
0
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
4294
0
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4295
0
      for (; dyncon < dynconend; dyncon++)
4296
0
  {
4297
0
    Elf_Internal_Dyn dyn;
4298
0
    asection *s;
4299
4300
0
    bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4301
4302
0
    switch (dyn.d_tag)
4303
0
      {
4304
0
      default:
4305
0
        break;
4306
4307
0
      case DT_PLTGOT:
4308
0
        s = elf_hash_table (info)->sgotplt;
4309
0
        goto get_vma;
4310
0
      case DT_JMPREL:
4311
0
        s = elf_hash_table (info)->srelplt;
4312
0
      get_vma:
4313
0
        dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4314
0
        bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4315
0
        break;
4316
4317
0
      case DT_PLTRELSZ:
4318
0
        s = elf_hash_table (info)->srelplt;
4319
0
        dyn.d_un.d_val = s->size;
4320
0
        bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4321
0
        break;
4322
0
      }
4323
0
  }
4324
4325
      /* Fill in the first entry in the procedure linkage table.  */
4326
0
      if (splt->size > 0)
4327
0
  {
4328
0
    const struct elf_m68k_plt_info *plt_info;
4329
4330
0
    plt_info = elf_m68k_hash_table (info)->plt_info;
4331
0
    memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4332
4333
0
    elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4334
0
         (sgot->output_section->vma
4335
0
          + sgot->output_offset
4336
0
          + 4));
4337
4338
0
    elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4339
0
         (sgot->output_section->vma
4340
0
          + sgot->output_offset
4341
0
          + 8));
4342
4343
0
    elf_section_data (splt->output_section)->this_hdr.sh_entsize
4344
0
      = plt_info->size;
4345
0
  }
4346
0
    }
4347
4348
  /* Fill in the first three entries in the global offset table.  */
4349
0
  if (sgot->size > 0)
4350
0
    {
4351
0
      if (sdyn == NULL)
4352
0
  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4353
0
      else
4354
0
  bfd_put_32 (output_bfd,
4355
0
        sdyn->output_section->vma + sdyn->output_offset,
4356
0
        sgot->contents);
4357
0
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4358
0
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4359
0
    }
4360
4361
0
  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4362
4363
0
  return true;
4364
0
}
4365
4366
/* Given a .data section and a .emreloc in-memory section, store
4367
   relocation information into the .emreloc section which can be
4368
   used at runtime to relocate the section.  This is called by the
4369
   linker when the --embedded-relocs switch is used.  This is called
4370
   after the add_symbols entry point has been called for all the
4371
   objects, and before the final_link entry point is called.  */
4372
4373
bool
4374
bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4375
               asection *datasec, asection *relsec,
4376
               char **errmsg)
4377
0
{
4378
0
  Elf_Internal_Shdr *symtab_hdr;
4379
0
  Elf_Internal_Sym *isymbuf = NULL;
4380
0
  Elf_Internal_Rela *internal_relocs = NULL;
4381
0
  Elf_Internal_Rela *irel, *irelend;
4382
0
  bfd_byte *p;
4383
0
  bfd_size_type amt;
4384
4385
0
  BFD_ASSERT (! bfd_link_relocatable (info));
4386
4387
0
  *errmsg = NULL;
4388
4389
0
  if (datasec->reloc_count == 0)
4390
0
    return true;
4391
4392
0
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4393
4394
  /* Get a copy of the native relocations.  */
4395
0
  internal_relocs = (_bfd_elf_link_read_relocs
4396
0
         (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4397
0
          info->keep_memory));
4398
0
  if (internal_relocs == NULL)
4399
0
    goto error_return;
4400
4401
0
  amt = (bfd_size_type) datasec->reloc_count * 12;
4402
0
  relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4403
0
  if (relsec->contents == NULL)
4404
0
    goto error_return;
4405
0
  relsec->alloced = 1;
4406
4407
0
  p = relsec->contents;
4408
4409
0
  irelend = internal_relocs + datasec->reloc_count;
4410
0
  for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4411
0
    {
4412
0
      asection *targetsec;
4413
4414
      /* We are going to write a four byte longword into the runtime
4415
       reloc section.  The longword will be the address in the data
4416
       section which must be relocated.  It is followed by the name
4417
       of the target section NUL-padded or truncated to 8
4418
       characters.  */
4419
4420
      /* We can only relocate absolute longword relocs at run time.  */
4421
0
      if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4422
0
  {
4423
0
    *errmsg = _("unsupported relocation type");
4424
0
    bfd_set_error (bfd_error_bad_value);
4425
0
    goto error_return;
4426
0
  }
4427
4428
      /* Get the target section referred to by the reloc.  */
4429
0
      if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4430
0
  {
4431
    /* A local symbol.  */
4432
0
    Elf_Internal_Sym *isym;
4433
4434
    /* Read this BFD's local symbols if we haven't done so already.  */
4435
0
    if (isymbuf == NULL)
4436
0
      {
4437
0
        isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4438
0
        if (isymbuf == NULL)
4439
0
    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4440
0
            symtab_hdr->sh_info, 0,
4441
0
            NULL, NULL, NULL);
4442
0
        if (isymbuf == NULL)
4443
0
    goto error_return;
4444
0
      }
4445
4446
0
    isym = isymbuf + ELF32_R_SYM (irel->r_info);
4447
0
    targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4448
0
  }
4449
0
      else
4450
0
  {
4451
0
    unsigned long indx;
4452
0
    struct elf_link_hash_entry *h;
4453
4454
    /* An external symbol.  */
4455
0
    indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4456
0
    h = elf_sym_hashes (abfd)[indx];
4457
0
    BFD_ASSERT (h != NULL);
4458
0
    if (h->root.type == bfd_link_hash_defined
4459
0
        || h->root.type == bfd_link_hash_defweak)
4460
0
      targetsec = h->root.u.def.section;
4461
0
    else
4462
0
      targetsec = NULL;
4463
0
  }
4464
4465
0
      bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4466
0
      memset (p + 4, 0, 8);
4467
0
      if (targetsec != NULL)
4468
0
  strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4469
0
    }
4470
4471
0
  if (symtab_hdr->contents != (unsigned char *) isymbuf)
4472
0
    free (isymbuf);
4473
0
  if (elf_section_data (datasec)->relocs != internal_relocs)
4474
0
    free (internal_relocs);
4475
0
  return true;
4476
4477
0
 error_return:
4478
0
  if (symtab_hdr->contents != (unsigned char *) isymbuf)
4479
0
    free (isymbuf);
4480
0
  if (elf_section_data (datasec)->relocs != internal_relocs)
4481
0
    free (internal_relocs);
4482
0
  return false;
4483
0
}
4484
4485
/* Set target options.  */
4486
4487
void
4488
bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4489
0
{
4490
0
  struct elf_m68k_link_hash_table *htab;
4491
0
  bool use_neg_got_offsets_p;
4492
0
  bool allow_multigot_p;
4493
0
  bool local_gp_p;
4494
4495
0
  switch (got_handling)
4496
0
    {
4497
0
    case 0:
4498
      /* --got=single.  */
4499
0
      local_gp_p = false;
4500
0
      use_neg_got_offsets_p = false;
4501
0
      allow_multigot_p = false;
4502
0
      break;
4503
4504
0
    case 1:
4505
      /* --got=negative.  */
4506
0
      local_gp_p = true;
4507
0
      use_neg_got_offsets_p = true;
4508
0
      allow_multigot_p = false;
4509
0
      break;
4510
4511
0
    case 2:
4512
      /* --got=multigot.  */
4513
0
      local_gp_p = true;
4514
0
      use_neg_got_offsets_p = true;
4515
0
      allow_multigot_p = true;
4516
0
      break;
4517
4518
0
    default:
4519
0
      BFD_ASSERT (false);
4520
0
      return;
4521
0
    }
4522
4523
0
  htab = elf_m68k_hash_table (info);
4524
0
  if (htab != NULL)
4525
0
    {
4526
0
      htab->local_gp_p = local_gp_p;
4527
0
      htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4528
0
      htab->allow_multigot_p = allow_multigot_p;
4529
0
    }
4530
0
}
4531
4532
static enum elf_reloc_type_class
4533
elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4534
           const asection *rel_sec ATTRIBUTE_UNUSED,
4535
           const Elf_Internal_Rela *rela)
4536
0
{
4537
0
  switch ((int) ELF32_R_TYPE (rela->r_info))
4538
0
    {
4539
0
    case R_68K_RELATIVE:
4540
0
      return reloc_class_relative;
4541
0
    case R_68K_JMP_SLOT:
4542
0
      return reloc_class_plt;
4543
0
    case R_68K_COPY:
4544
0
      return reloc_class_copy;
4545
0
    default:
4546
0
      return reloc_class_normal;
4547
0
    }
4548
0
}
4549
4550
/* Return address for Ith PLT stub in section PLT, for relocation REL
4551
   or (bfd_vma) -1 if it should not be included.  */
4552
4553
static bfd_vma
4554
elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4555
          const arelent *rel ATTRIBUTE_UNUSED)
4556
0
{
4557
0
  return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4558
0
}
4559
4560
/* Support for core dump NOTE sections.  */
4561
4562
static bool
4563
elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4564
27
{
4565
27
  int offset;
4566
27
  size_t size;
4567
4568
27
  switch (note->descsz)
4569
27
    {
4570
20
    default:
4571
20
      return false;
4572
4573
7
    case 154:   /* Linux/m68k */
4574
      /* pr_cursig */
4575
7
      elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4576
4577
      /* pr_pid */
4578
7
      elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4579
4580
      /* pr_reg */
4581
7
      offset = 70;
4582
7
      size = 80;
4583
4584
7
      break;
4585
27
    }
4586
4587
  /* Make a ".reg/999" section.  */
4588
7
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4589
7
            size, note->descpos + offset);
4590
27
}
4591
4592
static bool
4593
elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4594
10
{
4595
10
  switch (note->descsz)
4596
10
    {
4597
10
    default:
4598
10
      return false;
4599
4600
0
    case 124:   /* Linux/m68k elf_prpsinfo.  */
4601
0
      elf_tdata (abfd)->core->pid
4602
0
  = bfd_get_32 (abfd, note->descdata + 12);
4603
0
      elf_tdata (abfd)->core->program
4604
0
  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4605
0
      elf_tdata (abfd)->core->command
4606
0
  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4607
10
    }
4608
4609
  /* Note that for some reason, a spurious space is tacked
4610
     onto the end of the args in some (at least one anyway)
4611
     implementations, so strip it off if it exists.  */
4612
0
  {
4613
0
    char *command = elf_tdata (abfd)->core->command;
4614
0
    int n = strlen (command);
4615
4616
0
    if (n > 0 && command[n - 1] == ' ')
4617
0
      command[n - 1] = '\0';
4618
0
  }
4619
4620
0
  return true;
4621
10
}
4622
4623
#define TARGET_BIG_SYM      m68k_elf32_vec
4624
#define TARGET_BIG_NAME     "elf32-m68k"
4625
#define ELF_MACHINE_CODE    EM_68K
4626
#define ELF_MAXPAGESIZE     0x2000
4627
#define elf_backend_create_dynamic_sections \
4628
          _bfd_elf_create_dynamic_sections
4629
#define bfd_elf32_bfd_link_hash_table_create \
4630
          elf_m68k_link_hash_table_create
4631
#define bfd_elf32_bfd_final_link  bfd_elf_final_link
4632
4633
#define elf_backend_check_relocs  elf_m68k_check_relocs
4634
#define elf_backend_early_size_sections \
4635
          elf_m68k_early_size_sections
4636
#define elf_backend_adjust_dynamic_symbol \
4637
          elf_m68k_adjust_dynamic_symbol
4638
#define elf_backend_late_size_sections  elf_m68k_late_size_sections
4639
#define elf_backend_final_write_processing  elf_m68k_final_write_processing
4640
#define elf_backend_init_index_section  _bfd_elf_init_1_index_section
4641
#define elf_backend_relocate_section  elf_m68k_relocate_section
4642
#define elf_backend_finish_dynamic_symbol \
4643
          elf_m68k_finish_dynamic_symbol
4644
#define elf_backend_finish_dynamic_sections \
4645
          elf_m68k_finish_dynamic_sections
4646
#define elf_backend_gc_mark_hook  elf_m68k_gc_mark_hook
4647
#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4648
#define bfd_elf32_bfd_merge_private_bfd_data \
4649
          elf32_m68k_merge_private_bfd_data
4650
#define bfd_elf32_bfd_set_private_flags \
4651
          elf32_m68k_set_private_flags
4652
#define bfd_elf32_bfd_print_private_bfd_data \
4653
          elf32_m68k_print_private_bfd_data
4654
#define elf_backend_reloc_type_class  elf32_m68k_reloc_type_class
4655
#define elf_backend_plt_sym_val   elf_m68k_plt_sym_val
4656
#define elf_backend_object_p    elf32_m68k_object_p
4657
#define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4658
#define elf_backend_grok_psinfo   elf_m68k_grok_psinfo
4659
4660
#define elf_backend_can_gc_sections 1
4661
#define elf_backend_can_refcount 1
4662
#define elf_backend_want_got_plt 1
4663
#define elf_backend_plt_readonly 1
4664
#define elf_backend_want_plt_sym 0
4665
#define elf_backend_got_header_size 12
4666
#define elf_backend_rela_normal   1
4667
#define elf_backend_dtrel_excludes_plt  1
4668
4669
#define elf_backend_linux_prpsinfo32_ugid16 true
4670
4671
#include "elf32-target.h"