/src/binutils-gdb/bfd/elf64-mmix.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* MMIX-specific support for 64-bit ELF. |
2 | | Copyright (C) 2001-2025 Free Software Foundation, Inc. |
3 | | Contributed by Hans-Peter Nilsson <hp@bitrange.com> |
4 | | |
5 | | This file is part of BFD, the Binary File Descriptor library. |
6 | | |
7 | | This program is free software; you can redistribute it and/or modify |
8 | | it under the terms of the GNU General Public License as published by |
9 | | the Free Software Foundation; either version 3 of the License, or |
10 | | (at your option) any later version. |
11 | | |
12 | | This program is distributed in the hope that it will be useful, |
13 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | GNU General Public License for more details. |
16 | | |
17 | | You should have received a copy of the GNU General Public License |
18 | | along with this program; if not, write to the Free Software |
19 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
20 | | MA 02110-1301, USA. */ |
21 | | |
22 | | |
23 | | /* No specific ABI or "processor-specific supplement" defined. */ |
24 | | |
25 | | /* TODO: |
26 | | - "Traditional" linker relaxation (shrinking whole sections). |
27 | | - Merge reloc stubs jumping to same location. |
28 | | - GETA stub relaxation (call a stub for out of range new |
29 | | R_MMIX_GETA_STUBBABLE). */ |
30 | | |
31 | | #include "sysdep.h" |
32 | | #include "bfd.h" |
33 | | #include "libbfd.h" |
34 | | #include "elf-bfd.h" |
35 | | #include "elf/mmix.h" |
36 | | #include "opcode/mmix.h" |
37 | | |
38 | | #define MINUS_ONE (((bfd_vma) 0) - 1) |
39 | | |
40 | 0 | #define MAX_PUSHJ_STUB_SIZE (5 * 4) |
41 | | |
42 | | /* Put these everywhere in new code. */ |
43 | | #define FATAL_DEBUG \ |
44 | | _bfd_abort (__FILE__, __LINE__, \ |
45 | | "Internal: Non-debugged code (test-case missing)") |
46 | | |
47 | | #define BAD_CASE(x) \ |
48 | 0 | _bfd_abort (__FILE__, __LINE__, \ |
49 | 0 | "bad case for " #x) |
50 | | |
51 | | struct _mmix_elf_section_data |
52 | | { |
53 | | struct bfd_elf_section_data elf; |
54 | | union |
55 | | { |
56 | | struct bpo_reloc_section_info *reloc; |
57 | | struct bpo_greg_section_info *greg; |
58 | | } bpo; |
59 | | |
60 | | struct pushj_stub_info |
61 | | { |
62 | | /* Maximum number of stubs needed for this section. */ |
63 | | bfd_size_type n_pushj_relocs; |
64 | | |
65 | | /* Size of stubs after a mmix_elf_relax_section round. */ |
66 | | bfd_size_type stubs_size_sum; |
67 | | |
68 | | /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum |
69 | | of these. Allocated in mmix_elf_check_common_relocs. */ |
70 | | bfd_size_type *stub_size; |
71 | | |
72 | | /* Offset of next stub during relocation. Somewhat redundant with the |
73 | | above: error coverage is easier and we don't have to reset the |
74 | | stubs_size_sum for relocation. */ |
75 | | bfd_size_type stub_offset; |
76 | | } pjs; |
77 | | |
78 | | /* Whether there has been a warning that this section could not be |
79 | | linked due to a specific cause. FIXME: a way to access the |
80 | | linker info or output section, then stuff the limiter guard |
81 | | there. */ |
82 | | bool has_warned_bpo; |
83 | | bool has_warned_pushj; |
84 | | }; |
85 | | |
86 | | #define mmix_elf_section_data(sec) \ |
87 | 0 | ((struct _mmix_elf_section_data *) elf_section_data (sec)) |
88 | | |
89 | | /* For each section containing a base-plus-offset (BPO) reloc, we attach |
90 | | this struct as mmix_elf_section_data (section)->bpo, which is otherwise |
91 | | NULL. */ |
92 | | struct bpo_reloc_section_info |
93 | | { |
94 | | /* The base is 1; this is the first number in this section. */ |
95 | | size_t first_base_plus_offset_reloc; |
96 | | |
97 | | /* Number of BPO-relocs in this section. */ |
98 | | size_t n_bpo_relocs_this_section; |
99 | | |
100 | | /* Running index, used at relocation time. */ |
101 | | size_t bpo_index; |
102 | | |
103 | | /* We don't have access to the bfd_link_info struct in |
104 | | mmix_final_link_relocate. What we really want to get at is the |
105 | | global single struct greg_relocation, so we stash it here. */ |
106 | | asection *bpo_greg_section; |
107 | | }; |
108 | | |
109 | | /* Helper struct (in global context) for the one below. |
110 | | There's one of these created for every BPO reloc. */ |
111 | | struct bpo_reloc_request |
112 | | { |
113 | | bfd_vma value; |
114 | | |
115 | | /* Valid after relaxation. The base is 0; the first register number |
116 | | must be added. The offset is in range 0..255. */ |
117 | | size_t regindex; |
118 | | size_t offset; |
119 | | |
120 | | /* The order number for this BPO reloc, corresponding to the order in |
121 | | which BPO relocs were found. Used to create an index after reloc |
122 | | requests are sorted. */ |
123 | | size_t bpo_reloc_no; |
124 | | |
125 | | /* Set when the value is computed. Better than coding "guard values" |
126 | | into the other members. Is FALSE only for BPO relocs in a GC:ed |
127 | | section. */ |
128 | | bool valid; |
129 | | }; |
130 | | |
131 | | /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated |
132 | | greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), |
133 | | which is linked into the register contents section |
134 | | (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the |
135 | | linker; using the same hook as for usual with BPO relocs does not |
136 | | collide. */ |
137 | | struct bpo_greg_section_info |
138 | | { |
139 | | /* After GC, this reflects the number of remaining, non-excluded |
140 | | BPO-relocs. */ |
141 | | size_t n_bpo_relocs; |
142 | | |
143 | | /* This is the number of allocated bpo_reloc_requests; the size of |
144 | | sorted_indexes. Valid after the check.*relocs functions are called |
145 | | for all incoming sections. It includes the number of BPO relocs in |
146 | | sections that were GC:ed. */ |
147 | | size_t n_max_bpo_relocs; |
148 | | |
149 | | /* A counter used to find out when to fold the BPO gregs, since we |
150 | | don't have a single "after-relaxation" hook. */ |
151 | | size_t n_remaining_bpo_relocs_this_relaxation_round; |
152 | | |
153 | | /* The number of linker-allocated GREGs resulting from BPO relocs. |
154 | | This is an approximation after _bfd_mmix_before_linker_allocation |
155 | | and supposedly accurate after mmix_elf_relax_section is called for |
156 | | all incoming non-collected sections. */ |
157 | | size_t n_allocated_bpo_gregs; |
158 | | |
159 | | /* Index into reloc_request[], sorted on increasing "value", secondary |
160 | | by increasing index for strict sorting order. */ |
161 | | size_t *bpo_reloc_indexes; |
162 | | |
163 | | /* An array of all relocations, with the "value" member filled in by |
164 | | the relaxation function. */ |
165 | | struct bpo_reloc_request *reloc_request; |
166 | | }; |
167 | | |
168 | | |
169 | | extern bool mmix_elf_final_link (bfd *, struct bfd_link_info *); |
170 | | |
171 | | extern void mmix_elf_symbol_processing (bfd *, asymbol *); |
172 | | |
173 | | /* Only intended to be called from a debugger. */ |
174 | | extern void mmix_dump_bpo_gregs |
175 | | (struct bfd_link_info *, void (*) (const char *, ...)); |
176 | | |
177 | | static void |
178 | | mmix_set_relaxable_size (bfd *, asection *, void *); |
179 | | static bfd_reloc_status_type |
180 | | mmix_elf_reloc (bfd *, arelent *, asymbol *, void *, |
181 | | asection *, bfd *, char **); |
182 | | static bfd_reloc_status_type |
183 | | mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma, |
184 | | bfd_signed_vma, bfd_vma, const char *, asection *, |
185 | | char **); |
186 | | |
187 | | |
188 | | /* Watch out: this currently needs to have elements with the same index as |
189 | | their R_MMIX_ number. */ |
190 | | static reloc_howto_type elf_mmix_howto_table[] = |
191 | | { |
192 | | /* This reloc does nothing. */ |
193 | | HOWTO (R_MMIX_NONE, /* type */ |
194 | | 0, /* rightshift */ |
195 | | 0, /* size */ |
196 | | 0, /* bitsize */ |
197 | | false, /* pc_relative */ |
198 | | 0, /* bitpos */ |
199 | | complain_overflow_dont, /* complain_on_overflow */ |
200 | | bfd_elf_generic_reloc, /* special_function */ |
201 | | "R_MMIX_NONE", /* name */ |
202 | | false, /* partial_inplace */ |
203 | | 0, /* src_mask */ |
204 | | 0, /* dst_mask */ |
205 | | false), /* pcrel_offset */ |
206 | | |
207 | | /* An 8 bit absolute relocation. */ |
208 | | HOWTO (R_MMIX_8, /* type */ |
209 | | 0, /* rightshift */ |
210 | | 1, /* size */ |
211 | | 8, /* bitsize */ |
212 | | false, /* pc_relative */ |
213 | | 0, /* bitpos */ |
214 | | complain_overflow_bitfield, /* complain_on_overflow */ |
215 | | bfd_elf_generic_reloc, /* special_function */ |
216 | | "R_MMIX_8", /* name */ |
217 | | false, /* partial_inplace */ |
218 | | 0, /* src_mask */ |
219 | | 0xff, /* dst_mask */ |
220 | | false), /* pcrel_offset */ |
221 | | |
222 | | /* An 16 bit absolute relocation. */ |
223 | | HOWTO (R_MMIX_16, /* type */ |
224 | | 0, /* rightshift */ |
225 | | 2, /* size */ |
226 | | 16, /* bitsize */ |
227 | | false, /* pc_relative */ |
228 | | 0, /* bitpos */ |
229 | | complain_overflow_bitfield, /* complain_on_overflow */ |
230 | | bfd_elf_generic_reloc, /* special_function */ |
231 | | "R_MMIX_16", /* name */ |
232 | | false, /* partial_inplace */ |
233 | | 0, /* src_mask */ |
234 | | 0xffff, /* dst_mask */ |
235 | | false), /* pcrel_offset */ |
236 | | |
237 | | /* An 24 bit absolute relocation. */ |
238 | | HOWTO (R_MMIX_24, /* type */ |
239 | | 0, /* rightshift */ |
240 | | 4, /* size */ |
241 | | 24, /* bitsize */ |
242 | | false, /* pc_relative */ |
243 | | 0, /* bitpos */ |
244 | | complain_overflow_bitfield, /* complain_on_overflow */ |
245 | | bfd_elf_generic_reloc, /* special_function */ |
246 | | "R_MMIX_24", /* name */ |
247 | | false, /* partial_inplace */ |
248 | | ~0xffffff, /* src_mask */ |
249 | | 0xffffff, /* dst_mask */ |
250 | | false), /* pcrel_offset */ |
251 | | |
252 | | /* A 32 bit absolute relocation. */ |
253 | | HOWTO (R_MMIX_32, /* type */ |
254 | | 0, /* rightshift */ |
255 | | 4, /* size */ |
256 | | 32, /* bitsize */ |
257 | | false, /* pc_relative */ |
258 | | 0, /* bitpos */ |
259 | | complain_overflow_bitfield, /* complain_on_overflow */ |
260 | | bfd_elf_generic_reloc, /* special_function */ |
261 | | "R_MMIX_32", /* name */ |
262 | | false, /* partial_inplace */ |
263 | | 0, /* src_mask */ |
264 | | 0xffffffff, /* dst_mask */ |
265 | | false), /* pcrel_offset */ |
266 | | |
267 | | /* 64 bit relocation. */ |
268 | | HOWTO (R_MMIX_64, /* type */ |
269 | | 0, /* rightshift */ |
270 | | 8, /* size */ |
271 | | 64, /* bitsize */ |
272 | | false, /* pc_relative */ |
273 | | 0, /* bitpos */ |
274 | | complain_overflow_bitfield, /* complain_on_overflow */ |
275 | | bfd_elf_generic_reloc, /* special_function */ |
276 | | "R_MMIX_64", /* name */ |
277 | | false, /* partial_inplace */ |
278 | | 0, /* src_mask */ |
279 | | MINUS_ONE, /* dst_mask */ |
280 | | false), /* pcrel_offset */ |
281 | | |
282 | | /* An 8 bit PC-relative relocation. */ |
283 | | HOWTO (R_MMIX_PC_8, /* type */ |
284 | | 0, /* rightshift */ |
285 | | 1, /* size */ |
286 | | 8, /* bitsize */ |
287 | | true, /* pc_relative */ |
288 | | 0, /* bitpos */ |
289 | | complain_overflow_bitfield, /* complain_on_overflow */ |
290 | | bfd_elf_generic_reloc, /* special_function */ |
291 | | "R_MMIX_PC_8", /* name */ |
292 | | false, /* partial_inplace */ |
293 | | 0, /* src_mask */ |
294 | | 0xff, /* dst_mask */ |
295 | | true), /* pcrel_offset */ |
296 | | |
297 | | /* An 16 bit PC-relative relocation. */ |
298 | | HOWTO (R_MMIX_PC_16, /* type */ |
299 | | 0, /* rightshift */ |
300 | | 2, /* size */ |
301 | | 16, /* bitsize */ |
302 | | true, /* pc_relative */ |
303 | | 0, /* bitpos */ |
304 | | complain_overflow_bitfield, /* complain_on_overflow */ |
305 | | bfd_elf_generic_reloc, /* special_function */ |
306 | | "R_MMIX_PC_16", /* name */ |
307 | | false, /* partial_inplace */ |
308 | | 0, /* src_mask */ |
309 | | 0xffff, /* dst_mask */ |
310 | | true), /* pcrel_offset */ |
311 | | |
312 | | /* An 24 bit PC-relative relocation. */ |
313 | | HOWTO (R_MMIX_PC_24, /* type */ |
314 | | 0, /* rightshift */ |
315 | | 4, /* size */ |
316 | | 24, /* bitsize */ |
317 | | true, /* pc_relative */ |
318 | | 0, /* bitpos */ |
319 | | complain_overflow_bitfield, /* complain_on_overflow */ |
320 | | bfd_elf_generic_reloc, /* special_function */ |
321 | | "R_MMIX_PC_24", /* name */ |
322 | | false, /* partial_inplace */ |
323 | | ~0xffffff, /* src_mask */ |
324 | | 0xffffff, /* dst_mask */ |
325 | | true), /* pcrel_offset */ |
326 | | |
327 | | /* A 32 bit absolute PC-relative relocation. */ |
328 | | HOWTO (R_MMIX_PC_32, /* type */ |
329 | | 0, /* rightshift */ |
330 | | 4, /* size */ |
331 | | 32, /* bitsize */ |
332 | | true, /* pc_relative */ |
333 | | 0, /* bitpos */ |
334 | | complain_overflow_bitfield, /* complain_on_overflow */ |
335 | | bfd_elf_generic_reloc, /* special_function */ |
336 | | "R_MMIX_PC_32", /* name */ |
337 | | false, /* partial_inplace */ |
338 | | 0, /* src_mask */ |
339 | | 0xffffffff, /* dst_mask */ |
340 | | true), /* pcrel_offset */ |
341 | | |
342 | | /* 64 bit PC-relative relocation. */ |
343 | | HOWTO (R_MMIX_PC_64, /* type */ |
344 | | 0, /* rightshift */ |
345 | | 8, /* size */ |
346 | | 64, /* bitsize */ |
347 | | true, /* pc_relative */ |
348 | | 0, /* bitpos */ |
349 | | complain_overflow_bitfield, /* complain_on_overflow */ |
350 | | bfd_elf_generic_reloc, /* special_function */ |
351 | | "R_MMIX_PC_64", /* name */ |
352 | | false, /* partial_inplace */ |
353 | | 0, /* src_mask */ |
354 | | MINUS_ONE, /* dst_mask */ |
355 | | true), /* pcrel_offset */ |
356 | | |
357 | | /* GNU extension to record C++ vtable hierarchy. */ |
358 | | HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ |
359 | | 0, /* rightshift */ |
360 | | 0, /* size */ |
361 | | 0, /* bitsize */ |
362 | | false, /* pc_relative */ |
363 | | 0, /* bitpos */ |
364 | | complain_overflow_dont, /* complain_on_overflow */ |
365 | | NULL, /* special_function */ |
366 | | "R_MMIX_GNU_VTINHERIT", /* name */ |
367 | | false, /* partial_inplace */ |
368 | | 0, /* src_mask */ |
369 | | 0, /* dst_mask */ |
370 | | true), /* pcrel_offset */ |
371 | | |
372 | | /* GNU extension to record C++ vtable member usage. */ |
373 | | HOWTO (R_MMIX_GNU_VTENTRY, /* type */ |
374 | | 0, /* rightshift */ |
375 | | 0, /* size */ |
376 | | 0, /* bitsize */ |
377 | | false, /* pc_relative */ |
378 | | 0, /* bitpos */ |
379 | | complain_overflow_dont, /* complain_on_overflow */ |
380 | | _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
381 | | "R_MMIX_GNU_VTENTRY", /* name */ |
382 | | false, /* partial_inplace */ |
383 | | 0, /* src_mask */ |
384 | | 0, /* dst_mask */ |
385 | | false), /* pcrel_offset */ |
386 | | |
387 | | /* The GETA relocation is supposed to get any address that could |
388 | | possibly be reached by the GETA instruction. It can silently expand |
389 | | to get a 64-bit operand, but will complain if any of the two least |
390 | | significant bits are set. The howto members reflect a simple GETA. */ |
391 | | HOWTO (R_MMIX_GETA, /* type */ |
392 | | 2, /* rightshift */ |
393 | | 4, /* size */ |
394 | | 19, /* bitsize */ |
395 | | true, /* pc_relative */ |
396 | | 0, /* bitpos */ |
397 | | complain_overflow_signed, /* complain_on_overflow */ |
398 | | mmix_elf_reloc, /* special_function */ |
399 | | "R_MMIX_GETA", /* name */ |
400 | | false, /* partial_inplace */ |
401 | | ~0x0100ffff, /* src_mask */ |
402 | | 0x0100ffff, /* dst_mask */ |
403 | | true), /* pcrel_offset */ |
404 | | |
405 | | HOWTO (R_MMIX_GETA_1, /* type */ |
406 | | 2, /* rightshift */ |
407 | | 4, /* size */ |
408 | | 19, /* bitsize */ |
409 | | true, /* pc_relative */ |
410 | | 0, /* bitpos */ |
411 | | complain_overflow_signed, /* complain_on_overflow */ |
412 | | mmix_elf_reloc, /* special_function */ |
413 | | "R_MMIX_GETA_1", /* name */ |
414 | | false, /* partial_inplace */ |
415 | | ~0x0100ffff, /* src_mask */ |
416 | | 0x0100ffff, /* dst_mask */ |
417 | | true), /* pcrel_offset */ |
418 | | |
419 | | HOWTO (R_MMIX_GETA_2, /* type */ |
420 | | 2, /* rightshift */ |
421 | | 4, /* size */ |
422 | | 19, /* bitsize */ |
423 | | true, /* pc_relative */ |
424 | | 0, /* bitpos */ |
425 | | complain_overflow_signed, /* complain_on_overflow */ |
426 | | mmix_elf_reloc, /* special_function */ |
427 | | "R_MMIX_GETA_2", /* name */ |
428 | | false, /* partial_inplace */ |
429 | | ~0x0100ffff, /* src_mask */ |
430 | | 0x0100ffff, /* dst_mask */ |
431 | | true), /* pcrel_offset */ |
432 | | |
433 | | HOWTO (R_MMIX_GETA_3, /* type */ |
434 | | 2, /* rightshift */ |
435 | | 4, /* size */ |
436 | | 19, /* bitsize */ |
437 | | true, /* pc_relative */ |
438 | | 0, /* bitpos */ |
439 | | complain_overflow_signed, /* complain_on_overflow */ |
440 | | mmix_elf_reloc, /* special_function */ |
441 | | "R_MMIX_GETA_3", /* name */ |
442 | | false, /* partial_inplace */ |
443 | | ~0x0100ffff, /* src_mask */ |
444 | | 0x0100ffff, /* dst_mask */ |
445 | | true), /* pcrel_offset */ |
446 | | |
447 | | /* The conditional branches are supposed to reach any (code) address. |
448 | | It can silently expand to a 64-bit operand, but will emit an error if |
449 | | any of the two least significant bits are set. The howto members |
450 | | reflect a simple branch. */ |
451 | | HOWTO (R_MMIX_CBRANCH, /* type */ |
452 | | 2, /* rightshift */ |
453 | | 4, /* size */ |
454 | | 19, /* bitsize */ |
455 | | true, /* pc_relative */ |
456 | | 0, /* bitpos */ |
457 | | complain_overflow_signed, /* complain_on_overflow */ |
458 | | mmix_elf_reloc, /* special_function */ |
459 | | "R_MMIX_CBRANCH", /* name */ |
460 | | false, /* partial_inplace */ |
461 | | ~0x0100ffff, /* src_mask */ |
462 | | 0x0100ffff, /* dst_mask */ |
463 | | true), /* pcrel_offset */ |
464 | | |
465 | | HOWTO (R_MMIX_CBRANCH_J, /* type */ |
466 | | 2, /* rightshift */ |
467 | | 4, /* size */ |
468 | | 19, /* bitsize */ |
469 | | true, /* pc_relative */ |
470 | | 0, /* bitpos */ |
471 | | complain_overflow_signed, /* complain_on_overflow */ |
472 | | mmix_elf_reloc, /* special_function */ |
473 | | "R_MMIX_CBRANCH_J", /* name */ |
474 | | false, /* partial_inplace */ |
475 | | ~0x0100ffff, /* src_mask */ |
476 | | 0x0100ffff, /* dst_mask */ |
477 | | true), /* pcrel_offset */ |
478 | | |
479 | | HOWTO (R_MMIX_CBRANCH_1, /* type */ |
480 | | 2, /* rightshift */ |
481 | | 4, /* size */ |
482 | | 19, /* bitsize */ |
483 | | true, /* pc_relative */ |
484 | | 0, /* bitpos */ |
485 | | complain_overflow_signed, /* complain_on_overflow */ |
486 | | mmix_elf_reloc, /* special_function */ |
487 | | "R_MMIX_CBRANCH_1", /* name */ |
488 | | false, /* partial_inplace */ |
489 | | ~0x0100ffff, /* src_mask */ |
490 | | 0x0100ffff, /* dst_mask */ |
491 | | true), /* pcrel_offset */ |
492 | | |
493 | | HOWTO (R_MMIX_CBRANCH_2, /* type */ |
494 | | 2, /* rightshift */ |
495 | | 4, /* size */ |
496 | | 19, /* bitsize */ |
497 | | true, /* pc_relative */ |
498 | | 0, /* bitpos */ |
499 | | complain_overflow_signed, /* complain_on_overflow */ |
500 | | mmix_elf_reloc, /* special_function */ |
501 | | "R_MMIX_CBRANCH_2", /* name */ |
502 | | false, /* partial_inplace */ |
503 | | ~0x0100ffff, /* src_mask */ |
504 | | 0x0100ffff, /* dst_mask */ |
505 | | true), /* pcrel_offset */ |
506 | | |
507 | | HOWTO (R_MMIX_CBRANCH_3, /* type */ |
508 | | 2, /* rightshift */ |
509 | | 4, /* size */ |
510 | | 19, /* bitsize */ |
511 | | true, /* pc_relative */ |
512 | | 0, /* bitpos */ |
513 | | complain_overflow_signed, /* complain_on_overflow */ |
514 | | mmix_elf_reloc, /* special_function */ |
515 | | "R_MMIX_CBRANCH_3", /* name */ |
516 | | false, /* partial_inplace */ |
517 | | ~0x0100ffff, /* src_mask */ |
518 | | 0x0100ffff, /* dst_mask */ |
519 | | true), /* pcrel_offset */ |
520 | | |
521 | | /* The PUSHJ instruction can reach any (code) address, as long as it's |
522 | | the beginning of a function (no usable restriction). It can silently |
523 | | expand to a 64-bit operand, but will emit an error if any of the two |
524 | | least significant bits are set. It can also expand into a call to a |
525 | | stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple |
526 | | PUSHJ. */ |
527 | | HOWTO (R_MMIX_PUSHJ, /* type */ |
528 | | 2, /* rightshift */ |
529 | | 4, /* size */ |
530 | | 19, /* bitsize */ |
531 | | true, /* pc_relative */ |
532 | | 0, /* bitpos */ |
533 | | complain_overflow_signed, /* complain_on_overflow */ |
534 | | mmix_elf_reloc, /* special_function */ |
535 | | "R_MMIX_PUSHJ", /* name */ |
536 | | false, /* partial_inplace */ |
537 | | ~0x0100ffff, /* src_mask */ |
538 | | 0x0100ffff, /* dst_mask */ |
539 | | true), /* pcrel_offset */ |
540 | | |
541 | | HOWTO (R_MMIX_PUSHJ_1, /* type */ |
542 | | 2, /* rightshift */ |
543 | | 4, /* size */ |
544 | | 19, /* bitsize */ |
545 | | true, /* pc_relative */ |
546 | | 0, /* bitpos */ |
547 | | complain_overflow_signed, /* complain_on_overflow */ |
548 | | mmix_elf_reloc, /* special_function */ |
549 | | "R_MMIX_PUSHJ_1", /* name */ |
550 | | false, /* partial_inplace */ |
551 | | ~0x0100ffff, /* src_mask */ |
552 | | 0x0100ffff, /* dst_mask */ |
553 | | true), /* pcrel_offset */ |
554 | | |
555 | | HOWTO (R_MMIX_PUSHJ_2, /* type */ |
556 | | 2, /* rightshift */ |
557 | | 4, /* size */ |
558 | | 19, /* bitsize */ |
559 | | true, /* pc_relative */ |
560 | | 0, /* bitpos */ |
561 | | complain_overflow_signed, /* complain_on_overflow */ |
562 | | mmix_elf_reloc, /* special_function */ |
563 | | "R_MMIX_PUSHJ_2", /* name */ |
564 | | false, /* partial_inplace */ |
565 | | ~0x0100ffff, /* src_mask */ |
566 | | 0x0100ffff, /* dst_mask */ |
567 | | true), /* pcrel_offset */ |
568 | | |
569 | | HOWTO (R_MMIX_PUSHJ_3, /* type */ |
570 | | 2, /* rightshift */ |
571 | | 4, /* size */ |
572 | | 19, /* bitsize */ |
573 | | true, /* pc_relative */ |
574 | | 0, /* bitpos */ |
575 | | complain_overflow_signed, /* complain_on_overflow */ |
576 | | mmix_elf_reloc, /* special_function */ |
577 | | "R_MMIX_PUSHJ_3", /* name */ |
578 | | false, /* partial_inplace */ |
579 | | ~0x0100ffff, /* src_mask */ |
580 | | 0x0100ffff, /* dst_mask */ |
581 | | true), /* pcrel_offset */ |
582 | | |
583 | | /* A JMP is supposed to reach any (code) address. By itself, it can |
584 | | reach +-64M; the expansion can reach all 64 bits. Note that the 64M |
585 | | limit is soon reached if you link the program in wildly different |
586 | | memory segments. The howto members reflect a trivial JMP. */ |
587 | | HOWTO (R_MMIX_JMP, /* type */ |
588 | | 2, /* rightshift */ |
589 | | 4, /* size */ |
590 | | 27, /* bitsize */ |
591 | | true, /* pc_relative */ |
592 | | 0, /* bitpos */ |
593 | | complain_overflow_signed, /* complain_on_overflow */ |
594 | | mmix_elf_reloc, /* special_function */ |
595 | | "R_MMIX_JMP", /* name */ |
596 | | false, /* partial_inplace */ |
597 | | ~0x1ffffff, /* src_mask */ |
598 | | 0x1ffffff, /* dst_mask */ |
599 | | true), /* pcrel_offset */ |
600 | | |
601 | | HOWTO (R_MMIX_JMP_1, /* type */ |
602 | | 2, /* rightshift */ |
603 | | 4, /* size */ |
604 | | 27, /* bitsize */ |
605 | | true, /* pc_relative */ |
606 | | 0, /* bitpos */ |
607 | | complain_overflow_signed, /* complain_on_overflow */ |
608 | | mmix_elf_reloc, /* special_function */ |
609 | | "R_MMIX_JMP_1", /* name */ |
610 | | false, /* partial_inplace */ |
611 | | ~0x1ffffff, /* src_mask */ |
612 | | 0x1ffffff, /* dst_mask */ |
613 | | true), /* pcrel_offset */ |
614 | | |
615 | | HOWTO (R_MMIX_JMP_2, /* type */ |
616 | | 2, /* rightshift */ |
617 | | 4, /* size */ |
618 | | 27, /* bitsize */ |
619 | | true, /* pc_relative */ |
620 | | 0, /* bitpos */ |
621 | | complain_overflow_signed, /* complain_on_overflow */ |
622 | | mmix_elf_reloc, /* special_function */ |
623 | | "R_MMIX_JMP_2", /* name */ |
624 | | false, /* partial_inplace */ |
625 | | ~0x1ffffff, /* src_mask */ |
626 | | 0x1ffffff, /* dst_mask */ |
627 | | true), /* pcrel_offset */ |
628 | | |
629 | | HOWTO (R_MMIX_JMP_3, /* type */ |
630 | | 2, /* rightshift */ |
631 | | 4, /* size */ |
632 | | 27, /* bitsize */ |
633 | | true, /* pc_relative */ |
634 | | 0, /* bitpos */ |
635 | | complain_overflow_signed, /* complain_on_overflow */ |
636 | | mmix_elf_reloc, /* special_function */ |
637 | | "R_MMIX_JMP_3", /* name */ |
638 | | false, /* partial_inplace */ |
639 | | ~0x1ffffff, /* src_mask */ |
640 | | 0x1ffffff, /* dst_mask */ |
641 | | true), /* pcrel_offset */ |
642 | | |
643 | | /* When we don't emit link-time-relaxable code from the assembler, or |
644 | | when relaxation has done all it can do, these relocs are used. For |
645 | | GETA/PUSHJ/branches. */ |
646 | | HOWTO (R_MMIX_ADDR19, /* type */ |
647 | | 2, /* rightshift */ |
648 | | 4, /* size */ |
649 | | 19, /* bitsize */ |
650 | | true, /* pc_relative */ |
651 | | 0, /* bitpos */ |
652 | | complain_overflow_signed, /* complain_on_overflow */ |
653 | | mmix_elf_reloc, /* special_function */ |
654 | | "R_MMIX_ADDR19", /* name */ |
655 | | false, /* partial_inplace */ |
656 | | ~0x0100ffff, /* src_mask */ |
657 | | 0x0100ffff, /* dst_mask */ |
658 | | true), /* pcrel_offset */ |
659 | | |
660 | | /* For JMP. */ |
661 | | HOWTO (R_MMIX_ADDR27, /* type */ |
662 | | 2, /* rightshift */ |
663 | | 4, /* size */ |
664 | | 27, /* bitsize */ |
665 | | true, /* pc_relative */ |
666 | | 0, /* bitpos */ |
667 | | complain_overflow_signed, /* complain_on_overflow */ |
668 | | mmix_elf_reloc, /* special_function */ |
669 | | "R_MMIX_ADDR27", /* name */ |
670 | | false, /* partial_inplace */ |
671 | | ~0x1ffffff, /* src_mask */ |
672 | | 0x1ffffff, /* dst_mask */ |
673 | | true), /* pcrel_offset */ |
674 | | |
675 | | /* A general register or the value 0..255. If a value, then the |
676 | | instruction (offset -3) needs adjusting. */ |
677 | | HOWTO (R_MMIX_REG_OR_BYTE, /* type */ |
678 | | 0, /* rightshift */ |
679 | | 2, /* size */ |
680 | | 8, /* bitsize */ |
681 | | false, /* pc_relative */ |
682 | | 0, /* bitpos */ |
683 | | complain_overflow_bitfield, /* complain_on_overflow */ |
684 | | mmix_elf_reloc, /* special_function */ |
685 | | "R_MMIX_REG_OR_BYTE", /* name */ |
686 | | false, /* partial_inplace */ |
687 | | 0, /* src_mask */ |
688 | | 0xff, /* dst_mask */ |
689 | | false), /* pcrel_offset */ |
690 | | |
691 | | /* A general register. */ |
692 | | HOWTO (R_MMIX_REG, /* type */ |
693 | | 0, /* rightshift */ |
694 | | 2, /* size */ |
695 | | 8, /* bitsize */ |
696 | | false, /* pc_relative */ |
697 | | 0, /* bitpos */ |
698 | | complain_overflow_bitfield, /* complain_on_overflow */ |
699 | | mmix_elf_reloc, /* special_function */ |
700 | | "R_MMIX_REG", /* name */ |
701 | | false, /* partial_inplace */ |
702 | | 0, /* src_mask */ |
703 | | 0xff, /* dst_mask */ |
704 | | false), /* pcrel_offset */ |
705 | | |
706 | | /* A register plus an index, corresponding to the relocation expression. |
707 | | The sizes must correspond to the valid range of the expression, while |
708 | | the bitmasks correspond to what we store in the image. */ |
709 | | HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ |
710 | | 0, /* rightshift */ |
711 | | 8, /* size */ |
712 | | 64, /* bitsize */ |
713 | | false, /* pc_relative */ |
714 | | 0, /* bitpos */ |
715 | | complain_overflow_bitfield, /* complain_on_overflow */ |
716 | | mmix_elf_reloc, /* special_function */ |
717 | | "R_MMIX_BASE_PLUS_OFFSET", /* name */ |
718 | | false, /* partial_inplace */ |
719 | | 0, /* src_mask */ |
720 | | 0xffff, /* dst_mask */ |
721 | | false), /* pcrel_offset */ |
722 | | |
723 | | /* A "magic" relocation for a LOCAL expression, asserting that the |
724 | | expression is less than the number of global registers. No actual |
725 | | modification of the contents is done. Implementing this as a |
726 | | relocation was less intrusive than e.g. putting such expressions in a |
727 | | section to discard *after* relocation. */ |
728 | | HOWTO (R_MMIX_LOCAL, /* type */ |
729 | | 0, /* rightshift */ |
730 | | 0, /* size */ |
731 | | 0, /* bitsize */ |
732 | | false, /* pc_relative */ |
733 | | 0, /* bitpos */ |
734 | | complain_overflow_dont, /* complain_on_overflow */ |
735 | | mmix_elf_reloc, /* special_function */ |
736 | | "R_MMIX_LOCAL", /* name */ |
737 | | false, /* partial_inplace */ |
738 | | 0, /* src_mask */ |
739 | | 0, /* dst_mask */ |
740 | | false), /* pcrel_offset */ |
741 | | |
742 | | HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ |
743 | | 2, /* rightshift */ |
744 | | 4, /* size */ |
745 | | 19, /* bitsize */ |
746 | | true, /* pc_relative */ |
747 | | 0, /* bitpos */ |
748 | | complain_overflow_signed, /* complain_on_overflow */ |
749 | | mmix_elf_reloc, /* special_function */ |
750 | | "R_MMIX_PUSHJ_STUBBABLE", /* name */ |
751 | | false, /* partial_inplace */ |
752 | | ~0x0100ffff, /* src_mask */ |
753 | | 0x0100ffff, /* dst_mask */ |
754 | | true) /* pcrel_offset */ |
755 | | }; |
756 | | |
757 | | |
758 | | /* Map BFD reloc types to MMIX ELF reloc types. */ |
759 | | |
760 | | struct mmix_reloc_map |
761 | | { |
762 | | bfd_reloc_code_real_type bfd_reloc_val; |
763 | | enum elf_mmix_reloc_type elf_reloc_val; |
764 | | }; |
765 | | |
766 | | |
767 | | static const struct mmix_reloc_map mmix_reloc_map[] = |
768 | | { |
769 | | {BFD_RELOC_NONE, R_MMIX_NONE}, |
770 | | {BFD_RELOC_8, R_MMIX_8}, |
771 | | {BFD_RELOC_16, R_MMIX_16}, |
772 | | {BFD_RELOC_24, R_MMIX_24}, |
773 | | {BFD_RELOC_32, R_MMIX_32}, |
774 | | {BFD_RELOC_64, R_MMIX_64}, |
775 | | {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, |
776 | | {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, |
777 | | {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, |
778 | | {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, |
779 | | {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, |
780 | | {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, |
781 | | {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, |
782 | | {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, |
783 | | {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, |
784 | | {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, |
785 | | {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, |
786 | | {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, |
787 | | {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, |
788 | | {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, |
789 | | {BFD_RELOC_MMIX_REG, R_MMIX_REG}, |
790 | | {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, |
791 | | {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, |
792 | | {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} |
793 | | }; |
794 | | |
795 | | static reloc_howto_type * |
796 | | bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
797 | | bfd_reloc_code_real_type code) |
798 | 0 | { |
799 | 0 | unsigned int i; |
800 | |
|
801 | 0 | for (i = 0; |
802 | 0 | i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); |
803 | 0 | i++) |
804 | 0 | { |
805 | 0 | if (mmix_reloc_map[i].bfd_reloc_val == code) |
806 | 0 | return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; |
807 | 0 | } |
808 | | |
809 | 0 | return NULL; |
810 | 0 | } |
811 | | |
812 | | static reloc_howto_type * |
813 | | bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
814 | | const char *r_name) |
815 | 0 | { |
816 | 0 | unsigned int i; |
817 | |
|
818 | 0 | for (i = 0; |
819 | 0 | i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); |
820 | 0 | i++) |
821 | 0 | if (elf_mmix_howto_table[i].name != NULL |
822 | 0 | && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) |
823 | 0 | return &elf_mmix_howto_table[i]; |
824 | | |
825 | 0 | return NULL; |
826 | 0 | } |
827 | | |
828 | | static bool |
829 | | mmix_elf_new_section_hook (bfd *abfd, asection *sec) |
830 | 0 | { |
831 | 0 | struct _mmix_elf_section_data *sdata; |
832 | |
|
833 | 0 | sdata = bfd_zalloc (abfd, sizeof (*sdata)); |
834 | 0 | if (sdata == NULL) |
835 | 0 | return false; |
836 | 0 | sec->used_by_bfd = sdata; |
837 | |
|
838 | 0 | return _bfd_elf_new_section_hook (abfd, sec); |
839 | 0 | } |
840 | | |
841 | | |
842 | | /* This function performs the actual bitfiddling and sanity check for a |
843 | | final relocation. Each relocation gets its *worst*-case expansion |
844 | | in size when it arrives here; any reduction in size should have been |
845 | | caught in linker relaxation earlier. When we get here, the relocation |
846 | | looks like the smallest instruction with SWYM:s (nop:s) appended to the |
847 | | max size. We fill in those nop:s. |
848 | | |
849 | | R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) |
850 | | GETA $N,foo |
851 | | -> |
852 | | SETL $N,foo & 0xffff |
853 | | INCML $N,(foo >> 16) & 0xffff |
854 | | INCMH $N,(foo >> 32) & 0xffff |
855 | | INCH $N,(foo >> 48) & 0xffff |
856 | | |
857 | | R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but |
858 | | condbranches needing relaxation might be rare enough to not be |
859 | | worthwhile.) |
860 | | [P]Bcc $N,foo |
861 | | -> |
862 | | [~P]B~cc $N,.+20 |
863 | | SETL $255,foo & ... |
864 | | INCML ... |
865 | | INCMH ... |
866 | | INCH ... |
867 | | GO $255,$255,0 |
868 | | |
869 | | R_MMIX_PUSHJ: (FIXME: Relaxation...) |
870 | | PUSHJ $N,foo |
871 | | -> |
872 | | SETL $255,foo & ... |
873 | | INCML ... |
874 | | INCMH ... |
875 | | INCH ... |
876 | | PUSHGO $N,$255,0 |
877 | | |
878 | | R_MMIX_JMP: (FIXME: Relaxation...) |
879 | | JMP foo |
880 | | -> |
881 | | SETL $255,foo & ... |
882 | | INCML ... |
883 | | INCMH ... |
884 | | INCH ... |
885 | | GO $255,$255,0 |
886 | | |
887 | | R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ |
888 | | |
889 | | static bfd_reloc_status_type |
890 | | mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto, |
891 | | void *datap, bfd_vma addr, bfd_vma value, |
892 | | char **error_message) |
893 | 0 | { |
894 | 0 | bfd *abfd = isec->owner; |
895 | 0 | bfd_reloc_status_type flag = bfd_reloc_ok; |
896 | 0 | bfd_reloc_status_type r; |
897 | 0 | int offs = 0; |
898 | 0 | int reg = 255; |
899 | | |
900 | | /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. |
901 | | We handle the differences here and the common sequence later. */ |
902 | 0 | switch (howto->type) |
903 | 0 | { |
904 | 0 | case R_MMIX_GETA: |
905 | 0 | offs = 0; |
906 | 0 | reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); |
907 | | |
908 | | /* We change to an absolute value. */ |
909 | 0 | value += addr; |
910 | 0 | break; |
911 | | |
912 | 0 | case R_MMIX_CBRANCH: |
913 | 0 | { |
914 | 0 | int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; |
915 | | |
916 | | /* Invert the condition and prediction bit, and set the offset |
917 | | to five instructions ahead. |
918 | | |
919 | | We *can* do better if we want to. If the branch is found to be |
920 | | within limits, we could leave the branch as is; there'll just |
921 | | be a bunch of NOP:s after it. But we shouldn't see this |
922 | | sequence often enough that it's worth doing it. */ |
923 | |
|
924 | 0 | bfd_put_32 (abfd, |
925 | 0 | (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) |
926 | 0 | | (24/4)), |
927 | 0 | (bfd_byte *) datap); |
928 | | |
929 | | /* Put a "GO $255,$255,0" after the common sequence. */ |
930 | 0 | bfd_put_32 (abfd, |
931 | 0 | ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, |
932 | 0 | (bfd_byte *) datap + 20); |
933 | | |
934 | | /* Common sequence starts at offset 4. */ |
935 | 0 | offs = 4; |
936 | | |
937 | | /* We change to an absolute value. */ |
938 | 0 | value += addr; |
939 | 0 | } |
940 | 0 | break; |
941 | | |
942 | 0 | case R_MMIX_PUSHJ_STUBBABLE: |
943 | | /* If the address fits, we're fine. */ |
944 | 0 | if ((value & 3) == 0 |
945 | | /* Note rightshift 0; see R_MMIX_JMP case below. */ |
946 | 0 | && (r = bfd_check_overflow (complain_overflow_signed, |
947 | 0 | howto->bitsize, |
948 | 0 | 0, |
949 | 0 | bfd_arch_bits_per_address (abfd), |
950 | 0 | value)) == bfd_reloc_ok) |
951 | 0 | goto pcrel_mmix_reloc_fits; |
952 | 0 | else |
953 | 0 | { |
954 | 0 | bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; |
955 | | |
956 | | /* We have the bytes at the PUSHJ insn and need to get the |
957 | | position for the stub. There's supposed to be room allocated |
958 | | for the stub. */ |
959 | 0 | bfd_byte *stubcontents |
960 | 0 | = ((bfd_byte *) datap |
961 | 0 | - (addr - (isec->output_section->vma + isec->output_offset)) |
962 | 0 | + size |
963 | 0 | + mmix_elf_section_data (isec)->pjs.stub_offset); |
964 | 0 | bfd_vma stubaddr; |
965 | |
|
966 | 0 | if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0) |
967 | 0 | { |
968 | | /* This shouldn't happen when linking to ELF or mmo, so |
969 | | this is an attempt to link to "binary", right? We |
970 | | can't access the output bfd, so we can't verify that |
971 | | assumption. We only know that the critical |
972 | | mmix_elf_check_common_relocs has not been called, |
973 | | which happens when the output format is different |
974 | | from the input format (and is not mmo). */ |
975 | 0 | if (! mmix_elf_section_data (isec)->has_warned_pushj) |
976 | 0 | { |
977 | | /* For the first such error per input section, produce |
978 | | a verbose message. */ |
979 | 0 | *error_message |
980 | 0 | = _("invalid input relocation when producing" |
981 | 0 | " non-ELF, non-mmo format output;" |
982 | 0 | " please use the objcopy program to convert from" |
983 | 0 | " ELF or mmo," |
984 | 0 | " or assemble using" |
985 | 0 | " \"-no-expand\" (for gcc, \"-Wa,-no-expand\""); |
986 | 0 | mmix_elf_section_data (isec)->has_warned_pushj = true; |
987 | 0 | return bfd_reloc_dangerous; |
988 | 0 | } |
989 | | |
990 | | /* For subsequent errors, return this one, which is |
991 | | rate-limited but looks a little bit different, |
992 | | hopefully without affecting user-friendliness. */ |
993 | 0 | return bfd_reloc_overflow; |
994 | 0 | } |
995 | | |
996 | | /* The address doesn't fit, so redirect the PUSHJ to the |
997 | | location of the stub. */ |
998 | 0 | r = mmix_elf_perform_relocation (isec, |
999 | 0 | &elf_mmix_howto_table |
1000 | 0 | [R_MMIX_ADDR19], |
1001 | 0 | datap, |
1002 | 0 | addr, |
1003 | 0 | isec->output_section->vma |
1004 | 0 | + isec->output_offset |
1005 | 0 | + size |
1006 | 0 | + (mmix_elf_section_data (isec) |
1007 | 0 | ->pjs.stub_offset) |
1008 | 0 | - addr, |
1009 | 0 | error_message); |
1010 | 0 | if (r != bfd_reloc_ok) |
1011 | 0 | return r; |
1012 | | |
1013 | 0 | stubaddr |
1014 | 0 | = (isec->output_section->vma |
1015 | 0 | + isec->output_offset |
1016 | 0 | + size |
1017 | 0 | + mmix_elf_section_data (isec)->pjs.stub_offset); |
1018 | | |
1019 | | /* We generate a simple JMP if that suffices, else the whole 5 |
1020 | | insn stub. */ |
1021 | 0 | if (bfd_check_overflow (complain_overflow_signed, |
1022 | 0 | elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, |
1023 | 0 | 0, |
1024 | 0 | bfd_arch_bits_per_address (abfd), |
1025 | 0 | addr + value - stubaddr) == bfd_reloc_ok) |
1026 | 0 | { |
1027 | 0 | bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); |
1028 | 0 | r = mmix_elf_perform_relocation (isec, |
1029 | 0 | &elf_mmix_howto_table |
1030 | 0 | [R_MMIX_ADDR27], |
1031 | 0 | stubcontents, |
1032 | 0 | stubaddr, |
1033 | 0 | value + addr - stubaddr, |
1034 | 0 | error_message); |
1035 | 0 | mmix_elf_section_data (isec)->pjs.stub_offset += 4; |
1036 | |
|
1037 | 0 | if (size + mmix_elf_section_data (isec)->pjs.stub_offset |
1038 | 0 | > isec->size) |
1039 | 0 | abort (); |
1040 | | |
1041 | 0 | return r; |
1042 | 0 | } |
1043 | 0 | else |
1044 | 0 | { |
1045 | | /* Put a "GO $255,0" after the common sequence. */ |
1046 | 0 | bfd_put_32 (abfd, |
1047 | 0 | ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) |
1048 | 0 | | 0xff00, (bfd_byte *) stubcontents + 16); |
1049 | | |
1050 | | /* Prepare for the general code to set the first part of the |
1051 | | linker stub, and */ |
1052 | 0 | value += addr; |
1053 | 0 | datap = stubcontents; |
1054 | 0 | mmix_elf_section_data (isec)->pjs.stub_offset |
1055 | 0 | += MAX_PUSHJ_STUB_SIZE; |
1056 | 0 | } |
1057 | 0 | } |
1058 | 0 | break; |
1059 | | |
1060 | 0 | case R_MMIX_PUSHJ: |
1061 | 0 | { |
1062 | 0 | int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); |
1063 | | |
1064 | | /* Put a "PUSHGO $N,$255,0" after the common sequence. */ |
1065 | 0 | bfd_put_32 (abfd, |
1066 | 0 | ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) |
1067 | 0 | | (inreg << 16) |
1068 | 0 | | 0xff00, |
1069 | 0 | (bfd_byte *) datap + 16); |
1070 | | |
1071 | | /* We change to an absolute value. */ |
1072 | 0 | value += addr; |
1073 | 0 | } |
1074 | 0 | break; |
1075 | | |
1076 | 0 | case R_MMIX_JMP: |
1077 | | /* This one is a little special. If we get here on a non-relaxing |
1078 | | link, and the destination is actually in range, we don't need to |
1079 | | execute the nops. |
1080 | | If so, we fall through to the bit-fiddling relocs. |
1081 | | |
1082 | | FIXME: bfd_check_overflow seems broken; the relocation is |
1083 | | rightshifted before testing, so supply a zero rightshift. */ |
1084 | |
|
1085 | 0 | if (! ((value & 3) == 0 |
1086 | 0 | && (r = bfd_check_overflow (complain_overflow_signed, |
1087 | 0 | howto->bitsize, |
1088 | 0 | 0, |
1089 | 0 | bfd_arch_bits_per_address (abfd), |
1090 | 0 | value)) == bfd_reloc_ok)) |
1091 | 0 | { |
1092 | | /* If the relocation doesn't fit in a JMP, we let the NOP:s be |
1093 | | modified below, and put a "GO $255,$255,0" after the |
1094 | | address-loading sequence. */ |
1095 | 0 | bfd_put_32 (abfd, |
1096 | 0 | ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) |
1097 | 0 | | 0xffff00, |
1098 | 0 | (bfd_byte *) datap + 16); |
1099 | | |
1100 | | /* We change to an absolute value. */ |
1101 | 0 | value += addr; |
1102 | 0 | break; |
1103 | 0 | } |
1104 | | /* FALLTHROUGH. */ |
1105 | 0 | case R_MMIX_ADDR19: |
1106 | 0 | case R_MMIX_ADDR27: |
1107 | 0 | pcrel_mmix_reloc_fits: |
1108 | | /* These must be in range, or else we emit an error. */ |
1109 | 0 | if ((value & 3) == 0 |
1110 | | /* Note rightshift 0; see above. */ |
1111 | 0 | && (r = bfd_check_overflow (complain_overflow_signed, |
1112 | 0 | howto->bitsize, |
1113 | 0 | 0, |
1114 | 0 | bfd_arch_bits_per_address (abfd), |
1115 | 0 | value)) == bfd_reloc_ok) |
1116 | 0 | { |
1117 | 0 | bfd_vma in1 |
1118 | 0 | = bfd_get_32 (abfd, (bfd_byte *) datap); |
1119 | 0 | bfd_vma highbit; |
1120 | |
|
1121 | 0 | if ((bfd_signed_vma) value < 0) |
1122 | 0 | { |
1123 | 0 | highbit = 1 << 24; |
1124 | 0 | value += (1 << (howto->bitsize - 1)); |
1125 | 0 | } |
1126 | 0 | else |
1127 | 0 | highbit = 0; |
1128 | |
|
1129 | 0 | value >>= 2; |
1130 | |
|
1131 | 0 | bfd_put_32 (abfd, |
1132 | 0 | (in1 & howto->src_mask) |
1133 | 0 | | highbit |
1134 | 0 | | (value & howto->dst_mask), |
1135 | 0 | (bfd_byte *) datap); |
1136 | |
|
1137 | 0 | return bfd_reloc_ok; |
1138 | 0 | } |
1139 | 0 | else |
1140 | 0 | return bfd_reloc_overflow; |
1141 | | |
1142 | 0 | case R_MMIX_BASE_PLUS_OFFSET: |
1143 | 0 | { |
1144 | 0 | struct bpo_reloc_section_info *bpodata |
1145 | 0 | = mmix_elf_section_data (isec)->bpo.reloc; |
1146 | 0 | asection *bpo_greg_section; |
1147 | 0 | struct bpo_greg_section_info *gregdata; |
1148 | 0 | size_t bpo_index; |
1149 | |
|
1150 | 0 | if (bpodata == NULL) |
1151 | 0 | { |
1152 | | /* This shouldn't happen when linking to ELF or mmo, so |
1153 | | this is an attempt to link to "binary", right? We |
1154 | | can't access the output bfd, so we can't verify that |
1155 | | assumption. We only know that the critical |
1156 | | mmix_elf_check_common_relocs has not been called, which |
1157 | | happens when the output format is different from the |
1158 | | input format (and is not mmo). */ |
1159 | 0 | if (! mmix_elf_section_data (isec)->has_warned_bpo) |
1160 | 0 | { |
1161 | | /* For the first such error per input section, produce |
1162 | | a verbose message. */ |
1163 | 0 | *error_message |
1164 | 0 | = _("invalid input relocation when producing" |
1165 | 0 | " non-ELF, non-mmo format output;" |
1166 | 0 | " please use the objcopy program to convert from" |
1167 | 0 | " ELF or mmo," |
1168 | 0 | " or compile using the gcc-option" |
1169 | 0 | " \"-mno-base-addresses\"."); |
1170 | 0 | mmix_elf_section_data (isec)->has_warned_bpo = true; |
1171 | 0 | return bfd_reloc_dangerous; |
1172 | 0 | } |
1173 | | |
1174 | | /* For subsequent errors, return this one, which is |
1175 | | rate-limited but looks a little bit different, |
1176 | | hopefully without affecting user-friendliness. */ |
1177 | 0 | return bfd_reloc_overflow; |
1178 | 0 | } |
1179 | | |
1180 | 0 | bpo_greg_section = bpodata->bpo_greg_section; |
1181 | 0 | gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg; |
1182 | 0 | bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; |
1183 | | |
1184 | | /* A consistency check: The value we now have in "relocation" must |
1185 | | be the same as the value we stored for that relocation. It |
1186 | | doesn't cost much, so can be left in at all times. */ |
1187 | 0 | if (value != gregdata->reloc_request[bpo_index].value) |
1188 | 0 | { |
1189 | 0 | _bfd_error_handler |
1190 | | /* xgettext:c-format */ |
1191 | 0 | (_("%pB: Internal inconsistency error for value for\n\ |
1192 | 0 | linker-allocated global register: linked: %#" PRIx64 " != relaxed: %#" PRIx64 ""), |
1193 | 0 | isec->owner, |
1194 | 0 | (uint64_t) value, |
1195 | 0 | (uint64_t) gregdata->reloc_request[bpo_index].value); |
1196 | 0 | bfd_set_error (bfd_error_bad_value); |
1197 | 0 | return bfd_reloc_overflow; |
1198 | 0 | } |
1199 | | |
1200 | | /* Then store the register number and offset for that register |
1201 | | into datap and datap + 1 respectively. */ |
1202 | 0 | bfd_put_8 (abfd, |
1203 | 0 | gregdata->reloc_request[bpo_index].regindex |
1204 | 0 | + bpo_greg_section->output_section->vma / 8, |
1205 | 0 | datap); |
1206 | 0 | bfd_put_8 (abfd, |
1207 | 0 | gregdata->reloc_request[bpo_index].offset, |
1208 | 0 | ((unsigned char *) datap) + 1); |
1209 | 0 | return bfd_reloc_ok; |
1210 | 0 | } |
1211 | | |
1212 | 0 | case R_MMIX_REG_OR_BYTE: |
1213 | 0 | case R_MMIX_REG: |
1214 | 0 | if (value > 255) |
1215 | 0 | return bfd_reloc_overflow; |
1216 | 0 | bfd_put_8 (abfd, value, datap); |
1217 | 0 | return bfd_reloc_ok; |
1218 | | |
1219 | 0 | default: |
1220 | 0 | BAD_CASE (howto->type); |
1221 | 0 | } |
1222 | | |
1223 | | /* This code adds the common SETL/INCML/INCMH/INCH worst-case |
1224 | | sequence. */ |
1225 | | |
1226 | | /* Lowest two bits must be 0. We return bfd_reloc_overflow for |
1227 | | everything that looks strange. */ |
1228 | 0 | if (value & 3) |
1229 | 0 | flag = bfd_reloc_overflow; |
1230 | |
|
1231 | 0 | bfd_put_32 (abfd, |
1232 | 0 | (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), |
1233 | 0 | (bfd_byte *) datap + offs); |
1234 | 0 | bfd_put_32 (abfd, |
1235 | 0 | (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), |
1236 | 0 | (bfd_byte *) datap + offs + 4); |
1237 | 0 | bfd_put_32 (abfd, |
1238 | 0 | (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), |
1239 | 0 | (bfd_byte *) datap + offs + 8); |
1240 | 0 | bfd_put_32 (abfd, |
1241 | 0 | (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), |
1242 | 0 | (bfd_byte *) datap + offs + 12); |
1243 | |
|
1244 | 0 | return flag; |
1245 | 0 | } |
1246 | | |
1247 | | /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ |
1248 | | |
1249 | | static bool |
1250 | | mmix_info_to_howto_rela (bfd *abfd, |
1251 | | arelent *cache_ptr, |
1252 | | Elf_Internal_Rela *dst) |
1253 | 0 | { |
1254 | 0 | unsigned int r_type; |
1255 | |
|
1256 | 0 | r_type = ELF64_R_TYPE (dst->r_info); |
1257 | 0 | if (r_type >= (unsigned int) R_MMIX_max) |
1258 | 0 | { |
1259 | | /* xgettext:c-format */ |
1260 | 0 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
1261 | 0 | abfd, r_type); |
1262 | 0 | bfd_set_error (bfd_error_bad_value); |
1263 | 0 | return false; |
1264 | 0 | } |
1265 | 0 | cache_ptr->howto = &elf_mmix_howto_table[r_type]; |
1266 | 0 | return true; |
1267 | 0 | } |
1268 | | |
1269 | | /* Any MMIX-specific relocation gets here at assembly time or when linking |
1270 | | to other formats (such as mmo); this is the relocation function from |
1271 | | the reloc_table. We don't get here for final pure ELF linking. */ |
1272 | | |
1273 | | static bfd_reloc_status_type |
1274 | | mmix_elf_reloc (bfd *abfd, |
1275 | | arelent *reloc_entry, |
1276 | | asymbol *symbol, |
1277 | | void * data, |
1278 | | asection *input_section, |
1279 | | bfd *output_bfd, |
1280 | | char **error_message) |
1281 | 0 | { |
1282 | 0 | bfd_vma relocation; |
1283 | 0 | bfd_reloc_status_type r; |
1284 | 0 | asection *reloc_target_output_section; |
1285 | 0 | bfd_reloc_status_type flag = bfd_reloc_ok; |
1286 | 0 | bfd_vma output_base = 0; |
1287 | |
|
1288 | 0 | r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
1289 | 0 | input_section, output_bfd, error_message); |
1290 | | |
1291 | | /* If that was all that was needed (i.e. this isn't a final link, only |
1292 | | some segment adjustments), we're done. */ |
1293 | 0 | if (r != bfd_reloc_continue) |
1294 | 0 | return r; |
1295 | | |
1296 | 0 | if (bfd_is_und_section (symbol->section) |
1297 | 0 | && (symbol->flags & BSF_WEAK) == 0 |
1298 | 0 | && output_bfd == (bfd *) NULL) |
1299 | 0 | return bfd_reloc_undefined; |
1300 | | |
1301 | | /* Is the address of the relocation really within the section? */ |
1302 | 0 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
1303 | 0 | return bfd_reloc_outofrange; |
1304 | | |
1305 | | /* Work out which section the relocation is targeted at and the |
1306 | | initial relocation command value. */ |
1307 | | |
1308 | | /* Get symbol value. (Common symbols are special.) */ |
1309 | 0 | if (bfd_is_com_section (symbol->section)) |
1310 | 0 | relocation = 0; |
1311 | 0 | else |
1312 | 0 | relocation = symbol->value; |
1313 | |
|
1314 | 0 | reloc_target_output_section = bfd_asymbol_section (symbol)->output_section; |
1315 | | |
1316 | | /* Here the variable relocation holds the final address of the symbol we |
1317 | | are relocating against, plus any addend. */ |
1318 | 0 | if (output_bfd) |
1319 | 0 | output_base = 0; |
1320 | 0 | else |
1321 | 0 | output_base = reloc_target_output_section->vma; |
1322 | |
|
1323 | 0 | relocation += output_base + symbol->section->output_offset; |
1324 | |
|
1325 | 0 | if (output_bfd != (bfd *) NULL) |
1326 | 0 | { |
1327 | | /* Add in supplied addend. */ |
1328 | 0 | relocation += reloc_entry->addend; |
1329 | | |
1330 | | /* This is a partial relocation, and we want to apply the |
1331 | | relocation to the reloc entry rather than the raw data. |
1332 | | Modify the reloc inplace to reflect what we now know. */ |
1333 | 0 | reloc_entry->addend = relocation; |
1334 | 0 | reloc_entry->address += input_section->output_offset; |
1335 | 0 | return flag; |
1336 | 0 | } |
1337 | | |
1338 | 0 | return mmix_final_link_relocate (reloc_entry->howto, input_section, |
1339 | 0 | data, reloc_entry->address, |
1340 | 0 | reloc_entry->addend, relocation, |
1341 | 0 | bfd_asymbol_name (symbol), |
1342 | 0 | reloc_target_output_section, |
1343 | 0 | error_message); |
1344 | 0 | } |
1345 | | |
1346 | | /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it |
1347 | | for guidance if you're thinking of copying this. */ |
1348 | | |
1349 | | static int |
1350 | | mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
1351 | | struct bfd_link_info *info, |
1352 | | bfd *input_bfd, |
1353 | | asection *input_section, |
1354 | | bfd_byte *contents, |
1355 | | Elf_Internal_Rela *relocs, |
1356 | | Elf_Internal_Sym *local_syms, |
1357 | | asection **local_sections) |
1358 | 0 | { |
1359 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1360 | 0 | struct elf_link_hash_entry **sym_hashes; |
1361 | 0 | Elf_Internal_Rela *rel; |
1362 | 0 | Elf_Internal_Rela *relend; |
1363 | 0 | bfd_size_type size; |
1364 | 0 | size_t pjsno = 0; |
1365 | |
|
1366 | 0 | size = input_section->rawsize ? input_section->rawsize : input_section->size; |
1367 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
1368 | 0 | sym_hashes = elf_sym_hashes (input_bfd); |
1369 | 0 | relend = relocs + input_section->reloc_count; |
1370 | | |
1371 | | /* Zero the stub area before we start. */ |
1372 | 0 | if (input_section->rawsize != 0 |
1373 | 0 | && input_section->size > input_section->rawsize) |
1374 | 0 | memset (contents + input_section->rawsize, 0, |
1375 | 0 | input_section->size - input_section->rawsize); |
1376 | |
|
1377 | 0 | for (rel = relocs; rel < relend; rel ++) |
1378 | 0 | { |
1379 | 0 | reloc_howto_type *howto; |
1380 | 0 | unsigned long r_symndx; |
1381 | 0 | Elf_Internal_Sym *sym; |
1382 | 0 | asection *sec; |
1383 | 0 | struct elf_link_hash_entry *h; |
1384 | 0 | bfd_vma relocation; |
1385 | 0 | bfd_reloc_status_type r; |
1386 | 0 | const char *name = NULL; |
1387 | 0 | int r_type; |
1388 | 0 | bool undefined_signalled = false; |
1389 | |
|
1390 | 0 | r_type = ELF64_R_TYPE (rel->r_info); |
1391 | |
|
1392 | 0 | if (r_type == R_MMIX_GNU_VTINHERIT |
1393 | 0 | || r_type == R_MMIX_GNU_VTENTRY) |
1394 | 0 | continue; |
1395 | | |
1396 | 0 | r_symndx = ELF64_R_SYM (rel->r_info); |
1397 | |
|
1398 | 0 | howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); |
1399 | 0 | h = NULL; |
1400 | 0 | sym = NULL; |
1401 | 0 | sec = NULL; |
1402 | |
|
1403 | 0 | if (r_symndx < symtab_hdr->sh_info) |
1404 | 0 | { |
1405 | 0 | sym = local_syms + r_symndx; |
1406 | 0 | sec = local_sections [r_symndx]; |
1407 | 0 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
1408 | |
|
1409 | 0 | name = bfd_elf_string_from_elf_section (input_bfd, |
1410 | 0 | symtab_hdr->sh_link, |
1411 | 0 | sym->st_name); |
1412 | 0 | if (name == NULL) |
1413 | 0 | name = bfd_section_name (sec); |
1414 | 0 | } |
1415 | 0 | else |
1416 | 0 | { |
1417 | 0 | bool unresolved_reloc, ignored; |
1418 | |
|
1419 | 0 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
1420 | 0 | r_symndx, symtab_hdr, sym_hashes, |
1421 | 0 | h, sec, relocation, |
1422 | 0 | unresolved_reloc, undefined_signalled, |
1423 | 0 | ignored); |
1424 | 0 | name = h->root.root.string; |
1425 | 0 | } |
1426 | | |
1427 | 0 | if (sec != NULL && discarded_section (sec)) |
1428 | 0 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
1429 | 0 | rel, 1, relend, howto, 0, contents); |
1430 | |
|
1431 | 0 | if (bfd_link_relocatable (info)) |
1432 | 0 | { |
1433 | | /* This is a relocatable link. For most relocs we don't have to |
1434 | | change anything, unless the reloc is against a section |
1435 | | symbol, in which case we have to adjust according to where |
1436 | | the section symbol winds up in the output section. */ |
1437 | 0 | if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
1438 | 0 | rel->r_addend += sec->output_offset; |
1439 | | |
1440 | | /* For PUSHJ stub relocs however, we may need to change the |
1441 | | reloc and the section contents, if the reloc doesn't reach |
1442 | | beyond the end of the output section and previous stubs. |
1443 | | Then we change the section contents to be a PUSHJ to the end |
1444 | | of the input section plus stubs (we can do that without using |
1445 | | a reloc), and then we change the reloc to be a R_MMIX_PUSHJ |
1446 | | at the stub location. */ |
1447 | 0 | if (r_type == R_MMIX_PUSHJ_STUBBABLE) |
1448 | 0 | { |
1449 | | /* We've already checked whether we need a stub; use that |
1450 | | knowledge. */ |
1451 | 0 | if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] |
1452 | 0 | != 0) |
1453 | 0 | { |
1454 | 0 | Elf_Internal_Rela relcpy; |
1455 | |
|
1456 | 0 | if (mmix_elf_section_data (input_section) |
1457 | 0 | ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) |
1458 | 0 | abort (); |
1459 | | |
1460 | | /* There's already a PUSHJ insn there, so just fill in |
1461 | | the offset bits to the stub. */ |
1462 | 0 | if (mmix_final_link_relocate (elf_mmix_howto_table |
1463 | 0 | + R_MMIX_ADDR19, |
1464 | 0 | input_section, |
1465 | 0 | contents, |
1466 | 0 | rel->r_offset, |
1467 | 0 | 0, |
1468 | 0 | input_section |
1469 | 0 | ->output_section->vma |
1470 | 0 | + input_section->output_offset |
1471 | 0 | + size |
1472 | 0 | + mmix_elf_section_data (input_section) |
1473 | 0 | ->pjs.stub_offset, |
1474 | 0 | NULL, NULL, NULL) != bfd_reloc_ok) |
1475 | 0 | return false; |
1476 | | |
1477 | | /* Put a JMP insn at the stub; it goes with the |
1478 | | R_MMIX_JMP reloc. */ |
1479 | 0 | bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, |
1480 | 0 | contents |
1481 | 0 | + size |
1482 | 0 | + mmix_elf_section_data (input_section) |
1483 | 0 | ->pjs.stub_offset); |
1484 | | |
1485 | | /* Change the reloc to be at the stub, and to a full |
1486 | | R_MMIX_JMP reloc. */ |
1487 | 0 | rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); |
1488 | 0 | rel->r_offset |
1489 | 0 | = (size |
1490 | 0 | + mmix_elf_section_data (input_section) |
1491 | 0 | ->pjs.stub_offset); |
1492 | |
|
1493 | 0 | mmix_elf_section_data (input_section)->pjs.stub_offset |
1494 | 0 | += MAX_PUSHJ_STUB_SIZE; |
1495 | | |
1496 | | /* Shift this reloc to the end of the relocs to maintain |
1497 | | the r_offset sorted reloc order. */ |
1498 | 0 | relcpy = *rel; |
1499 | 0 | memmove (rel, rel + 1, (char *) relend - (char *) (rel + 1)); |
1500 | 0 | relend[-1] = relcpy; |
1501 | | |
1502 | | /* Back up one reloc, or else we'd skip the next reloc |
1503 | | in turn. */ |
1504 | 0 | rel--; |
1505 | 0 | } |
1506 | | |
1507 | 0 | pjsno++; |
1508 | 0 | } |
1509 | 0 | continue; |
1510 | 0 | } |
1511 | | |
1512 | 0 | r = mmix_final_link_relocate (howto, input_section, |
1513 | 0 | contents, rel->r_offset, |
1514 | 0 | rel->r_addend, relocation, name, sec, NULL); |
1515 | |
|
1516 | 0 | if (r != bfd_reloc_ok) |
1517 | 0 | { |
1518 | 0 | const char * msg = (const char *) NULL; |
1519 | |
|
1520 | 0 | switch (r) |
1521 | 0 | { |
1522 | 0 | case bfd_reloc_overflow: |
1523 | 0 | info->callbacks->reloc_overflow |
1524 | 0 | (info, (h ? &h->root : NULL), name, howto->name, |
1525 | 0 | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
1526 | 0 | break; |
1527 | | |
1528 | 0 | case bfd_reloc_undefined: |
1529 | | /* We may have sent this message above. */ |
1530 | 0 | if (! undefined_signalled) |
1531 | 0 | info->callbacks->undefined_symbol |
1532 | 0 | (info, name, input_bfd, input_section, rel->r_offset, true); |
1533 | 0 | undefined_signalled = true; |
1534 | 0 | break; |
1535 | | |
1536 | 0 | case bfd_reloc_outofrange: |
1537 | 0 | msg = _("internal error: out of range error"); |
1538 | 0 | break; |
1539 | | |
1540 | 0 | case bfd_reloc_notsupported: |
1541 | 0 | msg = _("internal error: unsupported relocation error"); |
1542 | 0 | break; |
1543 | | |
1544 | 0 | case bfd_reloc_dangerous: |
1545 | 0 | msg = _("internal error: dangerous relocation"); |
1546 | 0 | break; |
1547 | | |
1548 | 0 | default: |
1549 | 0 | msg = _("internal error: unknown error"); |
1550 | 0 | break; |
1551 | 0 | } |
1552 | | |
1553 | 0 | if (msg) |
1554 | 0 | (*info->callbacks->warning) (info, msg, name, input_bfd, |
1555 | 0 | input_section, rel->r_offset); |
1556 | 0 | } |
1557 | 0 | } |
1558 | | |
1559 | 0 | return true; |
1560 | 0 | } |
1561 | | |
1562 | | /* Perform a single relocation. By default we use the standard BFD |
1563 | | routines. A few relocs we have to do ourselves. */ |
1564 | | |
1565 | | static bfd_reloc_status_type |
1566 | | mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section, |
1567 | | bfd_byte *contents, bfd_vma r_offset, |
1568 | | bfd_signed_vma r_addend, bfd_vma relocation, |
1569 | | const char *symname, asection *symsec, |
1570 | | char **error_message) |
1571 | 0 | { |
1572 | 0 | bfd_reloc_status_type r = bfd_reloc_ok; |
1573 | 0 | bfd_vma addr |
1574 | 0 | = (input_section->output_section->vma |
1575 | 0 | + input_section->output_offset |
1576 | 0 | + r_offset); |
1577 | 0 | bfd_signed_vma srel |
1578 | 0 | = (bfd_signed_vma) relocation + r_addend; |
1579 | |
|
1580 | 0 | switch (howto->type) |
1581 | 0 | { |
1582 | | /* All these are PC-relative. */ |
1583 | 0 | case R_MMIX_PUSHJ_STUBBABLE: |
1584 | 0 | case R_MMIX_PUSHJ: |
1585 | 0 | case R_MMIX_CBRANCH: |
1586 | 0 | case R_MMIX_ADDR19: |
1587 | 0 | case R_MMIX_GETA: |
1588 | 0 | case R_MMIX_ADDR27: |
1589 | 0 | case R_MMIX_JMP: |
1590 | 0 | contents += r_offset; |
1591 | |
|
1592 | 0 | srel -= (input_section->output_section->vma |
1593 | 0 | + input_section->output_offset |
1594 | 0 | + r_offset); |
1595 | |
|
1596 | 0 | r = mmix_elf_perform_relocation (input_section, howto, contents, |
1597 | 0 | addr, srel, error_message); |
1598 | 0 | break; |
1599 | | |
1600 | 0 | case R_MMIX_BASE_PLUS_OFFSET: |
1601 | 0 | if (symsec == NULL) |
1602 | 0 | return bfd_reloc_undefined; |
1603 | | |
1604 | | /* Check that we're not relocating against a register symbol. */ |
1605 | 0 | if (strcmp (bfd_section_name (symsec), |
1606 | 0 | MMIX_REG_CONTENTS_SECTION_NAME) == 0 |
1607 | 0 | || strcmp (bfd_section_name (symsec), |
1608 | 0 | MMIX_REG_SECTION_NAME) == 0) |
1609 | 0 | { |
1610 | | /* Note: This is separated out into two messages in order |
1611 | | to ease the translation into other languages. */ |
1612 | 0 | if (symname == NULL || *symname == 0) |
1613 | 0 | _bfd_error_handler |
1614 | | /* xgettext:c-format */ |
1615 | 0 | (_("%pB: base-plus-offset relocation against register symbol:" |
1616 | 0 | " (unknown) in %pA"), |
1617 | 0 | input_section->owner, symsec); |
1618 | 0 | else |
1619 | 0 | _bfd_error_handler |
1620 | | /* xgettext:c-format */ |
1621 | 0 | (_("%pB: base-plus-offset relocation against register symbol:" |
1622 | 0 | " %s in %pA"), |
1623 | 0 | input_section->owner, symname, symsec); |
1624 | 0 | return bfd_reloc_overflow; |
1625 | 0 | } |
1626 | 0 | goto do_mmix_reloc; |
1627 | | |
1628 | 0 | case R_MMIX_REG_OR_BYTE: |
1629 | 0 | case R_MMIX_REG: |
1630 | | /* For now, we handle these alike. They must refer to an register |
1631 | | symbol, which is either relative to the register section and in |
1632 | | the range 0..255, or is in the register contents section with vma |
1633 | | regno * 8. */ |
1634 | | |
1635 | | /* FIXME: A better way to check for reg contents section? |
1636 | | FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ |
1637 | 0 | if (symsec == NULL) |
1638 | 0 | return bfd_reloc_undefined; |
1639 | | |
1640 | 0 | if (strcmp (bfd_section_name (symsec), |
1641 | 0 | MMIX_REG_CONTENTS_SECTION_NAME) == 0) |
1642 | 0 | { |
1643 | 0 | if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) |
1644 | 0 | { |
1645 | | /* The bfd_reloc_outofrange return value, though intuitively |
1646 | | a better value, will not get us an error. */ |
1647 | 0 | return bfd_reloc_overflow; |
1648 | 0 | } |
1649 | 0 | srel /= 8; |
1650 | 0 | } |
1651 | 0 | else if (strcmp (bfd_section_name (symsec), |
1652 | 0 | MMIX_REG_SECTION_NAME) == 0) |
1653 | 0 | { |
1654 | 0 | if (srel < 0 || srel > 255) |
1655 | | /* The bfd_reloc_outofrange return value, though intuitively a |
1656 | | better value, will not get us an error. */ |
1657 | 0 | return bfd_reloc_overflow; |
1658 | 0 | } |
1659 | 0 | else |
1660 | 0 | { |
1661 | | /* Note: This is separated out into two messages in order |
1662 | | to ease the translation into other languages. */ |
1663 | 0 | if (symname == NULL || *symname == 0) |
1664 | 0 | _bfd_error_handler |
1665 | | /* xgettext:c-format */ |
1666 | 0 | (_("%pB: register relocation against non-register symbol:" |
1667 | 0 | " (unknown) in %pA"), |
1668 | 0 | input_section->owner, symsec); |
1669 | 0 | else |
1670 | 0 | _bfd_error_handler |
1671 | | /* xgettext:c-format */ |
1672 | 0 | (_("%pB: register relocation against non-register symbol:" |
1673 | 0 | " %s in %pA"), |
1674 | 0 | input_section->owner, symname, symsec); |
1675 | | |
1676 | | /* The bfd_reloc_outofrange return value, though intuitively a |
1677 | | better value, will not get us an error. */ |
1678 | 0 | return bfd_reloc_overflow; |
1679 | 0 | } |
1680 | 0 | do_mmix_reloc: |
1681 | 0 | contents += r_offset; |
1682 | 0 | r = mmix_elf_perform_relocation (input_section, howto, contents, |
1683 | 0 | addr, srel, error_message); |
1684 | 0 | break; |
1685 | | |
1686 | 0 | case R_MMIX_LOCAL: |
1687 | | /* This isn't a real relocation, it's just an assertion that the |
1688 | | final relocation value corresponds to a local register. We |
1689 | | ignore the actual relocation; nothing is changed. */ |
1690 | 0 | { |
1691 | 0 | asection *regsec |
1692 | 0 | = bfd_get_section_by_name (input_section->output_section->owner, |
1693 | 0 | MMIX_REG_CONTENTS_SECTION_NAME); |
1694 | 0 | bfd_vma first_global; |
1695 | | |
1696 | | /* Check that this is an absolute value, or a reference to the |
1697 | | register contents section or the register (symbol) section. |
1698 | | Absolute numbers can get here as undefined section. Undefined |
1699 | | symbols are signalled elsewhere, so there's no conflict in us |
1700 | | accidentally handling it. */ |
1701 | 0 | if (!bfd_is_abs_section (symsec) |
1702 | 0 | && !bfd_is_und_section (symsec) |
1703 | 0 | && strcmp (bfd_section_name (symsec), |
1704 | 0 | MMIX_REG_CONTENTS_SECTION_NAME) != 0 |
1705 | 0 | && strcmp (bfd_section_name (symsec), |
1706 | 0 | MMIX_REG_SECTION_NAME) != 0) |
1707 | 0 | { |
1708 | 0 | _bfd_error_handler |
1709 | 0 | (_("%pB: directive LOCAL valid only with a register or absolute value"), |
1710 | 0 | input_section->owner); |
1711 | |
|
1712 | 0 | return bfd_reloc_overflow; |
1713 | 0 | } |
1714 | | |
1715 | | /* If we don't have a register contents section, then $255 is the |
1716 | | first global register. */ |
1717 | 0 | if (regsec == NULL) |
1718 | 0 | first_global = 255; |
1719 | 0 | else |
1720 | 0 | { |
1721 | 0 | first_global = bfd_section_vma (regsec) / 8; |
1722 | 0 | if (strcmp (bfd_section_name (symsec), |
1723 | 0 | MMIX_REG_CONTENTS_SECTION_NAME) == 0) |
1724 | 0 | { |
1725 | 0 | if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) |
1726 | | /* The bfd_reloc_outofrange return value, though |
1727 | | intuitively a better value, will not get us an error. */ |
1728 | 0 | return bfd_reloc_overflow; |
1729 | 0 | srel /= 8; |
1730 | 0 | } |
1731 | 0 | } |
1732 | | |
1733 | 0 | if ((bfd_vma) srel >= first_global) |
1734 | 0 | { |
1735 | | /* FIXME: Better error message. */ |
1736 | 0 | _bfd_error_handler |
1737 | | /* xgettext:c-format */ |
1738 | 0 | (_("%pB: LOCAL directive: " |
1739 | 0 | "register $%" PRId64 " is not a local register;" |
1740 | 0 | " first global register is $%" PRId64), |
1741 | 0 | input_section->owner, (int64_t) srel, (int64_t) first_global); |
1742 | |
|
1743 | 0 | return bfd_reloc_overflow; |
1744 | 0 | } |
1745 | 0 | } |
1746 | 0 | r = bfd_reloc_ok; |
1747 | 0 | break; |
1748 | | |
1749 | 0 | default: |
1750 | 0 | r = _bfd_final_link_relocate (howto, input_section->owner, input_section, |
1751 | 0 | contents, r_offset, |
1752 | 0 | relocation, r_addend); |
1753 | 0 | } |
1754 | | |
1755 | 0 | return r; |
1756 | 0 | } |
1757 | | |
1758 | | /* Return the section that should be marked against GC for a given |
1759 | | relocation. */ |
1760 | | |
1761 | | static asection * |
1762 | | mmix_elf_gc_mark_hook (asection *sec, |
1763 | | struct bfd_link_info *info, |
1764 | | Elf_Internal_Rela *rel, |
1765 | | struct elf_link_hash_entry *h, |
1766 | | Elf_Internal_Sym *sym) |
1767 | 0 | { |
1768 | 0 | if (h != NULL) |
1769 | 0 | switch (ELF64_R_TYPE (rel->r_info)) |
1770 | 0 | { |
1771 | 0 | case R_MMIX_GNU_VTINHERIT: |
1772 | 0 | case R_MMIX_GNU_VTENTRY: |
1773 | 0 | return NULL; |
1774 | 0 | } |
1775 | | |
1776 | 0 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
1777 | 0 | } |
1778 | | |
1779 | | /* Sort register relocs to come before expanding relocs. */ |
1780 | | |
1781 | | static int |
1782 | | mmix_elf_sort_relocs (const void * p1, const void * p2) |
1783 | 0 | { |
1784 | 0 | const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; |
1785 | 0 | const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; |
1786 | 0 | int r1_is_reg, r2_is_reg; |
1787 | | |
1788 | | /* Sort primarily on r_offset & ~3, so relocs are done to consecutive |
1789 | | insns. */ |
1790 | 0 | if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) |
1791 | 0 | return 1; |
1792 | 0 | else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) |
1793 | 0 | return -1; |
1794 | | |
1795 | 0 | r1_is_reg |
1796 | 0 | = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE |
1797 | 0 | || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); |
1798 | 0 | r2_is_reg |
1799 | 0 | = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE |
1800 | 0 | || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); |
1801 | 0 | if (r1_is_reg != r2_is_reg) |
1802 | 0 | return r2_is_reg - r1_is_reg; |
1803 | | |
1804 | | /* Neither or both are register relocs. Then sort on full offset. */ |
1805 | 0 | if (r1->r_offset > r2->r_offset) |
1806 | 0 | return 1; |
1807 | 0 | else if (r1->r_offset < r2->r_offset) |
1808 | 0 | return -1; |
1809 | 0 | return 0; |
1810 | 0 | } |
1811 | | |
1812 | | /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ |
1813 | | |
1814 | | static bool |
1815 | | mmix_elf_check_common_relocs (bfd *abfd, |
1816 | | struct bfd_link_info *info, |
1817 | | asection *sec, |
1818 | | const Elf_Internal_Rela *relocs) |
1819 | 0 | { |
1820 | 0 | bfd *bpo_greg_owner = NULL; |
1821 | 0 | asection *allocated_gregs_section = NULL; |
1822 | 0 | struct bpo_greg_section_info *gregdata = NULL; |
1823 | 0 | struct bpo_reloc_section_info *bpodata = NULL; |
1824 | 0 | const Elf_Internal_Rela *rel; |
1825 | 0 | const Elf_Internal_Rela *rel_end; |
1826 | | |
1827 | | /* We currently have to abuse this COFF-specific member, since there's |
1828 | | no target-machine-dedicated member. There's no alternative outside |
1829 | | the bfd_link_info struct; we can't specialize a hash-table since |
1830 | | they're different between ELF and mmo. */ |
1831 | 0 | bpo_greg_owner = (bfd *) info->base_file; |
1832 | |
|
1833 | 0 | rel_end = relocs + sec->reloc_count; |
1834 | 0 | for (rel = relocs; rel < rel_end; rel++) |
1835 | 0 | { |
1836 | 0 | switch (ELF64_R_TYPE (rel->r_info)) |
1837 | 0 | { |
1838 | | /* This relocation causes a GREG allocation. We need to count |
1839 | | them, and we need to create a section for them, so we need an |
1840 | | object to fake as the owner of that section. We can't use |
1841 | | the ELF dynobj for this, since the ELF bits assume lots of |
1842 | | DSO-related stuff if that member is non-NULL. */ |
1843 | 0 | case R_MMIX_BASE_PLUS_OFFSET: |
1844 | | /* We don't do anything with this reloc for a relocatable link. */ |
1845 | 0 | if (bfd_link_relocatable (info)) |
1846 | 0 | break; |
1847 | | |
1848 | 0 | if (bpo_greg_owner == NULL) |
1849 | 0 | { |
1850 | 0 | bpo_greg_owner = abfd; |
1851 | 0 | info->base_file = bpo_greg_owner; |
1852 | 0 | } |
1853 | |
|
1854 | 0 | if (allocated_gregs_section == NULL) |
1855 | 0 | allocated_gregs_section |
1856 | 0 | = bfd_get_section_by_name (bpo_greg_owner, |
1857 | 0 | MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
1858 | |
|
1859 | 0 | if (allocated_gregs_section == NULL) |
1860 | 0 | { |
1861 | 0 | allocated_gregs_section |
1862 | 0 | = bfd_make_section_with_flags (bpo_greg_owner, |
1863 | 0 | MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, |
1864 | 0 | (SEC_HAS_CONTENTS |
1865 | 0 | | SEC_IN_MEMORY |
1866 | 0 | | SEC_LINKER_CREATED)); |
1867 | | /* Setting both SEC_ALLOC and SEC_LOAD means the section is |
1868 | | treated like any other section, and we'd get errors for |
1869 | | address overlap with the text section. Let's set none of |
1870 | | those flags, as that is what currently happens for usual |
1871 | | GREG allocations, and that works. */ |
1872 | 0 | if (allocated_gregs_section == NULL |
1873 | 0 | || !bfd_set_section_alignment (allocated_gregs_section, 3)) |
1874 | 0 | return false; |
1875 | | |
1876 | 0 | gregdata = (struct bpo_greg_section_info *) |
1877 | 0 | bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); |
1878 | 0 | if (gregdata == NULL) |
1879 | 0 | return false; |
1880 | 0 | mmix_elf_section_data (allocated_gregs_section)->bpo.greg |
1881 | 0 | = gregdata; |
1882 | 0 | } |
1883 | 0 | else if (gregdata == NULL) |
1884 | 0 | gregdata |
1885 | 0 | = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; |
1886 | | |
1887 | | /* Get ourselves some auxiliary info for the BPO-relocs. */ |
1888 | 0 | if (bpodata == NULL) |
1889 | 0 | { |
1890 | | /* No use doing a separate iteration pass to find the upper |
1891 | | limit - just use the number of relocs. */ |
1892 | 0 | bpodata = (struct bpo_reloc_section_info *) |
1893 | 0 | bfd_alloc (bpo_greg_owner, |
1894 | 0 | sizeof (struct bpo_reloc_section_info) |
1895 | 0 | * (sec->reloc_count + 1)); |
1896 | 0 | if (bpodata == NULL) |
1897 | 0 | return false; |
1898 | 0 | mmix_elf_section_data (sec)->bpo.reloc = bpodata; |
1899 | 0 | bpodata->first_base_plus_offset_reloc |
1900 | 0 | = bpodata->bpo_index |
1901 | 0 | = gregdata->n_max_bpo_relocs; |
1902 | 0 | bpodata->bpo_greg_section |
1903 | 0 | = allocated_gregs_section; |
1904 | 0 | bpodata->n_bpo_relocs_this_section = 0; |
1905 | 0 | } |
1906 | | |
1907 | 0 | bpodata->n_bpo_relocs_this_section++; |
1908 | 0 | gregdata->n_max_bpo_relocs++; |
1909 | | |
1910 | | /* We don't get another chance to set this before GC; we've not |
1911 | | set up any hook that runs before GC. */ |
1912 | 0 | gregdata->n_bpo_relocs |
1913 | 0 | = gregdata->n_max_bpo_relocs; |
1914 | 0 | break; |
1915 | | |
1916 | 0 | case R_MMIX_PUSHJ_STUBBABLE: |
1917 | 0 | mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; |
1918 | 0 | break; |
1919 | 0 | } |
1920 | 0 | } |
1921 | | |
1922 | | /* Allocate per-reloc stub storage and initialize it to the max stub |
1923 | | size. */ |
1924 | 0 | if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) |
1925 | 0 | { |
1926 | 0 | size_t i; |
1927 | |
|
1928 | 0 | mmix_elf_section_data (sec)->pjs.stub_size |
1929 | 0 | = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs |
1930 | 0 | * sizeof (mmix_elf_section_data (sec) |
1931 | 0 | ->pjs.stub_size[0])); |
1932 | 0 | if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) |
1933 | 0 | return false; |
1934 | | |
1935 | 0 | for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) |
1936 | 0 | mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; |
1937 | 0 | } |
1938 | | |
1939 | 0 | return true; |
1940 | 0 | } |
1941 | | |
1942 | | /* Look through the relocs for a section during the first phase. */ |
1943 | | |
1944 | | static bool |
1945 | | mmix_elf_check_relocs (bfd *abfd, |
1946 | | struct bfd_link_info *info, |
1947 | | asection *sec, |
1948 | | const Elf_Internal_Rela *relocs) |
1949 | 0 | { |
1950 | 0 | Elf_Internal_Shdr *symtab_hdr; |
1951 | 0 | struct elf_link_hash_entry **sym_hashes; |
1952 | 0 | const Elf_Internal_Rela *rel; |
1953 | 0 | const Elf_Internal_Rela *rel_end; |
1954 | |
|
1955 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1956 | 0 | sym_hashes = elf_sym_hashes (abfd); |
1957 | | |
1958 | | /* First we sort the relocs so that any register relocs come before |
1959 | | expansion-relocs to the same insn. FIXME: Not done for mmo. */ |
1960 | 0 | qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
1961 | 0 | mmix_elf_sort_relocs); |
1962 | | |
1963 | | /* Do the common part. */ |
1964 | 0 | if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) |
1965 | 0 | return false; |
1966 | | |
1967 | 0 | if (bfd_link_relocatable (info)) |
1968 | 0 | return true; |
1969 | | |
1970 | 0 | rel_end = relocs + sec->reloc_count; |
1971 | 0 | for (rel = relocs; rel < rel_end; rel++) |
1972 | 0 | { |
1973 | 0 | struct elf_link_hash_entry *h; |
1974 | 0 | unsigned long r_symndx; |
1975 | |
|
1976 | 0 | r_symndx = ELF64_R_SYM (rel->r_info); |
1977 | 0 | if (r_symndx < symtab_hdr->sh_info) |
1978 | 0 | h = NULL; |
1979 | 0 | else |
1980 | 0 | { |
1981 | 0 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
1982 | 0 | while (h->root.type == bfd_link_hash_indirect |
1983 | 0 | || h->root.type == bfd_link_hash_warning) |
1984 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
1985 | 0 | } |
1986 | |
|
1987 | 0 | switch (ELF64_R_TYPE (rel->r_info)) |
1988 | 0 | { |
1989 | | /* This relocation describes the C++ object vtable hierarchy. |
1990 | | Reconstruct it for later use during GC. */ |
1991 | 0 | case R_MMIX_GNU_VTINHERIT: |
1992 | 0 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
1993 | 0 | return false; |
1994 | 0 | break; |
1995 | | |
1996 | | /* This relocation describes which C++ vtable entries are actually |
1997 | | used. Record for later use during GC. */ |
1998 | 0 | case R_MMIX_GNU_VTENTRY: |
1999 | 0 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
2000 | 0 | return false; |
2001 | 0 | break; |
2002 | 0 | } |
2003 | 0 | } |
2004 | | |
2005 | 0 | return true; |
2006 | 0 | } |
2007 | | |
2008 | | /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. |
2009 | | Copied from elf_link_add_object_symbols. */ |
2010 | | |
2011 | | bool |
2012 | | _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info) |
2013 | 0 | { |
2014 | 0 | asection *o; |
2015 | |
|
2016 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
2017 | 0 | { |
2018 | 0 | Elf_Internal_Rela *internal_relocs; |
2019 | 0 | bool ok; |
2020 | |
|
2021 | 0 | if ((o->flags & SEC_RELOC) == 0 |
2022 | 0 | || o->reloc_count == 0 |
2023 | 0 | || ((info->strip == strip_all || info->strip == strip_debugger) |
2024 | 0 | && (o->flags & SEC_DEBUGGING) != 0) |
2025 | 0 | || bfd_is_abs_section (o->output_section)) |
2026 | 0 | continue; |
2027 | | |
2028 | 0 | internal_relocs |
2029 | 0 | = _bfd_elf_link_read_relocs (abfd, o, NULL, |
2030 | 0 | (Elf_Internal_Rela *) NULL, |
2031 | 0 | info->keep_memory); |
2032 | 0 | if (internal_relocs == NULL) |
2033 | 0 | return false; |
2034 | | |
2035 | 0 | ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); |
2036 | |
|
2037 | 0 | if (! info->keep_memory) |
2038 | 0 | free (internal_relocs); |
2039 | |
|
2040 | 0 | if (! ok) |
2041 | 0 | return false; |
2042 | 0 | } |
2043 | | |
2044 | 0 | return true; |
2045 | 0 | } |
2046 | | |
2047 | | /* Change symbols relative to the reg contents section to instead be to |
2048 | | the register section, and scale them down to correspond to the register |
2049 | | number. */ |
2050 | | |
2051 | | static int |
2052 | | mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
2053 | | const char *name ATTRIBUTE_UNUSED, |
2054 | | Elf_Internal_Sym *sym, |
2055 | | asection *input_sec, |
2056 | | struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) |
2057 | 0 | { |
2058 | 0 | if (input_sec != NULL |
2059 | 0 | && input_sec->name != NULL |
2060 | 0 | && ELF_ST_TYPE (sym->st_info) != STT_SECTION |
2061 | 0 | && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) |
2062 | 0 | { |
2063 | 0 | sym->st_value /= 8; |
2064 | 0 | sym->st_shndx = SHN_REGISTER; |
2065 | 0 | } |
2066 | |
|
2067 | 0 | return 1; |
2068 | 0 | } |
2069 | | |
2070 | | /* We fake a register section that holds values that are register numbers. |
2071 | | Having a SHN_REGISTER and register section translates better to other |
2072 | | formats (e.g. mmo) than for example a STT_REGISTER attribute. |
2073 | | This section faking is based on a construct in elf32-mips.c. */ |
2074 | | static asection mmix_elf_reg_section; |
2075 | | static const asymbol mmix_elf_reg_section_symbol = |
2076 | | GLOBAL_SYM_INIT (MMIX_REG_SECTION_NAME, &mmix_elf_reg_section); |
2077 | | static asection mmix_elf_reg_section = |
2078 | | BFD_FAKE_SECTION (mmix_elf_reg_section, &mmix_elf_reg_section_symbol, |
2079 | | MMIX_REG_SECTION_NAME, 0, SEC_NO_FLAGS); |
2080 | | |
2081 | | /* Handle the special section numbers that a symbol may use. */ |
2082 | | |
2083 | | void |
2084 | | mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) |
2085 | 0 | { |
2086 | 0 | elf_symbol_type *elfsym; |
2087 | |
|
2088 | 0 | elfsym = (elf_symbol_type *) asym; |
2089 | 0 | switch (elfsym->internal_elf_sym.st_shndx) |
2090 | 0 | { |
2091 | 0 | case SHN_REGISTER: |
2092 | 0 | asym->section = &mmix_elf_reg_section; |
2093 | 0 | break; |
2094 | | |
2095 | 0 | default: |
2096 | 0 | break; |
2097 | 0 | } |
2098 | 0 | } |
2099 | | |
2100 | | /* Given a BFD section, try to locate the corresponding ELF section |
2101 | | index. */ |
2102 | | |
2103 | | static bool |
2104 | | mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED, |
2105 | | asection * sec, |
2106 | | int * retval) |
2107 | 0 | { |
2108 | 0 | if (strcmp (bfd_section_name (sec), MMIX_REG_SECTION_NAME) == 0) |
2109 | 0 | *retval = SHN_REGISTER; |
2110 | 0 | else |
2111 | 0 | return false; |
2112 | | |
2113 | 0 | return true; |
2114 | 0 | } |
2115 | | |
2116 | | /* Hook called by the linker routine which adds symbols from an object |
2117 | | file. We must handle the special SHN_REGISTER section number here. |
2118 | | |
2119 | | We also check that we only have *one* each of the section-start |
2120 | | symbols, since otherwise having two with the same value would cause |
2121 | | them to be "merged", but with the contents serialized. */ |
2122 | | |
2123 | | static bool |
2124 | | mmix_elf_add_symbol_hook (bfd *abfd, |
2125 | | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
2126 | | Elf_Internal_Sym *sym, |
2127 | | const char **namep ATTRIBUTE_UNUSED, |
2128 | | flagword *flagsp ATTRIBUTE_UNUSED, |
2129 | | asection **secp, |
2130 | | bfd_vma *valp ATTRIBUTE_UNUSED) |
2131 | 0 | { |
2132 | 0 | if (sym->st_shndx == SHN_REGISTER) |
2133 | 0 | { |
2134 | 0 | *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); |
2135 | 0 | (*secp)->flags |= SEC_LINKER_CREATED; |
2136 | 0 | } |
2137 | 0 | else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' |
2138 | 0 | && startswith (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) |
2139 | 0 | { |
2140 | | /* See if we have another one. */ |
2141 | 0 | struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, |
2142 | 0 | *namep, |
2143 | 0 | false, |
2144 | 0 | false, |
2145 | 0 | false); |
2146 | |
|
2147 | 0 | if (h != NULL && h->type != bfd_link_hash_undefined) |
2148 | 0 | { |
2149 | | /* How do we get the asymbol (or really: the filename) from h? |
2150 | | h->u.def.section->owner is NULL. */ |
2151 | 0 | _bfd_error_handler |
2152 | | /* xgettext:c-format */ |
2153 | 0 | (_("%pB: error: multiple definition of `%s'; start of %s " |
2154 | 0 | "is set in a earlier linked file"), |
2155 | 0 | abfd, *namep, |
2156 | 0 | *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)); |
2157 | 0 | bfd_set_error (bfd_error_bad_value); |
2158 | 0 | return false; |
2159 | 0 | } |
2160 | 0 | } |
2161 | | |
2162 | 0 | return true; |
2163 | 0 | } |
2164 | | |
2165 | | /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ |
2166 | | |
2167 | | static bool |
2168 | | mmix_elf_is_local_label_name (bfd *abfd, const char *name) |
2169 | 0 | { |
2170 | 0 | const char *colpos; |
2171 | 0 | int digits; |
2172 | | |
2173 | | /* Also include the default local-label definition. */ |
2174 | 0 | if (_bfd_elf_is_local_label_name (abfd, name)) |
2175 | 0 | return true; |
2176 | | |
2177 | 0 | if (*name != 'L') |
2178 | 0 | return false; |
2179 | | |
2180 | | /* If there's no ":", or more than one, it's not a local symbol. */ |
2181 | 0 | colpos = strchr (name, ':'); |
2182 | 0 | if (colpos == NULL || strchr (colpos + 1, ':') != NULL) |
2183 | 0 | return false; |
2184 | | |
2185 | | /* Check that there are remaining characters and that they are digits. */ |
2186 | 0 | if (colpos[1] == 0) |
2187 | 0 | return false; |
2188 | | |
2189 | 0 | digits = strspn (colpos + 1, "0123456789"); |
2190 | 0 | return digits != 0 && colpos[1 + digits] == 0; |
2191 | 0 | } |
2192 | | |
2193 | | /* We get rid of the register section here. */ |
2194 | | |
2195 | | bool |
2196 | | mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
2197 | 0 | { |
2198 | | /* We never output a register section, though we create one for |
2199 | | temporary measures. Check that nobody entered contents into it. */ |
2200 | 0 | asection *reg_section; |
2201 | |
|
2202 | 0 | reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); |
2203 | |
|
2204 | 0 | if (reg_section != NULL) |
2205 | 0 | { |
2206 | | /* FIXME: Pass error state gracefully. */ |
2207 | 0 | if (bfd_section_flags (reg_section) & SEC_HAS_CONTENTS) |
2208 | 0 | _bfd_abort (__FILE__, __LINE__, _("register section has contents\n")); |
2209 | | |
2210 | | /* Really remove the section, if it hasn't already been done. */ |
2211 | 0 | if (!bfd_section_removed_from_list (abfd, reg_section)) |
2212 | 0 | { |
2213 | 0 | bfd_section_list_remove (abfd, reg_section); |
2214 | 0 | --abfd->section_count; |
2215 | 0 | } |
2216 | 0 | } |
2217 | | |
2218 | 0 | if (! bfd_elf_final_link (abfd, info)) |
2219 | 0 | return false; |
2220 | | |
2221 | | /* Since this section is marked SEC_LINKER_CREATED, it isn't output by |
2222 | | the regular linker machinery. We do it here, like other targets with |
2223 | | special sections. */ |
2224 | 0 | if (info->base_file != NULL) |
2225 | 0 | { |
2226 | 0 | asection *greg_section |
2227 | 0 | = bfd_get_section_by_name ((bfd *) info->base_file, |
2228 | 0 | MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
2229 | 0 | if (!bfd_set_section_contents (abfd, |
2230 | 0 | greg_section->output_section, |
2231 | 0 | greg_section->contents, |
2232 | 0 | (file_ptr) greg_section->output_offset, |
2233 | 0 | greg_section->size)) |
2234 | 0 | return false; |
2235 | 0 | } |
2236 | 0 | return true; |
2237 | 0 | } |
2238 | | |
2239 | | /* We need to include the maximum size of PUSHJ-stubs in the initial |
2240 | | section size. This is expected to shrink during linker relaxation. */ |
2241 | | |
2242 | | static void |
2243 | | mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED, |
2244 | | asection *sec, |
2245 | | void *ptr) |
2246 | 0 | { |
2247 | 0 | struct bfd_link_info *info = ptr; |
2248 | | |
2249 | | /* Make sure we only do this for section where we know we want this, |
2250 | | otherwise we might end up resetting the size of COMMONs. */ |
2251 | 0 | if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) |
2252 | 0 | return; |
2253 | | |
2254 | 0 | sec->rawsize = sec->size; |
2255 | 0 | sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs |
2256 | 0 | * MAX_PUSHJ_STUB_SIZE); |
2257 | | |
2258 | | /* For use in relocatable link, we start with a max stubs size. See |
2259 | | mmix_elf_relax_section. */ |
2260 | 0 | if (bfd_link_relocatable (info) && sec->output_section) |
2261 | 0 | mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum |
2262 | 0 | += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs |
2263 | 0 | * MAX_PUSHJ_STUB_SIZE); |
2264 | 0 | } |
2265 | | |
2266 | | /* Initialize stuff for the linker-generated GREGs to match |
2267 | | R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ |
2268 | | |
2269 | | bool |
2270 | | _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, |
2271 | | struct bfd_link_info *info) |
2272 | 0 | { |
2273 | 0 | asection *bpo_gregs_section; |
2274 | 0 | bfd *bpo_greg_owner; |
2275 | 0 | struct bpo_greg_section_info *gregdata; |
2276 | 0 | size_t n_gregs; |
2277 | 0 | bfd_vma gregs_size; |
2278 | 0 | size_t i; |
2279 | 0 | size_t *bpo_reloc_indexes; |
2280 | 0 | bfd *ibfd; |
2281 | | |
2282 | | /* Set the initial size of sections. */ |
2283 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
2284 | 0 | bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); |
2285 | | |
2286 | | /* The bpo_greg_owner bfd is supposed to have been set by |
2287 | | mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. |
2288 | | If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ |
2289 | 0 | bpo_greg_owner = (bfd *) info->base_file; |
2290 | 0 | if (bpo_greg_owner == NULL) |
2291 | 0 | return true; |
2292 | | |
2293 | 0 | bpo_gregs_section |
2294 | 0 | = bfd_get_section_by_name (bpo_greg_owner, |
2295 | 0 | MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
2296 | |
|
2297 | 0 | if (bpo_gregs_section == NULL) |
2298 | 0 | return true; |
2299 | | |
2300 | | /* We use the target-data handle in the ELF section data. */ |
2301 | 0 | gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
2302 | 0 | if (gregdata == NULL) |
2303 | 0 | return false; |
2304 | | |
2305 | 0 | n_gregs = gregdata->n_bpo_relocs; |
2306 | 0 | gregdata->n_allocated_bpo_gregs = n_gregs; |
2307 | | |
2308 | | /* When this reaches zero during relaxation, all entries have been |
2309 | | filled in and the size of the linker gregs can be calculated. */ |
2310 | 0 | gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; |
2311 | | |
2312 | | /* Set the zeroth-order estimate for the GREGs size. */ |
2313 | 0 | gregs_size = n_gregs * 8; |
2314 | |
|
2315 | 0 | if (!bfd_set_section_size (bpo_gregs_section, gregs_size)) |
2316 | 0 | return false; |
2317 | | |
2318 | | /* Allocate and set up the GREG arrays. They're filled in at relaxation |
2319 | | time. Note that we must use the max number ever noted for the array, |
2320 | | since the index numbers were created before GC. */ |
2321 | 0 | gregdata->reloc_request |
2322 | 0 | = bfd_zalloc (bpo_greg_owner, |
2323 | 0 | sizeof (struct bpo_reloc_request) |
2324 | 0 | * gregdata->n_max_bpo_relocs); |
2325 | |
|
2326 | 0 | gregdata->bpo_reloc_indexes |
2327 | 0 | = bpo_reloc_indexes |
2328 | 0 | = bfd_alloc (bpo_greg_owner, |
2329 | 0 | gregdata->n_max_bpo_relocs |
2330 | 0 | * sizeof (size_t)); |
2331 | 0 | if (bpo_reloc_indexes == NULL) |
2332 | 0 | return false; |
2333 | | |
2334 | | /* The default order is an identity mapping. */ |
2335 | 0 | for (i = 0; i < gregdata->n_max_bpo_relocs; i++) |
2336 | 0 | { |
2337 | 0 | bpo_reloc_indexes[i] = i; |
2338 | 0 | gregdata->reloc_request[i].bpo_reloc_no = i; |
2339 | 0 | } |
2340 | |
|
2341 | 0 | return true; |
2342 | 0 | } |
2343 | | |
2344 | | /* Fill in contents in the linker allocated gregs. Everything is |
2345 | | calculated at this point; we just move the contents into place here. */ |
2346 | | |
2347 | | bool |
2348 | | _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, |
2349 | | struct bfd_link_info *link_info) |
2350 | 0 | { |
2351 | 0 | asection *bpo_gregs_section; |
2352 | 0 | bfd *bpo_greg_owner; |
2353 | 0 | struct bpo_greg_section_info *gregdata; |
2354 | 0 | size_t n_gregs; |
2355 | 0 | size_t i, j; |
2356 | 0 | size_t lastreg; |
2357 | 0 | bfd_byte *contents; |
2358 | | |
2359 | | /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs |
2360 | | when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such |
2361 | | object, there was no R_MMIX_BASE_PLUS_OFFSET. */ |
2362 | 0 | bpo_greg_owner = (bfd *) link_info->base_file; |
2363 | 0 | if (bpo_greg_owner == NULL) |
2364 | 0 | return true; |
2365 | | |
2366 | 0 | bpo_gregs_section |
2367 | 0 | = bfd_get_section_by_name (bpo_greg_owner, |
2368 | 0 | MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
2369 | | |
2370 | | /* This can't happen without DSO handling. When DSOs are handled |
2371 | | without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such |
2372 | | section. */ |
2373 | 0 | if (bpo_gregs_section == NULL) |
2374 | 0 | return true; |
2375 | | |
2376 | | /* We use the target-data handle in the ELF section data. */ |
2377 | | |
2378 | 0 | gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
2379 | 0 | if (gregdata == NULL) |
2380 | 0 | return false; |
2381 | | |
2382 | 0 | n_gregs = gregdata->n_allocated_bpo_gregs; |
2383 | |
|
2384 | 0 | bpo_gregs_section->contents |
2385 | 0 | = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); |
2386 | 0 | if (contents == NULL) |
2387 | 0 | return false; |
2388 | 0 | bpo_gregs_section->alloced = 1; |
2389 | | |
2390 | | /* Sanity check: If these numbers mismatch, some relocation has not been |
2391 | | accounted for and the rest of gregdata is probably inconsistent. |
2392 | | It's a bug, but it's more helpful to identify it than segfaulting |
2393 | | below. */ |
2394 | 0 | if (gregdata->n_remaining_bpo_relocs_this_relaxation_round |
2395 | 0 | != gregdata->n_bpo_relocs) |
2396 | 0 | { |
2397 | 0 | _bfd_error_handler |
2398 | | /* xgettext:c-format */ |
2399 | 0 | (_("internal inconsistency: remaining %lu != max %lu;" |
2400 | 0 | " please report this bug"), |
2401 | 0 | (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round, |
2402 | 0 | (unsigned long) gregdata->n_bpo_relocs); |
2403 | 0 | return false; |
2404 | 0 | } |
2405 | | |
2406 | 0 | for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) |
2407 | 0 | if (gregdata->reloc_request[i].regindex != lastreg) |
2408 | 0 | { |
2409 | 0 | bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, |
2410 | 0 | contents + j * 8); |
2411 | 0 | lastreg = gregdata->reloc_request[i].regindex; |
2412 | 0 | j++; |
2413 | 0 | } |
2414 | |
|
2415 | 0 | return true; |
2416 | 0 | } |
2417 | | |
2418 | | /* Sort valid relocs to come before non-valid relocs, then on increasing |
2419 | | value. */ |
2420 | | |
2421 | | static int |
2422 | | bpo_reloc_request_sort_fn (const void * p1, const void * p2) |
2423 | 0 | { |
2424 | 0 | const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; |
2425 | 0 | const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; |
2426 | | |
2427 | | /* Primary function is validity; non-valid relocs sorted after valid |
2428 | | ones. */ |
2429 | 0 | if (r1->valid != r2->valid) |
2430 | 0 | return r2->valid - r1->valid; |
2431 | | |
2432 | | /* Then sort on value. Don't simplify and return just the difference of |
2433 | | the values: the upper bits of the 64-bit value would be truncated on |
2434 | | a host with 32-bit ints. */ |
2435 | 0 | if (r1->value != r2->value) |
2436 | 0 | return r1->value > r2->value ? 1 : -1; |
2437 | | |
2438 | | /* As a last re-sort, use the relocation number, so we get a stable |
2439 | | sort. The *addresses* aren't stable since items are swapped during |
2440 | | sorting. It depends on the qsort implementation if this actually |
2441 | | happens. */ |
2442 | 0 | return r1->bpo_reloc_no > r2->bpo_reloc_no |
2443 | 0 | ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); |
2444 | 0 | } |
2445 | | |
2446 | | /* For debug use only. Dumps the global register allocations resulting |
2447 | | from base-plus-offset relocs. */ |
2448 | | |
2449 | | void |
2450 | | mmix_dump_bpo_gregs (struct bfd_link_info *link_info, |
2451 | | void (*pf) (const char *fmt, ...)) |
2452 | 0 | { |
2453 | 0 | bfd *bpo_greg_owner; |
2454 | 0 | asection *bpo_gregs_section; |
2455 | 0 | struct bpo_greg_section_info *gregdata; |
2456 | 0 | unsigned int i; |
2457 | |
|
2458 | 0 | if (link_info == NULL || link_info->base_file == NULL) |
2459 | 0 | return; |
2460 | | |
2461 | 0 | bpo_greg_owner = (bfd *) link_info->base_file; |
2462 | |
|
2463 | 0 | bpo_gregs_section |
2464 | 0 | = bfd_get_section_by_name (bpo_greg_owner, |
2465 | 0 | MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
2466 | |
|
2467 | 0 | if (bpo_gregs_section == NULL) |
2468 | 0 | return; |
2469 | | |
2470 | 0 | gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
2471 | 0 | if (gregdata == NULL) |
2472 | 0 | return; |
2473 | | |
2474 | 0 | if (pf == NULL) |
2475 | 0 | pf = _bfd_error_handler; |
2476 | | |
2477 | | /* These format strings are not translated. They are for debug purposes |
2478 | | only and never displayed to an end user. Should they escape, we |
2479 | | surely want them in original. */ |
2480 | 0 | (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ |
2481 | 0 | n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, |
2482 | 0 | gregdata->n_max_bpo_relocs, |
2483 | 0 | gregdata->n_remaining_bpo_relocs_this_relaxation_round, |
2484 | 0 | gregdata->n_allocated_bpo_gregs); |
2485 | |
|
2486 | 0 | if (gregdata->reloc_request) |
2487 | 0 | for (i = 0; i < gregdata->n_max_bpo_relocs; i++) |
2488 | 0 | (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", |
2489 | 0 | i, |
2490 | 0 | (gregdata->bpo_reloc_indexes != NULL |
2491 | 0 | ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), |
2492 | 0 | gregdata->reloc_request[i].bpo_reloc_no, |
2493 | 0 | gregdata->reloc_request[i].valid, |
2494 | |
|
2495 | 0 | (unsigned long) (gregdata->reloc_request[i].value >> 32), |
2496 | 0 | (unsigned long) gregdata->reloc_request[i].value, |
2497 | 0 | gregdata->reloc_request[i].regindex, |
2498 | 0 | gregdata->reloc_request[i].offset); |
2499 | 0 | } |
2500 | | |
2501 | | /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and |
2502 | | when the last such reloc is done, an index-array is sorted according to |
2503 | | the values and iterated over to produce register numbers (indexed by 0 |
2504 | | from the first allocated register number) and offsets for use in real |
2505 | | relocation. (N.B.: Relocatable runs are handled, not just punted.) |
2506 | | |
2507 | | PUSHJ stub accounting is also done here. |
2508 | | |
2509 | | Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ |
2510 | | |
2511 | | static bool |
2512 | | mmix_elf_relax_section (bfd *abfd, |
2513 | | asection *sec, |
2514 | | struct bfd_link_info *link_info, |
2515 | | bool *again) |
2516 | 0 | { |
2517 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2518 | 0 | Elf_Internal_Rela *internal_relocs; |
2519 | 0 | Elf_Internal_Rela *irel, *irelend; |
2520 | 0 | asection *bpo_gregs_section = NULL; |
2521 | 0 | struct bpo_greg_section_info *gregdata; |
2522 | 0 | struct bpo_reloc_section_info *bpodata |
2523 | 0 | = mmix_elf_section_data (sec)->bpo.reloc; |
2524 | | /* The initialization is to quiet compiler warnings. The value is to |
2525 | | spot a missing actual initialization. */ |
2526 | 0 | size_t bpono = (size_t) -1; |
2527 | 0 | size_t pjsno = 0; |
2528 | 0 | size_t pjsno_undefs = 0; |
2529 | 0 | Elf_Internal_Sym *isymbuf = NULL; |
2530 | 0 | bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; |
2531 | |
|
2532 | 0 | mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; |
2533 | | |
2534 | | /* Assume nothing changes. */ |
2535 | 0 | *again = false; |
2536 | | |
2537 | | /* We don't have to do anything if this section does not have relocs, or |
2538 | | if this is not a code section. */ |
2539 | 0 | if ((sec->flags & SEC_RELOC) == 0 |
2540 | 0 | || sec->reloc_count == 0 |
2541 | 0 | || (sec->flags & SEC_CODE) == 0 |
2542 | 0 | || (sec->flags & SEC_LINKER_CREATED) != 0 |
2543 | | /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, |
2544 | | then nothing to do. */ |
2545 | 0 | || (bpodata == NULL |
2546 | 0 | && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) |
2547 | 0 | return true; |
2548 | | |
2549 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
2550 | |
|
2551 | 0 | if (bpodata != NULL) |
2552 | 0 | { |
2553 | 0 | bpo_gregs_section = bpodata->bpo_greg_section; |
2554 | 0 | gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
2555 | 0 | bpono = bpodata->first_base_plus_offset_reloc; |
2556 | 0 | } |
2557 | 0 | else |
2558 | 0 | gregdata = NULL; |
2559 | | |
2560 | | /* Get a copy of the native relocations. */ |
2561 | 0 | internal_relocs |
2562 | 0 | = _bfd_elf_link_read_relocs (abfd, sec, NULL, |
2563 | 0 | (Elf_Internal_Rela *) NULL, |
2564 | 0 | link_info->keep_memory); |
2565 | 0 | if (internal_relocs == NULL) |
2566 | 0 | goto error_return; |
2567 | | |
2568 | | /* Walk through them looking for relaxing opportunities. */ |
2569 | 0 | irelend = internal_relocs + sec->reloc_count; |
2570 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
2571 | 0 | { |
2572 | 0 | bfd_vma symval; |
2573 | 0 | struct elf_link_hash_entry *h = NULL; |
2574 | | |
2575 | | /* We only process two relocs. */ |
2576 | 0 | if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET |
2577 | 0 | && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) |
2578 | 0 | continue; |
2579 | | |
2580 | | /* We process relocs in a distinctly different way when this is a |
2581 | | relocatable link (for one, we don't look at symbols), so we avoid |
2582 | | mixing its code with that for the "normal" relaxation. */ |
2583 | 0 | if (bfd_link_relocatable (link_info)) |
2584 | 0 | { |
2585 | | /* The only transformation in a relocatable link is to generate |
2586 | | a full stub at the location of the stub calculated for the |
2587 | | input section, if the relocated stub location, the end of the |
2588 | | output section plus earlier stubs, cannot be reached. Thus |
2589 | | relocatable linking can only lead to worse code, but it still |
2590 | | works. */ |
2591 | 0 | if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) |
2592 | 0 | { |
2593 | | /* If we can reach the end of the output-section and beyond |
2594 | | any current stubs, then we don't need a stub for this |
2595 | | reloc. The relaxed order of output stub allocation may |
2596 | | not exactly match the straightforward order, so we always |
2597 | | assume presence of output stubs, which will allow |
2598 | | relaxation only on relocations indifferent to the |
2599 | | presence of output stub allocations for other relocations |
2600 | | and thus the order of output stub allocation. */ |
2601 | 0 | if (bfd_check_overflow (complain_overflow_signed, |
2602 | 0 | 19, |
2603 | 0 | 0, |
2604 | 0 | bfd_arch_bits_per_address (abfd), |
2605 | | /* Output-stub location. */ |
2606 | 0 | sec->output_section->rawsize |
2607 | 0 | + (mmix_elf_section_data (sec |
2608 | 0 | ->output_section) |
2609 | 0 | ->pjs.stubs_size_sum) |
2610 | | /* Location of this PUSHJ reloc. */ |
2611 | 0 | - (sec->output_offset + irel->r_offset) |
2612 | | /* Don't count *this* stub twice. */ |
2613 | 0 | - (mmix_elf_section_data (sec) |
2614 | 0 | ->pjs.stub_size[pjsno] |
2615 | 0 | + MAX_PUSHJ_STUB_SIZE)) |
2616 | 0 | == bfd_reloc_ok) |
2617 | 0 | mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; |
2618 | |
|
2619 | 0 | mmix_elf_section_data (sec)->pjs.stubs_size_sum |
2620 | 0 | += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; |
2621 | |
|
2622 | 0 | pjsno++; |
2623 | 0 | } |
2624 | |
|
2625 | 0 | continue; |
2626 | 0 | } |
2627 | | |
2628 | | /* Get the value of the symbol referred to by the reloc. */ |
2629 | 0 | if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) |
2630 | 0 | { |
2631 | | /* A local symbol. */ |
2632 | 0 | Elf_Internal_Sym *isym; |
2633 | 0 | asection *sym_sec; |
2634 | | |
2635 | | /* Read this BFD's local symbols if we haven't already. */ |
2636 | 0 | if (isymbuf == NULL) |
2637 | 0 | { |
2638 | 0 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
2639 | 0 | if (isymbuf == NULL) |
2640 | 0 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
2641 | 0 | symtab_hdr->sh_info, 0, |
2642 | 0 | NULL, NULL, NULL); |
2643 | 0 | if (isymbuf == 0) |
2644 | 0 | goto error_return; |
2645 | 0 | } |
2646 | | |
2647 | 0 | isym = isymbuf + ELF64_R_SYM (irel->r_info); |
2648 | 0 | if (isym->st_shndx == SHN_UNDEF) |
2649 | 0 | sym_sec = bfd_und_section_ptr; |
2650 | 0 | else if (isym->st_shndx == SHN_ABS) |
2651 | 0 | sym_sec = bfd_abs_section_ptr; |
2652 | 0 | else if (isym->st_shndx == SHN_COMMON) |
2653 | 0 | sym_sec = bfd_com_section_ptr; |
2654 | 0 | else |
2655 | 0 | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
2656 | 0 | symval = (isym->st_value |
2657 | 0 | + sym_sec->output_section->vma |
2658 | 0 | + sym_sec->output_offset); |
2659 | 0 | } |
2660 | 0 | else |
2661 | 0 | { |
2662 | 0 | unsigned long indx; |
2663 | | |
2664 | | /* An external symbol. */ |
2665 | 0 | indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; |
2666 | 0 | h = elf_sym_hashes (abfd)[indx]; |
2667 | 0 | BFD_ASSERT (h != NULL); |
2668 | 0 | if (h->root.type == bfd_link_hash_undefweak) |
2669 | | /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to |
2670 | | the canonical value 0 for an unresolved weak symbol to |
2671 | | consider: as the debug-friendly approach, resolve to "abort" |
2672 | | (or a port-specific function), or as the space-friendly |
2673 | | approach resolve to the next instruction (like some other |
2674 | | ports, notably ARM and AArch64). These alternatives require |
2675 | | matching code in mmix_elf_perform_relocation or its caller. */ |
2676 | 0 | symval = 0; |
2677 | 0 | else if (h->root.type == bfd_link_hash_defined |
2678 | 0 | || h->root.type == bfd_link_hash_defweak) |
2679 | 0 | symval = (h->root.u.def.value |
2680 | 0 | + h->root.u.def.section->output_section->vma |
2681 | 0 | + h->root.u.def.section->output_offset); |
2682 | 0 | else |
2683 | 0 | { |
2684 | | /* This appears to be a reference to an undefined symbol. Just |
2685 | | ignore it--it will be caught by the regular reloc processing. |
2686 | | We need to keep BPO reloc accounting consistent, though |
2687 | | else we'll abort instead of emitting an error message. */ |
2688 | 0 | if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET |
2689 | 0 | && gregdata != NULL) |
2690 | 0 | { |
2691 | 0 | gregdata->n_remaining_bpo_relocs_this_relaxation_round--; |
2692 | 0 | bpono++; |
2693 | 0 | } |
2694 | | |
2695 | | /* Similarly, keep accounting consistent for PUSHJ |
2696 | | referring to an undefined symbol. */ |
2697 | 0 | if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) |
2698 | 0 | pjsno_undefs++; |
2699 | 0 | continue; |
2700 | 0 | } |
2701 | 0 | } |
2702 | | |
2703 | 0 | if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) |
2704 | 0 | { |
2705 | 0 | bfd_vma value = symval + irel->r_addend; |
2706 | 0 | bfd_vma dot |
2707 | 0 | = (sec->output_section->vma |
2708 | 0 | + sec->output_offset |
2709 | 0 | + irel->r_offset); |
2710 | 0 | bfd_vma stubaddr |
2711 | 0 | = (sec->output_section->vma |
2712 | 0 | + sec->output_offset |
2713 | 0 | + size |
2714 | 0 | + mmix_elf_section_data (sec)->pjs.stubs_size_sum); |
2715 | |
|
2716 | 0 | if ((value & 3) == 0 |
2717 | 0 | && bfd_check_overflow (complain_overflow_signed, |
2718 | 0 | 19, |
2719 | 0 | 0, |
2720 | 0 | bfd_arch_bits_per_address (abfd), |
2721 | 0 | value - dot |
2722 | 0 | - (value > dot |
2723 | 0 | ? mmix_elf_section_data (sec) |
2724 | 0 | ->pjs.stub_size[pjsno] |
2725 | 0 | : 0)) |
2726 | 0 | == bfd_reloc_ok) |
2727 | | /* If the reloc fits, no stub is needed. */ |
2728 | 0 | mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; |
2729 | 0 | else |
2730 | | /* Maybe we can get away with just a JMP insn? */ |
2731 | 0 | if ((value & 3) == 0 |
2732 | 0 | && bfd_check_overflow (complain_overflow_signed, |
2733 | 0 | 27, |
2734 | 0 | 0, |
2735 | 0 | bfd_arch_bits_per_address (abfd), |
2736 | 0 | value - stubaddr |
2737 | 0 | - (value > dot |
2738 | 0 | ? mmix_elf_section_data (sec) |
2739 | 0 | ->pjs.stub_size[pjsno] - 4 |
2740 | 0 | : 0)) |
2741 | 0 | == bfd_reloc_ok) |
2742 | | /* Yep, account for a stub consisting of a single JMP insn. */ |
2743 | 0 | mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; |
2744 | 0 | else |
2745 | | /* Nope, go for the full insn stub. It doesn't seem useful to |
2746 | | emit the intermediate sizes; those will only be useful for |
2747 | | a >64M program assuming contiguous code. */ |
2748 | 0 | mmix_elf_section_data (sec)->pjs.stub_size[pjsno] |
2749 | 0 | = MAX_PUSHJ_STUB_SIZE; |
2750 | |
|
2751 | 0 | mmix_elf_section_data (sec)->pjs.stubs_size_sum |
2752 | 0 | += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; |
2753 | 0 | pjsno++; |
2754 | 0 | continue; |
2755 | 0 | } |
2756 | | |
2757 | | /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ |
2758 | | |
2759 | 0 | gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value |
2760 | 0 | = symval + irel->r_addend; |
2761 | 0 | gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = true; |
2762 | 0 | gregdata->n_remaining_bpo_relocs_this_relaxation_round--; |
2763 | 0 | } |
2764 | | |
2765 | | /* Check if that was the last BPO-reloc. If so, sort the values and |
2766 | | calculate how many registers we need to cover them. Set the size of |
2767 | | the linker gregs, and if the number of registers changed, indicate |
2768 | | that we need to relax some more because we have more work to do. */ |
2769 | 0 | if (gregdata != NULL |
2770 | 0 | && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) |
2771 | 0 | { |
2772 | 0 | size_t i; |
2773 | 0 | bfd_vma prev_base; |
2774 | 0 | size_t regindex; |
2775 | | |
2776 | | /* First, reset the remaining relocs for the next round. */ |
2777 | 0 | gregdata->n_remaining_bpo_relocs_this_relaxation_round |
2778 | 0 | = gregdata->n_bpo_relocs; |
2779 | |
|
2780 | 0 | qsort (gregdata->reloc_request, |
2781 | 0 | gregdata->n_max_bpo_relocs, |
2782 | 0 | sizeof (struct bpo_reloc_request), |
2783 | 0 | bpo_reloc_request_sort_fn); |
2784 | | |
2785 | | /* Recalculate indexes. When we find a change (however unlikely |
2786 | | after the initial iteration), we know we need to relax again, |
2787 | | since items in the GREG-array are sorted by increasing value and |
2788 | | stored in the relaxation phase. */ |
2789 | 0 | for (i = 0; i < gregdata->n_max_bpo_relocs; i++) |
2790 | 0 | if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] |
2791 | 0 | != i) |
2792 | 0 | { |
2793 | 0 | gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] |
2794 | 0 | = i; |
2795 | 0 | *again = true; |
2796 | 0 | } |
2797 | | |
2798 | | /* Allocate register numbers (indexing from 0). Stop at the first |
2799 | | non-valid reloc. */ |
2800 | 0 | for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; |
2801 | 0 | i < gregdata->n_bpo_relocs; |
2802 | 0 | i++) |
2803 | 0 | { |
2804 | 0 | if (gregdata->reloc_request[i].value > prev_base + 255) |
2805 | 0 | { |
2806 | 0 | regindex++; |
2807 | 0 | prev_base = gregdata->reloc_request[i].value; |
2808 | 0 | } |
2809 | 0 | gregdata->reloc_request[i].regindex = regindex; |
2810 | 0 | gregdata->reloc_request[i].offset |
2811 | 0 | = gregdata->reloc_request[i].value - prev_base; |
2812 | 0 | } |
2813 | | |
2814 | | /* If it's not the same as the last time, we need to relax again, |
2815 | | because the size of the section has changed. I'm not sure we |
2816 | | actually need to do any adjustments since the shrinking happens |
2817 | | at the start of this section, but better safe than sorry. */ |
2818 | 0 | if (gregdata->n_allocated_bpo_gregs != regindex + 1) |
2819 | 0 | { |
2820 | 0 | gregdata->n_allocated_bpo_gregs = regindex + 1; |
2821 | 0 | *again = true; |
2822 | 0 | } |
2823 | |
|
2824 | 0 | bpo_gregs_section->size = (regindex + 1) * 8; |
2825 | 0 | } |
2826 | |
|
2827 | 0 | if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) |
2828 | 0 | { |
2829 | 0 | if (! link_info->keep_memory) |
2830 | 0 | free (isymbuf); |
2831 | 0 | else |
2832 | 0 | { |
2833 | | /* Cache the symbols for elf_link_input_bfd. */ |
2834 | 0 | symtab_hdr->contents = (unsigned char *) isymbuf; |
2835 | 0 | } |
2836 | 0 | } |
2837 | |
|
2838 | 0 | BFD_ASSERT(pjsno + pjsno_undefs |
2839 | 0 | == mmix_elf_section_data (sec)->pjs.n_pushj_relocs); |
2840 | |
|
2841 | 0 | if (elf_section_data (sec)->relocs != internal_relocs) |
2842 | 0 | free (internal_relocs); |
2843 | |
|
2844 | 0 | if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) |
2845 | 0 | abort (); |
2846 | | |
2847 | 0 | if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) |
2848 | 0 | { |
2849 | 0 | sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; |
2850 | 0 | *again = true; |
2851 | 0 | } |
2852 | |
|
2853 | 0 | return true; |
2854 | | |
2855 | 0 | error_return: |
2856 | 0 | if ((unsigned char *) isymbuf != symtab_hdr->contents) |
2857 | 0 | free (isymbuf); |
2858 | 0 | if (elf_section_data (sec)->relocs != internal_relocs) |
2859 | 0 | free (internal_relocs); |
2860 | 0 | return false; |
2861 | 0 | } |
2862 | | |
2863 | | #define ELF_ARCH bfd_arch_mmix |
2864 | | #define ELF_MACHINE_CODE EM_MMIX |
2865 | | #define ELF_TARGET_ID MMIX_ELF_DATA |
2866 | | |
2867 | | /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). |
2868 | | However, that's too much for something somewhere in the linker part of |
2869 | | BFD; perhaps the start-address has to be a non-zero multiple of this |
2870 | | number, or larger than this number. The symptom is that the linker |
2871 | | complains: "warning: allocated section `.text' not in segment". We |
2872 | | settle for 64k; the page-size used in examples is 8k. |
2873 | | #define ELF_MAXPAGESIZE 0x10000 |
2874 | | |
2875 | | Unfortunately, this causes excessive padding in the supposedly small |
2876 | | for-education programs that are the expected usage (where people would |
2877 | | inspect output). We stick to 256 bytes just to have *some* default |
2878 | | alignment. */ |
2879 | | #define ELF_MAXPAGESIZE 0x100 |
2880 | | |
2881 | | #define TARGET_BIG_SYM mmix_elf64_vec |
2882 | | #define TARGET_BIG_NAME "elf64-mmix" |
2883 | | |
2884 | | #define elf_info_to_howto_rel NULL |
2885 | | #define elf_info_to_howto mmix_info_to_howto_rela |
2886 | | #define elf_backend_relocate_section mmix_elf_relocate_section |
2887 | | #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook |
2888 | | |
2889 | | #define elf_backend_link_output_symbol_hook \ |
2890 | | mmix_elf_link_output_symbol_hook |
2891 | | #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook |
2892 | | |
2893 | | #define elf_backend_check_relocs mmix_elf_check_relocs |
2894 | | #define elf_backend_symbol_processing mmix_elf_symbol_processing |
2895 | | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
2896 | | |
2897 | | #define bfd_elf64_bfd_copy_link_hash_symbol_type \ |
2898 | | _bfd_generic_copy_link_hash_symbol_type |
2899 | | |
2900 | | #define bfd_elf64_bfd_is_local_label_name \ |
2901 | | mmix_elf_is_local_label_name |
2902 | | |
2903 | | #define elf_backend_may_use_rel_p 0 |
2904 | | #define elf_backend_may_use_rela_p 1 |
2905 | | #define elf_backend_default_use_rela_p 1 |
2906 | | |
2907 | | #define elf_backend_can_gc_sections 1 |
2908 | | #define elf_backend_section_from_bfd_section \ |
2909 | | mmix_elf_section_from_bfd_section |
2910 | | |
2911 | | #define bfd_elf64_new_section_hook mmix_elf_new_section_hook |
2912 | | #define bfd_elf64_bfd_final_link mmix_elf_final_link |
2913 | | #define bfd_elf64_bfd_relax_section mmix_elf_relax_section |
2914 | | |
2915 | | #include "elf64-target.h" |