/src/binutils-gdb/bfd/elf32-xtensa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Xtensa-specific support for 32-bit ELF. |
2 | | Copyright (C) 2003-2025 Free Software Foundation, Inc. |
3 | | |
4 | | This file is part of BFD, the Binary File Descriptor library. |
5 | | |
6 | | This program is free software; you can redistribute it and/or |
7 | | modify it under the terms of the GNU General Public License as |
8 | | published by the Free Software Foundation; either version 3 of the |
9 | | License, or (at your option) any later version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, but |
12 | | WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | | General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; if not, write to the Free Software |
18 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
19 | | 02110-1301, USA. */ |
20 | | |
21 | | #include "sysdep.h" |
22 | | #include "bfd.h" |
23 | | |
24 | | #include <stdarg.h> |
25 | | #include <strings.h> |
26 | | |
27 | | #include "bfdlink.h" |
28 | | #include "libbfd.h" |
29 | | #include "elf-bfd.h" |
30 | | #include "elf/xtensa.h" |
31 | | #include "splay-tree.h" |
32 | | #include "xtensa-isa.h" |
33 | | #include "xtensa-dynconfig.h" |
34 | | |
35 | | /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */ |
36 | 3.58k | #define OCTETS_PER_BYTE(ABFD, SEC) 1 |
37 | | |
38 | 0 | #define XTENSA_NO_NOP_REMOVAL 0 |
39 | | |
40 | | #ifndef XTHAL_ABI_UNDEFINED |
41 | 0 | #define XTHAL_ABI_UNDEFINED -1 |
42 | | #endif |
43 | | |
44 | | /* Local helper functions. */ |
45 | | |
46 | | static bool add_extra_plt_sections (struct bfd_link_info *, int); |
47 | | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
48 | | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
49 | | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
50 | | static bool do_fix_for_relocatable_link |
51 | | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
52 | | static void do_fix_for_final_link |
53 | | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
54 | | |
55 | | /* Local functions to handle Xtensa configurability. */ |
56 | | |
57 | | static bool is_indirect_call_opcode (xtensa_opcode); |
58 | | static bool is_direct_call_opcode (xtensa_opcode); |
59 | | static bool is_windowed_call_opcode (xtensa_opcode); |
60 | | static xtensa_opcode get_const16_opcode (void); |
61 | | static xtensa_opcode get_l32r_opcode (void); |
62 | | static bfd_vma l32r_offset (bfd_vma, bfd_vma); |
63 | | static int get_relocation_opnd (xtensa_opcode, int); |
64 | | static int get_relocation_slot (int); |
65 | | static xtensa_opcode get_relocation_opcode |
66 | | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
67 | | static bool is_l32r_relocation |
68 | | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
69 | | static bool is_alt_relocation (int); |
70 | | static bool is_operand_relocation (int); |
71 | | static bfd_size_type insn_decode_len |
72 | | (bfd_byte *, bfd_size_type, bfd_size_type); |
73 | | static int insn_num_slots |
74 | | (bfd_byte *, bfd_size_type, bfd_size_type); |
75 | | static xtensa_opcode insn_decode_opcode |
76 | | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
77 | | static bool check_branch_target_aligned |
78 | | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
79 | | static bool check_loop_aligned |
80 | | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
81 | | static bool check_branch_target_aligned_address (bfd_vma, int); |
82 | | static bfd_size_type get_asm_simplify_size |
83 | | (bfd_byte *, bfd_size_type, bfd_size_type); |
84 | | |
85 | | /* Functions for link-time code simplifications. */ |
86 | | |
87 | | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
88 | | (bfd_byte *, bfd_vma, bfd_vma, char **); |
89 | | static bfd_reloc_status_type contract_asm_expansion |
90 | | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
91 | | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); |
92 | | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bool *); |
93 | | |
94 | | /* Access to internal relocations, section contents and symbols. */ |
95 | | |
96 | | static Elf_Internal_Rela *retrieve_internal_relocs |
97 | | (bfd *, asection *, bool); |
98 | | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); |
99 | | static void release_internal_relocs (asection *, Elf_Internal_Rela *); |
100 | | static bfd_byte *retrieve_contents (bfd *, asection *, bool); |
101 | | static void pin_contents (asection *, bfd_byte *); |
102 | | static void release_contents (asection *, bfd_byte *); |
103 | | static Elf_Internal_Sym *retrieve_local_syms (bfd *); |
104 | | |
105 | | /* Miscellaneous utility functions. */ |
106 | | |
107 | | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
108 | | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); |
109 | | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
110 | | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
111 | | (bfd *, unsigned long); |
112 | | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); |
113 | | static bool is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); |
114 | | static bool pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); |
115 | | static bool xtensa_is_property_section (asection *); |
116 | | static bool xtensa_is_insntable_section (asection *); |
117 | | static bool xtensa_is_littable_section (asection *); |
118 | | static bool xtensa_is_proptable_section (asection *); |
119 | | static int internal_reloc_compare (const void *, const void *); |
120 | | static int internal_reloc_matches (const void *, const void *); |
121 | | static asection *xtensa_get_property_section (asection *, const char *); |
122 | | static flagword xtensa_get_property_predef_flags (asection *); |
123 | | |
124 | | /* Other functions called directly by the linker. */ |
125 | | |
126 | | typedef void (*deps_callback_t) |
127 | | (asection *, bfd_vma, asection *, bfd_vma, void *); |
128 | | extern bool xtensa_callback_required_dependence |
129 | | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
130 | | |
131 | | |
132 | | /* Globally visible flag for choosing size optimization of NOP removal |
133 | | instead of branch-target-aware minimization for NOP removal. |
134 | | When nonzero, narrow all instructions and remove all NOPs possible |
135 | | around longcall expansions. */ |
136 | | |
137 | | int elf32xtensa_size_opt; |
138 | | |
139 | | |
140 | | /* The "new_section_hook" is used to set up a per-section |
141 | | "xtensa_relax_info" data structure with additional information used |
142 | | during relaxation. */ |
143 | | |
144 | | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
145 | | |
146 | | |
147 | | /* The GNU tools do not easily allow extending interfaces to pass around |
148 | | the pointer to the Xtensa ISA information, so instead we add a global |
149 | | variable here (in BFD) that can be used by any of the tools that need |
150 | | this information. */ |
151 | | |
152 | | xtensa_isa xtensa_default_isa; |
153 | | |
154 | | |
155 | | /* When this is true, relocations may have been modified to refer to |
156 | | symbols from other input files. The per-section list of "fix" |
157 | | records needs to be checked when resolving relocations. */ |
158 | | |
159 | | static bool relaxing_section = false; |
160 | | |
161 | | /* When this is true, during final links, literals that cannot be |
162 | | coalesced and their relocations may be moved to other sections. */ |
163 | | |
164 | | int elf32xtensa_no_literal_movement = 1; |
165 | | |
166 | | /* Place property records for a section into individual property section |
167 | | with xt.prop. prefix. */ |
168 | | |
169 | | bool elf32xtensa_separate_props = false; |
170 | | |
171 | | /* Xtensa ABI. It affects PLT entry code. */ |
172 | | |
173 | | int elf32xtensa_abi = XTHAL_ABI_UNDEFINED; |
174 | | |
175 | | /* Rename one of the generic section flags to better document how it |
176 | | is used here. */ |
177 | | /* Whether relocations have been processed. */ |
178 | 0 | #define reloc_done sec_flg0 |
179 | | |
180 | | static reloc_howto_type elf_howto_table[] = |
181 | | { |
182 | | HOWTO (R_XTENSA_NONE, 0, 0, 0, false, 0, complain_overflow_dont, |
183 | | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", |
184 | | false, 0, 0, false), |
185 | | HOWTO (R_XTENSA_32, 0, 4, 32, false, 0, complain_overflow_bitfield, |
186 | | bfd_elf_xtensa_reloc, "R_XTENSA_32", |
187 | | true, 0xffffffff, 0xffffffff, false), |
188 | | |
189 | | /* Replace a 32-bit value with a value from the runtime linker (only |
190 | | used by linker-generated stub functions). The r_addend value is |
191 | | special: 1 means to substitute a pointer to the runtime linker's |
192 | | dynamic resolver function; 2 means to substitute the link map for |
193 | | the shared object. */ |
194 | | HOWTO (R_XTENSA_RTLD, 0, 4, 32, false, 0, complain_overflow_dont, |
195 | | NULL, "R_XTENSA_RTLD", false, 0, 0, false), |
196 | | |
197 | | HOWTO (R_XTENSA_GLOB_DAT, 0, 4, 32, false, 0, complain_overflow_bitfield, |
198 | | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", |
199 | | false, 0, 0xffffffff, false), |
200 | | HOWTO (R_XTENSA_JMP_SLOT, 0, 4, 32, false, 0, complain_overflow_bitfield, |
201 | | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", |
202 | | false, 0, 0xffffffff, false), |
203 | | HOWTO (R_XTENSA_RELATIVE, 0, 4, 32, false, 0, complain_overflow_bitfield, |
204 | | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", |
205 | | false, 0, 0xffffffff, false), |
206 | | HOWTO (R_XTENSA_PLT, 0, 4, 32, false, 0, complain_overflow_bitfield, |
207 | | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", |
208 | | false, 0, 0xffffffff, false), |
209 | | |
210 | | EMPTY_HOWTO (7), |
211 | | |
212 | | /* Old relocations for backward compatibility. */ |
213 | | HOWTO (R_XTENSA_OP0, 0, 0, 0, true, 0, complain_overflow_dont, |
214 | | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", false, 0, 0, true), |
215 | | HOWTO (R_XTENSA_OP1, 0, 0, 0, true, 0, complain_overflow_dont, |
216 | | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", false, 0, 0, true), |
217 | | HOWTO (R_XTENSA_OP2, 0, 0, 0, true, 0, complain_overflow_dont, |
218 | | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", false, 0, 0, true), |
219 | | |
220 | | /* Assembly auto-expansion. */ |
221 | | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, true, 0, complain_overflow_dont, |
222 | | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", false, 0, 0, true), |
223 | | /* Relax assembly auto-expansion. */ |
224 | | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, true, 0, complain_overflow_dont, |
225 | | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", false, 0, 0, true), |
226 | | |
227 | | EMPTY_HOWTO (13), |
228 | | |
229 | | HOWTO (R_XTENSA_32_PCREL, 0, 4, 32, true, 0, complain_overflow_bitfield, |
230 | | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", |
231 | | false, 0, 0xffffffff, true), |
232 | | |
233 | | /* GNU extension to record C++ vtable hierarchy. */ |
234 | | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont, |
235 | | NULL, "R_XTENSA_GNU_VTINHERIT", |
236 | | false, 0, 0, false), |
237 | | /* GNU extension to record C++ vtable member usage. */ |
238 | | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont, |
239 | | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", |
240 | | false, 0, 0, false), |
241 | | |
242 | | /* Relocations for supporting difference of symbols. */ |
243 | | HOWTO (R_XTENSA_DIFF8, 0, 1, 8, false, 0, complain_overflow_signed, |
244 | | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", false, 0, 0xff, false), |
245 | | HOWTO (R_XTENSA_DIFF16, 0, 2, 16, false, 0, complain_overflow_signed, |
246 | | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", false, 0, 0xffff, false), |
247 | | HOWTO (R_XTENSA_DIFF32, 0, 4, 32, false, 0, complain_overflow_signed, |
248 | | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", false, 0, 0xffffffff, false), |
249 | | |
250 | | /* General immediate operand relocations. */ |
251 | | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
252 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", false, 0, 0, true), |
253 | | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
254 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", false, 0, 0, true), |
255 | | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
256 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", false, 0, 0, true), |
257 | | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
258 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", false, 0, 0, true), |
259 | | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
260 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", false, 0, 0, true), |
261 | | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
262 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", false, 0, 0, true), |
263 | | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
264 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", false, 0, 0, true), |
265 | | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
266 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", false, 0, 0, true), |
267 | | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
268 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", false, 0, 0, true), |
269 | | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
270 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", false, 0, 0, true), |
271 | | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
272 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", false, 0, 0, true), |
273 | | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
274 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", false, 0, 0, true), |
275 | | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
276 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", false, 0, 0, true), |
277 | | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
278 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", false, 0, 0, true), |
279 | | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, true, 0, complain_overflow_dont, |
280 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", false, 0, 0, true), |
281 | | |
282 | | /* "Alternate" relocations. The meaning of these is opcode-specific. */ |
283 | | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
284 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", false, 0, 0, true), |
285 | | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
286 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", false, 0, 0, true), |
287 | | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
288 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", false, 0, 0, true), |
289 | | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
290 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", false, 0, 0, true), |
291 | | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
292 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", false, 0, 0, true), |
293 | | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
294 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", false, 0, 0, true), |
295 | | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
296 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", false, 0, 0, true), |
297 | | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
298 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", false, 0, 0, true), |
299 | | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
300 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", false, 0, 0, true), |
301 | | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
302 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", false, 0, 0, true), |
303 | | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
304 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", false, 0, 0, true), |
305 | | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
306 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", false, 0, 0, true), |
307 | | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
308 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", false, 0, 0, true), |
309 | | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
310 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", false, 0, 0, true), |
311 | | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, true, 0, complain_overflow_dont, |
312 | | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", false, 0, 0, true), |
313 | | |
314 | | /* TLS relocations. */ |
315 | | HOWTO (R_XTENSA_TLSDESC_FN, 0, 4, 32, false, 0, complain_overflow_dont, |
316 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", |
317 | | false, 0, 0xffffffff, false), |
318 | | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 4, 32, false, 0, complain_overflow_dont, |
319 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", |
320 | | false, 0, 0xffffffff, false), |
321 | | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 4, 32, false, 0, complain_overflow_dont, |
322 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", |
323 | | false, 0, 0xffffffff, false), |
324 | | HOWTO (R_XTENSA_TLS_TPOFF, 0, 4, 32, false, 0, complain_overflow_dont, |
325 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", |
326 | | false, 0, 0xffffffff, false), |
327 | | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, false, 0, complain_overflow_dont, |
328 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", |
329 | | false, 0, 0, false), |
330 | | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, false, 0, complain_overflow_dont, |
331 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", |
332 | | false, 0, 0, false), |
333 | | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, false, 0, complain_overflow_dont, |
334 | | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", |
335 | | false, 0, 0, false), |
336 | | |
337 | | HOWTO (R_XTENSA_PDIFF8, 0, 1, 8, false, 0, complain_overflow_bitfield, |
338 | | bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", false, 0, 0xff, false), |
339 | | HOWTO (R_XTENSA_PDIFF16, 0, 2, 16, false, 0, complain_overflow_bitfield, |
340 | | bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", false, 0, 0xffff, false), |
341 | | HOWTO (R_XTENSA_PDIFF32, 0, 4, 32, false, 0, complain_overflow_bitfield, |
342 | | bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", false, 0, 0xffffffff, false), |
343 | | |
344 | | HOWTO (R_XTENSA_NDIFF8, 0, 1, 8, false, 0, complain_overflow_bitfield, |
345 | | bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", false, 0, 0xff, false), |
346 | | HOWTO (R_XTENSA_NDIFF16, 0, 2, 16, false, 0, complain_overflow_bitfield, |
347 | | bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", false, 0, 0xffff, false), |
348 | | HOWTO (R_XTENSA_NDIFF32, 0, 4, 32, false, 0, complain_overflow_bitfield, |
349 | | bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", false, 0, 0xffffffff, false), |
350 | | }; |
351 | | |
352 | | #if DEBUG_GEN_RELOC |
353 | | #define TRACE(str) \ |
354 | | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) |
355 | | #else |
356 | | #define TRACE(str) |
357 | | #endif |
358 | | |
359 | | static reloc_howto_type * |
360 | | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
361 | | bfd_reloc_code_real_type code) |
362 | 0 | { |
363 | 0 | switch (code) |
364 | 0 | { |
365 | 0 | case BFD_RELOC_NONE: |
366 | 0 | TRACE ("BFD_RELOC_NONE"); |
367 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; |
368 | | |
369 | 0 | case BFD_RELOC_32: |
370 | 0 | TRACE ("BFD_RELOC_32"); |
371 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; |
372 | | |
373 | 0 | case BFD_RELOC_32_PCREL: |
374 | 0 | TRACE ("BFD_RELOC_32_PCREL"); |
375 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; |
376 | | |
377 | 0 | case BFD_RELOC_XTENSA_DIFF8: |
378 | 0 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); |
379 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; |
380 | | |
381 | 0 | case BFD_RELOC_XTENSA_DIFF16: |
382 | 0 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); |
383 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; |
384 | | |
385 | 0 | case BFD_RELOC_XTENSA_DIFF32: |
386 | 0 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); |
387 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; |
388 | | |
389 | 0 | case BFD_RELOC_XTENSA_PDIFF8: |
390 | 0 | TRACE ("BFD_RELOC_XTENSA_PDIFF8"); |
391 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ]; |
392 | | |
393 | 0 | case BFD_RELOC_XTENSA_PDIFF16: |
394 | 0 | TRACE ("BFD_RELOC_XTENSA_PDIFF16"); |
395 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ]; |
396 | | |
397 | 0 | case BFD_RELOC_XTENSA_PDIFF32: |
398 | 0 | TRACE ("BFD_RELOC_XTENSA_PDIFF32"); |
399 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ]; |
400 | | |
401 | 0 | case BFD_RELOC_XTENSA_NDIFF8: |
402 | 0 | TRACE ("BFD_RELOC_XTENSA_NDIFF8"); |
403 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ]; |
404 | | |
405 | 0 | case BFD_RELOC_XTENSA_NDIFF16: |
406 | 0 | TRACE ("BFD_RELOC_XTENSA_NDIFF16"); |
407 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ]; |
408 | | |
409 | 0 | case BFD_RELOC_XTENSA_NDIFF32: |
410 | 0 | TRACE ("BFD_RELOC_XTENSA_NDIFF32"); |
411 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ]; |
412 | | |
413 | 0 | case BFD_RELOC_XTENSA_RTLD: |
414 | 0 | TRACE ("BFD_RELOC_XTENSA_RTLD"); |
415 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; |
416 | | |
417 | 0 | case BFD_RELOC_XTENSA_GLOB_DAT: |
418 | 0 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); |
419 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; |
420 | | |
421 | 0 | case BFD_RELOC_XTENSA_JMP_SLOT: |
422 | 0 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); |
423 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; |
424 | | |
425 | 0 | case BFD_RELOC_XTENSA_RELATIVE: |
426 | 0 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); |
427 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; |
428 | | |
429 | 0 | case BFD_RELOC_XTENSA_PLT: |
430 | 0 | TRACE ("BFD_RELOC_XTENSA_PLT"); |
431 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; |
432 | | |
433 | 0 | case BFD_RELOC_XTENSA_OP0: |
434 | 0 | TRACE ("BFD_RELOC_XTENSA_OP0"); |
435 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; |
436 | | |
437 | 0 | case BFD_RELOC_XTENSA_OP1: |
438 | 0 | TRACE ("BFD_RELOC_XTENSA_OP1"); |
439 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; |
440 | | |
441 | 0 | case BFD_RELOC_XTENSA_OP2: |
442 | 0 | TRACE ("BFD_RELOC_XTENSA_OP2"); |
443 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; |
444 | | |
445 | 0 | case BFD_RELOC_XTENSA_ASM_EXPAND: |
446 | 0 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); |
447 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; |
448 | | |
449 | 0 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: |
450 | 0 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); |
451 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; |
452 | | |
453 | 0 | case BFD_RELOC_VTABLE_INHERIT: |
454 | 0 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); |
455 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; |
456 | | |
457 | 0 | case BFD_RELOC_VTABLE_ENTRY: |
458 | 0 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); |
459 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; |
460 | | |
461 | 0 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
462 | 0 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); |
463 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; |
464 | | |
465 | 0 | case BFD_RELOC_XTENSA_TLSDESC_ARG: |
466 | 0 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); |
467 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; |
468 | | |
469 | 0 | case BFD_RELOC_XTENSA_TLS_DTPOFF: |
470 | 0 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); |
471 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; |
472 | | |
473 | 0 | case BFD_RELOC_XTENSA_TLS_TPOFF: |
474 | 0 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); |
475 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; |
476 | | |
477 | 0 | case BFD_RELOC_XTENSA_TLS_FUNC: |
478 | 0 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); |
479 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; |
480 | | |
481 | 0 | case BFD_RELOC_XTENSA_TLS_ARG: |
482 | 0 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); |
483 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; |
484 | | |
485 | 0 | case BFD_RELOC_XTENSA_TLS_CALL: |
486 | 0 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); |
487 | 0 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; |
488 | | |
489 | 0 | default: |
490 | 0 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
491 | 0 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) |
492 | 0 | { |
493 | 0 | unsigned n = (R_XTENSA_SLOT0_OP + |
494 | 0 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); |
495 | 0 | return &elf_howto_table[n]; |
496 | 0 | } |
497 | | |
498 | 0 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT |
499 | 0 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) |
500 | 0 | { |
501 | 0 | unsigned n = (R_XTENSA_SLOT0_ALT + |
502 | 0 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); |
503 | 0 | return &elf_howto_table[n]; |
504 | 0 | } |
505 | | |
506 | 0 | break; |
507 | 0 | } |
508 | | |
509 | | /* xgettext:c-format */ |
510 | 0 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code); |
511 | 0 | bfd_set_error (bfd_error_bad_value); |
512 | 0 | TRACE ("Unknown"); |
513 | 0 | return NULL; |
514 | 0 | } |
515 | | |
516 | | static reloc_howto_type * |
517 | | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
518 | | const char *r_name) |
519 | 0 | { |
520 | 0 | unsigned int i; |
521 | |
|
522 | 0 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) |
523 | 0 | if (elf_howto_table[i].name != NULL |
524 | 0 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) |
525 | 0 | return &elf_howto_table[i]; |
526 | | |
527 | 0 | return NULL; |
528 | 0 | } |
529 | | |
530 | | |
531 | | /* Given an ELF "rela" relocation, find the corresponding howto and record |
532 | | it in the BFD internal arelent representation of the relocation. */ |
533 | | |
534 | | static bool |
535 | | elf_xtensa_info_to_howto_rela (bfd *abfd, |
536 | | arelent *cache_ptr, |
537 | | Elf_Internal_Rela *dst) |
538 | 14.9k | { |
539 | 14.9k | unsigned int r_type = ELF32_R_TYPE (dst->r_info); |
540 | | |
541 | 14.9k | if (r_type >= (unsigned int) R_XTENSA_max) |
542 | 10 | { |
543 | | /* xgettext:c-format */ |
544 | 10 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
545 | 10 | abfd, r_type); |
546 | 10 | bfd_set_error (bfd_error_bad_value); |
547 | 10 | return false; |
548 | 10 | } |
549 | 14.9k | cache_ptr->howto = &elf_howto_table[r_type]; |
550 | 14.9k | return true; |
551 | 14.9k | } |
552 | | |
553 | | |
554 | | /* Functions for the Xtensa ELF linker. */ |
555 | | |
556 | | /* The name of the dynamic interpreter. This is put in the .interp |
557 | | section. */ |
558 | | |
559 | 0 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" |
560 | | |
561 | | /* The size in bytes of an entry in the procedure linkage table. |
562 | | (This does _not_ include the space for the literals associated with |
563 | | the PLT entry.) */ |
564 | | |
565 | 0 | #define PLT_ENTRY_SIZE 16 |
566 | | |
567 | | /* For _really_ large PLTs, we may need to alternate between literals |
568 | | and code to keep the literals within the 256K range of the L32R |
569 | | instructions in the code. It's unlikely that anyone would ever need |
570 | | such a big PLT, but an arbitrary limit on the PLT size would be bad. |
571 | | Thus, we split the PLT into chunks. Since there's very little |
572 | | overhead (2 extra literals) for each chunk, the chunk size is kept |
573 | | small so that the code for handling multiple chunks get used and |
574 | | tested regularly. With 254 entries, there are 1K of literals for |
575 | | each chunk, and that seems like a nice round number. */ |
576 | | |
577 | 0 | #define PLT_ENTRIES_PER_CHUNK 254 |
578 | | |
579 | | /* PLT entries are actually used as stub functions for lazy symbol |
580 | | resolution. Once the symbol is resolved, the stub function is never |
581 | | invoked. Note: the 32-byte frame size used here cannot be changed |
582 | | without a corresponding change in the runtime linker. */ |
583 | | |
584 | | static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] = |
585 | | { |
586 | | { |
587 | | 0x6c, 0x10, 0x04, /* entry sp, 32 */ |
588 | | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ |
589 | | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ |
590 | | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ |
591 | | 0x0a, 0x80, 0x00, /* jx a8 */ |
592 | | 0 /* unused */ |
593 | | }, |
594 | | { |
595 | | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ |
596 | | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ |
597 | | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ |
598 | | 0x0a, 0x80, 0x00, /* jx a8 */ |
599 | | 0 /* unused */ |
600 | | } |
601 | | }; |
602 | | |
603 | | static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] = |
604 | | { |
605 | | { |
606 | | 0x36, 0x41, 0x00, /* entry sp, 32 */ |
607 | | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ |
608 | | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ |
609 | | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ |
610 | | 0xa0, 0x08, 0x00, /* jx a8 */ |
611 | | 0 /* unused */ |
612 | | }, |
613 | | { |
614 | | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ |
615 | | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ |
616 | | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ |
617 | | 0xa0, 0x08, 0x00, /* jx a8 */ |
618 | | 0 /* unused */ |
619 | | } |
620 | | }; |
621 | | |
622 | | /* The size of the thread control block. */ |
623 | | #define TCB_SIZE 8 |
624 | | |
625 | | struct elf_xtensa_link_hash_entry |
626 | | { |
627 | | struct elf_link_hash_entry elf; |
628 | | |
629 | | bfd_signed_vma tlsfunc_refcount; |
630 | | |
631 | 0 | #define GOT_UNKNOWN 0 |
632 | 0 | #define GOT_NORMAL 1 |
633 | 0 | #define GOT_TLS_GD 2 /* global or local dynamic */ |
634 | 0 | #define GOT_TLS_IE 4 /* initial or local exec */ |
635 | 0 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) |
636 | | unsigned char tls_type; |
637 | | }; |
638 | | |
639 | 0 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) |
640 | | |
641 | | struct elf_xtensa_obj_tdata |
642 | | { |
643 | | struct elf_obj_tdata root; |
644 | | |
645 | | /* tls_type for each local got entry. */ |
646 | | char *local_got_tls_type; |
647 | | |
648 | | bfd_signed_vma *local_tlsfunc_refcounts; |
649 | | }; |
650 | | |
651 | | #define elf_xtensa_tdata(abfd) \ |
652 | 0 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) |
653 | | |
654 | | #define elf_xtensa_local_got_tls_type(abfd) \ |
655 | 0 | (elf_xtensa_tdata (abfd)->local_got_tls_type) |
656 | | |
657 | | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ |
658 | 0 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) |
659 | | |
660 | | #define is_xtensa_elf(bfd) \ |
661 | 0 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
662 | 0 | && elf_tdata (bfd) != NULL \ |
663 | 0 | && elf_object_id (bfd) == XTENSA_ELF_DATA) |
664 | | |
665 | | static bool |
666 | | elf_xtensa_mkobject (bfd *abfd) |
667 | 312k | { |
668 | 312k | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata)); |
669 | 312k | } |
670 | | |
671 | | /* Xtensa ELF linker hash table. */ |
672 | | |
673 | | struct elf_xtensa_link_hash_table |
674 | | { |
675 | | struct elf_link_hash_table elf; |
676 | | |
677 | | /* Short-cuts to get to dynamic linker sections. */ |
678 | | asection *sgotloc; |
679 | | asection *spltlittbl; |
680 | | |
681 | | /* Total count of PLT relocations seen during check_relocs. |
682 | | The actual PLT code must be split into multiple sections and all |
683 | | the sections have to be created before size_dynamic_sections, |
684 | | where we figure out the exact number of PLT entries that will be |
685 | | needed. It is OK if this count is an overestimate, e.g., some |
686 | | relocations may be removed by GC. */ |
687 | | int plt_reloc_count; |
688 | | |
689 | | struct elf_xtensa_link_hash_entry *tlsbase; |
690 | | }; |
691 | | |
692 | | /* Get the Xtensa ELF linker hash table from a link_info structure. */ |
693 | | |
694 | | #define elf_xtensa_hash_table(p) \ |
695 | 0 | ((is_elf_hash_table ((p)->hash) \ |
696 | 0 | && elf_hash_table_id (elf_hash_table (p)) == XTENSA_ELF_DATA) \ |
697 | 0 | ? (struct elf_xtensa_link_hash_table *) (p)->hash : NULL) |
698 | | |
699 | | /* Create an entry in an Xtensa ELF linker hash table. */ |
700 | | |
701 | | static struct bfd_hash_entry * |
702 | | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, |
703 | | struct bfd_hash_table *table, |
704 | | const char *string) |
705 | 0 | { |
706 | | /* Allocate the structure if it has not already been allocated by a |
707 | | subclass. */ |
708 | 0 | if (entry == NULL) |
709 | 0 | { |
710 | 0 | entry = bfd_hash_allocate (table, |
711 | 0 | sizeof (struct elf_xtensa_link_hash_entry)); |
712 | 0 | if (entry == NULL) |
713 | 0 | return entry; |
714 | 0 | } |
715 | | |
716 | | /* Call the allocation method of the superclass. */ |
717 | 0 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
718 | 0 | if (entry != NULL) |
719 | 0 | { |
720 | 0 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); |
721 | 0 | eh->tlsfunc_refcount = 0; |
722 | 0 | eh->tls_type = GOT_UNKNOWN; |
723 | 0 | } |
724 | |
|
725 | 0 | return entry; |
726 | 0 | } |
727 | | |
728 | | /* Create an Xtensa ELF linker hash table. */ |
729 | | |
730 | | static struct bfd_link_hash_table * |
731 | | elf_xtensa_link_hash_table_create (bfd *abfd) |
732 | 0 | { |
733 | 0 | struct elf_link_hash_entry *tlsbase; |
734 | 0 | struct elf_xtensa_link_hash_table *ret; |
735 | 0 | size_t amt = sizeof (struct elf_xtensa_link_hash_table); |
736 | |
|
737 | 0 | ret = bfd_zmalloc (amt); |
738 | 0 | if (ret == NULL) |
739 | 0 | return NULL; |
740 | | |
741 | 0 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
742 | 0 | elf_xtensa_link_hash_newfunc, |
743 | 0 | sizeof (struct elf_xtensa_link_hash_entry))) |
744 | 0 | { |
745 | 0 | free (ret); |
746 | 0 | return NULL; |
747 | 0 | } |
748 | | |
749 | | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
750 | | for it later. */ |
751 | 0 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", |
752 | 0 | true, false, false); |
753 | 0 | tlsbase->root.type = bfd_link_hash_new; |
754 | 0 | tlsbase->root.u.undef.abfd = NULL; |
755 | 0 | tlsbase->non_elf = 0; |
756 | 0 | ret->elf.dt_pltgot_required = true; |
757 | 0 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); |
758 | 0 | ret->tlsbase->tls_type = GOT_UNKNOWN; |
759 | |
|
760 | 0 | return &ret->elf.root; |
761 | 0 | } |
762 | | |
763 | | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
764 | | |
765 | | static void |
766 | | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, |
767 | | struct elf_link_hash_entry *dir, |
768 | | struct elf_link_hash_entry *ind) |
769 | 0 | { |
770 | 0 | struct elf_xtensa_link_hash_entry *edir, *eind; |
771 | |
|
772 | 0 | edir = elf_xtensa_hash_entry (dir); |
773 | 0 | eind = elf_xtensa_hash_entry (ind); |
774 | |
|
775 | 0 | if (ind->root.type == bfd_link_hash_indirect) |
776 | 0 | { |
777 | 0 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; |
778 | 0 | eind->tlsfunc_refcount = 0; |
779 | |
|
780 | 0 | if (dir->got.refcount <= 0) |
781 | 0 | { |
782 | 0 | edir->tls_type = eind->tls_type; |
783 | 0 | eind->tls_type = GOT_UNKNOWN; |
784 | 0 | } |
785 | 0 | } |
786 | |
|
787 | 0 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
788 | 0 | } |
789 | | |
790 | | static inline bool |
791 | | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
792 | | struct bfd_link_info *info) |
793 | 0 | { |
794 | | /* Check if we should do dynamic things to this symbol. The |
795 | | "ignore_protected" argument need not be set, because Xtensa code |
796 | | does not require special handling of STV_PROTECTED to make function |
797 | | pointer comparisons work properly. The PLT addresses are never |
798 | | used for function pointers. */ |
799 | |
|
800 | 0 | return _bfd_elf_dynamic_symbol_p (h, info, 0); |
801 | 0 | } |
802 | | |
803 | | |
804 | | static int |
805 | | property_table_compare (const void *ap, const void *bp) |
806 | 0 | { |
807 | 0 | const property_table_entry *a = (const property_table_entry *) ap; |
808 | 0 | const property_table_entry *b = (const property_table_entry *) bp; |
809 | |
|
810 | 0 | if (a->address == b->address) |
811 | 0 | { |
812 | 0 | if (a->size != b->size) |
813 | 0 | return (a->size - b->size); |
814 | | |
815 | 0 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) |
816 | 0 | return ((b->flags & XTENSA_PROP_ALIGN) |
817 | 0 | - (a->flags & XTENSA_PROP_ALIGN)); |
818 | | |
819 | 0 | if ((a->flags & XTENSA_PROP_ALIGN) |
820 | 0 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) |
821 | 0 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) |
822 | 0 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) |
823 | 0 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); |
824 | | |
825 | 0 | if ((a->flags & XTENSA_PROP_UNREACHABLE) |
826 | 0 | != (b->flags & XTENSA_PROP_UNREACHABLE)) |
827 | 0 | return ((b->flags & XTENSA_PROP_UNREACHABLE) |
828 | 0 | - (a->flags & XTENSA_PROP_UNREACHABLE)); |
829 | | |
830 | 0 | return (a->flags - b->flags); |
831 | 0 | } |
832 | | |
833 | 0 | return (a->address - b->address); |
834 | 0 | } |
835 | | |
836 | | |
837 | | static int |
838 | | property_table_matches (const void *ap, const void *bp) |
839 | 0 | { |
840 | 0 | const property_table_entry *a = (const property_table_entry *) ap; |
841 | 0 | const property_table_entry *b = (const property_table_entry *) bp; |
842 | | |
843 | | /* Check if one entry overlaps with the other. */ |
844 | 0 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
845 | 0 | || (a->address >= b->address && a->address < (b->address + b->size))) |
846 | 0 | return 0; |
847 | | |
848 | 0 | return (a->address - b->address); |
849 | 0 | } |
850 | | |
851 | | |
852 | | /* Get the literal table or property table entries for the given |
853 | | section. Sets TABLE_P and returns the number of entries. On |
854 | | error, returns a negative value. */ |
855 | | |
856 | | int |
857 | | xtensa_read_table_entries (bfd *abfd, |
858 | | asection *section, |
859 | | property_table_entry **table_p, |
860 | | const char *sec_name, |
861 | | bool output_addr) |
862 | 5.76k | { |
863 | 5.76k | asection *table_section; |
864 | 5.76k | bfd_size_type table_size = 0; |
865 | 5.76k | bfd_byte *table_data; |
866 | 5.76k | property_table_entry *blocks; |
867 | 5.76k | int blk, block_count; |
868 | 5.76k | bfd_size_type num_records; |
869 | 5.76k | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
870 | 5.76k | bfd_vma section_addr, off; |
871 | 5.76k | flagword predef_flags; |
872 | 5.76k | bfd_size_type table_entry_size, section_limit; |
873 | | |
874 | 5.76k | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour |
875 | 5.76k | || !section |
876 | 5.76k | || !(section->flags & SEC_ALLOC) |
877 | 5.76k | || (section->flags & SEC_DEBUGGING)) |
878 | 5.68k | { |
879 | 5.68k | *table_p = NULL; |
880 | 5.68k | return 0; |
881 | 5.68k | } |
882 | | |
883 | 76 | table_section = xtensa_get_property_section (section, sec_name); |
884 | 76 | if (table_section) |
885 | 0 | table_size = table_section->size; |
886 | | |
887 | 76 | if (table_size == 0) |
888 | 76 | { |
889 | 76 | *table_p = NULL; |
890 | 76 | return 0; |
891 | 76 | } |
892 | | |
893 | 0 | predef_flags = xtensa_get_property_predef_flags (table_section); |
894 | 0 | table_entry_size = 12; |
895 | 0 | if (predef_flags) |
896 | 0 | table_entry_size -= 4; |
897 | |
|
898 | 0 | num_records = table_size / table_entry_size; |
899 | |
|
900 | 0 | table_data = retrieve_contents (abfd, table_section, true); |
901 | 0 | if (table_data == NULL) |
902 | 0 | { |
903 | 0 | *table_p = NULL; |
904 | 0 | return 0; |
905 | 0 | } |
906 | | |
907 | 0 | blocks = (property_table_entry *) |
908 | 0 | bfd_malloc (num_records * sizeof (property_table_entry)); |
909 | 0 | block_count = 0; |
910 | |
|
911 | 0 | if (output_addr) |
912 | 0 | section_addr = section->output_section->vma + section->output_offset; |
913 | 0 | else |
914 | 0 | section_addr = section->vma; |
915 | |
|
916 | 0 | internal_relocs = retrieve_internal_relocs (abfd, table_section, true); |
917 | 0 | if (internal_relocs && !table_section->reloc_done) |
918 | 0 | { |
919 | 0 | qsort (internal_relocs, table_section->reloc_count, |
920 | 0 | sizeof (Elf_Internal_Rela), internal_reloc_compare); |
921 | 0 | irel = internal_relocs; |
922 | 0 | } |
923 | 0 | else |
924 | 0 | irel = NULL; |
925 | |
|
926 | 0 | section_limit = bfd_get_section_limit (abfd, section); |
927 | 0 | rel_end = internal_relocs + table_section->reloc_count; |
928 | |
|
929 | 0 | for (off = 0; off < table_size; off += table_entry_size) |
930 | 0 | { |
931 | 0 | bfd_vma address = bfd_get_32 (abfd, table_data + off); |
932 | | |
933 | | /* Skip any relocations before the current offset. This should help |
934 | | avoid confusion caused by unexpected relocations for the preceding |
935 | | table entry. */ |
936 | 0 | while (irel && |
937 | 0 | (irel->r_offset < off |
938 | 0 | || (irel->r_offset == off |
939 | 0 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) |
940 | 0 | { |
941 | 0 | irel += 1; |
942 | 0 | if (irel >= rel_end) |
943 | 0 | irel = 0; |
944 | 0 | } |
945 | |
|
946 | 0 | if (irel && irel->r_offset == off) |
947 | 0 | { |
948 | 0 | bfd_vma sym_off; |
949 | 0 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); |
950 | 0 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); |
951 | |
|
952 | 0 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
953 | 0 | continue; |
954 | | |
955 | 0 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
956 | 0 | BFD_ASSERT (sym_off == 0); |
957 | 0 | address += (section_addr + sym_off + irel->r_addend); |
958 | 0 | } |
959 | 0 | else |
960 | 0 | { |
961 | 0 | if (address < section_addr |
962 | 0 | || address >= section_addr + section_limit) |
963 | 0 | continue; |
964 | 0 | } |
965 | | |
966 | 0 | blocks[block_count].address = address; |
967 | 0 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); |
968 | 0 | if (predef_flags) |
969 | 0 | blocks[block_count].flags = predef_flags; |
970 | 0 | else |
971 | 0 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); |
972 | 0 | block_count++; |
973 | 0 | } |
974 | |
|
975 | 0 | release_contents (table_section, table_data); |
976 | 0 | release_internal_relocs (table_section, internal_relocs); |
977 | |
|
978 | 0 | if (block_count > 0) |
979 | 0 | { |
980 | | /* Now sort them into address order for easy reference. */ |
981 | 0 | qsort (blocks, block_count, sizeof (property_table_entry), |
982 | 0 | property_table_compare); |
983 | | |
984 | | /* Check that the table contents are valid. Problems may occur, |
985 | | for example, if an unrelocated object file is stripped. */ |
986 | 0 | for (blk = 1; blk < block_count; blk++) |
987 | 0 | { |
988 | | /* The only circumstance where two entries may legitimately |
989 | | have the same address is when one of them is a zero-size |
990 | | placeholder to mark a place where fill can be inserted. |
991 | | The zero-size entry should come first. */ |
992 | 0 | if (blocks[blk - 1].address == blocks[blk].address && |
993 | 0 | blocks[blk - 1].size != 0) |
994 | 0 | { |
995 | | /* xgettext:c-format */ |
996 | 0 | _bfd_error_handler (_("%pB(%pA): invalid property table"), |
997 | 0 | abfd, section); |
998 | 0 | bfd_set_error (bfd_error_bad_value); |
999 | 0 | free (blocks); |
1000 | 0 | return -1; |
1001 | 0 | } |
1002 | 0 | } |
1003 | 0 | } |
1004 | | |
1005 | 0 | *table_p = blocks; |
1006 | 0 | return block_count; |
1007 | 0 | } |
1008 | | |
1009 | | |
1010 | | static property_table_entry * |
1011 | | elf_xtensa_find_property_entry (property_table_entry *property_table, |
1012 | | int property_table_size, |
1013 | | bfd_vma addr) |
1014 | 0 | { |
1015 | 0 | property_table_entry entry; |
1016 | 0 | property_table_entry *rv; |
1017 | |
|
1018 | 0 | if (property_table_size == 0) |
1019 | 0 | return NULL; |
1020 | | |
1021 | 0 | entry.address = addr; |
1022 | 0 | entry.size = 1; |
1023 | 0 | entry.flags = 0; |
1024 | |
|
1025 | 0 | rv = bsearch (&entry, property_table, property_table_size, |
1026 | 0 | sizeof (property_table_entry), property_table_matches); |
1027 | 0 | return rv; |
1028 | 0 | } |
1029 | | |
1030 | | |
1031 | | static bool |
1032 | | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
1033 | | int lit_table_size, |
1034 | | bfd_vma addr) |
1035 | 0 | { |
1036 | 0 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) |
1037 | 0 | return true; |
1038 | | |
1039 | 0 | return false; |
1040 | 0 | } |
1041 | | |
1042 | | |
1043 | | /* Look through the relocs for a section during the first phase, and |
1044 | | calculate needed space in the dynamic reloc sections. */ |
1045 | | |
1046 | | static bool |
1047 | | elf_xtensa_check_relocs (bfd *abfd, |
1048 | | struct bfd_link_info *info, |
1049 | | asection *sec, |
1050 | | const Elf_Internal_Rela *relocs) |
1051 | 0 | { |
1052 | 0 | struct elf_xtensa_link_hash_table *htab; |
1053 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1054 | 0 | struct elf_link_hash_entry **sym_hashes; |
1055 | 0 | const Elf_Internal_Rela *rel; |
1056 | 0 | const Elf_Internal_Rela *rel_end; |
1057 | |
|
1058 | 0 | if (bfd_link_relocatable (info)) |
1059 | 0 | return true; |
1060 | | |
1061 | 0 | BFD_ASSERT (is_xtensa_elf (abfd)); |
1062 | |
|
1063 | 0 | htab = elf_xtensa_hash_table (info); |
1064 | 0 | if (htab == NULL) |
1065 | 0 | return false; |
1066 | | |
1067 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1068 | 0 | sym_hashes = elf_sym_hashes (abfd); |
1069 | |
|
1070 | 0 | rel_end = relocs + sec->reloc_count; |
1071 | 0 | for (rel = relocs; rel < rel_end; rel++) |
1072 | 0 | { |
1073 | 0 | unsigned int r_type; |
1074 | 0 | unsigned r_symndx; |
1075 | 0 | struct elf_link_hash_entry *h = NULL; |
1076 | 0 | struct elf_xtensa_link_hash_entry *eh; |
1077 | 0 | int tls_type, old_tls_type; |
1078 | 0 | bool is_got = false; |
1079 | 0 | bool is_plt = false; |
1080 | 0 | bool is_tlsfunc = false; |
1081 | |
|
1082 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
1083 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
1084 | |
|
1085 | 0 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
1086 | 0 | { |
1087 | | /* xgettext:c-format */ |
1088 | 0 | _bfd_error_handler (_("%pB: bad symbol index: %d"), |
1089 | 0 | abfd, r_symndx); |
1090 | 0 | return false; |
1091 | 0 | } |
1092 | | |
1093 | 0 | if (r_symndx >= symtab_hdr->sh_info) |
1094 | 0 | { |
1095 | 0 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
1096 | 0 | while (h->root.type == bfd_link_hash_indirect |
1097 | 0 | || h->root.type == bfd_link_hash_warning) |
1098 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
1099 | 0 | } |
1100 | 0 | eh = elf_xtensa_hash_entry (h); |
1101 | |
|
1102 | 0 | switch (r_type) |
1103 | 0 | { |
1104 | 0 | case R_XTENSA_TLSDESC_FN: |
1105 | 0 | if (bfd_link_dll (info)) |
1106 | 0 | { |
1107 | 0 | tls_type = GOT_TLS_GD; |
1108 | 0 | is_got = true; |
1109 | 0 | is_tlsfunc = true; |
1110 | 0 | } |
1111 | 0 | else |
1112 | 0 | tls_type = GOT_TLS_IE; |
1113 | 0 | break; |
1114 | | |
1115 | 0 | case R_XTENSA_TLSDESC_ARG: |
1116 | 0 | if (bfd_link_dll (info)) |
1117 | 0 | { |
1118 | 0 | tls_type = GOT_TLS_GD; |
1119 | 0 | is_got = true; |
1120 | 0 | } |
1121 | 0 | else |
1122 | 0 | { |
1123 | 0 | tls_type = GOT_TLS_IE; |
1124 | 0 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase |
1125 | 0 | && elf_xtensa_dynamic_symbol_p (h, info)) |
1126 | 0 | is_got = true; |
1127 | 0 | } |
1128 | 0 | break; |
1129 | | |
1130 | 0 | case R_XTENSA_TLS_DTPOFF: |
1131 | 0 | if (bfd_link_dll (info)) |
1132 | 0 | tls_type = GOT_TLS_GD; |
1133 | 0 | else |
1134 | 0 | tls_type = GOT_TLS_IE; |
1135 | 0 | break; |
1136 | | |
1137 | 0 | case R_XTENSA_TLS_TPOFF: |
1138 | 0 | tls_type = GOT_TLS_IE; |
1139 | 0 | if (bfd_link_pic (info)) |
1140 | 0 | info->flags |= DF_STATIC_TLS; |
1141 | 0 | if (bfd_link_dll (info) || elf_xtensa_dynamic_symbol_p (h, info)) |
1142 | 0 | is_got = true; |
1143 | 0 | break; |
1144 | | |
1145 | 0 | case R_XTENSA_32: |
1146 | 0 | tls_type = GOT_NORMAL; |
1147 | 0 | is_got = true; |
1148 | 0 | break; |
1149 | | |
1150 | 0 | case R_XTENSA_PLT: |
1151 | 0 | tls_type = GOT_NORMAL; |
1152 | 0 | is_plt = true; |
1153 | 0 | break; |
1154 | | |
1155 | 0 | case R_XTENSA_GNU_VTINHERIT: |
1156 | | /* This relocation describes the C++ object vtable hierarchy. |
1157 | | Reconstruct it for later use during GC. */ |
1158 | 0 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
1159 | 0 | return false; |
1160 | 0 | continue; |
1161 | | |
1162 | 0 | case R_XTENSA_GNU_VTENTRY: |
1163 | | /* This relocation describes which C++ vtable entries are actually |
1164 | | used. Record for later use during GC. */ |
1165 | 0 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
1166 | 0 | return false; |
1167 | 0 | continue; |
1168 | | |
1169 | 0 | default: |
1170 | | /* Nothing to do for any other relocations. */ |
1171 | 0 | continue; |
1172 | 0 | } |
1173 | | |
1174 | 0 | if (h) |
1175 | 0 | { |
1176 | 0 | if (is_plt) |
1177 | 0 | { |
1178 | 0 | if (h->plt.refcount <= 0) |
1179 | 0 | { |
1180 | 0 | h->needs_plt = 1; |
1181 | 0 | h->plt.refcount = 1; |
1182 | 0 | } |
1183 | 0 | else |
1184 | 0 | h->plt.refcount += 1; |
1185 | | |
1186 | | /* Keep track of the total PLT relocation count even if we |
1187 | | don't yet know whether the dynamic sections will be |
1188 | | created. */ |
1189 | 0 | htab->plt_reloc_count += 1; |
1190 | |
|
1191 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
1192 | 0 | { |
1193 | 0 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
1194 | 0 | return false; |
1195 | 0 | } |
1196 | 0 | } |
1197 | 0 | else if (is_got) |
1198 | 0 | { |
1199 | 0 | if (h->got.refcount <= 0) |
1200 | 0 | h->got.refcount = 1; |
1201 | 0 | else |
1202 | 0 | h->got.refcount += 1; |
1203 | 0 | } |
1204 | | |
1205 | 0 | if (is_tlsfunc) |
1206 | 0 | eh->tlsfunc_refcount += 1; |
1207 | |
|
1208 | 0 | old_tls_type = eh->tls_type; |
1209 | 0 | } |
1210 | 0 | else |
1211 | 0 | { |
1212 | | /* Allocate storage the first time. */ |
1213 | 0 | if (elf_local_got_refcounts (abfd) == NULL) |
1214 | 0 | { |
1215 | 0 | bfd_size_type size = symtab_hdr->sh_info; |
1216 | 0 | void *mem; |
1217 | |
|
1218 | 0 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1219 | 0 | if (mem == NULL) |
1220 | 0 | return false; |
1221 | 0 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; |
1222 | |
|
1223 | 0 | mem = bfd_zalloc (abfd, size); |
1224 | 0 | if (mem == NULL) |
1225 | 0 | return false; |
1226 | 0 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; |
1227 | |
|
1228 | 0 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1229 | 0 | if (mem == NULL) |
1230 | 0 | return false; |
1231 | 0 | elf_xtensa_local_tlsfunc_refcounts (abfd) |
1232 | 0 | = (bfd_signed_vma *) mem; |
1233 | 0 | } |
1234 | | |
1235 | | /* This is a global offset table entry for a local symbol. */ |
1236 | 0 | if (is_got || is_plt) |
1237 | 0 | elf_local_got_refcounts (abfd) [r_symndx] += 1; |
1238 | |
|
1239 | 0 | if (is_tlsfunc) |
1240 | 0 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; |
1241 | |
|
1242 | 0 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1243 | 0 | } |
1244 | | |
1245 | 0 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) |
1246 | 0 | tls_type |= old_tls_type; |
1247 | | /* If a TLS symbol is accessed using IE at least once, |
1248 | | there is no point to use a dynamic model for it. */ |
1249 | 0 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
1250 | 0 | && ((old_tls_type & GOT_TLS_GD) == 0 |
1251 | 0 | || (tls_type & GOT_TLS_IE) == 0)) |
1252 | 0 | { |
1253 | 0 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) |
1254 | 0 | tls_type = old_tls_type; |
1255 | 0 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) |
1256 | 0 | tls_type |= old_tls_type; |
1257 | 0 | else |
1258 | 0 | { |
1259 | 0 | _bfd_error_handler |
1260 | | /* xgettext:c-format */ |
1261 | 0 | (_("%pB: `%s' accessed both as normal and thread local symbol"), |
1262 | 0 | abfd, |
1263 | 0 | h ? h->root.root.string : "<local>"); |
1264 | 0 | return false; |
1265 | 0 | } |
1266 | 0 | } |
1267 | | |
1268 | 0 | if (old_tls_type != tls_type) |
1269 | 0 | { |
1270 | 0 | if (eh) |
1271 | 0 | eh->tls_type = tls_type; |
1272 | 0 | else |
1273 | 0 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; |
1274 | 0 | } |
1275 | 0 | } |
1276 | | |
1277 | 0 | return true; |
1278 | 0 | } |
1279 | | |
1280 | | |
1281 | | static void |
1282 | | elf_xtensa_make_sym_local (struct bfd_link_info *info, |
1283 | | struct elf_link_hash_entry *h) |
1284 | 0 | { |
1285 | 0 | if (bfd_link_pic (info)) |
1286 | 0 | { |
1287 | 0 | if (h->plt.refcount > 0) |
1288 | 0 | { |
1289 | | /* For shared objects, there's no need for PLT entries for local |
1290 | | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ |
1291 | 0 | if (h->got.refcount < 0) |
1292 | 0 | h->got.refcount = 0; |
1293 | 0 | h->got.refcount += h->plt.refcount; |
1294 | 0 | h->plt.refcount = 0; |
1295 | 0 | } |
1296 | 0 | } |
1297 | 0 | else |
1298 | 0 | { |
1299 | | /* Don't need any dynamic relocations at all. */ |
1300 | 0 | h->plt.refcount = 0; |
1301 | 0 | h->got.refcount = 0; |
1302 | 0 | } |
1303 | 0 | } |
1304 | | |
1305 | | |
1306 | | static void |
1307 | | elf_xtensa_hide_symbol (struct bfd_link_info *info, |
1308 | | struct elf_link_hash_entry *h, |
1309 | | bool force_local) |
1310 | 0 | { |
1311 | | /* For a shared link, move the plt refcount to the got refcount to leave |
1312 | | space for RELATIVE relocs. */ |
1313 | 0 | elf_xtensa_make_sym_local (info, h); |
1314 | |
|
1315 | 0 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); |
1316 | 0 | } |
1317 | | |
1318 | | |
1319 | | /* Return the section that should be marked against GC for a given |
1320 | | relocation. */ |
1321 | | |
1322 | | static asection * |
1323 | | elf_xtensa_gc_mark_hook (asection *sec, |
1324 | | struct bfd_link_info *info, |
1325 | | Elf_Internal_Rela *rel, |
1326 | | struct elf_link_hash_entry *h, |
1327 | | Elf_Internal_Sym *sym) |
1328 | 0 | { |
1329 | | /* Property sections are marked "KEEP" in the linker scripts, but they |
1330 | | should not cause other sections to be marked. (This approach relies |
1331 | | on elf_xtensa_discard_info to remove property table entries that |
1332 | | describe discarded sections. Alternatively, it might be more |
1333 | | efficient to avoid using "KEEP" in the linker scripts and instead use |
1334 | | the gc_mark_extra_sections hook to mark only the property sections |
1335 | | that describe marked sections. That alternative does not work well |
1336 | | with the current property table sections, which do not correspond |
1337 | | one-to-one with the sections they describe, but that should be fixed |
1338 | | someday.) */ |
1339 | 0 | if (xtensa_is_property_section (sec)) |
1340 | 0 | return NULL; |
1341 | | |
1342 | 0 | if (h != NULL) |
1343 | 0 | switch (ELF32_R_TYPE (rel->r_info)) |
1344 | 0 | { |
1345 | 0 | case R_XTENSA_GNU_VTINHERIT: |
1346 | 0 | case R_XTENSA_GNU_VTENTRY: |
1347 | 0 | return NULL; |
1348 | 0 | } |
1349 | | |
1350 | 0 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
1351 | 0 | } |
1352 | | |
1353 | | |
1354 | | /* Create all the dynamic sections. */ |
1355 | | |
1356 | | static bool |
1357 | | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
1358 | 0 | { |
1359 | 0 | struct elf_xtensa_link_hash_table *htab; |
1360 | 0 | flagword flags, noalloc_flags; |
1361 | |
|
1362 | 0 | htab = elf_xtensa_hash_table (info); |
1363 | 0 | if (htab == NULL) |
1364 | 0 | return false; |
1365 | | |
1366 | | /* First do all the standard stuff. */ |
1367 | 0 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) |
1368 | 0 | return false; |
1369 | | |
1370 | | /* Create any extra PLT sections in case check_relocs has already |
1371 | | been called on all the non-dynamic input files. */ |
1372 | 0 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
1373 | 0 | return false; |
1374 | | |
1375 | 0 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1376 | 0 | | SEC_LINKER_CREATED | SEC_READONLY); |
1377 | 0 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; |
1378 | | |
1379 | | /* Mark the ".got.plt" section READONLY. */ |
1380 | 0 | if (htab->elf.sgotplt == NULL |
1381 | 0 | || !bfd_set_section_flags (htab->elf.sgotplt, flags)) |
1382 | 0 | return false; |
1383 | | |
1384 | | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
1385 | 0 | htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", |
1386 | 0 | flags); |
1387 | 0 | if (htab->sgotloc == NULL |
1388 | 0 | || !bfd_set_section_alignment (htab->sgotloc, 2)) |
1389 | 0 | return false; |
1390 | | |
1391 | | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
1392 | 0 | htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", |
1393 | 0 | noalloc_flags); |
1394 | 0 | if (htab->spltlittbl == NULL |
1395 | 0 | || !bfd_set_section_alignment (htab->spltlittbl, 2)) |
1396 | 0 | return false; |
1397 | | |
1398 | 0 | return true; |
1399 | 0 | } |
1400 | | |
1401 | | |
1402 | | static bool |
1403 | | add_extra_plt_sections (struct bfd_link_info *info, int count) |
1404 | 0 | { |
1405 | 0 | bfd *dynobj = elf_hash_table (info)->dynobj; |
1406 | 0 | int chunk; |
1407 | | |
1408 | | /* Iterate over all chunks except 0 which uses the standard ".plt" and |
1409 | | ".got.plt" sections. */ |
1410 | 0 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) |
1411 | 0 | { |
1412 | 0 | char *sname; |
1413 | 0 | flagword flags; |
1414 | 0 | asection *s; |
1415 | | |
1416 | | /* Stop when we find a section has already been created. */ |
1417 | 0 | if (elf_xtensa_get_plt_section (info, chunk)) |
1418 | 0 | break; |
1419 | | |
1420 | 0 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1421 | 0 | | SEC_LINKER_CREATED | SEC_READONLY); |
1422 | |
|
1423 | 0 | sname = (char *) bfd_malloc (10); |
1424 | 0 | sprintf (sname, ".plt.%u", chunk); |
1425 | 0 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); |
1426 | 0 | if (s == NULL |
1427 | 0 | || !bfd_set_section_alignment (s, 2)) |
1428 | 0 | return false; |
1429 | | |
1430 | 0 | sname = (char *) bfd_malloc (14); |
1431 | 0 | sprintf (sname, ".got.plt.%u", chunk); |
1432 | 0 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); |
1433 | 0 | if (s == NULL |
1434 | 0 | || !bfd_set_section_alignment (s, 2)) |
1435 | 0 | return false; |
1436 | 0 | } |
1437 | | |
1438 | 0 | return true; |
1439 | 0 | } |
1440 | | |
1441 | | |
1442 | | /* Adjust a symbol defined by a dynamic object and referenced by a |
1443 | | regular object. The current definition is in some section of the |
1444 | | dynamic object, but we're not including those sections. We have to |
1445 | | change the definition to something the rest of the link can |
1446 | | understand. */ |
1447 | | |
1448 | | static bool |
1449 | | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1450 | | struct elf_link_hash_entry *h) |
1451 | 0 | { |
1452 | | /* If this is a weak symbol, and there is a real definition, the |
1453 | | processor independent code will have arranged for us to see the |
1454 | | real definition first, and we can just use the same value. */ |
1455 | 0 | if (h->is_weakalias) |
1456 | 0 | { |
1457 | 0 | struct elf_link_hash_entry *def = weakdef (h); |
1458 | 0 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
1459 | 0 | h->root.u.def.section = def->root.u.def.section; |
1460 | 0 | h->root.u.def.value = def->root.u.def.value; |
1461 | 0 | return true; |
1462 | 0 | } |
1463 | | |
1464 | | /* This is a reference to a symbol defined by a dynamic object. The |
1465 | | reference must go through the GOT, so there's no need for COPY relocs, |
1466 | | .dynbss, etc. */ |
1467 | | |
1468 | 0 | return true; |
1469 | 0 | } |
1470 | | |
1471 | | |
1472 | | static bool |
1473 | | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
1474 | 0 | { |
1475 | 0 | struct bfd_link_info *info; |
1476 | 0 | struct elf_xtensa_link_hash_table *htab; |
1477 | 0 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
1478 | |
|
1479 | 0 | if (h->root.type == bfd_link_hash_indirect) |
1480 | 0 | return true; |
1481 | | |
1482 | 0 | info = (struct bfd_link_info *) arg; |
1483 | 0 | htab = elf_xtensa_hash_table (info); |
1484 | 0 | if (htab == NULL) |
1485 | 0 | return false; |
1486 | | |
1487 | | /* If we saw any use of an IE model for this symbol, we can then optimize |
1488 | | away GOT entries for any TLSDESC_FN relocs. */ |
1489 | 0 | if ((eh->tls_type & GOT_TLS_IE) != 0) |
1490 | 0 | { |
1491 | 0 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); |
1492 | 0 | h->got.refcount -= eh->tlsfunc_refcount; |
1493 | 0 | } |
1494 | |
|
1495 | 0 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
1496 | 0 | elf_xtensa_make_sym_local (info, h); |
1497 | |
|
1498 | 0 | if (! elf_xtensa_dynamic_symbol_p (h, info) |
1499 | 0 | && h->root.type == bfd_link_hash_undefweak) |
1500 | 0 | return true; |
1501 | | |
1502 | 0 | if (h->plt.refcount > 0) |
1503 | 0 | htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
1504 | |
|
1505 | 0 | if (h->got.refcount > 0) |
1506 | 0 | htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
1507 | |
|
1508 | 0 | return true; |
1509 | 0 | } |
1510 | | |
1511 | | |
1512 | | static void |
1513 | | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
1514 | 0 | { |
1515 | 0 | struct elf_xtensa_link_hash_table *htab; |
1516 | 0 | bfd *i; |
1517 | |
|
1518 | 0 | htab = elf_xtensa_hash_table (info); |
1519 | 0 | if (htab == NULL) |
1520 | 0 | return; |
1521 | | |
1522 | 0 | for (i = info->input_bfds; i; i = i->link.next) |
1523 | 0 | { |
1524 | 0 | bfd_signed_vma *local_got_refcounts; |
1525 | 0 | bfd_size_type j, cnt; |
1526 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1527 | |
|
1528 | 0 | local_got_refcounts = elf_local_got_refcounts (i); |
1529 | 0 | if (!local_got_refcounts) |
1530 | 0 | continue; |
1531 | | |
1532 | 0 | symtab_hdr = &elf_tdata (i)->symtab_hdr; |
1533 | 0 | cnt = symtab_hdr->sh_info; |
1534 | |
|
1535 | 0 | for (j = 0; j < cnt; ++j) |
1536 | 0 | { |
1537 | | /* If we saw any use of an IE model for this symbol, we can |
1538 | | then optimize away GOT entries for any TLSDESC_FN relocs. */ |
1539 | 0 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) |
1540 | 0 | { |
1541 | 0 | bfd_signed_vma *tlsfunc_refcount |
1542 | 0 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; |
1543 | 0 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); |
1544 | 0 | local_got_refcounts[j] -= *tlsfunc_refcount; |
1545 | 0 | } |
1546 | |
|
1547 | 0 | if (local_got_refcounts[j] > 0) |
1548 | 0 | htab->elf.srelgot->size += (local_got_refcounts[j] |
1549 | 0 | * sizeof (Elf32_External_Rela)); |
1550 | 0 | } |
1551 | 0 | } |
1552 | 0 | } |
1553 | | |
1554 | | |
1555 | | /* Set the sizes of the dynamic sections. */ |
1556 | | |
1557 | | static bool |
1558 | | elf_xtensa_late_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1559 | | struct bfd_link_info *info) |
1560 | 0 | { |
1561 | 0 | struct elf_xtensa_link_hash_table *htab; |
1562 | 0 | bfd *dynobj, *abfd; |
1563 | 0 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; |
1564 | 0 | bool relplt, relgot; |
1565 | 0 | int plt_entries, plt_chunks, chunk; |
1566 | |
|
1567 | 0 | plt_entries = 0; |
1568 | 0 | plt_chunks = 0; |
1569 | |
|
1570 | 0 | htab = elf_xtensa_hash_table (info); |
1571 | 0 | if (htab == NULL) |
1572 | 0 | return false; |
1573 | | |
1574 | 0 | dynobj = elf_hash_table (info)->dynobj; |
1575 | 0 | if (dynobj == NULL) |
1576 | 0 | return true; |
1577 | 0 | srelgot = htab->elf.srelgot; |
1578 | 0 | srelplt = htab->elf.srelplt; |
1579 | |
|
1580 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
1581 | 0 | { |
1582 | 0 | BFD_ASSERT (htab->elf.srelgot != NULL |
1583 | 0 | && htab->elf.srelplt != NULL |
1584 | 0 | && htab->elf.sgot != NULL |
1585 | 0 | && htab->spltlittbl != NULL |
1586 | 0 | && htab->sgotloc != NULL); |
1587 | | |
1588 | | /* Set the contents of the .interp section to the interpreter. */ |
1589 | 0 | if (bfd_link_executable (info) && !info->nointerp) |
1590 | 0 | { |
1591 | 0 | s = bfd_get_linker_section (dynobj, ".interp"); |
1592 | 0 | if (s == NULL) |
1593 | 0 | abort (); |
1594 | 0 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
1595 | 0 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1596 | 0 | s->alloced = 1; |
1597 | 0 | } |
1598 | | |
1599 | | /* Allocate room for one word in ".got". */ |
1600 | 0 | htab->elf.sgot->size = 4; |
1601 | | |
1602 | | /* Allocate space in ".rela.got" for literals that reference global |
1603 | | symbols and space in ".rela.plt" for literals that have PLT |
1604 | | entries. */ |
1605 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
1606 | 0 | elf_xtensa_allocate_dynrelocs, |
1607 | 0 | (void *) info); |
1608 | | |
1609 | | /* If we are generating a shared object, we also need space in |
1610 | | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that |
1611 | | reference local symbols. */ |
1612 | 0 | if (bfd_link_pic (info)) |
1613 | 0 | elf_xtensa_allocate_local_got_size (info); |
1614 | | |
1615 | | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1616 | | each PLT entry, we need the PLT code plus a 4-byte literal. |
1617 | | For each chunk of ".plt", we also need two more 4-byte |
1618 | | literals, two corresponding entries in ".rela.got", and an |
1619 | | 8-byte entry in ".xt.lit.plt". */ |
1620 | 0 | spltlittbl = htab->spltlittbl; |
1621 | 0 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
1622 | 0 | plt_chunks = |
1623 | 0 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; |
1624 | | |
1625 | | /* Iterate over all the PLT chunks, including any extra sections |
1626 | | created earlier because the initial count of PLT relocations |
1627 | | was an overestimate. */ |
1628 | 0 | for (chunk = 0; |
1629 | 0 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
1630 | 0 | chunk++) |
1631 | 0 | { |
1632 | 0 | int chunk_entries; |
1633 | |
|
1634 | 0 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1635 | 0 | BFD_ASSERT (sgotplt != NULL); |
1636 | |
|
1637 | 0 | if (chunk < plt_chunks - 1) |
1638 | 0 | chunk_entries = PLT_ENTRIES_PER_CHUNK; |
1639 | 0 | else if (chunk == plt_chunks - 1) |
1640 | 0 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); |
1641 | 0 | else |
1642 | 0 | chunk_entries = 0; |
1643 | |
|
1644 | 0 | if (chunk_entries != 0) |
1645 | 0 | { |
1646 | 0 | sgotplt->size = 4 * (chunk_entries + 2); |
1647 | 0 | splt->size = PLT_ENTRY_SIZE * chunk_entries; |
1648 | 0 | srelgot->size += 2 * sizeof (Elf32_External_Rela); |
1649 | 0 | spltlittbl->size += 8; |
1650 | 0 | } |
1651 | 0 | else |
1652 | 0 | { |
1653 | 0 | sgotplt->size = 0; |
1654 | 0 | splt->size = 0; |
1655 | 0 | } |
1656 | 0 | } |
1657 | | |
1658 | | /* Allocate space in ".got.loc" to match the total size of all the |
1659 | | literal tables. */ |
1660 | 0 | sgotloc = htab->sgotloc; |
1661 | 0 | sgotloc->size = spltlittbl->size; |
1662 | 0 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
1663 | 0 | { |
1664 | 0 | if (abfd->flags & DYNAMIC) |
1665 | 0 | continue; |
1666 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
1667 | 0 | { |
1668 | 0 | if (! discarded_section (s) |
1669 | 0 | && xtensa_is_littable_section (s) |
1670 | 0 | && s != spltlittbl) |
1671 | 0 | sgotloc->size += s->size; |
1672 | 0 | } |
1673 | 0 | } |
1674 | 0 | } |
1675 | | |
1676 | | /* Allocate memory for dynamic sections. */ |
1677 | 0 | relplt = false; |
1678 | 0 | relgot = false; |
1679 | 0 | for (s = dynobj->sections; s != NULL; s = s->next) |
1680 | 0 | { |
1681 | 0 | const char *name; |
1682 | |
|
1683 | 0 | if ((s->flags & SEC_LINKER_CREATED) == 0) |
1684 | 0 | continue; |
1685 | | |
1686 | | /* It's OK to base decisions on the section name, because none |
1687 | | of the dynobj section names depend upon the input files. */ |
1688 | 0 | name = bfd_section_name (s); |
1689 | |
|
1690 | 0 | if (startswith (name, ".rela")) |
1691 | 0 | { |
1692 | 0 | if (s->size != 0) |
1693 | 0 | { |
1694 | 0 | if (strcmp (name, ".rela.plt") == 0) |
1695 | 0 | relplt = true; |
1696 | 0 | else if (strcmp (name, ".rela.got") == 0) |
1697 | 0 | relgot = true; |
1698 | | |
1699 | | /* We use the reloc_count field as a counter if we need |
1700 | | to copy relocs into the output file. */ |
1701 | 0 | s->reloc_count = 0; |
1702 | 0 | } |
1703 | 0 | } |
1704 | 0 | else if (! startswith (name, ".plt.") |
1705 | 0 | && ! startswith (name, ".got.plt.") |
1706 | 0 | && strcmp (name, ".got") != 0 |
1707 | 0 | && strcmp (name, ".plt") != 0 |
1708 | 0 | && strcmp (name, ".got.plt") != 0 |
1709 | 0 | && strcmp (name, ".xt.lit.plt") != 0 |
1710 | 0 | && strcmp (name, ".got.loc") != 0) |
1711 | 0 | { |
1712 | | /* It's not one of our sections, so don't allocate space. */ |
1713 | 0 | continue; |
1714 | 0 | } |
1715 | | |
1716 | 0 | if (s->size == 0) |
1717 | 0 | { |
1718 | | /* If we don't need this section, strip it from the output |
1719 | | file. We must create the ".plt*" and ".got.plt*" |
1720 | | sections in create_dynamic_sections and/or check_relocs |
1721 | | based on a conservative estimate of the PLT relocation |
1722 | | count, because the sections must be created before the |
1723 | | linker maps input sections to output sections. The |
1724 | | linker does that before size_dynamic_sections, where we |
1725 | | compute the exact size of the PLT, so there may be more |
1726 | | of these sections than are actually needed. */ |
1727 | 0 | s->flags |= SEC_EXCLUDE; |
1728 | 0 | } |
1729 | 0 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) |
1730 | 0 | { |
1731 | | /* Allocate memory for the section contents. */ |
1732 | 0 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
1733 | 0 | if (s->contents == NULL) |
1734 | 0 | return false; |
1735 | 0 | s->alloced = 1; |
1736 | 0 | } |
1737 | 0 | } |
1738 | | |
1739 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
1740 | 0 | { |
1741 | | /* Add the special XTENSA_RTLD relocations now. The offsets won't be |
1742 | | known until finish_dynamic_sections, but we need to get the relocs |
1743 | | in place before they are sorted. */ |
1744 | 0 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1745 | 0 | { |
1746 | 0 | Elf_Internal_Rela irela; |
1747 | 0 | bfd_byte *loc; |
1748 | |
|
1749 | 0 | irela.r_offset = 0; |
1750 | 0 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); |
1751 | 0 | irela.r_addend = 0; |
1752 | |
|
1753 | 0 | loc = (srelgot->contents |
1754 | 0 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); |
1755 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); |
1756 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &irela, |
1757 | 0 | loc + sizeof (Elf32_External_Rela)); |
1758 | 0 | srelgot->reloc_count += 2; |
1759 | 0 | } |
1760 | | |
1761 | | /* Add some entries to the .dynamic section. We fill in the |
1762 | | values later, in elf_xtensa_finish_dynamic_sections, but we |
1763 | | must add the entries now so that we get the correct size for |
1764 | | the .dynamic section. The DT_DEBUG entry is filled in by the |
1765 | | dynamic linker and used by the debugger. */ |
1766 | 0 | #define add_dynamic_entry(TAG, VAL) \ |
1767 | 0 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
1768 | |
|
1769 | 0 | if (!_bfd_elf_add_dynamic_tags (output_bfd, info, |
1770 | 0 | relplt || relgot)) |
1771 | 0 | return false; |
1772 | | |
1773 | 0 | if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) |
1774 | 0 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1775 | 0 | return false; |
1776 | 0 | } |
1777 | 0 | #undef add_dynamic_entry |
1778 | | |
1779 | 0 | return true; |
1780 | 0 | } |
1781 | | |
1782 | | static bool |
1783 | | elf_xtensa_early_size_sections (bfd *output_bfd, struct bfd_link_info *info) |
1784 | 0 | { |
1785 | 0 | struct elf_xtensa_link_hash_table *htab; |
1786 | 0 | asection *tls_sec; |
1787 | |
|
1788 | 0 | htab = elf_xtensa_hash_table (info); |
1789 | 0 | if (htab == NULL) |
1790 | 0 | return false; |
1791 | | |
1792 | 0 | tls_sec = htab->elf.tls_sec; |
1793 | |
|
1794 | 0 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) |
1795 | 0 | { |
1796 | 0 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; |
1797 | 0 | struct bfd_link_hash_entry *bh = &tlsbase->root; |
1798 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
1799 | |
|
1800 | 0 | tlsbase->type = STT_TLS; |
1801 | 0 | if (!(_bfd_generic_link_add_one_symbol |
1802 | 0 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
1803 | 0 | tls_sec, 0, NULL, false, |
1804 | 0 | bed->collect, &bh))) |
1805 | 0 | return false; |
1806 | 0 | tlsbase->def_regular = 1; |
1807 | 0 | tlsbase->other = STV_HIDDEN; |
1808 | 0 | (*bed->elf_backend_hide_symbol) (info, tlsbase, true); |
1809 | 0 | } |
1810 | | |
1811 | 0 | return true; |
1812 | 0 | } |
1813 | | |
1814 | | |
1815 | | /* Return the base VMA address which should be subtracted from real addresses |
1816 | | when resolving @dtpoff relocation. |
1817 | | This is PT_TLS segment p_vaddr. */ |
1818 | | |
1819 | | static bfd_vma |
1820 | | dtpoff_base (struct bfd_link_info *info) |
1821 | 0 | { |
1822 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
1823 | 0 | if (elf_hash_table (info)->tls_sec == NULL) |
1824 | 0 | return 0; |
1825 | 0 | return elf_hash_table (info)->tls_sec->vma; |
1826 | 0 | } |
1827 | | |
1828 | | /* Return the relocation value for @tpoff relocation |
1829 | | if STT_TLS virtual address is ADDRESS. */ |
1830 | | |
1831 | | static bfd_vma |
1832 | | tpoff (struct bfd_link_info *info, bfd_vma address) |
1833 | 0 | { |
1834 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
1835 | 0 | bfd_vma base; |
1836 | | |
1837 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
1838 | 0 | if (htab->tls_sec == NULL) |
1839 | 0 | return 0; |
1840 | 0 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); |
1841 | 0 | return address - htab->tls_sec->vma + base; |
1842 | 0 | } |
1843 | | |
1844 | | /* Perform the specified relocation. The instruction at (contents + address) |
1845 | | is modified to set one operand to represent the value in "relocation". The |
1846 | | operand position is determined by the relocation type recorded in the |
1847 | | howto. */ |
1848 | | |
1849 | 34 | #define CALL_SEGMENT_BITS (30) |
1850 | | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
1851 | | |
1852 | | static bfd_reloc_status_type |
1853 | | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1854 | | bfd *abfd, |
1855 | | asection *input_section, |
1856 | | bfd_vma relocation, |
1857 | | bfd_byte *contents, |
1858 | | bfd_vma address, |
1859 | | bool is_weak_undef, |
1860 | | char **error_message) |
1861 | 3.10k | { |
1862 | 3.10k | xtensa_format fmt; |
1863 | 3.10k | xtensa_opcode opcode; |
1864 | 3.10k | xtensa_isa isa = xtensa_default_isa; |
1865 | 3.10k | static xtensa_insnbuf ibuff = NULL; |
1866 | 3.10k | static xtensa_insnbuf sbuff = NULL; |
1867 | 3.10k | bfd_vma self_address; |
1868 | 3.10k | bfd_size_type input_size; |
1869 | 3.10k | int opnd, slot; |
1870 | 3.10k | uint32 newval; |
1871 | | |
1872 | 3.10k | if (!ibuff) |
1873 | 1 | { |
1874 | 1 | ibuff = xtensa_insnbuf_alloc (isa); |
1875 | 1 | sbuff = xtensa_insnbuf_alloc (isa); |
1876 | 1 | } |
1877 | | |
1878 | 3.10k | input_size = bfd_get_section_limit (abfd, input_section); |
1879 | | |
1880 | | /* Calculate the PC address for this instruction. */ |
1881 | 3.10k | self_address = (input_section->output_section->vma |
1882 | 3.10k | + input_section->output_offset |
1883 | 3.10k | + address); |
1884 | | |
1885 | 3.10k | switch (howto->type) |
1886 | 3.10k | { |
1887 | 232 | case R_XTENSA_NONE: |
1888 | 233 | case R_XTENSA_DIFF8: |
1889 | 234 | case R_XTENSA_DIFF16: |
1890 | 235 | case R_XTENSA_DIFF32: |
1891 | 238 | case R_XTENSA_PDIFF8: |
1892 | 239 | case R_XTENSA_PDIFF16: |
1893 | 240 | case R_XTENSA_PDIFF32: |
1894 | 241 | case R_XTENSA_NDIFF8: |
1895 | 242 | case R_XTENSA_NDIFF16: |
1896 | 243 | case R_XTENSA_NDIFF32: |
1897 | 244 | case R_XTENSA_TLS_FUNC: |
1898 | 246 | case R_XTENSA_TLS_ARG: |
1899 | 625 | case R_XTENSA_TLS_CALL: |
1900 | 625 | return bfd_reloc_ok; |
1901 | | |
1902 | 26 | case R_XTENSA_ASM_EXPAND: |
1903 | 26 | if (!is_weak_undef) |
1904 | 25 | { |
1905 | | /* Check for windowed CALL across a 1GB boundary. */ |
1906 | 25 | opcode = get_expanded_call_opcode (contents + address, |
1907 | 25 | input_size - address, 0); |
1908 | 25 | if (is_windowed_call_opcode (opcode)) |
1909 | 0 | { |
1910 | 0 | if ((self_address >> CALL_SEGMENT_BITS) |
1911 | 0 | != (relocation >> CALL_SEGMENT_BITS)) |
1912 | 0 | { |
1913 | 0 | *error_message = "windowed longcall crosses 1GB boundary; " |
1914 | 0 | "return may fail"; |
1915 | 0 | return bfd_reloc_dangerous; |
1916 | 0 | } |
1917 | 0 | } |
1918 | 25 | } |
1919 | 26 | return bfd_reloc_ok; |
1920 | | |
1921 | 384 | case R_XTENSA_ASM_SIMPLIFY: |
1922 | 384 | { |
1923 | | /* Convert the L32R/CALLX to CALL. */ |
1924 | 384 | bfd_reloc_status_type retval = |
1925 | 384 | elf_xtensa_do_asm_simplify (contents, address, input_size, |
1926 | 384 | error_message); |
1927 | 384 | if (retval != bfd_reloc_ok) |
1928 | 384 | return bfd_reloc_dangerous; |
1929 | | |
1930 | | /* The CALL needs to be relocated. Continue below for that part. */ |
1931 | 0 | address += 3; |
1932 | 0 | self_address += 3; |
1933 | 0 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
1934 | 0 | } |
1935 | 0 | break; |
1936 | | |
1937 | 747 | case R_XTENSA_32: |
1938 | 747 | { |
1939 | 747 | bfd_vma x; |
1940 | 747 | x = bfd_get_32 (abfd, contents + address); |
1941 | 747 | x = x + relocation; |
1942 | 747 | bfd_put_32 (abfd, x, contents + address); |
1943 | 747 | } |
1944 | 747 | return bfd_reloc_ok; |
1945 | | |
1946 | 1 | case R_XTENSA_32_PCREL: |
1947 | 1 | bfd_put_32 (abfd, relocation - self_address, contents + address); |
1948 | 1 | return bfd_reloc_ok; |
1949 | | |
1950 | 1 | case R_XTENSA_PLT: |
1951 | 2 | case R_XTENSA_TLSDESC_FN: |
1952 | 3 | case R_XTENSA_TLSDESC_ARG: |
1953 | 28 | case R_XTENSA_TLS_DTPOFF: |
1954 | 32 | case R_XTENSA_TLS_TPOFF: |
1955 | 32 | bfd_put_32 (abfd, relocation, contents + address); |
1956 | 32 | return bfd_reloc_ok; |
1957 | 3.10k | } |
1958 | | |
1959 | | /* Only instruction slot-specific relocations handled below.... */ |
1960 | 1.28k | slot = get_relocation_slot (howto->type); |
1961 | 1.28k | if (slot == XTENSA_UNDEFINED) |
1962 | 0 | { |
1963 | 0 | *error_message = "unexpected relocation"; |
1964 | 0 | return bfd_reloc_dangerous; |
1965 | 0 | } |
1966 | | |
1967 | 1.28k | if (input_size <= address) |
1968 | 0 | return bfd_reloc_outofrange; |
1969 | | /* Read the instruction into a buffer and decode the opcode. */ |
1970 | 1.28k | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, |
1971 | 1.28k | input_size - address); |
1972 | 1.28k | fmt = xtensa_format_decode (isa, ibuff); |
1973 | 1.28k | if (fmt == XTENSA_UNDEFINED) |
1974 | 13 | { |
1975 | 13 | *error_message = "cannot decode instruction format"; |
1976 | 13 | return bfd_reloc_dangerous; |
1977 | 13 | } |
1978 | | |
1979 | 1.27k | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
1980 | | |
1981 | 1.27k | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
1982 | 1.27k | if (opcode == XTENSA_UNDEFINED) |
1983 | 385 | { |
1984 | 385 | *error_message = "cannot decode instruction opcode"; |
1985 | 385 | return bfd_reloc_dangerous; |
1986 | 385 | } |
1987 | | |
1988 | | /* Check for opcode-specific "alternate" relocations. */ |
1989 | 890 | if (is_alt_relocation (howto->type)) |
1990 | 3 | { |
1991 | 3 | if (opcode == get_l32r_opcode ()) |
1992 | 0 | { |
1993 | | /* Handle the special-case of non-PC-relative L32R instructions. */ |
1994 | 0 | bfd *output_bfd = input_section->output_section->owner; |
1995 | 0 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); |
1996 | 0 | if (!lit4_sec) |
1997 | 0 | { |
1998 | 0 | *error_message = "relocation references missing .lit4 section"; |
1999 | 0 | return bfd_reloc_dangerous; |
2000 | 0 | } |
2001 | 0 | self_address = ((lit4_sec->vma & ~0xfff) |
2002 | 0 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ |
2003 | 0 | newval = relocation; |
2004 | 0 | opnd = 1; |
2005 | 0 | } |
2006 | 3 | else if (opcode == get_const16_opcode ()) |
2007 | 0 | { |
2008 | | /* ALT used for high 16 bits. |
2009 | | Ignore 32-bit overflow. */ |
2010 | 0 | newval = (relocation >> 16) & 0xffff; |
2011 | 0 | opnd = 1; |
2012 | 0 | } |
2013 | 3 | else |
2014 | 3 | { |
2015 | | /* No other "alternate" relocations currently defined. */ |
2016 | 3 | *error_message = "unexpected relocation"; |
2017 | 3 | return bfd_reloc_dangerous; |
2018 | 3 | } |
2019 | 3 | } |
2020 | 887 | else /* Not an "alternate" relocation.... */ |
2021 | 887 | { |
2022 | 887 | if (opcode == get_const16_opcode ()) |
2023 | 0 | { |
2024 | 0 | newval = relocation & 0xffff; |
2025 | 0 | opnd = 1; |
2026 | 0 | } |
2027 | 887 | else |
2028 | 887 | { |
2029 | | /* ...normal PC-relative relocation.... */ |
2030 | | |
2031 | | /* Determine which operand is being relocated. */ |
2032 | 887 | opnd = get_relocation_opnd (opcode, howto->type); |
2033 | 887 | if (opnd == XTENSA_UNDEFINED) |
2034 | 817 | { |
2035 | 817 | *error_message = "unexpected relocation"; |
2036 | 817 | return bfd_reloc_dangerous; |
2037 | 817 | } |
2038 | | |
2039 | 70 | if (!howto->pc_relative) |
2040 | 0 | { |
2041 | 0 | *error_message = "expected PC-relative relocation"; |
2042 | 0 | return bfd_reloc_dangerous; |
2043 | 0 | } |
2044 | | |
2045 | 70 | newval = relocation; |
2046 | 70 | } |
2047 | 887 | } |
2048 | | |
2049 | | /* Apply the relocation. */ |
2050 | 70 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) |
2051 | 70 | || xtensa_operand_encode (isa, opcode, opnd, &newval) |
2052 | 70 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, |
2053 | 41 | sbuff, newval)) |
2054 | 29 | { |
2055 | 29 | const char *opname = xtensa_opcode_name (isa, opcode); |
2056 | 29 | const char *msg; |
2057 | | |
2058 | 29 | msg = "cannot encode"; |
2059 | 29 | if (is_direct_call_opcode (opcode)) |
2060 | 8 | { |
2061 | 8 | if ((relocation & 0x3) != 0) |
2062 | 1 | msg = "misaligned call target"; |
2063 | 7 | else |
2064 | 7 | msg = "call target out of range"; |
2065 | 8 | } |
2066 | 21 | else if (opcode == get_l32r_opcode ()) |
2067 | 2 | { |
2068 | 2 | if ((relocation & 0x3) != 0) |
2069 | 1 | msg = "misaligned literal target"; |
2070 | 1 | else if (is_alt_relocation (howto->type)) |
2071 | 0 | msg = "literal target out of range (too many literals)"; |
2072 | 1 | else if (self_address > relocation) |
2073 | 0 | msg = "literal target out of range (try using text-section-literals)"; |
2074 | 1 | else |
2075 | 1 | msg = "literal placed after use"; |
2076 | 2 | } |
2077 | | |
2078 | 29 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); |
2079 | 29 | return bfd_reloc_dangerous; |
2080 | 29 | } |
2081 | | |
2082 | | /* Check for calls across 1GB boundaries. */ |
2083 | 41 | if (is_direct_call_opcode (opcode) |
2084 | 41 | && is_windowed_call_opcode (opcode)) |
2085 | 17 | { |
2086 | 17 | if ((self_address >> CALL_SEGMENT_BITS) |
2087 | 17 | != (relocation >> CALL_SEGMENT_BITS)) |
2088 | 1 | { |
2089 | 1 | *error_message = |
2090 | 1 | "windowed call crosses 1GB boundary; return may fail"; |
2091 | 1 | return bfd_reloc_dangerous; |
2092 | 1 | } |
2093 | 17 | } |
2094 | | |
2095 | | /* Write the modified instruction back out of the buffer. */ |
2096 | 40 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); |
2097 | 40 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, |
2098 | 40 | input_size - address); |
2099 | 40 | return bfd_reloc_ok; |
2100 | 41 | } |
2101 | | |
2102 | | |
2103 | | static char * |
2104 | | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
2105 | 1.66k | { |
2106 | | /* To reduce the size of the memory leak, |
2107 | | we only use a single message buffer. */ |
2108 | 1.66k | static bfd_size_type alloc_size = 0; |
2109 | 1.66k | static char *message = NULL; |
2110 | 1.66k | bfd_size_type orig_len, len = 0; |
2111 | 1.66k | bool is_append; |
2112 | 1.66k | va_list ap; |
2113 | | |
2114 | 1.66k | va_start (ap, arglen); |
2115 | | |
2116 | 1.66k | is_append = (origmsg == message); |
2117 | | |
2118 | 1.66k | orig_len = strlen (origmsg); |
2119 | 1.66k | len = orig_len + strlen (fmt) + arglen + 20; |
2120 | 1.66k | if (len > alloc_size) |
2121 | 2 | { |
2122 | 2 | message = (char *) bfd_realloc_or_free (message, len); |
2123 | 2 | alloc_size = len; |
2124 | 2 | } |
2125 | 1.66k | if (message != NULL) |
2126 | 1.66k | { |
2127 | 1.66k | if (!is_append) |
2128 | 1.63k | memcpy (message, origmsg, orig_len); |
2129 | 1.66k | vsprintf (message + orig_len, fmt, ap); |
2130 | 1.66k | } |
2131 | 1.66k | va_end (ap); |
2132 | 1.66k | return message; |
2133 | 1.66k | } |
2134 | | |
2135 | | |
2136 | | /* This function is registered as the "special_function" in the |
2137 | | Xtensa howto for handling simplify operations. |
2138 | | bfd_perform_relocation / bfd_install_relocation use it to |
2139 | | perform (install) the specified relocation. Since this replaces the code |
2140 | | in bfd_perform_relocation, it is basically an Xtensa-specific, |
2141 | | stripped-down version of bfd_perform_relocation. */ |
2142 | | |
2143 | | static bfd_reloc_status_type |
2144 | | bfd_elf_xtensa_reloc (bfd *abfd, |
2145 | | arelent *reloc_entry, |
2146 | | asymbol *symbol, |
2147 | | void *data, |
2148 | | asection *input_section, |
2149 | | bfd *output_bfd, |
2150 | | char **error_message) |
2151 | 3.58k | { |
2152 | 3.58k | bfd_vma relocation; |
2153 | 3.58k | bfd_reloc_status_type flag; |
2154 | 3.58k | bfd_size_type octets = (reloc_entry->address |
2155 | 3.58k | * OCTETS_PER_BYTE (abfd, input_section)); |
2156 | 3.58k | bfd_vma output_base = 0; |
2157 | 3.58k | reloc_howto_type *howto = reloc_entry->howto; |
2158 | 3.58k | asection *reloc_target_output_section; |
2159 | 3.58k | bool is_weak_undef; |
2160 | | |
2161 | 3.58k | if (!xtensa_default_isa) |
2162 | 1 | xtensa_default_isa = xtensa_isa_init (0, 0); |
2163 | | |
2164 | | /* ELF relocs are against symbols. If we are producing relocatable |
2165 | | output, and the reloc is against an external symbol, the resulting |
2166 | | reloc will also be against the same symbol. In such a case, we |
2167 | | don't want to change anything about the way the reloc is handled, |
2168 | | since it will all be done at final link time. This test is similar |
2169 | | to what bfd_elf_generic_reloc does except that it lets relocs with |
2170 | | howto->partial_inplace go through even if the addend is non-zero. |
2171 | | (The real problem is that partial_inplace is set for XTENSA_32 |
2172 | | relocs to begin with, but that's a long story and there's little we |
2173 | | can do about it now....) */ |
2174 | | |
2175 | 3.58k | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
2176 | 0 | { |
2177 | 0 | reloc_entry->address += input_section->output_offset; |
2178 | 0 | return bfd_reloc_ok; |
2179 | 0 | } |
2180 | | |
2181 | | /* Is the address of the relocation really within the section? */ |
2182 | 3.58k | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
2183 | 479 | return bfd_reloc_outofrange; |
2184 | | |
2185 | | /* Work out which section the relocation is targeted at and the |
2186 | | initial relocation command value. */ |
2187 | | |
2188 | | /* Get symbol value. (Common symbols are special.) */ |
2189 | 3.10k | if (bfd_is_com_section (symbol->section)) |
2190 | 0 | relocation = 0; |
2191 | 3.10k | else |
2192 | 3.10k | relocation = symbol->value; |
2193 | | |
2194 | 3.10k | reloc_target_output_section = symbol->section->output_section; |
2195 | | |
2196 | | /* Convert input-section-relative symbol value to absolute. */ |
2197 | 3.10k | if ((output_bfd && !howto->partial_inplace) |
2198 | 3.10k | || reloc_target_output_section == NULL) |
2199 | 0 | output_base = 0; |
2200 | 3.10k | else |
2201 | 3.10k | output_base = reloc_target_output_section->vma; |
2202 | | |
2203 | 3.10k | relocation += output_base + symbol->section->output_offset; |
2204 | | |
2205 | | /* Add in supplied addend. */ |
2206 | 3.10k | relocation += reloc_entry->addend; |
2207 | | |
2208 | | /* Here the variable relocation holds the final address of the |
2209 | | symbol we are relocating against, plus any addend. */ |
2210 | 3.10k | if (output_bfd) |
2211 | 0 | { |
2212 | 0 | if (!howto->partial_inplace) |
2213 | 0 | { |
2214 | | /* This is a partial relocation, and we want to apply the relocation |
2215 | | to the reloc entry rather than the raw data. Everything except |
2216 | | relocations against section symbols has already been handled |
2217 | | above. */ |
2218 | |
|
2219 | 0 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2220 | 0 | reloc_entry->addend = relocation; |
2221 | 0 | reloc_entry->address += input_section->output_offset; |
2222 | 0 | return bfd_reloc_ok; |
2223 | 0 | } |
2224 | 0 | else |
2225 | 0 | { |
2226 | 0 | reloc_entry->address += input_section->output_offset; |
2227 | 0 | reloc_entry->addend = 0; |
2228 | 0 | } |
2229 | 0 | } |
2230 | | |
2231 | 3.10k | is_weak_undef = (bfd_is_und_section (symbol->section) |
2232 | 3.10k | && (symbol->flags & BSF_WEAK) != 0); |
2233 | 3.10k | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, |
2234 | 3.10k | (bfd_byte *) data, (bfd_vma) octets, |
2235 | 3.10k | is_weak_undef, error_message); |
2236 | | |
2237 | 3.10k | if (flag == bfd_reloc_dangerous) |
2238 | 1.63k | { |
2239 | | /* Add the symbol name to the error message. */ |
2240 | 1.63k | if (! *error_message) |
2241 | 0 | *error_message = ""; |
2242 | 1.63k | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", |
2243 | 1.63k | strlen (symbol->name) + 17, |
2244 | 1.63k | symbol->name, |
2245 | 1.63k | (unsigned long) reloc_entry->addend); |
2246 | 1.63k | } |
2247 | | |
2248 | 3.10k | return flag; |
2249 | 3.10k | } |
2250 | | |
2251 | | int xtensa_abi_choice (void) |
2252 | 0 | { |
2253 | 0 | if (elf32xtensa_abi == XTHAL_ABI_UNDEFINED) |
2254 | 0 | return XSHAL_ABI; |
2255 | 0 | else |
2256 | 0 | return elf32xtensa_abi; |
2257 | 0 | } |
2258 | | |
2259 | | /* Set up an entry in the procedure linkage table. */ |
2260 | | |
2261 | | static bfd_vma |
2262 | | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
2263 | | bfd *output_bfd, |
2264 | | unsigned reloc_index) |
2265 | 0 | { |
2266 | 0 | asection *splt, *sgotplt; |
2267 | 0 | bfd_vma plt_base, got_base; |
2268 | 0 | bfd_vma code_offset, lit_offset, abi_offset; |
2269 | 0 | int chunk; |
2270 | 0 | int abi = xtensa_abi_choice (); |
2271 | |
|
2272 | 0 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; |
2273 | 0 | splt = elf_xtensa_get_plt_section (info, chunk); |
2274 | 0 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
2275 | 0 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2276 | |
|
2277 | 0 | plt_base = splt->output_section->vma + splt->output_offset; |
2278 | 0 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; |
2279 | |
|
2280 | 0 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; |
2281 | 0 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; |
2282 | | |
2283 | | /* Fill in the literal entry. This is the offset of the dynamic |
2284 | | relocation entry. */ |
2285 | 0 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), |
2286 | 0 | sgotplt->contents + lit_offset); |
2287 | | |
2288 | | /* Fill in the entry in the procedure linkage table. */ |
2289 | 0 | memcpy (splt->contents + code_offset, |
2290 | 0 | (bfd_big_endian (output_bfd) |
2291 | 0 | ? elf_xtensa_be_plt_entry[abi != XTHAL_ABI_WINDOWED] |
2292 | 0 | : elf_xtensa_le_plt_entry[abi != XTHAL_ABI_WINDOWED]), |
2293 | 0 | PLT_ENTRY_SIZE); |
2294 | 0 | abi_offset = abi == XTHAL_ABI_WINDOWED ? 3 : 0; |
2295 | 0 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, |
2296 | 0 | plt_base + code_offset + abi_offset), |
2297 | 0 | splt->contents + code_offset + abi_offset + 1); |
2298 | 0 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, |
2299 | 0 | plt_base + code_offset + abi_offset + 3), |
2300 | 0 | splt->contents + code_offset + abi_offset + 4); |
2301 | 0 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, |
2302 | 0 | plt_base + code_offset + abi_offset + 6), |
2303 | 0 | splt->contents + code_offset + abi_offset + 7); |
2304 | |
|
2305 | 0 | return plt_base + code_offset; |
2306 | 0 | } |
2307 | | |
2308 | | |
2309 | | static bool get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2310 | | |
2311 | | static bool |
2312 | | replace_tls_insn (Elf_Internal_Rela *rel, |
2313 | | bfd *abfd, |
2314 | | asection *input_section, |
2315 | | bfd_byte *contents, |
2316 | | bool is_ld_model, |
2317 | | char **error_message) |
2318 | 0 | { |
2319 | 0 | static xtensa_insnbuf ibuff = NULL; |
2320 | 0 | static xtensa_insnbuf sbuff = NULL; |
2321 | 0 | xtensa_isa isa = xtensa_default_isa; |
2322 | 0 | xtensa_format fmt; |
2323 | 0 | xtensa_opcode old_op, new_op; |
2324 | 0 | bfd_size_type input_size; |
2325 | 0 | int r_type; |
2326 | 0 | unsigned dest_reg, src_reg; |
2327 | |
|
2328 | 0 | if (ibuff == NULL) |
2329 | 0 | { |
2330 | 0 | ibuff = xtensa_insnbuf_alloc (isa); |
2331 | 0 | sbuff = xtensa_insnbuf_alloc (isa); |
2332 | 0 | } |
2333 | |
|
2334 | 0 | input_size = bfd_get_section_limit (abfd, input_section); |
2335 | | |
2336 | | /* Read the instruction into a buffer and decode the opcode. */ |
2337 | 0 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, |
2338 | 0 | input_size - rel->r_offset); |
2339 | 0 | fmt = xtensa_format_decode (isa, ibuff); |
2340 | 0 | if (fmt == XTENSA_UNDEFINED) |
2341 | 0 | { |
2342 | 0 | *error_message = "cannot decode instruction format"; |
2343 | 0 | return false; |
2344 | 0 | } |
2345 | | |
2346 | 0 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); |
2347 | 0 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); |
2348 | |
|
2349 | 0 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); |
2350 | 0 | if (old_op == XTENSA_UNDEFINED) |
2351 | 0 | { |
2352 | 0 | *error_message = "cannot decode instruction opcode"; |
2353 | 0 | return false; |
2354 | 0 | } |
2355 | | |
2356 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
2357 | 0 | switch (r_type) |
2358 | 0 | { |
2359 | 0 | case R_XTENSA_TLS_FUNC: |
2360 | 0 | case R_XTENSA_TLS_ARG: |
2361 | 0 | if (old_op != get_l32r_opcode () |
2362 | 0 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, |
2363 | 0 | sbuff, &dest_reg) != 0) |
2364 | 0 | { |
2365 | 0 | *error_message = "cannot extract L32R destination for TLS access"; |
2366 | 0 | return false; |
2367 | 0 | } |
2368 | 0 | break; |
2369 | | |
2370 | 0 | case R_XTENSA_TLS_CALL: |
2371 | 0 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) |
2372 | 0 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, |
2373 | 0 | sbuff, &src_reg) != 0) |
2374 | 0 | { |
2375 | 0 | *error_message = "cannot extract CALLXn operands for TLS access"; |
2376 | 0 | return false; |
2377 | 0 | } |
2378 | 0 | break; |
2379 | | |
2380 | 0 | default: |
2381 | 0 | abort (); |
2382 | 0 | } |
2383 | | |
2384 | 0 | if (is_ld_model) |
2385 | 0 | { |
2386 | 0 | switch (r_type) |
2387 | 0 | { |
2388 | 0 | case R_XTENSA_TLS_FUNC: |
2389 | 0 | case R_XTENSA_TLS_ARG: |
2390 | | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older |
2391 | | versions of Xtensa). */ |
2392 | 0 | new_op = xtensa_opcode_lookup (isa, "nop"); |
2393 | 0 | if (new_op == XTENSA_UNDEFINED) |
2394 | 0 | { |
2395 | 0 | new_op = xtensa_opcode_lookup (isa, "or"); |
2396 | 0 | if (new_op == XTENSA_UNDEFINED |
2397 | 0 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 |
2398 | 0 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, |
2399 | 0 | sbuff, 1) != 0 |
2400 | 0 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, |
2401 | 0 | sbuff, 1) != 0 |
2402 | 0 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, |
2403 | 0 | sbuff, 1) != 0) |
2404 | 0 | { |
2405 | 0 | *error_message = "cannot encode OR for TLS access"; |
2406 | 0 | return false; |
2407 | 0 | } |
2408 | 0 | } |
2409 | 0 | else |
2410 | 0 | { |
2411 | 0 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) |
2412 | 0 | { |
2413 | 0 | *error_message = "cannot encode NOP for TLS access"; |
2414 | 0 | return false; |
2415 | 0 | } |
2416 | 0 | } |
2417 | 0 | break; |
2418 | | |
2419 | 0 | case R_XTENSA_TLS_CALL: |
2420 | | /* Read THREADPTR into the CALLX's return value register. */ |
2421 | 0 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); |
2422 | 0 | if (new_op == XTENSA_UNDEFINED |
2423 | 0 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 |
2424 | 0 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, |
2425 | 0 | sbuff, dest_reg + 2) != 0) |
2426 | 0 | { |
2427 | 0 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; |
2428 | 0 | return false; |
2429 | 0 | } |
2430 | 0 | break; |
2431 | 0 | } |
2432 | 0 | } |
2433 | 0 | else |
2434 | 0 | { |
2435 | 0 | switch (r_type) |
2436 | 0 | { |
2437 | 0 | case R_XTENSA_TLS_FUNC: |
2438 | 0 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); |
2439 | 0 | if (new_op == XTENSA_UNDEFINED |
2440 | 0 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 |
2441 | 0 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, |
2442 | 0 | sbuff, dest_reg) != 0) |
2443 | 0 | { |
2444 | 0 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; |
2445 | 0 | return false; |
2446 | 0 | } |
2447 | 0 | break; |
2448 | | |
2449 | 0 | case R_XTENSA_TLS_ARG: |
2450 | | /* Nothing to do. Keep the original L32R instruction. */ |
2451 | 0 | return true; |
2452 | | |
2453 | 0 | case R_XTENSA_TLS_CALL: |
2454 | | /* Add the CALLX's src register (holding the THREADPTR value) |
2455 | | to the first argument register (holding the offset) and put |
2456 | | the result in the CALLX's return value register. */ |
2457 | 0 | new_op = xtensa_opcode_lookup (isa, "add"); |
2458 | 0 | if (new_op == XTENSA_UNDEFINED |
2459 | 0 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 |
2460 | 0 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, |
2461 | 0 | sbuff, dest_reg + 2) != 0 |
2462 | 0 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, |
2463 | 0 | sbuff, dest_reg + 2) != 0 |
2464 | 0 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, |
2465 | 0 | sbuff, src_reg) != 0) |
2466 | 0 | { |
2467 | 0 | *error_message = "cannot encode ADD for TLS access"; |
2468 | 0 | return false; |
2469 | 0 | } |
2470 | 0 | break; |
2471 | 0 | } |
2472 | 0 | } |
2473 | | |
2474 | 0 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); |
2475 | 0 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, |
2476 | 0 | input_size - rel->r_offset); |
2477 | |
|
2478 | 0 | return true; |
2479 | 0 | } |
2480 | | |
2481 | | |
2482 | | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ |
2483 | 0 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ |
2484 | 0 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ |
2485 | 0 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ |
2486 | 0 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ |
2487 | 0 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ |
2488 | 0 | || (R_TYPE) == R_XTENSA_TLS_ARG \ |
2489 | 0 | || (R_TYPE) == R_XTENSA_TLS_CALL) |
2490 | | |
2491 | | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
2492 | | both relocatable and final links. */ |
2493 | | |
2494 | | static int |
2495 | | elf_xtensa_relocate_section (bfd *output_bfd, |
2496 | | struct bfd_link_info *info, |
2497 | | bfd *input_bfd, |
2498 | | asection *input_section, |
2499 | | bfd_byte *contents, |
2500 | | Elf_Internal_Rela *relocs, |
2501 | | Elf_Internal_Sym *local_syms, |
2502 | | asection **local_sections) |
2503 | 0 | { |
2504 | 0 | struct elf_xtensa_link_hash_table *htab; |
2505 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2506 | 0 | Elf_Internal_Rela *rel; |
2507 | 0 | Elf_Internal_Rela *relend; |
2508 | 0 | struct elf_link_hash_entry **sym_hashes; |
2509 | 0 | property_table_entry *lit_table = 0; |
2510 | 0 | int ltblsize = 0; |
2511 | 0 | char *local_got_tls_types; |
2512 | 0 | char *error_message = NULL; |
2513 | 0 | bfd_size_type input_size; |
2514 | 0 | int tls_type; |
2515 | |
|
2516 | 0 | if (!xtensa_default_isa) |
2517 | 0 | xtensa_default_isa = xtensa_isa_init (0, 0); |
2518 | |
|
2519 | 0 | if (!is_xtensa_elf (input_bfd)) |
2520 | 0 | { |
2521 | 0 | bfd_set_error (bfd_error_wrong_format); |
2522 | 0 | return false; |
2523 | 0 | } |
2524 | | |
2525 | 0 | htab = elf_xtensa_hash_table (info); |
2526 | 0 | if (htab == NULL) |
2527 | 0 | return false; |
2528 | | |
2529 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2530 | 0 | sym_hashes = elf_sym_hashes (input_bfd); |
2531 | 0 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
2532 | |
|
2533 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
2534 | 0 | { |
2535 | 0 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, |
2536 | 0 | &lit_table, XTENSA_LIT_SEC_NAME, |
2537 | 0 | true); |
2538 | 0 | if (ltblsize < 0) |
2539 | 0 | return false; |
2540 | 0 | } |
2541 | | |
2542 | 0 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2543 | |
|
2544 | 0 | rel = relocs; |
2545 | 0 | relend = relocs + input_section->reloc_count; |
2546 | 0 | for (; rel < relend; rel++) |
2547 | 0 | { |
2548 | 0 | int r_type; |
2549 | 0 | reloc_howto_type *howto; |
2550 | 0 | unsigned long r_symndx; |
2551 | 0 | struct elf_link_hash_entry *h; |
2552 | 0 | Elf_Internal_Sym *sym; |
2553 | 0 | char sym_type; |
2554 | 0 | const char *name; |
2555 | 0 | asection *sec; |
2556 | 0 | bfd_vma relocation; |
2557 | 0 | bfd_reloc_status_type r; |
2558 | 0 | bool is_weak_undef; |
2559 | 0 | bool unresolved_reloc; |
2560 | 0 | bool warned; |
2561 | 0 | bool dynamic_symbol; |
2562 | |
|
2563 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
2564 | 0 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT |
2565 | 0 | || r_type == (int) R_XTENSA_GNU_VTENTRY) |
2566 | 0 | continue; |
2567 | | |
2568 | 0 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) |
2569 | 0 | { |
2570 | 0 | bfd_set_error (bfd_error_bad_value); |
2571 | 0 | return false; |
2572 | 0 | } |
2573 | 0 | howto = &elf_howto_table[r_type]; |
2574 | |
|
2575 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
2576 | |
|
2577 | 0 | h = NULL; |
2578 | 0 | sym = NULL; |
2579 | 0 | sec = NULL; |
2580 | 0 | is_weak_undef = false; |
2581 | 0 | unresolved_reloc = false; |
2582 | 0 | warned = false; |
2583 | |
|
2584 | 0 | if (howto->partial_inplace && !bfd_link_relocatable (info)) |
2585 | 0 | { |
2586 | | /* Because R_XTENSA_32 was made partial_inplace to fix some |
2587 | | problems with DWARF info in partial links, there may be |
2588 | | an addend stored in the contents. Take it out of there |
2589 | | and move it back into the addend field of the reloc. */ |
2590 | 0 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); |
2591 | 0 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); |
2592 | 0 | } |
2593 | |
|
2594 | 0 | if (r_symndx < symtab_hdr->sh_info) |
2595 | 0 | { |
2596 | 0 | sym = local_syms + r_symndx; |
2597 | 0 | sym_type = ELF32_ST_TYPE (sym->st_info); |
2598 | 0 | sec = local_sections[r_symndx]; |
2599 | 0 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
2600 | 0 | } |
2601 | 0 | else |
2602 | 0 | { |
2603 | 0 | bool ignored; |
2604 | |
|
2605 | 0 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2606 | 0 | r_symndx, symtab_hdr, sym_hashes, |
2607 | 0 | h, sec, relocation, |
2608 | 0 | unresolved_reloc, warned, ignored); |
2609 | | |
2610 | 0 | if (relocation == 0 |
2611 | 0 | && !unresolved_reloc |
2612 | 0 | && h->root.type == bfd_link_hash_undefweak) |
2613 | 0 | is_weak_undef = true; |
2614 | |
|
2615 | 0 | sym_type = h->type; |
2616 | 0 | } |
2617 | | |
2618 | 0 | if (sec != NULL && discarded_section (sec)) |
2619 | 0 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
2620 | 0 | rel, 1, relend, howto, 0, contents); |
2621 | |
|
2622 | 0 | if (bfd_link_relocatable (info)) |
2623 | 0 | { |
2624 | 0 | bfd_vma dest_addr; |
2625 | 0 | asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); |
2626 | | |
2627 | | /* This is a relocatable link. |
2628 | | 1) If the reloc is against a section symbol, adjust |
2629 | | according to the output section. |
2630 | | 2) If there is a new target for this relocation, |
2631 | | the new target will be in the same output section. |
2632 | | We adjust the relocation by the output section |
2633 | | difference. */ |
2634 | |
|
2635 | 0 | if (relaxing_section) |
2636 | 0 | { |
2637 | | /* Check if this references a section in another input file. */ |
2638 | 0 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2639 | 0 | contents)) |
2640 | 0 | return false; |
2641 | 0 | } |
2642 | | |
2643 | 0 | dest_addr = sym_sec->output_section->vma + sym_sec->output_offset |
2644 | 0 | + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; |
2645 | |
|
2646 | 0 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
2647 | 0 | { |
2648 | 0 | error_message = NULL; |
2649 | | /* Convert ASM_SIMPLIFY into the simpler relocation |
2650 | | so that they never escape a relaxing link. */ |
2651 | 0 | r = contract_asm_expansion (contents, input_size, rel, |
2652 | 0 | &error_message); |
2653 | 0 | if (r != bfd_reloc_ok) |
2654 | 0 | (*info->callbacks->reloc_dangerous) |
2655 | 0 | (info, error_message, |
2656 | 0 | input_bfd, input_section, rel->r_offset); |
2657 | |
|
2658 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
2659 | 0 | } |
2660 | | |
2661 | | /* This is a relocatable link, so we don't have to change |
2662 | | anything unless the reloc is against a section symbol, |
2663 | | in which case we have to adjust according to where the |
2664 | | section symbol winds up in the output section. */ |
2665 | 0 | if (r_symndx < symtab_hdr->sh_info) |
2666 | 0 | { |
2667 | 0 | sym = local_syms + r_symndx; |
2668 | 0 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
2669 | 0 | { |
2670 | 0 | sec = local_sections[r_symndx]; |
2671 | 0 | rel->r_addend += sec->output_offset + sym->st_value; |
2672 | 0 | } |
2673 | 0 | } |
2674 | | |
2675 | | /* If there is an addend with a partial_inplace howto, |
2676 | | then move the addend to the contents. This is a hack |
2677 | | to work around problems with DWARF in relocatable links |
2678 | | with some previous version of BFD. Now we can't easily get |
2679 | | rid of the hack without breaking backward compatibility.... */ |
2680 | 0 | r = bfd_reloc_ok; |
2681 | 0 | howto = &elf_howto_table[r_type]; |
2682 | 0 | if (howto->partial_inplace && rel->r_addend) |
2683 | 0 | { |
2684 | 0 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, |
2685 | 0 | rel->r_addend, contents, |
2686 | 0 | rel->r_offset, false, |
2687 | 0 | &error_message); |
2688 | 0 | rel->r_addend = 0; |
2689 | 0 | } |
2690 | 0 | else |
2691 | 0 | { |
2692 | | /* Put the correct bits in the target instruction, even |
2693 | | though the relocation will still be present in the output |
2694 | | file. This makes disassembly clearer, as well as |
2695 | | allowing loadable kernel modules to work without needing |
2696 | | relocations on anything other than calls and l32r's. */ |
2697 | | |
2698 | | /* If it is not in the same section, there is nothing we can do. */ |
2699 | 0 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && |
2700 | 0 | sym_sec->output_section == input_section->output_section) |
2701 | 0 | { |
2702 | 0 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, |
2703 | 0 | dest_addr, contents, |
2704 | 0 | rel->r_offset, false, |
2705 | 0 | &error_message); |
2706 | 0 | } |
2707 | 0 | } |
2708 | 0 | if (r != bfd_reloc_ok) |
2709 | 0 | (*info->callbacks->reloc_dangerous) |
2710 | 0 | (info, error_message, |
2711 | 0 | input_bfd, input_section, rel->r_offset); |
2712 | | |
2713 | | /* Done with work for relocatable link; continue with next reloc. */ |
2714 | 0 | continue; |
2715 | 0 | } |
2716 | | |
2717 | | /* This is a final link. */ |
2718 | | |
2719 | 0 | if (relaxing_section) |
2720 | 0 | { |
2721 | | /* Check if this references a section in another input file. */ |
2722 | 0 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2723 | 0 | &relocation); |
2724 | 0 | } |
2725 | | |
2726 | | /* Sanity check the address. */ |
2727 | 0 | if (rel->r_offset >= input_size |
2728 | 0 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2729 | 0 | { |
2730 | 0 | _bfd_error_handler |
2731 | | /* xgettext:c-format */ |
2732 | 0 | (_("%pB(%pA+%#" PRIx64 "): " |
2733 | 0 | "relocation offset out of range (size=%#" PRIx64 ")"), |
2734 | 0 | input_bfd, input_section, (uint64_t) rel->r_offset, |
2735 | 0 | (uint64_t) input_size); |
2736 | 0 | bfd_set_error (bfd_error_bad_value); |
2737 | 0 | return false; |
2738 | 0 | } |
2739 | | |
2740 | 0 | if (h != NULL) |
2741 | 0 | name = h->root.root.string; |
2742 | 0 | else |
2743 | 0 | { |
2744 | 0 | name = (bfd_elf_string_from_elf_section |
2745 | 0 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
2746 | 0 | if (name == NULL || *name == '\0') |
2747 | 0 | name = bfd_section_name (sec); |
2748 | 0 | } |
2749 | |
|
2750 | 0 | if (r_symndx != STN_UNDEF |
2751 | 0 | && r_type != R_XTENSA_NONE |
2752 | 0 | && (h == NULL |
2753 | 0 | || h->root.type == bfd_link_hash_defined |
2754 | 0 | || h->root.type == bfd_link_hash_defweak) |
2755 | 0 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) |
2756 | 0 | { |
2757 | 0 | _bfd_error_handler |
2758 | 0 | ((sym_type == STT_TLS |
2759 | | /* xgettext:c-format */ |
2760 | 0 | ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") |
2761 | | /* xgettext:c-format */ |
2762 | 0 | : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), |
2763 | 0 | input_bfd, |
2764 | 0 | input_section, |
2765 | 0 | (uint64_t) rel->r_offset, |
2766 | 0 | howto->name, |
2767 | 0 | name); |
2768 | 0 | } |
2769 | |
|
2770 | 0 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
2771 | |
|
2772 | 0 | tls_type = GOT_UNKNOWN; |
2773 | 0 | if (h) |
2774 | 0 | tls_type = elf_xtensa_hash_entry (h)->tls_type; |
2775 | 0 | else if (local_got_tls_types) |
2776 | 0 | tls_type = local_got_tls_types [r_symndx]; |
2777 | |
|
2778 | 0 | switch (r_type) |
2779 | 0 | { |
2780 | 0 | case R_XTENSA_32: |
2781 | 0 | case R_XTENSA_PLT: |
2782 | 0 | if (elf_hash_table (info)->dynamic_sections_created |
2783 | 0 | && (input_section->flags & SEC_ALLOC) != 0 |
2784 | 0 | && (dynamic_symbol || bfd_link_pic (info))) |
2785 | 0 | { |
2786 | 0 | Elf_Internal_Rela outrel; |
2787 | 0 | bfd_byte *loc; |
2788 | 0 | asection *srel; |
2789 | |
|
2790 | 0 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
2791 | 0 | srel = htab->elf.srelplt; |
2792 | 0 | else |
2793 | 0 | srel = htab->elf.srelgot; |
2794 | |
|
2795 | 0 | BFD_ASSERT (srel != NULL); |
2796 | |
|
2797 | 0 | outrel.r_offset = |
2798 | 0 | _bfd_elf_section_offset (output_bfd, info, |
2799 | 0 | input_section, rel->r_offset); |
2800 | |
|
2801 | 0 | if ((outrel.r_offset | 1) == (bfd_vma) -1) |
2802 | 0 | memset (&outrel, 0, sizeof outrel); |
2803 | 0 | else |
2804 | 0 | { |
2805 | 0 | outrel.r_offset += (input_section->output_section->vma |
2806 | 0 | + input_section->output_offset); |
2807 | | |
2808 | | /* Complain if the relocation is in a read-only section |
2809 | | and not in a literal pool. */ |
2810 | 0 | if ((input_section->flags & SEC_READONLY) != 0 |
2811 | 0 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, |
2812 | 0 | outrel.r_offset)) |
2813 | 0 | { |
2814 | 0 | error_message = |
2815 | 0 | _("dynamic relocation in read-only section"); |
2816 | 0 | (*info->callbacks->reloc_dangerous) |
2817 | 0 | (info, error_message, |
2818 | 0 | input_bfd, input_section, rel->r_offset); |
2819 | 0 | } |
2820 | |
|
2821 | 0 | if (dynamic_symbol) |
2822 | 0 | { |
2823 | 0 | outrel.r_addend = rel->r_addend; |
2824 | 0 | rel->r_addend = 0; |
2825 | |
|
2826 | 0 | if (r_type == R_XTENSA_32) |
2827 | 0 | { |
2828 | 0 | outrel.r_info = |
2829 | 0 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); |
2830 | 0 | relocation = 0; |
2831 | 0 | } |
2832 | 0 | else /* r_type == R_XTENSA_PLT */ |
2833 | 0 | { |
2834 | 0 | outrel.r_info = |
2835 | 0 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); |
2836 | | |
2837 | | /* Create the PLT entry and set the initial |
2838 | | contents of the literal entry to the address of |
2839 | | the PLT entry. */ |
2840 | 0 | relocation = |
2841 | 0 | elf_xtensa_create_plt_entry (info, output_bfd, |
2842 | 0 | srel->reloc_count); |
2843 | 0 | } |
2844 | 0 | unresolved_reloc = false; |
2845 | 0 | } |
2846 | 0 | else if (!is_weak_undef) |
2847 | 0 | { |
2848 | | /* Generate a RELATIVE relocation. */ |
2849 | 0 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); |
2850 | 0 | outrel.r_addend = 0; |
2851 | 0 | } |
2852 | 0 | else |
2853 | 0 | { |
2854 | 0 | continue; |
2855 | 0 | } |
2856 | 0 | } |
2857 | | |
2858 | 0 | loc = (srel->contents |
2859 | 0 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); |
2860 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
2861 | 0 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count |
2862 | 0 | <= srel->size); |
2863 | 0 | } |
2864 | 0 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2865 | 0 | { |
2866 | | /* This should only happen for non-PIC code, which is not |
2867 | | supposed to be used on systems with dynamic linking. |
2868 | | Just ignore these relocations. */ |
2869 | 0 | continue; |
2870 | 0 | } |
2871 | 0 | break; |
2872 | | |
2873 | 0 | case R_XTENSA_TLS_TPOFF: |
2874 | | /* Switch to LE model for local symbols in an executable. */ |
2875 | 0 | if (! bfd_link_dll (info) && ! dynamic_symbol) |
2876 | 0 | { |
2877 | 0 | relocation = tpoff (info, relocation); |
2878 | 0 | break; |
2879 | 0 | } |
2880 | | /* fall through */ |
2881 | | |
2882 | 0 | case R_XTENSA_TLSDESC_FN: |
2883 | 0 | case R_XTENSA_TLSDESC_ARG: |
2884 | 0 | { |
2885 | 0 | if (r_type == R_XTENSA_TLSDESC_FN) |
2886 | 0 | { |
2887 | 0 | if (! bfd_link_dll (info) || (tls_type & GOT_TLS_IE) != 0) |
2888 | 0 | r_type = R_XTENSA_NONE; |
2889 | 0 | } |
2890 | 0 | else if (r_type == R_XTENSA_TLSDESC_ARG) |
2891 | 0 | { |
2892 | 0 | if (bfd_link_dll (info)) |
2893 | 0 | { |
2894 | 0 | if ((tls_type & GOT_TLS_IE) != 0) |
2895 | 0 | r_type = R_XTENSA_TLS_TPOFF; |
2896 | 0 | } |
2897 | 0 | else |
2898 | 0 | { |
2899 | 0 | r_type = R_XTENSA_TLS_TPOFF; |
2900 | 0 | if (! dynamic_symbol) |
2901 | 0 | { |
2902 | 0 | relocation = tpoff (info, relocation); |
2903 | 0 | break; |
2904 | 0 | } |
2905 | 0 | } |
2906 | 0 | } |
2907 | | |
2908 | 0 | if (r_type == R_XTENSA_NONE) |
2909 | | /* Nothing to do here; skip to the next reloc. */ |
2910 | 0 | continue; |
2911 | | |
2912 | 0 | if (! elf_hash_table (info)->dynamic_sections_created) |
2913 | 0 | { |
2914 | 0 | error_message = |
2915 | 0 | _("TLS relocation invalid without dynamic sections"); |
2916 | 0 | (*info->callbacks->reloc_dangerous) |
2917 | 0 | (info, error_message, |
2918 | 0 | input_bfd, input_section, rel->r_offset); |
2919 | 0 | } |
2920 | 0 | else |
2921 | 0 | { |
2922 | 0 | Elf_Internal_Rela outrel; |
2923 | 0 | bfd_byte *loc; |
2924 | 0 | asection *srel = htab->elf.srelgot; |
2925 | 0 | int indx; |
2926 | |
|
2927 | 0 | outrel.r_offset = (input_section->output_section->vma |
2928 | 0 | + input_section->output_offset |
2929 | 0 | + rel->r_offset); |
2930 | | |
2931 | | /* Complain if the relocation is in a read-only section |
2932 | | and not in a literal pool. */ |
2933 | 0 | if ((input_section->flags & SEC_READONLY) != 0 |
2934 | 0 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, |
2935 | 0 | outrel.r_offset)) |
2936 | 0 | { |
2937 | 0 | error_message = |
2938 | 0 | _("dynamic relocation in read-only section"); |
2939 | 0 | (*info->callbacks->reloc_dangerous) |
2940 | 0 | (info, error_message, |
2941 | 0 | input_bfd, input_section, rel->r_offset); |
2942 | 0 | } |
2943 | |
|
2944 | 0 | indx = h && h->dynindx != -1 ? h->dynindx : 0; |
2945 | 0 | if (indx == 0) |
2946 | 0 | outrel.r_addend = relocation - dtpoff_base (info); |
2947 | 0 | else |
2948 | 0 | outrel.r_addend = 0; |
2949 | 0 | rel->r_addend = 0; |
2950 | |
|
2951 | 0 | outrel.r_info = ELF32_R_INFO (indx, r_type); |
2952 | 0 | relocation = 0; |
2953 | 0 | unresolved_reloc = false; |
2954 | |
|
2955 | 0 | BFD_ASSERT (srel); |
2956 | 0 | loc = (srel->contents |
2957 | 0 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); |
2958 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); |
2959 | 0 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count |
2960 | 0 | <= srel->size); |
2961 | 0 | } |
2962 | 0 | } |
2963 | 0 | break; |
2964 | | |
2965 | 0 | case R_XTENSA_TLS_DTPOFF: |
2966 | 0 | if (! bfd_link_dll (info)) |
2967 | | /* Switch from LD model to LE model. */ |
2968 | 0 | relocation = tpoff (info, relocation); |
2969 | 0 | else |
2970 | 0 | relocation -= dtpoff_base (info); |
2971 | 0 | break; |
2972 | | |
2973 | 0 | case R_XTENSA_TLS_FUNC: |
2974 | 0 | case R_XTENSA_TLS_ARG: |
2975 | 0 | case R_XTENSA_TLS_CALL: |
2976 | | /* Check if optimizing to IE or LE model. */ |
2977 | 0 | if ((tls_type & GOT_TLS_IE) != 0) |
2978 | 0 | { |
2979 | 0 | bool is_ld_model = |
2980 | 0 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); |
2981 | 0 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, |
2982 | 0 | is_ld_model, &error_message)) |
2983 | 0 | (*info->callbacks->reloc_dangerous) |
2984 | 0 | (info, error_message, |
2985 | 0 | input_bfd, input_section, rel->r_offset); |
2986 | |
|
2987 | 0 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) |
2988 | 0 | { |
2989 | | /* Skip subsequent relocations on the same instruction. */ |
2990 | 0 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) |
2991 | 0 | rel++; |
2992 | 0 | } |
2993 | 0 | } |
2994 | 0 | continue; |
2995 | | |
2996 | 0 | default: |
2997 | 0 | if (elf_hash_table (info)->dynamic_sections_created |
2998 | 0 | && dynamic_symbol && (is_operand_relocation (r_type) |
2999 | 0 | || r_type == R_XTENSA_32_PCREL)) |
3000 | 0 | { |
3001 | 0 | error_message = |
3002 | 0 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", |
3003 | 0 | strlen (name) + 2, name); |
3004 | 0 | (*info->callbacks->reloc_dangerous) |
3005 | 0 | (info, error_message, input_bfd, input_section, rel->r_offset); |
3006 | 0 | continue; |
3007 | 0 | } |
3008 | 0 | break; |
3009 | 0 | } |
3010 | | |
3011 | | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
3012 | | because such sections are not SEC_ALLOC and thus ld.so will |
3013 | | not process them. */ |
3014 | 0 | if (unresolved_reloc |
3015 | 0 | && !((input_section->flags & SEC_DEBUGGING) != 0 |
3016 | 0 | && h->def_dynamic) |
3017 | 0 | && _bfd_elf_section_offset (output_bfd, info, input_section, |
3018 | 0 | rel->r_offset) != (bfd_vma) -1) |
3019 | 0 | { |
3020 | 0 | _bfd_error_handler |
3021 | | /* xgettext:c-format */ |
3022 | 0 | (_("%pB(%pA+%#" PRIx64 "): " |
3023 | 0 | "unresolvable %s relocation against symbol `%s'"), |
3024 | 0 | input_bfd, |
3025 | 0 | input_section, |
3026 | 0 | (uint64_t) rel->r_offset, |
3027 | 0 | howto->name, |
3028 | 0 | name); |
3029 | 0 | return false; |
3030 | 0 | } |
3031 | | |
3032 | | /* TLS optimizations may have changed r_type; update "howto". */ |
3033 | 0 | howto = &elf_howto_table[r_type]; |
3034 | | |
3035 | | /* There's no point in calling bfd_perform_relocation here. |
3036 | | Just go directly to our "special function". */ |
3037 | 0 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, |
3038 | 0 | relocation + rel->r_addend, |
3039 | 0 | contents, rel->r_offset, is_weak_undef, |
3040 | 0 | &error_message); |
3041 | |
|
3042 | 0 | if (r != bfd_reloc_ok && !warned) |
3043 | 0 | { |
3044 | 0 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
3045 | 0 | BFD_ASSERT (error_message != NULL); |
3046 | |
|
3047 | 0 | if (rel->r_addend == 0) |
3048 | 0 | error_message = vsprint_msg (error_message, ": %s", |
3049 | 0 | strlen (name) + 2, name); |
3050 | 0 | else |
3051 | 0 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
3052 | 0 | strlen (name) + 22, |
3053 | 0 | name, (int) rel->r_addend); |
3054 | |
|
3055 | 0 | (*info->callbacks->reloc_dangerous) |
3056 | 0 | (info, error_message, input_bfd, input_section, rel->r_offset); |
3057 | 0 | } |
3058 | 0 | } |
3059 | | |
3060 | 0 | free (lit_table); |
3061 | 0 | input_section->reloc_done = true; |
3062 | |
|
3063 | 0 | return true; |
3064 | 0 | } |
3065 | | |
3066 | | |
3067 | | /* Finish up dynamic symbol handling. There's not much to do here since |
3068 | | the PLT and GOT entries are all set up by relocate_section. */ |
3069 | | |
3070 | | static bool |
3071 | | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3072 | | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
3073 | | struct elf_link_hash_entry *h, |
3074 | | Elf_Internal_Sym *sym) |
3075 | 0 | { |
3076 | 0 | if (h->needs_plt && !h->def_regular) |
3077 | 0 | { |
3078 | | /* Mark the symbol as undefined, rather than as defined in |
3079 | | the .plt section. Leave the value alone. */ |
3080 | 0 | sym->st_shndx = SHN_UNDEF; |
3081 | | /* If the symbol is weak, we do need to clear the value. |
3082 | | Otherwise, the PLT entry would provide a definition for |
3083 | | the symbol even if the symbol wasn't defined anywhere, |
3084 | | and so the symbol would never be NULL. */ |
3085 | 0 | if (!h->ref_regular_nonweak) |
3086 | 0 | sym->st_value = 0; |
3087 | 0 | } |
3088 | | |
3089 | | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
3090 | 0 | if (h == elf_hash_table (info)->hdynamic |
3091 | 0 | || h == elf_hash_table (info)->hgot) |
3092 | 0 | sym->st_shndx = SHN_ABS; |
3093 | |
|
3094 | 0 | return true; |
3095 | 0 | } |
3096 | | |
3097 | | |
3098 | | /* Combine adjacent literal table entries in the output. Adjacent |
3099 | | entries within each input section may have been removed during |
3100 | | relaxation, but we repeat the process here, even though it's too late |
3101 | | to shrink the output section, because it's important to minimize the |
3102 | | number of literal table entries to reduce the start-up work for the |
3103 | | runtime linker. Returns the number of remaining table entries or -1 |
3104 | | on error. */ |
3105 | | |
3106 | | static int |
3107 | | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3108 | | asection *sxtlit, |
3109 | | asection *sgotloc) |
3110 | 0 | { |
3111 | 0 | bfd_byte *contents; |
3112 | 0 | property_table_entry *table; |
3113 | 0 | bfd_size_type section_size, sgotloc_size; |
3114 | 0 | bfd_vma offset; |
3115 | 0 | int n, m, num; |
3116 | |
|
3117 | 0 | section_size = sxtlit->size; |
3118 | 0 | if (section_size == 0) |
3119 | 0 | return 0; |
3120 | | |
3121 | 0 | BFD_ASSERT (section_size % 8 == 0); |
3122 | 0 | num = section_size / 8; |
3123 | |
|
3124 | 0 | sgotloc_size = sgotloc->size; |
3125 | 0 | if (sgotloc_size != section_size) |
3126 | 0 | { |
3127 | 0 | _bfd_error_handler |
3128 | 0 | (_("internal inconsistency in size of .got.loc section")); |
3129 | 0 | return -1; |
3130 | 0 | } |
3131 | | |
3132 | 0 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3133 | 0 | if (table == 0) |
3134 | 0 | return -1; |
3135 | | |
3136 | | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this |
3137 | | propagates to the output section, where it doesn't really apply and |
3138 | | where it breaks the following call to bfd_malloc_and_get_section. */ |
3139 | 0 | sxtlit->flags &= ~SEC_IN_MEMORY; |
3140 | |
|
3141 | 0 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3142 | 0 | { |
3143 | 0 | free (contents); |
3144 | 0 | free (table); |
3145 | 0 | return -1; |
3146 | 0 | } |
3147 | | |
3148 | | /* There should never be any relocations left at this point, so this |
3149 | | is quite a bit easier than what is done during relaxation. */ |
3150 | | |
3151 | | /* Copy the raw contents into a property table array and sort it. */ |
3152 | 0 | offset = 0; |
3153 | 0 | for (n = 0; n < num; n++) |
3154 | 0 | { |
3155 | 0 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); |
3156 | 0 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); |
3157 | 0 | offset += 8; |
3158 | 0 | } |
3159 | 0 | qsort (table, num, sizeof (property_table_entry), property_table_compare); |
3160 | |
|
3161 | 0 | for (n = 0; n < num; n++) |
3162 | 0 | { |
3163 | 0 | bool remove_entry = false; |
3164 | |
|
3165 | 0 | if (table[n].size == 0) |
3166 | 0 | remove_entry = true; |
3167 | 0 | else if (n > 0 |
3168 | 0 | && (table[n-1].address + table[n-1].size == table[n].address)) |
3169 | 0 | { |
3170 | 0 | table[n-1].size += table[n].size; |
3171 | 0 | remove_entry = true; |
3172 | 0 | } |
3173 | |
|
3174 | 0 | if (remove_entry) |
3175 | 0 | { |
3176 | 0 | for (m = n; m < num - 1; m++) |
3177 | 0 | { |
3178 | 0 | table[m].address = table[m+1].address; |
3179 | 0 | table[m].size = table[m+1].size; |
3180 | 0 | } |
3181 | |
|
3182 | 0 | n--; |
3183 | 0 | num--; |
3184 | 0 | } |
3185 | 0 | } |
3186 | | |
3187 | | /* Copy the data back to the raw contents. */ |
3188 | 0 | offset = 0; |
3189 | 0 | for (n = 0; n < num; n++) |
3190 | 0 | { |
3191 | 0 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); |
3192 | 0 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); |
3193 | 0 | offset += 8; |
3194 | 0 | } |
3195 | | |
3196 | | /* Clear the removed bytes. */ |
3197 | 0 | if ((bfd_size_type) (num * 8) < section_size) |
3198 | 0 | memset (&contents[num * 8], 0, section_size - num * 8); |
3199 | |
|
3200 | 0 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3201 | 0 | section_size)) |
3202 | 0 | return -1; |
3203 | | |
3204 | | /* Copy the contents to ".got.loc". */ |
3205 | 0 | memcpy (sgotloc->contents, contents, section_size); |
3206 | |
|
3207 | 0 | free (contents); |
3208 | 0 | free (table); |
3209 | 0 | return num; |
3210 | 0 | } |
3211 | | |
3212 | | |
3213 | | /* Finish up the dynamic sections. */ |
3214 | | |
3215 | | static bool |
3216 | | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3217 | | struct bfd_link_info *info) |
3218 | 0 | { |
3219 | 0 | struct elf_xtensa_link_hash_table *htab; |
3220 | 0 | bfd *dynobj; |
3221 | 0 | asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc; |
3222 | 0 | Elf32_External_Dyn *dyncon, *dynconend; |
3223 | 0 | int num_xtlit_entries = 0; |
3224 | |
|
3225 | 0 | if (! elf_hash_table (info)->dynamic_sections_created) |
3226 | 0 | return true; |
3227 | | |
3228 | 0 | htab = elf_xtensa_hash_table (info); |
3229 | 0 | if (htab == NULL) |
3230 | 0 | return false; |
3231 | | |
3232 | 0 | dynobj = elf_hash_table (info)->dynobj; |
3233 | 0 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
3234 | 0 | BFD_ASSERT (sdyn != NULL); |
3235 | | |
3236 | | /* Set the first entry in the global offset table to the address of |
3237 | | the dynamic section. */ |
3238 | 0 | sgot = htab->elf.sgot; |
3239 | 0 | if (sgot) |
3240 | 0 | { |
3241 | 0 | BFD_ASSERT (sgot->size == 4); |
3242 | 0 | if (sdyn == NULL) |
3243 | 0 | bfd_put_32 (output_bfd, 0, sgot->contents); |
3244 | 0 | else |
3245 | 0 | bfd_put_32 (output_bfd, |
3246 | 0 | sdyn->output_section->vma + sdyn->output_offset, |
3247 | 0 | sgot->contents); |
3248 | 0 | } |
3249 | |
|
3250 | 0 | srelplt = htab->elf.srelplt; |
3251 | 0 | srelgot = htab->elf.srelgot; |
3252 | 0 | if (srelplt && srelplt->size != 0) |
3253 | 0 | { |
3254 | 0 | asection *sgotplt, *spltlittbl; |
3255 | 0 | int chunk, plt_chunks, plt_entries; |
3256 | 0 | Elf_Internal_Rela irela; |
3257 | 0 | bfd_byte *loc; |
3258 | 0 | unsigned rtld_reloc; |
3259 | |
|
3260 | 0 | spltlittbl = htab->spltlittbl; |
3261 | 0 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); |
3262 | | |
3263 | | /* Find the first XTENSA_RTLD relocation. Presumably the rest |
3264 | | of them follow immediately after.... */ |
3265 | 0 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) |
3266 | 0 | { |
3267 | 0 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); |
3268 | 0 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); |
3269 | 0 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) |
3270 | 0 | break; |
3271 | 0 | } |
3272 | 0 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); |
3273 | |
|
3274 | 0 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
3275 | 0 | plt_chunks = |
3276 | 0 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; |
3277 | |
|
3278 | 0 | for (chunk = 0; chunk < plt_chunks; chunk++) |
3279 | 0 | { |
3280 | 0 | int chunk_entries = 0; |
3281 | |
|
3282 | 0 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
3283 | 0 | BFD_ASSERT (sgotplt != NULL); |
3284 | | |
3285 | | /* Emit special RTLD relocations for the first two entries in |
3286 | | each chunk of the .got.plt section. */ |
3287 | |
|
3288 | 0 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); |
3289 | 0 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); |
3290 | 0 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); |
3291 | 0 | irela.r_offset = (sgotplt->output_section->vma |
3292 | 0 | + sgotplt->output_offset); |
3293 | 0 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ |
3294 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); |
3295 | 0 | rtld_reloc += 1; |
3296 | 0 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); |
3297 | | |
3298 | | /* Next literal immediately follows the first. */ |
3299 | 0 | loc += sizeof (Elf32_External_Rela); |
3300 | 0 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); |
3301 | 0 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); |
3302 | 0 | irela.r_offset = (sgotplt->output_section->vma |
3303 | 0 | + sgotplt->output_offset + 4); |
3304 | | /* Tell rtld to set value to object's link map. */ |
3305 | 0 | irela.r_addend = 2; |
3306 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); |
3307 | 0 | rtld_reloc += 1; |
3308 | 0 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); |
3309 | | |
3310 | | /* Fill in the literal table. */ |
3311 | 0 | if (chunk < plt_chunks - 1) |
3312 | 0 | chunk_entries = PLT_ENTRIES_PER_CHUNK; |
3313 | 0 | else |
3314 | 0 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); |
3315 | |
|
3316 | 0 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
3317 | 0 | bfd_put_32 (output_bfd, |
3318 | 0 | sgotplt->output_section->vma + sgotplt->output_offset, |
3319 | 0 | spltlittbl->contents + (chunk * 8) + 0); |
3320 | 0 | bfd_put_32 (output_bfd, |
3321 | 0 | 8 + (chunk_entries * 4), |
3322 | 0 | spltlittbl->contents + (chunk * 8) + 4); |
3323 | 0 | } |
3324 | | |
3325 | | /* The .xt.lit.plt section has just been modified. This must |
3326 | | happen before the code below which combines adjacent literal |
3327 | | table entries, and the .xt.lit.plt contents have to be forced to |
3328 | | the output here. */ |
3329 | 0 | if (! bfd_set_section_contents (output_bfd, |
3330 | 0 | spltlittbl->output_section, |
3331 | 0 | spltlittbl->contents, |
3332 | 0 | spltlittbl->output_offset, |
3333 | 0 | spltlittbl->size)) |
3334 | 0 | return false; |
3335 | | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ |
3336 | 0 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; |
3337 | 0 | } |
3338 | | |
3339 | | /* All the dynamic relocations have been emitted at this point. |
3340 | | Make sure the relocation sections are the correct size. */ |
3341 | 0 | if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela) |
3342 | 0 | * srelgot->reloc_count)) |
3343 | 0 | || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela) |
3344 | 0 | * srelplt->reloc_count))) |
3345 | 0 | abort (); |
3346 | | |
3347 | | /* Combine adjacent literal table entries. */ |
3348 | 0 | BFD_ASSERT (! bfd_link_relocatable (info)); |
3349 | 0 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
3350 | 0 | sgotloc = htab->sgotloc; |
3351 | 0 | BFD_ASSERT (sgotloc); |
3352 | 0 | if (sxtlit) |
3353 | 0 | { |
3354 | 0 | num_xtlit_entries = |
3355 | 0 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); |
3356 | 0 | if (num_xtlit_entries < 0) |
3357 | 0 | return false; |
3358 | 0 | } |
3359 | | |
3360 | 0 | dyncon = (Elf32_External_Dyn *) sdyn->contents; |
3361 | 0 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
3362 | 0 | for (; dyncon < dynconend; dyncon++) |
3363 | 0 | { |
3364 | 0 | Elf_Internal_Dyn dyn; |
3365 | |
|
3366 | 0 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); |
3367 | |
|
3368 | 0 | switch (dyn.d_tag) |
3369 | 0 | { |
3370 | 0 | default: |
3371 | 0 | break; |
3372 | | |
3373 | 0 | case DT_XTENSA_GOT_LOC_SZ: |
3374 | 0 | dyn.d_un.d_val = num_xtlit_entries; |
3375 | 0 | break; |
3376 | | |
3377 | 0 | case DT_XTENSA_GOT_LOC_OFF: |
3378 | 0 | dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma |
3379 | 0 | + htab->sgotloc->output_offset); |
3380 | 0 | break; |
3381 | | |
3382 | 0 | case DT_PLTGOT: |
3383 | 0 | dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma |
3384 | 0 | + htab->elf.sgot->output_offset); |
3385 | 0 | break; |
3386 | | |
3387 | 0 | case DT_JMPREL: |
3388 | 0 | dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma |
3389 | 0 | + htab->elf.srelplt->output_offset); |
3390 | 0 | break; |
3391 | | |
3392 | 0 | case DT_PLTRELSZ: |
3393 | 0 | dyn.d_un.d_val = htab->elf.srelplt->size; |
3394 | 0 | break; |
3395 | 0 | } |
3396 | | |
3397 | 0 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
3398 | 0 | } |
3399 | | |
3400 | 0 | return true; |
3401 | 0 | } |
3402 | | |
3403 | | |
3404 | | /* Functions for dealing with the e_flags field. */ |
3405 | | |
3406 | | /* Merge backend specific data from an object file to the output |
3407 | | object file when linking. */ |
3408 | | |
3409 | | static bool |
3410 | | elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
3411 | 0 | { |
3412 | 0 | bfd *obfd = info->output_bfd; |
3413 | 0 | unsigned out_mach, in_mach; |
3414 | 0 | flagword out_flag, in_flag; |
3415 | | |
3416 | | /* Check if we have the same endianness. */ |
3417 | 0 | if (!_bfd_generic_verify_endian_match (ibfd, info)) |
3418 | 0 | return false; |
3419 | | |
3420 | | /* Don't even pretend to support mixed-format linking. */ |
3421 | 0 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
3422 | 0 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
3423 | 0 | return false; |
3424 | | |
3425 | 0 | out_flag = elf_elfheader (obfd)->e_flags; |
3426 | 0 | in_flag = elf_elfheader (ibfd)->e_flags; |
3427 | |
|
3428 | 0 | out_mach = out_flag & EF_XTENSA_MACH; |
3429 | 0 | in_mach = in_flag & EF_XTENSA_MACH; |
3430 | 0 | if (out_mach != in_mach) |
3431 | 0 | { |
3432 | 0 | _bfd_error_handler |
3433 | | /* xgettext:c-format */ |
3434 | 0 | (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"), |
3435 | 0 | ibfd, out_mach, in_mach); |
3436 | 0 | bfd_set_error (bfd_error_wrong_format); |
3437 | 0 | return false; |
3438 | 0 | } |
3439 | | |
3440 | 0 | if (! elf_flags_init (obfd)) |
3441 | 0 | { |
3442 | 0 | elf_flags_init (obfd) = true; |
3443 | 0 | elf_elfheader (obfd)->e_flags = in_flag; |
3444 | |
|
3445 | 0 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3446 | 0 | && bfd_get_arch_info (obfd)->the_default) |
3447 | 0 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
3448 | 0 | bfd_get_mach (ibfd)); |
3449 | | |
3450 | 0 | return true; |
3451 | 0 | } |
3452 | | |
3453 | 0 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
3454 | 0 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); |
3455 | |
|
3456 | 0 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
3457 | 0 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); |
3458 | |
|
3459 | 0 | return true; |
3460 | 0 | } |
3461 | | |
3462 | | |
3463 | | static bool |
3464 | | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
3465 | 0 | { |
3466 | 0 | BFD_ASSERT (!elf_flags_init (abfd) |
3467 | 0 | || elf_elfheader (abfd)->e_flags == flags); |
3468 | |
|
3469 | 0 | elf_elfheader (abfd)->e_flags |= flags; |
3470 | 0 | elf_flags_init (abfd) = true; |
3471 | |
|
3472 | 0 | return true; |
3473 | 0 | } |
3474 | | |
3475 | | |
3476 | | static bool |
3477 | | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
3478 | 644 | { |
3479 | 644 | FILE *f = (FILE *) farg; |
3480 | 644 | flagword e_flags = elf_elfheader (abfd)->e_flags; |
3481 | | |
3482 | 644 | fprintf (f, "\nXtensa header:\n"); |
3483 | 644 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
3484 | 644 | fprintf (f, "\nMachine = Base\n"); |
3485 | 0 | else |
3486 | 0 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); |
3487 | | |
3488 | 644 | fprintf (f, "Insn tables = %s\n", |
3489 | 644 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); |
3490 | | |
3491 | 644 | fprintf (f, "Literal tables = %s\n", |
3492 | 644 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); |
3493 | | |
3494 | 644 | return _bfd_elf_print_private_bfd_data (abfd, farg); |
3495 | 644 | } |
3496 | | |
3497 | | |
3498 | | /* Set the right machine number for an Xtensa ELF file. */ |
3499 | | |
3500 | | static bool |
3501 | | elf_xtensa_object_p (bfd *abfd) |
3502 | 7.77k | { |
3503 | 7.77k | int mach; |
3504 | 7.77k | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; |
3505 | | |
3506 | 7.77k | switch (arch) |
3507 | 7.77k | { |
3508 | 5.82k | case E_XTENSA_MACH: |
3509 | 5.82k | mach = bfd_mach_xtensa; |
3510 | 5.82k | break; |
3511 | 1.95k | default: |
3512 | 1.95k | return false; |
3513 | 7.77k | } |
3514 | | |
3515 | 5.82k | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); |
3516 | 5.82k | return true; |
3517 | 7.77k | } |
3518 | | |
3519 | | |
3520 | | /* The final processing done just before writing out an Xtensa ELF object |
3521 | | file. This gets the Xtensa architecture right based on the machine |
3522 | | number. */ |
3523 | | |
3524 | | static bool |
3525 | | elf_xtensa_final_write_processing (bfd *abfd) |
3526 | 0 | { |
3527 | 0 | int mach; |
3528 | 0 | unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; |
3529 | |
|
3530 | 0 | switch (mach = bfd_get_mach (abfd)) |
3531 | 0 | { |
3532 | 0 | case bfd_mach_xtensa: |
3533 | 0 | val = E_XTENSA_MACH; |
3534 | 0 | break; |
3535 | 0 | default: |
3536 | 0 | break; |
3537 | 0 | } |
3538 | | |
3539 | 0 | elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH; |
3540 | 0 | elf_elfheader (abfd)->e_flags |= val; |
3541 | 0 | return _bfd_elf_final_write_processing (abfd); |
3542 | 0 | } |
3543 | | |
3544 | | |
3545 | | static enum elf_reloc_type_class |
3546 | | elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
3547 | | const asection *rel_sec ATTRIBUTE_UNUSED, |
3548 | | const Elf_Internal_Rela *rela) |
3549 | 0 | { |
3550 | 0 | switch ((int) ELF32_R_TYPE (rela->r_info)) |
3551 | 0 | { |
3552 | 0 | case R_XTENSA_RELATIVE: |
3553 | 0 | return reloc_class_relative; |
3554 | 0 | case R_XTENSA_JMP_SLOT: |
3555 | 0 | return reloc_class_plt; |
3556 | 0 | default: |
3557 | 0 | return reloc_class_normal; |
3558 | 0 | } |
3559 | 0 | } |
3560 | | |
3561 | | |
3562 | | static bool |
3563 | | elf_xtensa_discard_info_for_section (bfd *abfd, |
3564 | | struct elf_reloc_cookie *cookie, |
3565 | | struct bfd_link_info *info, |
3566 | | asection *sec) |
3567 | 0 | { |
3568 | 0 | bfd_byte *contents; |
3569 | 0 | bfd_vma offset, actual_offset; |
3570 | 0 | bfd_size_type removed_bytes = 0; |
3571 | 0 | bfd_size_type entry_size; |
3572 | |
|
3573 | 0 | if (sec->output_section |
3574 | 0 | && bfd_is_abs_section (sec->output_section)) |
3575 | 0 | return false; |
3576 | | |
3577 | 0 | if (xtensa_is_proptable_section (sec)) |
3578 | 0 | entry_size = 12; |
3579 | 0 | else |
3580 | 0 | entry_size = 8; |
3581 | |
|
3582 | 0 | if (sec->size == 0 || sec->size % entry_size != 0) |
3583 | 0 | return false; |
3584 | | |
3585 | 0 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3586 | 0 | if (!contents) |
3587 | 0 | return false; |
3588 | | |
3589 | 0 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); |
3590 | 0 | if (!cookie->rels) |
3591 | 0 | { |
3592 | 0 | release_contents (sec, contents); |
3593 | 0 | return false; |
3594 | 0 | } |
3595 | | |
3596 | | /* Sort the relocations. They should already be in order when |
3597 | | relaxation is enabled, but it might not be. */ |
3598 | 0 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), |
3599 | 0 | internal_reloc_compare); |
3600 | |
|
3601 | 0 | cookie->rel = cookie->rels; |
3602 | 0 | cookie->relend = cookie->rels + sec->reloc_count; |
3603 | |
|
3604 | 0 | for (offset = 0; offset < sec->size; offset += entry_size) |
3605 | 0 | { |
3606 | 0 | actual_offset = offset - removed_bytes; |
3607 | | |
3608 | | /* The ...symbol_deleted_p function will skip over relocs but it |
3609 | | won't adjust their offsets, so do that here. */ |
3610 | 0 | while (cookie->rel < cookie->relend |
3611 | 0 | && cookie->rel->r_offset < offset) |
3612 | 0 | { |
3613 | 0 | cookie->rel->r_offset -= removed_bytes; |
3614 | 0 | cookie->rel++; |
3615 | 0 | } |
3616 | |
|
3617 | 0 | while (cookie->rel < cookie->relend |
3618 | 0 | && cookie->rel->r_offset == offset) |
3619 | 0 | { |
3620 | 0 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
3621 | 0 | { |
3622 | | /* Remove the table entry. (If the reloc type is NONE, then |
3623 | | the entry has already been merged with another and deleted |
3624 | | during relaxation.) */ |
3625 | 0 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) |
3626 | 0 | { |
3627 | | /* Shift the contents up. */ |
3628 | 0 | if (offset + entry_size < sec->size) |
3629 | 0 | memmove (&contents[actual_offset], |
3630 | 0 | &contents[actual_offset + entry_size], |
3631 | 0 | sec->size - offset - entry_size); |
3632 | 0 | removed_bytes += entry_size; |
3633 | 0 | } |
3634 | | |
3635 | | /* Remove this relocation. */ |
3636 | 0 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3637 | 0 | } |
3638 | | |
3639 | | /* Adjust the relocation offset for previous removals. This |
3640 | | should not be done before calling ...symbol_deleted_p |
3641 | | because it might mess up the offset comparisons there. |
3642 | | Make sure the offset doesn't underflow in the case where |
3643 | | the first entry is removed. */ |
3644 | 0 | if (cookie->rel->r_offset >= removed_bytes) |
3645 | 0 | cookie->rel->r_offset -= removed_bytes; |
3646 | 0 | else |
3647 | 0 | cookie->rel->r_offset = 0; |
3648 | |
|
3649 | 0 | cookie->rel++; |
3650 | 0 | } |
3651 | 0 | } |
3652 | |
|
3653 | 0 | if (removed_bytes != 0) |
3654 | 0 | { |
3655 | | /* Adjust any remaining relocs (shouldn't be any). */ |
3656 | 0 | for (; cookie->rel < cookie->relend; cookie->rel++) |
3657 | 0 | { |
3658 | 0 | if (cookie->rel->r_offset >= removed_bytes) |
3659 | 0 | cookie->rel->r_offset -= removed_bytes; |
3660 | 0 | else |
3661 | 0 | cookie->rel->r_offset = 0; |
3662 | 0 | } |
3663 | | |
3664 | | /* Clear the removed bytes. */ |
3665 | 0 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
3666 | |
|
3667 | 0 | pin_contents (sec, contents); |
3668 | 0 | pin_internal_relocs (sec, cookie->rels); |
3669 | | |
3670 | | /* Shrink size. */ |
3671 | 0 | if (sec->rawsize == 0) |
3672 | 0 | sec->rawsize = sec->size; |
3673 | 0 | sec->size -= removed_bytes; |
3674 | |
|
3675 | 0 | if (xtensa_is_littable_section (sec)) |
3676 | 0 | { |
3677 | 0 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3678 | 0 | if (sgotloc) |
3679 | 0 | sgotloc->size -= removed_bytes; |
3680 | 0 | } |
3681 | 0 | } |
3682 | 0 | else |
3683 | 0 | { |
3684 | 0 | release_contents (sec, contents); |
3685 | 0 | release_internal_relocs (sec, cookie->rels); |
3686 | 0 | } |
3687 | |
|
3688 | 0 | return (removed_bytes != 0); |
3689 | 0 | } |
3690 | | |
3691 | | |
3692 | | static bool |
3693 | | elf_xtensa_discard_info (bfd *abfd, |
3694 | | struct elf_reloc_cookie *cookie, |
3695 | | struct bfd_link_info *info) |
3696 | 0 | { |
3697 | 0 | asection *sec; |
3698 | 0 | bool changed = false; |
3699 | |
|
3700 | 0 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
3701 | 0 | { |
3702 | 0 | if (xtensa_is_property_section (sec)) |
3703 | 0 | { |
3704 | 0 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) |
3705 | 0 | changed = true; |
3706 | 0 | } |
3707 | 0 | } |
3708 | |
|
3709 | 0 | return changed; |
3710 | 0 | } |
3711 | | |
3712 | | |
3713 | | static bool |
3714 | | elf_xtensa_ignore_discarded_relocs (asection *sec) |
3715 | 0 | { |
3716 | 0 | return xtensa_is_property_section (sec); |
3717 | 0 | } |
3718 | | |
3719 | | |
3720 | | static unsigned int |
3721 | | elf_xtensa_action_discarded (asection *sec) |
3722 | 0 | { |
3723 | 0 | if (strcmp (".xt_except_table", sec->name) == 0) |
3724 | 0 | return 0; |
3725 | | |
3726 | 0 | if (strcmp (".xt_except_desc", sec->name) == 0) |
3727 | 0 | return 0; |
3728 | | |
3729 | 0 | return _bfd_elf_default_action_discarded (sec); |
3730 | 0 | } |
3731 | | |
3732 | | |
3733 | | /* Support for core dump NOTE sections. */ |
3734 | | |
3735 | | static bool |
3736 | | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
3737 | 3 | { |
3738 | 3 | int offset; |
3739 | 3 | unsigned int size; |
3740 | | |
3741 | 3 | if (elf_tdata (abfd) == NULL |
3742 | 3 | || elf_tdata (abfd)->core == NULL) |
3743 | 0 | return false; |
3744 | | |
3745 | | /* The size for Xtensa is variable, so don't try to recognize the format |
3746 | | based on the size. Just assume this is GNU/Linux. */ |
3747 | 3 | if (note == NULL || note->descsz < 28) |
3748 | 3 | return false; |
3749 | | |
3750 | | /* pr_cursig */ |
3751 | 0 | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
3752 | | |
3753 | | /* pr_pid */ |
3754 | 0 | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
3755 | | |
3756 | | /* pr_reg */ |
3757 | 0 | offset = 72; |
3758 | 0 | size = note->descsz - offset - 4; |
3759 | | |
3760 | | /* Make a ".reg/999" section. */ |
3761 | 0 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
3762 | 0 | size, note->descpos + offset); |
3763 | 3 | } |
3764 | | |
3765 | | static bool |
3766 | | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
3767 | 1 | { |
3768 | 1 | switch (note->descsz) |
3769 | 1 | { |
3770 | 1 | default: |
3771 | 1 | return false; |
3772 | | |
3773 | 0 | case 128: /* GNU/Linux elf_prpsinfo */ |
3774 | 0 | elf_tdata (abfd)->core->program |
3775 | 0 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); |
3776 | 0 | elf_tdata (abfd)->core->command |
3777 | 0 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); |
3778 | 1 | } |
3779 | | |
3780 | | /* Note that for some reason, a spurious space is tacked |
3781 | | onto the end of the args in some (at least one anyway) |
3782 | | implementations, so strip it off if it exists. */ |
3783 | | |
3784 | 0 | { |
3785 | 0 | char *command = elf_tdata (abfd)->core->command; |
3786 | 0 | int n = strlen (command); |
3787 | |
|
3788 | 0 | if (0 < n && command[n - 1] == ' ') |
3789 | 0 | command[n - 1] = '\0'; |
3790 | 0 | } |
3791 | |
|
3792 | 0 | return true; |
3793 | 1 | } |
3794 | | |
3795 | | |
3796 | | /* Generic Xtensa configurability stuff. */ |
3797 | | |
3798 | | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; |
3799 | | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; |
3800 | | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; |
3801 | | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; |
3802 | | static xtensa_opcode call0_op = XTENSA_UNDEFINED; |
3803 | | static xtensa_opcode call4_op = XTENSA_UNDEFINED; |
3804 | | static xtensa_opcode call8_op = XTENSA_UNDEFINED; |
3805 | | static xtensa_opcode call12_op = XTENSA_UNDEFINED; |
3806 | | |
3807 | | static void |
3808 | | init_call_opcodes (void) |
3809 | 524 | { |
3810 | 524 | if (callx0_op == XTENSA_UNDEFINED) |
3811 | 1 | { |
3812 | 1 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); |
3813 | 1 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); |
3814 | 1 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); |
3815 | 1 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); |
3816 | 1 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); |
3817 | 1 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); |
3818 | 1 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); |
3819 | 1 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); |
3820 | 1 | } |
3821 | 524 | } |
3822 | | |
3823 | | |
3824 | | static bool |
3825 | | is_indirect_call_opcode (xtensa_opcode opcode) |
3826 | 25 | { |
3827 | 25 | init_call_opcodes (); |
3828 | 25 | return (opcode == callx0_op |
3829 | 25 | || opcode == callx4_op |
3830 | 25 | || opcode == callx8_op |
3831 | 25 | || opcode == callx12_op); |
3832 | 25 | } |
3833 | | |
3834 | | |
3835 | | static bool |
3836 | | is_direct_call_opcode (xtensa_opcode opcode) |
3837 | 70 | { |
3838 | 70 | init_call_opcodes (); |
3839 | 70 | return (opcode == call0_op |
3840 | 70 | || opcode == call4_op |
3841 | 70 | || opcode == call8_op |
3842 | 70 | || opcode == call12_op); |
3843 | 70 | } |
3844 | | |
3845 | | |
3846 | | static bool |
3847 | | is_windowed_call_opcode (xtensa_opcode opcode) |
3848 | 45 | { |
3849 | 45 | init_call_opcodes (); |
3850 | 45 | return (opcode == call4_op |
3851 | 45 | || opcode == call8_op |
3852 | 45 | || opcode == call12_op |
3853 | 45 | || opcode == callx4_op |
3854 | 45 | || opcode == callx8_op |
3855 | 45 | || opcode == callx12_op); |
3856 | 45 | } |
3857 | | |
3858 | | |
3859 | | static bool |
3860 | | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) |
3861 | 0 | { |
3862 | 0 | unsigned dst = (unsigned) -1; |
3863 | |
|
3864 | 0 | init_call_opcodes (); |
3865 | 0 | if (opcode == callx0_op) |
3866 | 0 | dst = 0; |
3867 | 0 | else if (opcode == callx4_op) |
3868 | 0 | dst = 4; |
3869 | 0 | else if (opcode == callx8_op) |
3870 | 0 | dst = 8; |
3871 | 0 | else if (opcode == callx12_op) |
3872 | 0 | dst = 12; |
3873 | |
|
3874 | 0 | if (dst == (unsigned) -1) |
3875 | 0 | return false; |
3876 | | |
3877 | 0 | *pdst = dst; |
3878 | 0 | return true; |
3879 | 0 | } |
3880 | | |
3881 | | |
3882 | | static xtensa_opcode |
3883 | | get_const16_opcode (void) |
3884 | 1.27k | { |
3885 | 1.27k | static bool done_lookup = false; |
3886 | 1.27k | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; |
3887 | 1.27k | if (!done_lookup) |
3888 | 1 | { |
3889 | 1 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); |
3890 | 1 | done_lookup = true; |
3891 | 1 | } |
3892 | 1.27k | return const16_opcode; |
3893 | 1.27k | } |
3894 | | |
3895 | | |
3896 | | static xtensa_opcode |
3897 | | get_l32r_opcode (void) |
3898 | 430 | { |
3899 | 430 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; |
3900 | 430 | static bool done_lookup = false; |
3901 | | |
3902 | 430 | if (!done_lookup) |
3903 | 1 | { |
3904 | 1 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); |
3905 | 1 | done_lookup = true; |
3906 | 1 | } |
3907 | 430 | return l32r_opcode; |
3908 | 430 | } |
3909 | | |
3910 | | |
3911 | | static bfd_vma |
3912 | | l32r_offset (bfd_vma addr, bfd_vma pc) |
3913 | 0 | { |
3914 | 0 | bfd_vma offset; |
3915 | |
|
3916 | 0 | offset = addr - ((pc+3) & -4); |
3917 | 0 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); |
3918 | 0 | offset = (signed int) offset >> 2; |
3919 | 0 | BFD_ASSERT ((signed int) offset >> 16 == -1); |
3920 | 0 | return offset; |
3921 | 0 | } |
3922 | | |
3923 | | |
3924 | | static xtensa_opcode |
3925 | | get_rsr_lend_opcode (void) |
3926 | 0 | { |
3927 | 0 | static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED; |
3928 | 0 | static bool done_lookup = false; |
3929 | 0 | if (!done_lookup) |
3930 | 0 | { |
3931 | 0 | rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend"); |
3932 | 0 | done_lookup = true; |
3933 | 0 | } |
3934 | 0 | return rsr_lend_opcode; |
3935 | 0 | } |
3936 | | |
3937 | | static xtensa_opcode |
3938 | | get_wsr_lbeg_opcode (void) |
3939 | 0 | { |
3940 | 0 | static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED; |
3941 | 0 | static bool done_lookup = false; |
3942 | 0 | if (!done_lookup) |
3943 | 0 | { |
3944 | 0 | wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg"); |
3945 | 0 | done_lookup = true; |
3946 | 0 | } |
3947 | 0 | return wsr_lbeg_opcode; |
3948 | 0 | } |
3949 | | |
3950 | | |
3951 | | static int |
3952 | | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
3953 | 887 | { |
3954 | 887 | xtensa_isa isa = xtensa_default_isa; |
3955 | 887 | int last_immed, last_opnd, opi; |
3956 | | |
3957 | 887 | if (opcode == XTENSA_UNDEFINED) |
3958 | 0 | return XTENSA_UNDEFINED; |
3959 | | |
3960 | | /* Find the last visible PC-relative immediate operand for the opcode. |
3961 | | If there are no PC-relative immediates, then choose the last visible |
3962 | | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ |
3963 | 887 | last_immed = XTENSA_UNDEFINED; |
3964 | 887 | last_opnd = xtensa_opcode_num_operands (isa, opcode); |
3965 | 2.10k | for (opi = last_opnd - 1; opi >= 0; opi--) |
3966 | 1.32k | { |
3967 | 1.32k | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) |
3968 | 34 | continue; |
3969 | 1.29k | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) |
3970 | 109 | { |
3971 | 109 | last_immed = opi; |
3972 | 109 | break; |
3973 | 109 | } |
3974 | 1.18k | if (last_immed == XTENSA_UNDEFINED |
3975 | 1.18k | && xtensa_operand_is_register (isa, opcode, opi) == 0) |
3976 | 258 | last_immed = opi; |
3977 | 1.18k | } |
3978 | 887 | if (last_immed < 0) |
3979 | 520 | return XTENSA_UNDEFINED; |
3980 | | |
3981 | | /* If the operand number was specified in an old-style relocation, |
3982 | | check for consistency with the operand computed above. */ |
3983 | 367 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) |
3984 | 356 | { |
3985 | 356 | int reloc_opnd = r_type - R_XTENSA_OP0; |
3986 | 356 | if (reloc_opnd != last_immed) |
3987 | 297 | return XTENSA_UNDEFINED; |
3988 | 356 | } |
3989 | | |
3990 | 70 | return last_immed; |
3991 | 367 | } |
3992 | | |
3993 | | |
3994 | | int |
3995 | | get_relocation_slot (int r_type) |
3996 | 1.28k | { |
3997 | 1.28k | switch (r_type) |
3998 | 1.28k | { |
3999 | 819 | case R_XTENSA_OP0: |
4000 | 824 | case R_XTENSA_OP1: |
4001 | 877 | case R_XTENSA_OP2: |
4002 | 877 | return 0; |
4003 | | |
4004 | 411 | default: |
4005 | 411 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) |
4006 | 379 | return r_type - R_XTENSA_SLOT0_OP; |
4007 | 32 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) |
4008 | 32 | return r_type - R_XTENSA_SLOT0_ALT; |
4009 | 0 | break; |
4010 | 1.28k | } |
4011 | | |
4012 | 0 | return XTENSA_UNDEFINED; |
4013 | 1.28k | } |
4014 | | |
4015 | | |
4016 | | /* Get the opcode for a relocation. */ |
4017 | | |
4018 | | static xtensa_opcode |
4019 | | get_relocation_opcode (bfd *abfd, |
4020 | | asection *sec, |
4021 | | bfd_byte *contents, |
4022 | | Elf_Internal_Rela *irel) |
4023 | 0 | { |
4024 | 0 | static xtensa_insnbuf ibuff = NULL; |
4025 | 0 | static xtensa_insnbuf sbuff = NULL; |
4026 | 0 | xtensa_isa isa = xtensa_default_isa; |
4027 | 0 | xtensa_format fmt; |
4028 | 0 | int slot; |
4029 | |
|
4030 | 0 | if (contents == NULL) |
4031 | 0 | return XTENSA_UNDEFINED; |
4032 | | |
4033 | 0 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
4034 | 0 | return XTENSA_UNDEFINED; |
4035 | | |
4036 | 0 | if (ibuff == NULL) |
4037 | 0 | { |
4038 | 0 | ibuff = xtensa_insnbuf_alloc (isa); |
4039 | 0 | sbuff = xtensa_insnbuf_alloc (isa); |
4040 | 0 | } |
4041 | | |
4042 | | /* Decode the instruction. */ |
4043 | 0 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
4044 | 0 | sec->size - irel->r_offset); |
4045 | 0 | fmt = xtensa_format_decode (isa, ibuff); |
4046 | 0 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); |
4047 | 0 | if (slot == XTENSA_UNDEFINED) |
4048 | 0 | return XTENSA_UNDEFINED; |
4049 | 0 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
4050 | 0 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); |
4051 | 0 | } |
4052 | | |
4053 | | |
4054 | | bool |
4055 | | is_l32r_relocation (bfd *abfd, |
4056 | | asection *sec, |
4057 | | bfd_byte *contents, |
4058 | | Elf_Internal_Rela *irel) |
4059 | 0 | { |
4060 | 0 | xtensa_opcode opcode; |
4061 | 0 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
4062 | 0 | return false; |
4063 | 0 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
4064 | 0 | return (opcode == get_l32r_opcode ()); |
4065 | 0 | } |
4066 | | |
4067 | | |
4068 | | static bfd_size_type |
4069 | | get_asm_simplify_size (bfd_byte *contents, |
4070 | | bfd_size_type content_len, |
4071 | | bfd_size_type offset) |
4072 | 0 | { |
4073 | 0 | bfd_size_type insnlen, size = 0; |
4074 | | |
4075 | | /* Decode the size of the next two instructions. */ |
4076 | 0 | insnlen = insn_decode_len (contents, content_len, offset); |
4077 | 0 | if (insnlen == 0) |
4078 | 0 | return 0; |
4079 | | |
4080 | 0 | size += insnlen; |
4081 | |
|
4082 | 0 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4083 | 0 | if (insnlen == 0) |
4084 | 0 | return 0; |
4085 | | |
4086 | 0 | size += insnlen; |
4087 | 0 | return size; |
4088 | 0 | } |
4089 | | |
4090 | | |
4091 | | bool |
4092 | | is_alt_relocation (int r_type) |
4093 | 891 | { |
4094 | 891 | return (r_type >= R_XTENSA_SLOT0_ALT |
4095 | 891 | && r_type <= R_XTENSA_SLOT14_ALT); |
4096 | 891 | } |
4097 | | |
4098 | | |
4099 | | bool |
4100 | | is_operand_relocation (int r_type) |
4101 | 0 | { |
4102 | 0 | switch (r_type) |
4103 | 0 | { |
4104 | 0 | case R_XTENSA_OP0: |
4105 | 0 | case R_XTENSA_OP1: |
4106 | 0 | case R_XTENSA_OP2: |
4107 | 0 | return true; |
4108 | | |
4109 | 0 | default: |
4110 | 0 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) |
4111 | 0 | return true; |
4112 | 0 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) |
4113 | 0 | return true; |
4114 | 0 | break; |
4115 | 0 | } |
4116 | | |
4117 | 0 | return false; |
4118 | 0 | } |
4119 | | |
4120 | | |
4121 | 0 | #define MIN_INSN_LENGTH 2 |
4122 | | |
4123 | | /* Return 0 if it fails to decode. */ |
4124 | | |
4125 | | bfd_size_type |
4126 | | insn_decode_len (bfd_byte *contents, |
4127 | | bfd_size_type content_len, |
4128 | | bfd_size_type offset) |
4129 | 0 | { |
4130 | 0 | int insn_len; |
4131 | 0 | xtensa_isa isa = xtensa_default_isa; |
4132 | 0 | xtensa_format fmt; |
4133 | 0 | static xtensa_insnbuf ibuff = NULL; |
4134 | |
|
4135 | 0 | if (offset + MIN_INSN_LENGTH > content_len) |
4136 | 0 | return 0; |
4137 | | |
4138 | 0 | if (ibuff == NULL) |
4139 | 0 | ibuff = xtensa_insnbuf_alloc (isa); |
4140 | 0 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], |
4141 | 0 | content_len - offset); |
4142 | 0 | fmt = xtensa_format_decode (isa, ibuff); |
4143 | 0 | if (fmt == XTENSA_UNDEFINED) |
4144 | 0 | return 0; |
4145 | 0 | insn_len = xtensa_format_length (isa, fmt); |
4146 | 0 | if (insn_len == XTENSA_UNDEFINED) |
4147 | 0 | return 0; |
4148 | 0 | return insn_len; |
4149 | 0 | } |
4150 | | |
4151 | | int |
4152 | | insn_num_slots (bfd_byte *contents, |
4153 | | bfd_size_type content_len, |
4154 | | bfd_size_type offset) |
4155 | 0 | { |
4156 | 0 | xtensa_isa isa = xtensa_default_isa; |
4157 | 0 | xtensa_format fmt; |
4158 | 0 | static xtensa_insnbuf ibuff = NULL; |
4159 | |
|
4160 | 0 | if (offset + MIN_INSN_LENGTH > content_len) |
4161 | 0 | return XTENSA_UNDEFINED; |
4162 | | |
4163 | 0 | if (ibuff == NULL) |
4164 | 0 | ibuff = xtensa_insnbuf_alloc (isa); |
4165 | 0 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], |
4166 | 0 | content_len - offset); |
4167 | 0 | fmt = xtensa_format_decode (isa, ibuff); |
4168 | 0 | if (fmt == XTENSA_UNDEFINED) |
4169 | 0 | return XTENSA_UNDEFINED; |
4170 | 0 | return xtensa_format_num_slots (isa, fmt); |
4171 | 0 | } |
4172 | | |
4173 | | |
4174 | | /* Decode the opcode for a single slot instruction. |
4175 | | Return 0 if it fails to decode or the instruction is multi-slot. */ |
4176 | | |
4177 | | xtensa_opcode |
4178 | | insn_decode_opcode (bfd_byte *contents, |
4179 | | bfd_size_type content_len, |
4180 | | bfd_size_type offset, |
4181 | | int slot) |
4182 | 0 | { |
4183 | 0 | xtensa_isa isa = xtensa_default_isa; |
4184 | 0 | xtensa_format fmt; |
4185 | 0 | static xtensa_insnbuf insnbuf = NULL; |
4186 | 0 | static xtensa_insnbuf slotbuf = NULL; |
4187 | |
|
4188 | 0 | if (offset + MIN_INSN_LENGTH > content_len) |
4189 | 0 | return XTENSA_UNDEFINED; |
4190 | | |
4191 | 0 | if (insnbuf == NULL) |
4192 | 0 | { |
4193 | 0 | insnbuf = xtensa_insnbuf_alloc (isa); |
4194 | 0 | slotbuf = xtensa_insnbuf_alloc (isa); |
4195 | 0 | } |
4196 | |
|
4197 | 0 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], |
4198 | 0 | content_len - offset); |
4199 | 0 | fmt = xtensa_format_decode (isa, insnbuf); |
4200 | 0 | if (fmt == XTENSA_UNDEFINED) |
4201 | 0 | return XTENSA_UNDEFINED; |
4202 | | |
4203 | 0 | if (slot >= xtensa_format_num_slots (isa, fmt)) |
4204 | 0 | return XTENSA_UNDEFINED; |
4205 | | |
4206 | 0 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4207 | 0 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); |
4208 | 0 | } |
4209 | | |
4210 | | |
4211 | | /* The offset is the offset in the contents. |
4212 | | The address is the address of that offset. */ |
4213 | | |
4214 | | static bool |
4215 | | check_branch_target_aligned (bfd_byte *contents, |
4216 | | bfd_size_type content_length, |
4217 | | bfd_vma offset, |
4218 | | bfd_vma address) |
4219 | 0 | { |
4220 | 0 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); |
4221 | 0 | if (insn_len == 0) |
4222 | 0 | return false; |
4223 | 0 | return check_branch_target_aligned_address (address, insn_len); |
4224 | 0 | } |
4225 | | |
4226 | | |
4227 | | static bool |
4228 | | check_loop_aligned (bfd_byte *contents, |
4229 | | bfd_size_type content_length, |
4230 | | bfd_vma offset, |
4231 | | bfd_vma address) |
4232 | 0 | { |
4233 | 0 | bfd_size_type loop_len, insn_len; |
4234 | 0 | xtensa_opcode opcode; |
4235 | |
|
4236 | 0 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4237 | 0 | if (opcode == XTENSA_UNDEFINED |
4238 | 0 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) |
4239 | 0 | { |
4240 | 0 | BFD_ASSERT (false); |
4241 | 0 | return false; |
4242 | 0 | } |
4243 | | |
4244 | 0 | loop_len = insn_decode_len (contents, content_length, offset); |
4245 | 0 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
4246 | 0 | if (loop_len == 0 || insn_len == 0) |
4247 | 0 | { |
4248 | 0 | BFD_ASSERT (false); |
4249 | 0 | return false; |
4250 | 0 | } |
4251 | | |
4252 | | /* If this is relaxed loop, analyze first instruction of the actual loop |
4253 | | body. It must be at offset 27 from the loop instruction address. */ |
4254 | 0 | if (insn_len == 3 |
4255 | 0 | && insn_num_slots (contents, content_length, offset + loop_len) == 1 |
4256 | 0 | && insn_decode_opcode (contents, content_length, |
4257 | 0 | offset + loop_len, 0) == get_rsr_lend_opcode() |
4258 | 0 | && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3 |
4259 | 0 | && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1 |
4260 | 0 | && insn_decode_opcode (contents, content_length, |
4261 | 0 | offset + loop_len + 3, 0) == get_wsr_lbeg_opcode()) |
4262 | 0 | { |
4263 | 0 | loop_len = 27; |
4264 | 0 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
4265 | 0 | } |
4266 | 0 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4267 | 0 | } |
4268 | | |
4269 | | |
4270 | | static bool |
4271 | | check_branch_target_aligned_address (bfd_vma addr, int len) |
4272 | 0 | { |
4273 | 0 | if (len == 8) |
4274 | 0 | return (addr % 8 == 0); |
4275 | 0 | return ((addr >> 2) == ((addr + len - 1) >> 2)); |
4276 | 0 | } |
4277 | | |
4278 | | |
4279 | | /* Instruction widening and narrowing. */ |
4280 | | |
4281 | | /* When FLIX is available we need to access certain instructions only |
4282 | | when they are 16-bit or 24-bit instructions. This table caches |
4283 | | information about such instructions by walking through all the |
4284 | | opcodes and finding the smallest single-slot format into which each |
4285 | | can be encoded. */ |
4286 | | |
4287 | | static xtensa_format *op_single_fmt_table = NULL; |
4288 | | |
4289 | | |
4290 | | static void |
4291 | | init_op_single_format_table (void) |
4292 | 0 | { |
4293 | 0 | xtensa_isa isa = xtensa_default_isa; |
4294 | 0 | xtensa_insnbuf ibuf; |
4295 | 0 | xtensa_opcode opcode; |
4296 | 0 | xtensa_format fmt; |
4297 | 0 | int num_opcodes; |
4298 | |
|
4299 | 0 | if (op_single_fmt_table) |
4300 | 0 | return; |
4301 | | |
4302 | 0 | ibuf = xtensa_insnbuf_alloc (isa); |
4303 | 0 | num_opcodes = xtensa_isa_num_opcodes (isa); |
4304 | |
|
4305 | 0 | op_single_fmt_table = (xtensa_format *) |
4306 | 0 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); |
4307 | 0 | for (opcode = 0; opcode < num_opcodes; opcode++) |
4308 | 0 | { |
4309 | 0 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; |
4310 | 0 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) |
4311 | 0 | { |
4312 | 0 | if (xtensa_format_num_slots (isa, fmt) == 1 |
4313 | 0 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) |
4314 | 0 | { |
4315 | 0 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; |
4316 | 0 | int fmt_length = xtensa_format_length (isa, fmt); |
4317 | 0 | if (old_fmt == XTENSA_UNDEFINED |
4318 | 0 | || fmt_length < xtensa_format_length (isa, old_fmt)) |
4319 | 0 | op_single_fmt_table[opcode] = fmt; |
4320 | 0 | } |
4321 | 0 | } |
4322 | 0 | } |
4323 | 0 | xtensa_insnbuf_free (isa, ibuf); |
4324 | 0 | } |
4325 | | |
4326 | | |
4327 | | static xtensa_format |
4328 | | get_single_format (xtensa_opcode opcode) |
4329 | 0 | { |
4330 | 0 | init_op_single_format_table (); |
4331 | 0 | return op_single_fmt_table[opcode]; |
4332 | 0 | } |
4333 | | |
4334 | | |
4335 | | /* For the set of narrowable instructions we do NOT include the |
4336 | | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities |
4337 | | involved during linker relaxation that may require these to |
4338 | | re-expand in some conditions. Also, the narrowing "or" -> mov.n |
4339 | | requires special case code to ensure it only works when op1 == op2. */ |
4340 | | |
4341 | | struct string_pair |
4342 | | { |
4343 | | const char *wide; |
4344 | | const char *narrow; |
4345 | | }; |
4346 | | |
4347 | | const struct string_pair narrowable[] = |
4348 | | { |
4349 | | { "add", "add.n" }, |
4350 | | { "addi", "addi.n" }, |
4351 | | { "addmi", "addi.n" }, |
4352 | | { "l32i", "l32i.n" }, |
4353 | | { "movi", "movi.n" }, |
4354 | | { "ret", "ret.n" }, |
4355 | | { "retw", "retw.n" }, |
4356 | | { "s32i", "s32i.n" }, |
4357 | | { "or", "mov.n" } /* special case only when op1 == op2 */ |
4358 | | }; |
4359 | | |
4360 | | const struct string_pair widenable[] = |
4361 | | { |
4362 | | { "add", "add.n" }, |
4363 | | { "addi", "addi.n" }, |
4364 | | { "addmi", "addi.n" }, |
4365 | | { "beqz", "beqz.n" }, |
4366 | | { "bnez", "bnez.n" }, |
4367 | | { "l32i", "l32i.n" }, |
4368 | | { "movi", "movi.n" }, |
4369 | | { "ret", "ret.n" }, |
4370 | | { "retw", "retw.n" }, |
4371 | | { "s32i", "s32i.n" }, |
4372 | | { "or", "mov.n" } /* special case only when op1 == op2 */ |
4373 | | }; |
4374 | | |
4375 | | |
4376 | | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4377 | | 3-byte instruction to a 2-byte "density" instruction. If it is valid, |
4378 | | return the instruction buffer holding the narrow instruction. Otherwise, |
4379 | | return 0. The set of valid narrowing are specified by a string table |
4380 | | but require some special case operand checks in some cases. */ |
4381 | | |
4382 | | static xtensa_insnbuf |
4383 | | can_narrow_instruction (xtensa_insnbuf slotbuf, |
4384 | | xtensa_format fmt, |
4385 | | xtensa_opcode opcode) |
4386 | 0 | { |
4387 | 0 | xtensa_isa isa = xtensa_default_isa; |
4388 | 0 | xtensa_format o_fmt; |
4389 | 0 | unsigned opi; |
4390 | |
|
4391 | 0 | static xtensa_insnbuf o_insnbuf = NULL; |
4392 | 0 | static xtensa_insnbuf o_slotbuf = NULL; |
4393 | |
|
4394 | 0 | if (o_insnbuf == NULL) |
4395 | 0 | { |
4396 | 0 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4397 | 0 | o_slotbuf = xtensa_insnbuf_alloc (isa); |
4398 | 0 | } |
4399 | |
|
4400 | 0 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
4401 | 0 | { |
4402 | 0 | bool is_or = (strcmp ("or", narrowable[opi].wide) == 0); |
4403 | |
|
4404 | 0 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4405 | 0 | { |
4406 | 0 | uint32 value, newval; |
4407 | 0 | int i, operand_count, o_operand_count; |
4408 | 0 | xtensa_opcode o_opcode; |
4409 | | |
4410 | | /* Address does not matter in this case. We might need to |
4411 | | fix it to handle branches/jumps. */ |
4412 | 0 | bfd_vma self_address = 0; |
4413 | |
|
4414 | 0 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4415 | 0 | if (o_opcode == XTENSA_UNDEFINED) |
4416 | 0 | return 0; |
4417 | 0 | o_fmt = get_single_format (o_opcode); |
4418 | 0 | if (o_fmt == XTENSA_UNDEFINED) |
4419 | 0 | return 0; |
4420 | | |
4421 | 0 | if (xtensa_format_length (isa, fmt) != 3 |
4422 | 0 | || xtensa_format_length (isa, o_fmt) != 2) |
4423 | 0 | return 0; |
4424 | | |
4425 | 0 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4426 | 0 | operand_count = xtensa_opcode_num_operands (isa, opcode); |
4427 | 0 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); |
4428 | |
|
4429 | 0 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
4430 | 0 | return 0; |
4431 | | |
4432 | 0 | if (!is_or) |
4433 | 0 | { |
4434 | 0 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) |
4435 | 0 | return 0; |
4436 | 0 | } |
4437 | 0 | else |
4438 | 0 | { |
4439 | 0 | uint32 rawval0, rawval1, rawval2; |
4440 | |
|
4441 | 0 | if (o_operand_count + 1 != operand_count |
4442 | 0 | || xtensa_operand_get_field (isa, opcode, 0, |
4443 | 0 | fmt, 0, slotbuf, &rawval0) != 0 |
4444 | 0 | || xtensa_operand_get_field (isa, opcode, 1, |
4445 | 0 | fmt, 0, slotbuf, &rawval1) != 0 |
4446 | 0 | || xtensa_operand_get_field (isa, opcode, 2, |
4447 | 0 | fmt, 0, slotbuf, &rawval2) != 0 |
4448 | 0 | || rawval1 != rawval2 |
4449 | 0 | || rawval0 == rawval1 /* it is a nop */) |
4450 | 0 | return 0; |
4451 | 0 | } |
4452 | | |
4453 | 0 | for (i = 0; i < o_operand_count; ++i) |
4454 | 0 | { |
4455 | 0 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, |
4456 | 0 | slotbuf, &value) |
4457 | 0 | || xtensa_operand_decode (isa, opcode, i, &value)) |
4458 | 0 | return 0; |
4459 | | |
4460 | | /* PC-relative branches need adjustment, but |
4461 | | the PC-rel operand will always have a relocation. */ |
4462 | 0 | newval = value; |
4463 | 0 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, |
4464 | 0 | self_address) |
4465 | 0 | || xtensa_operand_encode (isa, o_opcode, i, &newval) |
4466 | 0 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, |
4467 | 0 | o_slotbuf, newval)) |
4468 | 0 | return 0; |
4469 | 0 | } |
4470 | | |
4471 | 0 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4472 | 0 | return 0; |
4473 | | |
4474 | 0 | return o_insnbuf; |
4475 | 0 | } |
4476 | 0 | } |
4477 | 0 | return 0; |
4478 | 0 | } |
4479 | | |
4480 | | |
4481 | | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4482 | | the action in-place directly into the contents and return TRUE. Otherwise, |
4483 | | the return value is FALSE and the contents are not modified. */ |
4484 | | |
4485 | | static bool |
4486 | | narrow_instruction (bfd_byte *contents, |
4487 | | bfd_size_type content_length, |
4488 | | bfd_size_type offset) |
4489 | 0 | { |
4490 | 0 | xtensa_opcode opcode; |
4491 | 0 | bfd_size_type insn_len; |
4492 | 0 | xtensa_isa isa = xtensa_default_isa; |
4493 | 0 | xtensa_format fmt; |
4494 | 0 | xtensa_insnbuf o_insnbuf; |
4495 | |
|
4496 | 0 | static xtensa_insnbuf insnbuf = NULL; |
4497 | 0 | static xtensa_insnbuf slotbuf = NULL; |
4498 | |
|
4499 | 0 | if (insnbuf == NULL) |
4500 | 0 | { |
4501 | 0 | insnbuf = xtensa_insnbuf_alloc (isa); |
4502 | 0 | slotbuf = xtensa_insnbuf_alloc (isa); |
4503 | 0 | } |
4504 | |
|
4505 | 0 | BFD_ASSERT (offset < content_length); |
4506 | |
|
4507 | 0 | if (content_length < 2) |
4508 | 0 | return false; |
4509 | | |
4510 | | /* We will hand-code a few of these for a little while. |
4511 | | These have all been specified in the assembler aleady. */ |
4512 | 0 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], |
4513 | 0 | content_length - offset); |
4514 | 0 | fmt = xtensa_format_decode (isa, insnbuf); |
4515 | 0 | if (xtensa_format_num_slots (isa, fmt) != 1) |
4516 | 0 | return false; |
4517 | | |
4518 | 0 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
4519 | 0 | return false; |
4520 | | |
4521 | 0 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4522 | 0 | if (opcode == XTENSA_UNDEFINED) |
4523 | 0 | return false; |
4524 | 0 | insn_len = xtensa_format_length (isa, fmt); |
4525 | 0 | if (insn_len > content_length) |
4526 | 0 | return false; |
4527 | | |
4528 | 0 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4529 | 0 | if (o_insnbuf) |
4530 | 0 | { |
4531 | 0 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, |
4532 | 0 | content_length - offset); |
4533 | 0 | return true; |
4534 | 0 | } |
4535 | | |
4536 | 0 | return false; |
4537 | 0 | } |
4538 | | |
4539 | | |
4540 | | /* Check if an instruction can be "widened", i.e., changed from a 2-byte |
4541 | | "density" instruction to a standard 3-byte instruction. If it is valid, |
4542 | | return the instruction buffer holding the wide instruction. Otherwise, |
4543 | | return 0. The set of valid widenings are specified by a string table |
4544 | | but require some special case operand checks in some cases. */ |
4545 | | |
4546 | | static xtensa_insnbuf |
4547 | | can_widen_instruction (xtensa_insnbuf slotbuf, |
4548 | | xtensa_format fmt, |
4549 | | xtensa_opcode opcode) |
4550 | 0 | { |
4551 | 0 | xtensa_isa isa = xtensa_default_isa; |
4552 | 0 | xtensa_format o_fmt; |
4553 | 0 | unsigned opi; |
4554 | |
|
4555 | 0 | static xtensa_insnbuf o_insnbuf = NULL; |
4556 | 0 | static xtensa_insnbuf o_slotbuf = NULL; |
4557 | |
|
4558 | 0 | if (o_insnbuf == NULL) |
4559 | 0 | { |
4560 | 0 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4561 | 0 | o_slotbuf = xtensa_insnbuf_alloc (isa); |
4562 | 0 | } |
4563 | |
|
4564 | 0 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) |
4565 | 0 | { |
4566 | 0 | bool is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4567 | 0 | bool is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 |
4568 | 0 | || strcmp ("bnez", widenable[opi].wide) == 0); |
4569 | |
|
4570 | 0 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4571 | 0 | { |
4572 | 0 | uint32 value, newval; |
4573 | 0 | int i, operand_count, o_operand_count, check_operand_count; |
4574 | 0 | xtensa_opcode o_opcode; |
4575 | | |
4576 | | /* Address does not matter in this case. We might need to fix it |
4577 | | to handle branches/jumps. */ |
4578 | 0 | bfd_vma self_address = 0; |
4579 | |
|
4580 | 0 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4581 | 0 | if (o_opcode == XTENSA_UNDEFINED) |
4582 | 0 | return 0; |
4583 | 0 | o_fmt = get_single_format (o_opcode); |
4584 | 0 | if (o_fmt == XTENSA_UNDEFINED) |
4585 | 0 | return 0; |
4586 | | |
4587 | 0 | if (xtensa_format_length (isa, fmt) != 2 |
4588 | 0 | || xtensa_format_length (isa, o_fmt) != 3) |
4589 | 0 | return 0; |
4590 | | |
4591 | 0 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4592 | 0 | operand_count = xtensa_opcode_num_operands (isa, opcode); |
4593 | 0 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); |
4594 | 0 | check_operand_count = o_operand_count; |
4595 | |
|
4596 | 0 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
4597 | 0 | return 0; |
4598 | | |
4599 | 0 | if (!is_or) |
4600 | 0 | { |
4601 | 0 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) |
4602 | 0 | return 0; |
4603 | 0 | } |
4604 | 0 | else |
4605 | 0 | { |
4606 | 0 | uint32 rawval0, rawval1; |
4607 | |
|
4608 | 0 | if (o_operand_count != operand_count + 1 |
4609 | 0 | || xtensa_operand_get_field (isa, opcode, 0, |
4610 | 0 | fmt, 0, slotbuf, &rawval0) != 0 |
4611 | 0 | || xtensa_operand_get_field (isa, opcode, 1, |
4612 | 0 | fmt, 0, slotbuf, &rawval1) != 0 |
4613 | 0 | || rawval0 == rawval1 /* it is a nop */) |
4614 | 0 | return 0; |
4615 | 0 | } |
4616 | 0 | if (is_branch) |
4617 | 0 | check_operand_count--; |
4618 | |
|
4619 | 0 | for (i = 0; i < check_operand_count; i++) |
4620 | 0 | { |
4621 | 0 | int new_i = i; |
4622 | 0 | if (is_or && i == o_operand_count - 1) |
4623 | 0 | new_i = i - 1; |
4624 | 0 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, |
4625 | 0 | slotbuf, &value) |
4626 | 0 | || xtensa_operand_decode (isa, opcode, new_i, &value)) |
4627 | 0 | return 0; |
4628 | | |
4629 | | /* PC-relative branches need adjustment, but |
4630 | | the PC-rel operand will always have a relocation. */ |
4631 | 0 | newval = value; |
4632 | 0 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, |
4633 | 0 | self_address) |
4634 | 0 | || xtensa_operand_encode (isa, o_opcode, i, &newval) |
4635 | 0 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, |
4636 | 0 | o_slotbuf, newval)) |
4637 | 0 | return 0; |
4638 | 0 | } |
4639 | | |
4640 | 0 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4641 | 0 | return 0; |
4642 | | |
4643 | 0 | return o_insnbuf; |
4644 | 0 | } |
4645 | 0 | } |
4646 | 0 | return 0; |
4647 | 0 | } |
4648 | | |
4649 | | |
4650 | | /* Attempt to widen an instruction. If the widening is valid, perform |
4651 | | the action in-place directly into the contents and return TRUE. Otherwise, |
4652 | | the return value is FALSE and the contents are not modified. */ |
4653 | | |
4654 | | static bool |
4655 | | widen_instruction (bfd_byte *contents, |
4656 | | bfd_size_type content_length, |
4657 | | bfd_size_type offset) |
4658 | 0 | { |
4659 | 0 | xtensa_opcode opcode; |
4660 | 0 | bfd_size_type insn_len; |
4661 | 0 | xtensa_isa isa = xtensa_default_isa; |
4662 | 0 | xtensa_format fmt; |
4663 | 0 | xtensa_insnbuf o_insnbuf; |
4664 | |
|
4665 | 0 | static xtensa_insnbuf insnbuf = NULL; |
4666 | 0 | static xtensa_insnbuf slotbuf = NULL; |
4667 | |
|
4668 | 0 | if (insnbuf == NULL) |
4669 | 0 | { |
4670 | 0 | insnbuf = xtensa_insnbuf_alloc (isa); |
4671 | 0 | slotbuf = xtensa_insnbuf_alloc (isa); |
4672 | 0 | } |
4673 | |
|
4674 | 0 | BFD_ASSERT (offset < content_length); |
4675 | |
|
4676 | 0 | if (content_length < 2) |
4677 | 0 | return false; |
4678 | | |
4679 | | /* We will hand-code a few of these for a little while. |
4680 | | These have all been specified in the assembler aleady. */ |
4681 | 0 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], |
4682 | 0 | content_length - offset); |
4683 | 0 | fmt = xtensa_format_decode (isa, insnbuf); |
4684 | 0 | if (xtensa_format_num_slots (isa, fmt) != 1) |
4685 | 0 | return false; |
4686 | | |
4687 | 0 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
4688 | 0 | return false; |
4689 | | |
4690 | 0 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4691 | 0 | if (opcode == XTENSA_UNDEFINED) |
4692 | 0 | return false; |
4693 | 0 | insn_len = xtensa_format_length (isa, fmt); |
4694 | 0 | if (insn_len > content_length) |
4695 | 0 | return false; |
4696 | | |
4697 | 0 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); |
4698 | 0 | if (o_insnbuf) |
4699 | 0 | { |
4700 | 0 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, |
4701 | 0 | content_length - offset); |
4702 | 0 | return true; |
4703 | 0 | } |
4704 | 0 | return false; |
4705 | 0 | } |
4706 | | |
4707 | | |
4708 | | /* Code for transforming CALLs at link-time. */ |
4709 | | |
4710 | | static bfd_reloc_status_type |
4711 | | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4712 | | bfd_vma address, |
4713 | | bfd_vma content_length, |
4714 | | char **error_message) |
4715 | 384 | { |
4716 | 384 | static xtensa_insnbuf insnbuf = NULL; |
4717 | 384 | static xtensa_insnbuf slotbuf = NULL; |
4718 | 384 | xtensa_format core_format = XTENSA_UNDEFINED; |
4719 | 384 | xtensa_opcode opcode; |
4720 | 384 | xtensa_opcode direct_call_opcode; |
4721 | 384 | xtensa_isa isa = xtensa_default_isa; |
4722 | 384 | bfd_byte *chbuf = contents + address; |
4723 | 384 | int opn; |
4724 | | |
4725 | 384 | if (insnbuf == NULL) |
4726 | 1 | { |
4727 | 1 | insnbuf = xtensa_insnbuf_alloc (isa); |
4728 | 1 | slotbuf = xtensa_insnbuf_alloc (isa); |
4729 | 1 | } |
4730 | | |
4731 | 384 | if (content_length < address) |
4732 | 0 | { |
4733 | 0 | *error_message = _("attempt to convert L32R/CALLX to CALL failed"); |
4734 | 0 | return bfd_reloc_other; |
4735 | 0 | } |
4736 | | |
4737 | 384 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4738 | 384 | direct_call_opcode = swap_callx_for_call_opcode (opcode); |
4739 | 384 | if (direct_call_opcode == XTENSA_UNDEFINED) |
4740 | 384 | { |
4741 | 384 | *error_message = _("attempt to convert L32R/CALLX to CALL failed"); |
4742 | 384 | return bfd_reloc_other; |
4743 | 384 | } |
4744 | | |
4745 | | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ |
4746 | 0 | core_format = xtensa_format_lookup (isa, "x24"); |
4747 | 0 | opcode = xtensa_opcode_lookup (isa, "or"); |
4748 | 0 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); |
4749 | 0 | for (opn = 0; opn < 3; opn++) |
4750 | 0 | { |
4751 | 0 | uint32 regno = 1; |
4752 | 0 | xtensa_operand_encode (isa, opcode, opn, ®no); |
4753 | 0 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, |
4754 | 0 | slotbuf, regno); |
4755 | 0 | } |
4756 | 0 | xtensa_format_encode (isa, core_format, insnbuf); |
4757 | 0 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); |
4758 | 0 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); |
4759 | | |
4760 | | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4761 | 0 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); |
4762 | 0 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); |
4763 | |
|
4764 | 0 | xtensa_format_encode (isa, core_format, insnbuf); |
4765 | 0 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); |
4766 | 0 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, |
4767 | 0 | content_length - address - 3); |
4768 | |
|
4769 | 0 | return bfd_reloc_ok; |
4770 | 384 | } |
4771 | | |
4772 | | |
4773 | | static bfd_reloc_status_type |
4774 | | contract_asm_expansion (bfd_byte *contents, |
4775 | | bfd_vma content_length, |
4776 | | Elf_Internal_Rela *irel, |
4777 | | char **error_message) |
4778 | 0 | { |
4779 | 0 | bfd_reloc_status_type retval = |
4780 | 0 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, |
4781 | 0 | error_message); |
4782 | |
|
4783 | 0 | if (retval != bfd_reloc_ok) |
4784 | 0 | return bfd_reloc_dangerous; |
4785 | | |
4786 | | /* Update the irel->r_offset field so that the right immediate and |
4787 | | the right instruction are modified during the relocation. */ |
4788 | 0 | irel->r_offset += 3; |
4789 | 0 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); |
4790 | 0 | return bfd_reloc_ok; |
4791 | 0 | } |
4792 | | |
4793 | | |
4794 | | static xtensa_opcode |
4795 | | swap_callx_for_call_opcode (xtensa_opcode opcode) |
4796 | 384 | { |
4797 | 384 | init_call_opcodes (); |
4798 | | |
4799 | 384 | if (opcode == callx0_op) return call0_op; |
4800 | 384 | if (opcode == callx4_op) return call4_op; |
4801 | 384 | if (opcode == callx8_op) return call8_op; |
4802 | 384 | if (opcode == callx12_op) return call12_op; |
4803 | | |
4804 | | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4805 | 384 | return XTENSA_UNDEFINED; |
4806 | 384 | } |
4807 | | |
4808 | | |
4809 | | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4810 | | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. |
4811 | | If not, return XTENSA_UNDEFINED. */ |
4812 | | |
4813 | 52 | #define L32R_TARGET_REG_OPERAND 0 |
4814 | 0 | #define CONST16_TARGET_REG_OPERAND 0 |
4815 | 0 | #define CALLN_SOURCE_OPERAND 0 |
4816 | | |
4817 | | static xtensa_opcode |
4818 | | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bool *p_uses_l32r) |
4819 | 409 | { |
4820 | 409 | static xtensa_insnbuf insnbuf = NULL; |
4821 | 409 | static xtensa_insnbuf slotbuf = NULL; |
4822 | 409 | xtensa_format fmt; |
4823 | 409 | xtensa_opcode opcode; |
4824 | 409 | xtensa_isa isa = xtensa_default_isa; |
4825 | 409 | uint32 regno, const16_regno, call_regno; |
4826 | 409 | int offset = 0; |
4827 | | |
4828 | 409 | if (insnbuf == NULL) |
4829 | 1 | { |
4830 | 1 | insnbuf = xtensa_insnbuf_alloc (isa); |
4831 | 1 | slotbuf = xtensa_insnbuf_alloc (isa); |
4832 | 1 | } |
4833 | | |
4834 | 409 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); |
4835 | 409 | fmt = xtensa_format_decode (isa, insnbuf); |
4836 | 409 | if (fmt == XTENSA_UNDEFINED |
4837 | 409 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) |
4838 | 3 | return XTENSA_UNDEFINED; |
4839 | | |
4840 | 406 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4841 | 406 | if (opcode == XTENSA_UNDEFINED) |
4842 | 0 | return XTENSA_UNDEFINED; |
4843 | | |
4844 | 406 | if (opcode == get_l32r_opcode ()) |
4845 | 26 | { |
4846 | 26 | if (p_uses_l32r) |
4847 | 0 | *p_uses_l32r = true; |
4848 | 26 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, |
4849 | 26 | fmt, 0, slotbuf, ®no) |
4850 | 26 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, |
4851 | 26 | ®no)) |
4852 | 0 | return XTENSA_UNDEFINED; |
4853 | 26 | } |
4854 | 380 | else if (opcode == get_const16_opcode ()) |
4855 | 0 | { |
4856 | 0 | if (p_uses_l32r) |
4857 | 0 | *p_uses_l32r = false; |
4858 | 0 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, |
4859 | 0 | fmt, 0, slotbuf, ®no) |
4860 | 0 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, |
4861 | 0 | ®no)) |
4862 | 0 | return XTENSA_UNDEFINED; |
4863 | | |
4864 | | /* Check that the next instruction is also CONST16. */ |
4865 | 0 | offset += xtensa_format_length (isa, fmt); |
4866 | 0 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); |
4867 | 0 | fmt = xtensa_format_decode (isa, insnbuf); |
4868 | 0 | if (fmt == XTENSA_UNDEFINED |
4869 | 0 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) |
4870 | 0 | return XTENSA_UNDEFINED; |
4871 | 0 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4872 | 0 | if (opcode != get_const16_opcode ()) |
4873 | 0 | return XTENSA_UNDEFINED; |
4874 | | |
4875 | 0 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, |
4876 | 0 | fmt, 0, slotbuf, &const16_regno) |
4877 | 0 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, |
4878 | 0 | &const16_regno) |
4879 | 0 | || const16_regno != regno) |
4880 | 0 | return XTENSA_UNDEFINED; |
4881 | 0 | } |
4882 | 380 | else |
4883 | 380 | return XTENSA_UNDEFINED; |
4884 | | |
4885 | | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4886 | 26 | offset += xtensa_format_length (isa, fmt); |
4887 | 26 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); |
4888 | 26 | fmt = xtensa_format_decode (isa, insnbuf); |
4889 | 26 | if (fmt == XTENSA_UNDEFINED |
4890 | 26 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) |
4891 | 1 | return XTENSA_UNDEFINED; |
4892 | 25 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4893 | 25 | if (opcode == XTENSA_UNDEFINED |
4894 | 25 | || !is_indirect_call_opcode (opcode)) |
4895 | 25 | return XTENSA_UNDEFINED; |
4896 | | |
4897 | 0 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4898 | 0 | fmt, 0, slotbuf, &call_regno) |
4899 | 0 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, |
4900 | 0 | &call_regno)) |
4901 | 0 | return XTENSA_UNDEFINED; |
4902 | | |
4903 | 0 | if (call_regno != regno) |
4904 | 0 | return XTENSA_UNDEFINED; |
4905 | | |
4906 | 0 | return opcode; |
4907 | 0 | } |
4908 | | |
4909 | | |
4910 | | /* Data structures used during relaxation. */ |
4911 | | |
4912 | | /* r_reloc: relocation values. */ |
4913 | | |
4914 | | /* Through the relaxation process, we need to keep track of the values |
4915 | | that will result from evaluating relocations. The standard ELF |
4916 | | relocation structure is not sufficient for this purpose because we're |
4917 | | operating on multiple input files at once, so we need to know which |
4918 | | input file a relocation refers to. The r_reloc structure thus |
4919 | | records both the input file (bfd) and ELF relocation. |
4920 | | |
4921 | | For efficiency, an r_reloc also contains a "target_offset" field to |
4922 | | cache the target-section-relative offset value that is represented by |
4923 | | the relocation. |
4924 | | |
4925 | | The r_reloc also contains a virtual offset that allows multiple |
4926 | | inserted literals to be placed at the same "address" with |
4927 | | different offsets. */ |
4928 | | |
4929 | | typedef struct r_reloc_struct r_reloc; |
4930 | | |
4931 | | struct r_reloc_struct |
4932 | | { |
4933 | | bfd *abfd; |
4934 | | Elf_Internal_Rela rela; |
4935 | | bfd_vma target_offset; |
4936 | | bfd_vma virtual_offset; |
4937 | | }; |
4938 | | |
4939 | | |
4940 | | /* The r_reloc structure is included by value in literal_value, but not |
4941 | | every literal_value has an associated relocation -- some are simple |
4942 | | constants. In such cases, we set all the fields in the r_reloc |
4943 | | struct to zero. The r_reloc_is_const function should be used to |
4944 | | detect this case. */ |
4945 | | |
4946 | | static bool |
4947 | | r_reloc_is_const (const r_reloc *r_rel) |
4948 | 0 | { |
4949 | 0 | return (r_rel->abfd == NULL); |
4950 | 0 | } |
4951 | | |
4952 | | |
4953 | | static bfd_vma |
4954 | | r_reloc_get_target_offset (const r_reloc *r_rel) |
4955 | 0 | { |
4956 | 0 | bfd_vma target_offset; |
4957 | 0 | unsigned long r_symndx; |
4958 | |
|
4959 | 0 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4960 | 0 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4961 | 0 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); |
4962 | 0 | return (target_offset + r_rel->rela.r_addend); |
4963 | 0 | } |
4964 | | |
4965 | | |
4966 | | static struct elf_link_hash_entry * |
4967 | | r_reloc_get_hash_entry (const r_reloc *r_rel) |
4968 | 0 | { |
4969 | 0 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4970 | 0 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); |
4971 | 0 | } |
4972 | | |
4973 | | |
4974 | | static asection * |
4975 | | r_reloc_get_section (const r_reloc *r_rel) |
4976 | 0 | { |
4977 | 0 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4978 | 0 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); |
4979 | 0 | } |
4980 | | |
4981 | | |
4982 | | static bool |
4983 | | r_reloc_is_defined (const r_reloc *r_rel) |
4984 | 0 | { |
4985 | 0 | asection *sec; |
4986 | 0 | if (r_rel == NULL) |
4987 | 0 | return false; |
4988 | | |
4989 | 0 | sec = r_reloc_get_section (r_rel); |
4990 | 0 | if (sec == bfd_abs_section_ptr |
4991 | 0 | || sec == bfd_com_section_ptr |
4992 | 0 | || sec == bfd_und_section_ptr) |
4993 | 0 | return false; |
4994 | 0 | return true; |
4995 | 0 | } |
4996 | | |
4997 | | |
4998 | | static void |
4999 | | r_reloc_init (r_reloc *r_rel, |
5000 | | bfd *abfd, |
5001 | | Elf_Internal_Rela *irel, |
5002 | | bfd_byte *contents, |
5003 | | bfd_size_type content_length) |
5004 | 0 | { |
5005 | 0 | int r_type; |
5006 | 0 | reloc_howto_type *howto; |
5007 | |
|
5008 | 0 | if (irel) |
5009 | 0 | { |
5010 | 0 | r_rel->rela = *irel; |
5011 | 0 | r_rel->abfd = abfd; |
5012 | 0 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); |
5013 | 0 | r_rel->virtual_offset = 0; |
5014 | 0 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); |
5015 | 0 | howto = &elf_howto_table[r_type]; |
5016 | 0 | if (howto->partial_inplace) |
5017 | 0 | { |
5018 | 0 | bfd_vma inplace_val; |
5019 | 0 | BFD_ASSERT (r_rel->rela.r_offset < content_length); |
5020 | |
|
5021 | 0 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); |
5022 | 0 | r_rel->target_offset += inplace_val; |
5023 | 0 | } |
5024 | 0 | } |
5025 | 0 | else |
5026 | 0 | memset (r_rel, 0, sizeof (r_reloc)); |
5027 | 0 | } |
5028 | | |
5029 | | |
5030 | | #if DEBUG |
5031 | | |
5032 | | static void |
5033 | | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
5034 | | { |
5035 | | if (r_reloc_is_defined (r_rel)) |
5036 | | { |
5037 | | asection *sec = r_reloc_get_section (r_rel); |
5038 | | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); |
5039 | | } |
5040 | | else if (r_reloc_get_hash_entry (r_rel)) |
5041 | | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); |
5042 | | else |
5043 | | fprintf (fp, " ?? + "); |
5044 | | |
5045 | | fprintf (fp, "%" PRIx64, (uint64_t) r_rel->target_offset); |
5046 | | if (r_rel->virtual_offset) |
5047 | | fprintf (fp, " + %" PRIx64, (uint64_t) r_rel->virtual_offset); |
5048 | | |
5049 | | fprintf (fp, ")"); |
5050 | | } |
5051 | | |
5052 | | #endif /* DEBUG */ |
5053 | | |
5054 | | |
5055 | | /* source_reloc: relocations that reference literals. */ |
5056 | | |
5057 | | /* To determine whether literals can be coalesced, we need to first |
5058 | | record all the relocations that reference the literals. The |
5059 | | source_reloc structure below is used for this purpose. The |
5060 | | source_reloc entries are kept in a per-literal-section array, sorted |
5061 | | by offset within the literal section (i.e., target offset). |
5062 | | |
5063 | | The source_sec and r_rel.rela.r_offset fields identify the source of |
5064 | | the relocation. The r_rel field records the relocation value, i.e., |
5065 | | the offset of the literal being referenced. The opnd field is needed |
5066 | | to determine the range of the immediate field to which the relocation |
5067 | | applies, so we can determine whether another literal with the same |
5068 | | value is within range. The is_null field is true when the relocation |
5069 | | is being removed (e.g., when an L32R is being removed due to a CALLX |
5070 | | that is converted to a direct CALL). */ |
5071 | | |
5072 | | typedef struct source_reloc_struct source_reloc; |
5073 | | |
5074 | | struct source_reloc_struct |
5075 | | { |
5076 | | asection *source_sec; |
5077 | | r_reloc r_rel; |
5078 | | xtensa_opcode opcode; |
5079 | | int opnd; |
5080 | | bool is_null; |
5081 | | bool is_abs_literal; |
5082 | | }; |
5083 | | |
5084 | | |
5085 | | static void |
5086 | | init_source_reloc (source_reloc *reloc, |
5087 | | asection *source_sec, |
5088 | | const r_reloc *r_rel, |
5089 | | xtensa_opcode opcode, |
5090 | | int opnd, |
5091 | | bool is_abs_literal) |
5092 | 0 | { |
5093 | 0 | reloc->source_sec = source_sec; |
5094 | 0 | reloc->r_rel = *r_rel; |
5095 | 0 | reloc->opcode = opcode; |
5096 | 0 | reloc->opnd = opnd; |
5097 | 0 | reloc->is_null = false; |
5098 | 0 | reloc->is_abs_literal = is_abs_literal; |
5099 | 0 | } |
5100 | | |
5101 | | |
5102 | | /* Find the source_reloc for a particular source offset and relocation |
5103 | | type. Note that the array is sorted by _target_ offset, so this is |
5104 | | just a linear search. */ |
5105 | | |
5106 | | static source_reloc * |
5107 | | find_source_reloc (source_reloc *src_relocs, |
5108 | | int src_count, |
5109 | | asection *sec, |
5110 | | Elf_Internal_Rela *irel) |
5111 | 0 | { |
5112 | 0 | int i; |
5113 | |
|
5114 | 0 | for (i = 0; i < src_count; i++) |
5115 | 0 | { |
5116 | 0 | if (src_relocs[i].source_sec == sec |
5117 | 0 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset |
5118 | 0 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) |
5119 | 0 | == ELF32_R_TYPE (irel->r_info))) |
5120 | 0 | return &src_relocs[i]; |
5121 | 0 | } |
5122 | | |
5123 | 0 | return NULL; |
5124 | 0 | } |
5125 | | |
5126 | | |
5127 | | static int |
5128 | | source_reloc_compare (const void *ap, const void *bp) |
5129 | 0 | { |
5130 | 0 | const source_reloc *a = (const source_reloc *) ap; |
5131 | 0 | const source_reloc *b = (const source_reloc *) bp; |
5132 | |
|
5133 | 0 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5134 | 0 | return (a->r_rel.target_offset - b->r_rel.target_offset); |
5135 | | |
5136 | | /* We don't need to sort on these criteria for correctness, |
5137 | | but enforcing a more strict ordering prevents unstable qsort |
5138 | | from behaving differently with different implementations. |
5139 | | Without the code below we get correct but different results |
5140 | | on Solaris 2.7 and 2.8. We would like to always produce the |
5141 | | same results no matter the host. */ |
5142 | | |
5143 | 0 | if ((!a->is_null) - (!b->is_null)) |
5144 | 0 | return ((!a->is_null) - (!b->is_null)); |
5145 | 0 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); |
5146 | 0 | } |
5147 | | |
5148 | | |
5149 | | /* Literal values and value hash tables. */ |
5150 | | |
5151 | | /* Literals with the same value can be coalesced. The literal_value |
5152 | | structure records the value of a literal: the "r_rel" field holds the |
5153 | | information from the relocation on the literal (if there is one) and |
5154 | | the "value" field holds the contents of the literal word itself. |
5155 | | |
5156 | | The value_map structure records a literal value along with the |
5157 | | location of a literal holding that value. The value_map hash table |
5158 | | is indexed by the literal value, so that we can quickly check if a |
5159 | | particular literal value has been seen before and is thus a candidate |
5160 | | for coalescing. */ |
5161 | | |
5162 | | typedef struct literal_value_struct literal_value; |
5163 | | typedef struct value_map_struct value_map; |
5164 | | typedef struct value_map_hash_table_struct value_map_hash_table; |
5165 | | |
5166 | | struct literal_value_struct |
5167 | | { |
5168 | | r_reloc r_rel; |
5169 | | unsigned long value; |
5170 | | bool is_abs_literal; |
5171 | | }; |
5172 | | |
5173 | | struct value_map_struct |
5174 | | { |
5175 | | literal_value val; /* The literal value. */ |
5176 | | r_reloc loc; /* Location of the literal. */ |
5177 | | value_map *next; |
5178 | | }; |
5179 | | |
5180 | | struct value_map_hash_table_struct |
5181 | | { |
5182 | | unsigned bucket_count; |
5183 | | value_map **buckets; |
5184 | | unsigned count; |
5185 | | bool has_last_loc; |
5186 | | r_reloc last_loc; |
5187 | | }; |
5188 | | |
5189 | | |
5190 | | static void |
5191 | | init_literal_value (literal_value *lit, |
5192 | | const r_reloc *r_rel, |
5193 | | unsigned long value, |
5194 | | bool is_abs_literal) |
5195 | 0 | { |
5196 | 0 | lit->r_rel = *r_rel; |
5197 | 0 | lit->value = value; |
5198 | 0 | lit->is_abs_literal = is_abs_literal; |
5199 | 0 | } |
5200 | | |
5201 | | |
5202 | | static bool |
5203 | | literal_value_equal (const literal_value *src1, |
5204 | | const literal_value *src2, |
5205 | | bool final_static_link) |
5206 | 0 | { |
5207 | 0 | struct elf_link_hash_entry *h1, *h2; |
5208 | |
|
5209 | 0 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
5210 | 0 | return false; |
5211 | | |
5212 | 0 | if (r_reloc_is_const (&src1->r_rel)) |
5213 | 0 | return (src1->value == src2->value); |
5214 | | |
5215 | 0 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5216 | 0 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) |
5217 | 0 | return false; |
5218 | | |
5219 | 0 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5220 | 0 | return false; |
5221 | | |
5222 | 0 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) |
5223 | 0 | return false; |
5224 | | |
5225 | 0 | if (src1->value != src2->value) |
5226 | 0 | return false; |
5227 | | |
5228 | | /* Now check for the same section (if defined) or the same elf_hash |
5229 | | (if undefined or weak). */ |
5230 | 0 | h1 = r_reloc_get_hash_entry (&src1->r_rel); |
5231 | 0 | h2 = r_reloc_get_hash_entry (&src2->r_rel); |
5232 | | |
5233 | | /* Keep start_stop literals always unique to avoid dropping it due to them |
5234 | | having late initialization. |
5235 | | Now they are equal because initialized with zeroed values. */ |
5236 | 0 | if (h2 && h2->start_stop) |
5237 | 0 | return false; |
5238 | | |
5239 | 0 | if (r_reloc_is_defined (&src1->r_rel) |
5240 | 0 | && (final_static_link |
5241 | 0 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) |
5242 | 0 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) |
5243 | 0 | { |
5244 | 0 | if (r_reloc_get_section (&src1->r_rel) |
5245 | 0 | != r_reloc_get_section (&src2->r_rel)) |
5246 | 0 | return false; |
5247 | 0 | } |
5248 | 0 | else |
5249 | 0 | { |
5250 | | /* Require that the hash entries (i.e., symbols) be identical. */ |
5251 | 0 | if (h1 != h2 || h1 == 0) |
5252 | 0 | return false; |
5253 | 0 | } |
5254 | | |
5255 | 0 | if (src1->is_abs_literal != src2->is_abs_literal) |
5256 | 0 | return false; |
5257 | | |
5258 | 0 | return true; |
5259 | 0 | } |
5260 | | |
5261 | | |
5262 | | /* Must be power of 2. */ |
5263 | 0 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 |
5264 | | |
5265 | | static value_map_hash_table * |
5266 | | value_map_hash_table_init (void) |
5267 | 0 | { |
5268 | 0 | value_map_hash_table *values; |
5269 | |
|
5270 | 0 | values = (value_map_hash_table *) |
5271 | 0 | bfd_zmalloc (sizeof (value_map_hash_table)); |
5272 | 0 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; |
5273 | 0 | values->count = 0; |
5274 | 0 | values->buckets = (value_map **) |
5275 | 0 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); |
5276 | 0 | if (values->buckets == NULL) |
5277 | 0 | { |
5278 | 0 | free (values); |
5279 | 0 | return NULL; |
5280 | 0 | } |
5281 | 0 | values->has_last_loc = false; |
5282 | |
|
5283 | 0 | return values; |
5284 | 0 | } |
5285 | | |
5286 | | |
5287 | | static void |
5288 | | value_map_hash_table_delete (value_map_hash_table *table) |
5289 | 0 | { |
5290 | 0 | free (table->buckets); |
5291 | 0 | free (table); |
5292 | 0 | } |
5293 | | |
5294 | | |
5295 | | static unsigned |
5296 | | hash_bfd_vma (bfd_vma val) |
5297 | 0 | { |
5298 | 0 | return (val >> 2) + (val >> 10); |
5299 | 0 | } |
5300 | | |
5301 | | |
5302 | | static unsigned |
5303 | | literal_value_hash (const literal_value *src) |
5304 | 0 | { |
5305 | 0 | unsigned hash_val; |
5306 | |
|
5307 | 0 | hash_val = hash_bfd_vma (src->value); |
5308 | 0 | if (!r_reloc_is_const (&src->r_rel)) |
5309 | 0 | { |
5310 | 0 | void *sec_or_hash; |
5311 | |
|
5312 | 0 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); |
5313 | 0 | hash_val += hash_bfd_vma (src->r_rel.target_offset); |
5314 | 0 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); |
5315 | | |
5316 | | /* Now check for the same section and the same elf_hash. */ |
5317 | 0 | if (r_reloc_is_defined (&src->r_rel)) |
5318 | 0 | sec_or_hash = r_reloc_get_section (&src->r_rel); |
5319 | 0 | else |
5320 | 0 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); |
5321 | 0 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
5322 | 0 | } |
5323 | 0 | return hash_val; |
5324 | 0 | } |
5325 | | |
5326 | | |
5327 | | /* Check if the specified literal_value has been seen before. */ |
5328 | | |
5329 | | static value_map * |
5330 | | value_map_get_cached_value (value_map_hash_table *map, |
5331 | | const literal_value *val, |
5332 | | bool final_static_link) |
5333 | 0 | { |
5334 | 0 | value_map *map_e; |
5335 | 0 | value_map *bucket; |
5336 | 0 | unsigned idx; |
5337 | |
|
5338 | 0 | idx = literal_value_hash (val); |
5339 | 0 | idx = idx & (map->bucket_count - 1); |
5340 | 0 | bucket = map->buckets[idx]; |
5341 | 0 | for (map_e = bucket; map_e; map_e = map_e->next) |
5342 | 0 | { |
5343 | 0 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5344 | 0 | return map_e; |
5345 | 0 | } |
5346 | 0 | return NULL; |
5347 | 0 | } |
5348 | | |
5349 | | |
5350 | | /* Record a new literal value. It is illegal to call this if VALUE |
5351 | | already has an entry here. */ |
5352 | | |
5353 | | static value_map * |
5354 | | add_value_map (value_map_hash_table *map, |
5355 | | const literal_value *val, |
5356 | | const r_reloc *loc, |
5357 | | bool final_static_link) |
5358 | 0 | { |
5359 | 0 | value_map **bucket_p; |
5360 | 0 | unsigned idx; |
5361 | |
|
5362 | 0 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); |
5363 | 0 | if (val_e == NULL) |
5364 | 0 | { |
5365 | 0 | bfd_set_error (bfd_error_no_memory); |
5366 | 0 | return NULL; |
5367 | 0 | } |
5368 | | |
5369 | 0 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5370 | 0 | val_e->val = *val; |
5371 | 0 | val_e->loc = *loc; |
5372 | |
|
5373 | 0 | idx = literal_value_hash (val); |
5374 | 0 | idx = idx & (map->bucket_count - 1); |
5375 | 0 | bucket_p = &map->buckets[idx]; |
5376 | |
|
5377 | 0 | val_e->next = *bucket_p; |
5378 | 0 | *bucket_p = val_e; |
5379 | 0 | map->count++; |
5380 | | /* FIXME: Consider resizing the hash table if we get too many entries. */ |
5381 | |
|
5382 | 0 | return val_e; |
5383 | 0 | } |
5384 | | |
5385 | | |
5386 | | /* Lists of text actions (ta_) for narrowing, widening, longcall |
5387 | | conversion, space fill, code & literal removal, etc. */ |
5388 | | |
5389 | | /* The following text actions are generated: |
5390 | | |
5391 | | "ta_remove_insn" remove an instruction or instructions |
5392 | | "ta_remove_longcall" convert longcall to call |
5393 | | "ta_convert_longcall" convert longcall to nop/call |
5394 | | "ta_narrow_insn" narrow a wide instruction |
5395 | | "ta_widen" widen a narrow instruction |
5396 | | "ta_fill" add fill or remove fill |
5397 | | removed < 0 is a fill; branches to the fill address will be |
5398 | | changed to address + fill size (e.g., address - removed) |
5399 | | removed >= 0 branches to the fill address will stay unchanged |
5400 | | "ta_remove_literal" remove a literal; this action is |
5401 | | indicated when a literal is removed |
5402 | | or replaced. |
5403 | | "ta_add_literal" insert a new literal; this action is |
5404 | | indicated when a literal has been moved. |
5405 | | It may use a virtual_offset because |
5406 | | multiple literals can be placed at the |
5407 | | same location. |
5408 | | |
5409 | | For each of these text actions, we also record the number of bytes |
5410 | | removed by performing the text action. In the case of a "ta_widen" |
5411 | | or a "ta_fill" that adds space, the removed_bytes will be negative. */ |
5412 | | |
5413 | | typedef struct text_action_struct text_action; |
5414 | | typedef struct text_action_list_struct text_action_list; |
5415 | | typedef enum text_action_enum_t text_action_t; |
5416 | | |
5417 | | enum text_action_enum_t |
5418 | | { |
5419 | | ta_none, |
5420 | | ta_remove_insn, /* removed = -size */ |
5421 | | ta_remove_longcall, /* removed = -size */ |
5422 | | ta_convert_longcall, /* removed = 0 */ |
5423 | | ta_narrow_insn, /* removed = -1 */ |
5424 | | ta_widen_insn, /* removed = +1 */ |
5425 | | ta_fill, /* removed = +size */ |
5426 | | ta_remove_literal, |
5427 | | ta_add_literal |
5428 | | }; |
5429 | | |
5430 | | |
5431 | | /* Structure for a text action record. */ |
5432 | | struct text_action_struct |
5433 | | { |
5434 | | text_action_t action; |
5435 | | asection *sec; /* Optional */ |
5436 | | bfd_vma offset; |
5437 | | bfd_vma virtual_offset; /* Zero except for adding literals. */ |
5438 | | int removed_bytes; |
5439 | | literal_value value; /* Only valid when adding literals. */ |
5440 | | }; |
5441 | | |
5442 | | struct removal_by_action_entry_struct |
5443 | | { |
5444 | | bfd_vma offset; |
5445 | | int removed; |
5446 | | int eq_removed; |
5447 | | int eq_removed_before_fill; |
5448 | | }; |
5449 | | typedef struct removal_by_action_entry_struct removal_by_action_entry; |
5450 | | |
5451 | | struct removal_by_action_map_struct |
5452 | | { |
5453 | | unsigned n_entries; |
5454 | | removal_by_action_entry *entry; |
5455 | | }; |
5456 | | typedef struct removal_by_action_map_struct removal_by_action_map; |
5457 | | |
5458 | | |
5459 | | /* List of all of the actions taken on a text section. */ |
5460 | | struct text_action_list_struct |
5461 | | { |
5462 | | unsigned count; |
5463 | | splay_tree tree; |
5464 | | removal_by_action_map map; |
5465 | | }; |
5466 | | |
5467 | | |
5468 | | static text_action * |
5469 | | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) |
5470 | 0 | { |
5471 | 0 | text_action a; |
5472 | | |
5473 | | /* It is not necessary to fill at the end of a section. */ |
5474 | 0 | if (sec->size == offset) |
5475 | 0 | return NULL; |
5476 | | |
5477 | 0 | a.offset = offset; |
5478 | 0 | a.action = ta_fill; |
5479 | |
|
5480 | 0 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); |
5481 | 0 | if (node) |
5482 | 0 | return (text_action *)node->value; |
5483 | 0 | return NULL; |
5484 | 0 | } |
5485 | | |
5486 | | |
5487 | | static int |
5488 | | compute_removed_action_diff (const text_action *ta, |
5489 | | asection *sec, |
5490 | | bfd_vma offset, |
5491 | | int removed, |
5492 | | int removable_space) |
5493 | 0 | { |
5494 | 0 | int new_removed; |
5495 | 0 | int current_removed = 0; |
5496 | |
|
5497 | 0 | if (ta) |
5498 | 0 | current_removed = ta->removed_bytes; |
5499 | |
|
5500 | 0 | BFD_ASSERT (ta == NULL || ta->offset == offset); |
5501 | 0 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); |
5502 | | |
5503 | | /* It is not necessary to fill at the end of a section. Clean this up. */ |
5504 | 0 | if (sec->size == offset) |
5505 | 0 | new_removed = removable_space - 0; |
5506 | 0 | else |
5507 | 0 | { |
5508 | 0 | int space; |
5509 | 0 | int added = -removed - current_removed; |
5510 | | /* Ignore multiples of the section alignment. */ |
5511 | 0 | added = ((1 << sec->alignment_power) - 1) & added; |
5512 | 0 | new_removed = (-added); |
5513 | | |
5514 | | /* Modify for removable. */ |
5515 | 0 | space = removable_space - new_removed; |
5516 | 0 | new_removed = (removable_space |
5517 | 0 | - (((1 << sec->alignment_power) - 1) & space)); |
5518 | 0 | } |
5519 | 0 | return (new_removed - current_removed); |
5520 | 0 | } |
5521 | | |
5522 | | |
5523 | | static void |
5524 | | adjust_fill_action (text_action *ta, int fill_diff) |
5525 | 0 | { |
5526 | 0 | ta->removed_bytes += fill_diff; |
5527 | 0 | } |
5528 | | |
5529 | | |
5530 | | static int |
5531 | | text_action_compare (splay_tree_key a, splay_tree_key b) |
5532 | 0 | { |
5533 | 0 | text_action *pa = (text_action *)a; |
5534 | 0 | text_action *pb = (text_action *)b; |
5535 | 0 | static const int action_priority[] = |
5536 | 0 | { |
5537 | 0 | [ta_fill] = 0, |
5538 | 0 | [ta_none] = 1, |
5539 | 0 | [ta_convert_longcall] = 2, |
5540 | 0 | [ta_narrow_insn] = 3, |
5541 | 0 | [ta_remove_insn] = 4, |
5542 | 0 | [ta_remove_longcall] = 5, |
5543 | 0 | [ta_remove_literal] = 6, |
5544 | 0 | [ta_widen_insn] = 7, |
5545 | 0 | [ta_add_literal] = 8, |
5546 | 0 | }; |
5547 | |
|
5548 | 0 | if (pa->offset == pb->offset) |
5549 | 0 | { |
5550 | 0 | if (pa->action == pb->action) |
5551 | 0 | return 0; |
5552 | 0 | return action_priority[pa->action] - action_priority[pb->action]; |
5553 | 0 | } |
5554 | 0 | else |
5555 | 0 | return pa->offset < pb->offset ? -1 : 1; |
5556 | 0 | } |
5557 | | |
5558 | | static text_action * |
5559 | | action_first (text_action_list *action_list) |
5560 | 0 | { |
5561 | 0 | splay_tree_node node = splay_tree_min (action_list->tree); |
5562 | 0 | return node ? (text_action *)node->value : NULL; |
5563 | 0 | } |
5564 | | |
5565 | | static text_action * |
5566 | | action_next (text_action_list *action_list, text_action *action) |
5567 | 0 | { |
5568 | 0 | splay_tree_node node = splay_tree_successor (action_list->tree, |
5569 | 0 | (splay_tree_key)action); |
5570 | 0 | return node ? (text_action *)node->value : NULL; |
5571 | 0 | } |
5572 | | |
5573 | | /* Add a modification action to the text. For the case of adding or |
5574 | | removing space, modify any current fill and assume that |
5575 | | "unreachable_space" bytes can be freely contracted. Note that a |
5576 | | negative removed value is a fill. */ |
5577 | | |
5578 | | static void |
5579 | | text_action_add (text_action_list *l, |
5580 | | text_action_t action, |
5581 | | asection *sec, |
5582 | | bfd_vma offset, |
5583 | | int removed) |
5584 | 0 | { |
5585 | 0 | text_action *ta; |
5586 | 0 | text_action a; |
5587 | | |
5588 | | /* It is not necessary to fill at the end of a section. */ |
5589 | 0 | if (action == ta_fill && sec->size == offset) |
5590 | 0 | return; |
5591 | | |
5592 | | /* It is not necessary to fill 0 bytes. */ |
5593 | 0 | if (action == ta_fill && removed == 0) |
5594 | 0 | return; |
5595 | | |
5596 | 0 | a.action = action; |
5597 | 0 | a.offset = offset; |
5598 | |
|
5599 | 0 | if (action == ta_fill) |
5600 | 0 | { |
5601 | 0 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); |
5602 | |
|
5603 | 0 | if (node) |
5604 | 0 | { |
5605 | 0 | ta = (text_action *)node->value; |
5606 | 0 | ta->removed_bytes += removed; |
5607 | 0 | return; |
5608 | 0 | } |
5609 | 0 | } |
5610 | 0 | else |
5611 | 0 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL); |
5612 | | |
5613 | 0 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); |
5614 | 0 | ta->action = action; |
5615 | 0 | ta->sec = sec; |
5616 | 0 | ta->offset = offset; |
5617 | 0 | ta->removed_bytes = removed; |
5618 | 0 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); |
5619 | 0 | ++l->count; |
5620 | 0 | } |
5621 | | |
5622 | | |
5623 | | static void |
5624 | | text_action_add_literal (text_action_list *l, |
5625 | | text_action_t action, |
5626 | | const r_reloc *loc, |
5627 | | const literal_value *value, |
5628 | | int removed) |
5629 | 0 | { |
5630 | 0 | text_action *ta; |
5631 | 0 | asection *sec = r_reloc_get_section (loc); |
5632 | 0 | bfd_vma offset = loc->target_offset; |
5633 | 0 | bfd_vma virtual_offset = loc->virtual_offset; |
5634 | |
|
5635 | 0 | BFD_ASSERT (action == ta_add_literal); |
5636 | | |
5637 | | /* Create a new record and fill it up. */ |
5638 | 0 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); |
5639 | 0 | ta->action = action; |
5640 | 0 | ta->sec = sec; |
5641 | 0 | ta->offset = offset; |
5642 | 0 | ta->virtual_offset = virtual_offset; |
5643 | 0 | ta->value = *value; |
5644 | 0 | ta->removed_bytes = removed; |
5645 | |
|
5646 | 0 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL); |
5647 | 0 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); |
5648 | 0 | ++l->count; |
5649 | 0 | } |
5650 | | |
5651 | | |
5652 | | /* Find the total offset adjustment for the relaxations specified by |
5653 | | text_actions, beginning from a particular starting action. This is |
5654 | | typically used from offset_with_removed_text to search an entire list of |
5655 | | actions, but it may also be called directly when adjusting adjacent offsets |
5656 | | so that each search may begin where the previous one left off. */ |
5657 | | |
5658 | | static int |
5659 | | removed_by_actions (text_action_list *action_list, |
5660 | | text_action **p_start_action, |
5661 | | bfd_vma offset, |
5662 | | bool before_fill) |
5663 | 0 | { |
5664 | 0 | text_action *r; |
5665 | 0 | int removed = 0; |
5666 | |
|
5667 | 0 | r = *p_start_action; |
5668 | 0 | if (r) |
5669 | 0 | { |
5670 | 0 | splay_tree_node node = splay_tree_lookup (action_list->tree, |
5671 | 0 | (splay_tree_key)r); |
5672 | 0 | BFD_ASSERT (node != NULL && r == (text_action *)node->value); |
5673 | 0 | } |
5674 | |
|
5675 | 0 | while (r) |
5676 | 0 | { |
5677 | 0 | if (r->offset > offset) |
5678 | 0 | break; |
5679 | | |
5680 | 0 | if (r->offset == offset |
5681 | 0 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) |
5682 | 0 | break; |
5683 | | |
5684 | 0 | removed += r->removed_bytes; |
5685 | |
|
5686 | 0 | r = action_next (action_list, r); |
5687 | 0 | } |
5688 | |
|
5689 | 0 | *p_start_action = r; |
5690 | 0 | return removed; |
5691 | 0 | } |
5692 | | |
5693 | | |
5694 | | static bfd_vma |
5695 | | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) |
5696 | 0 | { |
5697 | 0 | text_action *r = action_first (action_list); |
5698 | |
|
5699 | 0 | return offset - removed_by_actions (action_list, &r, offset, false); |
5700 | 0 | } |
5701 | | |
5702 | | |
5703 | | static unsigned |
5704 | | action_list_count (text_action_list *action_list) |
5705 | 0 | { |
5706 | 0 | return action_list->count; |
5707 | 0 | } |
5708 | | |
5709 | | typedef struct map_action_fn_context_struct map_action_fn_context; |
5710 | | struct map_action_fn_context_struct |
5711 | | { |
5712 | | int removed; |
5713 | | removal_by_action_map map; |
5714 | | bool eq_complete; |
5715 | | }; |
5716 | | |
5717 | | static int |
5718 | | map_action_fn (splay_tree_node node, void *p) |
5719 | 0 | { |
5720 | 0 | map_action_fn_context *ctx = p; |
5721 | 0 | text_action *r = (text_action *)node->value; |
5722 | 0 | removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries; |
5723 | |
|
5724 | 0 | if (ctx->map.n_entries && (ientry - 1)->offset == r->offset) |
5725 | 0 | { |
5726 | 0 | --ientry; |
5727 | 0 | } |
5728 | 0 | else |
5729 | 0 | { |
5730 | 0 | ++ctx->map.n_entries; |
5731 | 0 | ctx->eq_complete = false; |
5732 | 0 | ientry->offset = r->offset; |
5733 | 0 | ientry->eq_removed_before_fill = ctx->removed; |
5734 | 0 | } |
5735 | |
|
5736 | 0 | if (!ctx->eq_complete) |
5737 | 0 | { |
5738 | 0 | if (r->action != ta_fill || r->removed_bytes >= 0) |
5739 | 0 | { |
5740 | 0 | ientry->eq_removed = ctx->removed; |
5741 | 0 | ctx->eq_complete = true; |
5742 | 0 | } |
5743 | 0 | else |
5744 | 0 | ientry->eq_removed = ctx->removed + r->removed_bytes; |
5745 | 0 | } |
5746 | |
|
5747 | 0 | ctx->removed += r->removed_bytes; |
5748 | 0 | ientry->removed = ctx->removed; |
5749 | 0 | return 0; |
5750 | 0 | } |
5751 | | |
5752 | | static void |
5753 | | map_removal_by_action (text_action_list *action_list) |
5754 | 0 | { |
5755 | 0 | map_action_fn_context ctx; |
5756 | |
|
5757 | 0 | ctx.removed = 0; |
5758 | 0 | ctx.map.n_entries = 0; |
5759 | 0 | ctx.map.entry = bfd_malloc (action_list_count (action_list) * |
5760 | 0 | sizeof (removal_by_action_entry)); |
5761 | 0 | ctx.eq_complete = false; |
5762 | |
|
5763 | 0 | splay_tree_foreach (action_list->tree, map_action_fn, &ctx); |
5764 | 0 | action_list->map = ctx.map; |
5765 | 0 | } |
5766 | | |
5767 | | static int |
5768 | | removed_by_actions_map (text_action_list *action_list, bfd_vma offset, |
5769 | | bool before_fill) |
5770 | 0 | { |
5771 | 0 | unsigned a, b; |
5772 | |
|
5773 | 0 | if (!action_list->map.entry) |
5774 | 0 | map_removal_by_action (action_list); |
5775 | |
|
5776 | 0 | if (!action_list->map.n_entries) |
5777 | 0 | return 0; |
5778 | | |
5779 | 0 | a = 0; |
5780 | 0 | b = action_list->map.n_entries; |
5781 | |
|
5782 | 0 | while (b - a > 1) |
5783 | 0 | { |
5784 | 0 | unsigned c = (a + b) / 2; |
5785 | |
|
5786 | 0 | if (action_list->map.entry[c].offset <= offset) |
5787 | 0 | a = c; |
5788 | 0 | else |
5789 | 0 | b = c; |
5790 | 0 | } |
5791 | |
|
5792 | 0 | if (action_list->map.entry[a].offset < offset) |
5793 | 0 | { |
5794 | 0 | return action_list->map.entry[a].removed; |
5795 | 0 | } |
5796 | 0 | else if (action_list->map.entry[a].offset == offset) |
5797 | 0 | { |
5798 | 0 | return before_fill ? |
5799 | 0 | action_list->map.entry[a].eq_removed_before_fill : |
5800 | 0 | action_list->map.entry[a].eq_removed; |
5801 | 0 | } |
5802 | 0 | else |
5803 | 0 | { |
5804 | 0 | return 0; |
5805 | 0 | } |
5806 | 0 | } |
5807 | | |
5808 | | static bfd_vma |
5809 | | offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset) |
5810 | 0 | { |
5811 | 0 | int removed = removed_by_actions_map (action_list, offset, false); |
5812 | 0 | return offset - removed; |
5813 | 0 | } |
5814 | | |
5815 | | |
5816 | | /* The find_insn_action routine will only find non-fill actions. */ |
5817 | | |
5818 | | static text_action * |
5819 | | find_insn_action (text_action_list *action_list, bfd_vma offset) |
5820 | 0 | { |
5821 | 0 | static const text_action_t action[] = |
5822 | 0 | { |
5823 | 0 | ta_convert_longcall, |
5824 | 0 | ta_remove_longcall, |
5825 | 0 | ta_widen_insn, |
5826 | 0 | ta_narrow_insn, |
5827 | 0 | ta_remove_insn, |
5828 | 0 | }; |
5829 | 0 | text_action a; |
5830 | 0 | unsigned i; |
5831 | |
|
5832 | 0 | a.offset = offset; |
5833 | 0 | for (i = 0; i < sizeof (action) / sizeof (*action); ++i) |
5834 | 0 | { |
5835 | 0 | splay_tree_node node; |
5836 | |
|
5837 | 0 | a.action = action[i]; |
5838 | 0 | node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a); |
5839 | 0 | if (node) |
5840 | 0 | return (text_action *)node->value; |
5841 | 0 | } |
5842 | 0 | return NULL; |
5843 | 0 | } |
5844 | | |
5845 | | |
5846 | | #if DEBUG |
5847 | | |
5848 | | static void |
5849 | | print_action (FILE *fp, text_action *r) |
5850 | | { |
5851 | | const char *t = "unknown"; |
5852 | | switch (r->action) |
5853 | | { |
5854 | | case ta_remove_insn: |
5855 | | t = "remove_insn"; break; |
5856 | | case ta_remove_longcall: |
5857 | | t = "remove_longcall"; break; |
5858 | | case ta_convert_longcall: |
5859 | | t = "convert_longcall"; break; |
5860 | | case ta_narrow_insn: |
5861 | | t = "narrow_insn"; break; |
5862 | | case ta_widen_insn: |
5863 | | t = "widen_insn"; break; |
5864 | | case ta_fill: |
5865 | | t = "fill"; break; |
5866 | | case ta_none: |
5867 | | t = "none"; break; |
5868 | | case ta_remove_literal: |
5869 | | t = "remove_literal"; break; |
5870 | | case ta_add_literal: |
5871 | | t = "add_literal"; break; |
5872 | | } |
5873 | | |
5874 | | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", |
5875 | | r->sec->owner->filename, |
5876 | | r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); |
5877 | | } |
5878 | | |
5879 | | static int |
5880 | | print_action_list_fn (splay_tree_node node, void *p) |
5881 | | { |
5882 | | text_action *r = (text_action *)node->value; |
5883 | | |
5884 | | print_action (p, r); |
5885 | | return 0; |
5886 | | } |
5887 | | |
5888 | | static void |
5889 | | print_action_list (FILE *fp, text_action_list *action_list) |
5890 | | { |
5891 | | fprintf (fp, "Text Action\n"); |
5892 | | splay_tree_foreach (action_list->tree, print_action_list_fn, fp); |
5893 | | } |
5894 | | |
5895 | | #endif /* DEBUG */ |
5896 | | |
5897 | | |
5898 | | /* Lists of literals being coalesced or removed. */ |
5899 | | |
5900 | | /* In the usual case, the literal identified by "from" is being |
5901 | | coalesced with another literal identified by "to". If the literal is |
5902 | | unused and is being removed altogether, "to.abfd" will be NULL. |
5903 | | The removed_literal entries are kept on a per-section list, sorted |
5904 | | by the "from" offset field. */ |
5905 | | |
5906 | | typedef struct removed_literal_struct removed_literal; |
5907 | | typedef struct removed_literal_map_entry_struct removed_literal_map_entry; |
5908 | | typedef struct removed_literal_list_struct removed_literal_list; |
5909 | | |
5910 | | struct removed_literal_struct |
5911 | | { |
5912 | | r_reloc from; |
5913 | | r_reloc to; |
5914 | | removed_literal *next; |
5915 | | }; |
5916 | | |
5917 | | struct removed_literal_map_entry_struct |
5918 | | { |
5919 | | bfd_vma addr; |
5920 | | removed_literal *literal; |
5921 | | }; |
5922 | | |
5923 | | struct removed_literal_list_struct |
5924 | | { |
5925 | | removed_literal *head; |
5926 | | removed_literal *tail; |
5927 | | |
5928 | | unsigned n_map; |
5929 | | removed_literal_map_entry *map; |
5930 | | }; |
5931 | | |
5932 | | |
5933 | | /* Record that the literal at "from" is being removed. If "to" is not |
5934 | | NULL, the "from" literal is being coalesced with the "to" literal. */ |
5935 | | |
5936 | | static void |
5937 | | add_removed_literal (removed_literal_list *removed_list, |
5938 | | const r_reloc *from, |
5939 | | const r_reloc *to) |
5940 | 0 | { |
5941 | 0 | removed_literal *r, *new_r, *next_r; |
5942 | |
|
5943 | 0 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); |
5944 | |
|
5945 | 0 | new_r->from = *from; |
5946 | 0 | if (to) |
5947 | 0 | new_r->to = *to; |
5948 | 0 | else |
5949 | 0 | new_r->to.abfd = NULL; |
5950 | 0 | new_r->next = NULL; |
5951 | |
|
5952 | 0 | r = removed_list->head; |
5953 | 0 | if (r == NULL) |
5954 | 0 | { |
5955 | 0 | removed_list->head = new_r; |
5956 | 0 | removed_list->tail = new_r; |
5957 | 0 | } |
5958 | | /* Special check for common case of append. */ |
5959 | 0 | else if (removed_list->tail->from.target_offset < from->target_offset) |
5960 | 0 | { |
5961 | 0 | removed_list->tail->next = new_r; |
5962 | 0 | removed_list->tail = new_r; |
5963 | 0 | } |
5964 | 0 | else |
5965 | 0 | { |
5966 | 0 | while (r->from.target_offset < from->target_offset && r->next) |
5967 | 0 | { |
5968 | 0 | r = r->next; |
5969 | 0 | } |
5970 | 0 | next_r = r->next; |
5971 | 0 | r->next = new_r; |
5972 | 0 | new_r->next = next_r; |
5973 | 0 | if (next_r == NULL) |
5974 | 0 | removed_list->tail = new_r; |
5975 | 0 | } |
5976 | 0 | } |
5977 | | |
5978 | | static void |
5979 | | map_removed_literal (removed_literal_list *removed_list) |
5980 | 0 | { |
5981 | 0 | unsigned n_map = 0; |
5982 | 0 | unsigned i; |
5983 | 0 | removed_literal_map_entry *map = NULL; |
5984 | 0 | removed_literal *r = removed_list->head; |
5985 | |
|
5986 | 0 | for (i = 0; r; ++i, r = r->next) |
5987 | 0 | { |
5988 | 0 | if (i == n_map) |
5989 | 0 | { |
5990 | 0 | n_map = (n_map * 2) + 2; |
5991 | 0 | map = bfd_realloc (map, n_map * sizeof (*map)); |
5992 | 0 | } |
5993 | 0 | map[i].addr = r->from.target_offset; |
5994 | 0 | map[i].literal = r; |
5995 | 0 | } |
5996 | 0 | removed_list->map = map; |
5997 | 0 | removed_list->n_map = i; |
5998 | 0 | } |
5999 | | |
6000 | | static int |
6001 | | removed_literal_compare (const void *a, const void *b) |
6002 | 0 | { |
6003 | 0 | const bfd_vma *key = a; |
6004 | 0 | const removed_literal_map_entry *memb = b; |
6005 | |
|
6006 | 0 | if (*key == memb->addr) |
6007 | 0 | return 0; |
6008 | 0 | else |
6009 | 0 | return *key < memb->addr ? -1 : 1; |
6010 | 0 | } |
6011 | | |
6012 | | /* Check if the list of removed literals contains an entry for the |
6013 | | given address. Return the entry if found. */ |
6014 | | |
6015 | | static removed_literal * |
6016 | | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
6017 | 0 | { |
6018 | 0 | removed_literal_map_entry *p; |
6019 | 0 | removed_literal *r = NULL; |
6020 | |
|
6021 | 0 | if (removed_list->map == NULL) |
6022 | 0 | map_removed_literal (removed_list); |
6023 | |
|
6024 | 0 | if (removed_list->map != NULL) |
6025 | 0 | { |
6026 | 0 | p = bsearch (&addr, removed_list->map, removed_list->n_map, |
6027 | 0 | sizeof (*removed_list->map), removed_literal_compare); |
6028 | 0 | if (p) |
6029 | 0 | { |
6030 | 0 | while (p != removed_list->map && (p - 1)->addr == addr) |
6031 | 0 | --p; |
6032 | 0 | r = p->literal; |
6033 | 0 | } |
6034 | 0 | } |
6035 | 0 | return r; |
6036 | 0 | } |
6037 | | |
6038 | | |
6039 | | #if DEBUG |
6040 | | |
6041 | | static void |
6042 | | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
6043 | | { |
6044 | | removed_literal *r; |
6045 | | r = removed_list->head; |
6046 | | if (r) |
6047 | | fprintf (fp, "Removed Literals\n"); |
6048 | | for (; r != NULL; r = r->next) |
6049 | | { |
6050 | | print_r_reloc (fp, &r->from); |
6051 | | fprintf (fp, " => "); |
6052 | | if (r->to.abfd == NULL) |
6053 | | fprintf (fp, "REMOVED"); |
6054 | | else |
6055 | | print_r_reloc (fp, &r->to); |
6056 | | fprintf (fp, "\n"); |
6057 | | } |
6058 | | } |
6059 | | |
6060 | | #endif /* DEBUG */ |
6061 | | |
6062 | | |
6063 | | /* Per-section data for relaxation. */ |
6064 | | |
6065 | | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; |
6066 | | |
6067 | | struct xtensa_relax_info_struct |
6068 | | { |
6069 | | bool is_relaxable_literal_section; |
6070 | | bool is_relaxable_asm_section; |
6071 | | int visited; /* Number of times visited. */ |
6072 | | |
6073 | | source_reloc *src_relocs; /* Array[src_count]. */ |
6074 | | int src_count; |
6075 | | int src_next; /* Next src_relocs entry to assign. */ |
6076 | | |
6077 | | removed_literal_list removed_list; |
6078 | | text_action_list action_list; |
6079 | | |
6080 | | reloc_bfd_fix *fix_list; |
6081 | | reloc_bfd_fix *fix_array; |
6082 | | unsigned fix_array_count; |
6083 | | |
6084 | | /* Support for expanding the reloc array that is stored |
6085 | | in the section structure. If the relocations have been |
6086 | | reallocated, the newly allocated relocations will be referenced |
6087 | | here along with the actual size allocated. The relocation |
6088 | | count will always be found in the section structure. */ |
6089 | | Elf_Internal_Rela *allocated_relocs; |
6090 | | unsigned relocs_count; |
6091 | | unsigned allocated_relocs_count; |
6092 | | }; |
6093 | | |
6094 | | struct elf_xtensa_section_data |
6095 | | { |
6096 | | struct bfd_elf_section_data elf; |
6097 | | xtensa_relax_info relax_info; |
6098 | | }; |
6099 | | |
6100 | | |
6101 | | static bool |
6102 | | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
6103 | 87.7k | { |
6104 | 87.7k | struct elf_xtensa_section_data *sdata; |
6105 | | |
6106 | 87.7k | sdata = bfd_zalloc (abfd, sizeof (*sdata)); |
6107 | 87.7k | if (sdata == NULL) |
6108 | 0 | return false; |
6109 | 87.7k | sec->used_by_bfd = sdata; |
6110 | | |
6111 | 87.7k | return _bfd_elf_new_section_hook (abfd, sec); |
6112 | 87.7k | } |
6113 | | |
6114 | | |
6115 | | static xtensa_relax_info * |
6116 | | get_xtensa_relax_info (asection *sec) |
6117 | 0 | { |
6118 | 0 | struct elf_xtensa_section_data *section_data; |
6119 | | |
6120 | | /* No info available if no section or if it is an output section. */ |
6121 | 0 | if (!sec || sec == sec->output_section) |
6122 | 0 | return NULL; |
6123 | | |
6124 | 0 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); |
6125 | 0 | return §ion_data->relax_info; |
6126 | 0 | } |
6127 | | |
6128 | | |
6129 | | static void |
6130 | | init_xtensa_relax_info (asection *sec) |
6131 | 0 | { |
6132 | 0 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); |
6133 | |
|
6134 | 0 | relax_info->is_relaxable_literal_section = false; |
6135 | 0 | relax_info->is_relaxable_asm_section = false; |
6136 | 0 | relax_info->visited = 0; |
6137 | |
|
6138 | 0 | relax_info->src_relocs = NULL; |
6139 | 0 | relax_info->src_count = 0; |
6140 | 0 | relax_info->src_next = 0; |
6141 | |
|
6142 | 0 | relax_info->removed_list.head = NULL; |
6143 | 0 | relax_info->removed_list.tail = NULL; |
6144 | |
|
6145 | 0 | relax_info->action_list.tree = splay_tree_new (text_action_compare, |
6146 | 0 | NULL, NULL); |
6147 | 0 | relax_info->action_list.map.n_entries = 0; |
6148 | 0 | relax_info->action_list.map.entry = NULL; |
6149 | |
|
6150 | 0 | relax_info->fix_list = NULL; |
6151 | 0 | relax_info->fix_array = NULL; |
6152 | 0 | relax_info->fix_array_count = 0; |
6153 | |
|
6154 | 0 | relax_info->allocated_relocs = NULL; |
6155 | 0 | relax_info->relocs_count = 0; |
6156 | 0 | relax_info->allocated_relocs_count = 0; |
6157 | 0 | } |
6158 | | |
6159 | | |
6160 | | /* Coalescing literals may require a relocation to refer to a section in |
6161 | | a different input file, but the standard relocation information |
6162 | | cannot express that. Instead, the reloc_bfd_fix structures are used |
6163 | | to "fix" the relocations that refer to sections in other input files. |
6164 | | These structures are kept on per-section lists. The "src_type" field |
6165 | | records the relocation type in case there are multiple relocations on |
6166 | | the same location. FIXME: This is ugly; an alternative might be to |
6167 | | add new symbols with the "owner" field to some other input file. */ |
6168 | | |
6169 | | struct reloc_bfd_fix_struct |
6170 | | { |
6171 | | asection *src_sec; |
6172 | | bfd_vma src_offset; |
6173 | | unsigned src_type; /* Relocation type. */ |
6174 | | |
6175 | | asection *target_sec; |
6176 | | bfd_vma target_offset; |
6177 | | bool translated; |
6178 | | |
6179 | | reloc_bfd_fix *next; |
6180 | | }; |
6181 | | |
6182 | | |
6183 | | static reloc_bfd_fix * |
6184 | | reloc_bfd_fix_init (asection *src_sec, |
6185 | | bfd_vma src_offset, |
6186 | | unsigned src_type, |
6187 | | asection *target_sec, |
6188 | | bfd_vma target_offset, |
6189 | | bool translated) |
6190 | 0 | { |
6191 | 0 | reloc_bfd_fix *fix; |
6192 | |
|
6193 | 0 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); |
6194 | 0 | fix->src_sec = src_sec; |
6195 | 0 | fix->src_offset = src_offset; |
6196 | 0 | fix->src_type = src_type; |
6197 | 0 | fix->target_sec = target_sec; |
6198 | 0 | fix->target_offset = target_offset; |
6199 | 0 | fix->translated = translated; |
6200 | |
|
6201 | 0 | return fix; |
6202 | 0 | } |
6203 | | |
6204 | | |
6205 | | static void |
6206 | | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
6207 | 0 | { |
6208 | 0 | xtensa_relax_info *relax_info; |
6209 | |
|
6210 | 0 | relax_info = get_xtensa_relax_info (src_sec); |
6211 | 0 | fix->next = relax_info->fix_list; |
6212 | 0 | relax_info->fix_list = fix; |
6213 | 0 | } |
6214 | | |
6215 | | |
6216 | | static int |
6217 | | fix_compare (const void *ap, const void *bp) |
6218 | 0 | { |
6219 | 0 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; |
6220 | 0 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; |
6221 | |
|
6222 | 0 | if (a->src_offset != b->src_offset) |
6223 | 0 | return (a->src_offset - b->src_offset); |
6224 | 0 | return (a->src_type - b->src_type); |
6225 | 0 | } |
6226 | | |
6227 | | |
6228 | | static void |
6229 | | cache_fix_array (asection *sec) |
6230 | 0 | { |
6231 | 0 | unsigned i, count = 0; |
6232 | 0 | reloc_bfd_fix *r; |
6233 | 0 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); |
6234 | |
|
6235 | 0 | if (relax_info == NULL) |
6236 | 0 | return; |
6237 | 0 | if (relax_info->fix_list == NULL) |
6238 | 0 | return; |
6239 | | |
6240 | 0 | for (r = relax_info->fix_list; r != NULL; r = r->next) |
6241 | 0 | count++; |
6242 | |
|
6243 | 0 | relax_info->fix_array = |
6244 | 0 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); |
6245 | 0 | relax_info->fix_array_count = count; |
6246 | |
|
6247 | 0 | r = relax_info->fix_list; |
6248 | 0 | for (i = 0; i < count; i++, r = r->next) |
6249 | 0 | { |
6250 | 0 | relax_info->fix_array[count - 1 - i] = *r; |
6251 | 0 | relax_info->fix_array[count - 1 - i].next = NULL; |
6252 | 0 | } |
6253 | |
|
6254 | 0 | qsort (relax_info->fix_array, relax_info->fix_array_count, |
6255 | 0 | sizeof (reloc_bfd_fix), fix_compare); |
6256 | 0 | } |
6257 | | |
6258 | | |
6259 | | static reloc_bfd_fix * |
6260 | | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
6261 | 0 | { |
6262 | 0 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); |
6263 | 0 | reloc_bfd_fix *rv; |
6264 | 0 | reloc_bfd_fix key; |
6265 | |
|
6266 | 0 | if (relax_info == NULL) |
6267 | 0 | return NULL; |
6268 | 0 | if (relax_info->fix_list == NULL) |
6269 | 0 | return NULL; |
6270 | | |
6271 | 0 | if (relax_info->fix_array == NULL) |
6272 | 0 | cache_fix_array (sec); |
6273 | |
|
6274 | 0 | key.src_offset = offset; |
6275 | 0 | key.src_type = type; |
6276 | 0 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, |
6277 | 0 | sizeof (reloc_bfd_fix), fix_compare); |
6278 | 0 | return rv; |
6279 | 0 | } |
6280 | | |
6281 | | |
6282 | | /* Section caching. */ |
6283 | | |
6284 | | typedef struct section_cache_struct section_cache_t; |
6285 | | |
6286 | | struct section_cache_struct |
6287 | | { |
6288 | | asection *sec; |
6289 | | |
6290 | | bfd_byte *contents; /* Cache of the section contents. */ |
6291 | | bfd_size_type content_length; |
6292 | | |
6293 | | property_table_entry *ptbl; /* Cache of the section property table. */ |
6294 | | unsigned pte_count; |
6295 | | |
6296 | | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ |
6297 | | unsigned reloc_count; |
6298 | | }; |
6299 | | |
6300 | | |
6301 | | static void |
6302 | | init_section_cache (section_cache_t *sec_cache) |
6303 | 0 | { |
6304 | 0 | memset (sec_cache, 0, sizeof (*sec_cache)); |
6305 | 0 | } |
6306 | | |
6307 | | |
6308 | | static void |
6309 | | free_section_cache (section_cache_t *sec_cache) |
6310 | 0 | { |
6311 | 0 | if (sec_cache->sec) |
6312 | 0 | { |
6313 | 0 | release_contents (sec_cache->sec, sec_cache->contents); |
6314 | 0 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); |
6315 | 0 | free (sec_cache->ptbl); |
6316 | 0 | } |
6317 | 0 | } |
6318 | | |
6319 | | |
6320 | | static bool |
6321 | | section_cache_section (section_cache_t *sec_cache, |
6322 | | asection *sec, |
6323 | | struct bfd_link_info *link_info) |
6324 | 0 | { |
6325 | 0 | bfd *abfd; |
6326 | 0 | property_table_entry *prop_table = NULL; |
6327 | 0 | int ptblsize = 0; |
6328 | 0 | bfd_byte *contents = NULL; |
6329 | 0 | Elf_Internal_Rela *internal_relocs = NULL; |
6330 | 0 | bfd_size_type sec_size; |
6331 | |
|
6332 | 0 | if (sec == NULL) |
6333 | 0 | return false; |
6334 | 0 | if (sec == sec_cache->sec) |
6335 | 0 | return true; |
6336 | | |
6337 | 0 | abfd = sec->owner; |
6338 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
6339 | | |
6340 | | /* Get the contents. */ |
6341 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
6342 | 0 | if (contents == NULL && sec_size != 0) |
6343 | 0 | goto err; |
6344 | | |
6345 | | /* Get the relocations. */ |
6346 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
6347 | 0 | link_info->keep_memory); |
6348 | | |
6349 | | /* Get the entry table. */ |
6350 | 0 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
6351 | 0 | XTENSA_PROP_SEC_NAME, false); |
6352 | 0 | if (ptblsize < 0) |
6353 | 0 | goto err; |
6354 | | |
6355 | | /* Fill in the new section cache. */ |
6356 | 0 | free_section_cache (sec_cache); |
6357 | 0 | init_section_cache (sec_cache); |
6358 | |
|
6359 | 0 | sec_cache->sec = sec; |
6360 | 0 | sec_cache->contents = contents; |
6361 | 0 | sec_cache->content_length = sec_size; |
6362 | 0 | sec_cache->relocs = internal_relocs; |
6363 | 0 | sec_cache->reloc_count = sec->reloc_count; |
6364 | 0 | sec_cache->pte_count = ptblsize; |
6365 | 0 | sec_cache->ptbl = prop_table; |
6366 | |
|
6367 | 0 | return true; |
6368 | | |
6369 | 0 | err: |
6370 | 0 | release_contents (sec, contents); |
6371 | 0 | release_internal_relocs (sec, internal_relocs); |
6372 | 0 | free (prop_table); |
6373 | 0 | return false; |
6374 | 0 | } |
6375 | | |
6376 | | |
6377 | | /* Extended basic blocks. */ |
6378 | | |
6379 | | /* An ebb_struct represents an Extended Basic Block. Within this |
6380 | | range, we guarantee that all instructions are decodable, the |
6381 | | property table entries are contiguous, and no property table |
6382 | | specifies a segment that cannot have instructions moved. This |
6383 | | structure contains caches of the contents, property table and |
6384 | | relocations for the specified section for easy use. The range is |
6385 | | specified by ranges of indices for the byte offset, property table |
6386 | | offsets and relocation offsets. These must be consistent. */ |
6387 | | |
6388 | | typedef struct ebb_struct ebb_t; |
6389 | | |
6390 | | struct ebb_struct |
6391 | | { |
6392 | | asection *sec; |
6393 | | |
6394 | | bfd_byte *contents; /* Cache of the section contents. */ |
6395 | | bfd_size_type content_length; |
6396 | | |
6397 | | property_table_entry *ptbl; /* Cache of the section property table. */ |
6398 | | unsigned pte_count; |
6399 | | |
6400 | | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ |
6401 | | unsigned reloc_count; |
6402 | | |
6403 | | bfd_vma start_offset; /* Offset in section. */ |
6404 | | unsigned start_ptbl_idx; /* Offset in the property table. */ |
6405 | | unsigned start_reloc_idx; /* Offset in the relocations. */ |
6406 | | |
6407 | | bfd_vma end_offset; |
6408 | | unsigned end_ptbl_idx; |
6409 | | unsigned end_reloc_idx; |
6410 | | |
6411 | | bool ends_section; /* Is this the last ebb in a section? */ |
6412 | | |
6413 | | /* The unreachable property table at the end of this set of blocks; |
6414 | | NULL if the end is not an unreachable block. */ |
6415 | | property_table_entry *ends_unreachable; |
6416 | | }; |
6417 | | |
6418 | | |
6419 | | enum ebb_target_enum |
6420 | | { |
6421 | | EBB_NO_ALIGN = 0, |
6422 | | EBB_DESIRE_TGT_ALIGN, |
6423 | | EBB_REQUIRE_TGT_ALIGN, |
6424 | | EBB_REQUIRE_LOOP_ALIGN, |
6425 | | EBB_REQUIRE_ALIGN |
6426 | | }; |
6427 | | |
6428 | | |
6429 | | /* proposed_action_struct is similar to the text_action_struct except |
6430 | | that is represents a potential transformation, not one that will |
6431 | | occur. We build a list of these for an extended basic block |
6432 | | and use them to compute the actual actions desired. We must be |
6433 | | careful that the entire set of actual actions we perform do not |
6434 | | break any relocations that would fit if the actions were not |
6435 | | performed. */ |
6436 | | |
6437 | | typedef struct proposed_action_struct proposed_action; |
6438 | | |
6439 | | struct proposed_action_struct |
6440 | | { |
6441 | | enum ebb_target_enum align_type; /* for the target alignment */ |
6442 | | bfd_vma alignment_pow; |
6443 | | text_action_t action; |
6444 | | bfd_vma offset; |
6445 | | int removed_bytes; |
6446 | | bool do_action; /* If false, then we will not perform the action. */ |
6447 | | }; |
6448 | | |
6449 | | |
6450 | | /* The ebb_constraint_struct keeps a set of proposed actions for an |
6451 | | extended basic block. */ |
6452 | | |
6453 | | typedef struct ebb_constraint_struct ebb_constraint; |
6454 | | |
6455 | | struct ebb_constraint_struct |
6456 | | { |
6457 | | ebb_t ebb; |
6458 | | bool start_movable; |
6459 | | |
6460 | | /* Bytes of extra space at the beginning if movable. */ |
6461 | | int start_extra_space; |
6462 | | |
6463 | | enum ebb_target_enum start_align; |
6464 | | |
6465 | | bool end_movable; |
6466 | | |
6467 | | /* Bytes of extra space at the end if movable. */ |
6468 | | int end_extra_space; |
6469 | | |
6470 | | unsigned action_count; |
6471 | | unsigned action_allocated; |
6472 | | |
6473 | | /* Array of proposed actions. */ |
6474 | | proposed_action *actions; |
6475 | | |
6476 | | /* Action alignments -- one for each proposed action. */ |
6477 | | enum ebb_target_enum *action_aligns; |
6478 | | }; |
6479 | | |
6480 | | |
6481 | | static void |
6482 | | init_ebb_constraint (ebb_constraint *c) |
6483 | 0 | { |
6484 | 0 | memset (c, 0, sizeof (ebb_constraint)); |
6485 | 0 | } |
6486 | | |
6487 | | |
6488 | | static void |
6489 | | free_ebb_constraint (ebb_constraint *c) |
6490 | 0 | { |
6491 | 0 | free (c->actions); |
6492 | 0 | } |
6493 | | |
6494 | | |
6495 | | static void |
6496 | | init_ebb (ebb_t *ebb, |
6497 | | asection *sec, |
6498 | | bfd_byte *contents, |
6499 | | bfd_size_type content_length, |
6500 | | property_table_entry *prop_table, |
6501 | | unsigned ptblsize, |
6502 | | Elf_Internal_Rela *internal_relocs, |
6503 | | unsigned reloc_count) |
6504 | 0 | { |
6505 | 0 | memset (ebb, 0, sizeof (ebb_t)); |
6506 | 0 | ebb->sec = sec; |
6507 | 0 | ebb->contents = contents; |
6508 | 0 | ebb->content_length = content_length; |
6509 | 0 | ebb->ptbl = prop_table; |
6510 | 0 | ebb->pte_count = ptblsize; |
6511 | 0 | ebb->relocs = internal_relocs; |
6512 | 0 | ebb->reloc_count = reloc_count; |
6513 | 0 | ebb->start_offset = 0; |
6514 | 0 | ebb->end_offset = ebb->content_length - 1; |
6515 | 0 | ebb->start_ptbl_idx = 0; |
6516 | 0 | ebb->end_ptbl_idx = ptblsize; |
6517 | 0 | ebb->start_reloc_idx = 0; |
6518 | 0 | ebb->end_reloc_idx = reloc_count; |
6519 | 0 | } |
6520 | | |
6521 | | |
6522 | | /* Extend the ebb to all decodable contiguous sections. The algorithm |
6523 | | for building a basic block around an instruction is to push it |
6524 | | forward until we hit the end of a section, an unreachable block or |
6525 | | a block that cannot be transformed. Then we push it backwards |
6526 | | searching for similar conditions. */ |
6527 | | |
6528 | | static bool extend_ebb_bounds_forward (ebb_t *); |
6529 | | static bool extend_ebb_bounds_backward (ebb_t *); |
6530 | | static bfd_size_type insn_block_decodable_len |
6531 | | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); |
6532 | | |
6533 | | static bool |
6534 | | extend_ebb_bounds (ebb_t *ebb) |
6535 | 0 | { |
6536 | 0 | if (!extend_ebb_bounds_forward (ebb)) |
6537 | 0 | return false; |
6538 | 0 | if (!extend_ebb_bounds_backward (ebb)) |
6539 | 0 | return false; |
6540 | 0 | return true; |
6541 | 0 | } |
6542 | | |
6543 | | |
6544 | | static bool |
6545 | | extend_ebb_bounds_forward (ebb_t *ebb) |
6546 | 0 | { |
6547 | 0 | property_table_entry *the_entry, *new_entry; |
6548 | |
|
6549 | 0 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; |
6550 | | |
6551 | | /* Stop when (1) we cannot decode an instruction, (2) we are at |
6552 | | the end of the property tables, (3) we hit a non-contiguous property |
6553 | | table entry, (4) we hit a NO_TRANSFORM region. */ |
6554 | |
|
6555 | 0 | while (1) |
6556 | 0 | { |
6557 | 0 | bfd_vma entry_end; |
6558 | 0 | bfd_size_type insn_block_len; |
6559 | |
|
6560 | 0 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; |
6561 | 0 | insn_block_len = |
6562 | 0 | insn_block_decodable_len (ebb->contents, ebb->content_length, |
6563 | 0 | ebb->end_offset, |
6564 | 0 | entry_end - ebb->end_offset); |
6565 | 0 | if (insn_block_len != (entry_end - ebb->end_offset)) |
6566 | 0 | { |
6567 | 0 | _bfd_error_handler |
6568 | | /* xgettext:c-format */ |
6569 | 0 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
6570 | 0 | "possible configuration mismatch"), |
6571 | 0 | ebb->sec->owner, ebb->sec, |
6572 | 0 | (uint64_t) (ebb->end_offset + insn_block_len)); |
6573 | 0 | return false; |
6574 | 0 | } |
6575 | 0 | ebb->end_offset += insn_block_len; |
6576 | |
|
6577 | 0 | if (ebb->end_offset == ebb->sec->size) |
6578 | 0 | ebb->ends_section = true; |
6579 | | |
6580 | | /* Update the reloc counter. */ |
6581 | 0 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count |
6582 | 0 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset |
6583 | 0 | < ebb->end_offset)) |
6584 | 0 | { |
6585 | 0 | ebb->end_reloc_idx++; |
6586 | 0 | } |
6587 | |
|
6588 | 0 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) |
6589 | 0 | return true; |
6590 | | |
6591 | 0 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; |
6592 | 0 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) |
6593 | 0 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
6594 | 0 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6595 | 0 | break; |
6596 | | |
6597 | 0 | if (the_entry->address + the_entry->size != new_entry->address) |
6598 | 0 | break; |
6599 | | |
6600 | 0 | the_entry = new_entry; |
6601 | 0 | ebb->end_ptbl_idx++; |
6602 | 0 | } |
6603 | | |
6604 | | /* Quick check for an unreachable or end of file just at the end. */ |
6605 | 0 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) |
6606 | 0 | { |
6607 | 0 | if (ebb->end_offset == ebb->content_length) |
6608 | 0 | ebb->ends_section = true; |
6609 | 0 | } |
6610 | 0 | else |
6611 | 0 | { |
6612 | 0 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; |
6613 | 0 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 |
6614 | 0 | && the_entry->address + the_entry->size == new_entry->address) |
6615 | 0 | ebb->ends_unreachable = new_entry; |
6616 | 0 | } |
6617 | | |
6618 | | /* Any other ending requires exact alignment. */ |
6619 | 0 | return true; |
6620 | 0 | } |
6621 | | |
6622 | | |
6623 | | static bool |
6624 | | extend_ebb_bounds_backward (ebb_t *ebb) |
6625 | 0 | { |
6626 | 0 | property_table_entry *the_entry, *new_entry; |
6627 | |
|
6628 | 0 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
6629 | | |
6630 | | /* Stop when (1) we cannot decode the instructions in the current entry. |
6631 | | (2) we are at the beginning of the property tables, (3) we hit a |
6632 | | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ |
6633 | |
|
6634 | 0 | while (1) |
6635 | 0 | { |
6636 | 0 | bfd_vma block_begin; |
6637 | 0 | bfd_size_type insn_block_len; |
6638 | |
|
6639 | 0 | block_begin = the_entry->address - ebb->sec->vma; |
6640 | 0 | insn_block_len = |
6641 | 0 | insn_block_decodable_len (ebb->contents, ebb->content_length, |
6642 | 0 | block_begin, |
6643 | 0 | ebb->start_offset - block_begin); |
6644 | 0 | if (insn_block_len != ebb->start_offset - block_begin) |
6645 | 0 | { |
6646 | 0 | _bfd_error_handler |
6647 | | /* xgettext:c-format */ |
6648 | 0 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
6649 | 0 | "possible configuration mismatch"), |
6650 | 0 | ebb->sec->owner, ebb->sec, |
6651 | 0 | (uint64_t) (ebb->end_offset + insn_block_len)); |
6652 | 0 | return false; |
6653 | 0 | } |
6654 | 0 | ebb->start_offset -= insn_block_len; |
6655 | | |
6656 | | /* Update the reloc counter. */ |
6657 | 0 | while (ebb->start_reloc_idx > 0 |
6658 | 0 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset |
6659 | 0 | >= ebb->start_offset)) |
6660 | 0 | { |
6661 | 0 | ebb->start_reloc_idx--; |
6662 | 0 | } |
6663 | |
|
6664 | 0 | if (ebb->start_ptbl_idx == 0) |
6665 | 0 | return true; |
6666 | | |
6667 | 0 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; |
6668 | 0 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 |
6669 | 0 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
6670 | 0 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6671 | 0 | return true; |
6672 | 0 | if (new_entry->address + new_entry->size != the_entry->address) |
6673 | 0 | return true; |
6674 | | |
6675 | 0 | the_entry = new_entry; |
6676 | 0 | ebb->start_ptbl_idx--; |
6677 | 0 | } |
6678 | 0 | return true; |
6679 | 0 | } |
6680 | | |
6681 | | |
6682 | | static bfd_size_type |
6683 | | insn_block_decodable_len (bfd_byte *contents, |
6684 | | bfd_size_type content_len, |
6685 | | bfd_vma block_offset, |
6686 | | bfd_size_type block_len) |
6687 | 0 | { |
6688 | 0 | bfd_vma offset = block_offset; |
6689 | |
|
6690 | 0 | while (offset < block_offset + block_len) |
6691 | 0 | { |
6692 | 0 | bfd_size_type insn_len = 0; |
6693 | |
|
6694 | 0 | insn_len = insn_decode_len (contents, content_len, offset); |
6695 | 0 | if (insn_len == 0) |
6696 | 0 | return (offset - block_offset); |
6697 | 0 | offset += insn_len; |
6698 | 0 | } |
6699 | 0 | return (offset - block_offset); |
6700 | 0 | } |
6701 | | |
6702 | | |
6703 | | static void |
6704 | | ebb_propose_action (ebb_constraint *c, |
6705 | | enum ebb_target_enum align_type, |
6706 | | bfd_vma alignment_pow, |
6707 | | text_action_t action, |
6708 | | bfd_vma offset, |
6709 | | int removed_bytes, |
6710 | | bool do_action) |
6711 | 0 | { |
6712 | 0 | proposed_action *act; |
6713 | |
|
6714 | 0 | if (c->action_allocated <= c->action_count) |
6715 | 0 | { |
6716 | 0 | unsigned new_allocated, i; |
6717 | 0 | proposed_action *new_actions; |
6718 | |
|
6719 | 0 | new_allocated = (c->action_count + 2) * 2; |
6720 | 0 | new_actions = (proposed_action *) |
6721 | 0 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6722 | |
|
6723 | 0 | for (i = 0; i < c->action_count; i++) |
6724 | 0 | new_actions[i] = c->actions[i]; |
6725 | 0 | free (c->actions); |
6726 | 0 | c->actions = new_actions; |
6727 | 0 | c->action_allocated = new_allocated; |
6728 | 0 | } |
6729 | |
|
6730 | 0 | act = &c->actions[c->action_count]; |
6731 | 0 | act->align_type = align_type; |
6732 | 0 | act->alignment_pow = alignment_pow; |
6733 | 0 | act->action = action; |
6734 | 0 | act->offset = offset; |
6735 | 0 | act->removed_bytes = removed_bytes; |
6736 | 0 | act->do_action = do_action; |
6737 | |
|
6738 | 0 | c->action_count++; |
6739 | 0 | } |
6740 | | |
6741 | | |
6742 | | /* Access to internal relocations, section contents and symbols. */ |
6743 | | |
6744 | | /* During relaxation, we need to modify relocations, section contents, |
6745 | | and symbol definitions, and we need to keep the original values from |
6746 | | being reloaded from the input files, i.e., we need to "pin" the |
6747 | | modified values in memory. We also want to continue to observe the |
6748 | | setting of the "keep-memory" flag. The following functions wrap the |
6749 | | standard BFD functions to take care of this for us. */ |
6750 | | |
6751 | | static Elf_Internal_Rela * |
6752 | | retrieve_internal_relocs (bfd *abfd, asection *sec, bool keep_memory) |
6753 | 0 | { |
6754 | 0 | Elf_Internal_Rela *internal_relocs; |
6755 | |
|
6756 | 0 | if ((sec->flags & SEC_LINKER_CREATED) != 0) |
6757 | 0 | return NULL; |
6758 | | |
6759 | 0 | internal_relocs = elf_section_data (sec)->relocs; |
6760 | 0 | if (internal_relocs == NULL) |
6761 | 0 | internal_relocs = (_bfd_elf_link_read_relocs |
6762 | 0 | (abfd, sec, NULL, NULL, keep_memory)); |
6763 | 0 | return internal_relocs; |
6764 | 0 | } |
6765 | | |
6766 | | |
6767 | | static void |
6768 | | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
6769 | 0 | { |
6770 | 0 | elf_section_data (sec)->relocs = internal_relocs; |
6771 | 0 | } |
6772 | | |
6773 | | |
6774 | | static void |
6775 | | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
6776 | 0 | { |
6777 | 0 | if (elf_section_data (sec)->relocs != internal_relocs) |
6778 | 0 | free (internal_relocs); |
6779 | 0 | } |
6780 | | |
6781 | | |
6782 | | static bfd_byte * |
6783 | | retrieve_contents (bfd *abfd, asection *sec, bool keep_memory) |
6784 | 0 | { |
6785 | 0 | bfd_byte *contents; |
6786 | 0 | bfd_size_type sec_size; |
6787 | |
|
6788 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
6789 | 0 | contents = elf_section_data (sec)->this_hdr.contents; |
6790 | |
|
6791 | 0 | if (contents == NULL && sec_size != 0) |
6792 | 0 | { |
6793 | 0 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
6794 | 0 | { |
6795 | 0 | free (contents); |
6796 | 0 | return NULL; |
6797 | 0 | } |
6798 | 0 | if (keep_memory) |
6799 | 0 | elf_section_data (sec)->this_hdr.contents = contents; |
6800 | 0 | } |
6801 | 0 | return contents; |
6802 | 0 | } |
6803 | | |
6804 | | |
6805 | | static void |
6806 | | pin_contents (asection *sec, bfd_byte *contents) |
6807 | 0 | { |
6808 | 0 | elf_section_data (sec)->this_hdr.contents = contents; |
6809 | 0 | } |
6810 | | |
6811 | | |
6812 | | static void |
6813 | | release_contents (asection *sec, bfd_byte *contents) |
6814 | 0 | { |
6815 | 0 | if (elf_section_data (sec)->this_hdr.contents != contents) |
6816 | 0 | free (contents); |
6817 | 0 | } |
6818 | | |
6819 | | |
6820 | | static Elf_Internal_Sym * |
6821 | | retrieve_local_syms (bfd *input_bfd) |
6822 | 0 | { |
6823 | 0 | Elf_Internal_Shdr *symtab_hdr; |
6824 | 0 | Elf_Internal_Sym *isymbuf; |
6825 | 0 | size_t locsymcount; |
6826 | |
|
6827 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
6828 | 0 | locsymcount = symtab_hdr->sh_info; |
6829 | |
|
6830 | 0 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
6831 | 0 | if (isymbuf == NULL && locsymcount != 0) |
6832 | 0 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, |
6833 | 0 | NULL, NULL, NULL); |
6834 | | |
6835 | | /* Save the symbols for this input file so they won't be read again. */ |
6836 | 0 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) |
6837 | 0 | symtab_hdr->contents = (unsigned char *) isymbuf; |
6838 | |
|
6839 | 0 | return isymbuf; |
6840 | 0 | } |
6841 | | |
6842 | | |
6843 | | /* Code for link-time relaxation. */ |
6844 | | |
6845 | | /* Initialization for relaxation: */ |
6846 | | static bool analyze_relocations (struct bfd_link_info *); |
6847 | | static bool find_relaxable_sections |
6848 | | (bfd *, asection *, struct bfd_link_info *, bool *); |
6849 | | static bool collect_source_relocs |
6850 | | (bfd *, asection *, struct bfd_link_info *); |
6851 | | static bool is_resolvable_asm_expansion |
6852 | | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6853 | | bool *); |
6854 | | static Elf_Internal_Rela *find_associated_l32r_irel |
6855 | | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
6856 | | static bool compute_text_actions |
6857 | | (bfd *, asection *, struct bfd_link_info *); |
6858 | | static bool compute_ebb_proposed_actions (ebb_constraint *); |
6859 | | static bool compute_ebb_actions (ebb_constraint *); |
6860 | | typedef struct reloc_range_list_struct reloc_range_list; |
6861 | | static bool check_section_ebb_pcrels_fit |
6862 | | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, |
6863 | | reloc_range_list *, const ebb_constraint *, |
6864 | | const xtensa_opcode *); |
6865 | | static bool check_section_ebb_reduces (const ebb_constraint *); |
6866 | | static void text_action_add_proposed |
6867 | | (text_action_list *, const ebb_constraint *, asection *); |
6868 | | |
6869 | | /* First pass: */ |
6870 | | static bool compute_removed_literals |
6871 | | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
6872 | | static Elf_Internal_Rela *get_irel_at_offset |
6873 | | (asection *, Elf_Internal_Rela *, bfd_vma); |
6874 | | static bool is_removable_literal |
6875 | | (const source_reloc *, int, const source_reloc *, int, asection *, |
6876 | | property_table_entry *, int); |
6877 | | static bool remove_dead_literal |
6878 | | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
6879 | | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); |
6880 | | static bool identify_literal_placement |
6881 | | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, |
6882 | | value_map_hash_table *, bool *, Elf_Internal_Rela *, int, |
6883 | | source_reloc *, property_table_entry *, int, section_cache_t *, |
6884 | | bool); |
6885 | | static bool relocations_reach (source_reloc *, int, const r_reloc *); |
6886 | | static bool coalesce_shared_literal |
6887 | | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
6888 | | static bool move_shared_literal |
6889 | | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6890 | | int, const r_reloc *, const literal_value *, section_cache_t *); |
6891 | | |
6892 | | /* Second pass: */ |
6893 | | static bool relax_section (bfd *, asection *, struct bfd_link_info *); |
6894 | | static bool translate_section_fixes (asection *); |
6895 | | static bool translate_reloc_bfd_fix (reloc_bfd_fix *); |
6896 | | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
6897 | | static void shrink_dynamic_reloc_sections |
6898 | | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
6899 | | static bool move_literal |
6900 | | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6901 | | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); |
6902 | | static bool relax_property_section |
6903 | | (bfd *, asection *, struct bfd_link_info *); |
6904 | | |
6905 | | /* Third pass: */ |
6906 | | static bool relax_section_symbols (bfd *, asection *); |
6907 | | |
6908 | | |
6909 | | static bool |
6910 | | elf_xtensa_relax_section (bfd *abfd, |
6911 | | asection *sec, |
6912 | | struct bfd_link_info *link_info, |
6913 | | bool *again) |
6914 | 0 | { |
6915 | 0 | static value_map_hash_table *values = NULL; |
6916 | 0 | static bool relocations_analyzed = false; |
6917 | 0 | xtensa_relax_info *relax_info; |
6918 | |
|
6919 | 0 | if (!relocations_analyzed) |
6920 | 0 | { |
6921 | | /* Do some overall initialization for relaxation. */ |
6922 | 0 | values = value_map_hash_table_init (); |
6923 | 0 | if (values == NULL) |
6924 | 0 | return false; |
6925 | 0 | relaxing_section = true; |
6926 | 0 | if (!analyze_relocations (link_info)) |
6927 | 0 | return false; |
6928 | 0 | relocations_analyzed = true; |
6929 | 0 | } |
6930 | 0 | *again = false; |
6931 | | |
6932 | | /* Don't mess with linker-created sections. */ |
6933 | 0 | if ((sec->flags & SEC_LINKER_CREATED) != 0) |
6934 | 0 | return true; |
6935 | | |
6936 | 0 | relax_info = get_xtensa_relax_info (sec); |
6937 | 0 | BFD_ASSERT (relax_info != NULL); |
6938 | |
|
6939 | 0 | switch (relax_info->visited) |
6940 | 0 | { |
6941 | 0 | case 0: |
6942 | | /* Note: It would be nice to fold this pass into |
6943 | | analyze_relocations, but it is important for this step that the |
6944 | | sections be examined in link order. */ |
6945 | 0 | if (!compute_removed_literals (abfd, sec, link_info, values)) |
6946 | 0 | return false; |
6947 | 0 | *again = true; |
6948 | 0 | break; |
6949 | | |
6950 | 0 | case 1: |
6951 | 0 | if (values) |
6952 | 0 | value_map_hash_table_delete (values); |
6953 | 0 | values = NULL; |
6954 | 0 | if (!relax_section (abfd, sec, link_info)) |
6955 | 0 | return false; |
6956 | 0 | *again = true; |
6957 | 0 | break; |
6958 | | |
6959 | 0 | case 2: |
6960 | 0 | if (!relax_section_symbols (abfd, sec)) |
6961 | 0 | return false; |
6962 | 0 | break; |
6963 | 0 | } |
6964 | | |
6965 | 0 | relax_info->visited++; |
6966 | 0 | return true; |
6967 | 0 | } |
6968 | | |
6969 | | |
6970 | | /* Initialization for relaxation. */ |
6971 | | |
6972 | | /* This function is called once at the start of relaxation. It scans |
6973 | | all the input sections and marks the ones that are relaxable (i.e., |
6974 | | literal sections with L32R relocations against them), and then |
6975 | | collects source_reloc information for all the relocations against |
6976 | | those relaxable sections. During this process, it also detects |
6977 | | longcalls, i.e., calls relaxed by the assembler into indirect |
6978 | | calls, that can be optimized back into direct calls. Within each |
6979 | | extended basic block (ebb) containing an optimized longcall, it |
6980 | | computes a set of "text actions" that can be performed to remove |
6981 | | the L32R associated with the longcall while optionally preserving |
6982 | | branch target alignments. */ |
6983 | | |
6984 | | static bool |
6985 | | analyze_relocations (struct bfd_link_info *link_info) |
6986 | 0 | { |
6987 | 0 | bfd *abfd; |
6988 | 0 | asection *sec; |
6989 | 0 | bool is_relaxable = false; |
6990 | | |
6991 | | /* Initialize the per-section relaxation info. */ |
6992 | 0 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
6993 | 0 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6994 | 0 | { |
6995 | 0 | init_xtensa_relax_info (sec); |
6996 | 0 | } |
6997 | | |
6998 | | /* Mark relaxable sections (and count relocations against each one). */ |
6999 | 0 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
7000 | 0 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7001 | 0 | { |
7002 | 0 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) |
7003 | 0 | return false; |
7004 | 0 | } |
7005 | | |
7006 | | /* Bail out if there are no relaxable sections. */ |
7007 | 0 | if (!is_relaxable) |
7008 | 0 | return true; |
7009 | | |
7010 | | /* Allocate space for source_relocs. */ |
7011 | 0 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
7012 | 0 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7013 | 0 | { |
7014 | 0 | xtensa_relax_info *relax_info; |
7015 | |
|
7016 | 0 | relax_info = get_xtensa_relax_info (sec); |
7017 | 0 | if (relax_info->is_relaxable_literal_section |
7018 | 0 | || relax_info->is_relaxable_asm_section) |
7019 | 0 | { |
7020 | 0 | relax_info->src_relocs = (source_reloc *) |
7021 | 0 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); |
7022 | 0 | } |
7023 | 0 | else |
7024 | 0 | relax_info->src_count = 0; |
7025 | 0 | } |
7026 | | |
7027 | | /* Collect info on relocations against each relaxable section. */ |
7028 | 0 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
7029 | 0 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7030 | 0 | { |
7031 | 0 | if (!collect_source_relocs (abfd, sec, link_info)) |
7032 | 0 | return false; |
7033 | 0 | } |
7034 | | |
7035 | | /* Compute the text actions. */ |
7036 | 0 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
7037 | 0 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7038 | 0 | { |
7039 | 0 | if (!compute_text_actions (abfd, sec, link_info)) |
7040 | 0 | return false; |
7041 | 0 | } |
7042 | | |
7043 | 0 | return true; |
7044 | 0 | } |
7045 | | |
7046 | | |
7047 | | /* Find all the sections that might be relaxed. The motivation for |
7048 | | this pass is that collect_source_relocs() needs to record _all_ the |
7049 | | relocations that target each relaxable section. That is expensive |
7050 | | and unnecessary unless the target section is actually going to be |
7051 | | relaxed. This pass identifies all such sections by checking if |
7052 | | they have L32Rs pointing to them. In the process, the total number |
7053 | | of relocations targeting each section is also counted so that we |
7054 | | know how much space to allocate for source_relocs against each |
7055 | | relaxable literal section. */ |
7056 | | |
7057 | | static bool |
7058 | | find_relaxable_sections (bfd *abfd, |
7059 | | asection *sec, |
7060 | | struct bfd_link_info *link_info, |
7061 | | bool *is_relaxable_p) |
7062 | 0 | { |
7063 | 0 | Elf_Internal_Rela *internal_relocs; |
7064 | 0 | bfd_byte *contents; |
7065 | 0 | bool ok = true; |
7066 | 0 | unsigned i; |
7067 | 0 | xtensa_relax_info *source_relax_info; |
7068 | 0 | bool is_l32r_reloc; |
7069 | |
|
7070 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
7071 | 0 | link_info->keep_memory); |
7072 | 0 | if (internal_relocs == NULL) |
7073 | 0 | return ok; |
7074 | | |
7075 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
7076 | 0 | if (contents == NULL && sec->size != 0) |
7077 | 0 | { |
7078 | 0 | ok = false; |
7079 | 0 | goto error_return; |
7080 | 0 | } |
7081 | | |
7082 | 0 | source_relax_info = get_xtensa_relax_info (sec); |
7083 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7084 | 0 | { |
7085 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7086 | 0 | r_reloc r_rel; |
7087 | 0 | asection *target_sec; |
7088 | 0 | xtensa_relax_info *target_relax_info; |
7089 | | |
7090 | | /* If this section has not already been marked as "relaxable", and |
7091 | | if it contains any ASM_EXPAND relocations (marking expanded |
7092 | | longcalls) that can be optimized into direct calls, then mark |
7093 | | the section as "relaxable". */ |
7094 | 0 | if (source_relax_info |
7095 | 0 | && !source_relax_info->is_relaxable_asm_section |
7096 | 0 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) |
7097 | 0 | { |
7098 | 0 | bool is_reachable = false; |
7099 | 0 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, |
7100 | 0 | link_info, &is_reachable) |
7101 | 0 | && is_reachable) |
7102 | 0 | { |
7103 | 0 | source_relax_info->is_relaxable_asm_section = true; |
7104 | 0 | *is_relaxable_p = true; |
7105 | 0 | } |
7106 | 0 | } |
7107 | |
|
7108 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, |
7109 | 0 | bfd_get_section_limit (abfd, sec)); |
7110 | |
|
7111 | 0 | target_sec = r_reloc_get_section (&r_rel); |
7112 | 0 | target_relax_info = get_xtensa_relax_info (target_sec); |
7113 | 0 | if (!target_relax_info) |
7114 | 0 | continue; |
7115 | | |
7116 | | /* Count PC-relative operand relocations against the target section. |
7117 | | Note: The conditions tested here must match the conditions under |
7118 | | which init_source_reloc is called in collect_source_relocs(). */ |
7119 | 0 | is_l32r_reloc = false; |
7120 | 0 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
7121 | 0 | { |
7122 | 0 | xtensa_opcode opcode = |
7123 | 0 | get_relocation_opcode (abfd, sec, contents, irel); |
7124 | 0 | if (opcode != XTENSA_UNDEFINED) |
7125 | 0 | { |
7126 | 0 | is_l32r_reloc = (opcode == get_l32r_opcode ()); |
7127 | 0 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) |
7128 | 0 | || is_l32r_reloc) |
7129 | 0 | target_relax_info->src_count++; |
7130 | 0 | } |
7131 | 0 | } |
7132 | |
|
7133 | 0 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
7134 | 0 | { |
7135 | | /* Mark the target section as relaxable. */ |
7136 | 0 | target_relax_info->is_relaxable_literal_section = true; |
7137 | 0 | *is_relaxable_p = true; |
7138 | 0 | } |
7139 | 0 | } |
7140 | |
|
7141 | 0 | error_return: |
7142 | 0 | release_contents (sec, contents); |
7143 | 0 | release_internal_relocs (sec, internal_relocs); |
7144 | 0 | return ok; |
7145 | 0 | } |
7146 | | |
7147 | | |
7148 | | /* Record _all_ the relocations that point to relaxable sections, and |
7149 | | get rid of ASM_EXPAND relocs by either converting them to |
7150 | | ASM_SIMPLIFY or by removing them. */ |
7151 | | |
7152 | | static bool |
7153 | | collect_source_relocs (bfd *abfd, |
7154 | | asection *sec, |
7155 | | struct bfd_link_info *link_info) |
7156 | 0 | { |
7157 | 0 | Elf_Internal_Rela *internal_relocs; |
7158 | 0 | bfd_byte *contents; |
7159 | 0 | bool ok = true; |
7160 | 0 | unsigned i; |
7161 | 0 | bfd_size_type sec_size; |
7162 | |
|
7163 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
7164 | 0 | link_info->keep_memory); |
7165 | 0 | if (internal_relocs == NULL) |
7166 | 0 | return ok; |
7167 | | |
7168 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
7169 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
7170 | 0 | if (contents == NULL && sec_size != 0) |
7171 | 0 | { |
7172 | 0 | ok = false; |
7173 | 0 | goto error_return; |
7174 | 0 | } |
7175 | | |
7176 | | /* Record relocations against relaxable literal sections. */ |
7177 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7178 | 0 | { |
7179 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7180 | 0 | r_reloc r_rel; |
7181 | 0 | asection *target_sec; |
7182 | 0 | xtensa_relax_info *target_relax_info; |
7183 | |
|
7184 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); |
7185 | |
|
7186 | 0 | target_sec = r_reloc_get_section (&r_rel); |
7187 | 0 | target_relax_info = get_xtensa_relax_info (target_sec); |
7188 | |
|
7189 | 0 | if (target_relax_info |
7190 | 0 | && (target_relax_info->is_relaxable_literal_section |
7191 | 0 | || target_relax_info->is_relaxable_asm_section)) |
7192 | 0 | { |
7193 | 0 | xtensa_opcode opcode = XTENSA_UNDEFINED; |
7194 | 0 | int opnd = -1; |
7195 | 0 | bool is_abs_literal = false; |
7196 | |
|
7197 | 0 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) |
7198 | 0 | { |
7199 | | /* None of the current alternate relocs are PC-relative, |
7200 | | and only PC-relative relocs matter here. However, we |
7201 | | still need to record the opcode for literal |
7202 | | coalescing. */ |
7203 | 0 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
7204 | 0 | if (opcode == get_l32r_opcode ()) |
7205 | 0 | { |
7206 | 0 | is_abs_literal = true; |
7207 | 0 | opnd = 1; |
7208 | 0 | } |
7209 | 0 | else |
7210 | 0 | opcode = XTENSA_UNDEFINED; |
7211 | 0 | } |
7212 | 0 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
7213 | 0 | { |
7214 | 0 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
7215 | 0 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); |
7216 | 0 | } |
7217 | |
|
7218 | 0 | if (opcode != XTENSA_UNDEFINED) |
7219 | 0 | { |
7220 | 0 | int src_next = target_relax_info->src_next++; |
7221 | 0 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; |
7222 | |
|
7223 | 0 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, |
7224 | 0 | is_abs_literal); |
7225 | 0 | } |
7226 | 0 | } |
7227 | 0 | } |
7228 | | |
7229 | | /* Now get rid of ASM_EXPAND relocations. At this point, the |
7230 | | src_relocs array for the target literal section may still be |
7231 | | incomplete, but it must at least contain the entries for the L32R |
7232 | | relocations associated with ASM_EXPANDs because they were just |
7233 | | added in the preceding loop over the relocations. */ |
7234 | |
|
7235 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7236 | 0 | { |
7237 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7238 | 0 | bool is_reachable; |
7239 | |
|
7240 | 0 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, |
7241 | 0 | &is_reachable)) |
7242 | 0 | continue; |
7243 | | |
7244 | 0 | if (is_reachable) |
7245 | 0 | { |
7246 | 0 | Elf_Internal_Rela *l32r_irel; |
7247 | 0 | r_reloc r_rel; |
7248 | 0 | asection *target_sec; |
7249 | 0 | xtensa_relax_info *target_relax_info; |
7250 | | |
7251 | | /* Mark the source_reloc for the L32R so that it will be |
7252 | | removed in compute_removed_literals(), along with the |
7253 | | associated literal. */ |
7254 | 0 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, |
7255 | 0 | irel, internal_relocs); |
7256 | 0 | if (l32r_irel == NULL) |
7257 | 0 | continue; |
7258 | | |
7259 | 0 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); |
7260 | |
|
7261 | 0 | target_sec = r_reloc_get_section (&r_rel); |
7262 | 0 | target_relax_info = get_xtensa_relax_info (target_sec); |
7263 | |
|
7264 | 0 | if (target_relax_info |
7265 | 0 | && (target_relax_info->is_relaxable_literal_section |
7266 | 0 | || target_relax_info->is_relaxable_asm_section)) |
7267 | 0 | { |
7268 | 0 | source_reloc *s_reloc; |
7269 | | |
7270 | | /* Search the source_relocs for the entry corresponding to |
7271 | | the l32r_irel. Note: The src_relocs array is not yet |
7272 | | sorted, but it wouldn't matter anyway because we're |
7273 | | searching by source offset instead of target offset. */ |
7274 | 0 | s_reloc = find_source_reloc (target_relax_info->src_relocs, |
7275 | 0 | target_relax_info->src_next, |
7276 | 0 | sec, l32r_irel); |
7277 | 0 | BFD_ASSERT (s_reloc); |
7278 | 0 | s_reloc->is_null = true; |
7279 | 0 | } |
7280 | | |
7281 | | /* Convert this reloc to ASM_SIMPLIFY. */ |
7282 | 0 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
7283 | 0 | R_XTENSA_ASM_SIMPLIFY); |
7284 | 0 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
7285 | |
|
7286 | 0 | pin_internal_relocs (sec, internal_relocs); |
7287 | 0 | } |
7288 | 0 | else |
7289 | 0 | { |
7290 | | /* It is resolvable but doesn't reach. We resolve now |
7291 | | by eliminating the relocation -- the call will remain |
7292 | | expanded into L32R/CALLX. */ |
7293 | 0 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
7294 | 0 | pin_internal_relocs (sec, internal_relocs); |
7295 | 0 | } |
7296 | 0 | } |
7297 | |
|
7298 | 0 | error_return: |
7299 | 0 | release_contents (sec, contents); |
7300 | 0 | release_internal_relocs (sec, internal_relocs); |
7301 | 0 | return ok; |
7302 | 0 | } |
7303 | | |
7304 | | |
7305 | | /* Return TRUE if the asm expansion can be resolved. Generally it can |
7306 | | be resolved on a final link or when a partial link locates it in the |
7307 | | same section as the target. Set "is_reachable" flag if the target of |
7308 | | the call is within the range of a direct call, given the current VMA |
7309 | | for this section and the target section. */ |
7310 | | |
7311 | | bool |
7312 | | is_resolvable_asm_expansion (bfd *abfd, |
7313 | | asection *sec, |
7314 | | bfd_byte *contents, |
7315 | | Elf_Internal_Rela *irel, |
7316 | | struct bfd_link_info *link_info, |
7317 | | bool *is_reachable_p) |
7318 | 0 | { |
7319 | 0 | asection *target_sec; |
7320 | 0 | asection *s; |
7321 | 0 | bfd_vma first_vma; |
7322 | 0 | bfd_vma last_vma; |
7323 | 0 | unsigned int first_align; |
7324 | 0 | unsigned int adjust; |
7325 | 0 | bfd_vma target_offset; |
7326 | 0 | r_reloc r_rel; |
7327 | 0 | xtensa_opcode opcode, direct_call_opcode; |
7328 | 0 | bfd_vma self_address; |
7329 | 0 | bfd_vma dest_address; |
7330 | 0 | bool uses_l32r; |
7331 | 0 | bfd_size_type sec_size; |
7332 | |
|
7333 | 0 | *is_reachable_p = false; |
7334 | |
|
7335 | 0 | if (contents == NULL) |
7336 | 0 | return false; |
7337 | | |
7338 | 0 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) |
7339 | 0 | return false; |
7340 | | |
7341 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
7342 | 0 | opcode = get_expanded_call_opcode (contents + irel->r_offset, |
7343 | 0 | sec_size - irel->r_offset, &uses_l32r); |
7344 | | /* Optimization of longcalls that use CONST16 is not yet implemented. */ |
7345 | 0 | if (!uses_l32r) |
7346 | 0 | return false; |
7347 | | |
7348 | 0 | direct_call_opcode = swap_callx_for_call_opcode (opcode); |
7349 | 0 | if (direct_call_opcode == XTENSA_UNDEFINED) |
7350 | 0 | return false; |
7351 | | |
7352 | | /* Check and see that the target resolves. */ |
7353 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); |
7354 | 0 | if (!r_reloc_is_defined (&r_rel)) |
7355 | 0 | return false; |
7356 | | |
7357 | 0 | target_sec = r_reloc_get_section (&r_rel); |
7358 | 0 | target_offset = r_rel.target_offset; |
7359 | | |
7360 | | /* If the target is in a shared library, then it doesn't reach. This |
7361 | | isn't supposed to come up because the compiler should never generate |
7362 | | non-PIC calls on systems that use shared libraries, but the linker |
7363 | | shouldn't crash regardless. */ |
7364 | 0 | if (!target_sec->output_section) |
7365 | 0 | return false; |
7366 | | |
7367 | | /* For relocatable sections, we can only simplify when the output |
7368 | | section of the target is the same as the output section of the |
7369 | | source. */ |
7370 | 0 | if (bfd_link_relocatable (link_info) |
7371 | 0 | && (target_sec->output_section != sec->output_section |
7372 | 0 | || is_reloc_sym_weak (abfd, irel))) |
7373 | 0 | return false; |
7374 | | |
7375 | 0 | if (target_sec->output_section != sec->output_section) |
7376 | 0 | { |
7377 | | /* If the two sections are sufficiently far away that relaxation |
7378 | | might take the call out of range, we can't simplify. For |
7379 | | example, a positive displacement call into another memory |
7380 | | could get moved to a lower address due to literal removal, |
7381 | | but the destination won't move, and so the displacment might |
7382 | | get larger. |
7383 | | |
7384 | | If the displacement is negative, assume the destination could |
7385 | | move as far back as the start of the output section. The |
7386 | | self_address will be at least as far into the output section |
7387 | | as it is prior to relaxation. |
7388 | | |
7389 | | If the displacement is postive, assume the destination will be in |
7390 | | it's pre-relaxed location (because relaxation only makes sections |
7391 | | smaller). The self_address could go all the way to the beginning |
7392 | | of the output section. */ |
7393 | |
|
7394 | 0 | dest_address = target_sec->output_section->vma; |
7395 | 0 | self_address = sec->output_section->vma; |
7396 | |
|
7397 | 0 | if (sec->output_section->vma > target_sec->output_section->vma) |
7398 | 0 | self_address += sec->output_offset + irel->r_offset + 3; |
7399 | 0 | else |
7400 | 0 | dest_address += bfd_get_section_limit (abfd, target_sec->output_section); |
7401 | | /* Call targets should be four-byte aligned. */ |
7402 | 0 | dest_address = (dest_address + 3) & ~3; |
7403 | 0 | } |
7404 | 0 | else |
7405 | 0 | { |
7406 | |
|
7407 | 0 | self_address = (sec->output_section->vma |
7408 | 0 | + sec->output_offset + irel->r_offset + 3); |
7409 | 0 | dest_address = (target_sec->output_section->vma |
7410 | 0 | + target_sec->output_offset + target_offset); |
7411 | 0 | } |
7412 | | |
7413 | | /* Adjust addresses with alignments for the worst case to see if call insn |
7414 | | can fit. Don't relax l32r + callx to call if the target can be out of |
7415 | | range due to alignment. |
7416 | | Caller and target addresses are highest and lowest address. |
7417 | | Search all sections between caller and target, looking for max alignment. |
7418 | | The adjustment is max alignment bytes. If the alignment at the lowest |
7419 | | address is less than the adjustment, apply the adjustment to highest |
7420 | | address. */ |
7421 | | |
7422 | | /* Start from lowest address. |
7423 | | Lowest address aligmnet is from input section. |
7424 | | Initial alignment (adjust) is from input section. */ |
7425 | 0 | if (dest_address > self_address) |
7426 | 0 | { |
7427 | 0 | s = sec->output_section; |
7428 | 0 | last_vma = dest_address; |
7429 | 0 | first_align = sec->alignment_power; |
7430 | 0 | adjust = target_sec->alignment_power; |
7431 | 0 | } |
7432 | 0 | else |
7433 | 0 | { |
7434 | 0 | s = target_sec->output_section; |
7435 | 0 | last_vma = self_address; |
7436 | 0 | first_align = target_sec->alignment_power; |
7437 | 0 | adjust = sec->alignment_power; |
7438 | 0 | } |
7439 | |
|
7440 | 0 | first_vma = s->vma; |
7441 | | |
7442 | | /* Find the largest alignment in output section list. */ |
7443 | 0 | for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next) |
7444 | 0 | { |
7445 | 0 | if (s->alignment_power > adjust) |
7446 | 0 | adjust = s->alignment_power; |
7447 | 0 | } |
7448 | |
|
7449 | 0 | if (adjust > first_align) |
7450 | 0 | { |
7451 | | /* Alignment may enlarge the range, adjust highest address. */ |
7452 | 0 | adjust = 1 << adjust; |
7453 | 0 | if (dest_address > self_address) |
7454 | 0 | { |
7455 | 0 | dest_address += adjust; |
7456 | 0 | } |
7457 | 0 | else |
7458 | 0 | { |
7459 | 0 | self_address += adjust; |
7460 | 0 | } |
7461 | 0 | } |
7462 | |
|
7463 | 0 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, |
7464 | 0 | self_address, dest_address); |
7465 | |
|
7466 | 0 | if ((self_address >> CALL_SEGMENT_BITS) != |
7467 | 0 | (dest_address >> CALL_SEGMENT_BITS)) |
7468 | 0 | return false; |
7469 | | |
7470 | 0 | return true; |
7471 | 0 | } |
7472 | | |
7473 | | |
7474 | | static Elf_Internal_Rela * |
7475 | | find_associated_l32r_irel (bfd *abfd, |
7476 | | asection *sec, |
7477 | | bfd_byte *contents, |
7478 | | Elf_Internal_Rela *other_irel, |
7479 | | Elf_Internal_Rela *internal_relocs) |
7480 | 0 | { |
7481 | 0 | unsigned i; |
7482 | |
|
7483 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7484 | 0 | { |
7485 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7486 | |
|
7487 | 0 | if (irel == other_irel) |
7488 | 0 | continue; |
7489 | 0 | if (irel->r_offset != other_irel->r_offset) |
7490 | 0 | continue; |
7491 | 0 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
7492 | 0 | return irel; |
7493 | 0 | } |
7494 | | |
7495 | 0 | return NULL; |
7496 | 0 | } |
7497 | | |
7498 | | |
7499 | | static xtensa_opcode * |
7500 | | build_reloc_opcodes (bfd *abfd, |
7501 | | asection *sec, |
7502 | | bfd_byte *contents, |
7503 | | Elf_Internal_Rela *internal_relocs) |
7504 | 0 | { |
7505 | 0 | unsigned i; |
7506 | 0 | xtensa_opcode *reloc_opcodes = |
7507 | 0 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); |
7508 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7509 | 0 | { |
7510 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7511 | 0 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); |
7512 | 0 | } |
7513 | 0 | return reloc_opcodes; |
7514 | 0 | } |
7515 | | |
7516 | | struct reloc_range_struct |
7517 | | { |
7518 | | bfd_vma addr; |
7519 | | bool add; /* TRUE if start of a range, FALSE otherwise. */ |
7520 | | /* Original irel index in the array of relocations for a section. */ |
7521 | | unsigned irel_index; |
7522 | | }; |
7523 | | typedef struct reloc_range_struct reloc_range; |
7524 | | |
7525 | | typedef struct reloc_range_list_entry_struct reloc_range_list_entry; |
7526 | | struct reloc_range_list_entry_struct |
7527 | | { |
7528 | | reloc_range_list_entry *next; |
7529 | | reloc_range_list_entry *prev; |
7530 | | Elf_Internal_Rela *irel; |
7531 | | xtensa_opcode opcode; |
7532 | | int opnum; |
7533 | | }; |
7534 | | |
7535 | | struct reloc_range_list_struct |
7536 | | { |
7537 | | /* The rest of the structure is only meaningful when ok is TRUE. */ |
7538 | | bool ok; |
7539 | | |
7540 | | unsigned n_range; /* Number of range markers. */ |
7541 | | reloc_range *range; /* Sorted range markers. */ |
7542 | | |
7543 | | unsigned first; /* Index of a first range element in the list. */ |
7544 | | unsigned last; /* One past index of a last range element in the list. */ |
7545 | | |
7546 | | unsigned n_list; /* Number of list elements. */ |
7547 | | reloc_range_list_entry *reloc; /* */ |
7548 | | reloc_range_list_entry list_root; |
7549 | | }; |
7550 | | |
7551 | | static int |
7552 | | reloc_range_compare (const void *a, const void *b) |
7553 | 0 | { |
7554 | 0 | const reloc_range *ra = a; |
7555 | 0 | const reloc_range *rb = b; |
7556 | |
|
7557 | 0 | if (ra->addr != rb->addr) |
7558 | 0 | return ra->addr < rb->addr ? -1 : 1; |
7559 | 0 | if (ra->add != rb->add) |
7560 | 0 | return ra->add ? -1 : 1; |
7561 | 0 | return 0; |
7562 | 0 | } |
7563 | | |
7564 | | static void |
7565 | | build_reloc_ranges (bfd *abfd, asection *sec, |
7566 | | bfd_byte *contents, |
7567 | | Elf_Internal_Rela *internal_relocs, |
7568 | | xtensa_opcode *reloc_opcodes, |
7569 | | reloc_range_list *list) |
7570 | 0 | { |
7571 | 0 | unsigned i; |
7572 | 0 | size_t n = 0; |
7573 | 0 | size_t max_n = 0; |
7574 | 0 | reloc_range *ranges = NULL; |
7575 | 0 | reloc_range_list_entry *reloc = |
7576 | 0 | bfd_malloc (sec->reloc_count * sizeof (*reloc)); |
7577 | |
|
7578 | 0 | memset (list, 0, sizeof (*list)); |
7579 | 0 | list->ok = true; |
7580 | |
|
7581 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7582 | 0 | { |
7583 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7584 | 0 | int r_type = ELF32_R_TYPE (irel->r_info); |
7585 | 0 | reloc_howto_type *howto = &elf_howto_table[r_type]; |
7586 | 0 | r_reloc r_rel; |
7587 | |
|
7588 | 0 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
7589 | 0 | || r_type == R_XTENSA_32_PCREL |
7590 | 0 | || !howto->pc_relative) |
7591 | 0 | continue; |
7592 | | |
7593 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, |
7594 | 0 | bfd_get_section_limit (abfd, sec)); |
7595 | |
|
7596 | 0 | if (r_reloc_get_section (&r_rel) != sec) |
7597 | 0 | continue; |
7598 | | |
7599 | 0 | if (n + 2 > max_n) |
7600 | 0 | { |
7601 | 0 | max_n = (max_n + 2) * 2; |
7602 | 0 | ranges = bfd_realloc (ranges, max_n * sizeof (*ranges)); |
7603 | 0 | } |
7604 | |
|
7605 | 0 | ranges[n].addr = irel->r_offset; |
7606 | 0 | ranges[n + 1].addr = r_rel.target_offset; |
7607 | |
|
7608 | 0 | ranges[n].add = ranges[n].addr < ranges[n + 1].addr; |
7609 | 0 | ranges[n + 1].add = !ranges[n].add; |
7610 | |
|
7611 | 0 | ranges[n].irel_index = i; |
7612 | 0 | ranges[n + 1].irel_index = i; |
7613 | |
|
7614 | 0 | n += 2; |
7615 | |
|
7616 | 0 | reloc[i].irel = irel; |
7617 | | |
7618 | | /* Every relocation won't possibly be checked in the optimized version of |
7619 | | check_section_ebb_pcrels_fit, so this needs to be done here. */ |
7620 | 0 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) |
7621 | 0 | { |
7622 | | /* None of the current alternate relocs are PC-relative, |
7623 | | and only PC-relative relocs matter here. */ |
7624 | 0 | } |
7625 | 0 | else |
7626 | 0 | { |
7627 | 0 | xtensa_opcode opcode; |
7628 | 0 | int opnum; |
7629 | |
|
7630 | 0 | if (reloc_opcodes) |
7631 | 0 | opcode = reloc_opcodes[i]; |
7632 | 0 | else |
7633 | 0 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
7634 | |
|
7635 | 0 | if (opcode == XTENSA_UNDEFINED) |
7636 | 0 | { |
7637 | 0 | list->ok = false; |
7638 | 0 | break; |
7639 | 0 | } |
7640 | | |
7641 | 0 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); |
7642 | 0 | if (opnum == XTENSA_UNDEFINED) |
7643 | 0 | { |
7644 | 0 | list->ok = false; |
7645 | 0 | break; |
7646 | 0 | } |
7647 | | |
7648 | | /* Record relocation opcode and opnum as we've calculated them |
7649 | | anyway and they won't change. */ |
7650 | 0 | reloc[i].opcode = opcode; |
7651 | 0 | reloc[i].opnum = opnum; |
7652 | 0 | } |
7653 | 0 | } |
7654 | |
|
7655 | 0 | if (list->ok) |
7656 | 0 | { |
7657 | 0 | ranges = bfd_realloc (ranges, n * sizeof (*ranges)); |
7658 | 0 | qsort (ranges, n, sizeof (*ranges), reloc_range_compare); |
7659 | |
|
7660 | 0 | list->n_range = n; |
7661 | 0 | list->range = ranges; |
7662 | 0 | list->reloc = reloc; |
7663 | 0 | list->list_root.prev = &list->list_root; |
7664 | 0 | list->list_root.next = &list->list_root; |
7665 | 0 | } |
7666 | 0 | else |
7667 | 0 | { |
7668 | 0 | free (ranges); |
7669 | 0 | free (reloc); |
7670 | 0 | } |
7671 | 0 | } |
7672 | | |
7673 | | static void reloc_range_list_append (reloc_range_list *list, |
7674 | | unsigned irel_index) |
7675 | 0 | { |
7676 | 0 | reloc_range_list_entry *entry = list->reloc + irel_index; |
7677 | |
|
7678 | 0 | entry->prev = list->list_root.prev; |
7679 | 0 | entry->next = &list->list_root; |
7680 | 0 | entry->prev->next = entry; |
7681 | 0 | entry->next->prev = entry; |
7682 | 0 | ++list->n_list; |
7683 | 0 | } |
7684 | | |
7685 | | static void reloc_range_list_remove (reloc_range_list *list, |
7686 | | unsigned irel_index) |
7687 | 0 | { |
7688 | 0 | reloc_range_list_entry *entry = list->reloc + irel_index; |
7689 | |
|
7690 | 0 | entry->next->prev = entry->prev; |
7691 | 0 | entry->prev->next = entry->next; |
7692 | 0 | --list->n_list; |
7693 | 0 | } |
7694 | | |
7695 | | /* Update relocation list object so that it lists all relocations that cross |
7696 | | [first; last] range. Range bounds should not decrease with successive |
7697 | | invocations. */ |
7698 | | static void reloc_range_list_update_range (reloc_range_list *list, |
7699 | | bfd_vma first, bfd_vma last) |
7700 | 0 | { |
7701 | | /* This should not happen: EBBs are iterated from lower addresses to higher. |
7702 | | But even if that happens there's no need to break: just flush current list |
7703 | | and start from scratch. */ |
7704 | 0 | if ((list->last > 0 && list->range[list->last - 1].addr > last) || |
7705 | 0 | (list->first > 0 && list->range[list->first - 1].addr >= first)) |
7706 | 0 | { |
7707 | 0 | list->first = 0; |
7708 | 0 | list->last = 0; |
7709 | 0 | list->n_list = 0; |
7710 | 0 | list->list_root.next = &list->list_root; |
7711 | 0 | list->list_root.prev = &list->list_root; |
7712 | 0 | fprintf (stderr, "%s: move backwards requested\n", __func__); |
7713 | 0 | } |
7714 | |
|
7715 | 0 | for (; list->last < list->n_range && |
7716 | 0 | list->range[list->last].addr <= last; ++list->last) |
7717 | 0 | if (list->range[list->last].add) |
7718 | 0 | reloc_range_list_append (list, list->range[list->last].irel_index); |
7719 | |
|
7720 | 0 | for (; list->first < list->n_range && |
7721 | 0 | list->range[list->first].addr < first; ++list->first) |
7722 | 0 | if (!list->range[list->first].add) |
7723 | 0 | reloc_range_list_remove (list, list->range[list->first].irel_index); |
7724 | 0 | } |
7725 | | |
7726 | | static void free_reloc_range_list (reloc_range_list *list) |
7727 | 0 | { |
7728 | 0 | free (list->range); |
7729 | 0 | free (list->reloc); |
7730 | 0 | } |
7731 | | |
7732 | | /* The compute_text_actions function will build a list of potential |
7733 | | transformation actions for code in the extended basic block of each |
7734 | | longcall that is optimized to a direct call. From this list we |
7735 | | generate a set of actions to actually perform that optimizes for |
7736 | | space and, if not using size_opt, maintains branch target |
7737 | | alignments. |
7738 | | |
7739 | | These actions to be performed are placed on a per-section list. |
7740 | | The actual changes are performed by relax_section() in the second |
7741 | | pass. */ |
7742 | | |
7743 | | bool |
7744 | | compute_text_actions (bfd *abfd, |
7745 | | asection *sec, |
7746 | | struct bfd_link_info *link_info) |
7747 | 0 | { |
7748 | 0 | xtensa_opcode *reloc_opcodes = NULL; |
7749 | 0 | xtensa_relax_info *relax_info; |
7750 | 0 | bfd_byte *contents; |
7751 | 0 | Elf_Internal_Rela *internal_relocs; |
7752 | 0 | bool ok = true; |
7753 | 0 | unsigned i; |
7754 | 0 | property_table_entry *prop_table = 0; |
7755 | 0 | int ptblsize = 0; |
7756 | 0 | bfd_size_type sec_size; |
7757 | 0 | reloc_range_list relevant_relocs; |
7758 | |
|
7759 | 0 | relax_info = get_xtensa_relax_info (sec); |
7760 | 0 | BFD_ASSERT (relax_info); |
7761 | 0 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7762 | | |
7763 | | /* Do nothing if the section contains no optimized longcalls. */ |
7764 | 0 | if (!relax_info->is_relaxable_asm_section) |
7765 | 0 | return ok; |
7766 | | |
7767 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
7768 | 0 | link_info->keep_memory); |
7769 | |
|
7770 | 0 | if (internal_relocs) |
7771 | 0 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
7772 | 0 | internal_reloc_compare); |
7773 | |
|
7774 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
7775 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
7776 | 0 | if (contents == NULL && sec_size != 0) |
7777 | 0 | { |
7778 | 0 | ok = false; |
7779 | 0 | goto error_return; |
7780 | 0 | } |
7781 | | |
7782 | 0 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7783 | 0 | XTENSA_PROP_SEC_NAME, false); |
7784 | 0 | if (ptblsize < 0) |
7785 | 0 | { |
7786 | 0 | ok = false; |
7787 | 0 | goto error_return; |
7788 | 0 | } |
7789 | | |
7790 | | /* Precompute the opcode for each relocation. */ |
7791 | 0 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs); |
7792 | |
|
7793 | 0 | build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes, |
7794 | 0 | &relevant_relocs); |
7795 | |
|
7796 | 0 | for (i = 0; i < sec->reloc_count; i++) |
7797 | 0 | { |
7798 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
7799 | 0 | bfd_vma r_offset; |
7800 | 0 | property_table_entry *the_entry; |
7801 | 0 | int ptbl_idx; |
7802 | 0 | ebb_t *ebb; |
7803 | 0 | ebb_constraint ebb_table; |
7804 | 0 | bfd_size_type simplify_size; |
7805 | |
|
7806 | 0 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) |
7807 | 0 | continue; |
7808 | 0 | r_offset = irel->r_offset; |
7809 | |
|
7810 | 0 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7811 | 0 | if (simplify_size == 0) |
7812 | 0 | { |
7813 | 0 | _bfd_error_handler |
7814 | | /* xgettext:c-format */ |
7815 | 0 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for " |
7816 | 0 | "XTENSA_ASM_SIMPLIFY relocation; " |
7817 | 0 | "possible configuration mismatch"), |
7818 | 0 | sec->owner, sec, (uint64_t) r_offset); |
7819 | 0 | continue; |
7820 | 0 | } |
7821 | | |
7822 | | /* If the instruction table is not around, then don't do this |
7823 | | relaxation. */ |
7824 | 0 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
7825 | 0 | sec->vma + irel->r_offset); |
7826 | 0 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) |
7827 | 0 | { |
7828 | 0 | text_action_add (&relax_info->action_list, |
7829 | 0 | ta_convert_longcall, sec, r_offset, |
7830 | 0 | 0); |
7831 | 0 | continue; |
7832 | 0 | } |
7833 | | |
7834 | | /* If the next longcall happens to be at the same address as an |
7835 | | unreachable section of size 0, then skip forward. */ |
7836 | 0 | ptbl_idx = the_entry - prop_table; |
7837 | 0 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) |
7838 | 0 | && the_entry->size == 0 |
7839 | 0 | && ptbl_idx + 1 < ptblsize |
7840 | 0 | && (prop_table[ptbl_idx + 1].address |
7841 | 0 | == prop_table[ptbl_idx].address)) |
7842 | 0 | { |
7843 | 0 | ptbl_idx++; |
7844 | 0 | the_entry++; |
7845 | 0 | } |
7846 | |
|
7847 | 0 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
7848 | | /* NO_REORDER is OK */ |
7849 | 0 | continue; |
7850 | | |
7851 | 0 | init_ebb_constraint (&ebb_table); |
7852 | 0 | ebb = &ebb_table.ebb; |
7853 | 0 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, |
7854 | 0 | internal_relocs, sec->reloc_count); |
7855 | 0 | ebb->start_offset = r_offset + simplify_size; |
7856 | 0 | ebb->end_offset = r_offset + simplify_size; |
7857 | 0 | ebb->start_ptbl_idx = ptbl_idx; |
7858 | 0 | ebb->end_ptbl_idx = ptbl_idx; |
7859 | 0 | ebb->start_reloc_idx = i; |
7860 | 0 | ebb->end_reloc_idx = i; |
7861 | |
|
7862 | 0 | if (!extend_ebb_bounds (ebb) |
7863 | 0 | || !compute_ebb_proposed_actions (&ebb_table) |
7864 | 0 | || !compute_ebb_actions (&ebb_table) |
7865 | 0 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, |
7866 | 0 | internal_relocs, |
7867 | 0 | &relevant_relocs, |
7868 | 0 | &ebb_table, reloc_opcodes) |
7869 | 0 | || !check_section_ebb_reduces (&ebb_table)) |
7870 | 0 | { |
7871 | | /* If anything goes wrong or we get unlucky and something does |
7872 | | not fit, with our plan because of expansion between |
7873 | | critical branches, just convert to a NOP. */ |
7874 | |
|
7875 | 0 | text_action_add (&relax_info->action_list, |
7876 | 0 | ta_convert_longcall, sec, r_offset, 0); |
7877 | 0 | i = ebb_table.ebb.end_reloc_idx; |
7878 | 0 | free_ebb_constraint (&ebb_table); |
7879 | 0 | continue; |
7880 | 0 | } |
7881 | | |
7882 | 0 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); |
7883 | | |
7884 | | /* Update the index so we do not go looking at the relocations |
7885 | | we have already processed. */ |
7886 | 0 | i = ebb_table.ebb.end_reloc_idx; |
7887 | 0 | free_ebb_constraint (&ebb_table); |
7888 | 0 | } |
7889 | |
|
7890 | 0 | free_reloc_range_list (&relevant_relocs); |
7891 | |
|
7892 | | #if DEBUG |
7893 | | if (action_list_count (&relax_info->action_list)) |
7894 | | print_action_list (stderr, &relax_info->action_list); |
7895 | | #endif |
7896 | |
|
7897 | 0 | error_return: |
7898 | 0 | release_contents (sec, contents); |
7899 | 0 | release_internal_relocs (sec, internal_relocs); |
7900 | 0 | free (prop_table); |
7901 | 0 | free (reloc_opcodes); |
7902 | |
|
7903 | 0 | return ok; |
7904 | 0 | } |
7905 | | |
7906 | | |
7907 | | /* Do not widen an instruction if it is preceeded by a |
7908 | | loop opcode. It might cause misalignment. */ |
7909 | | |
7910 | | static bool |
7911 | | prev_instr_is_a_loop (bfd_byte *contents, |
7912 | | bfd_size_type content_length, |
7913 | | bfd_size_type offset) |
7914 | 0 | { |
7915 | 0 | xtensa_opcode prev_opcode; |
7916 | |
|
7917 | 0 | if (offset < 3) |
7918 | 0 | return false; |
7919 | 0 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); |
7920 | 0 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); |
7921 | 0 | } |
7922 | | |
7923 | | |
7924 | | /* Find all of the possible actions for an extended basic block. */ |
7925 | | |
7926 | | bool |
7927 | | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
7928 | 0 | { |
7929 | 0 | const ebb_t *ebb = &ebb_table->ebb; |
7930 | 0 | unsigned rel_idx = ebb->start_reloc_idx; |
7931 | 0 | property_table_entry *entry, *start_entry, *end_entry; |
7932 | 0 | bfd_vma offset = 0; |
7933 | 0 | xtensa_isa isa = xtensa_default_isa; |
7934 | 0 | xtensa_format fmt; |
7935 | 0 | static xtensa_insnbuf insnbuf = NULL; |
7936 | 0 | static xtensa_insnbuf slotbuf = NULL; |
7937 | |
|
7938 | 0 | if (insnbuf == NULL) |
7939 | 0 | { |
7940 | 0 | insnbuf = xtensa_insnbuf_alloc (isa); |
7941 | 0 | slotbuf = xtensa_insnbuf_alloc (isa); |
7942 | 0 | } |
7943 | |
|
7944 | 0 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7945 | 0 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; |
7946 | |
|
7947 | 0 | for (entry = start_entry; entry <= end_entry; entry++) |
7948 | 0 | { |
7949 | 0 | bfd_vma start_offset, end_offset; |
7950 | 0 | bfd_size_type insn_len; |
7951 | |
|
7952 | 0 | start_offset = entry->address - ebb->sec->vma; |
7953 | 0 | end_offset = entry->address + entry->size - ebb->sec->vma; |
7954 | |
|
7955 | 0 | if (entry == start_entry) |
7956 | 0 | start_offset = ebb->start_offset; |
7957 | 0 | if (entry == end_entry) |
7958 | 0 | end_offset = ebb->end_offset; |
7959 | 0 | offset = start_offset; |
7960 | |
|
7961 | 0 | if (offset == entry->address - ebb->sec->vma |
7962 | 0 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) |
7963 | 0 | { |
7964 | 0 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; |
7965 | 0 | BFD_ASSERT (offset != end_offset); |
7966 | 0 | if (offset == end_offset) |
7967 | 0 | return false; |
7968 | | |
7969 | 0 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7970 | 0 | offset); |
7971 | 0 | if (insn_len == 0) |
7972 | 0 | goto decode_error; |
7973 | | |
7974 | 0 | if (check_branch_target_aligned_address (offset, insn_len)) |
7975 | 0 | align_type = EBB_REQUIRE_TGT_ALIGN; |
7976 | |
|
7977 | 0 | ebb_propose_action (ebb_table, align_type, 0, |
7978 | 0 | ta_none, offset, 0, true); |
7979 | 0 | } |
7980 | | |
7981 | 0 | while (offset != end_offset) |
7982 | 0 | { |
7983 | 0 | Elf_Internal_Rela *irel; |
7984 | 0 | xtensa_opcode opcode; |
7985 | |
|
7986 | 0 | while (rel_idx < ebb->end_reloc_idx |
7987 | 0 | && (ebb->relocs[rel_idx].r_offset < offset |
7988 | 0 | || (ebb->relocs[rel_idx].r_offset == offset |
7989 | 0 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) |
7990 | 0 | != R_XTENSA_ASM_SIMPLIFY)))) |
7991 | 0 | rel_idx++; |
7992 | | |
7993 | | /* Check for longcall. */ |
7994 | 0 | irel = &ebb->relocs[rel_idx]; |
7995 | 0 | if (irel->r_offset == offset |
7996 | 0 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) |
7997 | 0 | { |
7998 | 0 | bfd_size_type simplify_size; |
7999 | |
|
8000 | 0 | simplify_size = get_asm_simplify_size (ebb->contents, |
8001 | 0 | ebb->content_length, |
8002 | 0 | irel->r_offset); |
8003 | 0 | if (simplify_size == 0) |
8004 | 0 | goto decode_error; |
8005 | | |
8006 | 0 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, |
8007 | 0 | ta_convert_longcall, offset, 0, true); |
8008 | |
|
8009 | 0 | offset += simplify_size; |
8010 | 0 | continue; |
8011 | 0 | } |
8012 | | |
8013 | 0 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
8014 | 0 | goto decode_error; |
8015 | 0 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], |
8016 | 0 | ebb->content_length - offset); |
8017 | 0 | fmt = xtensa_format_decode (isa, insnbuf); |
8018 | 0 | if (fmt == XTENSA_UNDEFINED) |
8019 | 0 | goto decode_error; |
8020 | 0 | insn_len = xtensa_format_length (isa, fmt); |
8021 | 0 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) |
8022 | 0 | goto decode_error; |
8023 | | |
8024 | 0 | if (xtensa_format_num_slots (isa, fmt) != 1) |
8025 | 0 | { |
8026 | 0 | offset += insn_len; |
8027 | 0 | continue; |
8028 | 0 | } |
8029 | | |
8030 | 0 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); |
8031 | 0 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
8032 | 0 | if (opcode == XTENSA_UNDEFINED) |
8033 | 0 | goto decode_error; |
8034 | | |
8035 | 0 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
8036 | 0 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
8037 | 0 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
8038 | 0 | { |
8039 | | /* Add an instruction narrow action. */ |
8040 | 0 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, |
8041 | 0 | ta_narrow_insn, offset, 0, false); |
8042 | 0 | } |
8043 | 0 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
8044 | 0 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
8045 | 0 | && ! prev_instr_is_a_loop (ebb->contents, |
8046 | 0 | ebb->content_length, offset)) |
8047 | 0 | { |
8048 | | /* Add an instruction widen action. */ |
8049 | 0 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, |
8050 | 0 | ta_widen_insn, offset, 0, false); |
8051 | 0 | } |
8052 | 0 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
8053 | 0 | { |
8054 | | /* Check for branch targets. */ |
8055 | 0 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, |
8056 | 0 | ta_none, offset, 0, true); |
8057 | 0 | } |
8058 | |
|
8059 | 0 | offset += insn_len; |
8060 | 0 | } |
8061 | 0 | } |
8062 | | |
8063 | 0 | if (ebb->ends_unreachable) |
8064 | 0 | { |
8065 | 0 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, |
8066 | 0 | ta_fill, ebb->end_offset, 0, true); |
8067 | 0 | } |
8068 | |
|
8069 | 0 | return true; |
8070 | | |
8071 | 0 | decode_error: |
8072 | 0 | _bfd_error_handler |
8073 | | /* xgettext:c-format */ |
8074 | 0 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
8075 | 0 | "possible configuration mismatch"), |
8076 | 0 | ebb->sec->owner, ebb->sec, (uint64_t) offset); |
8077 | 0 | return false; |
8078 | 0 | } |
8079 | | |
8080 | | |
8081 | | /* After all of the information has collected about the |
8082 | | transformations possible in an EBB, compute the appropriate actions |
8083 | | here in compute_ebb_actions. We still must check later to make |
8084 | | sure that the actions do not break any relocations. The algorithm |
8085 | | used here is pretty greedy. Basically, it removes as many no-ops |
8086 | | as possible so that the end of the EBB has the same alignment |
8087 | | characteristics as the original. First, it uses narrowing, then |
8088 | | fill space at the end of the EBB, and finally widenings. If that |
8089 | | does not work, it tries again with one fewer no-op removed. The |
8090 | | optimization will only be performed if all of the branch targets |
8091 | | that were aligned before transformation are also aligned after the |
8092 | | transformation. |
8093 | | |
8094 | | When the size_opt flag is set, ignore the branch target alignments, |
8095 | | narrow all wide instructions, and remove all no-ops unless the end |
8096 | | of the EBB prevents it. */ |
8097 | | |
8098 | | bool |
8099 | | compute_ebb_actions (ebb_constraint *ebb_table) |
8100 | 0 | { |
8101 | 0 | unsigned i = 0; |
8102 | 0 | unsigned j; |
8103 | 0 | int removed_bytes = 0; |
8104 | 0 | ebb_t *ebb = &ebb_table->ebb; |
8105 | 0 | unsigned seg_idx_start = 0; |
8106 | 0 | unsigned seg_idx_end = 0; |
8107 | | |
8108 | | /* We perform this like the assembler relaxation algorithm: Start by |
8109 | | assuming all instructions are narrow and all no-ops removed; then |
8110 | | walk through.... */ |
8111 | | |
8112 | | /* For each segment of this that has a solid constraint, check to |
8113 | | see if there are any combinations that will keep the constraint. |
8114 | | If so, use it. */ |
8115 | 0 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) |
8116 | 0 | { |
8117 | 0 | bool requires_text_end_align = false; |
8118 | 0 | unsigned longcall_count = 0; |
8119 | 0 | unsigned longcall_convert_count = 0; |
8120 | 0 | unsigned narrowable_count = 0; |
8121 | 0 | unsigned narrowable_convert_count = 0; |
8122 | 0 | unsigned widenable_count = 0; |
8123 | 0 | unsigned widenable_convert_count = 0; |
8124 | |
|
8125 | 0 | proposed_action *action = NULL; |
8126 | 0 | int align = (1 << ebb_table->ebb.sec->alignment_power); |
8127 | |
|
8128 | 0 | seg_idx_start = seg_idx_end; |
8129 | |
|
8130 | 0 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
8131 | 0 | { |
8132 | 0 | action = &ebb_table->actions[i]; |
8133 | 0 | if (action->action == ta_convert_longcall) |
8134 | 0 | longcall_count++; |
8135 | 0 | if (action->action == ta_narrow_insn) |
8136 | 0 | narrowable_count++; |
8137 | 0 | if (action->action == ta_widen_insn) |
8138 | 0 | widenable_count++; |
8139 | 0 | if (action->action == ta_fill) |
8140 | 0 | break; |
8141 | 0 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) |
8142 | 0 | break; |
8143 | 0 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN |
8144 | 0 | && !elf32xtensa_size_opt) |
8145 | 0 | break; |
8146 | 0 | } |
8147 | 0 | seg_idx_end = i; |
8148 | |
|
8149 | 0 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
8150 | 0 | requires_text_end_align = true; |
8151 | |
|
8152 | 0 | if (elf32xtensa_size_opt && !requires_text_end_align |
8153 | 0 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN |
8154 | 0 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) |
8155 | 0 | { |
8156 | 0 | longcall_convert_count = longcall_count; |
8157 | 0 | narrowable_convert_count = narrowable_count; |
8158 | 0 | widenable_convert_count = 0; |
8159 | 0 | } |
8160 | 0 | else |
8161 | 0 | { |
8162 | | /* There is a constraint. Convert the max number of longcalls. */ |
8163 | 0 | narrowable_convert_count = 0; |
8164 | 0 | longcall_convert_count = 0; |
8165 | 0 | widenable_convert_count = 0; |
8166 | |
|
8167 | 0 | for (j = 0; j < longcall_count; j++) |
8168 | 0 | { |
8169 | 0 | int removed = (longcall_count - j) * 3 & (align - 1); |
8170 | 0 | unsigned desire_narrow = (align - removed) & (align - 1); |
8171 | 0 | unsigned desire_widen = removed; |
8172 | 0 | if (desire_narrow <= narrowable_count) |
8173 | 0 | { |
8174 | 0 | narrowable_convert_count = desire_narrow; |
8175 | 0 | narrowable_convert_count += |
8176 | 0 | (align * ((narrowable_count - narrowable_convert_count) |
8177 | 0 | / align)); |
8178 | 0 | longcall_convert_count = (longcall_count - j); |
8179 | 0 | widenable_convert_count = 0; |
8180 | 0 | break; |
8181 | 0 | } |
8182 | 0 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) |
8183 | 0 | { |
8184 | 0 | narrowable_convert_count = 0; |
8185 | 0 | longcall_convert_count = longcall_count - j; |
8186 | 0 | widenable_convert_count = desire_widen; |
8187 | 0 | break; |
8188 | 0 | } |
8189 | 0 | } |
8190 | 0 | } |
8191 | | |
8192 | | /* Now the number of conversions are saved. Do them. */ |
8193 | 0 | for (i = seg_idx_start; i < seg_idx_end; i++) |
8194 | 0 | { |
8195 | 0 | action = &ebb_table->actions[i]; |
8196 | 0 | switch (action->action) |
8197 | 0 | { |
8198 | 0 | case ta_convert_longcall: |
8199 | 0 | if (longcall_convert_count != 0) |
8200 | 0 | { |
8201 | 0 | action->action = ta_remove_longcall; |
8202 | 0 | action->do_action = true; |
8203 | 0 | action->removed_bytes += 3; |
8204 | 0 | longcall_convert_count--; |
8205 | 0 | } |
8206 | 0 | break; |
8207 | 0 | case ta_narrow_insn: |
8208 | 0 | if (narrowable_convert_count != 0) |
8209 | 0 | { |
8210 | 0 | action->do_action = true; |
8211 | 0 | action->removed_bytes += 1; |
8212 | 0 | narrowable_convert_count--; |
8213 | 0 | } |
8214 | 0 | break; |
8215 | 0 | case ta_widen_insn: |
8216 | 0 | if (widenable_convert_count != 0) |
8217 | 0 | { |
8218 | 0 | action->do_action = true; |
8219 | 0 | action->removed_bytes -= 1; |
8220 | 0 | widenable_convert_count--; |
8221 | 0 | } |
8222 | 0 | break; |
8223 | 0 | default: |
8224 | 0 | break; |
8225 | 0 | } |
8226 | 0 | } |
8227 | 0 | } |
8228 | | |
8229 | | /* Now we move on to some local opts. Try to remove each of the |
8230 | | remaining longcalls. */ |
8231 | | |
8232 | 0 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
8233 | 0 | { |
8234 | 0 | removed_bytes = 0; |
8235 | 0 | for (i = 0; i < ebb_table->action_count; i++) |
8236 | 0 | { |
8237 | 0 | int old_removed_bytes = removed_bytes; |
8238 | 0 | proposed_action *action = &ebb_table->actions[i]; |
8239 | |
|
8240 | 0 | if (action->do_action && action->action == ta_convert_longcall) |
8241 | 0 | { |
8242 | 0 | bool bad_alignment = false; |
8243 | 0 | removed_bytes += 3; |
8244 | 0 | for (j = i + 1; j < ebb_table->action_count; j++) |
8245 | 0 | { |
8246 | 0 | proposed_action *new_action = &ebb_table->actions[j]; |
8247 | 0 | bfd_vma offset = new_action->offset; |
8248 | 0 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) |
8249 | 0 | { |
8250 | 0 | if (!check_branch_target_aligned |
8251 | 0 | (ebb_table->ebb.contents, |
8252 | 0 | ebb_table->ebb.content_length, |
8253 | 0 | offset, offset - removed_bytes)) |
8254 | 0 | { |
8255 | 0 | bad_alignment = true; |
8256 | 0 | break; |
8257 | 0 | } |
8258 | 0 | } |
8259 | 0 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) |
8260 | 0 | { |
8261 | 0 | if (!check_loop_aligned (ebb_table->ebb.contents, |
8262 | 0 | ebb_table->ebb.content_length, |
8263 | 0 | offset, |
8264 | 0 | offset - removed_bytes)) |
8265 | 0 | { |
8266 | 0 | bad_alignment = true; |
8267 | 0 | break; |
8268 | 0 | } |
8269 | 0 | } |
8270 | 0 | if (new_action->action == ta_narrow_insn |
8271 | 0 | && !new_action->do_action |
8272 | 0 | && ebb_table->ebb.sec->alignment_power == 2) |
8273 | 0 | { |
8274 | | /* Narrow an instruction and we are done. */ |
8275 | 0 | new_action->do_action = true; |
8276 | 0 | new_action->removed_bytes += 1; |
8277 | 0 | bad_alignment = false; |
8278 | 0 | break; |
8279 | 0 | } |
8280 | 0 | if (new_action->action == ta_widen_insn |
8281 | 0 | && new_action->do_action |
8282 | 0 | && ebb_table->ebb.sec->alignment_power == 2) |
8283 | 0 | { |
8284 | | /* Narrow an instruction and we are done. */ |
8285 | 0 | new_action->do_action = false; |
8286 | 0 | new_action->removed_bytes += 1; |
8287 | 0 | bad_alignment = false; |
8288 | 0 | break; |
8289 | 0 | } |
8290 | 0 | if (new_action->do_action) |
8291 | 0 | removed_bytes += new_action->removed_bytes; |
8292 | 0 | } |
8293 | 0 | if (!bad_alignment) |
8294 | 0 | { |
8295 | 0 | action->removed_bytes += 3; |
8296 | 0 | action->action = ta_remove_longcall; |
8297 | 0 | action->do_action = true; |
8298 | 0 | } |
8299 | 0 | } |
8300 | 0 | removed_bytes = old_removed_bytes; |
8301 | 0 | if (action->do_action) |
8302 | 0 | removed_bytes += action->removed_bytes; |
8303 | 0 | } |
8304 | 0 | } |
8305 | |
|
8306 | 0 | removed_bytes = 0; |
8307 | 0 | for (i = 0; i < ebb_table->action_count; ++i) |
8308 | 0 | { |
8309 | 0 | proposed_action *action = &ebb_table->actions[i]; |
8310 | 0 | if (action->do_action) |
8311 | 0 | removed_bytes += action->removed_bytes; |
8312 | 0 | } |
8313 | |
|
8314 | 0 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 |
8315 | 0 | && ebb->ends_unreachable) |
8316 | 0 | { |
8317 | 0 | proposed_action *action; |
8318 | 0 | int br; |
8319 | 0 | int extra_space; |
8320 | |
|
8321 | 0 | BFD_ASSERT (ebb_table->action_count != 0); |
8322 | 0 | action = &ebb_table->actions[ebb_table->action_count - 1]; |
8323 | 0 | BFD_ASSERT (action->action == ta_fill); |
8324 | 0 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); |
8325 | |
|
8326 | 0 | extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable); |
8327 | 0 | br = action->removed_bytes + removed_bytes + extra_space; |
8328 | 0 | br = br & ((1 << ebb->sec->alignment_power ) - 1); |
8329 | |
|
8330 | 0 | action->removed_bytes = extra_space - br; |
8331 | 0 | } |
8332 | 0 | return true; |
8333 | 0 | } |
8334 | | |
8335 | | |
8336 | | /* The xlate_map is a sorted array of address mappings designed to |
8337 | | answer the offset_with_removed_text() query with a binary search instead |
8338 | | of a linear search through the section's action_list. */ |
8339 | | |
8340 | | typedef struct xlate_map_entry xlate_map_entry_t; |
8341 | | typedef struct xlate_map xlate_map_t; |
8342 | | |
8343 | | struct xlate_map_entry |
8344 | | { |
8345 | | bfd_vma orig_address; |
8346 | | bfd_vma new_address; |
8347 | | unsigned size; |
8348 | | }; |
8349 | | |
8350 | | struct xlate_map |
8351 | | { |
8352 | | unsigned entry_count; |
8353 | | xlate_map_entry_t *entry; |
8354 | | }; |
8355 | | |
8356 | | |
8357 | | static int |
8358 | | xlate_compare (const void *a_v, const void *b_v) |
8359 | 0 | { |
8360 | 0 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; |
8361 | 0 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; |
8362 | 0 | if (a->orig_address < b->orig_address) |
8363 | 0 | return -1; |
8364 | 0 | if (a->orig_address > (b->orig_address + b->size - 1)) |
8365 | 0 | return 1; |
8366 | 0 | return 0; |
8367 | 0 | } |
8368 | | |
8369 | | |
8370 | | static bfd_vma |
8371 | | xlate_offset_with_removed_text (const xlate_map_t *map, |
8372 | | text_action_list *action_list, |
8373 | | bfd_vma offset) |
8374 | 0 | { |
8375 | 0 | void *r; |
8376 | 0 | xlate_map_entry_t *e; |
8377 | 0 | struct xlate_map_entry se; |
8378 | |
|
8379 | 0 | if (map == NULL) |
8380 | 0 | return offset_with_removed_text (action_list, offset); |
8381 | | |
8382 | 0 | if (map->entry_count == 0) |
8383 | 0 | return offset; |
8384 | | |
8385 | 0 | se.orig_address = offset; |
8386 | 0 | r = bsearch (&se, map->entry, map->entry_count, |
8387 | 0 | sizeof (xlate_map_entry_t), &xlate_compare); |
8388 | 0 | e = (xlate_map_entry_t *) r; |
8389 | | |
8390 | | /* There could be a jump past the end of the section, |
8391 | | allow it using the last xlate map entry to translate its address. */ |
8392 | 0 | if (e == NULL) |
8393 | 0 | { |
8394 | 0 | e = map->entry + map->entry_count - 1; |
8395 | 0 | if (xlate_compare (&se, e) <= 0) |
8396 | 0 | e = NULL; |
8397 | 0 | } |
8398 | 0 | BFD_ASSERT (e != NULL); |
8399 | 0 | if (e == NULL) |
8400 | 0 | return offset; |
8401 | 0 | return e->new_address - e->orig_address + offset; |
8402 | 0 | } |
8403 | | |
8404 | | typedef struct xlate_map_context_struct xlate_map_context; |
8405 | | struct xlate_map_context_struct |
8406 | | { |
8407 | | xlate_map_t *map; |
8408 | | xlate_map_entry_t *current_entry; |
8409 | | int removed; |
8410 | | }; |
8411 | | |
8412 | | static int |
8413 | | xlate_map_fn (splay_tree_node node, void *p) |
8414 | 0 | { |
8415 | 0 | text_action *r = (text_action *)node->value; |
8416 | 0 | xlate_map_context *ctx = p; |
8417 | 0 | unsigned orig_size = 0; |
8418 | |
|
8419 | 0 | switch (r->action) |
8420 | 0 | { |
8421 | 0 | case ta_none: |
8422 | 0 | case ta_remove_insn: |
8423 | 0 | case ta_convert_longcall: |
8424 | 0 | case ta_remove_literal: |
8425 | 0 | case ta_add_literal: |
8426 | 0 | break; |
8427 | 0 | case ta_remove_longcall: |
8428 | 0 | orig_size = 6; |
8429 | 0 | break; |
8430 | 0 | case ta_narrow_insn: |
8431 | 0 | orig_size = 3; |
8432 | 0 | break; |
8433 | 0 | case ta_widen_insn: |
8434 | 0 | orig_size = 2; |
8435 | 0 | break; |
8436 | 0 | case ta_fill: |
8437 | 0 | break; |
8438 | 0 | } |
8439 | 0 | ctx->current_entry->size = |
8440 | 0 | r->offset + orig_size - ctx->current_entry->orig_address; |
8441 | 0 | if (ctx->current_entry->size != 0) |
8442 | 0 | { |
8443 | 0 | ctx->current_entry++; |
8444 | 0 | ctx->map->entry_count++; |
8445 | 0 | } |
8446 | 0 | ctx->current_entry->orig_address = r->offset + orig_size; |
8447 | 0 | ctx->removed += r->removed_bytes; |
8448 | 0 | ctx->current_entry->new_address = r->offset + orig_size - ctx->removed; |
8449 | 0 | ctx->current_entry->size = 0; |
8450 | 0 | return 0; |
8451 | 0 | } |
8452 | | |
8453 | | /* Build a binary searchable offset translation map from a section's |
8454 | | action list. */ |
8455 | | |
8456 | | static xlate_map_t * |
8457 | | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) |
8458 | 0 | { |
8459 | 0 | text_action_list *action_list = &relax_info->action_list; |
8460 | 0 | unsigned num_actions = 0; |
8461 | 0 | xlate_map_context ctx; |
8462 | |
|
8463 | 0 | ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); |
8464 | |
|
8465 | 0 | if (ctx.map == NULL) |
8466 | 0 | return NULL; |
8467 | | |
8468 | 0 | num_actions = action_list_count (action_list); |
8469 | 0 | ctx.map->entry = (xlate_map_entry_t *) |
8470 | 0 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); |
8471 | 0 | if (ctx.map->entry == NULL) |
8472 | 0 | { |
8473 | 0 | free (ctx.map); |
8474 | 0 | return NULL; |
8475 | 0 | } |
8476 | 0 | ctx.map->entry_count = 0; |
8477 | |
|
8478 | 0 | ctx.removed = 0; |
8479 | 0 | ctx.current_entry = &ctx.map->entry[0]; |
8480 | |
|
8481 | 0 | ctx.current_entry->orig_address = 0; |
8482 | 0 | ctx.current_entry->new_address = 0; |
8483 | 0 | ctx.current_entry->size = 0; |
8484 | |
|
8485 | 0 | splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx); |
8486 | |
|
8487 | 0 | ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec) |
8488 | 0 | - ctx.current_entry->orig_address); |
8489 | 0 | if (ctx.current_entry->size != 0) |
8490 | 0 | ctx.map->entry_count++; |
8491 | |
|
8492 | 0 | return ctx.map; |
8493 | 0 | } |
8494 | | |
8495 | | |
8496 | | /* Free an offset translation map. */ |
8497 | | |
8498 | | static void |
8499 | | free_xlate_map (xlate_map_t *map) |
8500 | 0 | { |
8501 | 0 | if (map) |
8502 | 0 | { |
8503 | 0 | free (map->entry); |
8504 | 0 | free (map); |
8505 | 0 | } |
8506 | 0 | } |
8507 | | |
8508 | | |
8509 | | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
8510 | | relocations in a section will fit if a proposed set of actions |
8511 | | are performed. */ |
8512 | | |
8513 | | static bool |
8514 | | check_section_ebb_pcrels_fit (bfd *abfd, |
8515 | | asection *sec, |
8516 | | bfd_byte *contents, |
8517 | | Elf_Internal_Rela *internal_relocs, |
8518 | | reloc_range_list *relevant_relocs, |
8519 | | const ebb_constraint *constraint, |
8520 | | const xtensa_opcode *reloc_opcodes) |
8521 | 0 | { |
8522 | 0 | unsigned i, j; |
8523 | 0 | unsigned n = sec->reloc_count; |
8524 | 0 | Elf_Internal_Rela *irel; |
8525 | 0 | xlate_map_t *xmap = NULL; |
8526 | 0 | bool ok = true; |
8527 | 0 | xtensa_relax_info *relax_info; |
8528 | 0 | reloc_range_list_entry *entry = NULL; |
8529 | |
|
8530 | 0 | relax_info = get_xtensa_relax_info (sec); |
8531 | |
|
8532 | 0 | if (relax_info && sec->reloc_count > 100) |
8533 | 0 | { |
8534 | 0 | xmap = build_xlate_map (sec, relax_info); |
8535 | | /* NULL indicates out of memory, but the slow version |
8536 | | can still be used. */ |
8537 | 0 | } |
8538 | |
|
8539 | 0 | if (relevant_relocs && constraint->action_count) |
8540 | 0 | { |
8541 | 0 | if (!relevant_relocs->ok) |
8542 | 0 | { |
8543 | 0 | ok = false; |
8544 | 0 | n = 0; |
8545 | 0 | } |
8546 | 0 | else |
8547 | 0 | { |
8548 | 0 | bfd_vma min_offset, max_offset; |
8549 | 0 | min_offset = max_offset = constraint->actions[0].offset; |
8550 | |
|
8551 | 0 | for (i = 1; i < constraint->action_count; ++i) |
8552 | 0 | { |
8553 | 0 | proposed_action *action = &constraint->actions[i]; |
8554 | 0 | bfd_vma offset = action->offset; |
8555 | |
|
8556 | 0 | if (offset < min_offset) |
8557 | 0 | min_offset = offset; |
8558 | 0 | if (offset > max_offset) |
8559 | 0 | max_offset = offset; |
8560 | 0 | } |
8561 | 0 | reloc_range_list_update_range (relevant_relocs, min_offset, |
8562 | 0 | max_offset); |
8563 | 0 | n = relevant_relocs->n_list; |
8564 | 0 | entry = &relevant_relocs->list_root; |
8565 | 0 | } |
8566 | 0 | } |
8567 | 0 | else |
8568 | 0 | { |
8569 | 0 | relevant_relocs = NULL; |
8570 | 0 | } |
8571 | |
|
8572 | 0 | for (i = 0; i < n; i++) |
8573 | 0 | { |
8574 | 0 | r_reloc r_rel; |
8575 | 0 | bfd_vma orig_self_offset, orig_target_offset; |
8576 | 0 | bfd_vma self_offset, target_offset; |
8577 | 0 | int r_type; |
8578 | 0 | reloc_howto_type *howto; |
8579 | 0 | int self_removed_bytes, target_removed_bytes; |
8580 | |
|
8581 | 0 | if (relevant_relocs) |
8582 | 0 | { |
8583 | 0 | entry = entry->next; |
8584 | 0 | irel = entry->irel; |
8585 | 0 | } |
8586 | 0 | else |
8587 | 0 | { |
8588 | 0 | irel = internal_relocs + i; |
8589 | 0 | } |
8590 | 0 | r_type = ELF32_R_TYPE (irel->r_info); |
8591 | |
|
8592 | 0 | howto = &elf_howto_table[r_type]; |
8593 | | /* We maintain the required invariant: PC-relative relocations |
8594 | | that fit before linking must fit after linking. Thus we only |
8595 | | need to deal with relocations to the same section that are |
8596 | | PC-relative. */ |
8597 | 0 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
8598 | 0 | || r_type == R_XTENSA_32_PCREL |
8599 | 0 | || !howto->pc_relative) |
8600 | 0 | continue; |
8601 | | |
8602 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, |
8603 | 0 | bfd_get_section_limit (abfd, sec)); |
8604 | |
|
8605 | 0 | if (r_reloc_get_section (&r_rel) != sec) |
8606 | 0 | continue; |
8607 | | |
8608 | 0 | orig_self_offset = irel->r_offset; |
8609 | 0 | orig_target_offset = r_rel.target_offset; |
8610 | |
|
8611 | 0 | self_offset = orig_self_offset; |
8612 | 0 | target_offset = orig_target_offset; |
8613 | |
|
8614 | 0 | if (relax_info) |
8615 | 0 | { |
8616 | 0 | self_offset = |
8617 | 0 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, |
8618 | 0 | orig_self_offset); |
8619 | 0 | target_offset = |
8620 | 0 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, |
8621 | 0 | orig_target_offset); |
8622 | 0 | } |
8623 | |
|
8624 | 0 | self_removed_bytes = 0; |
8625 | 0 | target_removed_bytes = 0; |
8626 | |
|
8627 | 0 | for (j = 0; j < constraint->action_count; ++j) |
8628 | 0 | { |
8629 | 0 | proposed_action *action = &constraint->actions[j]; |
8630 | 0 | bfd_vma offset = action->offset; |
8631 | 0 | int removed_bytes = action->removed_bytes; |
8632 | 0 | if (offset < orig_self_offset |
8633 | 0 | || (offset == orig_self_offset && action->action == ta_fill |
8634 | 0 | && action->removed_bytes < 0)) |
8635 | 0 | self_removed_bytes += removed_bytes; |
8636 | 0 | if (offset < orig_target_offset |
8637 | 0 | || (offset == orig_target_offset && action->action == ta_fill |
8638 | 0 | && action->removed_bytes < 0)) |
8639 | 0 | target_removed_bytes += removed_bytes; |
8640 | 0 | } |
8641 | 0 | self_offset -= self_removed_bytes; |
8642 | 0 | target_offset -= target_removed_bytes; |
8643 | | |
8644 | | /* Try to encode it. Get the operand and check. */ |
8645 | 0 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) |
8646 | 0 | { |
8647 | | /* None of the current alternate relocs are PC-relative, |
8648 | | and only PC-relative relocs matter here. */ |
8649 | 0 | } |
8650 | 0 | else |
8651 | 0 | { |
8652 | 0 | xtensa_opcode opcode; |
8653 | 0 | int opnum; |
8654 | |
|
8655 | 0 | if (relevant_relocs) |
8656 | 0 | { |
8657 | 0 | opcode = entry->opcode; |
8658 | 0 | opnum = entry->opnum; |
8659 | 0 | } |
8660 | 0 | else |
8661 | 0 | { |
8662 | 0 | if (reloc_opcodes) |
8663 | 0 | opcode = reloc_opcodes[relevant_relocs ? |
8664 | 0 | (unsigned)(entry - relevant_relocs->reloc) : i]; |
8665 | 0 | else |
8666 | 0 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
8667 | 0 | if (opcode == XTENSA_UNDEFINED) |
8668 | 0 | { |
8669 | 0 | ok = false; |
8670 | 0 | break; |
8671 | 0 | } |
8672 | | |
8673 | 0 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); |
8674 | 0 | if (opnum == XTENSA_UNDEFINED) |
8675 | 0 | { |
8676 | 0 | ok = false; |
8677 | 0 | break; |
8678 | 0 | } |
8679 | 0 | } |
8680 | | |
8681 | 0 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) |
8682 | 0 | { |
8683 | 0 | ok = false; |
8684 | 0 | break; |
8685 | 0 | } |
8686 | 0 | } |
8687 | 0 | } |
8688 | |
|
8689 | 0 | free_xlate_map (xmap); |
8690 | |
|
8691 | 0 | return ok; |
8692 | 0 | } |
8693 | | |
8694 | | |
8695 | | static bool |
8696 | | check_section_ebb_reduces (const ebb_constraint *constraint) |
8697 | 0 | { |
8698 | 0 | int removed = 0; |
8699 | 0 | unsigned i; |
8700 | |
|
8701 | 0 | for (i = 0; i < constraint->action_count; i++) |
8702 | 0 | { |
8703 | 0 | const proposed_action *action = &constraint->actions[i]; |
8704 | 0 | if (action->do_action) |
8705 | 0 | removed += action->removed_bytes; |
8706 | 0 | } |
8707 | 0 | if (removed < 0) |
8708 | 0 | return false; |
8709 | | |
8710 | 0 | return true; |
8711 | 0 | } |
8712 | | |
8713 | | |
8714 | | void |
8715 | | text_action_add_proposed (text_action_list *l, |
8716 | | const ebb_constraint *ebb_table, |
8717 | | asection *sec) |
8718 | 0 | { |
8719 | 0 | unsigned i; |
8720 | |
|
8721 | 0 | for (i = 0; i < ebb_table->action_count; i++) |
8722 | 0 | { |
8723 | 0 | proposed_action *action = &ebb_table->actions[i]; |
8724 | |
|
8725 | 0 | if (!action->do_action) |
8726 | 0 | continue; |
8727 | 0 | switch (action->action) |
8728 | 0 | { |
8729 | 0 | case ta_remove_insn: |
8730 | 0 | case ta_remove_longcall: |
8731 | 0 | case ta_convert_longcall: |
8732 | 0 | case ta_narrow_insn: |
8733 | 0 | case ta_widen_insn: |
8734 | 0 | case ta_fill: |
8735 | 0 | case ta_remove_literal: |
8736 | 0 | text_action_add (l, action->action, sec, action->offset, |
8737 | 0 | action->removed_bytes); |
8738 | 0 | break; |
8739 | 0 | case ta_none: |
8740 | 0 | break; |
8741 | 0 | default: |
8742 | 0 | BFD_ASSERT (0); |
8743 | 0 | break; |
8744 | 0 | } |
8745 | 0 | } |
8746 | 0 | } |
8747 | | |
8748 | | |
8749 | | int |
8750 | | xtensa_compute_fill_extra_space (property_table_entry *entry) |
8751 | 0 | { |
8752 | 0 | int fill_extra_space; |
8753 | |
|
8754 | 0 | if (!entry) |
8755 | 0 | return 0; |
8756 | | |
8757 | 0 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) |
8758 | 0 | return 0; |
8759 | | |
8760 | 0 | fill_extra_space = entry->size; |
8761 | 0 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) |
8762 | 0 | { |
8763 | | /* Fill bytes for alignment: |
8764 | | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ |
8765 | 0 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); |
8766 | 0 | int nsm = (1 << pow) - 1; |
8767 | 0 | bfd_vma addr = entry->address + entry->size; |
8768 | 0 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); |
8769 | 0 | fill_extra_space += align_fill; |
8770 | 0 | } |
8771 | 0 | return fill_extra_space; |
8772 | 0 | } |
8773 | | |
8774 | | |
8775 | | /* First relaxation pass. */ |
8776 | | |
8777 | | /* If the section contains relaxable literals, check each literal to |
8778 | | see if it has the same value as another literal that has already |
8779 | | been seen, either in the current section or a previous one. If so, |
8780 | | add an entry to the per-section list of removed literals. The |
8781 | | actual changes are deferred until the next pass. */ |
8782 | | |
8783 | | static bool |
8784 | | compute_removed_literals (bfd *abfd, |
8785 | | asection *sec, |
8786 | | struct bfd_link_info *link_info, |
8787 | | value_map_hash_table *values) |
8788 | 0 | { |
8789 | 0 | xtensa_relax_info *relax_info; |
8790 | 0 | bfd_byte *contents; |
8791 | 0 | Elf_Internal_Rela *internal_relocs; |
8792 | 0 | source_reloc *src_relocs, *rel; |
8793 | 0 | bool ok = true; |
8794 | 0 | property_table_entry *prop_table = NULL; |
8795 | 0 | int ptblsize; |
8796 | 0 | int i, prev_i; |
8797 | 0 | bool last_loc_is_prev = false; |
8798 | 0 | bfd_vma last_target_offset = 0; |
8799 | 0 | section_cache_t target_sec_cache; |
8800 | 0 | bfd_size_type sec_size; |
8801 | |
|
8802 | 0 | init_section_cache (&target_sec_cache); |
8803 | | |
8804 | | /* Do nothing if it is not a relaxable literal section. */ |
8805 | 0 | relax_info = get_xtensa_relax_info (sec); |
8806 | 0 | BFD_ASSERT (relax_info); |
8807 | 0 | if (!relax_info->is_relaxable_literal_section) |
8808 | 0 | return ok; |
8809 | | |
8810 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8811 | 0 | link_info->keep_memory); |
8812 | |
|
8813 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
8814 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
8815 | 0 | if (contents == NULL && sec_size != 0) |
8816 | 0 | { |
8817 | 0 | ok = false; |
8818 | 0 | goto error_return; |
8819 | 0 | } |
8820 | | |
8821 | | /* Sort the source_relocs by target offset. */ |
8822 | 0 | src_relocs = relax_info->src_relocs; |
8823 | 0 | qsort (src_relocs, relax_info->src_count, |
8824 | 0 | sizeof (source_reloc), source_reloc_compare); |
8825 | 0 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8826 | 0 | internal_reloc_compare); |
8827 | |
|
8828 | 0 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8829 | 0 | XTENSA_PROP_SEC_NAME, false); |
8830 | 0 | if (ptblsize < 0) |
8831 | 0 | { |
8832 | 0 | ok = false; |
8833 | 0 | goto error_return; |
8834 | 0 | } |
8835 | | |
8836 | 0 | prev_i = -1; |
8837 | 0 | for (i = 0; i < relax_info->src_count; i++) |
8838 | 0 | { |
8839 | 0 | Elf_Internal_Rela *irel = NULL; |
8840 | |
|
8841 | 0 | rel = &src_relocs[i]; |
8842 | 0 | if (get_l32r_opcode () != rel->opcode) |
8843 | 0 | continue; |
8844 | 0 | irel = get_irel_at_offset (sec, internal_relocs, |
8845 | 0 | rel->r_rel.target_offset); |
8846 | | |
8847 | | /* If the relocation on this is not a simple R_XTENSA_32 or |
8848 | | R_XTENSA_PLT then do not consider it. This may happen when |
8849 | | the difference of two symbols is used in a literal. */ |
8850 | 0 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 |
8851 | 0 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) |
8852 | 0 | continue; |
8853 | | |
8854 | | /* If the target_offset for this relocation is the same as the |
8855 | | previous relocation, then we've already considered whether the |
8856 | | literal can be coalesced. Skip to the next one.... */ |
8857 | 0 | if (i != 0 && prev_i != -1 |
8858 | 0 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) |
8859 | 0 | continue; |
8860 | 0 | prev_i = i; |
8861 | |
|
8862 | 0 | if (last_loc_is_prev && |
8863 | 0 | last_target_offset + 4 != rel->r_rel.target_offset) |
8864 | 0 | last_loc_is_prev = false; |
8865 | | |
8866 | | /* Check if the relocation was from an L32R that is being removed |
8867 | | because a CALLX was converted to a direct CALL, and check if |
8868 | | there are no other relocations to the literal. */ |
8869 | 0 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
8870 | 0 | sec, prop_table, ptblsize)) |
8871 | 0 | { |
8872 | 0 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8873 | 0 | irel, rel, prop_table, ptblsize)) |
8874 | 0 | { |
8875 | 0 | ok = false; |
8876 | 0 | goto error_return; |
8877 | 0 | } |
8878 | 0 | last_target_offset = rel->r_rel.target_offset; |
8879 | 0 | continue; |
8880 | 0 | } |
8881 | | |
8882 | 0 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
8883 | 0 | values, |
8884 | 0 | &last_loc_is_prev, irel, |
8885 | 0 | relax_info->src_count - i, rel, |
8886 | 0 | prop_table, ptblsize, |
8887 | 0 | &target_sec_cache, rel->is_abs_literal)) |
8888 | 0 | { |
8889 | 0 | ok = false; |
8890 | 0 | goto error_return; |
8891 | 0 | } |
8892 | 0 | last_target_offset = rel->r_rel.target_offset; |
8893 | 0 | } |
8894 | | |
8895 | | #if DEBUG |
8896 | | print_removed_literals (stderr, &relax_info->removed_list); |
8897 | | print_action_list (stderr, &relax_info->action_list); |
8898 | | #endif /* DEBUG */ |
8899 | | |
8900 | 0 | error_return: |
8901 | 0 | free (prop_table); |
8902 | 0 | free_section_cache (&target_sec_cache); |
8903 | |
|
8904 | 0 | release_contents (sec, contents); |
8905 | 0 | release_internal_relocs (sec, internal_relocs); |
8906 | 0 | return ok; |
8907 | 0 | } |
8908 | | |
8909 | | |
8910 | | static Elf_Internal_Rela * |
8911 | | get_irel_at_offset (asection *sec, |
8912 | | Elf_Internal_Rela *internal_relocs, |
8913 | | bfd_vma offset) |
8914 | 0 | { |
8915 | 0 | unsigned i; |
8916 | 0 | Elf_Internal_Rela *irel; |
8917 | 0 | unsigned r_type; |
8918 | 0 | Elf_Internal_Rela key; |
8919 | |
|
8920 | 0 | if (!internal_relocs) |
8921 | 0 | return NULL; |
8922 | | |
8923 | 0 | key.r_offset = offset; |
8924 | 0 | irel = bsearch (&key, internal_relocs, sec->reloc_count, |
8925 | 0 | sizeof (Elf_Internal_Rela), internal_reloc_matches); |
8926 | 0 | if (!irel) |
8927 | 0 | return NULL; |
8928 | | |
8929 | | /* bsearch does not guarantee which will be returned if there are |
8930 | | multiple matches. We need the first that is not an alignment. */ |
8931 | 0 | i = irel - internal_relocs; |
8932 | 0 | while (i > 0) |
8933 | 0 | { |
8934 | 0 | if (internal_relocs[i-1].r_offset != offset) |
8935 | 0 | break; |
8936 | 0 | i--; |
8937 | 0 | } |
8938 | 0 | for ( ; i < sec->reloc_count; i++) |
8939 | 0 | { |
8940 | 0 | irel = &internal_relocs[i]; |
8941 | 0 | r_type = ELF32_R_TYPE (irel->r_info); |
8942 | 0 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) |
8943 | 0 | return irel; |
8944 | 0 | } |
8945 | | |
8946 | 0 | return NULL; |
8947 | 0 | } |
8948 | | |
8949 | | |
8950 | | bool |
8951 | | is_removable_literal (const source_reloc *rel, |
8952 | | int i, |
8953 | | const source_reloc *src_relocs, |
8954 | | int src_count, |
8955 | | asection *sec, |
8956 | | property_table_entry *prop_table, |
8957 | | int ptblsize) |
8958 | 0 | { |
8959 | 0 | const source_reloc *curr_rel; |
8960 | 0 | property_table_entry *entry; |
8961 | |
|
8962 | 0 | if (!rel->is_null) |
8963 | 0 | return false; |
8964 | | |
8965 | 0 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
8966 | 0 | sec->vma + rel->r_rel.target_offset); |
8967 | 0 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
8968 | 0 | return false; |
8969 | | |
8970 | 0 | for (++i; i < src_count; ++i) |
8971 | 0 | { |
8972 | 0 | curr_rel = &src_relocs[i]; |
8973 | | /* If all others have the same target offset.... */ |
8974 | 0 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) |
8975 | 0 | return true; |
8976 | | |
8977 | 0 | if (!curr_rel->is_null |
8978 | 0 | && !xtensa_is_property_section (curr_rel->source_sec) |
8979 | 0 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) |
8980 | 0 | return false; |
8981 | 0 | } |
8982 | 0 | return true; |
8983 | 0 | } |
8984 | | |
8985 | | |
8986 | | bool |
8987 | | remove_dead_literal (bfd *abfd, |
8988 | | asection *sec, |
8989 | | struct bfd_link_info *link_info, |
8990 | | Elf_Internal_Rela *internal_relocs, |
8991 | | Elf_Internal_Rela *irel, |
8992 | | source_reloc *rel, |
8993 | | property_table_entry *prop_table, |
8994 | | int ptblsize) |
8995 | 0 | { |
8996 | 0 | property_table_entry *entry; |
8997 | 0 | xtensa_relax_info *relax_info; |
8998 | |
|
8999 | 0 | relax_info = get_xtensa_relax_info (sec); |
9000 | 0 | if (!relax_info) |
9001 | 0 | return false; |
9002 | | |
9003 | 0 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
9004 | 0 | sec->vma + rel->r_rel.target_offset); |
9005 | | |
9006 | | /* Mark the unused literal so that it will be removed. */ |
9007 | 0 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); |
9008 | |
|
9009 | 0 | text_action_add (&relax_info->action_list, |
9010 | 0 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); |
9011 | | |
9012 | | /* If the section is 4-byte aligned, do not add fill. */ |
9013 | 0 | if (sec->alignment_power > 2) |
9014 | 0 | { |
9015 | 0 | int fill_extra_space; |
9016 | 0 | bfd_vma entry_sec_offset; |
9017 | 0 | text_action *fa; |
9018 | 0 | property_table_entry *the_add_entry; |
9019 | 0 | int removed_diff; |
9020 | |
|
9021 | 0 | if (entry) |
9022 | 0 | entry_sec_offset = entry->address - sec->vma + entry->size; |
9023 | 0 | else |
9024 | 0 | entry_sec_offset = rel->r_rel.target_offset + 4; |
9025 | | |
9026 | | /* If the literal range is at the end of the section, |
9027 | | do not add fill. */ |
9028 | 0 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
9029 | 0 | entry_sec_offset); |
9030 | 0 | fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry); |
9031 | |
|
9032 | 0 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); |
9033 | 0 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, |
9034 | 0 | -4, fill_extra_space); |
9035 | 0 | if (fa) |
9036 | 0 | adjust_fill_action (fa, removed_diff); |
9037 | 0 | else |
9038 | 0 | text_action_add (&relax_info->action_list, |
9039 | 0 | ta_fill, sec, entry_sec_offset, removed_diff); |
9040 | 0 | } |
9041 | | |
9042 | | /* Zero out the relocation on this literal location. */ |
9043 | 0 | if (irel) |
9044 | 0 | { |
9045 | 0 | if (elf_hash_table (link_info)->dynamic_sections_created) |
9046 | 0 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); |
9047 | |
|
9048 | 0 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
9049 | 0 | pin_internal_relocs (sec, internal_relocs); |
9050 | 0 | } |
9051 | | |
9052 | | /* Do not modify "last_loc_is_prev". */ |
9053 | 0 | return true; |
9054 | 0 | } |
9055 | | |
9056 | | |
9057 | | bool |
9058 | | identify_literal_placement (bfd *abfd, |
9059 | | asection *sec, |
9060 | | bfd_byte *contents, |
9061 | | struct bfd_link_info *link_info, |
9062 | | value_map_hash_table *values, |
9063 | | bool *last_loc_is_prev_p, |
9064 | | Elf_Internal_Rela *irel, |
9065 | | int remaining_src_rels, |
9066 | | source_reloc *rel, |
9067 | | property_table_entry *prop_table, |
9068 | | int ptblsize, |
9069 | | section_cache_t *target_sec_cache, |
9070 | | bool is_abs_literal) |
9071 | 0 | { |
9072 | 0 | literal_value val; |
9073 | 0 | value_map *val_map; |
9074 | 0 | xtensa_relax_info *relax_info; |
9075 | 0 | bool literal_placed = false; |
9076 | 0 | r_reloc r_rel; |
9077 | 0 | unsigned long value; |
9078 | 0 | bool final_static_link; |
9079 | 0 | bfd_size_type sec_size; |
9080 | |
|
9081 | 0 | relax_info = get_xtensa_relax_info (sec); |
9082 | 0 | if (!relax_info) |
9083 | 0 | return false; |
9084 | | |
9085 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
9086 | |
|
9087 | 0 | final_static_link = |
9088 | 0 | (!bfd_link_relocatable (link_info) |
9089 | 0 | && !elf_hash_table (link_info)->dynamic_sections_created); |
9090 | | |
9091 | | /* The placement algorithm first checks to see if the literal is |
9092 | | already in the value map. If so and the value map is reachable |
9093 | | from all uses, then the literal is moved to that location. If |
9094 | | not, then we identify the last location where a fresh literal was |
9095 | | placed. If the literal can be safely moved there, then we do so. |
9096 | | If not, then we assume that the literal is not to move and leave |
9097 | | the literal where it is, marking it as the last literal |
9098 | | location. */ |
9099 | | |
9100 | | /* Find the literal value. */ |
9101 | 0 | value = 0; |
9102 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); |
9103 | 0 | if (!irel) |
9104 | 0 | { |
9105 | 0 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); |
9106 | 0 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); |
9107 | 0 | } |
9108 | 0 | init_literal_value (&val, &r_rel, value, is_abs_literal); |
9109 | | |
9110 | | /* Check if we've seen another literal with the same value that |
9111 | | is in the same output section. */ |
9112 | 0 | val_map = value_map_get_cached_value (values, &val, final_static_link); |
9113 | |
|
9114 | 0 | if (val_map |
9115 | 0 | && (r_reloc_get_section (&val_map->loc)->output_section |
9116 | 0 | == sec->output_section) |
9117 | 0 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) |
9118 | 0 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) |
9119 | 0 | { |
9120 | | /* No change to last_loc_is_prev. */ |
9121 | 0 | literal_placed = true; |
9122 | 0 | } |
9123 | | |
9124 | | /* For relocatable links, do not try to move literals. To do it |
9125 | | correctly might increase the number of relocations in an input |
9126 | | section making the default relocatable linking fail. */ |
9127 | 0 | if (!bfd_link_relocatable (link_info) && !literal_placed |
9128 | 0 | && values->has_last_loc && !(*last_loc_is_prev_p)) |
9129 | 0 | { |
9130 | 0 | asection *target_sec = r_reloc_get_section (&values->last_loc); |
9131 | 0 | if (target_sec && target_sec->output_section == sec->output_section) |
9132 | 0 | { |
9133 | | /* Increment the virtual offset. */ |
9134 | 0 | r_reloc try_loc = values->last_loc; |
9135 | 0 | try_loc.virtual_offset += 4; |
9136 | | |
9137 | | /* There is a last loc that was in the same output section. */ |
9138 | 0 | if (relocations_reach (rel, remaining_src_rels, &try_loc) |
9139 | 0 | && move_shared_literal (sec, link_info, rel, |
9140 | 0 | prop_table, ptblsize, |
9141 | 0 | &try_loc, &val, target_sec_cache)) |
9142 | 0 | { |
9143 | 0 | values->last_loc.virtual_offset += 4; |
9144 | 0 | literal_placed = true; |
9145 | 0 | if (!val_map) |
9146 | 0 | val_map = add_value_map (values, &val, &try_loc, |
9147 | 0 | final_static_link); |
9148 | 0 | else |
9149 | 0 | val_map->loc = try_loc; |
9150 | 0 | } |
9151 | 0 | } |
9152 | 0 | } |
9153 | |
|
9154 | 0 | if (!literal_placed) |
9155 | 0 | { |
9156 | | /* Nothing worked, leave the literal alone but update the last loc. */ |
9157 | 0 | values->has_last_loc = true; |
9158 | 0 | values->last_loc = rel->r_rel; |
9159 | 0 | if (!val_map) |
9160 | 0 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); |
9161 | 0 | else |
9162 | 0 | val_map->loc = rel->r_rel; |
9163 | 0 | *last_loc_is_prev_p = true; |
9164 | 0 | } |
9165 | |
|
9166 | 0 | return true; |
9167 | 0 | } |
9168 | | |
9169 | | |
9170 | | /* Check if the original relocations (presumably on L32R instructions) |
9171 | | identified by reloc[0..N] can be changed to reference the literal |
9172 | | identified by r_rel. If r_rel is out of range for any of the |
9173 | | original relocations, then we don't want to coalesce the original |
9174 | | literal with the one at r_rel. We only check reloc[0..N], where the |
9175 | | offsets are all the same as for reloc[0] (i.e., they're all |
9176 | | referencing the same literal) and where N is also bounded by the |
9177 | | number of remaining entries in the "reloc" array. The "reloc" array |
9178 | | is sorted by target offset so we know all the entries for the same |
9179 | | literal will be contiguous. */ |
9180 | | |
9181 | | static bool |
9182 | | relocations_reach (source_reloc *reloc, |
9183 | | int remaining_relocs, |
9184 | | const r_reloc *r_rel) |
9185 | 0 | { |
9186 | 0 | bfd_vma from_offset, source_address, dest_address; |
9187 | 0 | asection *sec; |
9188 | 0 | int i; |
9189 | |
|
9190 | 0 | if (!r_reloc_is_defined (r_rel)) |
9191 | 0 | return false; |
9192 | | |
9193 | 0 | sec = r_reloc_get_section (r_rel); |
9194 | 0 | from_offset = reloc[0].r_rel.target_offset; |
9195 | |
|
9196 | 0 | for (i = 0; i < remaining_relocs; i++) |
9197 | 0 | { |
9198 | 0 | if (reloc[i].r_rel.target_offset != from_offset) |
9199 | 0 | break; |
9200 | | |
9201 | | /* Ignore relocations that have been removed. */ |
9202 | 0 | if (reloc[i].is_null) |
9203 | 0 | continue; |
9204 | | |
9205 | | /* The original and new output section for these must be the same |
9206 | | in order to coalesce. */ |
9207 | 0 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section |
9208 | 0 | != sec->output_section) |
9209 | 0 | return false; |
9210 | | |
9211 | | /* Absolute literals in the same output section can always be |
9212 | | combined. */ |
9213 | 0 | if (reloc[i].is_abs_literal) |
9214 | 0 | continue; |
9215 | | |
9216 | | /* A literal with no PC-relative relocations can be moved anywhere. */ |
9217 | 0 | if (reloc[i].opnd != -1) |
9218 | 0 | { |
9219 | | /* Otherwise, check to see that it fits. */ |
9220 | 0 | source_address = (reloc[i].source_sec->output_section->vma |
9221 | 0 | + reloc[i].source_sec->output_offset |
9222 | 0 | + reloc[i].r_rel.rela.r_offset); |
9223 | 0 | dest_address = (sec->output_section->vma |
9224 | 0 | + sec->output_offset |
9225 | 0 | + r_rel->target_offset); |
9226 | |
|
9227 | 0 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
9228 | 0 | source_address, dest_address)) |
9229 | 0 | return false; |
9230 | 0 | } |
9231 | 0 | } |
9232 | | |
9233 | 0 | return true; |
9234 | 0 | } |
9235 | | |
9236 | | |
9237 | | /* Move a literal to another literal location because it is |
9238 | | the same as the other literal value. */ |
9239 | | |
9240 | | static bool |
9241 | | coalesce_shared_literal (asection *sec, |
9242 | | source_reloc *rel, |
9243 | | property_table_entry *prop_table, |
9244 | | int ptblsize, |
9245 | | value_map *val_map) |
9246 | 0 | { |
9247 | 0 | property_table_entry *entry; |
9248 | 0 | text_action *fa; |
9249 | 0 | property_table_entry *the_add_entry; |
9250 | 0 | int removed_diff; |
9251 | 0 | xtensa_relax_info *relax_info; |
9252 | |
|
9253 | 0 | relax_info = get_xtensa_relax_info (sec); |
9254 | 0 | if (!relax_info) |
9255 | 0 | return false; |
9256 | | |
9257 | 0 | entry = elf_xtensa_find_property_entry |
9258 | 0 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); |
9259 | 0 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
9260 | 0 | return true; |
9261 | | |
9262 | | /* Mark that the literal will be coalesced. */ |
9263 | 0 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); |
9264 | |
|
9265 | 0 | text_action_add (&relax_info->action_list, |
9266 | 0 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); |
9267 | | |
9268 | | /* If the section is 4-byte aligned, do not add fill. */ |
9269 | 0 | if (sec->alignment_power > 2) |
9270 | 0 | { |
9271 | 0 | int fill_extra_space; |
9272 | 0 | bfd_vma entry_sec_offset; |
9273 | |
|
9274 | 0 | if (entry) |
9275 | 0 | entry_sec_offset = entry->address - sec->vma + entry->size; |
9276 | 0 | else |
9277 | 0 | entry_sec_offset = rel->r_rel.target_offset + 4; |
9278 | | |
9279 | | /* If the literal range is at the end of the section, |
9280 | | do not add fill. */ |
9281 | 0 | fill_extra_space = 0; |
9282 | 0 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
9283 | 0 | entry_sec_offset); |
9284 | 0 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) |
9285 | 0 | fill_extra_space = the_add_entry->size; |
9286 | |
|
9287 | 0 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); |
9288 | 0 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, |
9289 | 0 | -4, fill_extra_space); |
9290 | 0 | if (fa) |
9291 | 0 | adjust_fill_action (fa, removed_diff); |
9292 | 0 | else |
9293 | 0 | text_action_add (&relax_info->action_list, |
9294 | 0 | ta_fill, sec, entry_sec_offset, removed_diff); |
9295 | 0 | } |
9296 | |
|
9297 | 0 | return true; |
9298 | 0 | } |
9299 | | |
9300 | | |
9301 | | /* Move a literal to another location. This may actually increase the |
9302 | | total amount of space used because of alignments so we need to do |
9303 | | this carefully. Also, it may make a branch go out of range. */ |
9304 | | |
9305 | | static bool |
9306 | | move_shared_literal (asection *sec, |
9307 | | struct bfd_link_info *link_info, |
9308 | | source_reloc *rel, |
9309 | | property_table_entry *prop_table, |
9310 | | int ptblsize, |
9311 | | const r_reloc *target_loc, |
9312 | | const literal_value *lit_value, |
9313 | | section_cache_t *target_sec_cache) |
9314 | 0 | { |
9315 | 0 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; |
9316 | 0 | text_action *fa, *target_fa; |
9317 | 0 | int removed_diff; |
9318 | 0 | xtensa_relax_info *relax_info, *target_relax_info; |
9319 | 0 | asection *target_sec; |
9320 | 0 | ebb_t *ebb; |
9321 | 0 | ebb_constraint ebb_table; |
9322 | 0 | bool relocs_fit; |
9323 | | |
9324 | | /* If this routine always returns FALSE, the literals that cannot be |
9325 | | coalesced will not be moved. */ |
9326 | 0 | if (elf32xtensa_no_literal_movement) |
9327 | 0 | return false; |
9328 | | |
9329 | 0 | relax_info = get_xtensa_relax_info (sec); |
9330 | 0 | if (!relax_info) |
9331 | 0 | return false; |
9332 | | |
9333 | 0 | target_sec = r_reloc_get_section (target_loc); |
9334 | 0 | target_relax_info = get_xtensa_relax_info (target_sec); |
9335 | | |
9336 | | /* Literals to undefined sections may not be moved because they |
9337 | | must report an error. */ |
9338 | 0 | if (bfd_is_und_section (target_sec)) |
9339 | 0 | return false; |
9340 | | |
9341 | 0 | src_entry = elf_xtensa_find_property_entry |
9342 | 0 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); |
9343 | |
|
9344 | 0 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) |
9345 | 0 | return false; |
9346 | | |
9347 | 0 | target_entry = elf_xtensa_find_property_entry |
9348 | 0 | (target_sec_cache->ptbl, target_sec_cache->pte_count, |
9349 | 0 | target_sec->vma + target_loc->target_offset); |
9350 | |
|
9351 | 0 | if (!target_entry) |
9352 | 0 | return false; |
9353 | | |
9354 | | /* Make sure that we have not broken any branches. */ |
9355 | 0 | relocs_fit = false; |
9356 | |
|
9357 | 0 | init_ebb_constraint (&ebb_table); |
9358 | 0 | ebb = &ebb_table.ebb; |
9359 | 0 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, |
9360 | 0 | target_sec_cache->content_length, |
9361 | 0 | target_sec_cache->ptbl, target_sec_cache->pte_count, |
9362 | 0 | target_sec_cache->relocs, target_sec_cache->reloc_count); |
9363 | | |
9364 | | /* Propose to add 4 bytes + worst-case alignment size increase to |
9365 | | destination. */ |
9366 | 0 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, |
9367 | 0 | ta_fill, target_loc->target_offset, |
9368 | 0 | -4 - (1 << target_sec->alignment_power), true); |
9369 | | |
9370 | | /* Check all of the PC-relative relocations to make sure they still fit. */ |
9371 | 0 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, |
9372 | 0 | target_sec_cache->contents, |
9373 | 0 | target_sec_cache->relocs, NULL, |
9374 | 0 | &ebb_table, NULL); |
9375 | |
|
9376 | 0 | if (!relocs_fit) |
9377 | 0 | return false; |
9378 | | |
9379 | 0 | text_action_add_literal (&target_relax_info->action_list, |
9380 | 0 | ta_add_literal, target_loc, lit_value, -4); |
9381 | |
|
9382 | 0 | if (target_sec->alignment_power > 2 && target_entry != src_entry) |
9383 | 0 | { |
9384 | | /* May need to add or remove some fill to maintain alignment. */ |
9385 | 0 | int fill_extra_space; |
9386 | 0 | bfd_vma entry_sec_offset; |
9387 | |
|
9388 | 0 | entry_sec_offset = |
9389 | 0 | target_entry->address - target_sec->vma + target_entry->size; |
9390 | | |
9391 | | /* If the literal range is at the end of the section, |
9392 | | do not add fill. */ |
9393 | 0 | fill_extra_space = 0; |
9394 | 0 | the_add_entry = |
9395 | 0 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, |
9396 | 0 | target_sec_cache->pte_count, |
9397 | 0 | entry_sec_offset); |
9398 | 0 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) |
9399 | 0 | fill_extra_space = the_add_entry->size; |
9400 | |
|
9401 | 0 | target_fa = find_fill_action (&target_relax_info->action_list, |
9402 | 0 | target_sec, entry_sec_offset); |
9403 | 0 | removed_diff = compute_removed_action_diff (target_fa, target_sec, |
9404 | 0 | entry_sec_offset, 4, |
9405 | 0 | fill_extra_space); |
9406 | 0 | if (target_fa) |
9407 | 0 | adjust_fill_action (target_fa, removed_diff); |
9408 | 0 | else |
9409 | 0 | text_action_add (&target_relax_info->action_list, |
9410 | 0 | ta_fill, target_sec, entry_sec_offset, removed_diff); |
9411 | 0 | } |
9412 | | |
9413 | | /* Mark that the literal will be moved to the new location. */ |
9414 | 0 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); |
9415 | | |
9416 | | /* Remove the literal. */ |
9417 | 0 | text_action_add (&relax_info->action_list, |
9418 | 0 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); |
9419 | | |
9420 | | /* If the section is 4-byte aligned, do not add fill. */ |
9421 | 0 | if (sec->alignment_power > 2 && target_entry != src_entry) |
9422 | 0 | { |
9423 | 0 | int fill_extra_space; |
9424 | 0 | bfd_vma entry_sec_offset; |
9425 | |
|
9426 | 0 | if (src_entry) |
9427 | 0 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; |
9428 | 0 | else |
9429 | 0 | entry_sec_offset = rel->r_rel.target_offset+4; |
9430 | | |
9431 | | /* If the literal range is at the end of the section, |
9432 | | do not add fill. */ |
9433 | 0 | fill_extra_space = 0; |
9434 | 0 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
9435 | 0 | entry_sec_offset); |
9436 | 0 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) |
9437 | 0 | fill_extra_space = the_add_entry->size; |
9438 | |
|
9439 | 0 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); |
9440 | 0 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, |
9441 | 0 | -4, fill_extra_space); |
9442 | 0 | if (fa) |
9443 | 0 | adjust_fill_action (fa, removed_diff); |
9444 | 0 | else |
9445 | 0 | text_action_add (&relax_info->action_list, |
9446 | 0 | ta_fill, sec, entry_sec_offset, removed_diff); |
9447 | 0 | } |
9448 | |
|
9449 | 0 | return true; |
9450 | 0 | } |
9451 | | |
9452 | | |
9453 | | /* Second relaxation pass. */ |
9454 | | |
9455 | | static int |
9456 | | action_remove_bytes_fn (splay_tree_node node, void *p) |
9457 | 0 | { |
9458 | 0 | bfd_size_type *final_size = p; |
9459 | 0 | text_action *action = (text_action *)node->value; |
9460 | |
|
9461 | 0 | *final_size -= action->removed_bytes; |
9462 | 0 | return 0; |
9463 | 0 | } |
9464 | | |
9465 | | /* Modify all of the relocations to point to the right spot, and if this |
9466 | | is a relaxable section, delete the unwanted literals and fix the |
9467 | | section size. */ |
9468 | | |
9469 | | bool |
9470 | | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
9471 | 0 | { |
9472 | 0 | Elf_Internal_Rela *internal_relocs; |
9473 | 0 | xtensa_relax_info *relax_info; |
9474 | 0 | bfd_byte *contents; |
9475 | 0 | bool ok = true; |
9476 | 0 | unsigned i; |
9477 | 0 | bool rv = false; |
9478 | 0 | bool virtual_action; |
9479 | 0 | bfd_size_type sec_size; |
9480 | |
|
9481 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
9482 | 0 | relax_info = get_xtensa_relax_info (sec); |
9483 | 0 | BFD_ASSERT (relax_info); |
9484 | | |
9485 | | /* First translate any of the fixes that have been added already. */ |
9486 | 0 | translate_section_fixes (sec); |
9487 | | |
9488 | | /* Handle property sections (e.g., literal tables) specially. */ |
9489 | 0 | if (xtensa_is_property_section (sec)) |
9490 | 0 | { |
9491 | 0 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); |
9492 | 0 | return relax_property_section (abfd, sec, link_info); |
9493 | 0 | } |
9494 | | |
9495 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
9496 | 0 | link_info->keep_memory); |
9497 | 0 | if (!internal_relocs && !action_list_count (&relax_info->action_list)) |
9498 | 0 | return true; |
9499 | | |
9500 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
9501 | 0 | if (contents == NULL && sec_size != 0) |
9502 | 0 | { |
9503 | 0 | ok = false; |
9504 | 0 | goto error_return; |
9505 | 0 | } |
9506 | | |
9507 | 0 | if (internal_relocs) |
9508 | 0 | { |
9509 | 0 | for (i = 0; i < sec->reloc_count; i++) |
9510 | 0 | { |
9511 | 0 | Elf_Internal_Rela *irel; |
9512 | 0 | xtensa_relax_info *target_relax_info; |
9513 | 0 | bfd_vma source_offset, old_source_offset; |
9514 | 0 | r_reloc r_rel; |
9515 | 0 | unsigned r_type; |
9516 | 0 | asection *target_sec; |
9517 | | |
9518 | | /* Locally change the source address. |
9519 | | Translate the target to the new target address. |
9520 | | If it points to this section and has been removed, |
9521 | | NULLify it. |
9522 | | Write it back. */ |
9523 | |
|
9524 | 0 | irel = &internal_relocs[i]; |
9525 | 0 | source_offset = irel->r_offset; |
9526 | 0 | old_source_offset = source_offset; |
9527 | |
|
9528 | 0 | r_type = ELF32_R_TYPE (irel->r_info); |
9529 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, |
9530 | 0 | bfd_get_section_limit (abfd, sec)); |
9531 | | |
9532 | | /* If this section could have changed then we may need to |
9533 | | change the relocation's offset. */ |
9534 | |
|
9535 | 0 | if (relax_info->is_relaxable_literal_section |
9536 | 0 | || relax_info->is_relaxable_asm_section) |
9537 | 0 | { |
9538 | 0 | pin_internal_relocs (sec, internal_relocs); |
9539 | |
|
9540 | 0 | if (r_type != R_XTENSA_NONE |
9541 | 0 | && find_removed_literal (&relax_info->removed_list, |
9542 | 0 | irel->r_offset)) |
9543 | 0 | { |
9544 | | /* Remove this relocation. */ |
9545 | 0 | if (elf_hash_table (link_info)->dynamic_sections_created) |
9546 | 0 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); |
9547 | 0 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
9548 | 0 | irel->r_offset = offset_with_removed_text_map |
9549 | 0 | (&relax_info->action_list, irel->r_offset); |
9550 | 0 | continue; |
9551 | 0 | } |
9552 | | |
9553 | 0 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
9554 | 0 | { |
9555 | 0 | text_action *action = |
9556 | 0 | find_insn_action (&relax_info->action_list, |
9557 | 0 | irel->r_offset); |
9558 | 0 | if (action && (action->action == ta_convert_longcall |
9559 | 0 | || action->action == ta_remove_longcall)) |
9560 | 0 | { |
9561 | 0 | bfd_reloc_status_type retval; |
9562 | 0 | char *error_message = NULL; |
9563 | |
|
9564 | 0 | retval = contract_asm_expansion (contents, sec_size, |
9565 | 0 | irel, &error_message); |
9566 | 0 | if (retval != bfd_reloc_ok) |
9567 | 0 | { |
9568 | 0 | (*link_info->callbacks->reloc_dangerous) |
9569 | 0 | (link_info, error_message, abfd, sec, |
9570 | 0 | irel->r_offset); |
9571 | 0 | goto error_return; |
9572 | 0 | } |
9573 | | /* Update the action so that the code that moves |
9574 | | the contents will do the right thing. */ |
9575 | | /* ta_remove_longcall and ta_remove_insn actions are |
9576 | | grouped together in the tree as well as |
9577 | | ta_convert_longcall and ta_none, so that changes below |
9578 | | can be done w/o removing and reinserting action into |
9579 | | the tree. */ |
9580 | | |
9581 | 0 | if (action->action == ta_remove_longcall) |
9582 | 0 | action->action = ta_remove_insn; |
9583 | 0 | else |
9584 | 0 | action->action = ta_none; |
9585 | | /* Refresh the info in the r_rel. */ |
9586 | 0 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); |
9587 | 0 | r_type = ELF32_R_TYPE (irel->r_info); |
9588 | 0 | } |
9589 | 0 | } |
9590 | | |
9591 | 0 | source_offset = offset_with_removed_text_map |
9592 | 0 | (&relax_info->action_list, irel->r_offset); |
9593 | 0 | irel->r_offset = source_offset; |
9594 | 0 | } |
9595 | | |
9596 | | /* If the target section could have changed then |
9597 | | we may need to change the relocation's target offset. */ |
9598 | | |
9599 | 0 | target_sec = r_reloc_get_section (&r_rel); |
9600 | | |
9601 | | /* For a reference to a discarded section from a DWARF section, |
9602 | | i.e., where action_discarded is PRETEND, the symbol will |
9603 | | eventually be modified to refer to the kept section (at least if |
9604 | | the kept and discarded sections are the same size). Anticipate |
9605 | | that here and adjust things accordingly. */ |
9606 | 0 | if (! elf_xtensa_ignore_discarded_relocs (sec) |
9607 | 0 | && elf_xtensa_action_discarded (sec) == PRETEND |
9608 | 0 | && sec->sec_info_type != SEC_INFO_TYPE_STABS |
9609 | 0 | && target_sec != NULL |
9610 | 0 | && discarded_section (target_sec)) |
9611 | 0 | { |
9612 | | /* It would be natural to call _bfd_elf_check_kept_section |
9613 | | here, but it's not exported from elflink.c. It's also a |
9614 | | fairly expensive check. Adjusting the relocations to the |
9615 | | discarded section is fairly harmless; it will only adjust |
9616 | | some addends and difference values. If it turns out that |
9617 | | _bfd_elf_check_kept_section fails later, it won't matter, |
9618 | | so just compare the section names to find the right group |
9619 | | member. */ |
9620 | 0 | asection *kept = target_sec->kept_section; |
9621 | 0 | if (kept != NULL) |
9622 | 0 | { |
9623 | 0 | if ((kept->flags & SEC_GROUP) != 0) |
9624 | 0 | { |
9625 | 0 | asection *first = elf_next_in_group (kept); |
9626 | 0 | asection *s = first; |
9627 | |
|
9628 | 0 | kept = NULL; |
9629 | 0 | while (s != NULL) |
9630 | 0 | { |
9631 | 0 | if (strcmp (s->name, target_sec->name) == 0) |
9632 | 0 | { |
9633 | 0 | kept = s; |
9634 | 0 | break; |
9635 | 0 | } |
9636 | 0 | s = elf_next_in_group (s); |
9637 | 0 | if (s == first) |
9638 | 0 | break; |
9639 | 0 | } |
9640 | 0 | } |
9641 | 0 | } |
9642 | 0 | if (kept != NULL |
9643 | 0 | && ((target_sec->rawsize != 0 |
9644 | 0 | ? target_sec->rawsize : target_sec->size) |
9645 | 0 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) |
9646 | 0 | target_sec = kept; |
9647 | 0 | } |
9648 | |
|
9649 | 0 | target_relax_info = get_xtensa_relax_info (target_sec); |
9650 | 0 | if (target_relax_info |
9651 | 0 | && (target_relax_info->is_relaxable_literal_section |
9652 | 0 | || target_relax_info->is_relaxable_asm_section)) |
9653 | 0 | { |
9654 | 0 | r_reloc new_reloc; |
9655 | 0 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
9656 | |
|
9657 | 0 | if (r_type == R_XTENSA_DIFF8 |
9658 | 0 | || r_type == R_XTENSA_DIFF16 |
9659 | 0 | || r_type == R_XTENSA_DIFF32 |
9660 | 0 | || r_type == R_XTENSA_PDIFF8 |
9661 | 0 | || r_type == R_XTENSA_PDIFF16 |
9662 | 0 | || r_type == R_XTENSA_PDIFF32 |
9663 | 0 | || r_type == R_XTENSA_NDIFF8 |
9664 | 0 | || r_type == R_XTENSA_NDIFF16 |
9665 | 0 | || r_type == R_XTENSA_NDIFF32) |
9666 | 0 | { |
9667 | 0 | bfd_signed_vma diff_value = 0; |
9668 | 0 | bfd_vma new_end_offset, diff_mask = 0; |
9669 | |
|
9670 | 0 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) |
9671 | 0 | { |
9672 | 0 | (*link_info->callbacks->reloc_dangerous) |
9673 | 0 | (link_info, _("invalid relocation address"), |
9674 | 0 | abfd, sec, old_source_offset); |
9675 | 0 | goto error_return; |
9676 | 0 | } |
9677 | | |
9678 | 0 | switch (r_type) |
9679 | 0 | { |
9680 | 0 | case R_XTENSA_DIFF8: |
9681 | 0 | diff_mask = 0x7f; |
9682 | 0 | diff_value = |
9683 | 0 | bfd_get_signed_8 (abfd, &contents[old_source_offset]); |
9684 | 0 | break; |
9685 | 0 | case R_XTENSA_DIFF16: |
9686 | 0 | diff_mask = 0x7fff; |
9687 | 0 | diff_value = |
9688 | 0 | bfd_get_signed_16 (abfd, &contents[old_source_offset]); |
9689 | 0 | break; |
9690 | 0 | case R_XTENSA_DIFF32: |
9691 | 0 | diff_mask = 0x7fffffff; |
9692 | 0 | diff_value = |
9693 | 0 | bfd_get_signed_32 (abfd, &contents[old_source_offset]); |
9694 | 0 | break; |
9695 | 0 | case R_XTENSA_PDIFF8: |
9696 | 0 | case R_XTENSA_NDIFF8: |
9697 | 0 | diff_mask = 0xff; |
9698 | 0 | diff_value = |
9699 | 0 | bfd_get_8 (abfd, &contents[old_source_offset]); |
9700 | 0 | break; |
9701 | 0 | case R_XTENSA_PDIFF16: |
9702 | 0 | case R_XTENSA_NDIFF16: |
9703 | 0 | diff_mask = 0xffff; |
9704 | 0 | diff_value = |
9705 | 0 | bfd_get_16 (abfd, &contents[old_source_offset]); |
9706 | 0 | break; |
9707 | 0 | case R_XTENSA_PDIFF32: |
9708 | 0 | case R_XTENSA_NDIFF32: |
9709 | 0 | diff_mask = 0xffffffff; |
9710 | 0 | diff_value = |
9711 | 0 | bfd_get_32 (abfd, &contents[old_source_offset]); |
9712 | 0 | break; |
9713 | 0 | } |
9714 | | |
9715 | 0 | if (r_type >= R_XTENSA_NDIFF8 |
9716 | 0 | && r_type <= R_XTENSA_NDIFF32 |
9717 | 0 | && diff_value) |
9718 | 0 | diff_value |= ~diff_mask; |
9719 | |
|
9720 | 0 | new_end_offset = offset_with_removed_text_map |
9721 | 0 | (&target_relax_info->action_list, |
9722 | 0 | r_rel.target_offset + diff_value); |
9723 | 0 | diff_value = new_end_offset - new_reloc.target_offset; |
9724 | |
|
9725 | 0 | switch (r_type) |
9726 | 0 | { |
9727 | 0 | case R_XTENSA_DIFF8: |
9728 | 0 | bfd_put_signed_8 (abfd, diff_value, |
9729 | 0 | &contents[old_source_offset]); |
9730 | 0 | break; |
9731 | 0 | case R_XTENSA_DIFF16: |
9732 | 0 | bfd_put_signed_16 (abfd, diff_value, |
9733 | 0 | &contents[old_source_offset]); |
9734 | 0 | break; |
9735 | 0 | case R_XTENSA_DIFF32: |
9736 | 0 | bfd_put_signed_32 (abfd, diff_value, |
9737 | 0 | &contents[old_source_offset]); |
9738 | 0 | break; |
9739 | 0 | case R_XTENSA_PDIFF8: |
9740 | 0 | case R_XTENSA_NDIFF8: |
9741 | 0 | bfd_put_8 (abfd, diff_value, |
9742 | 0 | &contents[old_source_offset]); |
9743 | 0 | break; |
9744 | 0 | case R_XTENSA_PDIFF16: |
9745 | 0 | case R_XTENSA_NDIFF16: |
9746 | 0 | bfd_put_16 (abfd, diff_value, |
9747 | 0 | &contents[old_source_offset]); |
9748 | 0 | break; |
9749 | 0 | case R_XTENSA_PDIFF32: |
9750 | 0 | case R_XTENSA_NDIFF32: |
9751 | 0 | bfd_put_32 (abfd, diff_value, |
9752 | 0 | &contents[old_source_offset]); |
9753 | 0 | break; |
9754 | 0 | } |
9755 | | |
9756 | | /* Check for overflow. Sign bits must be all zeroes or |
9757 | | all ones. When sign bits are all ones diff_value |
9758 | | may not be zero. */ |
9759 | 0 | if (((diff_value & ~diff_mask) != 0 |
9760 | 0 | && (diff_value & ~diff_mask) != ~diff_mask) |
9761 | 0 | || (diff_value && (bfd_vma) diff_value == ~diff_mask)) |
9762 | 0 | { |
9763 | 0 | (*link_info->callbacks->reloc_dangerous) |
9764 | 0 | (link_info, _("overflow after relaxation"), |
9765 | 0 | abfd, sec, old_source_offset); |
9766 | 0 | goto error_return; |
9767 | 0 | } |
9768 | | |
9769 | 0 | pin_contents (sec, contents); |
9770 | 0 | } |
9771 | | |
9772 | | /* If the relocation still references a section in the same |
9773 | | input file, modify the relocation directly instead of |
9774 | | adding a "fix" record. */ |
9775 | 0 | if (target_sec->owner == abfd) |
9776 | 0 | { |
9777 | 0 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); |
9778 | 0 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); |
9779 | 0 | irel->r_addend = new_reloc.rela.r_addend; |
9780 | 0 | pin_internal_relocs (sec, internal_relocs); |
9781 | 0 | } |
9782 | 0 | else |
9783 | 0 | { |
9784 | 0 | bfd_vma addend_displacement; |
9785 | 0 | reloc_bfd_fix *fix; |
9786 | |
|
9787 | 0 | addend_displacement = |
9788 | 0 | new_reloc.target_offset + new_reloc.virtual_offset; |
9789 | 0 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, |
9790 | 0 | target_sec, |
9791 | 0 | addend_displacement, true); |
9792 | 0 | add_fix (sec, fix); |
9793 | 0 | } |
9794 | 0 | } |
9795 | 0 | } |
9796 | 0 | } |
9797 | | |
9798 | 0 | if ((relax_info->is_relaxable_literal_section |
9799 | 0 | || relax_info->is_relaxable_asm_section) |
9800 | 0 | && action_list_count (&relax_info->action_list)) |
9801 | 0 | { |
9802 | | /* Walk through the planned actions and build up a table |
9803 | | of move, copy and fill records. Use the move, copy and |
9804 | | fill records to perform the actions once. */ |
9805 | |
|
9806 | 0 | bfd_size_type final_size, copy_size, orig_insn_size; |
9807 | 0 | bfd_byte *scratch = NULL; |
9808 | 0 | bfd_byte *dup_contents = NULL; |
9809 | 0 | bfd_size_type orig_size = sec->size; |
9810 | 0 | bfd_vma orig_dot = 0; |
9811 | 0 | bfd_vma orig_dot_copied = 0; /* Byte copied already from |
9812 | | orig dot in physical memory. */ |
9813 | 0 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ |
9814 | 0 | bfd_vma dup_dot = 0; |
9815 | |
|
9816 | 0 | text_action *action; |
9817 | |
|
9818 | 0 | final_size = sec->size; |
9819 | |
|
9820 | 0 | splay_tree_foreach (relax_info->action_list.tree, |
9821 | 0 | action_remove_bytes_fn, &final_size); |
9822 | 0 | scratch = (bfd_byte *) bfd_zmalloc (final_size); |
9823 | 0 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); |
9824 | | |
9825 | | /* The dot is the current fill location. */ |
9826 | | #if DEBUG |
9827 | | print_action_list (stderr, &relax_info->action_list); |
9828 | | #endif |
9829 | |
|
9830 | 0 | for (action = action_first (&relax_info->action_list); action; |
9831 | 0 | action = action_next (&relax_info->action_list, action)) |
9832 | 0 | { |
9833 | 0 | virtual_action = false; |
9834 | 0 | if (action->offset > orig_dot) |
9835 | 0 | { |
9836 | 0 | orig_dot += orig_dot_copied; |
9837 | 0 | orig_dot_copied = 0; |
9838 | 0 | orig_dot_vo = 0; |
9839 | | /* Out of the virtual world. */ |
9840 | 0 | } |
9841 | |
|
9842 | 0 | if (action->offset > orig_dot) |
9843 | 0 | { |
9844 | 0 | copy_size = action->offset - orig_dot; |
9845 | 0 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); |
9846 | 0 | orig_dot += copy_size; |
9847 | 0 | dup_dot += copy_size; |
9848 | 0 | BFD_ASSERT (action->offset == orig_dot); |
9849 | 0 | } |
9850 | 0 | else if (action->offset < orig_dot) |
9851 | 0 | { |
9852 | 0 | if (action->action == ta_fill |
9853 | 0 | && action->offset - action->removed_bytes == orig_dot) |
9854 | 0 | { |
9855 | | /* This is OK because the fill only effects the dup_dot. */ |
9856 | 0 | } |
9857 | 0 | else if (action->action == ta_add_literal) |
9858 | 0 | { |
9859 | | /* TBD. Might need to handle this. */ |
9860 | 0 | } |
9861 | 0 | } |
9862 | 0 | if (action->offset == orig_dot) |
9863 | 0 | { |
9864 | 0 | if (action->virtual_offset > orig_dot_vo) |
9865 | 0 | { |
9866 | 0 | if (orig_dot_vo == 0) |
9867 | 0 | { |
9868 | | /* Need to copy virtual_offset bytes. Probably four. */ |
9869 | 0 | copy_size = action->virtual_offset - orig_dot_vo; |
9870 | 0 | memmove (&dup_contents[dup_dot], |
9871 | 0 | &contents[orig_dot], copy_size); |
9872 | 0 | orig_dot_copied = copy_size; |
9873 | 0 | dup_dot += copy_size; |
9874 | 0 | } |
9875 | 0 | virtual_action = true; |
9876 | 0 | } |
9877 | 0 | else |
9878 | 0 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); |
9879 | 0 | } |
9880 | 0 | switch (action->action) |
9881 | 0 | { |
9882 | 0 | case ta_remove_literal: |
9883 | 0 | case ta_remove_insn: |
9884 | 0 | BFD_ASSERT (action->removed_bytes >= 0); |
9885 | 0 | orig_dot += action->removed_bytes; |
9886 | 0 | break; |
9887 | | |
9888 | 0 | case ta_narrow_insn: |
9889 | 0 | orig_insn_size = 3; |
9890 | 0 | copy_size = 2; |
9891 | 0 | memmove (scratch, &contents[orig_dot], orig_insn_size); |
9892 | 0 | BFD_ASSERT (action->removed_bytes == 1); |
9893 | 0 | rv = narrow_instruction (scratch, final_size, 0); |
9894 | 0 | BFD_ASSERT (rv); |
9895 | 0 | memmove (&dup_contents[dup_dot], scratch, copy_size); |
9896 | 0 | orig_dot += orig_insn_size; |
9897 | 0 | dup_dot += copy_size; |
9898 | 0 | break; |
9899 | | |
9900 | 0 | case ta_fill: |
9901 | 0 | if (action->removed_bytes >= 0) |
9902 | 0 | orig_dot += action->removed_bytes; |
9903 | 0 | else |
9904 | 0 | { |
9905 | | /* Already zeroed in dup_contents. Just bump the |
9906 | | counters. */ |
9907 | 0 | dup_dot += (-action->removed_bytes); |
9908 | 0 | } |
9909 | 0 | break; |
9910 | | |
9911 | 0 | case ta_none: |
9912 | 0 | BFD_ASSERT (action->removed_bytes == 0); |
9913 | 0 | break; |
9914 | | |
9915 | 0 | case ta_convert_longcall: |
9916 | 0 | case ta_remove_longcall: |
9917 | | /* These will be removed or converted before we get here. */ |
9918 | 0 | BFD_ASSERT (0); |
9919 | 0 | break; |
9920 | | |
9921 | 0 | case ta_widen_insn: |
9922 | 0 | orig_insn_size = 2; |
9923 | 0 | copy_size = 3; |
9924 | 0 | memmove (scratch, &contents[orig_dot], orig_insn_size); |
9925 | 0 | BFD_ASSERT (action->removed_bytes == -1); |
9926 | 0 | rv = widen_instruction (scratch, final_size, 0); |
9927 | 0 | BFD_ASSERT (rv); |
9928 | 0 | memmove (&dup_contents[dup_dot], scratch, copy_size); |
9929 | 0 | orig_dot += orig_insn_size; |
9930 | 0 | dup_dot += copy_size; |
9931 | 0 | break; |
9932 | | |
9933 | 0 | case ta_add_literal: |
9934 | 0 | orig_insn_size = 0; |
9935 | 0 | copy_size = 4; |
9936 | 0 | BFD_ASSERT (action->removed_bytes == -4); |
9937 | | /* TBD -- place the literal value here and insert |
9938 | | into the table. */ |
9939 | 0 | memset (&dup_contents[dup_dot], 0, 4); |
9940 | 0 | pin_internal_relocs (sec, internal_relocs); |
9941 | 0 | pin_contents (sec, contents); |
9942 | |
|
9943 | 0 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, |
9944 | 0 | relax_info, &internal_relocs, &action->value)) |
9945 | 0 | goto error_return; |
9946 | | |
9947 | 0 | if (virtual_action) |
9948 | 0 | orig_dot_vo += copy_size; |
9949 | |
|
9950 | 0 | orig_dot += orig_insn_size; |
9951 | 0 | dup_dot += copy_size; |
9952 | 0 | break; |
9953 | | |
9954 | 0 | default: |
9955 | | /* Not implemented yet. */ |
9956 | 0 | BFD_ASSERT (0); |
9957 | 0 | break; |
9958 | 0 | } |
9959 | | |
9960 | 0 | BFD_ASSERT (dup_dot <= final_size); |
9961 | 0 | BFD_ASSERT (orig_dot <= orig_size); |
9962 | 0 | } |
9963 | | |
9964 | 0 | orig_dot += orig_dot_copied; |
9965 | 0 | orig_dot_copied = 0; |
9966 | |
|
9967 | 0 | if (orig_dot != orig_size) |
9968 | 0 | { |
9969 | 0 | copy_size = orig_size - orig_dot; |
9970 | 0 | BFD_ASSERT (orig_size > orig_dot); |
9971 | 0 | BFD_ASSERT (dup_dot + copy_size == final_size); |
9972 | 0 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); |
9973 | 0 | orig_dot += copy_size; |
9974 | 0 | dup_dot += copy_size; |
9975 | 0 | } |
9976 | 0 | BFD_ASSERT (orig_size == orig_dot); |
9977 | 0 | BFD_ASSERT (final_size == dup_dot); |
9978 | | |
9979 | | /* Move the dup_contents back. */ |
9980 | 0 | if (final_size > orig_size) |
9981 | 0 | { |
9982 | | /* Contents need to be reallocated. Swap the dup_contents into |
9983 | | contents. */ |
9984 | 0 | sec->contents = dup_contents; |
9985 | 0 | free (contents); |
9986 | 0 | contents = dup_contents; |
9987 | 0 | pin_contents (sec, contents); |
9988 | 0 | } |
9989 | 0 | else |
9990 | 0 | { |
9991 | 0 | BFD_ASSERT (final_size <= orig_size); |
9992 | 0 | memset (contents, 0, orig_size); |
9993 | 0 | memcpy (contents, dup_contents, final_size); |
9994 | 0 | free (dup_contents); |
9995 | 0 | } |
9996 | 0 | free (scratch); |
9997 | 0 | pin_contents (sec, contents); |
9998 | |
|
9999 | 0 | if (sec->rawsize == 0) |
10000 | 0 | sec->rawsize = sec->size; |
10001 | 0 | sec->size = final_size; |
10002 | 0 | } |
10003 | | |
10004 | 0 | error_return: |
10005 | 0 | release_internal_relocs (sec, internal_relocs); |
10006 | 0 | release_contents (sec, contents); |
10007 | 0 | return ok; |
10008 | 0 | } |
10009 | | |
10010 | | |
10011 | | static bool |
10012 | | translate_section_fixes (asection *sec) |
10013 | 0 | { |
10014 | 0 | xtensa_relax_info *relax_info; |
10015 | 0 | reloc_bfd_fix *r; |
10016 | |
|
10017 | 0 | relax_info = get_xtensa_relax_info (sec); |
10018 | 0 | if (!relax_info) |
10019 | 0 | return true; |
10020 | | |
10021 | 0 | for (r = relax_info->fix_list; r != NULL; r = r->next) |
10022 | 0 | if (!translate_reloc_bfd_fix (r)) |
10023 | 0 | return false; |
10024 | | |
10025 | 0 | return true; |
10026 | 0 | } |
10027 | | |
10028 | | |
10029 | | /* Translate a fix given the mapping in the relax info for the target |
10030 | | section. If it has already been translated, no work is required. */ |
10031 | | |
10032 | | static bool |
10033 | | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
10034 | 0 | { |
10035 | 0 | reloc_bfd_fix new_fix; |
10036 | 0 | asection *sec; |
10037 | 0 | xtensa_relax_info *relax_info; |
10038 | 0 | removed_literal *removed; |
10039 | 0 | bfd_vma new_offset, target_offset; |
10040 | |
|
10041 | 0 | if (fix->translated) |
10042 | 0 | return true; |
10043 | | |
10044 | 0 | sec = fix->target_sec; |
10045 | 0 | target_offset = fix->target_offset; |
10046 | |
|
10047 | 0 | relax_info = get_xtensa_relax_info (sec); |
10048 | 0 | if (!relax_info) |
10049 | 0 | { |
10050 | 0 | fix->translated = true; |
10051 | 0 | return true; |
10052 | 0 | } |
10053 | | |
10054 | 0 | new_fix = *fix; |
10055 | | |
10056 | | /* The fix does not need to be translated if the section cannot change. */ |
10057 | 0 | if (!relax_info->is_relaxable_literal_section |
10058 | 0 | && !relax_info->is_relaxable_asm_section) |
10059 | 0 | { |
10060 | 0 | fix->translated = true; |
10061 | 0 | return true; |
10062 | 0 | } |
10063 | | |
10064 | | /* If the literal has been moved and this relocation was on an |
10065 | | opcode, then the relocation should move to the new literal |
10066 | | location. Otherwise, the relocation should move within the |
10067 | | section. */ |
10068 | | |
10069 | 0 | removed = NULL; |
10070 | 0 | if (is_operand_relocation (fix->src_type)) |
10071 | 0 | { |
10072 | | /* Check if the original relocation is against a literal being |
10073 | | removed. */ |
10074 | 0 | removed = find_removed_literal (&relax_info->removed_list, |
10075 | 0 | target_offset); |
10076 | 0 | } |
10077 | |
|
10078 | 0 | if (removed) |
10079 | 0 | { |
10080 | 0 | asection *new_sec; |
10081 | | |
10082 | | /* The fact that there is still a relocation to this literal indicates |
10083 | | that the literal is being coalesced, not simply removed. */ |
10084 | 0 | BFD_ASSERT (removed->to.abfd != NULL); |
10085 | | |
10086 | | /* This was moved to some other address (possibly another section). */ |
10087 | 0 | new_sec = r_reloc_get_section (&removed->to); |
10088 | 0 | if (new_sec != sec) |
10089 | 0 | { |
10090 | 0 | sec = new_sec; |
10091 | 0 | relax_info = get_xtensa_relax_info (sec); |
10092 | 0 | if (!relax_info || |
10093 | 0 | (!relax_info->is_relaxable_literal_section |
10094 | 0 | && !relax_info->is_relaxable_asm_section)) |
10095 | 0 | { |
10096 | 0 | target_offset = removed->to.target_offset; |
10097 | 0 | new_fix.target_sec = new_sec; |
10098 | 0 | new_fix.target_offset = target_offset; |
10099 | 0 | new_fix.translated = true; |
10100 | 0 | *fix = new_fix; |
10101 | 0 | return true; |
10102 | 0 | } |
10103 | 0 | } |
10104 | 0 | target_offset = removed->to.target_offset; |
10105 | 0 | new_fix.target_sec = new_sec; |
10106 | 0 | } |
10107 | | |
10108 | | /* The target address may have been moved within its section. */ |
10109 | 0 | new_offset = offset_with_removed_text (&relax_info->action_list, |
10110 | 0 | target_offset); |
10111 | |
|
10112 | 0 | new_fix.target_offset = new_offset; |
10113 | 0 | new_fix.target_offset = new_offset; |
10114 | 0 | new_fix.translated = true; |
10115 | 0 | *fix = new_fix; |
10116 | 0 | return true; |
10117 | 0 | } |
10118 | | |
10119 | | |
10120 | | /* Fix up a relocation to take account of removed literals. */ |
10121 | | |
10122 | | static asection * |
10123 | | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) |
10124 | 0 | { |
10125 | 0 | xtensa_relax_info *relax_info; |
10126 | 0 | removed_literal *removed; |
10127 | 0 | bfd_vma target_offset, base_offset; |
10128 | |
|
10129 | 0 | *new_rel = *orig_rel; |
10130 | |
|
10131 | 0 | if (!r_reloc_is_defined (orig_rel)) |
10132 | 0 | return sec ; |
10133 | | |
10134 | 0 | relax_info = get_xtensa_relax_info (sec); |
10135 | 0 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
10136 | 0 | || relax_info->is_relaxable_asm_section)); |
10137 | |
|
10138 | 0 | target_offset = orig_rel->target_offset; |
10139 | |
|
10140 | 0 | removed = NULL; |
10141 | 0 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) |
10142 | 0 | { |
10143 | | /* Check if the original relocation is against a literal being |
10144 | | removed. */ |
10145 | 0 | removed = find_removed_literal (&relax_info->removed_list, |
10146 | 0 | target_offset); |
10147 | 0 | } |
10148 | 0 | if (removed && removed->to.abfd) |
10149 | 0 | { |
10150 | 0 | asection *new_sec; |
10151 | | |
10152 | | /* The fact that there is still a relocation to this literal indicates |
10153 | | that the literal is being coalesced, not simply removed. */ |
10154 | 0 | BFD_ASSERT (removed->to.abfd != NULL); |
10155 | | |
10156 | | /* This was moved to some other address |
10157 | | (possibly in another section). */ |
10158 | 0 | *new_rel = removed->to; |
10159 | 0 | new_sec = r_reloc_get_section (new_rel); |
10160 | 0 | if (new_sec != sec) |
10161 | 0 | { |
10162 | 0 | sec = new_sec; |
10163 | 0 | relax_info = get_xtensa_relax_info (sec); |
10164 | 0 | if (!relax_info |
10165 | 0 | || (!relax_info->is_relaxable_literal_section |
10166 | 0 | && !relax_info->is_relaxable_asm_section)) |
10167 | 0 | return sec; |
10168 | 0 | } |
10169 | 0 | target_offset = new_rel->target_offset; |
10170 | 0 | } |
10171 | | |
10172 | | /* Find the base offset of the reloc symbol, excluding any addend from the |
10173 | | reloc or from the section contents (for a partial_inplace reloc). Then |
10174 | | find the adjusted values of the offsets due to relaxation. The base |
10175 | | offset is needed to determine the change to the reloc's addend; the reloc |
10176 | | addend should not be adjusted due to relaxations located before the base |
10177 | | offset. */ |
10178 | | |
10179 | 0 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; |
10180 | 0 | if (base_offset <= target_offset) |
10181 | 0 | { |
10182 | 0 | int base_removed = removed_by_actions_map (&relax_info->action_list, |
10183 | 0 | base_offset, false); |
10184 | 0 | int addend_removed = removed_by_actions_map (&relax_info->action_list, |
10185 | 0 | target_offset, false) - |
10186 | 0 | base_removed; |
10187 | |
|
10188 | 0 | new_rel->target_offset = target_offset - base_removed - addend_removed; |
10189 | 0 | new_rel->rela.r_addend -= addend_removed; |
10190 | 0 | } |
10191 | 0 | else |
10192 | 0 | { |
10193 | | /* Handle a negative addend. The base offset comes first. */ |
10194 | 0 | int tgt_removed = removed_by_actions_map (&relax_info->action_list, |
10195 | 0 | target_offset, false); |
10196 | 0 | int addend_removed = removed_by_actions_map (&relax_info->action_list, |
10197 | 0 | base_offset, false) - |
10198 | 0 | tgt_removed; |
10199 | |
|
10200 | 0 | new_rel->target_offset = target_offset - tgt_removed; |
10201 | 0 | new_rel->rela.r_addend += addend_removed; |
10202 | 0 | } |
10203 | |
|
10204 | 0 | return sec; |
10205 | 0 | } |
10206 | | |
10207 | | |
10208 | | /* For dynamic links, there may be a dynamic relocation for each |
10209 | | literal. The number of dynamic relocations must be computed in |
10210 | | size_dynamic_sections, which occurs before relaxation. When a |
10211 | | literal is removed, this function checks if there is a corresponding |
10212 | | dynamic relocation and shrinks the size of the appropriate dynamic |
10213 | | relocation section accordingly. At this point, the contents of the |
10214 | | dynamic relocation sections have not yet been filled in, so there's |
10215 | | nothing else that needs to be done. */ |
10216 | | |
10217 | | static void |
10218 | | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
10219 | | bfd *abfd, |
10220 | | asection *input_section, |
10221 | | Elf_Internal_Rela *rel) |
10222 | 0 | { |
10223 | 0 | struct elf_xtensa_link_hash_table *htab; |
10224 | 0 | Elf_Internal_Shdr *symtab_hdr; |
10225 | 0 | struct elf_link_hash_entry **sym_hashes; |
10226 | 0 | unsigned long r_symndx; |
10227 | 0 | int r_type; |
10228 | 0 | struct elf_link_hash_entry *h; |
10229 | 0 | bool dynamic_symbol; |
10230 | |
|
10231 | 0 | htab = elf_xtensa_hash_table (info); |
10232 | 0 | if (htab == NULL) |
10233 | 0 | return; |
10234 | | |
10235 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
10236 | 0 | sym_hashes = elf_sym_hashes (abfd); |
10237 | |
|
10238 | 0 | r_type = ELF32_R_TYPE (rel->r_info); |
10239 | 0 | r_symndx = ELF32_R_SYM (rel->r_info); |
10240 | |
|
10241 | 0 | if (r_symndx < symtab_hdr->sh_info) |
10242 | 0 | h = NULL; |
10243 | 0 | else |
10244 | 0 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
10245 | |
|
10246 | 0 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
10247 | |
|
10248 | 0 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) |
10249 | 0 | && (input_section->flags & SEC_ALLOC) != 0 |
10250 | 0 | && (dynamic_symbol |
10251 | 0 | || (bfd_link_pic (info) |
10252 | 0 | && (!h || h->root.type != bfd_link_hash_undefweak)))) |
10253 | 0 | { |
10254 | 0 | asection *srel; |
10255 | 0 | bool is_plt = false; |
10256 | |
|
10257 | 0 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
10258 | 0 | { |
10259 | 0 | srel = htab->elf.srelplt; |
10260 | 0 | is_plt = true; |
10261 | 0 | } |
10262 | 0 | else |
10263 | 0 | srel = htab->elf.srelgot; |
10264 | | |
10265 | | /* Reduce size of the .rela.* section by one reloc. */ |
10266 | 0 | BFD_ASSERT (srel != NULL); |
10267 | 0 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
10268 | 0 | srel->size -= sizeof (Elf32_External_Rela); |
10269 | |
|
10270 | 0 | if (is_plt) |
10271 | 0 | { |
10272 | 0 | asection *splt, *sgotplt, *srelgot; |
10273 | 0 | int reloc_index, chunk; |
10274 | | |
10275 | | /* Find the PLT reloc index of the entry being removed. This |
10276 | | is computed from the size of ".rela.plt". It is needed to |
10277 | | figure out which PLT chunk to resize. Usually "last index |
10278 | | = size - 1" since the index starts at zero, but in this |
10279 | | context, the size has just been decremented so there's no |
10280 | | need to subtract one. */ |
10281 | 0 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
10282 | |
|
10283 | 0 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; |
10284 | 0 | splt = elf_xtensa_get_plt_section (info, chunk); |
10285 | 0 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
10286 | 0 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
10287 | | |
10288 | | /* Check if an entire PLT chunk has just been eliminated. */ |
10289 | 0 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) |
10290 | 0 | { |
10291 | | /* The two magic GOT entries for that chunk can go away. */ |
10292 | 0 | srelgot = htab->elf.srelgot; |
10293 | 0 | BFD_ASSERT (srelgot != NULL); |
10294 | 0 | srelgot->reloc_count -= 2; |
10295 | 0 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
10296 | 0 | sgotplt->size -= 8; |
10297 | | |
10298 | | /* There should be only one entry left (and it will be |
10299 | | removed below). */ |
10300 | 0 | BFD_ASSERT (sgotplt->size == 4); |
10301 | 0 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); |
10302 | 0 | } |
10303 | |
|
10304 | 0 | BFD_ASSERT (sgotplt->size >= 4); |
10305 | 0 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); |
10306 | |
|
10307 | 0 | sgotplt->size -= 4; |
10308 | 0 | splt->size -= PLT_ENTRY_SIZE; |
10309 | 0 | } |
10310 | 0 | } |
10311 | 0 | } |
10312 | | |
10313 | | |
10314 | | /* Take an r_rel and move it to another section. This usually |
10315 | | requires extending the interal_relocation array and pinning it. If |
10316 | | the original r_rel is from the same BFD, we can complete this here. |
10317 | | Otherwise, we add a fix record to let the final link fix the |
10318 | | appropriate address. Contents and internal relocations for the |
10319 | | section must be pinned after calling this routine. */ |
10320 | | |
10321 | | static bool |
10322 | | move_literal (bfd *abfd, |
10323 | | struct bfd_link_info *link_info, |
10324 | | asection *sec, |
10325 | | bfd_vma offset, |
10326 | | bfd_byte *contents, |
10327 | | xtensa_relax_info *relax_info, |
10328 | | Elf_Internal_Rela **internal_relocs_p, |
10329 | | const literal_value *lit) |
10330 | 0 | { |
10331 | 0 | Elf_Internal_Rela *new_relocs = NULL; |
10332 | 0 | size_t new_relocs_count = 0; |
10333 | 0 | Elf_Internal_Rela this_rela; |
10334 | 0 | const r_reloc *r_rel; |
10335 | |
|
10336 | 0 | r_rel = &lit->r_rel; |
10337 | 0 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); |
10338 | |
|
10339 | 0 | if (r_reloc_is_const (r_rel)) |
10340 | 0 | bfd_put_32 (abfd, lit->value, contents + offset); |
10341 | 0 | else |
10342 | 0 | { |
10343 | 0 | int r_type; |
10344 | 0 | unsigned i; |
10345 | 0 | reloc_bfd_fix *fix; |
10346 | 0 | unsigned insert_at; |
10347 | |
|
10348 | 0 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); |
10349 | | |
10350 | | /* This is the difficult case. We have to create a fix up. */ |
10351 | 0 | this_rela.r_offset = offset; |
10352 | 0 | this_rela.r_info = ELF32_R_INFO (0, r_type); |
10353 | 0 | this_rela.r_addend = |
10354 | 0 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); |
10355 | 0 | bfd_put_32 (abfd, lit->value, contents + offset); |
10356 | | |
10357 | | /* Currently, we cannot move relocations during a relocatable link. */ |
10358 | 0 | BFD_ASSERT (!bfd_link_relocatable (link_info)); |
10359 | 0 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
10360 | 0 | r_reloc_get_section (r_rel), |
10361 | 0 | r_rel->target_offset + r_rel->virtual_offset, |
10362 | 0 | false); |
10363 | | /* We also need to mark that relocations are needed here. */ |
10364 | 0 | sec->flags |= SEC_RELOC; |
10365 | |
|
10366 | 0 | translate_reloc_bfd_fix (fix); |
10367 | | /* This fix has not yet been translated. */ |
10368 | 0 | add_fix (sec, fix); |
10369 | | |
10370 | | /* Add the relocation. If we have already allocated our own |
10371 | | space for the relocations and we have room for more, then use |
10372 | | it. Otherwise, allocate new space and move the literals. */ |
10373 | 0 | insert_at = sec->reloc_count; |
10374 | 0 | for (i = 0; i < sec->reloc_count; ++i) |
10375 | 0 | { |
10376 | 0 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) |
10377 | 0 | { |
10378 | 0 | insert_at = i; |
10379 | 0 | break; |
10380 | 0 | } |
10381 | 0 | } |
10382 | |
|
10383 | 0 | if (*internal_relocs_p != relax_info->allocated_relocs |
10384 | 0 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) |
10385 | 0 | { |
10386 | 0 | BFD_ASSERT (relax_info->allocated_relocs == NULL |
10387 | 0 | || sec->reloc_count == relax_info->relocs_count); |
10388 | |
|
10389 | 0 | if (relax_info->allocated_relocs_count == 0) |
10390 | 0 | new_relocs_count = (sec->reloc_count + 2) * 2; |
10391 | 0 | else |
10392 | 0 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; |
10393 | |
|
10394 | 0 | new_relocs = (Elf_Internal_Rela *) |
10395 | 0 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); |
10396 | 0 | if (!new_relocs) |
10397 | 0 | return false; |
10398 | | |
10399 | | /* We could handle this more quickly by finding the split point. */ |
10400 | 0 | if (insert_at != 0) |
10401 | 0 | memcpy (new_relocs, *internal_relocs_p, |
10402 | 0 | insert_at * sizeof (Elf_Internal_Rela)); |
10403 | |
|
10404 | 0 | new_relocs[insert_at] = this_rela; |
10405 | |
|
10406 | 0 | if (insert_at != sec->reloc_count) |
10407 | 0 | memcpy (new_relocs + insert_at + 1, |
10408 | 0 | (*internal_relocs_p) + insert_at, |
10409 | 0 | (sec->reloc_count - insert_at) |
10410 | 0 | * sizeof (Elf_Internal_Rela)); |
10411 | |
|
10412 | 0 | if (*internal_relocs_p != relax_info->allocated_relocs) |
10413 | 0 | { |
10414 | | /* The first time we re-allocate, we can only free the |
10415 | | old relocs if they were allocated with bfd_malloc. |
10416 | | This is not true when keep_memory is in effect. */ |
10417 | 0 | if (!link_info->keep_memory) |
10418 | 0 | free (*internal_relocs_p); |
10419 | 0 | } |
10420 | 0 | else |
10421 | 0 | free (*internal_relocs_p); |
10422 | 0 | relax_info->allocated_relocs = new_relocs; |
10423 | 0 | relax_info->allocated_relocs_count = new_relocs_count; |
10424 | 0 | elf_section_data (sec)->relocs = new_relocs; |
10425 | 0 | sec->reloc_count++; |
10426 | 0 | relax_info->relocs_count = sec->reloc_count; |
10427 | 0 | *internal_relocs_p = new_relocs; |
10428 | 0 | } |
10429 | 0 | else |
10430 | 0 | { |
10431 | 0 | if (insert_at != sec->reloc_count) |
10432 | 0 | { |
10433 | 0 | unsigned idx; |
10434 | 0 | for (idx = sec->reloc_count; idx > insert_at; idx--) |
10435 | 0 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; |
10436 | 0 | } |
10437 | 0 | (*internal_relocs_p)[insert_at] = this_rela; |
10438 | 0 | sec->reloc_count++; |
10439 | 0 | if (relax_info->allocated_relocs) |
10440 | 0 | relax_info->relocs_count = sec->reloc_count; |
10441 | 0 | } |
10442 | 0 | } |
10443 | 0 | return true; |
10444 | 0 | } |
10445 | | |
10446 | | |
10447 | | /* This is similar to relax_section except that when a target is moved, |
10448 | | we shift addresses up. We also need to modify the size. This |
10449 | | algorithm does NOT allow for relocations into the middle of the |
10450 | | property sections. */ |
10451 | | |
10452 | | static bool |
10453 | | relax_property_section (bfd *abfd, |
10454 | | asection *sec, |
10455 | | struct bfd_link_info *link_info) |
10456 | 0 | { |
10457 | 0 | Elf_Internal_Rela *internal_relocs; |
10458 | 0 | bfd_byte *contents; |
10459 | 0 | unsigned i; |
10460 | 0 | bool ok = true; |
10461 | 0 | bool is_full_prop_section; |
10462 | 0 | size_t last_zfill_target_offset = 0; |
10463 | 0 | asection *last_zfill_target_sec = NULL; |
10464 | 0 | bfd_size_type sec_size; |
10465 | 0 | bfd_size_type entry_size; |
10466 | |
|
10467 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
10468 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
10469 | 0 | link_info->keep_memory); |
10470 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
10471 | 0 | if (contents == NULL && sec_size != 0) |
10472 | 0 | { |
10473 | 0 | ok = false; |
10474 | 0 | goto error_return; |
10475 | 0 | } |
10476 | | |
10477 | 0 | is_full_prop_section = xtensa_is_proptable_section (sec); |
10478 | 0 | if (is_full_prop_section) |
10479 | 0 | entry_size = 12; |
10480 | 0 | else |
10481 | 0 | entry_size = 8; |
10482 | |
|
10483 | 0 | if (internal_relocs) |
10484 | 0 | { |
10485 | 0 | for (i = 0; i < sec->reloc_count; i++) |
10486 | 0 | { |
10487 | 0 | Elf_Internal_Rela *irel; |
10488 | 0 | xtensa_relax_info *target_relax_info; |
10489 | 0 | unsigned r_type; |
10490 | 0 | asection *target_sec; |
10491 | 0 | literal_value val; |
10492 | 0 | bfd_byte *size_p, *flags_p; |
10493 | | |
10494 | | /* Locally change the source address. |
10495 | | Translate the target to the new target address. |
10496 | | If it points to this section and has been removed, MOVE IT. |
10497 | | Also, don't forget to modify the associated SIZE at |
10498 | | (offset + 4). */ |
10499 | |
|
10500 | 0 | irel = &internal_relocs[i]; |
10501 | 0 | r_type = ELF32_R_TYPE (irel->r_info); |
10502 | 0 | if (r_type == R_XTENSA_NONE) |
10503 | 0 | continue; |
10504 | | |
10505 | | /* Find the literal value. */ |
10506 | 0 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); |
10507 | 0 | size_p = &contents[irel->r_offset + 4]; |
10508 | 0 | flags_p = NULL; |
10509 | 0 | if (is_full_prop_section) |
10510 | 0 | flags_p = &contents[irel->r_offset + 8]; |
10511 | 0 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); |
10512 | |
|
10513 | 0 | target_sec = r_reloc_get_section (&val.r_rel); |
10514 | 0 | target_relax_info = get_xtensa_relax_info (target_sec); |
10515 | |
|
10516 | 0 | if (target_relax_info |
10517 | 0 | && (target_relax_info->is_relaxable_literal_section |
10518 | 0 | || target_relax_info->is_relaxable_asm_section )) |
10519 | 0 | { |
10520 | | /* Translate the relocation's destination. */ |
10521 | 0 | bfd_vma old_offset = val.r_rel.target_offset; |
10522 | 0 | bfd_vma new_offset; |
10523 | 0 | long old_size, new_size; |
10524 | 0 | int removed_by_old_offset = |
10525 | 0 | removed_by_actions_map (&target_relax_info->action_list, |
10526 | 0 | old_offset, false); |
10527 | 0 | new_offset = old_offset - removed_by_old_offset; |
10528 | | |
10529 | | /* Assert that we are not out of bounds. */ |
10530 | 0 | old_size = bfd_get_32 (abfd, size_p); |
10531 | 0 | new_size = old_size; |
10532 | |
|
10533 | 0 | if (old_size == 0) |
10534 | 0 | { |
10535 | | /* Only the first zero-sized unreachable entry is |
10536 | | allowed to expand. In this case the new offset |
10537 | | should be the offset before the fill and the new |
10538 | | size is the expansion size. For other zero-sized |
10539 | | entries the resulting size should be zero with an |
10540 | | offset before or after the fill address depending |
10541 | | on whether the expanding unreachable entry |
10542 | | preceeds it. */ |
10543 | 0 | if (last_zfill_target_sec == 0 |
10544 | 0 | || last_zfill_target_sec != target_sec |
10545 | 0 | || last_zfill_target_offset != old_offset) |
10546 | 0 | { |
10547 | 0 | bfd_vma new_end_offset = new_offset; |
10548 | | |
10549 | | /* Recompute the new_offset, but this time don't |
10550 | | include any fill inserted by relaxation. */ |
10551 | 0 | removed_by_old_offset = |
10552 | 0 | removed_by_actions_map (&target_relax_info->action_list, |
10553 | 0 | old_offset, true); |
10554 | 0 | new_offset = old_offset - removed_by_old_offset; |
10555 | | |
10556 | | /* If it is not unreachable and we have not yet |
10557 | | seen an unreachable at this address, place it |
10558 | | before the fill address. */ |
10559 | 0 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
10560 | 0 | & XTENSA_PROP_UNREACHABLE) != 0) |
10561 | 0 | { |
10562 | 0 | new_size = new_end_offset - new_offset; |
10563 | |
|
10564 | 0 | last_zfill_target_sec = target_sec; |
10565 | 0 | last_zfill_target_offset = old_offset; |
10566 | 0 | } |
10567 | 0 | } |
10568 | 0 | } |
10569 | 0 | else |
10570 | 0 | { |
10571 | 0 | int removed_by_old_offset_size = |
10572 | 0 | removed_by_actions_map (&target_relax_info->action_list, |
10573 | 0 | old_offset + old_size, true); |
10574 | 0 | new_size -= removed_by_old_offset_size - removed_by_old_offset; |
10575 | 0 | } |
10576 | |
|
10577 | 0 | if (new_size != old_size) |
10578 | 0 | { |
10579 | 0 | bfd_put_32 (abfd, new_size, size_p); |
10580 | 0 | pin_contents (sec, contents); |
10581 | 0 | } |
10582 | |
|
10583 | 0 | if (new_offset != old_offset) |
10584 | 0 | { |
10585 | 0 | bfd_vma diff = new_offset - old_offset; |
10586 | 0 | irel->r_addend += diff; |
10587 | 0 | pin_internal_relocs (sec, internal_relocs); |
10588 | 0 | } |
10589 | 0 | } |
10590 | 0 | } |
10591 | 0 | } |
10592 | | |
10593 | | /* Combine adjacent property table entries. This is also done in |
10594 | | finish_dynamic_sections() but at that point it's too late to |
10595 | | reclaim the space in the output section, so we do this twice. */ |
10596 | |
|
10597 | 0 | if (internal_relocs && (!bfd_link_relocatable (link_info) |
10598 | 0 | || xtensa_is_littable_section (sec))) |
10599 | 0 | { |
10600 | 0 | Elf_Internal_Rela *last_irel = NULL; |
10601 | 0 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
10602 | 0 | int removed_bytes = 0; |
10603 | 0 | bfd_vma offset; |
10604 | 0 | flagword predef_flags; |
10605 | |
|
10606 | 0 | predef_flags = xtensa_get_property_predef_flags (sec); |
10607 | | |
10608 | | /* Walk over memory and relocations at the same time. |
10609 | | This REQUIRES that the internal_relocs be sorted by offset. */ |
10610 | 0 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
10611 | 0 | internal_reloc_compare); |
10612 | |
|
10613 | 0 | pin_internal_relocs (sec, internal_relocs); |
10614 | 0 | pin_contents (sec, contents); |
10615 | |
|
10616 | 0 | next_rel = internal_relocs; |
10617 | 0 | rel_end = internal_relocs + sec->reloc_count; |
10618 | |
|
10619 | 0 | BFD_ASSERT (sec->size % entry_size == 0); |
10620 | |
|
10621 | 0 | for (offset = 0; offset < sec->size; offset += entry_size) |
10622 | 0 | { |
10623 | 0 | Elf_Internal_Rela *offset_rel, *extra_rel; |
10624 | 0 | bfd_vma bytes_to_remove, size, actual_offset; |
10625 | 0 | bool remove_this_rel; |
10626 | 0 | flagword flags; |
10627 | | |
10628 | | /* Find the first relocation for the entry at the current offset. |
10629 | | Adjust the offsets of any extra relocations for the previous |
10630 | | entry. */ |
10631 | 0 | offset_rel = NULL; |
10632 | 0 | if (next_rel) |
10633 | 0 | { |
10634 | 0 | for (irel = next_rel; irel < rel_end; irel++) |
10635 | 0 | { |
10636 | 0 | if ((irel->r_offset == offset |
10637 | 0 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
10638 | 0 | || irel->r_offset > offset) |
10639 | 0 | { |
10640 | 0 | offset_rel = irel; |
10641 | 0 | break; |
10642 | 0 | } |
10643 | 0 | irel->r_offset -= removed_bytes; |
10644 | 0 | } |
10645 | 0 | } |
10646 | | |
10647 | | /* Find the next relocation (if there are any left). */ |
10648 | 0 | extra_rel = NULL; |
10649 | 0 | if (offset_rel) |
10650 | 0 | { |
10651 | 0 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
10652 | 0 | { |
10653 | 0 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
10654 | 0 | { |
10655 | 0 | extra_rel = irel; |
10656 | 0 | break; |
10657 | 0 | } |
10658 | 0 | } |
10659 | 0 | } |
10660 | | |
10661 | | /* Check if there are relocations on the current entry. There |
10662 | | should usually be a relocation on the offset field. If there |
10663 | | are relocations on the size or flags, then we can't optimize |
10664 | | this entry. Also, find the next relocation to examine on the |
10665 | | next iteration. */ |
10666 | 0 | if (offset_rel) |
10667 | 0 | { |
10668 | 0 | if (offset_rel->r_offset >= offset + entry_size) |
10669 | 0 | { |
10670 | 0 | next_rel = offset_rel; |
10671 | | /* There are no relocations on the current entry, but we |
10672 | | might still be able to remove it if the size is zero. */ |
10673 | 0 | offset_rel = NULL; |
10674 | 0 | } |
10675 | 0 | else if (offset_rel->r_offset > offset |
10676 | 0 | || (extra_rel |
10677 | 0 | && extra_rel->r_offset < offset + entry_size)) |
10678 | 0 | { |
10679 | | /* There is a relocation on the size or flags, so we can't |
10680 | | do anything with this entry. Continue with the next. */ |
10681 | 0 | next_rel = offset_rel; |
10682 | 0 | continue; |
10683 | 0 | } |
10684 | 0 | else |
10685 | 0 | { |
10686 | 0 | BFD_ASSERT (offset_rel->r_offset == offset); |
10687 | 0 | offset_rel->r_offset -= removed_bytes; |
10688 | 0 | next_rel = offset_rel + 1; |
10689 | 0 | } |
10690 | 0 | } |
10691 | 0 | else |
10692 | 0 | next_rel = NULL; |
10693 | | |
10694 | 0 | remove_this_rel = false; |
10695 | 0 | bytes_to_remove = 0; |
10696 | 0 | actual_offset = offset - removed_bytes; |
10697 | 0 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); |
10698 | |
|
10699 | 0 | if (is_full_prop_section) |
10700 | 0 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); |
10701 | 0 | else |
10702 | 0 | flags = predef_flags; |
10703 | |
|
10704 | 0 | if (size == 0 |
10705 | 0 | && (flags & XTENSA_PROP_ALIGN) == 0 |
10706 | 0 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) |
10707 | 0 | { |
10708 | | /* Always remove entries with zero size and no alignment. */ |
10709 | 0 | bytes_to_remove = entry_size; |
10710 | 0 | if (offset_rel) |
10711 | 0 | remove_this_rel = true; |
10712 | 0 | } |
10713 | 0 | else if (offset_rel |
10714 | 0 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) |
10715 | 0 | { |
10716 | 0 | if (last_irel) |
10717 | 0 | { |
10718 | 0 | flagword old_flags; |
10719 | 0 | bfd_vma old_size = |
10720 | 0 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); |
10721 | 0 | bfd_vma old_address = |
10722 | 0 | (last_irel->r_addend |
10723 | 0 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); |
10724 | 0 | bfd_vma new_address = |
10725 | 0 | (offset_rel->r_addend |
10726 | 0 | + bfd_get_32 (abfd, &contents[actual_offset])); |
10727 | 0 | if (is_full_prop_section) |
10728 | 0 | old_flags = bfd_get_32 |
10729 | 0 | (abfd, &contents[last_irel->r_offset + 8]); |
10730 | 0 | else |
10731 | 0 | old_flags = predef_flags; |
10732 | |
|
10733 | 0 | if ((ELF32_R_SYM (offset_rel->r_info) |
10734 | 0 | == ELF32_R_SYM (last_irel->r_info)) |
10735 | 0 | && old_address + old_size == new_address |
10736 | 0 | && old_flags == flags |
10737 | 0 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 |
10738 | 0 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) |
10739 | 0 | { |
10740 | | /* Fix the old size. */ |
10741 | 0 | bfd_put_32 (abfd, old_size + size, |
10742 | 0 | &contents[last_irel->r_offset + 4]); |
10743 | 0 | bytes_to_remove = entry_size; |
10744 | 0 | remove_this_rel = true; |
10745 | 0 | } |
10746 | 0 | else |
10747 | 0 | last_irel = offset_rel; |
10748 | 0 | } |
10749 | 0 | else |
10750 | 0 | last_irel = offset_rel; |
10751 | 0 | } |
10752 | |
|
10753 | 0 | if (remove_this_rel) |
10754 | 0 | { |
10755 | 0 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
10756 | 0 | offset_rel->r_offset = 0; |
10757 | 0 | } |
10758 | |
|
10759 | 0 | if (bytes_to_remove != 0) |
10760 | 0 | { |
10761 | 0 | removed_bytes += bytes_to_remove; |
10762 | 0 | if (offset + bytes_to_remove < sec->size) |
10763 | 0 | memmove (&contents[actual_offset], |
10764 | 0 | &contents[actual_offset + bytes_to_remove], |
10765 | 0 | sec->size - offset - bytes_to_remove); |
10766 | 0 | } |
10767 | 0 | } |
10768 | |
|
10769 | 0 | if (removed_bytes) |
10770 | 0 | { |
10771 | | /* Fix up any extra relocations on the last entry. */ |
10772 | 0 | for (irel = next_rel; irel < rel_end; irel++) |
10773 | 0 | irel->r_offset -= removed_bytes; |
10774 | | |
10775 | | /* Clear the removed bytes. */ |
10776 | 0 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
10777 | |
|
10778 | 0 | if (sec->rawsize == 0) |
10779 | 0 | sec->rawsize = sec->size; |
10780 | 0 | sec->size -= removed_bytes; |
10781 | |
|
10782 | 0 | if (xtensa_is_littable_section (sec)) |
10783 | 0 | { |
10784 | 0 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10785 | 0 | if (sgotloc) |
10786 | 0 | sgotloc->size -= removed_bytes; |
10787 | 0 | } |
10788 | 0 | } |
10789 | 0 | } |
10790 | |
|
10791 | 0 | error_return: |
10792 | 0 | release_internal_relocs (sec, internal_relocs); |
10793 | 0 | release_contents (sec, contents); |
10794 | 0 | return ok; |
10795 | 0 | } |
10796 | | |
10797 | | |
10798 | | /* Third relaxation pass. */ |
10799 | | |
10800 | | /* Change symbol values to account for removed literals. */ |
10801 | | |
10802 | | bool |
10803 | | relax_section_symbols (bfd *abfd, asection *sec) |
10804 | 0 | { |
10805 | 0 | xtensa_relax_info *relax_info; |
10806 | 0 | unsigned int sec_shndx; |
10807 | 0 | Elf_Internal_Shdr *symtab_hdr; |
10808 | 0 | Elf_Internal_Sym *isymbuf; |
10809 | 0 | unsigned i, num_syms, num_locals; |
10810 | |
|
10811 | 0 | relax_info = get_xtensa_relax_info (sec); |
10812 | 0 | BFD_ASSERT (relax_info); |
10813 | |
|
10814 | 0 | if (!relax_info->is_relaxable_literal_section |
10815 | 0 | && !relax_info->is_relaxable_asm_section) |
10816 | 0 | return true; |
10817 | | |
10818 | 0 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
10819 | |
|
10820 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
10821 | 0 | isymbuf = retrieve_local_syms (abfd); |
10822 | |
|
10823 | 0 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); |
10824 | 0 | num_locals = symtab_hdr->sh_info; |
10825 | | |
10826 | | /* Adjust the local symbols defined in this section. */ |
10827 | 0 | for (i = 0; i < num_locals; i++) |
10828 | 0 | { |
10829 | 0 | Elf_Internal_Sym *isym = &isymbuf[i]; |
10830 | |
|
10831 | 0 | if (isym->st_shndx == sec_shndx) |
10832 | 0 | { |
10833 | 0 | bfd_vma orig_addr = isym->st_value; |
10834 | 0 | int removed = removed_by_actions_map (&relax_info->action_list, |
10835 | 0 | orig_addr, false); |
10836 | |
|
10837 | 0 | isym->st_value -= removed; |
10838 | 0 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10839 | 0 | isym->st_size -= |
10840 | 0 | removed_by_actions_map (&relax_info->action_list, |
10841 | 0 | orig_addr + isym->st_size, false) - |
10842 | 0 | removed; |
10843 | 0 | } |
10844 | 0 | } |
10845 | | |
10846 | | /* Now adjust the global symbols defined in this section. */ |
10847 | 0 | for (i = 0; i < (num_syms - num_locals); i++) |
10848 | 0 | { |
10849 | 0 | struct elf_link_hash_entry *sym_hash; |
10850 | |
|
10851 | 0 | sym_hash = elf_sym_hashes (abfd)[i]; |
10852 | |
|
10853 | 0 | if (sym_hash->root.type == bfd_link_hash_warning) |
10854 | 0 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; |
10855 | |
|
10856 | 0 | if ((sym_hash->root.type == bfd_link_hash_defined |
10857 | 0 | || sym_hash->root.type == bfd_link_hash_defweak) |
10858 | 0 | && sym_hash->root.u.def.section == sec) |
10859 | 0 | { |
10860 | 0 | bfd_vma orig_addr = sym_hash->root.u.def.value; |
10861 | 0 | int removed = removed_by_actions_map (&relax_info->action_list, |
10862 | 0 | orig_addr, false); |
10863 | |
|
10864 | 0 | sym_hash->root.u.def.value -= removed; |
10865 | |
|
10866 | 0 | if (sym_hash->type == STT_FUNC) |
10867 | 0 | sym_hash->size -= |
10868 | 0 | removed_by_actions_map (&relax_info->action_list, |
10869 | 0 | orig_addr + sym_hash->size, false) - |
10870 | 0 | removed; |
10871 | 0 | } |
10872 | 0 | } |
10873 | |
|
10874 | 0 | return true; |
10875 | 0 | } |
10876 | | |
10877 | | |
10878 | | /* "Fix" handling functions, called while performing relocations. */ |
10879 | | |
10880 | | static bool |
10881 | | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10882 | | bfd *input_bfd, |
10883 | | asection *input_section, |
10884 | | bfd_byte *contents) |
10885 | 0 | { |
10886 | 0 | r_reloc r_rel; |
10887 | 0 | asection *sec, *old_sec; |
10888 | 0 | bfd_vma old_offset; |
10889 | 0 | int r_type = ELF32_R_TYPE (rel->r_info); |
10890 | 0 | reloc_bfd_fix *fix; |
10891 | |
|
10892 | 0 | if (r_type == R_XTENSA_NONE) |
10893 | 0 | return true; |
10894 | | |
10895 | 0 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10896 | 0 | if (!fix) |
10897 | 0 | return true; |
10898 | | |
10899 | 0 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10900 | 0 | bfd_get_section_limit (input_bfd, input_section)); |
10901 | 0 | old_sec = r_reloc_get_section (&r_rel); |
10902 | 0 | old_offset = r_rel.target_offset; |
10903 | |
|
10904 | 0 | if (!old_sec || !r_reloc_is_defined (&r_rel)) |
10905 | 0 | { |
10906 | 0 | if (r_type != R_XTENSA_ASM_EXPAND) |
10907 | 0 | { |
10908 | 0 | _bfd_error_handler |
10909 | | /* xgettext:c-format */ |
10910 | 0 | (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"), |
10911 | 0 | input_bfd, input_section, (uint64_t) rel->r_offset, |
10912 | 0 | elf_howto_table[r_type].name); |
10913 | 0 | return false; |
10914 | 0 | } |
10915 | | /* Leave it be. Resolution will happen in a later stage. */ |
10916 | 0 | } |
10917 | 0 | else |
10918 | 0 | { |
10919 | 0 | sec = fix->target_sec; |
10920 | 0 | rel->r_addend += ((sec->output_offset + fix->target_offset) |
10921 | 0 | - (old_sec->output_offset + old_offset)); |
10922 | 0 | } |
10923 | 0 | return true; |
10924 | 0 | } |
10925 | | |
10926 | | |
10927 | | static void |
10928 | | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10929 | | bfd *input_bfd, |
10930 | | asection *input_section, |
10931 | | bfd_byte *contents, |
10932 | | bfd_vma *relocationp) |
10933 | 0 | { |
10934 | 0 | asection *sec; |
10935 | 0 | int r_type = ELF32_R_TYPE (rel->r_info); |
10936 | 0 | reloc_bfd_fix *fix; |
10937 | 0 | bfd_vma fixup_diff; |
10938 | |
|
10939 | 0 | if (r_type == R_XTENSA_NONE) |
10940 | 0 | return; |
10941 | | |
10942 | 0 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10943 | 0 | if (!fix) |
10944 | 0 | return; |
10945 | | |
10946 | 0 | sec = fix->target_sec; |
10947 | |
|
10948 | 0 | fixup_diff = rel->r_addend; |
10949 | 0 | if (elf_howto_table[fix->src_type].partial_inplace) |
10950 | 0 | { |
10951 | 0 | bfd_vma inplace_val; |
10952 | 0 | BFD_ASSERT (fix->src_offset |
10953 | 0 | < bfd_get_section_limit (input_bfd, input_section)); |
10954 | 0 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); |
10955 | 0 | fixup_diff += inplace_val; |
10956 | 0 | } |
10957 | |
|
10958 | 0 | *relocationp = (sec->output_section->vma |
10959 | 0 | + sec->output_offset |
10960 | 0 | + fix->target_offset - fixup_diff); |
10961 | 0 | } |
10962 | | |
10963 | | |
10964 | | /* Miscellaneous utility functions.... */ |
10965 | | |
10966 | | static asection * |
10967 | | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
10968 | 0 | { |
10969 | 0 | bfd *dynobj; |
10970 | 0 | char plt_name[17]; |
10971 | |
|
10972 | 0 | if (chunk == 0) |
10973 | 0 | return elf_hash_table (info)->splt; |
10974 | | |
10975 | 0 | dynobj = elf_hash_table (info)->dynobj; |
10976 | 0 | sprintf (plt_name, ".plt.%u", chunk); |
10977 | 0 | return bfd_get_linker_section (dynobj, plt_name); |
10978 | 0 | } |
10979 | | |
10980 | | |
10981 | | static asection * |
10982 | | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
10983 | 0 | { |
10984 | 0 | bfd *dynobj; |
10985 | 0 | char got_name[21]; |
10986 | |
|
10987 | 0 | if (chunk == 0) |
10988 | 0 | return elf_hash_table (info)->sgotplt; |
10989 | | |
10990 | 0 | dynobj = elf_hash_table (info)->dynobj; |
10991 | 0 | sprintf (got_name, ".got.plt.%u", chunk); |
10992 | 0 | return bfd_get_linker_section (dynobj, got_name); |
10993 | 0 | } |
10994 | | |
10995 | | |
10996 | | /* Get the input section for a given symbol index. |
10997 | | If the symbol is: |
10998 | | . a section symbol, return the section; |
10999 | | . a common symbol, return the common section; |
11000 | | . an undefined symbol, return the undefined section; |
11001 | | . an indirect symbol, follow the links; |
11002 | | . an absolute value, return the absolute section. */ |
11003 | | |
11004 | | static asection * |
11005 | | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
11006 | 0 | { |
11007 | 0 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
11008 | 0 | asection *target_sec = NULL; |
11009 | 0 | if (r_symndx < symtab_hdr->sh_info) |
11010 | 0 | { |
11011 | 0 | Elf_Internal_Sym *isymbuf; |
11012 | 0 | unsigned int section_index; |
11013 | |
|
11014 | 0 | isymbuf = retrieve_local_syms (abfd); |
11015 | 0 | section_index = isymbuf[r_symndx].st_shndx; |
11016 | |
|
11017 | 0 | if (section_index == SHN_UNDEF) |
11018 | 0 | target_sec = bfd_und_section_ptr; |
11019 | 0 | else if (section_index == SHN_ABS) |
11020 | 0 | target_sec = bfd_abs_section_ptr; |
11021 | 0 | else if (section_index == SHN_COMMON) |
11022 | 0 | target_sec = bfd_com_section_ptr; |
11023 | 0 | else |
11024 | 0 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
11025 | 0 | } |
11026 | 0 | else |
11027 | 0 | { |
11028 | 0 | unsigned long indx = r_symndx - symtab_hdr->sh_info; |
11029 | 0 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; |
11030 | |
|
11031 | 0 | while (h->root.type == bfd_link_hash_indirect |
11032 | 0 | || h->root.type == bfd_link_hash_warning) |
11033 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
11034 | |
|
11035 | 0 | switch (h->root.type) |
11036 | 0 | { |
11037 | 0 | case bfd_link_hash_defined: |
11038 | 0 | case bfd_link_hash_defweak: |
11039 | 0 | target_sec = h->root.u.def.section; |
11040 | 0 | break; |
11041 | 0 | case bfd_link_hash_common: |
11042 | 0 | target_sec = bfd_com_section_ptr; |
11043 | 0 | break; |
11044 | 0 | case bfd_link_hash_undefined: |
11045 | 0 | case bfd_link_hash_undefweak: |
11046 | 0 | target_sec = bfd_und_section_ptr; |
11047 | 0 | break; |
11048 | 0 | default: /* New indirect warning. */ |
11049 | 0 | target_sec = bfd_und_section_ptr; |
11050 | 0 | break; |
11051 | 0 | } |
11052 | 0 | } |
11053 | 0 | return target_sec; |
11054 | 0 | } |
11055 | | |
11056 | | |
11057 | | static struct elf_link_hash_entry * |
11058 | | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
11059 | 0 | { |
11060 | 0 | unsigned long indx; |
11061 | 0 | struct elf_link_hash_entry *h; |
11062 | 0 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
11063 | |
|
11064 | 0 | if (r_symndx < symtab_hdr->sh_info) |
11065 | 0 | return NULL; |
11066 | | |
11067 | 0 | indx = r_symndx - symtab_hdr->sh_info; |
11068 | 0 | h = elf_sym_hashes (abfd)[indx]; |
11069 | 0 | while (h->root.type == bfd_link_hash_indirect |
11070 | 0 | || h->root.type == bfd_link_hash_warning) |
11071 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
11072 | 0 | return h; |
11073 | 0 | } |
11074 | | |
11075 | | |
11076 | | /* Get the section-relative offset for a symbol number. */ |
11077 | | |
11078 | | static bfd_vma |
11079 | | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
11080 | 0 | { |
11081 | 0 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
11082 | 0 | bfd_vma offset = 0; |
11083 | |
|
11084 | 0 | if (r_symndx < symtab_hdr->sh_info) |
11085 | 0 | { |
11086 | 0 | Elf_Internal_Sym *isymbuf; |
11087 | 0 | isymbuf = retrieve_local_syms (abfd); |
11088 | 0 | offset = isymbuf[r_symndx].st_value; |
11089 | 0 | } |
11090 | 0 | else |
11091 | 0 | { |
11092 | 0 | unsigned long indx = r_symndx - symtab_hdr->sh_info; |
11093 | 0 | struct elf_link_hash_entry *h = |
11094 | 0 | elf_sym_hashes (abfd)[indx]; |
11095 | |
|
11096 | 0 | while (h->root.type == bfd_link_hash_indirect |
11097 | 0 | || h->root.type == bfd_link_hash_warning) |
11098 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
11099 | 0 | if (h->root.type == bfd_link_hash_defined |
11100 | 0 | || h->root.type == bfd_link_hash_defweak) |
11101 | 0 | offset = h->root.u.def.value; |
11102 | 0 | } |
11103 | 0 | return offset; |
11104 | 0 | } |
11105 | | |
11106 | | |
11107 | | static bool |
11108 | | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
11109 | 0 | { |
11110 | 0 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); |
11111 | 0 | struct elf_link_hash_entry *h; |
11112 | |
|
11113 | 0 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); |
11114 | 0 | if (h && h->root.type == bfd_link_hash_defweak) |
11115 | 0 | return true; |
11116 | 0 | return false; |
11117 | 0 | } |
11118 | | |
11119 | | |
11120 | | static bool |
11121 | | pcrel_reloc_fits (xtensa_opcode opc, |
11122 | | int opnd, |
11123 | | bfd_vma self_address, |
11124 | | bfd_vma dest_address) |
11125 | 0 | { |
11126 | 0 | xtensa_isa isa = xtensa_default_isa; |
11127 | 0 | uint32 valp = dest_address; |
11128 | 0 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) |
11129 | 0 | || xtensa_operand_encode (isa, opc, opnd, &valp)) |
11130 | 0 | return false; |
11131 | 0 | return true; |
11132 | 0 | } |
11133 | | |
11134 | | |
11135 | | static bool |
11136 | | xtensa_is_property_section (asection *sec) |
11137 | 0 | { |
11138 | 0 | if (xtensa_is_insntable_section (sec) |
11139 | 0 | || xtensa_is_littable_section (sec) |
11140 | 0 | || xtensa_is_proptable_section (sec)) |
11141 | 0 | return true; |
11142 | | |
11143 | 0 | return false; |
11144 | 0 | } |
11145 | | |
11146 | | |
11147 | | static bool |
11148 | | xtensa_is_insntable_section (asection *sec) |
11149 | 0 | { |
11150 | 0 | if (startswith (sec->name, XTENSA_INSN_SEC_NAME) |
11151 | 0 | || startswith (sec->name, ".gnu.linkonce.x.")) |
11152 | 0 | return true; |
11153 | | |
11154 | 0 | return false; |
11155 | 0 | } |
11156 | | |
11157 | | |
11158 | | static bool |
11159 | | xtensa_is_littable_section (asection *sec) |
11160 | 0 | { |
11161 | 0 | if (startswith (sec->name, XTENSA_LIT_SEC_NAME) |
11162 | 0 | || startswith (sec->name, ".gnu.linkonce.p.")) |
11163 | 0 | return true; |
11164 | | |
11165 | 0 | return false; |
11166 | 0 | } |
11167 | | |
11168 | | |
11169 | | static bool |
11170 | | xtensa_is_proptable_section (asection *sec) |
11171 | 0 | { |
11172 | 0 | if (startswith (sec->name, XTENSA_PROP_SEC_NAME) |
11173 | 0 | || startswith (sec->name, ".gnu.linkonce.prop.")) |
11174 | 0 | return true; |
11175 | | |
11176 | 0 | return false; |
11177 | 0 | } |
11178 | | |
11179 | | |
11180 | | static int |
11181 | | internal_reloc_compare (const void *ap, const void *bp) |
11182 | 0 | { |
11183 | 0 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
11184 | 0 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; |
11185 | |
|
11186 | 0 | if (a->r_offset != b->r_offset) |
11187 | 0 | return (a->r_offset - b->r_offset); |
11188 | | |
11189 | | /* We don't need to sort on these criteria for correctness, |
11190 | | but enforcing a more strict ordering prevents unstable qsort |
11191 | | from behaving differently with different implementations. |
11192 | | Without the code below we get correct but different results |
11193 | | on Solaris 2.7 and 2.8. We would like to always produce the |
11194 | | same results no matter the host. */ |
11195 | | |
11196 | 0 | if (a->r_info != b->r_info) |
11197 | 0 | return (a->r_info - b->r_info); |
11198 | | |
11199 | 0 | return (a->r_addend - b->r_addend); |
11200 | 0 | } |
11201 | | |
11202 | | |
11203 | | static int |
11204 | | internal_reloc_matches (const void *ap, const void *bp) |
11205 | 0 | { |
11206 | 0 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
11207 | 0 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; |
11208 | | |
11209 | | /* Check if one entry overlaps with the other; this shouldn't happen |
11210 | | except when searching for a match. */ |
11211 | 0 | return (a->r_offset - b->r_offset); |
11212 | 0 | } |
11213 | | |
11214 | | |
11215 | | /* Predicate function used to look up a section in a particular group. */ |
11216 | | |
11217 | | static bool |
11218 | | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) |
11219 | 0 | { |
11220 | 0 | const char *gname = inf; |
11221 | 0 | const char *group_name = elf_group_name (sec); |
11222 | |
|
11223 | 0 | return (group_name == gname |
11224 | 0 | || (group_name != NULL |
11225 | 0 | && gname != NULL |
11226 | 0 | && strcmp (group_name, gname) == 0)); |
11227 | 0 | } |
11228 | | |
11229 | | |
11230 | | static char * |
11231 | | xtensa_add_names (const char *base, const char *suffix) |
11232 | 152 | { |
11233 | 152 | if (suffix) |
11234 | 76 | { |
11235 | 76 | size_t base_len = strlen (base); |
11236 | 76 | size_t suffix_len = strlen (suffix); |
11237 | 76 | char *str = bfd_malloc (base_len + suffix_len + 1); |
11238 | | |
11239 | 76 | memcpy (str, base, base_len); |
11240 | 76 | memcpy (str + base_len, suffix, suffix_len + 1); |
11241 | 76 | return str; |
11242 | 76 | } |
11243 | 76 | else |
11244 | 76 | { |
11245 | 76 | return strdup (base); |
11246 | 76 | } |
11247 | 152 | } |
11248 | | |
11249 | | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
11250 | | |
11251 | | char * |
11252 | | xtensa_property_section_name (asection *sec, const char *base_name, |
11253 | | bool separate_sections) |
11254 | 152 | { |
11255 | 152 | const char *suffix, *group_name; |
11256 | 152 | char *prop_sec_name; |
11257 | | |
11258 | 152 | group_name = elf_group_name (sec); |
11259 | 152 | if (group_name) |
11260 | 0 | { |
11261 | 0 | suffix = strrchr (sec->name, '.'); |
11262 | 0 | if (suffix == sec->name) |
11263 | 0 | suffix = 0; |
11264 | 0 | prop_sec_name = xtensa_add_names (base_name, suffix); |
11265 | 0 | } |
11266 | 152 | else if (startswith (sec->name, ".gnu.linkonce.")) |
11267 | 0 | { |
11268 | 0 | char *linkonce_kind = 0; |
11269 | |
|
11270 | 0 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) |
11271 | 0 | linkonce_kind = "x."; |
11272 | 0 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
11273 | 0 | linkonce_kind = "p."; |
11274 | 0 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
11275 | 0 | linkonce_kind = "prop."; |
11276 | 0 | else |
11277 | 0 | abort (); |
11278 | | |
11279 | 0 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
11280 | 0 | + strlen (linkonce_kind) + 1); |
11281 | 0 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
11282 | 0 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
11283 | |
|
11284 | 0 | suffix = sec->name + linkonce_len; |
11285 | | /* For backward compatibility, replace "t." instead of inserting |
11286 | | the new linkonce_kind (but not for "prop" sections). */ |
11287 | 0 | if (startswith (suffix, "t.") && linkonce_kind[1] == '.') |
11288 | 0 | suffix += 2; |
11289 | 0 | strcat (prop_sec_name + linkonce_len, suffix); |
11290 | 0 | } |
11291 | 152 | else |
11292 | 152 | { |
11293 | 152 | prop_sec_name = xtensa_add_names (base_name, |
11294 | 152 | separate_sections ? sec->name : NULL); |
11295 | 152 | } |
11296 | | |
11297 | 152 | return prop_sec_name; |
11298 | 152 | } |
11299 | | |
11300 | | |
11301 | | static asection * |
11302 | | xtensa_get_separate_property_section (asection *sec, const char *base_name, |
11303 | | bool separate_section) |
11304 | 152 | { |
11305 | 152 | char *prop_sec_name; |
11306 | 152 | asection *prop_sec; |
11307 | | |
11308 | 152 | prop_sec_name = xtensa_property_section_name (sec, base_name, |
11309 | 152 | separate_section); |
11310 | 152 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
11311 | 152 | match_section_group, |
11312 | 152 | (void *) elf_group_name (sec)); |
11313 | 152 | free (prop_sec_name); |
11314 | 152 | return prop_sec; |
11315 | 152 | } |
11316 | | |
11317 | | static asection * |
11318 | | xtensa_get_property_section (asection *sec, const char *base_name) |
11319 | 76 | { |
11320 | 76 | asection *prop_sec; |
11321 | | |
11322 | | /* Try individual property section first. */ |
11323 | 76 | prop_sec = xtensa_get_separate_property_section (sec, base_name, true); |
11324 | | |
11325 | | /* Refer to a common property section if individual is not present. */ |
11326 | 76 | if (!prop_sec) |
11327 | 76 | prop_sec = xtensa_get_separate_property_section (sec, base_name, false); |
11328 | | |
11329 | 76 | return prop_sec; |
11330 | 76 | } |
11331 | | |
11332 | | |
11333 | | flagword |
11334 | | xtensa_get_property_predef_flags (asection *sec) |
11335 | 0 | { |
11336 | 0 | if (xtensa_is_insntable_section (sec)) |
11337 | 0 | return (XTENSA_PROP_INSN |
11338 | 0 | | XTENSA_PROP_NO_TRANSFORM |
11339 | 0 | | XTENSA_PROP_INSN_NO_REORDER); |
11340 | | |
11341 | 0 | if (xtensa_is_littable_section (sec)) |
11342 | 0 | return (XTENSA_PROP_LITERAL |
11343 | 0 | | XTENSA_PROP_NO_TRANSFORM |
11344 | 0 | | XTENSA_PROP_INSN_NO_REORDER); |
11345 | | |
11346 | 0 | return 0; |
11347 | 0 | } |
11348 | | |
11349 | | |
11350 | | /* Other functions called directly by the linker. */ |
11351 | | |
11352 | | bool |
11353 | | xtensa_callback_required_dependence (bfd *abfd, |
11354 | | asection *sec, |
11355 | | struct bfd_link_info *link_info, |
11356 | | deps_callback_t callback, |
11357 | | void *closure) |
11358 | 0 | { |
11359 | 0 | Elf_Internal_Rela *internal_relocs; |
11360 | 0 | bfd_byte *contents; |
11361 | 0 | unsigned i; |
11362 | 0 | bool ok = true; |
11363 | 0 | bfd_size_type sec_size; |
11364 | |
|
11365 | 0 | sec_size = bfd_get_section_limit (abfd, sec); |
11366 | | |
11367 | | /* ".plt*" sections have no explicit relocations but they contain L32R |
11368 | | instructions that reference the corresponding ".got.plt*" sections. */ |
11369 | 0 | if ((sec->flags & SEC_LINKER_CREATED) != 0 |
11370 | 0 | && startswith (sec->name, ".plt")) |
11371 | 0 | { |
11372 | 0 | asection *sgotplt; |
11373 | | |
11374 | | /* Find the corresponding ".got.plt*" section. */ |
11375 | 0 | if (sec->name[4] == '\0') |
11376 | 0 | sgotplt = elf_hash_table (link_info)->sgotplt; |
11377 | 0 | else |
11378 | 0 | { |
11379 | 0 | char got_name[14]; |
11380 | 0 | int chunk = 0; |
11381 | |
|
11382 | 0 | BFD_ASSERT (sec->name[4] == '.'); |
11383 | 0 | chunk = strtol (&sec->name[5], NULL, 10); |
11384 | |
|
11385 | 0 | sprintf (got_name, ".got.plt.%u", chunk); |
11386 | 0 | sgotplt = bfd_get_linker_section (sec->owner, got_name); |
11387 | 0 | } |
11388 | 0 | BFD_ASSERT (sgotplt); |
11389 | | |
11390 | | /* Assume worst-case offsets: L32R at the very end of the ".plt" |
11391 | | section referencing a literal at the very beginning of |
11392 | | ".got.plt". This is very close to the real dependence, anyway. */ |
11393 | 0 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
11394 | 0 | } |
11395 | | |
11396 | | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
11397 | | when building uclibc, which runs "ld -b binary /dev/null". */ |
11398 | 0 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
11399 | 0 | return ok; |
11400 | | |
11401 | 0 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
11402 | 0 | link_info->keep_memory); |
11403 | 0 | if (internal_relocs == NULL |
11404 | 0 | || sec->reloc_count == 0) |
11405 | 0 | return ok; |
11406 | | |
11407 | | /* Cache the contents for the duration of this scan. */ |
11408 | 0 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
11409 | 0 | if (contents == NULL && sec_size != 0) |
11410 | 0 | { |
11411 | 0 | ok = false; |
11412 | 0 | goto error_return; |
11413 | 0 | } |
11414 | | |
11415 | 0 | if (!xtensa_default_isa) |
11416 | 0 | xtensa_default_isa = xtensa_isa_init (0, 0); |
11417 | |
|
11418 | 0 | for (i = 0; i < sec->reloc_count; i++) |
11419 | 0 | { |
11420 | 0 | Elf_Internal_Rela *irel = &internal_relocs[i]; |
11421 | 0 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
11422 | 0 | { |
11423 | 0 | r_reloc l32r_rel; |
11424 | 0 | asection *target_sec; |
11425 | 0 | bfd_vma target_offset; |
11426 | |
|
11427 | 0 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); |
11428 | 0 | target_sec = NULL; |
11429 | 0 | target_offset = 0; |
11430 | | /* L32Rs must be local to the input file. */ |
11431 | 0 | if (r_reloc_is_defined (&l32r_rel)) |
11432 | 0 | { |
11433 | 0 | target_sec = r_reloc_get_section (&l32r_rel); |
11434 | 0 | target_offset = l32r_rel.target_offset; |
11435 | 0 | } |
11436 | 0 | (*callback) (sec, irel->r_offset, target_sec, target_offset, |
11437 | 0 | closure); |
11438 | 0 | } |
11439 | 0 | } |
11440 | |
|
11441 | 0 | error_return: |
11442 | 0 | release_internal_relocs (sec, internal_relocs); |
11443 | 0 | release_contents (sec, contents); |
11444 | 0 | return ok; |
11445 | 0 | } |
11446 | | |
11447 | | /* The default literal sections should always be marked as "code" (i.e., |
11448 | | SHF_EXECINSTR). This is particularly important for the Linux kernel |
11449 | | module loader so that the literals are not placed after the text. */ |
11450 | | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
11451 | | { |
11452 | | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11453 | | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11454 | | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11455 | | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
11456 | | { NULL, 0, 0, 0, 0 } |
11457 | | }; |
11458 | | |
11459 | | #define ELF_TARGET_ID XTENSA_ELF_DATA |
11460 | | #ifndef ELF_ARCH |
11461 | | #define TARGET_LITTLE_SYM xtensa_elf32_le_vec |
11462 | | #define TARGET_LITTLE_NAME "elf32-xtensa-le" |
11463 | | #define TARGET_BIG_SYM xtensa_elf32_be_vec |
11464 | | #define TARGET_BIG_NAME "elf32-xtensa-be" |
11465 | | #define ELF_ARCH bfd_arch_xtensa |
11466 | | |
11467 | | #define ELF_MACHINE_CODE EM_XTENSA |
11468 | | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD |
11469 | | |
11470 | | #define ELF_MAXPAGESIZE 0x1000 |
11471 | | #endif /* ELF_ARCH */ |
11472 | | |
11473 | | #define elf_backend_can_gc_sections 1 |
11474 | | #define elf_backend_can_refcount 1 |
11475 | | #define elf_backend_plt_readonly 1 |
11476 | | #define elf_backend_got_header_size 4 |
11477 | | #define elf_backend_want_dynbss 0 |
11478 | | #define elf_backend_want_got_plt 1 |
11479 | | #define elf_backend_dtrel_excludes_plt 1 |
11480 | | |
11481 | | #define elf_info_to_howto elf_xtensa_info_to_howto_rela |
11482 | | |
11483 | | #define bfd_elf32_mkobject elf_xtensa_mkobject |
11484 | | |
11485 | | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
11486 | | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook |
11487 | | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data |
11488 | | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section |
11489 | | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup |
11490 | | #define bfd_elf32_bfd_reloc_name_lookup \ |
11491 | | elf_xtensa_reloc_name_lookup |
11492 | | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
11493 | | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
11494 | | |
11495 | | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol |
11496 | | #define elf_backend_check_relocs elf_xtensa_check_relocs |
11497 | | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
11498 | | #define elf_backend_discard_info elf_xtensa_discard_info |
11499 | | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs |
11500 | | #define elf_backend_final_write_processing elf_xtensa_final_write_processing |
11501 | | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections |
11502 | | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol |
11503 | | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook |
11504 | | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus |
11505 | | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo |
11506 | | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
11507 | | #define elf_backend_object_p elf_xtensa_object_p |
11508 | | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class |
11509 | | #define elf_backend_relocate_section elf_xtensa_relocate_section |
11510 | | #define elf_backend_late_size_sections elf_xtensa_late_size_sections |
11511 | | #define elf_backend_early_size_sections elf_xtensa_early_size_sections |
11512 | | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
11513 | | #define elf_backend_special_sections elf_xtensa_special_sections |
11514 | | #define elf_backend_action_discarded elf_xtensa_action_discarded |
11515 | | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
11516 | | |
11517 | | #include "elf32-target.h" |