/src/binutils-gdb/bfd/elflink.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* ELF linking support for BFD. |
2 | | Copyright (C) 1995-2025 Free Software Foundation, Inc. |
3 | | |
4 | | This file is part of BFD, the Binary File Descriptor library. |
5 | | |
6 | | This program is free software; you can redistribute it and/or modify |
7 | | it under the terms of the GNU General Public License as published by |
8 | | the Free Software Foundation; either version 3 of the License, or |
9 | | (at your option) any later version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, |
12 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; if not, write to the Free Software |
18 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
19 | | MA 02110-1301, USA. */ |
20 | | |
21 | | #include "sysdep.h" |
22 | | #include "bfd.h" |
23 | | #include "bfdlink.h" |
24 | | #include "libbfd.h" |
25 | | #define ARCH_SIZE 0 |
26 | | #include "elf-bfd.h" |
27 | | #include "safe-ctype.h" |
28 | | #include "libiberty.h" |
29 | | #include "objalloc.h" |
30 | | #if BFD_SUPPORTS_PLUGINS |
31 | | #include "plugin-api.h" |
32 | | #include "plugin.h" |
33 | | #endif |
34 | | |
35 | | #include <limits.h> |
36 | | #ifndef CHAR_BIT |
37 | | #define CHAR_BIT 8 |
38 | | #endif |
39 | | |
40 | | /* This struct is used to pass information to routines called via |
41 | | elf_link_hash_traverse which must return failure. */ |
42 | | |
43 | | struct elf_info_failed |
44 | | { |
45 | | struct bfd_link_info *info; |
46 | | bool failed; |
47 | | }; |
48 | | |
49 | | static bool _bfd_elf_fix_symbol_flags |
50 | | (struct elf_link_hash_entry *, struct elf_info_failed *); |
51 | | |
52 | | /* Return false if linker should avoid caching relocation information |
53 | | and symbol tables of input files in memory. */ |
54 | | |
55 | | static bool |
56 | | _bfd_elf_link_keep_memory (struct bfd_link_info *info) |
57 | 0 | { |
58 | 0 | #ifdef USE_MMAP |
59 | | /* Don't cache symbol nor relocation tables if they are mapped in. |
60 | | NB: Since the --no-keep-memory linker option causes: |
61 | | |
62 | | https://sourceware.org/bugzilla/show_bug.cgi?id=31458 |
63 | | |
64 | | this is opt-in by each backend. */ |
65 | 0 | const struct elf_backend_data *bed |
66 | 0 | = get_elf_backend_data (info->output_bfd); |
67 | 0 | if (bed != NULL && bed->use_mmap) |
68 | 0 | return false; |
69 | 0 | #endif |
70 | 0 | bfd *abfd; |
71 | 0 | bfd_size_type size; |
72 | |
|
73 | 0 | if (!info->keep_memory) |
74 | 0 | return false; |
75 | | |
76 | 0 | if (info->max_cache_size == (bfd_size_type) -1) |
77 | 0 | return true; |
78 | | |
79 | 0 | abfd = info->input_bfds; |
80 | 0 | size = info->cache_size; |
81 | 0 | do |
82 | 0 | { |
83 | 0 | if (size >= info->max_cache_size) |
84 | 0 | { |
85 | | /* Over the limit. Reduce the memory usage. */ |
86 | 0 | info->keep_memory = false; |
87 | 0 | return false; |
88 | 0 | } |
89 | 0 | if (!abfd) |
90 | 0 | break; |
91 | 0 | size += abfd->alloc_size; |
92 | 0 | abfd = abfd->link.next; |
93 | 0 | } |
94 | 0 | while (1); |
95 | | |
96 | 0 | return true; |
97 | 0 | } |
98 | | |
99 | | static struct elf_link_hash_entry * |
100 | | get_link_hash_entry (struct elf_link_hash_entry ** sym_hashes, |
101 | | unsigned int symndx, |
102 | | unsigned int ext_sym_start) |
103 | 0 | { |
104 | 0 | if (sym_hashes == NULL |
105 | | /* Guard against corrupt input. See PR 32636 for an example. */ |
106 | 0 | || symndx < ext_sym_start) |
107 | 0 | return NULL; |
108 | | |
109 | 0 | struct elf_link_hash_entry *h = sym_hashes[symndx - ext_sym_start]; |
110 | | |
111 | | /* The hash might be empty. See PR 32641 for an example of this. */ |
112 | 0 | if (h == NULL) |
113 | 0 | return NULL; |
114 | | |
115 | 0 | while (h->root.type == bfd_link_hash_indirect |
116 | 0 | || h->root.type == bfd_link_hash_warning) |
117 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
118 | |
|
119 | 0 | return h; |
120 | 0 | } |
121 | | |
122 | | struct elf_link_hash_entry * |
123 | | _bfd_elf_get_link_hash_entry (struct elf_link_hash_entry ** sym_hashes, |
124 | | unsigned int symndx, |
125 | | Elf_Internal_Shdr * symtab_hdr) |
126 | 0 | { |
127 | 0 | if (symtab_hdr == NULL) |
128 | 0 | return NULL; |
129 | | |
130 | 0 | return get_link_hash_entry (sym_hashes, symndx, symtab_hdr->sh_info); |
131 | 0 | } |
132 | | |
133 | | static struct elf_link_hash_entry * |
134 | | get_ext_sym_hash_from_cookie (struct elf_reloc_cookie *cookie, unsigned long r_symndx) |
135 | 0 | { |
136 | 0 | if (cookie == NULL || cookie->sym_hashes == NULL) |
137 | 0 | return NULL; |
138 | | |
139 | 0 | if (r_symndx >= cookie->locsymcount |
140 | 0 | || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) |
141 | 0 | return get_link_hash_entry (cookie->sym_hashes, r_symndx, cookie->extsymoff); |
142 | | |
143 | 0 | return NULL; |
144 | 0 | } |
145 | | |
146 | | asection * |
147 | | _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, |
148 | | unsigned long r_symndx, |
149 | | bool discard) |
150 | 0 | { |
151 | 0 | struct elf_link_hash_entry *h; |
152 | |
|
153 | 0 | h = get_ext_sym_hash_from_cookie (cookie, r_symndx); |
154 | | |
155 | 0 | if (h != NULL) |
156 | 0 | { |
157 | 0 | if ((h->root.type == bfd_link_hash_defined |
158 | 0 | || h->root.type == bfd_link_hash_defweak) |
159 | 0 | && discarded_section (h->root.u.def.section)) |
160 | 0 | return h->root.u.def.section; |
161 | 0 | else |
162 | 0 | return NULL; |
163 | 0 | } |
164 | | |
165 | | /* It's not a relocation against a global symbol, |
166 | | but it could be a relocation against a local |
167 | | symbol for a discarded section. */ |
168 | 0 | asection *isec; |
169 | 0 | Elf_Internal_Sym *isym; |
170 | | |
171 | | /* Need to: get the symbol; get the section. */ |
172 | 0 | isym = &cookie->locsyms[r_symndx]; |
173 | 0 | isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); |
174 | 0 | if (isec != NULL |
175 | 0 | && discard ? discarded_section (isec) : 1) |
176 | 0 | return isec; |
177 | | |
178 | 0 | return NULL; |
179 | 0 | } |
180 | | |
181 | | /* Define a symbol in a dynamic linkage section. */ |
182 | | |
183 | | struct elf_link_hash_entry * |
184 | | _bfd_elf_define_linkage_sym (bfd *abfd, |
185 | | struct bfd_link_info *info, |
186 | | asection *sec, |
187 | | const char *name) |
188 | 0 | { |
189 | 0 | struct elf_link_hash_entry *h; |
190 | 0 | struct bfd_link_hash_entry *bh; |
191 | 0 | const struct elf_backend_data *bed; |
192 | |
|
193 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false); |
194 | 0 | if (h != NULL) |
195 | 0 | { |
196 | | /* Zap symbol defined in an as-needed lib that wasn't linked. |
197 | | This is a symptom of a larger problem: Absolute symbols |
198 | | defined in shared libraries can't be overridden, because we |
199 | | lose the link to the bfd which is via the symbol section. */ |
200 | 0 | h->root.type = bfd_link_hash_new; |
201 | 0 | bh = &h->root; |
202 | 0 | } |
203 | 0 | else |
204 | 0 | bh = NULL; |
205 | |
|
206 | 0 | bed = get_elf_backend_data (abfd); |
207 | 0 | if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, |
208 | 0 | sec, 0, NULL, false, bed->collect, |
209 | 0 | &bh)) |
210 | 0 | return NULL; |
211 | 0 | h = (struct elf_link_hash_entry *) bh; |
212 | 0 | BFD_ASSERT (h != NULL); |
213 | 0 | h->def_regular = 1; |
214 | 0 | h->non_elf = 0; |
215 | 0 | h->root.linker_def = 1; |
216 | 0 | h->type = STT_OBJECT; |
217 | 0 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) |
218 | 0 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
219 | |
|
220 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
221 | 0 | return h; |
222 | 0 | } |
223 | | |
224 | | bool |
225 | | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
226 | 0 | { |
227 | 0 | flagword flags; |
228 | 0 | asection *s; |
229 | 0 | struct elf_link_hash_entry *h; |
230 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
231 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
232 | | |
233 | | /* This function may be called more than once. */ |
234 | 0 | if (htab->sgot != NULL) |
235 | 0 | return true; |
236 | | |
237 | 0 | flags = bed->dynamic_sec_flags; |
238 | |
|
239 | 0 | s = bfd_make_section_anyway_with_flags (abfd, |
240 | 0 | (bed->rela_plts_and_copies_p |
241 | 0 | ? ".rela.got" : ".rel.got"), |
242 | 0 | flags | SEC_READONLY); |
243 | 0 | if (s == NULL |
244 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
245 | 0 | return false; |
246 | 0 | htab->srelgot = s; |
247 | |
|
248 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
249 | 0 | if (s == NULL |
250 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
251 | 0 | return false; |
252 | 0 | htab->sgot = s; |
253 | |
|
254 | 0 | if (bed->want_got_plt) |
255 | 0 | { |
256 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
257 | 0 | if (s == NULL |
258 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
259 | 0 | return false; |
260 | 0 | htab->sgotplt = s; |
261 | 0 | } |
262 | | |
263 | | /* The first bit of the global offset table is the header. */ |
264 | 0 | s->size += bed->got_header_size; |
265 | |
|
266 | 0 | if (bed->want_got_sym) |
267 | 0 | { |
268 | | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
269 | | (or .got.plt) section. We don't do this in the linker script |
270 | | because we don't want to define the symbol if we are not creating |
271 | | a global offset table. */ |
272 | 0 | h = _bfd_elf_define_linkage_sym (abfd, info, s, |
273 | 0 | "_GLOBAL_OFFSET_TABLE_"); |
274 | 0 | elf_hash_table (info)->hgot = h; |
275 | 0 | if (h == NULL) |
276 | 0 | return false; |
277 | 0 | } |
278 | | |
279 | 0 | return true; |
280 | 0 | } |
281 | | |
282 | | /* Create a strtab to hold the dynamic symbol names. */ |
283 | | static bool |
284 | | _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) |
285 | 0 | { |
286 | 0 | struct elf_link_hash_table *hash_table; |
287 | |
|
288 | 0 | hash_table = elf_hash_table (info); |
289 | 0 | if (hash_table->dynobj == NULL) |
290 | 0 | { |
291 | | /* We may not set dynobj, an input file holding linker created |
292 | | dynamic sections to abfd, which may be a dynamic object with |
293 | | its own dynamic sections. We need to find a normal input file |
294 | | to hold linker created sections if possible. */ |
295 | 0 | if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) |
296 | 0 | { |
297 | 0 | bfd *ibfd; |
298 | 0 | asection *s; |
299 | 0 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
300 | 0 | if ((ibfd->flags |
301 | 0 | & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 |
302 | 0 | && bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
303 | 0 | && elf_object_id (ibfd) == elf_hash_table_id (hash_table) |
304 | 0 | && !((s = ibfd->sections) != NULL |
305 | 0 | && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) |
306 | 0 | { |
307 | 0 | abfd = ibfd; |
308 | 0 | break; |
309 | 0 | } |
310 | 0 | } |
311 | 0 | hash_table->dynobj = abfd; |
312 | 0 | } |
313 | |
|
314 | 0 | if (hash_table->dynstr == NULL) |
315 | 0 | { |
316 | 0 | hash_table->dynstr = _bfd_elf_strtab_init (); |
317 | 0 | if (hash_table->dynstr == NULL) |
318 | 0 | return false; |
319 | 0 | } |
320 | 0 | return true; |
321 | 0 | } |
322 | | |
323 | | /* Create some sections which will be filled in with dynamic linking |
324 | | information. ABFD is an input file which requires dynamic sections |
325 | | to be created. The dynamic sections take up virtual memory space |
326 | | when the final executable is run, so we need to create them before |
327 | | addresses are assigned to the output sections. We work out the |
328 | | actual contents and size of these sections later. */ |
329 | | |
330 | | bool |
331 | | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
332 | 0 | { |
333 | 0 | flagword flags; |
334 | 0 | asection *s; |
335 | 0 | const struct elf_backend_data *bed; |
336 | 0 | struct elf_link_hash_entry *h; |
337 | |
|
338 | 0 | if (! is_elf_hash_table (info->hash)) |
339 | 0 | return false; |
340 | | |
341 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
342 | 0 | return true; |
343 | | |
344 | 0 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
345 | 0 | return false; |
346 | | |
347 | 0 | abfd = elf_hash_table (info)->dynobj; |
348 | 0 | bed = get_elf_backend_data (abfd); |
349 | |
|
350 | 0 | flags = bed->dynamic_sec_flags; |
351 | | |
352 | | /* A dynamically linked executable has a .interp section, but a |
353 | | shared library does not. */ |
354 | 0 | if (bfd_link_executable (info) && !info->nointerp) |
355 | 0 | { |
356 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".interp", |
357 | 0 | flags | SEC_READONLY); |
358 | 0 | if (s == NULL) |
359 | 0 | return false; |
360 | 0 | } |
361 | | |
362 | | /* Create sections to hold version informations. These are removed |
363 | | if they are not needed. */ |
364 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", |
365 | 0 | flags | SEC_READONLY); |
366 | 0 | if (s == NULL |
367 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
368 | 0 | return false; |
369 | | |
370 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", |
371 | 0 | flags | SEC_READONLY); |
372 | 0 | if (s == NULL |
373 | 0 | || !bfd_set_section_alignment (s, 1)) |
374 | 0 | return false; |
375 | | |
376 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", |
377 | 0 | flags | SEC_READONLY); |
378 | 0 | if (s == NULL |
379 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
380 | 0 | return false; |
381 | | |
382 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", |
383 | 0 | flags | SEC_READONLY); |
384 | 0 | if (s == NULL |
385 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
386 | 0 | return false; |
387 | 0 | elf_hash_table (info)->dynsym = s; |
388 | |
|
389 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", |
390 | 0 | flags | SEC_READONLY); |
391 | 0 | if (s == NULL) |
392 | 0 | return false; |
393 | | |
394 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); |
395 | 0 | if (s == NULL |
396 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
397 | 0 | return false; |
398 | 0 | elf_hash_table (info)->dynamic = s; |
399 | | |
400 | | /* The special symbol _DYNAMIC is always set to the start of the |
401 | | .dynamic section. We could set _DYNAMIC in a linker script, but we |
402 | | only want to define it if we are, in fact, creating a .dynamic |
403 | | section. We don't want to define it if there is no .dynamic |
404 | | section, since on some ELF platforms the start up code examines it |
405 | | to decide how to initialize the process. */ |
406 | 0 | h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); |
407 | 0 | elf_hash_table (info)->hdynamic = h; |
408 | 0 | if (h == NULL) |
409 | 0 | return false; |
410 | | |
411 | 0 | if (info->emit_hash) |
412 | 0 | { |
413 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".hash", |
414 | 0 | flags | SEC_READONLY); |
415 | 0 | if (s == NULL |
416 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
417 | 0 | return false; |
418 | 0 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
419 | 0 | } |
420 | | |
421 | 0 | if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) |
422 | 0 | { |
423 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", |
424 | 0 | flags | SEC_READONLY); |
425 | 0 | if (s == NULL |
426 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
427 | 0 | return false; |
428 | | /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: |
429 | | 4 32-bit words followed by variable count of 64-bit words, then |
430 | | variable count of 32-bit words. */ |
431 | 0 | if (bed->s->arch_size == 64) |
432 | 0 | elf_section_data (s)->this_hdr.sh_entsize = 0; |
433 | 0 | else |
434 | 0 | elf_section_data (s)->this_hdr.sh_entsize = 4; |
435 | 0 | } |
436 | | |
437 | 0 | if (info->enable_dt_relr) |
438 | 0 | { |
439 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn", |
440 | 0 | flags | SEC_READONLY); |
441 | 0 | if (s == NULL |
442 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
443 | 0 | return false; |
444 | 0 | elf_hash_table (info)->srelrdyn = s; |
445 | 0 | } |
446 | | |
447 | | /* Let the backend create the rest of the sections. This lets the |
448 | | backend set the right flags. The backend will normally create |
449 | | the .got and .plt sections. */ |
450 | 0 | if (bed->elf_backend_create_dynamic_sections == NULL |
451 | 0 | || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
452 | 0 | return false; |
453 | | |
454 | 0 | elf_hash_table (info)->dynamic_sections_created = true; |
455 | |
|
456 | 0 | return true; |
457 | 0 | } |
458 | | |
459 | | /* Create dynamic sections when linking against a dynamic object. */ |
460 | | |
461 | | bool |
462 | | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
463 | 0 | { |
464 | 0 | flagword flags, pltflags; |
465 | 0 | struct elf_link_hash_entry *h; |
466 | 0 | asection *s; |
467 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
468 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
469 | | |
470 | | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
471 | | .rel[a].bss sections. */ |
472 | 0 | flags = bed->dynamic_sec_flags; |
473 | |
|
474 | 0 | pltflags = flags; |
475 | 0 | if (bed->plt_not_loaded) |
476 | | /* We do not clear SEC_ALLOC here because we still want the OS to |
477 | | allocate space for the section; it's just that there's nothing |
478 | | to read in from the object file. */ |
479 | 0 | pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); |
480 | 0 | else |
481 | 0 | pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; |
482 | 0 | if (bed->plt_readonly) |
483 | 0 | pltflags |= SEC_READONLY; |
484 | |
|
485 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
486 | 0 | if (s == NULL |
487 | 0 | || !bfd_set_section_alignment (s, bed->plt_alignment)) |
488 | 0 | return false; |
489 | 0 | htab->splt = s; |
490 | | |
491 | | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
492 | | .plt section. */ |
493 | 0 | if (bed->want_plt_sym) |
494 | 0 | { |
495 | 0 | h = _bfd_elf_define_linkage_sym (abfd, info, s, |
496 | 0 | "_PROCEDURE_LINKAGE_TABLE_"); |
497 | 0 | elf_hash_table (info)->hplt = h; |
498 | 0 | if (h == NULL) |
499 | 0 | return false; |
500 | 0 | } |
501 | | |
502 | 0 | s = bfd_make_section_anyway_with_flags (abfd, |
503 | 0 | (bed->rela_plts_and_copies_p |
504 | 0 | ? ".rela.plt" : ".rel.plt"), |
505 | 0 | flags | SEC_READONLY); |
506 | 0 | if (s == NULL |
507 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
508 | 0 | return false; |
509 | 0 | htab->srelplt = s; |
510 | |
|
511 | 0 | if (! _bfd_elf_create_got_section (abfd, info)) |
512 | 0 | return false; |
513 | | |
514 | 0 | if (bed->want_dynbss) |
515 | 0 | { |
516 | | /* The .dynbss section is a place to put symbols which are defined |
517 | | by dynamic objects, are referenced by regular objects, and are |
518 | | not functions. We must allocate space for them in the process |
519 | | image and use a R_*_COPY reloc to tell the dynamic linker to |
520 | | initialize them at run time. The linker script puts the .dynbss |
521 | | section into the .bss section of the final image. */ |
522 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", |
523 | 0 | SEC_ALLOC | SEC_LINKER_CREATED); |
524 | 0 | if (s == NULL) |
525 | 0 | return false; |
526 | 0 | htab->sdynbss = s; |
527 | |
|
528 | 0 | if (bed->want_dynrelro) |
529 | 0 | { |
530 | | /* Similarly, but for symbols that were originally in read-only |
531 | | sections. This section doesn't really need to have contents, |
532 | | but make it like other .data.rel.ro sections. */ |
533 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", |
534 | 0 | flags); |
535 | 0 | if (s == NULL) |
536 | 0 | return false; |
537 | 0 | htab->sdynrelro = s; |
538 | 0 | } |
539 | | |
540 | | /* The .rel[a].bss section holds copy relocs. This section is not |
541 | | normally needed. We need to create it here, though, so that the |
542 | | linker will map it to an output section. We can't just create it |
543 | | only if we need it, because we will not know whether we need it |
544 | | until we have seen all the input files, and the first time the |
545 | | main linker code calls BFD after examining all the input files |
546 | | (size_dynamic_sections) the input sections have already been |
547 | | mapped to the output sections. If the section turns out not to |
548 | | be needed, we can discard it later. We will never need this |
549 | | section when generating a shared object, since they do not use |
550 | | copy relocs. */ |
551 | 0 | if (bfd_link_executable (info)) |
552 | 0 | { |
553 | 0 | s = bfd_make_section_anyway_with_flags (abfd, |
554 | 0 | (bed->rela_plts_and_copies_p |
555 | 0 | ? ".rela.bss" : ".rel.bss"), |
556 | 0 | flags | SEC_READONLY); |
557 | 0 | if (s == NULL |
558 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
559 | 0 | return false; |
560 | 0 | htab->srelbss = s; |
561 | |
|
562 | 0 | if (bed->want_dynrelro) |
563 | 0 | { |
564 | 0 | s = (bfd_make_section_anyway_with_flags |
565 | 0 | (abfd, (bed->rela_plts_and_copies_p |
566 | 0 | ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), |
567 | 0 | flags | SEC_READONLY)); |
568 | 0 | if (s == NULL |
569 | 0 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
570 | 0 | return false; |
571 | 0 | htab->sreldynrelro = s; |
572 | 0 | } |
573 | 0 | } |
574 | 0 | } |
575 | | |
576 | 0 | return true; |
577 | 0 | } |
578 | | |
579 | | /* Record a new dynamic symbol. We record the dynamic symbols as we |
580 | | read the input files, since we need to have a list of all of them |
581 | | before we can determine the final sizes of the output sections. |
582 | | Note that we may actually call this function even though we are not |
583 | | going to output any dynamic symbols; in some cases we know that a |
584 | | symbol should be in the dynamic symbol table, but only if there is |
585 | | one. */ |
586 | | |
587 | | bool |
588 | | bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, |
589 | | struct elf_link_hash_entry *h) |
590 | 0 | { |
591 | 0 | if (h->dynindx == -1) |
592 | 0 | { |
593 | 0 | struct elf_strtab_hash *dynstr; |
594 | 0 | char *p; |
595 | 0 | const char *name; |
596 | 0 | size_t indx; |
597 | |
|
598 | 0 | if (h->root.type == bfd_link_hash_defined |
599 | 0 | || h->root.type == bfd_link_hash_defweak) |
600 | 0 | { |
601 | | /* An IR symbol should not be made dynamic. */ |
602 | 0 | if (h->root.u.def.section != NULL |
603 | 0 | && h->root.u.def.section->owner != NULL |
604 | 0 | && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0) |
605 | 0 | return true; |
606 | 0 | } |
607 | | |
608 | | /* XXX: The ABI draft says the linker must turn hidden and |
609 | | internal symbols into STB_LOCAL symbols when producing the |
610 | | DSO. However, if ld.so honors st_other in the dynamic table, |
611 | | this would not be necessary. */ |
612 | 0 | switch (ELF_ST_VISIBILITY (h->other)) |
613 | 0 | { |
614 | 0 | case STV_INTERNAL: |
615 | 0 | case STV_HIDDEN: |
616 | 0 | if (h->root.type != bfd_link_hash_undefined |
617 | 0 | && h->root.type != bfd_link_hash_undefweak) |
618 | 0 | { |
619 | 0 | h->forced_local = 1; |
620 | 0 | return true; |
621 | 0 | } |
622 | | |
623 | 0 | default: |
624 | 0 | break; |
625 | 0 | } |
626 | | |
627 | 0 | h->dynindx = elf_hash_table (info)->dynsymcount; |
628 | 0 | ++elf_hash_table (info)->dynsymcount; |
629 | |
|
630 | 0 | dynstr = elf_hash_table (info)->dynstr; |
631 | 0 | if (dynstr == NULL) |
632 | 0 | { |
633 | | /* Create a strtab to hold the dynamic symbol names. */ |
634 | 0 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
635 | 0 | if (dynstr == NULL) |
636 | 0 | return false; |
637 | 0 | } |
638 | | |
639 | 0 | char *unversioned_name = NULL; |
640 | | |
641 | | /* We don't put any version information in the dynamic string |
642 | | table. */ |
643 | 0 | name = h->root.root.string; |
644 | 0 | p = strchr (name, ELF_VER_CHR); |
645 | 0 | if (p != NULL) |
646 | 0 | { |
647 | 0 | unversioned_name = bfd_malloc (p - name + 1); |
648 | 0 | memcpy (unversioned_name, name, p - name); |
649 | 0 | unversioned_name[p - name] = 0; |
650 | 0 | name = unversioned_name; |
651 | 0 | } |
652 | |
|
653 | 0 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); |
654 | |
|
655 | 0 | if (p != NULL) |
656 | 0 | free (unversioned_name); |
657 | |
|
658 | 0 | if (indx == (size_t) -1) |
659 | 0 | return false; |
660 | 0 | h->dynstr_index = indx; |
661 | 0 | } |
662 | | |
663 | 0 | return true; |
664 | 0 | } |
665 | | |
666 | | /* Mark a symbol dynamic. */ |
667 | | |
668 | | static void |
669 | | bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, |
670 | | struct elf_link_hash_entry *h, |
671 | | Elf_Internal_Sym *sym) |
672 | 0 | { |
673 | 0 | struct bfd_elf_dynamic_list *d = info->dynamic_list; |
674 | | |
675 | | /* It may be called more than once on the same H. */ |
676 | 0 | if(h->dynamic || bfd_link_relocatable (info)) |
677 | 0 | return; |
678 | | |
679 | 0 | if ((info->dynamic_data |
680 | 0 | && (h->type == STT_OBJECT |
681 | 0 | || h->type == STT_COMMON |
682 | 0 | || (sym != NULL |
683 | 0 | && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT |
684 | 0 | || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) |
685 | 0 | || (d != NULL |
686 | 0 | && h->non_elf |
687 | 0 | && (*d->match) (&d->head, NULL, h->root.root.string))) |
688 | 0 | { |
689 | 0 | h->dynamic = 1; |
690 | | /* NB: If a symbol is made dynamic by --dynamic-list, it has |
691 | | non-IR reference. */ |
692 | 0 | h->root.non_ir_ref_dynamic = 1; |
693 | 0 | } |
694 | 0 | } |
695 | | |
696 | | /* Record an assignment to a symbol made by a linker script. We need |
697 | | this in case some dynamic object refers to this symbol. */ |
698 | | |
699 | | bool |
700 | | bfd_elf_record_link_assignment (bfd *output_bfd, |
701 | | struct bfd_link_info *info, |
702 | | const char *name, |
703 | | bool provide, |
704 | | bool hidden) |
705 | 0 | { |
706 | 0 | struct elf_link_hash_entry *h, *hv; |
707 | 0 | struct elf_link_hash_table *htab; |
708 | 0 | const struct elf_backend_data *bed; |
709 | |
|
710 | 0 | if (!is_elf_hash_table (info->hash)) |
711 | 0 | return true; |
712 | | |
713 | 0 | htab = elf_hash_table (info); |
714 | 0 | h = elf_link_hash_lookup (htab, name, !provide, true, false); |
715 | 0 | if (h == NULL) |
716 | 0 | return provide; |
717 | | |
718 | 0 | if (h->root.type == bfd_link_hash_warning) |
719 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
720 | |
|
721 | 0 | if (h->versioned == unknown) |
722 | 0 | { |
723 | | /* Set versioned if symbol version is unknown. */ |
724 | 0 | char *version = strrchr (name, ELF_VER_CHR); |
725 | 0 | if (version) |
726 | 0 | { |
727 | 0 | if (version > name && version[-1] != ELF_VER_CHR) |
728 | 0 | h->versioned = versioned_hidden; |
729 | 0 | else |
730 | 0 | h->versioned = versioned; |
731 | 0 | } |
732 | 0 | } |
733 | | |
734 | | /* Symbols defined in a linker script but not referenced anywhere |
735 | | else will have non_elf set. */ |
736 | 0 | if (h->non_elf) |
737 | 0 | { |
738 | 0 | bfd_elf_link_mark_dynamic_symbol (info, h, NULL); |
739 | 0 | h->non_elf = 0; |
740 | 0 | } |
741 | |
|
742 | 0 | switch (h->root.type) |
743 | 0 | { |
744 | 0 | case bfd_link_hash_defined: |
745 | 0 | case bfd_link_hash_defweak: |
746 | 0 | case bfd_link_hash_common: |
747 | 0 | break; |
748 | 0 | case bfd_link_hash_undefweak: |
749 | 0 | case bfd_link_hash_undefined: |
750 | | /* Since we're defining the symbol, don't let it seem to have not |
751 | | been defined. record_dynamic_symbol and size_dynamic_sections |
752 | | may depend on this. */ |
753 | 0 | h->root.type = bfd_link_hash_new; |
754 | 0 | if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) |
755 | 0 | bfd_link_repair_undef_list (&htab->root); |
756 | 0 | break; |
757 | 0 | case bfd_link_hash_new: |
758 | 0 | break; |
759 | 0 | case bfd_link_hash_indirect: |
760 | | /* We had a versioned symbol in a dynamic library. We make the |
761 | | the versioned symbol point to this one. */ |
762 | 0 | bed = get_elf_backend_data (output_bfd); |
763 | 0 | hv = h; |
764 | 0 | while (hv->root.type == bfd_link_hash_indirect |
765 | 0 | || hv->root.type == bfd_link_hash_warning) |
766 | 0 | hv = (struct elf_link_hash_entry *) hv->root.u.i.link; |
767 | | /* We don't need to update h->root.u since linker will set them |
768 | | later. */ |
769 | 0 | h->root.type = bfd_link_hash_undefined; |
770 | 0 | hv->root.type = bfd_link_hash_indirect; |
771 | 0 | hv->root.u.i.link = (struct bfd_link_hash_entry *) h; |
772 | 0 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); |
773 | 0 | break; |
774 | 0 | default: |
775 | 0 | BFD_FAIL (); |
776 | 0 | return false; |
777 | 0 | } |
778 | | |
779 | | /* If this symbol is being provided by the linker script, and it is |
780 | | currently defined by a dynamic object, but not by a regular |
781 | | object, then mark it as undefined so that the generic linker will |
782 | | force the correct value. */ |
783 | 0 | if (provide |
784 | 0 | && h->def_dynamic |
785 | 0 | && !h->def_regular) |
786 | 0 | h->root.type = bfd_link_hash_undefined; |
787 | | |
788 | | /* If this symbol is currently defined by a dynamic object, but not |
789 | | by a regular object, then clear out any version information because |
790 | | the symbol will not be associated with the dynamic object any |
791 | | more. */ |
792 | 0 | if (h->def_dynamic && !h->def_regular) |
793 | 0 | h->verinfo.verdef = NULL; |
794 | | |
795 | | /* Make sure this symbol is not garbage collected. */ |
796 | 0 | h->mark = 1; |
797 | |
|
798 | 0 | h->def_regular = 1; |
799 | |
|
800 | 0 | if (hidden) |
801 | 0 | { |
802 | 0 | bed = get_elf_backend_data (output_bfd); |
803 | 0 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) |
804 | 0 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
805 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
806 | 0 | } |
807 | | |
808 | | /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects |
809 | | and executables. */ |
810 | 0 | if (!bfd_link_relocatable (info) |
811 | 0 | && h->dynindx != -1 |
812 | 0 | && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN |
813 | 0 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) |
814 | 0 | h->forced_local = 1; |
815 | |
|
816 | 0 | if ((h->def_dynamic |
817 | 0 | || h->ref_dynamic |
818 | 0 | || bfd_link_dll (info)) |
819 | 0 | && !h->forced_local |
820 | 0 | && h->dynindx == -1) |
821 | 0 | { |
822 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
823 | 0 | return false; |
824 | | |
825 | | /* If this is a weak defined symbol, and we know a corresponding |
826 | | real symbol from the same dynamic object, make sure the real |
827 | | symbol is also made into a dynamic symbol. */ |
828 | 0 | if (h->is_weakalias) |
829 | 0 | { |
830 | 0 | struct elf_link_hash_entry *def = weakdef (h); |
831 | |
|
832 | 0 | if (def->dynindx == -1 |
833 | 0 | && !bfd_elf_link_record_dynamic_symbol (info, def)) |
834 | 0 | return false; |
835 | 0 | } |
836 | 0 | } |
837 | | |
838 | 0 | return true; |
839 | 0 | } |
840 | | |
841 | | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on |
842 | | success, and 2 on a failure caused by attempting to record a symbol |
843 | | in a discarded section, eg. a discarded link-once section symbol. */ |
844 | | |
845 | | int |
846 | | bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, |
847 | | bfd *input_bfd, |
848 | | long input_indx) |
849 | 0 | { |
850 | 0 | size_t amt; |
851 | 0 | struct elf_link_local_dynamic_entry *entry; |
852 | 0 | struct elf_link_hash_table *eht; |
853 | 0 | struct elf_strtab_hash *dynstr; |
854 | 0 | size_t dynstr_index; |
855 | 0 | char *name; |
856 | 0 | Elf_External_Sym_Shndx eshndx; |
857 | 0 | char esym[sizeof (Elf64_External_Sym)]; |
858 | |
|
859 | 0 | if (! is_elf_hash_table (info->hash)) |
860 | 0 | return 0; |
861 | | |
862 | | /* See if the entry exists already. */ |
863 | 0 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) |
864 | 0 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) |
865 | 0 | return 1; |
866 | | |
867 | 0 | amt = sizeof (*entry); |
868 | 0 | entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); |
869 | 0 | if (entry == NULL) |
870 | 0 | return 0; |
871 | | |
872 | | /* Go find the symbol, so that we can find it's name. */ |
873 | 0 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, |
874 | 0 | 1, input_indx, &entry->isym, esym, &eshndx)) |
875 | 0 | { |
876 | 0 | bfd_release (input_bfd, entry); |
877 | 0 | return 0; |
878 | 0 | } |
879 | | |
880 | 0 | if (entry->isym.st_shndx != SHN_UNDEF |
881 | 0 | && entry->isym.st_shndx < SHN_LORESERVE) |
882 | 0 | { |
883 | 0 | asection *s; |
884 | |
|
885 | 0 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); |
886 | 0 | if (s == NULL || bfd_is_abs_section (s->output_section)) |
887 | 0 | { |
888 | | /* We can still bfd_release here as nothing has done another |
889 | | bfd_alloc. We can't do this later in this function. */ |
890 | 0 | bfd_release (input_bfd, entry); |
891 | 0 | return 2; |
892 | 0 | } |
893 | 0 | } |
894 | | |
895 | 0 | name = (bfd_elf_string_from_elf_section |
896 | 0 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, |
897 | 0 | entry->isym.st_name)); |
898 | |
|
899 | 0 | dynstr = elf_hash_table (info)->dynstr; |
900 | 0 | if (dynstr == NULL) |
901 | 0 | { |
902 | | /* Create a strtab to hold the dynamic symbol names. */ |
903 | 0 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
904 | 0 | if (dynstr == NULL) |
905 | 0 | return 0; |
906 | 0 | } |
907 | | |
908 | 0 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, false); |
909 | 0 | if (dynstr_index == (size_t) -1) |
910 | 0 | return 0; |
911 | 0 | entry->isym.st_name = dynstr_index; |
912 | |
|
913 | 0 | eht = elf_hash_table (info); |
914 | |
|
915 | 0 | entry->next = eht->dynlocal; |
916 | 0 | eht->dynlocal = entry; |
917 | 0 | entry->input_bfd = input_bfd; |
918 | 0 | entry->input_indx = input_indx; |
919 | 0 | eht->dynsymcount++; |
920 | | |
921 | | /* Whatever binding the symbol had before, it's now local. */ |
922 | 0 | entry->isym.st_info |
923 | 0 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); |
924 | | |
925 | | /* The dynindx will be set at the end of size_dynamic_sections. */ |
926 | |
|
927 | 0 | return 1; |
928 | 0 | } |
929 | | |
930 | | /* Return the dynindex of a local dynamic symbol. */ |
931 | | |
932 | | long |
933 | | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, |
934 | | bfd *input_bfd, |
935 | | long input_indx) |
936 | 0 | { |
937 | 0 | struct elf_link_local_dynamic_entry *e; |
938 | |
|
939 | 0 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) |
940 | 0 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) |
941 | 0 | return e->dynindx; |
942 | 0 | return -1; |
943 | 0 | } |
944 | | |
945 | | /* This function is used to renumber the dynamic symbols, if some of |
946 | | them are removed because they are marked as local. This is called |
947 | | via elf_link_hash_traverse. */ |
948 | | |
949 | | static bool |
950 | | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, |
951 | | void *data) |
952 | 0 | { |
953 | 0 | size_t *count = (size_t *) data; |
954 | |
|
955 | 0 | if (h->forced_local) |
956 | 0 | return true; |
957 | | |
958 | 0 | if (h->dynindx != -1) |
959 | 0 | h->dynindx = ++(*count); |
960 | |
|
961 | 0 | return true; |
962 | 0 | } |
963 | | |
964 | | |
965 | | /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with |
966 | | STB_LOCAL binding. */ |
967 | | |
968 | | static bool |
969 | | elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, |
970 | | void *data) |
971 | 0 | { |
972 | 0 | size_t *count = (size_t *) data; |
973 | |
|
974 | 0 | if (!h->forced_local) |
975 | 0 | return true; |
976 | | |
977 | 0 | if (h->dynindx != -1) |
978 | 0 | h->dynindx = ++(*count); |
979 | |
|
980 | 0 | return true; |
981 | 0 | } |
982 | | |
983 | | /* Return true if the dynamic symbol for a given section should be |
984 | | omitted when creating a shared library. */ |
985 | | bool |
986 | | _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, |
987 | | struct bfd_link_info *info, |
988 | | asection *p) |
989 | 0 | { |
990 | 0 | struct elf_link_hash_table *htab; |
991 | 0 | asection *ip; |
992 | |
|
993 | 0 | switch (elf_section_data (p)->this_hdr.sh_type) |
994 | 0 | { |
995 | 0 | case SHT_PROGBITS: |
996 | 0 | case SHT_NOBITS: |
997 | | /* If sh_type is yet undecided, assume it could be |
998 | | SHT_PROGBITS/SHT_NOBITS. */ |
999 | 0 | case SHT_NULL: |
1000 | 0 | htab = elf_hash_table (info); |
1001 | 0 | if (htab->text_index_section != NULL) |
1002 | 0 | return p != htab->text_index_section && p != htab->data_index_section; |
1003 | | |
1004 | 0 | return (htab->dynobj != NULL |
1005 | 0 | && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL |
1006 | 0 | && ip->output_section == p); |
1007 | | |
1008 | | /* There shouldn't be section relative relocations |
1009 | | against any other section. */ |
1010 | 0 | default: |
1011 | 0 | return true; |
1012 | 0 | } |
1013 | 0 | } |
1014 | | |
1015 | | bool |
1016 | | _bfd_elf_omit_section_dynsym_all |
1017 | | (bfd *output_bfd ATTRIBUTE_UNUSED, |
1018 | | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1019 | | asection *p ATTRIBUTE_UNUSED) |
1020 | 0 | { |
1021 | 0 | return true; |
1022 | 0 | } |
1023 | | |
1024 | | /* Assign dynsym indices. In a shared library we generate a section |
1025 | | symbol for each output section, which come first. Next come symbols |
1026 | | which have been forced to local binding. Then all of the back-end |
1027 | | allocated local dynamic syms, followed by the rest of the global |
1028 | | symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set. |
1029 | | (This prevents the early call before elf_backend_init_index_section |
1030 | | and strip_excluded_output_sections setting dynindx for sections |
1031 | | that are stripped.) */ |
1032 | | |
1033 | | static unsigned long |
1034 | | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, |
1035 | | struct bfd_link_info *info, |
1036 | | unsigned long *section_sym_count) |
1037 | 0 | { |
1038 | 0 | unsigned long dynsymcount = 0; |
1039 | 0 | bool do_sec = section_sym_count != NULL; |
1040 | |
|
1041 | 0 | if (bfd_link_pic (info) |
1042 | 0 | || elf_hash_table (info)->is_relocatable_executable) |
1043 | 0 | { |
1044 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
1045 | 0 | asection *p; |
1046 | 0 | for (p = output_bfd->sections; p ; p = p->next) |
1047 | 0 | if ((p->flags & SEC_EXCLUDE) == 0 |
1048 | 0 | && (p->flags & SEC_ALLOC) != 0 |
1049 | 0 | && elf_hash_table (info)->dynamic_relocs |
1050 | 0 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) |
1051 | 0 | { |
1052 | 0 | ++dynsymcount; |
1053 | 0 | if (do_sec) |
1054 | 0 | elf_section_data (p)->dynindx = dynsymcount; |
1055 | 0 | } |
1056 | 0 | else if (do_sec) |
1057 | 0 | elf_section_data (p)->dynindx = 0; |
1058 | 0 | } |
1059 | 0 | if (do_sec) |
1060 | 0 | *section_sym_count = dynsymcount; |
1061 | |
|
1062 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
1063 | 0 | elf_link_renumber_local_hash_table_dynsyms, |
1064 | 0 | &dynsymcount); |
1065 | |
|
1066 | 0 | if (elf_hash_table (info)->dynlocal) |
1067 | 0 | { |
1068 | 0 | struct elf_link_local_dynamic_entry *p; |
1069 | 0 | for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) |
1070 | 0 | p->dynindx = ++dynsymcount; |
1071 | 0 | } |
1072 | 0 | elf_hash_table (info)->local_dynsymcount = dynsymcount; |
1073 | |
|
1074 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
1075 | 0 | elf_link_renumber_hash_table_dynsyms, |
1076 | 0 | &dynsymcount); |
1077 | | |
1078 | | /* There is an unused NULL entry at the head of the table which we |
1079 | | must account for in our count even if the table is empty since it |
1080 | | is intended for the mandatory DT_SYMTAB tag (.dynsym section) in |
1081 | | .dynamic section. */ |
1082 | 0 | dynsymcount++; |
1083 | |
|
1084 | 0 | elf_hash_table (info)->dynsymcount = dynsymcount; |
1085 | 0 | return dynsymcount; |
1086 | 0 | } |
1087 | | |
1088 | | /* Merge st_other field. */ |
1089 | | |
1090 | | static void |
1091 | | elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, |
1092 | | unsigned int st_other, asection *sec, |
1093 | | bool definition, bool dynamic) |
1094 | 0 | { |
1095 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
1096 | | |
1097 | | /* If st_other has a processor-specific meaning, specific |
1098 | | code might be needed here. */ |
1099 | 0 | if (bed->elf_backend_merge_symbol_attribute) |
1100 | 0 | (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition, |
1101 | 0 | dynamic); |
1102 | |
|
1103 | 0 | if (!dynamic) |
1104 | 0 | { |
1105 | 0 | unsigned symvis = ELF_ST_VISIBILITY (st_other); |
1106 | 0 | unsigned hvis = ELF_ST_VISIBILITY (h->other); |
1107 | | |
1108 | | /* Keep the most constraining visibility. Leave the remainder |
1109 | | of the st_other field to elf_backend_merge_symbol_attribute. */ |
1110 | 0 | if (symvis - 1 < hvis - 1) |
1111 | 0 | h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); |
1112 | 0 | } |
1113 | 0 | else if (definition |
1114 | 0 | && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT |
1115 | 0 | && (sec->flags & SEC_READONLY) == 0) |
1116 | 0 | h->protected_def = 1; |
1117 | 0 | } |
1118 | | |
1119 | | /* This function is called when we want to merge a new symbol with an |
1120 | | existing symbol. It handles the various cases which arise when we |
1121 | | find a definition in a dynamic object, or when there is already a |
1122 | | definition in a dynamic object. The new symbol is described by |
1123 | | NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table |
1124 | | entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK |
1125 | | if the old symbol was weak. We set POLD_ALIGNMENT to the alignment |
1126 | | of an old common symbol. We set OVERRIDE if the old symbol is |
1127 | | overriding a new definition. We set TYPE_CHANGE_OK if it is OK for |
1128 | | the type to change. We set SIZE_CHANGE_OK if it is OK for the size |
1129 | | to change. By OK to change, we mean that we shouldn't warn if the |
1130 | | type or size does change. */ |
1131 | | |
1132 | | static bool |
1133 | | _bfd_elf_merge_symbol (bfd *abfd, |
1134 | | struct bfd_link_info *info, |
1135 | | const char *name, |
1136 | | Elf_Internal_Sym *sym, |
1137 | | asection **psec, |
1138 | | bfd_vma *pvalue, |
1139 | | struct elf_link_hash_entry **sym_hash, |
1140 | | bfd **poldbfd, |
1141 | | bool *pold_weak, |
1142 | | unsigned int *pold_alignment, |
1143 | | bool *skip, |
1144 | | bfd **override, |
1145 | | bool *type_change_ok, |
1146 | | bool *size_change_ok, |
1147 | | bool *matched) |
1148 | 0 | { |
1149 | 0 | asection *sec, *oldsec; |
1150 | 0 | struct elf_link_hash_entry *h; |
1151 | 0 | struct elf_link_hash_entry *hi; |
1152 | 0 | struct elf_link_hash_entry *flip; |
1153 | 0 | int bind; |
1154 | 0 | bfd *oldbfd; |
1155 | 0 | bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; |
1156 | 0 | bool newweak, oldweak, newfunc, oldfunc; |
1157 | 0 | const struct elf_backend_data *bed; |
1158 | 0 | char *new_version; |
1159 | 0 | bool default_sym = *matched; |
1160 | 0 | struct elf_link_hash_table *htab; |
1161 | |
|
1162 | 0 | *skip = false; |
1163 | 0 | *override = NULL; |
1164 | |
|
1165 | 0 | sec = *psec; |
1166 | 0 | bind = ELF_ST_BIND (sym->st_info); |
1167 | |
|
1168 | 0 | if (! bfd_is_und_section (sec)) |
1169 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); |
1170 | 0 | else |
1171 | 0 | h = ((struct elf_link_hash_entry *) |
1172 | 0 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); |
1173 | 0 | if (h == NULL) |
1174 | 0 | return false; |
1175 | 0 | *sym_hash = h; |
1176 | |
|
1177 | 0 | bed = get_elf_backend_data (abfd); |
1178 | | |
1179 | | /* NEW_VERSION is the symbol version of the new symbol. */ |
1180 | 0 | if (h->versioned != unversioned) |
1181 | 0 | { |
1182 | | /* Symbol version is unknown or versioned. */ |
1183 | 0 | new_version = strrchr (name, ELF_VER_CHR); |
1184 | 0 | if (new_version) |
1185 | 0 | { |
1186 | 0 | if (h->versioned == unknown) |
1187 | 0 | { |
1188 | 0 | if (new_version > name && new_version[-1] != ELF_VER_CHR) |
1189 | 0 | h->versioned = versioned_hidden; |
1190 | 0 | else |
1191 | 0 | h->versioned = versioned; |
1192 | 0 | } |
1193 | 0 | new_version += 1; |
1194 | 0 | if (new_version[0] == '\0') |
1195 | 0 | new_version = NULL; |
1196 | 0 | } |
1197 | 0 | else |
1198 | 0 | h->versioned = unversioned; |
1199 | 0 | } |
1200 | 0 | else |
1201 | 0 | new_version = NULL; |
1202 | | |
1203 | | /* For merging, we only care about real symbols. But we need to make |
1204 | | sure that indirect symbol dynamic flags are updated. */ |
1205 | 0 | hi = h; |
1206 | 0 | while (h->root.type == bfd_link_hash_indirect |
1207 | 0 | || h->root.type == bfd_link_hash_warning) |
1208 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
1209 | |
|
1210 | 0 | if (!*matched) |
1211 | 0 | { |
1212 | 0 | if (hi == h || h->root.type == bfd_link_hash_new) |
1213 | 0 | *matched = true; |
1214 | 0 | else |
1215 | 0 | { |
1216 | | /* OLD_HIDDEN is true if the existing symbol is only visible |
1217 | | to the symbol with the same symbol version. NEW_HIDDEN is |
1218 | | true if the new symbol is only visible to the symbol with |
1219 | | the same symbol version. */ |
1220 | 0 | bool old_hidden = h->versioned == versioned_hidden; |
1221 | 0 | bool new_hidden = hi->versioned == versioned_hidden; |
1222 | 0 | if (!old_hidden && !new_hidden) |
1223 | | /* The new symbol matches the existing symbol if both |
1224 | | aren't hidden. */ |
1225 | 0 | *matched = true; |
1226 | 0 | else |
1227 | 0 | { |
1228 | | /* OLD_VERSION is the symbol version of the existing |
1229 | | symbol. */ |
1230 | 0 | char *old_version; |
1231 | |
|
1232 | 0 | if (h->versioned >= versioned) |
1233 | 0 | old_version = strrchr (h->root.root.string, |
1234 | 0 | ELF_VER_CHR) + 1; |
1235 | 0 | else |
1236 | 0 | old_version = NULL; |
1237 | | |
1238 | | /* The new symbol matches the existing symbol if they |
1239 | | have the same symbol version. */ |
1240 | 0 | *matched = (old_version == new_version |
1241 | 0 | || (old_version != NULL |
1242 | 0 | && new_version != NULL |
1243 | 0 | && strcmp (old_version, new_version) == 0)); |
1244 | 0 | } |
1245 | 0 | } |
1246 | 0 | } |
1247 | | |
1248 | | /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the |
1249 | | existing symbol. */ |
1250 | |
|
1251 | 0 | oldbfd = NULL; |
1252 | 0 | oldsec = NULL; |
1253 | 0 | switch (h->root.type) |
1254 | 0 | { |
1255 | 0 | default: |
1256 | 0 | break; |
1257 | | |
1258 | 0 | case bfd_link_hash_undefined: |
1259 | 0 | case bfd_link_hash_undefweak: |
1260 | 0 | oldbfd = h->root.u.undef.abfd; |
1261 | 0 | break; |
1262 | | |
1263 | 0 | case bfd_link_hash_defined: |
1264 | 0 | case bfd_link_hash_defweak: |
1265 | 0 | oldbfd = h->root.u.def.section->owner; |
1266 | 0 | oldsec = h->root.u.def.section; |
1267 | 0 | break; |
1268 | | |
1269 | 0 | case bfd_link_hash_common: |
1270 | 0 | oldbfd = h->root.u.c.p->section->owner; |
1271 | 0 | oldsec = h->root.u.c.p->section; |
1272 | 0 | if (pold_alignment) |
1273 | 0 | *pold_alignment = h->root.u.c.p->alignment_power; |
1274 | 0 | break; |
1275 | 0 | } |
1276 | 0 | if (poldbfd && *poldbfd == NULL) |
1277 | 0 | *poldbfd = oldbfd; |
1278 | | |
1279 | | /* Differentiate strong and weak symbols. */ |
1280 | 0 | newweak = bind == STB_WEAK; |
1281 | 0 | oldweak = (h->root.type == bfd_link_hash_defweak |
1282 | 0 | || h->root.type == bfd_link_hash_undefweak); |
1283 | 0 | if (pold_weak) |
1284 | 0 | *pold_weak = oldweak; |
1285 | | |
1286 | | /* We have to check it for every instance since the first few may be |
1287 | | references and not all compilers emit symbol type for undefined |
1288 | | symbols. */ |
1289 | 0 | bfd_elf_link_mark_dynamic_symbol (info, h, sym); |
1290 | |
|
1291 | 0 | htab = elf_hash_table (info); |
1292 | | |
1293 | | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
1294 | | respectively, is from a dynamic object. */ |
1295 | |
|
1296 | 0 | newdyn = (abfd->flags & DYNAMIC) != 0; |
1297 | | |
1298 | | /* ref_dynamic_nonweak and dynamic_def flags track actual undefined |
1299 | | syms and defined syms in dynamic libraries respectively. |
1300 | | ref_dynamic on the other hand can be set for a symbol defined in |
1301 | | a dynamic library, and def_dynamic may not be set; When the |
1302 | | definition in a dynamic lib is overridden by a definition in the |
1303 | | executable use of the symbol in the dynamic lib becomes a |
1304 | | reference to the executable symbol. */ |
1305 | 0 | if (newdyn) |
1306 | 0 | { |
1307 | 0 | if (bfd_is_und_section (sec)) |
1308 | 0 | { |
1309 | 0 | if (bind != STB_WEAK) |
1310 | 0 | { |
1311 | 0 | h->ref_dynamic_nonweak = 1; |
1312 | 0 | hi->ref_dynamic_nonweak = 1; |
1313 | 0 | } |
1314 | 0 | } |
1315 | 0 | else |
1316 | 0 | { |
1317 | | /* Update the existing symbol only if they match. */ |
1318 | 0 | if (*matched) |
1319 | 0 | h->dynamic_def = 1; |
1320 | 0 | hi->dynamic_def = 1; |
1321 | 0 | } |
1322 | 0 | } |
1323 | | |
1324 | | /* If we just created the symbol, mark it as being an ELF symbol. |
1325 | | Other than that, there is nothing to do--there is no merge issue |
1326 | | with a newly defined symbol--so we just return. */ |
1327 | |
|
1328 | 0 | if (h->root.type == bfd_link_hash_new) |
1329 | 0 | { |
1330 | 0 | h->non_elf = 0; |
1331 | 0 | return true; |
1332 | 0 | } |
1333 | | |
1334 | | /* In cases involving weak versioned symbols, we may wind up trying |
1335 | | to merge a symbol with itself. Catch that here, to avoid the |
1336 | | confusion that results if we try to override a symbol with |
1337 | | itself. The additional tests catch cases like |
1338 | | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a |
1339 | | dynamic object, which we do want to handle here. */ |
1340 | 0 | if (abfd == oldbfd |
1341 | 0 | && (newweak || oldweak) |
1342 | 0 | && ((abfd->flags & DYNAMIC) == 0 |
1343 | 0 | || !h->def_regular)) |
1344 | 0 | return true; |
1345 | | |
1346 | 0 | olddyn = false; |
1347 | 0 | if (oldbfd != NULL) |
1348 | 0 | olddyn = (oldbfd->flags & DYNAMIC) != 0; |
1349 | 0 | else if (oldsec != NULL) |
1350 | 0 | { |
1351 | | /* This handles the special SHN_MIPS_{TEXT,DATA} section |
1352 | | indices used by MIPS ELF. */ |
1353 | 0 | olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; |
1354 | 0 | } |
1355 | | |
1356 | | /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries. */ |
1357 | 0 | if (!htab->handling_dt_needed |
1358 | 0 | && oldbfd != NULL |
1359 | 0 | && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)) |
1360 | 0 | { |
1361 | 0 | if (newdyn != olddyn) |
1362 | 0 | { |
1363 | | /* Handle a case where plugin_notice won't be called and thus |
1364 | | won't set the non_ir_ref flags on the first pass over |
1365 | | symbols. */ |
1366 | 0 | h->root.non_ir_ref_dynamic = true; |
1367 | 0 | hi->root.non_ir_ref_dynamic = true; |
1368 | 0 | } |
1369 | 0 | else if ((oldbfd->flags & BFD_PLUGIN) != 0 |
1370 | 0 | && hi->root.type == bfd_link_hash_indirect) |
1371 | 0 | { |
1372 | | /* Change indirect symbol from IR to undefined. */ |
1373 | 0 | hi->root.type = bfd_link_hash_undefined; |
1374 | 0 | hi->root.u.undef.abfd = oldbfd; |
1375 | 0 | } |
1376 | 0 | } |
1377 | | |
1378 | | /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
1379 | | respectively, appear to be a definition rather than reference. */ |
1380 | |
|
1381 | 0 | newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); |
1382 | |
|
1383 | 0 | olddef = (h->root.type != bfd_link_hash_undefined |
1384 | 0 | && h->root.type != bfd_link_hash_undefweak |
1385 | 0 | && h->root.type != bfd_link_hash_common); |
1386 | | |
1387 | | /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, |
1388 | | respectively, appear to be a function. */ |
1389 | |
|
1390 | 0 | newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE |
1391 | 0 | && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); |
1392 | |
|
1393 | 0 | oldfunc = (h->type != STT_NOTYPE |
1394 | 0 | && bed->is_function_type (h->type)); |
1395 | |
|
1396 | 0 | if (!(newfunc && oldfunc) |
1397 | 0 | && ELF_ST_TYPE (sym->st_info) != h->type |
1398 | 0 | && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE |
1399 | 0 | && h->type != STT_NOTYPE |
1400 | 0 | && (newdef || bfd_is_com_section (sec)) |
1401 | 0 | && (olddef || h->root.type == bfd_link_hash_common)) |
1402 | 0 | { |
1403 | | /* If creating a default indirect symbol ("foo" or "foo@") from |
1404 | | a dynamic versioned definition ("foo@@") skip doing so if |
1405 | | there is an existing regular definition with a different |
1406 | | type. We don't want, for example, a "time" variable in the |
1407 | | executable overriding a "time" function in a shared library. */ |
1408 | 0 | if (newdyn |
1409 | 0 | && !olddyn) |
1410 | 0 | { |
1411 | 0 | *skip = true; |
1412 | 0 | return true; |
1413 | 0 | } |
1414 | | |
1415 | | /* When adding a symbol from a regular object file after we have |
1416 | | created indirect symbols, undo the indirection and any |
1417 | | dynamic state. */ |
1418 | 0 | if (hi != h |
1419 | 0 | && !newdyn |
1420 | 0 | && olddyn) |
1421 | 0 | { |
1422 | 0 | h = hi; |
1423 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
1424 | 0 | h->forced_local = 0; |
1425 | 0 | h->ref_dynamic = 0; |
1426 | 0 | h->def_dynamic = 0; |
1427 | 0 | h->dynamic_def = 0; |
1428 | 0 | if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) |
1429 | 0 | { |
1430 | 0 | h->root.type = bfd_link_hash_undefined; |
1431 | 0 | h->root.u.undef.abfd = abfd; |
1432 | 0 | } |
1433 | 0 | else |
1434 | 0 | { |
1435 | 0 | h->root.type = bfd_link_hash_new; |
1436 | 0 | h->root.u.undef.abfd = NULL; |
1437 | 0 | } |
1438 | 0 | return true; |
1439 | 0 | } |
1440 | 0 | } |
1441 | | |
1442 | | /* Check TLS symbols. We don't check undefined symbols introduced |
1443 | | by "ld -u" which have no type (and oldbfd NULL), and we don't |
1444 | | check symbols from plugins because they also have no type. */ |
1445 | 0 | if (oldbfd != NULL |
1446 | 0 | && (oldbfd->flags & BFD_PLUGIN) == 0 |
1447 | 0 | && (abfd->flags & BFD_PLUGIN) == 0 |
1448 | 0 | && ELF_ST_TYPE (sym->st_info) != h->type |
1449 | 0 | && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) |
1450 | 0 | { |
1451 | 0 | bfd *ntbfd, *tbfd; |
1452 | 0 | bool ntdef, tdef; |
1453 | 0 | asection *ntsec, *tsec; |
1454 | |
|
1455 | 0 | if (h->type == STT_TLS) |
1456 | 0 | { |
1457 | 0 | ntbfd = abfd; |
1458 | 0 | ntsec = sec; |
1459 | 0 | ntdef = newdef; |
1460 | 0 | tbfd = oldbfd; |
1461 | 0 | tsec = oldsec; |
1462 | 0 | tdef = olddef; |
1463 | 0 | } |
1464 | 0 | else |
1465 | 0 | { |
1466 | 0 | ntbfd = oldbfd; |
1467 | 0 | ntsec = oldsec; |
1468 | 0 | ntdef = olddef; |
1469 | 0 | tbfd = abfd; |
1470 | 0 | tsec = sec; |
1471 | 0 | tdef = newdef; |
1472 | 0 | } |
1473 | |
|
1474 | 0 | if (tdef && ntdef) |
1475 | 0 | _bfd_error_handler |
1476 | | /* xgettext:c-format */ |
1477 | 0 | (_("%s: TLS definition in %pB section %pA " |
1478 | 0 | "mismatches non-TLS definition in %pB section %pA"), |
1479 | 0 | h->root.root.string, tbfd, tsec, ntbfd, ntsec); |
1480 | 0 | else if (!tdef && !ntdef) |
1481 | 0 | _bfd_error_handler |
1482 | | /* xgettext:c-format */ |
1483 | 0 | (_("%s: TLS reference in %pB " |
1484 | 0 | "mismatches non-TLS reference in %pB"), |
1485 | 0 | h->root.root.string, tbfd, ntbfd); |
1486 | 0 | else if (tdef) |
1487 | 0 | _bfd_error_handler |
1488 | | /* xgettext:c-format */ |
1489 | 0 | (_("%s: TLS definition in %pB section %pA " |
1490 | 0 | "mismatches non-TLS reference in %pB"), |
1491 | 0 | h->root.root.string, tbfd, tsec, ntbfd); |
1492 | 0 | else |
1493 | 0 | _bfd_error_handler |
1494 | | /* xgettext:c-format */ |
1495 | 0 | (_("%s: TLS reference in %pB " |
1496 | 0 | "mismatches non-TLS definition in %pB section %pA"), |
1497 | 0 | h->root.root.string, tbfd, ntbfd, ntsec); |
1498 | |
|
1499 | 0 | bfd_set_error (bfd_error_bad_value); |
1500 | 0 | return false; |
1501 | 0 | } |
1502 | | |
1503 | | /* If the old symbol has non-default visibility, we ignore the new |
1504 | | definition from a dynamic object. */ |
1505 | 0 | if (newdyn |
1506 | 0 | && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
1507 | 0 | && !bfd_is_und_section (sec)) |
1508 | 0 | { |
1509 | 0 | *skip = true; |
1510 | | /* Make sure this symbol is dynamic. */ |
1511 | 0 | h->ref_dynamic = 1; |
1512 | 0 | hi->ref_dynamic = 1; |
1513 | | /* A protected symbol has external availability. Make sure it is |
1514 | | recorded as dynamic. |
1515 | | |
1516 | | FIXME: Should we check type and size for protected symbol? */ |
1517 | 0 | if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) |
1518 | 0 | return bfd_elf_link_record_dynamic_symbol (info, h); |
1519 | 0 | else |
1520 | 0 | return true; |
1521 | 0 | } |
1522 | 0 | else if (!newdyn |
1523 | 0 | && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT |
1524 | 0 | && h->def_dynamic) |
1525 | 0 | { |
1526 | | /* If the new symbol with non-default visibility comes from a |
1527 | | relocatable file and the old definition comes from a dynamic |
1528 | | object, we remove the old definition. */ |
1529 | 0 | if (hi->root.type == bfd_link_hash_indirect) |
1530 | 0 | { |
1531 | | /* Handle the case where the old dynamic definition is |
1532 | | default versioned. We need to copy the symbol info from |
1533 | | the symbol with default version to the normal one if it |
1534 | | was referenced before. */ |
1535 | 0 | if (h->ref_regular) |
1536 | 0 | { |
1537 | 0 | hi->root.type = h->root.type; |
1538 | 0 | h->root.type = bfd_link_hash_indirect; |
1539 | 0 | (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); |
1540 | |
|
1541 | 0 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; |
1542 | 0 | if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) |
1543 | 0 | { |
1544 | | /* If the new symbol is hidden or internal, completely undo |
1545 | | any dynamic link state. */ |
1546 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
1547 | 0 | h->forced_local = 0; |
1548 | 0 | h->ref_dynamic = 0; |
1549 | 0 | } |
1550 | 0 | else |
1551 | 0 | h->ref_dynamic = 1; |
1552 | |
|
1553 | 0 | h->def_dynamic = 0; |
1554 | | /* FIXME: Should we check type and size for protected symbol? */ |
1555 | 0 | h->size = 0; |
1556 | 0 | h->type = 0; |
1557 | |
|
1558 | 0 | h = hi; |
1559 | 0 | } |
1560 | 0 | else |
1561 | 0 | h = hi; |
1562 | 0 | } |
1563 | | |
1564 | | /* If the old symbol was undefined before, then it will still be |
1565 | | on the undefs list. If the new symbol is undefined or |
1566 | | common, we can't make it bfd_link_hash_new here, because new |
1567 | | undefined or common symbols will be added to the undefs list |
1568 | | by _bfd_generic_link_add_one_symbol. Symbols may not be |
1569 | | added twice to the undefs list. Also, if the new symbol is |
1570 | | undefweak then we don't want to lose the strong undef. */ |
1571 | 0 | if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) |
1572 | 0 | { |
1573 | 0 | h->root.type = bfd_link_hash_undefined; |
1574 | 0 | h->root.u.undef.abfd = abfd; |
1575 | 0 | } |
1576 | 0 | else |
1577 | 0 | { |
1578 | 0 | h->root.type = bfd_link_hash_new; |
1579 | 0 | h->root.u.undef.abfd = NULL; |
1580 | 0 | } |
1581 | |
|
1582 | 0 | if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) |
1583 | 0 | { |
1584 | | /* If the new symbol is hidden or internal, completely undo |
1585 | | any dynamic link state. */ |
1586 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
1587 | 0 | h->forced_local = 0; |
1588 | 0 | h->ref_dynamic = 0; |
1589 | 0 | } |
1590 | 0 | else |
1591 | 0 | h->ref_dynamic = 1; |
1592 | 0 | h->def_dynamic = 0; |
1593 | | /* FIXME: Should we check type and size for protected symbol? */ |
1594 | 0 | h->size = 0; |
1595 | 0 | h->type = 0; |
1596 | 0 | return true; |
1597 | 0 | } |
1598 | | |
1599 | | /* If a new weak symbol definition comes from a regular file and the |
1600 | | old symbol comes from a dynamic library, we treat the new one as |
1601 | | strong. Similarly, an old weak symbol definition from a regular |
1602 | | file is treated as strong when the new symbol comes from a dynamic |
1603 | | library. Further, an old weak symbol from a dynamic library is |
1604 | | treated as strong if the new symbol is from a dynamic library. |
1605 | | This reflects the way glibc's ld.so works. |
1606 | | |
1607 | | Also allow a weak symbol to override a linker script symbol |
1608 | | defined by an early pass over the script. This is done so the |
1609 | | linker knows the symbol is defined in an object file, for the |
1610 | | DEFINED script function. |
1611 | | |
1612 | | Do this before setting *type_change_ok or *size_change_ok so that |
1613 | | we warn properly when dynamic library symbols are overridden. */ |
1614 | | |
1615 | 0 | if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) |
1616 | 0 | newweak = false; |
1617 | 0 | if (olddef && newdyn) |
1618 | 0 | oldweak = false; |
1619 | | |
1620 | | /* Allow changes between different types of function symbol. */ |
1621 | 0 | if (newfunc && oldfunc) |
1622 | 0 | *type_change_ok = true; |
1623 | | |
1624 | | /* It's OK to change the type if either the existing symbol or the |
1625 | | new symbol is weak. A type change is also OK if the old symbol |
1626 | | is undefined and the new symbol is defined. */ |
1627 | |
|
1628 | 0 | if (oldweak |
1629 | 0 | || newweak |
1630 | 0 | || (newdef |
1631 | 0 | && h->root.type == bfd_link_hash_undefined)) |
1632 | 0 | *type_change_ok = true; |
1633 | | |
1634 | | /* It's OK to change the size if either the existing symbol or the |
1635 | | new symbol is weak, or if the old symbol is undefined. */ |
1636 | |
|
1637 | 0 | if (*type_change_ok |
1638 | 0 | || h->root.type == bfd_link_hash_undefined) |
1639 | 0 | *size_change_ok = true; |
1640 | | |
1641 | | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old |
1642 | | symbol, respectively, appears to be a common symbol in a dynamic |
1643 | | object. If a symbol appears in an uninitialized section, and is |
1644 | | not weak, and is not a function, then it may be a common symbol |
1645 | | which was resolved when the dynamic object was created. We want |
1646 | | to treat such symbols specially, because they raise special |
1647 | | considerations when setting the symbol size: if the symbol |
1648 | | appears as a common symbol in a regular object, and the size in |
1649 | | the regular object is larger, we must make sure that we use the |
1650 | | larger size. This problematic case can always be avoided in C, |
1651 | | but it must be handled correctly when using Fortran shared |
1652 | | libraries. |
1653 | | |
1654 | | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and |
1655 | | likewise for OLDDYNCOMMON and OLDDEF. |
1656 | | |
1657 | | Note that this test is just a heuristic, and that it is quite |
1658 | | possible to have an uninitialized symbol in a shared object which |
1659 | | is really a definition, rather than a common symbol. This could |
1660 | | lead to some minor confusion when the symbol really is a common |
1661 | | symbol in some regular object. However, I think it will be |
1662 | | harmless. */ |
1663 | |
|
1664 | 0 | if (newdyn |
1665 | 0 | && newdef |
1666 | 0 | && !newweak |
1667 | 0 | && (sec->flags & SEC_ALLOC) != 0 |
1668 | 0 | && (sec->flags & SEC_LOAD) == 0 |
1669 | 0 | && sym->st_size > 0 |
1670 | 0 | && !newfunc) |
1671 | 0 | newdyncommon = true; |
1672 | 0 | else |
1673 | 0 | newdyncommon = false; |
1674 | |
|
1675 | 0 | if (olddyn |
1676 | 0 | && olddef |
1677 | 0 | && h->root.type == bfd_link_hash_defined |
1678 | 0 | && h->def_dynamic |
1679 | 0 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 |
1680 | 0 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 |
1681 | 0 | && h->size > 0 |
1682 | 0 | && !oldfunc) |
1683 | 0 | olddyncommon = true; |
1684 | 0 | else |
1685 | 0 | olddyncommon = false; |
1686 | | |
1687 | | /* We now know everything about the old and new symbols. We ask the |
1688 | | backend to check if we can merge them. */ |
1689 | 0 | if (bed->merge_symbol != NULL) |
1690 | 0 | { |
1691 | 0 | if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) |
1692 | 0 | return false; |
1693 | 0 | sec = *psec; |
1694 | 0 | } |
1695 | | |
1696 | | /* There are multiple definitions of a normal symbol. Skip the |
1697 | | default symbol as well as definition from an IR object. */ |
1698 | 0 | if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak |
1699 | 0 | && !default_sym && h->def_regular |
1700 | 0 | && !(oldbfd != NULL |
1701 | 0 | && (oldbfd->flags & BFD_PLUGIN) != 0 |
1702 | 0 | && (abfd->flags & BFD_PLUGIN) == 0)) |
1703 | 0 | { |
1704 | | /* Handle a multiple definition. */ |
1705 | 0 | (*info->callbacks->multiple_definition) (info, &h->root, |
1706 | 0 | abfd, sec, *pvalue); |
1707 | 0 | *skip = true; |
1708 | 0 | return true; |
1709 | 0 | } |
1710 | | |
1711 | | /* If both the old and the new symbols look like common symbols in a |
1712 | | dynamic object, set the size of the symbol to the larger of the |
1713 | | two. */ |
1714 | | |
1715 | 0 | if (olddyncommon |
1716 | 0 | && newdyncommon |
1717 | 0 | && sym->st_size != h->size) |
1718 | 0 | { |
1719 | | /* Since we think we have two common symbols, issue a multiple |
1720 | | common warning if desired. Note that we only warn if the |
1721 | | size is different. If the size is the same, we simply let |
1722 | | the old symbol override the new one as normally happens with |
1723 | | symbols defined in dynamic objects. */ |
1724 | |
|
1725 | 0 | (*info->callbacks->multiple_common) (info, &h->root, abfd, |
1726 | 0 | bfd_link_hash_common, sym->st_size); |
1727 | 0 | if (sym->st_size > h->size) |
1728 | 0 | h->size = sym->st_size; |
1729 | |
|
1730 | 0 | *size_change_ok = true; |
1731 | 0 | } |
1732 | | |
1733 | | /* If we are looking at a dynamic object, and we have found a |
1734 | | definition, we need to see if the symbol was already defined by |
1735 | | some other object. If so, we want to use the existing |
1736 | | definition, and we do not want to report a multiple symbol |
1737 | | definition error; we do this by clobbering *PSEC to be |
1738 | | bfd_und_section_ptr. |
1739 | | |
1740 | | We treat a common symbol as a definition if the symbol in the |
1741 | | shared library is a function, since common symbols always |
1742 | | represent variables; this can cause confusion in principle, but |
1743 | | any such confusion would seem to indicate an erroneous program or |
1744 | | shared library. We also permit a common symbol in a regular |
1745 | | object to override a weak symbol in a shared object. */ |
1746 | |
|
1747 | 0 | if (newdyn |
1748 | 0 | && newdef |
1749 | 0 | && (olddef |
1750 | 0 | || (h->root.type == bfd_link_hash_common |
1751 | 0 | && (newweak || newfunc)))) |
1752 | 0 | { |
1753 | 0 | *override = abfd; |
1754 | 0 | newdef = false; |
1755 | 0 | newdyncommon = false; |
1756 | |
|
1757 | 0 | *psec = sec = bfd_und_section_ptr; |
1758 | 0 | *size_change_ok = true; |
1759 | | |
1760 | | /* If we get here when the old symbol is a common symbol, then |
1761 | | we are explicitly letting it override a weak symbol or |
1762 | | function in a dynamic object, and we don't want to warn about |
1763 | | a type change. If the old symbol is a defined symbol, a type |
1764 | | change warning may still be appropriate. */ |
1765 | |
|
1766 | 0 | if (h->root.type == bfd_link_hash_common) |
1767 | 0 | *type_change_ok = true; |
1768 | 0 | } |
1769 | | |
1770 | | /* Handle the special case of an old common symbol merging with a |
1771 | | new symbol which looks like a common symbol in a shared object. |
1772 | | We change *PSEC and *PVALUE to make the new symbol look like a |
1773 | | common symbol, and let _bfd_generic_link_add_one_symbol do the |
1774 | | right thing. */ |
1775 | |
|
1776 | 0 | if (newdyncommon |
1777 | 0 | && h->root.type == bfd_link_hash_common) |
1778 | 0 | { |
1779 | 0 | *override = oldbfd; |
1780 | 0 | newdef = false; |
1781 | 0 | newdyncommon = false; |
1782 | 0 | *pvalue = sym->st_size; |
1783 | 0 | *psec = sec = bed->common_section (oldsec); |
1784 | 0 | *size_change_ok = true; |
1785 | 0 | } |
1786 | | |
1787 | | /* Skip weak definitions of symbols that are already defined. */ |
1788 | 0 | if (newdef && olddef && newweak) |
1789 | 0 | { |
1790 | | /* Don't skip new non-IR weak syms. */ |
1791 | 0 | if (!(oldbfd != NULL |
1792 | 0 | && (oldbfd->flags & BFD_PLUGIN) != 0 |
1793 | 0 | && (abfd->flags & BFD_PLUGIN) == 0)) |
1794 | 0 | { |
1795 | 0 | newdef = false; |
1796 | 0 | *skip = true; |
1797 | 0 | } |
1798 | | |
1799 | | /* Merge st_other. If the symbol already has a dynamic index, |
1800 | | but visibility says it should not be visible, turn it into a |
1801 | | local symbol. */ |
1802 | 0 | elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn); |
1803 | 0 | if (h->dynindx != -1) |
1804 | 0 | switch (ELF_ST_VISIBILITY (h->other)) |
1805 | 0 | { |
1806 | 0 | case STV_INTERNAL: |
1807 | 0 | case STV_HIDDEN: |
1808 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
1809 | 0 | break; |
1810 | 0 | } |
1811 | 0 | } |
1812 | | |
1813 | | /* If the old symbol is from a dynamic object, and the new symbol is |
1814 | | a definition which is not from a dynamic object, then the new |
1815 | | symbol overrides the old symbol. Symbols from regular files |
1816 | | always take precedence over symbols from dynamic objects, even if |
1817 | | they are defined after the dynamic object in the link. |
1818 | | |
1819 | | As above, we again permit a common symbol in a regular object to |
1820 | | override a definition in a shared object if the shared object |
1821 | | symbol is a function or is weak. */ |
1822 | | |
1823 | 0 | flip = NULL; |
1824 | 0 | if (!newdyn |
1825 | 0 | && (newdef |
1826 | 0 | || (bfd_is_com_section (sec) |
1827 | 0 | && (oldweak || oldfunc))) |
1828 | 0 | && olddyn |
1829 | 0 | && olddef |
1830 | 0 | && h->def_dynamic) |
1831 | 0 | { |
1832 | | /* Change the hash table entry to undefined, and let |
1833 | | _bfd_generic_link_add_one_symbol do the right thing with the |
1834 | | new definition. */ |
1835 | |
|
1836 | 0 | h->root.type = bfd_link_hash_undefined; |
1837 | 0 | h->root.u.undef.abfd = h->root.u.def.section->owner; |
1838 | 0 | *size_change_ok = true; |
1839 | |
|
1840 | 0 | olddef = false; |
1841 | 0 | olddyncommon = false; |
1842 | | |
1843 | | /* We again permit a type change when a common symbol may be |
1844 | | overriding a function. */ |
1845 | |
|
1846 | 0 | if (bfd_is_com_section (sec)) |
1847 | 0 | { |
1848 | 0 | if (oldfunc) |
1849 | 0 | { |
1850 | | /* If a common symbol overrides a function, make sure |
1851 | | that it isn't defined dynamically nor has type |
1852 | | function. */ |
1853 | 0 | h->def_dynamic = 0; |
1854 | 0 | h->type = STT_NOTYPE; |
1855 | 0 | } |
1856 | 0 | *type_change_ok = true; |
1857 | 0 | } |
1858 | |
|
1859 | 0 | if (hi->root.type == bfd_link_hash_indirect) |
1860 | 0 | flip = hi; |
1861 | 0 | else |
1862 | | /* This union may have been set to be non-NULL when this symbol |
1863 | | was seen in a dynamic object. We must force the union to be |
1864 | | NULL, so that it is correct for a regular symbol. */ |
1865 | 0 | h->verinfo.vertree = NULL; |
1866 | 0 | } |
1867 | | |
1868 | | /* Handle the special case of a new common symbol merging with an |
1869 | | old symbol that looks like it might be a common symbol defined in |
1870 | | a shared object. Note that we have already handled the case in |
1871 | | which a new common symbol should simply override the definition |
1872 | | in the shared library. */ |
1873 | |
|
1874 | 0 | if (! newdyn |
1875 | 0 | && bfd_is_com_section (sec) |
1876 | 0 | && olddyncommon) |
1877 | 0 | { |
1878 | | /* It would be best if we could set the hash table entry to a |
1879 | | common symbol, but we don't know what to use for the section |
1880 | | or the alignment. */ |
1881 | 0 | (*info->callbacks->multiple_common) (info, &h->root, abfd, |
1882 | 0 | bfd_link_hash_common, sym->st_size); |
1883 | | |
1884 | | /* If the presumed common symbol in the dynamic object is |
1885 | | larger, pretend that the new symbol has its size. */ |
1886 | |
|
1887 | 0 | if (h->size > *pvalue) |
1888 | 0 | *pvalue = h->size; |
1889 | | |
1890 | | /* We need to remember the alignment required by the symbol |
1891 | | in the dynamic object. */ |
1892 | 0 | BFD_ASSERT (pold_alignment); |
1893 | 0 | *pold_alignment = h->root.u.def.section->alignment_power; |
1894 | |
|
1895 | 0 | olddef = false; |
1896 | 0 | olddyncommon = false; |
1897 | |
|
1898 | 0 | h->root.type = bfd_link_hash_undefined; |
1899 | 0 | h->root.u.undef.abfd = h->root.u.def.section->owner; |
1900 | |
|
1901 | 0 | *size_change_ok = true; |
1902 | 0 | *type_change_ok = true; |
1903 | |
|
1904 | 0 | if (hi->root.type == bfd_link_hash_indirect) |
1905 | 0 | flip = hi; |
1906 | 0 | else |
1907 | 0 | h->verinfo.vertree = NULL; |
1908 | 0 | } |
1909 | |
|
1910 | 0 | if (flip != NULL) |
1911 | 0 | { |
1912 | | /* Handle the case where we had a versioned symbol in a dynamic |
1913 | | library and now find a definition in a normal object. In this |
1914 | | case, we make the versioned symbol point to the normal one. */ |
1915 | 0 | flip->root.type = h->root.type; |
1916 | 0 | flip->root.u.undef.abfd = h->root.u.undef.abfd; |
1917 | 0 | h->root.type = bfd_link_hash_indirect; |
1918 | 0 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; |
1919 | 0 | (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); |
1920 | 0 | if (h->def_dynamic) |
1921 | 0 | { |
1922 | 0 | h->def_dynamic = 0; |
1923 | 0 | flip->ref_dynamic = 1; |
1924 | 0 | } |
1925 | 0 | } |
1926 | |
|
1927 | 0 | return true; |
1928 | 0 | } |
1929 | | |
1930 | | /* This function is called to create an indirect symbol from the |
1931 | | default for the symbol with the default version if needed. The |
1932 | | symbol is described by H, NAME, SYM, SEC, and VALUE. We |
1933 | | set DYNSYM if the new indirect symbol is dynamic. */ |
1934 | | |
1935 | | static bool |
1936 | | _bfd_elf_add_default_symbol (bfd *abfd, |
1937 | | struct bfd_link_info *info, |
1938 | | struct elf_link_hash_entry *h, |
1939 | | const char *name, |
1940 | | Elf_Internal_Sym *sym, |
1941 | | asection *sec, |
1942 | | bfd_vma value, |
1943 | | bfd **poldbfd, |
1944 | | bool *dynsym) |
1945 | 0 | { |
1946 | 0 | bool type_change_ok; |
1947 | 0 | bool size_change_ok; |
1948 | 0 | bool skip; |
1949 | 0 | char *shortname; |
1950 | 0 | struct elf_link_hash_entry *hi; |
1951 | 0 | struct bfd_link_hash_entry *bh; |
1952 | 0 | const struct elf_backend_data *bed; |
1953 | 0 | bool collect; |
1954 | 0 | bool dynamic; |
1955 | 0 | bfd *override; |
1956 | 0 | char *p; |
1957 | 0 | size_t len, shortlen; |
1958 | 0 | asection *tmp_sec; |
1959 | 0 | bool matched; |
1960 | |
|
1961 | 0 | if (h->versioned == unversioned || h->versioned == versioned_hidden) |
1962 | 0 | return true; |
1963 | | |
1964 | | /* If this symbol has a version, and it is the default version, we |
1965 | | create an indirect symbol from the default name to the fully |
1966 | | decorated name. This will cause external references which do not |
1967 | | specify a version to be bound to this version of the symbol. */ |
1968 | 0 | p = strchr (name, ELF_VER_CHR); |
1969 | 0 | if (h->versioned == unknown) |
1970 | 0 | { |
1971 | 0 | if (p == NULL) |
1972 | 0 | { |
1973 | 0 | h->versioned = unversioned; |
1974 | 0 | return true; |
1975 | 0 | } |
1976 | 0 | else |
1977 | 0 | { |
1978 | 0 | if (p[1] != ELF_VER_CHR) |
1979 | 0 | { |
1980 | 0 | h->versioned = versioned_hidden; |
1981 | 0 | return true; |
1982 | 0 | } |
1983 | 0 | else |
1984 | 0 | h->versioned = versioned; |
1985 | 0 | } |
1986 | 0 | } |
1987 | 0 | else |
1988 | 0 | { |
1989 | | /* PR ld/19073: We may see an unversioned definition after the |
1990 | | default version. */ |
1991 | 0 | if (p == NULL) |
1992 | 0 | return true; |
1993 | 0 | } |
1994 | | |
1995 | 0 | bed = get_elf_backend_data (abfd); |
1996 | 0 | collect = bed->collect; |
1997 | 0 | dynamic = (abfd->flags & DYNAMIC) != 0; |
1998 | |
|
1999 | 0 | shortlen = p - name; |
2000 | 0 | shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); |
2001 | 0 | if (shortname == NULL) |
2002 | 0 | return false; |
2003 | 0 | memcpy (shortname, name, shortlen); |
2004 | 0 | shortname[shortlen] = '\0'; |
2005 | | |
2006 | | /* We are going to create a new symbol. Merge it with any existing |
2007 | | symbol with this name. For the purposes of the merge, act as |
2008 | | though we were defining the symbol we just defined, although we |
2009 | | actually going to define an indirect symbol. */ |
2010 | 0 | type_change_ok = false; |
2011 | 0 | size_change_ok = false; |
2012 | 0 | matched = true; |
2013 | 0 | tmp_sec = sec; |
2014 | 0 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, |
2015 | 0 | &hi, poldbfd, NULL, NULL, &skip, &override, |
2016 | 0 | &type_change_ok, &size_change_ok, &matched)) |
2017 | 0 | return false; |
2018 | | |
2019 | 0 | if (skip) |
2020 | 0 | goto nondefault; |
2021 | | |
2022 | 0 | if (hi->def_regular || ELF_COMMON_DEF_P (hi)) |
2023 | 0 | { |
2024 | | /* If the undecorated symbol will have a version added by a |
2025 | | script different to H, then don't indirect to/from the |
2026 | | undecorated symbol. This isn't ideal because we may not yet |
2027 | | have seen symbol versions, if given by a script on the |
2028 | | command line rather than via --version-script. */ |
2029 | 0 | if (hi->verinfo.vertree == NULL && info->version_info != NULL) |
2030 | 0 | { |
2031 | 0 | bool hide; |
2032 | |
|
2033 | 0 | hi->verinfo.vertree |
2034 | 0 | = bfd_find_version_for_sym (info->version_info, |
2035 | 0 | hi->root.root.string, &hide); |
2036 | 0 | if (hi->verinfo.vertree != NULL && hide) |
2037 | 0 | { |
2038 | 0 | (*bed->elf_backend_hide_symbol) (info, hi, true); |
2039 | 0 | goto nondefault; |
2040 | 0 | } |
2041 | 0 | } |
2042 | 0 | if (hi->verinfo.vertree != NULL |
2043 | 0 | && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) |
2044 | 0 | goto nondefault; |
2045 | 0 | } |
2046 | | |
2047 | 0 | if (! override) |
2048 | 0 | { |
2049 | | /* Add the default symbol if not performing a relocatable link. */ |
2050 | 0 | if (! bfd_link_relocatable (info)) |
2051 | 0 | { |
2052 | 0 | bh = &hi->root; |
2053 | 0 | if (bh->type == bfd_link_hash_defined |
2054 | 0 | && bh->u.def.section->owner != NULL |
2055 | 0 | && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) |
2056 | 0 | { |
2057 | | /* Mark the previous definition from IR object as |
2058 | | undefined so that the generic linker will override |
2059 | | it. */ |
2060 | 0 | bh->type = bfd_link_hash_undefined; |
2061 | 0 | bh->u.undef.abfd = bh->u.def.section->owner; |
2062 | 0 | } |
2063 | 0 | if (! (_bfd_generic_link_add_one_symbol |
2064 | 0 | (info, abfd, shortname, BSF_INDIRECT, |
2065 | 0 | bfd_ind_section_ptr, |
2066 | 0 | 0, name, false, collect, &bh))) |
2067 | 0 | return false; |
2068 | 0 | hi = (struct elf_link_hash_entry *) bh; |
2069 | 0 | } |
2070 | 0 | } |
2071 | 0 | else |
2072 | 0 | { |
2073 | | /* In this case the symbol named SHORTNAME is overriding the |
2074 | | indirect symbol we want to add. We were planning on making |
2075 | | SHORTNAME an indirect symbol referring to NAME. SHORTNAME |
2076 | | is the name without a version. NAME is the fully versioned |
2077 | | name, and it is the default version. |
2078 | | |
2079 | | Overriding means that we already saw a definition for the |
2080 | | symbol SHORTNAME in a regular object, and it is overriding |
2081 | | the symbol defined in the dynamic object. |
2082 | | |
2083 | | When this happens, we actually want to change NAME, the |
2084 | | symbol we just added, to refer to SHORTNAME. This will cause |
2085 | | references to NAME in the shared object to become references |
2086 | | to SHORTNAME in the regular object. This is what we expect |
2087 | | when we override a function in a shared object: that the |
2088 | | references in the shared object will be mapped to the |
2089 | | definition in the regular object. */ |
2090 | |
|
2091 | 0 | while (hi->root.type == bfd_link_hash_indirect |
2092 | 0 | || hi->root.type == bfd_link_hash_warning) |
2093 | 0 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
2094 | |
|
2095 | 0 | h->root.type = bfd_link_hash_indirect; |
2096 | 0 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; |
2097 | 0 | if (h->def_dynamic) |
2098 | 0 | { |
2099 | 0 | h->def_dynamic = 0; |
2100 | 0 | hi->ref_dynamic = 1; |
2101 | 0 | if (hi->ref_regular |
2102 | 0 | || hi->def_regular) |
2103 | 0 | { |
2104 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, hi)) |
2105 | 0 | return false; |
2106 | 0 | } |
2107 | 0 | } |
2108 | | |
2109 | | /* Now set HI to H, so that the following code will set the |
2110 | | other fields correctly. */ |
2111 | 0 | hi = h; |
2112 | 0 | } |
2113 | | |
2114 | | /* Check if HI is a warning symbol. */ |
2115 | 0 | if (hi->root.type == bfd_link_hash_warning) |
2116 | 0 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
2117 | | |
2118 | | /* If there is a duplicate definition somewhere, then HI may not |
2119 | | point to an indirect symbol. We will have reported an error to |
2120 | | the user in that case. */ |
2121 | |
|
2122 | 0 | if (hi->root.type == bfd_link_hash_indirect) |
2123 | 0 | { |
2124 | 0 | struct elf_link_hash_entry *ht; |
2125 | |
|
2126 | 0 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; |
2127 | 0 | (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); |
2128 | | |
2129 | | /* If we first saw a reference to SHORTNAME with non-default |
2130 | | visibility, merge that visibility to the @@VER symbol. */ |
2131 | 0 | elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic); |
2132 | | |
2133 | | /* A reference to the SHORTNAME symbol from a dynamic library |
2134 | | will be satisfied by the versioned symbol at runtime. In |
2135 | | effect, we have a reference to the versioned symbol. */ |
2136 | 0 | ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; |
2137 | 0 | hi->dynamic_def |= ht->dynamic_def; |
2138 | | |
2139 | | /* See if the new flags lead us to realize that the symbol must |
2140 | | be dynamic. */ |
2141 | 0 | if (! *dynsym) |
2142 | 0 | { |
2143 | 0 | if (! dynamic) |
2144 | 0 | { |
2145 | 0 | if (! bfd_link_executable (info) |
2146 | 0 | || hi->def_dynamic |
2147 | 0 | || hi->ref_dynamic) |
2148 | 0 | *dynsym = true; |
2149 | 0 | } |
2150 | 0 | else |
2151 | 0 | { |
2152 | 0 | if (hi->ref_regular) |
2153 | 0 | *dynsym = true; |
2154 | 0 | } |
2155 | 0 | } |
2156 | 0 | } |
2157 | | |
2158 | | /* We also need to define an indirection from the nondefault version |
2159 | | of the symbol. */ |
2160 | |
|
2161 | 0 | nondefault: |
2162 | 0 | len = strlen (name); |
2163 | 0 | shortname = (char *) bfd_hash_allocate (&info->hash->table, len); |
2164 | 0 | if (shortname == NULL) |
2165 | 0 | return false; |
2166 | 0 | memcpy (shortname, name, shortlen); |
2167 | 0 | memcpy (shortname + shortlen, p + 1, len - shortlen); |
2168 | | |
2169 | | /* Once again, merge with any existing symbol. */ |
2170 | 0 | type_change_ok = false; |
2171 | 0 | size_change_ok = false; |
2172 | 0 | tmp_sec = sec; |
2173 | 0 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, |
2174 | 0 | &hi, poldbfd, NULL, NULL, &skip, &override, |
2175 | 0 | &type_change_ok, &size_change_ok, &matched)) |
2176 | 0 | return false; |
2177 | | |
2178 | 0 | if (skip) |
2179 | 0 | { |
2180 | 0 | if (!dynamic |
2181 | 0 | && h->root.type == bfd_link_hash_defweak |
2182 | 0 | && hi->root.type == bfd_link_hash_defined) |
2183 | 0 | { |
2184 | | /* We are handling a weak sym@@ver and attempting to define |
2185 | | a weak sym@ver, but _bfd_elf_merge_symbol said to skip the |
2186 | | new weak sym@ver because there is already a strong sym@ver. |
2187 | | However, sym@ver and sym@@ver are really the same symbol. |
2188 | | The existing strong sym@ver ought to override sym@@ver. */ |
2189 | 0 | h->root.type = bfd_link_hash_defined; |
2190 | 0 | h->root.u.def.section = hi->root.u.def.section; |
2191 | 0 | h->root.u.def.value = hi->root.u.def.value; |
2192 | 0 | hi->root.type = bfd_link_hash_indirect; |
2193 | 0 | hi->root.u.i.link = &h->root; |
2194 | 0 | } |
2195 | 0 | else |
2196 | 0 | return true; |
2197 | 0 | } |
2198 | 0 | else if (override) |
2199 | 0 | { |
2200 | | /* Here SHORTNAME is a versioned name, so we don't expect to see |
2201 | | the type of override we do in the case above unless it is |
2202 | | overridden by a versioned definition. */ |
2203 | 0 | if (hi->root.type != bfd_link_hash_defined |
2204 | 0 | && hi->root.type != bfd_link_hash_defweak) |
2205 | 0 | _bfd_error_handler |
2206 | | /* xgettext:c-format */ |
2207 | 0 | (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), |
2208 | 0 | abfd, shortname); |
2209 | 0 | return true; |
2210 | 0 | } |
2211 | 0 | else |
2212 | 0 | { |
2213 | 0 | bh = &hi->root; |
2214 | 0 | if (! (_bfd_generic_link_add_one_symbol |
2215 | 0 | (info, abfd, shortname, BSF_INDIRECT, |
2216 | 0 | bfd_ind_section_ptr, 0, name, false, collect, &bh))) |
2217 | 0 | return false; |
2218 | 0 | hi = (struct elf_link_hash_entry *) bh; |
2219 | 0 | } |
2220 | | |
2221 | | /* If there is a duplicate definition somewhere, then HI may not |
2222 | | point to an indirect symbol. We will have reported an error |
2223 | | to the user in that case. */ |
2224 | 0 | if (hi->root.type == bfd_link_hash_indirect) |
2225 | 0 | { |
2226 | 0 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
2227 | 0 | h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; |
2228 | 0 | hi->dynamic_def |= h->dynamic_def; |
2229 | | |
2230 | | /* If we first saw a reference to @VER symbol with |
2231 | | non-default visibility, merge that visibility to the |
2232 | | @@VER symbol. */ |
2233 | 0 | elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic); |
2234 | | |
2235 | | /* See if the new flags lead us to realize that the symbol |
2236 | | must be dynamic. */ |
2237 | 0 | if (! *dynsym) |
2238 | 0 | { |
2239 | 0 | if (! dynamic) |
2240 | 0 | { |
2241 | 0 | if (! bfd_link_executable (info) |
2242 | 0 | || hi->ref_dynamic) |
2243 | 0 | *dynsym = true; |
2244 | 0 | } |
2245 | 0 | else |
2246 | 0 | { |
2247 | 0 | if (hi->ref_regular) |
2248 | 0 | *dynsym = true; |
2249 | 0 | } |
2250 | 0 | } |
2251 | 0 | } |
2252 | |
|
2253 | 0 | return true; |
2254 | 0 | } |
2255 | | |
2256 | | /* This routine is used to export all defined symbols into the dynamic |
2257 | | symbol table. It is called via elf_link_hash_traverse. */ |
2258 | | |
2259 | | static bool |
2260 | | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) |
2261 | 0 | { |
2262 | 0 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
2263 | | |
2264 | | /* Ignore indirect symbols. These are added by the versioning code. */ |
2265 | 0 | if (h->root.type == bfd_link_hash_indirect) |
2266 | 0 | return true; |
2267 | | |
2268 | | /* Ignore this if we won't export it. */ |
2269 | 0 | if (!eif->info->export_dynamic && !h->dynamic) |
2270 | 0 | return true; |
2271 | | |
2272 | 0 | if (h->dynindx == -1 |
2273 | 0 | && (h->def_regular || h->ref_regular) |
2274 | 0 | && ! bfd_hide_sym_by_version (eif->info->version_info, |
2275 | 0 | h->root.root.string)) |
2276 | 0 | { |
2277 | 0 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
2278 | 0 | { |
2279 | 0 | eif->failed = true; |
2280 | 0 | return false; |
2281 | 0 | } |
2282 | 0 | } |
2283 | | |
2284 | 0 | return true; |
2285 | 0 | } |
2286 | | |
2287 | | /* Return the glibc version reference if VERSION_DEP is added to the |
2288 | | list of glibc version dependencies successfully. VERSION_DEP will |
2289 | | be put into the .gnu.version_r section. GLIBC_MINOR_BASE is the |
2290 | | pointer to the glibc minor base version. */ |
2291 | | |
2292 | | static Elf_Internal_Verneed * |
2293 | | elf_link_add_glibc_verneed (struct elf_find_verdep_info *rinfo, |
2294 | | Elf_Internal_Verneed *glibc_verref, |
2295 | | const char *version_dep, |
2296 | | int *glibc_minor_base) |
2297 | 0 | { |
2298 | 0 | Elf_Internal_Verneed *t; |
2299 | 0 | Elf_Internal_Vernaux *a; |
2300 | 0 | size_t amt; |
2301 | 0 | int minor_version = -1; |
2302 | |
|
2303 | 0 | if (glibc_verref != NULL) |
2304 | 0 | { |
2305 | 0 | t = glibc_verref; |
2306 | |
|
2307 | 0 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
2308 | 0 | { |
2309 | | /* Return if VERSION_DEP dependency has been added. */ |
2310 | 0 | if (a->vna_nodename == version_dep |
2311 | 0 | || strcmp (a->vna_nodename, version_dep) == 0) |
2312 | 0 | return t; |
2313 | 0 | } |
2314 | 0 | } |
2315 | 0 | else |
2316 | 0 | { |
2317 | 0 | for (t = elf_tdata (rinfo->info->output_bfd)->verref; |
2318 | 0 | t != NULL; |
2319 | 0 | t = t->vn_nextref) |
2320 | 0 | { |
2321 | 0 | const char *soname = bfd_elf_get_dt_soname (t->vn_bfd); |
2322 | 0 | if (soname != NULL && startswith (soname, "libc.so.")) |
2323 | 0 | break; |
2324 | 0 | } |
2325 | | |
2326 | | /* Skip the shared library if it isn't libc.so. */ |
2327 | 0 | if (t == NULL) |
2328 | 0 | return t; |
2329 | | |
2330 | 0 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
2331 | 0 | { |
2332 | | /* Return if VERSION_DEP dependency has been added. */ |
2333 | 0 | if (a->vna_nodename == version_dep |
2334 | 0 | || strcmp (a->vna_nodename, version_dep) == 0) |
2335 | 0 | return t; |
2336 | | |
2337 | | /* Check if libc.so provides GLIBC_2.XX version. */ |
2338 | 0 | if (startswith (a->vna_nodename, "GLIBC_2.")) |
2339 | 0 | { |
2340 | 0 | minor_version = strtol (a->vna_nodename + 8, NULL, 10); |
2341 | 0 | if (minor_version < *glibc_minor_base) |
2342 | 0 | *glibc_minor_base = minor_version; |
2343 | 0 | } |
2344 | 0 | } |
2345 | | |
2346 | | /* Skip if it isn't linked against glibc. */ |
2347 | 0 | if (minor_version < 0) |
2348 | 0 | return NULL; |
2349 | 0 | } |
2350 | | |
2351 | | /* Skip if 2.GLIBC_MINOR_BASE includes VERSION_DEP. */ |
2352 | 0 | if (startswith (version_dep, "GLIBC_2.")) |
2353 | 0 | { |
2354 | 0 | minor_version = strtol (version_dep + 8, NULL, 10); |
2355 | 0 | if (minor_version <= *glibc_minor_base) |
2356 | 0 | return NULL; |
2357 | 0 | } |
2358 | | |
2359 | 0 | amt = sizeof *a; |
2360 | 0 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); |
2361 | 0 | if (a == NULL) |
2362 | 0 | { |
2363 | 0 | rinfo->failed = true; |
2364 | 0 | return NULL; |
2365 | 0 | } |
2366 | | |
2367 | 0 | a->vna_nodename = version_dep; |
2368 | 0 | a->vna_flags = 0; |
2369 | 0 | a->vna_nextptr = t->vn_auxptr; |
2370 | 0 | a->vna_other = rinfo->vers + 1; |
2371 | 0 | ++rinfo->vers; |
2372 | |
|
2373 | 0 | t->vn_auxptr = a; |
2374 | |
|
2375 | 0 | return t; |
2376 | 0 | } |
2377 | | |
2378 | | /* Add VERSION_DEP to the list of version dependencies when linked |
2379 | | against glibc. */ |
2380 | | |
2381 | | void |
2382 | | _bfd_elf_link_add_glibc_version_dependency |
2383 | | (struct elf_find_verdep_info *rinfo, |
2384 | | const char *version_dep[]) |
2385 | 0 | { |
2386 | 0 | Elf_Internal_Verneed *t = NULL; |
2387 | 0 | int glibc_minor_base = INT_MAX; |
2388 | |
|
2389 | 0 | do |
2390 | 0 | { |
2391 | 0 | t = elf_link_add_glibc_verneed (rinfo, t, *version_dep, |
2392 | 0 | &glibc_minor_base); |
2393 | | /* Return if there is no glibc version reference. */ |
2394 | 0 | if (t == NULL) |
2395 | 0 | return; |
2396 | 0 | version_dep++; |
2397 | 0 | } |
2398 | 0 | while (*version_dep != NULL); |
2399 | 0 | } |
2400 | | |
2401 | | /* Add GLIBC_ABI_DT_RELR to the list of version dependencies when |
2402 | | linked against glibc. */ |
2403 | | |
2404 | | void |
2405 | | _bfd_elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo) |
2406 | 0 | { |
2407 | 0 | if (rinfo->info->enable_dt_relr) |
2408 | 0 | { |
2409 | 0 | const char *version[] = |
2410 | 0 | { |
2411 | 0 | "GLIBC_ABI_DT_RELR", |
2412 | 0 | NULL |
2413 | 0 | }; |
2414 | 0 | _bfd_elf_link_add_glibc_version_dependency (rinfo, version); |
2415 | 0 | } |
2416 | 0 | } |
2417 | | |
2418 | | /* Look through the symbols which are defined in other shared |
2419 | | libraries and referenced here. Update the list of version |
2420 | | dependencies. This will be put into the .gnu.version_r section. |
2421 | | This function is called via elf_link_hash_traverse. */ |
2422 | | |
2423 | | static bool |
2424 | | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, |
2425 | | void *data) |
2426 | 0 | { |
2427 | 0 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; |
2428 | 0 | Elf_Internal_Verneed *t; |
2429 | 0 | Elf_Internal_Vernaux *a; |
2430 | 0 | size_t amt; |
2431 | | |
2432 | | /* We only care about symbols defined in shared objects with version |
2433 | | information. */ |
2434 | 0 | if (!h->def_dynamic |
2435 | 0 | || h->def_regular |
2436 | 0 | || h->dynindx == -1 |
2437 | 0 | || h->verinfo.verdef == NULL |
2438 | 0 | || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) |
2439 | 0 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) |
2440 | 0 | return true; |
2441 | | |
2442 | | /* See if we already know about this version. */ |
2443 | 0 | for (t = elf_tdata (rinfo->info->output_bfd)->verref; |
2444 | 0 | t != NULL; |
2445 | 0 | t = t->vn_nextref) |
2446 | 0 | { |
2447 | 0 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) |
2448 | 0 | continue; |
2449 | | |
2450 | 0 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
2451 | 0 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) |
2452 | 0 | return true; |
2453 | | |
2454 | 0 | break; |
2455 | 0 | } |
2456 | | |
2457 | | /* This is a new version. Add it to tree we are building. */ |
2458 | | |
2459 | 0 | if (t == NULL) |
2460 | 0 | { |
2461 | 0 | amt = sizeof *t; |
2462 | 0 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); |
2463 | 0 | if (t == NULL) |
2464 | 0 | { |
2465 | 0 | rinfo->failed = true; |
2466 | 0 | return false; |
2467 | 0 | } |
2468 | | |
2469 | 0 | t->vn_bfd = h->verinfo.verdef->vd_bfd; |
2470 | 0 | t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; |
2471 | 0 | elf_tdata (rinfo->info->output_bfd)->verref = t; |
2472 | 0 | } |
2473 | | |
2474 | 0 | amt = sizeof *a; |
2475 | 0 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); |
2476 | 0 | if (a == NULL) |
2477 | 0 | { |
2478 | 0 | rinfo->failed = true; |
2479 | 0 | return false; |
2480 | 0 | } |
2481 | | |
2482 | | /* Note that we are copying a string pointer here, and testing it |
2483 | | above. If bfd_elf_string_from_elf_section is ever changed to |
2484 | | discard the string data when low in memory, this will have to be |
2485 | | fixed. */ |
2486 | 0 | a->vna_nodename = h->verinfo.verdef->vd_nodename; |
2487 | |
|
2488 | 0 | a->vna_flags = h->verinfo.verdef->vd_flags; |
2489 | 0 | a->vna_nextptr = t->vn_auxptr; |
2490 | |
|
2491 | 0 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; |
2492 | 0 | ++rinfo->vers; |
2493 | |
|
2494 | 0 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; |
2495 | |
|
2496 | 0 | t->vn_auxptr = a; |
2497 | |
|
2498 | 0 | return true; |
2499 | 0 | } |
2500 | | |
2501 | | /* Return TRUE and set *HIDE to TRUE if the versioned symbol is |
2502 | | hidden. Set *T_P to NULL if there is no match. */ |
2503 | | |
2504 | | static bool |
2505 | | _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, |
2506 | | struct elf_link_hash_entry *h, |
2507 | | const char *version_p, |
2508 | | struct bfd_elf_version_tree **t_p, |
2509 | | bool *hide) |
2510 | 0 | { |
2511 | 0 | struct bfd_elf_version_tree *t; |
2512 | | |
2513 | | /* Look for the version. If we find it, it is no longer weak. */ |
2514 | 0 | for (t = info->version_info; t != NULL; t = t->next) |
2515 | 0 | { |
2516 | 0 | if (strcmp (t->name, version_p) == 0) |
2517 | 0 | { |
2518 | 0 | size_t len; |
2519 | 0 | char *alc; |
2520 | 0 | struct bfd_elf_version_expr *d; |
2521 | |
|
2522 | 0 | len = version_p - h->root.root.string; |
2523 | 0 | alc = (char *) bfd_malloc (len); |
2524 | 0 | if (alc == NULL) |
2525 | 0 | return false; |
2526 | 0 | memcpy (alc, h->root.root.string, len - 1); |
2527 | 0 | alc[len - 1] = '\0'; |
2528 | 0 | if (alc[len - 2] == ELF_VER_CHR) |
2529 | 0 | alc[len - 2] = '\0'; |
2530 | |
|
2531 | 0 | h->verinfo.vertree = t; |
2532 | 0 | t->used = true; |
2533 | 0 | d = NULL; |
2534 | |
|
2535 | 0 | if (t->globals.list != NULL) |
2536 | 0 | d = (*t->match) (&t->globals, NULL, alc); |
2537 | | |
2538 | | /* See if there is anything to force this symbol to |
2539 | | local scope. */ |
2540 | 0 | if (d == NULL && t->locals.list != NULL) |
2541 | 0 | { |
2542 | 0 | d = (*t->match) (&t->locals, NULL, alc); |
2543 | 0 | if (d != NULL |
2544 | 0 | && h->dynindx != -1 |
2545 | 0 | && ! info->export_dynamic) |
2546 | 0 | *hide = true; |
2547 | 0 | } |
2548 | |
|
2549 | 0 | free (alc); |
2550 | 0 | break; |
2551 | 0 | } |
2552 | 0 | } |
2553 | | |
2554 | 0 | *t_p = t; |
2555 | |
|
2556 | 0 | return true; |
2557 | 0 | } |
2558 | | |
2559 | | /* Return TRUE if the symbol H is hidden by version script. */ |
2560 | | |
2561 | | bool |
2562 | | _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, |
2563 | | struct elf_link_hash_entry *h) |
2564 | 0 | { |
2565 | 0 | const char *p; |
2566 | 0 | bool hide = false; |
2567 | 0 | const struct elf_backend_data *bed |
2568 | 0 | = get_elf_backend_data (info->output_bfd); |
2569 | | |
2570 | | /* Version script only hides symbols defined in regular objects. */ |
2571 | 0 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
2572 | 0 | return true; |
2573 | | |
2574 | 0 | p = strchr (h->root.root.string, ELF_VER_CHR); |
2575 | 0 | if (p != NULL && h->verinfo.vertree == NULL) |
2576 | 0 | { |
2577 | 0 | struct bfd_elf_version_tree *t; |
2578 | |
|
2579 | 0 | ++p; |
2580 | 0 | if (*p == ELF_VER_CHR) |
2581 | 0 | ++p; |
2582 | |
|
2583 | 0 | if (*p != '\0' |
2584 | 0 | && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) |
2585 | 0 | && hide) |
2586 | 0 | { |
2587 | 0 | if (hide) |
2588 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
2589 | 0 | return true; |
2590 | 0 | } |
2591 | 0 | } |
2592 | | |
2593 | | /* If we don't have a version for this symbol, see if we can find |
2594 | | something. */ |
2595 | 0 | if (h->verinfo.vertree == NULL && info->version_info != NULL) |
2596 | 0 | { |
2597 | 0 | h->verinfo.vertree |
2598 | 0 | = bfd_find_version_for_sym (info->version_info, |
2599 | 0 | h->root.root.string, &hide); |
2600 | 0 | if (h->verinfo.vertree != NULL && hide) |
2601 | 0 | { |
2602 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
2603 | 0 | return true; |
2604 | 0 | } |
2605 | 0 | } |
2606 | | |
2607 | 0 | return false; |
2608 | 0 | } |
2609 | | |
2610 | | /* Figure out appropriate versions for all the symbols. We may not |
2611 | | have the version number script until we have read all of the input |
2612 | | files, so until that point we don't know which symbols should be |
2613 | | local. This function is called via elf_link_hash_traverse. */ |
2614 | | |
2615 | | static bool |
2616 | | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) |
2617 | 0 | { |
2618 | 0 | struct elf_info_failed *sinfo; |
2619 | 0 | struct bfd_link_info *info; |
2620 | 0 | const struct elf_backend_data *bed; |
2621 | 0 | struct elf_info_failed eif; |
2622 | 0 | char *p; |
2623 | 0 | bool hide; |
2624 | |
|
2625 | 0 | sinfo = (struct elf_info_failed *) data; |
2626 | 0 | info = sinfo->info; |
2627 | | |
2628 | | /* Fix the symbol flags. */ |
2629 | 0 | eif.failed = false; |
2630 | 0 | eif.info = info; |
2631 | 0 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) |
2632 | 0 | { |
2633 | 0 | if (eif.failed) |
2634 | 0 | sinfo->failed = true; |
2635 | 0 | return false; |
2636 | 0 | } |
2637 | | |
2638 | 0 | bed = get_elf_backend_data (info->output_bfd); |
2639 | | |
2640 | | /* We only need version numbers for symbols defined in regular |
2641 | | objects. */ |
2642 | 0 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
2643 | 0 | { |
2644 | | /* Hide symbols defined in discarded input sections. */ |
2645 | 0 | if ((h->root.type == bfd_link_hash_defined |
2646 | 0 | || h->root.type == bfd_link_hash_defweak) |
2647 | 0 | && discarded_section (h->root.u.def.section)) |
2648 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
2649 | 0 | return true; |
2650 | 0 | } |
2651 | | |
2652 | 0 | hide = false; |
2653 | 0 | p = strchr (h->root.root.string, ELF_VER_CHR); |
2654 | 0 | if (p != NULL && h->verinfo.vertree == NULL) |
2655 | 0 | { |
2656 | 0 | struct bfd_elf_version_tree *t; |
2657 | |
|
2658 | 0 | ++p; |
2659 | 0 | if (*p == ELF_VER_CHR) |
2660 | 0 | ++p; |
2661 | | |
2662 | | /* If there is no version string, we can just return out. */ |
2663 | 0 | if (*p == '\0') |
2664 | 0 | return true; |
2665 | | |
2666 | 0 | if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) |
2667 | 0 | { |
2668 | 0 | sinfo->failed = true; |
2669 | 0 | return false; |
2670 | 0 | } |
2671 | | |
2672 | 0 | if (hide) |
2673 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
2674 | | |
2675 | | /* If we are building an application, we need to create a |
2676 | | version node for this version. */ |
2677 | 0 | if (t == NULL && bfd_link_executable (info)) |
2678 | 0 | { |
2679 | 0 | struct bfd_elf_version_tree **pp; |
2680 | 0 | int version_index; |
2681 | | |
2682 | | /* If we aren't going to export this symbol, we don't need |
2683 | | to worry about it. */ |
2684 | 0 | if (h->dynindx == -1) |
2685 | 0 | return true; |
2686 | | |
2687 | 0 | t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, |
2688 | 0 | sizeof *t); |
2689 | 0 | if (t == NULL) |
2690 | 0 | { |
2691 | 0 | sinfo->failed = true; |
2692 | 0 | return false; |
2693 | 0 | } |
2694 | | |
2695 | 0 | t->name = p; |
2696 | 0 | t->name_indx = (unsigned int) -1; |
2697 | 0 | t->used = true; |
2698 | |
|
2699 | 0 | version_index = 1; |
2700 | | /* Don't count anonymous version tag. */ |
2701 | 0 | if (sinfo->info->version_info != NULL |
2702 | 0 | && sinfo->info->version_info->vernum == 0) |
2703 | 0 | version_index = 0; |
2704 | 0 | for (pp = &sinfo->info->version_info; |
2705 | 0 | *pp != NULL; |
2706 | 0 | pp = &(*pp)->next) |
2707 | 0 | ++version_index; |
2708 | 0 | t->vernum = version_index; |
2709 | |
|
2710 | 0 | *pp = t; |
2711 | |
|
2712 | 0 | h->verinfo.vertree = t; |
2713 | 0 | } |
2714 | 0 | else if (t == NULL) |
2715 | 0 | { |
2716 | | /* We could not find the version for a symbol when |
2717 | | generating a shared archive. Return an error. */ |
2718 | 0 | _bfd_error_handler |
2719 | | /* xgettext:c-format */ |
2720 | 0 | (_("%pB: version node not found for symbol %s"), |
2721 | 0 | info->output_bfd, h->root.root.string); |
2722 | 0 | bfd_set_error (bfd_error_bad_value); |
2723 | 0 | sinfo->failed = true; |
2724 | 0 | return false; |
2725 | 0 | } |
2726 | 0 | } |
2727 | | |
2728 | | /* If we don't have a version for this symbol, see if we can find |
2729 | | something. */ |
2730 | 0 | if (!hide |
2731 | 0 | && h->verinfo.vertree == NULL |
2732 | 0 | && sinfo->info->version_info != NULL) |
2733 | 0 | { |
2734 | 0 | h->verinfo.vertree |
2735 | 0 | = bfd_find_version_for_sym (sinfo->info->version_info, |
2736 | 0 | h->root.root.string, &hide); |
2737 | 0 | if (h->verinfo.vertree != NULL && hide) |
2738 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
2739 | 0 | } |
2740 | |
|
2741 | 0 | return true; |
2742 | 0 | } |
2743 | | |
2744 | | /* Read and swap the relocs from the section indicated by SHDR. This |
2745 | | may be either a REL or a RELA section. The relocations are |
2746 | | translated into RELA relocations and stored in INTERNAL_RELOCS, |
2747 | | which should have already been allocated to contain enough space. |
2748 | | The *EXTERNAL_RELOCS_P are a buffer where the external form of the |
2749 | | relocations should be stored. If *EXTERNAL_RELOCS_ADDR is NULL, |
2750 | | *EXTERNAL_RELOCS_ADDR and *EXTERNAL_RELOCS_SIZE returns the mmap |
2751 | | memory address and size. Otherwise, *EXTERNAL_RELOCS_ADDR is |
2752 | | unchanged and *EXTERNAL_RELOCS_SIZE returns 0. |
2753 | | |
2754 | | Returns FALSE if something goes wrong. */ |
2755 | | |
2756 | | static bool |
2757 | | elf_link_read_relocs_from_section (bfd *abfd, |
2758 | | const asection *sec, |
2759 | | Elf_Internal_Shdr *shdr, |
2760 | | void **external_relocs_addr, |
2761 | | size_t *external_relocs_size, |
2762 | | Elf_Internal_Rela *internal_relocs) |
2763 | 0 | { |
2764 | 0 | const struct elf_backend_data *bed; |
2765 | 0 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
2766 | 0 | const bfd_byte *erela; |
2767 | 0 | const bfd_byte *erelaend; |
2768 | 0 | Elf_Internal_Rela *irela; |
2769 | 0 | Elf_Internal_Shdr *symtab_hdr; |
2770 | 0 | size_t nsyms; |
2771 | 0 | void *external_relocs = *external_relocs_addr; |
2772 | | |
2773 | | /* Position ourselves at the start of the section. */ |
2774 | 0 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) |
2775 | 0 | return false; |
2776 | | |
2777 | | /* Read the relocations. */ |
2778 | 0 | *external_relocs_size = shdr->sh_size; |
2779 | 0 | if (!_bfd_mmap_read_temporary (&external_relocs, |
2780 | 0 | external_relocs_size, |
2781 | 0 | external_relocs_addr, abfd, true)) |
2782 | 0 | return false; |
2783 | | |
2784 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
2785 | 0 | nsyms = NUM_SHDR_ENTRIES (symtab_hdr); |
2786 | |
|
2787 | 0 | bed = get_elf_backend_data (abfd); |
2788 | | |
2789 | | /* Convert the external relocations to the internal format. */ |
2790 | 0 | if (shdr->sh_entsize == bed->s->sizeof_rel) |
2791 | 0 | swap_in = bed->s->swap_reloc_in; |
2792 | 0 | else if (shdr->sh_entsize == bed->s->sizeof_rela) |
2793 | 0 | swap_in = bed->s->swap_reloca_in; |
2794 | 0 | else |
2795 | 0 | { |
2796 | 0 | bfd_set_error (bfd_error_wrong_format); |
2797 | 0 | return false; |
2798 | 0 | } |
2799 | | |
2800 | 0 | erela = (const bfd_byte *) external_relocs; |
2801 | | /* Setting erelaend like this and comparing with <= handles case of |
2802 | | a fuzzed object with sh_size not a multiple of sh_entsize. */ |
2803 | 0 | erelaend = erela + shdr->sh_size - shdr->sh_entsize; |
2804 | 0 | irela = internal_relocs; |
2805 | 0 | while (erela <= erelaend) |
2806 | 0 | { |
2807 | 0 | bfd_vma r_symndx; |
2808 | |
|
2809 | 0 | (*swap_in) (abfd, erela, irela); |
2810 | 0 | r_symndx = ELF32_R_SYM (irela->r_info); |
2811 | 0 | if (bed->s->arch_size == 64) |
2812 | 0 | r_symndx >>= 24; |
2813 | 0 | if (nsyms > 0) |
2814 | 0 | { |
2815 | 0 | if ((size_t) r_symndx >= nsyms) |
2816 | 0 | { |
2817 | 0 | _bfd_error_handler |
2818 | | /* xgettext:c-format */ |
2819 | 0 | (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" |
2820 | 0 | " for offset %#" PRIx64 " in section `%pA'"), |
2821 | 0 | abfd, (uint64_t) r_symndx, (unsigned long) nsyms, |
2822 | 0 | (uint64_t) irela->r_offset, sec); |
2823 | 0 | bfd_set_error (bfd_error_bad_value); |
2824 | 0 | return false; |
2825 | 0 | } |
2826 | 0 | } |
2827 | 0 | else if (r_symndx != STN_UNDEF) |
2828 | 0 | { |
2829 | 0 | _bfd_error_handler |
2830 | | /* xgettext:c-format */ |
2831 | 0 | (_("%pB: non-zero symbol index (%#" PRIx64 ")" |
2832 | 0 | " for offset %#" PRIx64 " in section `%pA'" |
2833 | 0 | " when the object file has no symbol table"), |
2834 | 0 | abfd, (uint64_t) r_symndx, |
2835 | 0 | (uint64_t) irela->r_offset, sec); |
2836 | 0 | bfd_set_error (bfd_error_bad_value); |
2837 | 0 | return false; |
2838 | 0 | } |
2839 | 0 | irela += bed->s->int_rels_per_ext_rel; |
2840 | 0 | erela += shdr->sh_entsize; |
2841 | 0 | } |
2842 | | |
2843 | 0 | return true; |
2844 | 0 | } |
2845 | | |
2846 | | /* Read and swap the relocs for a section O. They may have been |
2847 | | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are |
2848 | | not NULL, they are used as buffers to read into. They are known to |
2849 | | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, |
2850 | | the return value is allocated using either malloc or bfd_alloc, |
2851 | | according to the KEEP_MEMORY argument. If O has two relocation |
2852 | | sections (both REL and RELA relocations), then the REL_HDR |
2853 | | relocations will appear first in INTERNAL_RELOCS, followed by the |
2854 | | RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true, |
2855 | | update cache_size. */ |
2856 | | |
2857 | | Elf_Internal_Rela * |
2858 | | _bfd_elf_link_info_read_relocs (bfd *abfd, |
2859 | | struct bfd_link_info *info, |
2860 | | const asection *o, |
2861 | | void *external_relocs, |
2862 | | Elf_Internal_Rela *internal_relocs, |
2863 | | bool keep_memory) |
2864 | 0 | { |
2865 | 0 | void *alloc1 = NULL; |
2866 | 0 | size_t alloc1_size; |
2867 | 0 | Elf_Internal_Rela *alloc2 = NULL; |
2868 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
2869 | 0 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
2870 | 0 | Elf_Internal_Rela *internal_rela_relocs; |
2871 | |
|
2872 | 0 | if (esdo->relocs != NULL) |
2873 | 0 | return esdo->relocs; |
2874 | | |
2875 | 0 | if (o->reloc_count == 0) |
2876 | 0 | return NULL; |
2877 | | |
2878 | 0 | if (internal_relocs == NULL) |
2879 | 0 | { |
2880 | 0 | bfd_size_type size; |
2881 | |
|
2882 | 0 | size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); |
2883 | 0 | if (keep_memory && info) |
2884 | 0 | info->cache_size += size; |
2885 | 0 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
2886 | 0 | if (internal_relocs == NULL) |
2887 | 0 | return NULL; |
2888 | 0 | } |
2889 | | |
2890 | 0 | alloc1 = external_relocs; |
2891 | 0 | internal_rela_relocs = internal_relocs; |
2892 | 0 | if (esdo->rel.hdr) |
2893 | 0 | { |
2894 | 0 | if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, |
2895 | 0 | &alloc1, &alloc1_size, |
2896 | 0 | internal_relocs)) |
2897 | 0 | goto error_return; |
2898 | 0 | external_relocs = (((bfd_byte *) external_relocs) |
2899 | 0 | + esdo->rel.hdr->sh_size); |
2900 | 0 | internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) |
2901 | 0 | * bed->s->int_rels_per_ext_rel); |
2902 | 0 | } |
2903 | | |
2904 | 0 | if (esdo->rela.hdr |
2905 | 0 | && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, |
2906 | 0 | &alloc1, &alloc1_size, |
2907 | 0 | internal_rela_relocs))) |
2908 | 0 | goto error_return; |
2909 | | |
2910 | | /* Cache the results for next time, if we can. */ |
2911 | 0 | if (keep_memory) |
2912 | 0 | esdo->relocs = internal_relocs; |
2913 | |
|
2914 | 0 | _bfd_munmap_temporary (alloc1, alloc1_size); |
2915 | | |
2916 | | /* Don't free alloc2, since if it was allocated we are passing it |
2917 | | back (under the name of internal_relocs). */ |
2918 | |
|
2919 | 0 | return internal_relocs; |
2920 | | |
2921 | 0 | error_return: |
2922 | 0 | _bfd_munmap_temporary (alloc1, alloc1_size); |
2923 | 0 | free (alloc2); |
2924 | 0 | return NULL; |
2925 | 0 | } |
2926 | | |
2927 | | /* This is similar to _bfd_elf_link_info_read_relocs, except for that |
2928 | | NULL is passed to _bfd_elf_link_info_read_relocs for pointer to |
2929 | | struct bfd_link_info. */ |
2930 | | |
2931 | | Elf_Internal_Rela * |
2932 | | _bfd_elf_link_read_relocs (bfd *abfd, |
2933 | | const asection *o, |
2934 | | void *external_relocs, |
2935 | | Elf_Internal_Rela *internal_relocs, |
2936 | | bool keep_memory) |
2937 | 0 | { |
2938 | 0 | return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs, |
2939 | 0 | internal_relocs, keep_memory); |
2940 | |
|
2941 | 0 | } |
2942 | | |
2943 | | /* Compute the size of, and allocate space for, REL_HDR which is the |
2944 | | section header for a section containing relocations for O. */ |
2945 | | |
2946 | | static bool |
2947 | | _bfd_elf_link_size_reloc_section (bfd *abfd, |
2948 | | struct bfd_elf_section_reloc_data *reldata) |
2949 | 0 | { |
2950 | 0 | Elf_Internal_Shdr *rel_hdr = reldata->hdr; |
2951 | | |
2952 | | /* That allows us to calculate the size of the section. */ |
2953 | 0 | rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; |
2954 | | |
2955 | | /* The contents field must last into write_object_contents, so we |
2956 | | allocate it with bfd_alloc rather than malloc. Also since we |
2957 | | cannot be sure that the contents will actually be filled in, |
2958 | | we zero the allocated space. */ |
2959 | 0 | rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); |
2960 | 0 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
2961 | 0 | return false; |
2962 | | |
2963 | 0 | if (reldata->hashes == NULL && reldata->count) |
2964 | 0 | { |
2965 | 0 | struct elf_link_hash_entry **p; |
2966 | |
|
2967 | 0 | p = ((struct elf_link_hash_entry **) |
2968 | 0 | bfd_zmalloc (reldata->count * sizeof (*p))); |
2969 | 0 | if (p == NULL) |
2970 | 0 | return false; |
2971 | | |
2972 | 0 | reldata->hashes = p; |
2973 | 0 | } |
2974 | | |
2975 | 0 | return true; |
2976 | 0 | } |
2977 | | |
2978 | | /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
2979 | | originated from the section given by INPUT_REL_HDR) to the |
2980 | | OUTPUT_BFD. */ |
2981 | | |
2982 | | bool |
2983 | | _bfd_elf_link_output_relocs (bfd *output_bfd, |
2984 | | asection *input_section, |
2985 | | Elf_Internal_Shdr *input_rel_hdr, |
2986 | | Elf_Internal_Rela *internal_relocs, |
2987 | | struct elf_link_hash_entry **rel_hash) |
2988 | 0 | { |
2989 | 0 | Elf_Internal_Rela *irela; |
2990 | 0 | Elf_Internal_Rela *irelaend; |
2991 | 0 | bfd_byte *erel; |
2992 | 0 | struct bfd_elf_section_reloc_data *output_reldata; |
2993 | 0 | asection *output_section; |
2994 | 0 | const struct elf_backend_data *bed; |
2995 | 0 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
2996 | 0 | struct bfd_elf_section_data *esdo; |
2997 | |
|
2998 | 0 | output_section = input_section->output_section; |
2999 | |
|
3000 | 0 | bed = get_elf_backend_data (output_bfd); |
3001 | 0 | esdo = elf_section_data (output_section); |
3002 | 0 | if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) |
3003 | 0 | { |
3004 | 0 | output_reldata = &esdo->rel; |
3005 | 0 | swap_out = bed->s->swap_reloc_out; |
3006 | 0 | } |
3007 | 0 | else if (esdo->rela.hdr |
3008 | 0 | && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) |
3009 | 0 | { |
3010 | 0 | output_reldata = &esdo->rela; |
3011 | 0 | swap_out = bed->s->swap_reloca_out; |
3012 | 0 | } |
3013 | 0 | else |
3014 | 0 | { |
3015 | 0 | _bfd_error_handler |
3016 | | /* xgettext:c-format */ |
3017 | 0 | (_("%pB: relocation size mismatch in %pB section %pA"), |
3018 | 0 | output_bfd, input_section->owner, input_section); |
3019 | 0 | bfd_set_error (bfd_error_wrong_format); |
3020 | 0 | return false; |
3021 | 0 | } |
3022 | | |
3023 | 0 | erel = output_reldata->hdr->contents; |
3024 | 0 | erel += output_reldata->count * input_rel_hdr->sh_entsize; |
3025 | 0 | irela = internal_relocs; |
3026 | 0 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) |
3027 | 0 | * bed->s->int_rels_per_ext_rel); |
3028 | 0 | while (irela < irelaend) |
3029 | 0 | { |
3030 | 0 | if (rel_hash && *rel_hash) |
3031 | 0 | (*rel_hash)->has_reloc = 1; |
3032 | 0 | (*swap_out) (output_bfd, irela, erel); |
3033 | 0 | irela += bed->s->int_rels_per_ext_rel; |
3034 | 0 | erel += input_rel_hdr->sh_entsize; |
3035 | 0 | if (rel_hash) |
3036 | 0 | rel_hash++; |
3037 | 0 | } |
3038 | | |
3039 | | /* Bump the counter, so that we know where to add the next set of |
3040 | | relocations. */ |
3041 | 0 | output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); |
3042 | |
|
3043 | 0 | return true; |
3044 | 0 | } |
3045 | | |
3046 | | /* Make weak undefined symbols in PIE dynamic. */ |
3047 | | |
3048 | | bool |
3049 | | _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, |
3050 | | struct elf_link_hash_entry *h) |
3051 | 0 | { |
3052 | 0 | if (bfd_link_pie (info) |
3053 | 0 | && h->dynindx == -1 |
3054 | 0 | && h->root.type == bfd_link_hash_undefweak) |
3055 | 0 | return bfd_elf_link_record_dynamic_symbol (info, h); |
3056 | | |
3057 | 0 | return true; |
3058 | 0 | } |
3059 | | |
3060 | | /* Fix up the flags for a symbol. This handles various cases which |
3061 | | can only be fixed after all the input files are seen. This is |
3062 | | currently called by both adjust_dynamic_symbol and |
3063 | | assign_sym_version, which is unnecessary but perhaps more robust in |
3064 | | the face of future changes. */ |
3065 | | |
3066 | | static bool |
3067 | | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, |
3068 | | struct elf_info_failed *eif) |
3069 | 0 | { |
3070 | 0 | const struct elf_backend_data *bed; |
3071 | | |
3072 | | /* If this symbol was mentioned in a non-ELF file, try to set |
3073 | | DEF_REGULAR and REF_REGULAR correctly. This is the only way to |
3074 | | permit a non-ELF file to correctly refer to a symbol defined in |
3075 | | an ELF dynamic object. */ |
3076 | 0 | if (h->non_elf) |
3077 | 0 | { |
3078 | 0 | while (h->root.type == bfd_link_hash_indirect) |
3079 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
3080 | |
|
3081 | 0 | if (h->root.type != bfd_link_hash_defined |
3082 | 0 | && h->root.type != bfd_link_hash_defweak) |
3083 | 0 | { |
3084 | 0 | h->ref_regular = 1; |
3085 | 0 | h->ref_regular_nonweak = 1; |
3086 | 0 | } |
3087 | 0 | else |
3088 | 0 | { |
3089 | 0 | if (h->root.u.def.section->owner != NULL |
3090 | 0 | && (bfd_get_flavour (h->root.u.def.section->owner) |
3091 | 0 | == bfd_target_elf_flavour)) |
3092 | 0 | { |
3093 | 0 | h->ref_regular = 1; |
3094 | 0 | h->ref_regular_nonweak = 1; |
3095 | 0 | } |
3096 | 0 | else |
3097 | 0 | h->def_regular = 1; |
3098 | 0 | } |
3099 | |
|
3100 | 0 | if (h->dynindx == -1 |
3101 | 0 | && (h->def_dynamic |
3102 | 0 | || h->ref_dynamic)) |
3103 | 0 | { |
3104 | 0 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
3105 | 0 | { |
3106 | 0 | eif->failed = true; |
3107 | 0 | return false; |
3108 | 0 | } |
3109 | 0 | } |
3110 | 0 | } |
3111 | 0 | else |
3112 | 0 | { |
3113 | | /* Unfortunately, NON_ELF is only correct if the symbol |
3114 | | was first seen in a non-ELF file. Fortunately, if the symbol |
3115 | | was first seen in an ELF file, we're probably OK unless the |
3116 | | symbol was defined in a non-ELF file. Catch that case here. |
3117 | | FIXME: We're still in trouble if the symbol was first seen in |
3118 | | a dynamic object, and then later in a non-ELF regular object. */ |
3119 | 0 | if ((h->root.type == bfd_link_hash_defined |
3120 | 0 | || h->root.type == bfd_link_hash_defweak) |
3121 | 0 | && !h->def_regular |
3122 | 0 | && (h->root.u.def.section->owner != NULL |
3123 | 0 | ? (bfd_get_flavour (h->root.u.def.section->owner) |
3124 | 0 | != bfd_target_elf_flavour) |
3125 | 0 | : (bfd_is_abs_section (h->root.u.def.section) |
3126 | 0 | && !h->def_dynamic))) |
3127 | 0 | h->def_regular = 1; |
3128 | 0 | } |
3129 | | |
3130 | | /* Backend specific symbol fixup. */ |
3131 | 0 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
3132 | 0 | if (bed->elf_backend_fixup_symbol |
3133 | 0 | && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) |
3134 | 0 | return false; |
3135 | | |
3136 | | /* If this is a final link, and the symbol was defined as a common |
3137 | | symbol in a regular object file, and there was no definition in |
3138 | | any dynamic object, then the linker will have allocated space for |
3139 | | the symbol in a common section but the DEF_REGULAR |
3140 | | flag will not have been set. */ |
3141 | 0 | if (h->root.type == bfd_link_hash_defined |
3142 | 0 | && !h->def_regular |
3143 | 0 | && h->ref_regular |
3144 | 0 | && !h->def_dynamic |
3145 | 0 | && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) |
3146 | 0 | h->def_regular = 1; |
3147 | | |
3148 | | /* Symbols defined in discarded sections shouldn't be dynamic. */ |
3149 | 0 | if (h->root.type == bfd_link_hash_undefined && h->indx == -3) |
3150 | 0 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); |
3151 | | |
3152 | | /* If a weak undefined symbol has non-default visibility, we also |
3153 | | hide it from the dynamic linker. */ |
3154 | 0 | else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
3155 | 0 | && h->root.type == bfd_link_hash_undefweak) |
3156 | 0 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); |
3157 | | |
3158 | | /* A hidden versioned symbol in executable should be forced local if |
3159 | | it is is locally defined, not referenced by shared library and not |
3160 | | exported. */ |
3161 | 0 | else if (bfd_link_executable (eif->info) |
3162 | 0 | && h->versioned == versioned_hidden |
3163 | 0 | && !eif->info->export_dynamic |
3164 | 0 | && !h->dynamic |
3165 | 0 | && !h->ref_dynamic |
3166 | 0 | && h->def_regular) |
3167 | 0 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); |
3168 | | |
3169 | | /* If -Bsymbolic was used (which means to bind references to global |
3170 | | symbols to the definition within the shared object), and this |
3171 | | symbol was defined in a regular object, then it actually doesn't |
3172 | | need a PLT entry. Likewise, if the symbol has non-default |
3173 | | visibility. If the symbol has hidden or internal visibility, we |
3174 | | will force it local. */ |
3175 | 0 | else if (h->needs_plt |
3176 | 0 | && bfd_link_pic (eif->info) |
3177 | 0 | && is_elf_hash_table (eif->info->hash) |
3178 | 0 | && (SYMBOLIC_BIND (eif->info, h) |
3179 | 0 | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
3180 | 0 | && h->def_regular) |
3181 | 0 | { |
3182 | 0 | bool force_local; |
3183 | |
|
3184 | 0 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
3185 | 0 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); |
3186 | 0 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); |
3187 | 0 | } |
3188 | | |
3189 | | /* If this is a weak defined symbol in a dynamic object, and we know |
3190 | | the real definition in the dynamic object, copy interesting flags |
3191 | | over to the real definition. */ |
3192 | 0 | if (h->is_weakalias) |
3193 | 0 | { |
3194 | 0 | struct elf_link_hash_entry *def = weakdef (h); |
3195 | | |
3196 | | /* If the real definition is defined by a regular object file, |
3197 | | don't do anything special. See the longer description in |
3198 | | _bfd_elf_adjust_dynamic_symbol, below. If the def is not |
3199 | | bfd_link_hash_defined as it was when put on the alias list |
3200 | | then it must have originally been a versioned symbol (for |
3201 | | which a non-versioned indirect symbol is created) and later |
3202 | | a definition for the non-versioned symbol is found. In that |
3203 | | case the indirection is flipped with the versioned symbol |
3204 | | becoming an indirect pointing at the non-versioned symbol. |
3205 | | Thus, not an alias any more. */ |
3206 | 0 | if (def->def_regular |
3207 | 0 | || def->root.type != bfd_link_hash_defined) |
3208 | 0 | { |
3209 | 0 | h = def; |
3210 | 0 | while ((h = h->u.alias) != def) |
3211 | 0 | h->is_weakalias = 0; |
3212 | 0 | } |
3213 | 0 | else |
3214 | 0 | { |
3215 | 0 | while (h->root.type == bfd_link_hash_indirect) |
3216 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
3217 | 0 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
3218 | 0 | || h->root.type == bfd_link_hash_defweak); |
3219 | 0 | BFD_ASSERT (def->def_dynamic); |
3220 | 0 | (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); |
3221 | 0 | } |
3222 | 0 | } |
3223 | |
|
3224 | 0 | return true; |
3225 | 0 | } |
3226 | | |
3227 | | /* Make the backend pick a good value for a dynamic symbol. This is |
3228 | | called via elf_link_hash_traverse, and also calls itself |
3229 | | recursively. */ |
3230 | | |
3231 | | static bool |
3232 | | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) |
3233 | 0 | { |
3234 | 0 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
3235 | 0 | struct elf_link_hash_table *htab; |
3236 | 0 | const struct elf_backend_data *bed; |
3237 | |
|
3238 | 0 | if (! is_elf_hash_table (eif->info->hash)) |
3239 | 0 | return false; |
3240 | | |
3241 | | /* Ignore indirect symbols. These are added by the versioning code. */ |
3242 | 0 | if (h->root.type == bfd_link_hash_indirect) |
3243 | 0 | return true; |
3244 | | |
3245 | | /* Fix the symbol flags. */ |
3246 | 0 | if (! _bfd_elf_fix_symbol_flags (h, eif)) |
3247 | 0 | return false; |
3248 | | |
3249 | 0 | htab = elf_hash_table (eif->info); |
3250 | 0 | bed = get_elf_backend_data (htab->dynobj); |
3251 | |
|
3252 | 0 | if (h->root.type == bfd_link_hash_undefweak) |
3253 | 0 | { |
3254 | 0 | if (eif->info->dynamic_undefined_weak == 0) |
3255 | 0 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); |
3256 | 0 | else if (eif->info->dynamic_undefined_weak > 0 |
3257 | 0 | && h->ref_regular |
3258 | 0 | && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
3259 | 0 | && !bfd_hide_sym_by_version (eif->info->version_info, |
3260 | 0 | h->root.root.string)) |
3261 | 0 | { |
3262 | 0 | if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
3263 | 0 | { |
3264 | 0 | eif->failed = true; |
3265 | 0 | return false; |
3266 | 0 | } |
3267 | 0 | } |
3268 | 0 | } |
3269 | | |
3270 | | /* If this symbol does not require a PLT entry, and it is not |
3271 | | defined by a dynamic object, or is not referenced by a regular |
3272 | | object, ignore it. We do have to handle a weak defined symbol, |
3273 | | even if no regular object refers to it, if we decided to add it |
3274 | | to the dynamic symbol table. FIXME: Do we normally need to worry |
3275 | | about symbols which are defined by one dynamic object and |
3276 | | referenced by another one? */ |
3277 | 0 | if (!h->needs_plt |
3278 | 0 | && h->type != STT_GNU_IFUNC |
3279 | 0 | && (h->def_regular |
3280 | 0 | || !h->def_dynamic |
3281 | 0 | || (!h->ref_regular |
3282 | 0 | && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) |
3283 | 0 | { |
3284 | 0 | h->plt = elf_hash_table (eif->info)->init_plt_offset; |
3285 | 0 | return true; |
3286 | 0 | } |
3287 | | |
3288 | | /* If we've already adjusted this symbol, don't do it again. This |
3289 | | can happen via a recursive call. */ |
3290 | 0 | if (h->dynamic_adjusted) |
3291 | 0 | return true; |
3292 | | |
3293 | | /* Don't look at this symbol again. Note that we must set this |
3294 | | after checking the above conditions, because we may look at a |
3295 | | symbol once, decide not to do anything, and then get called |
3296 | | recursively later after REF_REGULAR is set below. */ |
3297 | 0 | h->dynamic_adjusted = 1; |
3298 | | |
3299 | | /* If this is a weak definition, and we know a real definition, and |
3300 | | the real symbol is not itself defined by a regular object file, |
3301 | | then get a good value for the real definition. We handle the |
3302 | | real symbol first, for the convenience of the backend routine. |
3303 | | |
3304 | | Note that there is a confusing case here. If the real definition |
3305 | | is defined by a regular object file, we don't get the real symbol |
3306 | | from the dynamic object, but we do get the weak symbol. If the |
3307 | | processor backend uses a COPY reloc, then if some routine in the |
3308 | | dynamic object changes the real symbol, we will not see that |
3309 | | change in the corresponding weak symbol. This is the way other |
3310 | | ELF linkers work as well, and seems to be a result of the shared |
3311 | | library model. |
3312 | | |
3313 | | I will clarify this issue. Most SVR4 shared libraries define the |
3314 | | variable _timezone and define timezone as a weak synonym. The |
3315 | | tzset call changes _timezone. If you write |
3316 | | extern int timezone; |
3317 | | int _timezone = 5; |
3318 | | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } |
3319 | | you might expect that, since timezone is a synonym for _timezone, |
3320 | | the same number will print both times. However, if the processor |
3321 | | backend uses a COPY reloc, then actually timezone will be copied |
3322 | | into your process image, and, since you define _timezone |
3323 | | yourself, _timezone will not. Thus timezone and _timezone will |
3324 | | wind up at different memory locations. The tzset call will set |
3325 | | _timezone, leaving timezone unchanged. */ |
3326 | |
|
3327 | 0 | if (h->is_weakalias) |
3328 | 0 | { |
3329 | 0 | struct elf_link_hash_entry *def = weakdef (h); |
3330 | | |
3331 | | /* If we get to this point, there is an implicit reference to |
3332 | | the alias by a regular object file via the weak symbol H. */ |
3333 | 0 | def->ref_regular = 1; |
3334 | | |
3335 | | /* Ensure that the backend adjust_dynamic_symbol function sees |
3336 | | the strong alias before H by recursively calling ourselves. */ |
3337 | 0 | if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) |
3338 | 0 | return false; |
3339 | 0 | } |
3340 | | |
3341 | | /* If a symbol has no type and no size and does not require a PLT |
3342 | | entry, then we are probably about to do the wrong thing here: we |
3343 | | are probably going to create a COPY reloc for an empty object. |
3344 | | This case can arise when a shared object is built with assembly |
3345 | | code, and the assembly code fails to set the symbol type. */ |
3346 | 0 | if (h->size == 0 |
3347 | 0 | && h->type == STT_NOTYPE |
3348 | 0 | && !h->needs_plt) |
3349 | 0 | _bfd_error_handler |
3350 | 0 | (_("warning: type and size of dynamic symbol `%s' are not defined"), |
3351 | 0 | h->root.root.string); |
3352 | |
|
3353 | 0 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) |
3354 | 0 | { |
3355 | 0 | eif->failed = true; |
3356 | 0 | return false; |
3357 | 0 | } |
3358 | | |
3359 | 0 | return true; |
3360 | 0 | } |
3361 | | |
3362 | | /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, |
3363 | | DYNBSS. */ |
3364 | | |
3365 | | bool |
3366 | | _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, |
3367 | | struct elf_link_hash_entry *h, |
3368 | | asection *dynbss) |
3369 | 0 | { |
3370 | 0 | unsigned int power_of_two; |
3371 | 0 | bfd_vma mask; |
3372 | 0 | asection *sec = h->root.u.def.section; |
3373 | | |
3374 | | /* The section alignment of the definition is the maximum alignment |
3375 | | requirement of symbols defined in the section. Since we don't |
3376 | | know the symbol alignment requirement, we start with the |
3377 | | maximum alignment and check low bits of the symbol address |
3378 | | for the minimum alignment. */ |
3379 | 0 | power_of_two = bfd_section_alignment (sec); |
3380 | 0 | mask = ((bfd_vma) 1 << power_of_two) - 1; |
3381 | 0 | while ((h->root.u.def.value & mask) != 0) |
3382 | 0 | { |
3383 | 0 | mask >>= 1; |
3384 | 0 | --power_of_two; |
3385 | 0 | } |
3386 | | |
3387 | | /* Adjust the section alignment if needed. */ |
3388 | 0 | if (!bfd_link_align_section (dynbss, power_of_two)) |
3389 | 0 | return false; |
3390 | | |
3391 | | /* We make sure that the symbol will be aligned properly. */ |
3392 | 0 | dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); |
3393 | | |
3394 | | /* Define the symbol as being at this point in DYNBSS. */ |
3395 | 0 | h->root.u.def.section = dynbss; |
3396 | 0 | h->root.u.def.value = dynbss->size; |
3397 | | |
3398 | | /* Increment the size of DYNBSS to make room for the symbol. */ |
3399 | 0 | dynbss->size += h->size; |
3400 | | |
3401 | | /* No error if extern_protected_data is true. */ |
3402 | 0 | if (h->protected_def |
3403 | 0 | && (!info->extern_protected_data |
3404 | 0 | || (info->extern_protected_data < 0 |
3405 | 0 | && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) |
3406 | 0 | info->callbacks->einfo |
3407 | 0 | (_("%P: copy reloc against protected `%pT' is dangerous\n"), |
3408 | 0 | h->root.root.string); |
3409 | |
|
3410 | 0 | return true; |
3411 | 0 | } |
3412 | | |
3413 | | /* Adjust all external symbols pointing into SEC_MERGE sections |
3414 | | to reflect the object merging within the sections. */ |
3415 | | |
3416 | | static bool |
3417 | | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) |
3418 | 0 | { |
3419 | 0 | asection *sec; |
3420 | |
|
3421 | 0 | if ((h->root.type == bfd_link_hash_defined |
3422 | 0 | || h->root.type == bfd_link_hash_defweak) |
3423 | 0 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) |
3424 | 0 | && sec->sec_info_type == SEC_INFO_TYPE_MERGE) |
3425 | 0 | { |
3426 | 0 | bfd *output_bfd = (bfd *) data; |
3427 | |
|
3428 | 0 | h->root.u.def.value = |
3429 | 0 | _bfd_merged_section_offset (output_bfd, |
3430 | 0 | &h->root.u.def.section, |
3431 | 0 | elf_section_data (sec)->sec_info, |
3432 | 0 | h->root.u.def.value); |
3433 | 0 | } |
3434 | |
|
3435 | 0 | return true; |
3436 | 0 | } |
3437 | | |
3438 | | /* Returns false if the symbol referred to by H should be considered |
3439 | | to resolve local to the current module, and true if it should be |
3440 | | considered to bind dynamically. */ |
3441 | | |
3442 | | bool |
3443 | | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
3444 | | struct bfd_link_info *info, |
3445 | | bool not_local_protected) |
3446 | 0 | { |
3447 | 0 | bool binding_stays_local_p; |
3448 | 0 | const struct elf_backend_data *bed; |
3449 | 0 | struct elf_link_hash_table *hash_table; |
3450 | |
|
3451 | 0 | if (h == NULL) |
3452 | 0 | return false; |
3453 | | |
3454 | 0 | while (h->root.type == bfd_link_hash_indirect |
3455 | 0 | || h->root.type == bfd_link_hash_warning) |
3456 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
3457 | | |
3458 | | /* If it was forced local, then clearly it's not dynamic. */ |
3459 | 0 | if (h->dynindx == -1) |
3460 | 0 | return false; |
3461 | 0 | if (h->forced_local) |
3462 | 0 | return false; |
3463 | | |
3464 | | /* Identify the cases where name binding rules say that a |
3465 | | visible symbol resolves locally. */ |
3466 | 0 | binding_stays_local_p = (bfd_link_executable (info) |
3467 | 0 | || SYMBOLIC_BIND (info, h)); |
3468 | |
|
3469 | 0 | switch (ELF_ST_VISIBILITY (h->other)) |
3470 | 0 | { |
3471 | 0 | case STV_INTERNAL: |
3472 | 0 | case STV_HIDDEN: |
3473 | 0 | return false; |
3474 | | |
3475 | 0 | case STV_PROTECTED: |
3476 | 0 | hash_table = elf_hash_table (info); |
3477 | 0 | if (!is_elf_hash_table (&hash_table->root)) |
3478 | 0 | return false; |
3479 | | |
3480 | 0 | bed = get_elf_backend_data (hash_table->dynobj); |
3481 | | |
3482 | | /* Proper resolution for function pointer equality may require |
3483 | | that these symbols perhaps be resolved dynamically, even though |
3484 | | we should be resolving them to the current module. */ |
3485 | 0 | if (!not_local_protected || !bed->is_function_type (h->type)) |
3486 | 0 | binding_stays_local_p = true; |
3487 | 0 | break; |
3488 | | |
3489 | 0 | default: |
3490 | 0 | break; |
3491 | 0 | } |
3492 | | |
3493 | | /* If it isn't defined locally, then clearly it's dynamic. */ |
3494 | 0 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
3495 | 0 | return true; |
3496 | | |
3497 | | /* Otherwise, the symbol is dynamic if binding rules don't tell |
3498 | | us that it remains local. */ |
3499 | 0 | return !binding_stays_local_p; |
3500 | 0 | } |
3501 | | |
3502 | | /* Return true if the symbol referred to by H should be considered |
3503 | | to resolve local to the current module, and false otherwise. Differs |
3504 | | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of |
3505 | | undefined symbols. The two functions are virtually identical except |
3506 | | for the place where dynindx == -1 is tested. If that test is true, |
3507 | | _bfd_elf_dynamic_symbol_p will say the symbol is local, while |
3508 | | _bfd_elf_symbol_refs_local_p will say the symbol is local only for |
3509 | | defined symbols. |
3510 | | It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as |
3511 | | !_bfd_elf_symbol_refs_local_p, except that targets differ in their |
3512 | | treatment of undefined weak symbols. For those that do not make |
3513 | | undefined weak symbols dynamic, both functions may return false. */ |
3514 | | |
3515 | | bool |
3516 | | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, |
3517 | | struct bfd_link_info *info, |
3518 | | bool local_protected) |
3519 | 0 | { |
3520 | 0 | const struct elf_backend_data *bed; |
3521 | 0 | struct elf_link_hash_table *hash_table; |
3522 | | |
3523 | | /* If it's a local sym, of course we resolve locally. */ |
3524 | 0 | if (h == NULL) |
3525 | 0 | return true; |
3526 | | |
3527 | | /* STV_HIDDEN or STV_INTERNAL ones must be local. */ |
3528 | 0 | if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN |
3529 | 0 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) |
3530 | 0 | return true; |
3531 | | |
3532 | | /* Forced local symbols resolve locally. */ |
3533 | 0 | if (h->forced_local) |
3534 | 0 | return true; |
3535 | | |
3536 | | /* Common symbols that become definitions don't get the DEF_REGULAR |
3537 | | flag set, so test it first, and don't bail out. */ |
3538 | 0 | if (ELF_COMMON_DEF_P (h)) |
3539 | 0 | /* Do nothing. */; |
3540 | | /* If we don't have a definition in a regular file, then we can't |
3541 | | resolve locally. The sym is either undefined or dynamic. */ |
3542 | 0 | else if (!h->def_regular) |
3543 | 0 | return false; |
3544 | | |
3545 | | /* Non-dynamic symbols resolve locally. */ |
3546 | 0 | if (h->dynindx == -1) |
3547 | 0 | return true; |
3548 | | |
3549 | | /* At this point, we know the symbol is defined and dynamic. In an |
3550 | | executable it must resolve locally, likewise when building symbolic |
3551 | | shared libraries. */ |
3552 | 0 | if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) |
3553 | 0 | return true; |
3554 | | |
3555 | | /* Now deal with defined dynamic symbols in shared libraries. Ones |
3556 | | with default visibility might not resolve locally. */ |
3557 | 0 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) |
3558 | 0 | return false; |
3559 | | |
3560 | 0 | hash_table = elf_hash_table (info); |
3561 | 0 | if (!is_elf_hash_table (&hash_table->root)) |
3562 | 0 | return true; |
3563 | | |
3564 | | /* STV_PROTECTED symbols with indirect external access are local. */ |
3565 | 0 | if (info->indirect_extern_access > 0) |
3566 | 0 | return true; |
3567 | | |
3568 | 0 | bed = get_elf_backend_data (hash_table->dynobj); |
3569 | | |
3570 | | /* If extern_protected_data is false, STV_PROTECTED non-function |
3571 | | symbols are local. */ |
3572 | 0 | if ((!info->extern_protected_data |
3573 | 0 | || (info->extern_protected_data < 0 |
3574 | 0 | && !bed->extern_protected_data)) |
3575 | 0 | && !bed->is_function_type (h->type)) |
3576 | 0 | return true; |
3577 | | |
3578 | | /* Function pointer equality tests may require that STV_PROTECTED |
3579 | | symbols be treated as dynamic symbols. If the address of a |
3580 | | function not defined in an executable is set to that function's |
3581 | | plt entry in the executable, then the address of the function in |
3582 | | a shared library must also be the plt entry in the executable. */ |
3583 | 0 | return local_protected; |
3584 | 0 | } |
3585 | | |
3586 | | /* Caches some TLS segment info, and ensures that the TLS segment vma is |
3587 | | aligned. Returns the first TLS output section. */ |
3588 | | |
3589 | | struct bfd_section * |
3590 | | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) |
3591 | 0 | { |
3592 | 0 | struct bfd_section *sec, *tls; |
3593 | 0 | unsigned int align = 0; |
3594 | |
|
3595 | 0 | for (sec = obfd->sections; sec != NULL; sec = sec->next) |
3596 | 0 | if ((sec->flags & SEC_THREAD_LOCAL) != 0) |
3597 | 0 | break; |
3598 | 0 | tls = sec; |
3599 | |
|
3600 | 0 | for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) |
3601 | 0 | if (sec->alignment_power > align) |
3602 | 0 | align = sec->alignment_power; |
3603 | |
|
3604 | 0 | elf_hash_table (info)->tls_sec = tls; |
3605 | | |
3606 | | /* Ensure the alignment of the first section (usually .tdata) is the largest |
3607 | | alignment, so that the tls segment starts aligned. */ |
3608 | 0 | if (tls != NULL) |
3609 | 0 | (void) bfd_link_align_section (tls, align); |
3610 | |
|
3611 | 0 | return tls; |
3612 | 0 | } |
3613 | | |
3614 | | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ |
3615 | | static bool |
3616 | | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, |
3617 | | Elf_Internal_Sym *sym) |
3618 | 0 | { |
3619 | 0 | const struct elf_backend_data *bed; |
3620 | | |
3621 | | /* Local symbols do not count, but target specific ones might. */ |
3622 | 0 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL |
3623 | 0 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) |
3624 | 0 | return false; |
3625 | | |
3626 | 0 | bed = get_elf_backend_data (abfd); |
3627 | | /* Function symbols do not count. */ |
3628 | 0 | if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) |
3629 | 0 | return false; |
3630 | | |
3631 | | /* If the section is undefined, then so is the symbol. */ |
3632 | 0 | if (sym->st_shndx == SHN_UNDEF) |
3633 | 0 | return false; |
3634 | | |
3635 | | /* If the symbol is defined in the common section, then |
3636 | | it is a common definition and so does not count. */ |
3637 | 0 | if (bed->common_definition (sym)) |
3638 | 0 | return false; |
3639 | | |
3640 | | /* If the symbol is in a target specific section then we |
3641 | | must rely upon the backend to tell us what it is. */ |
3642 | 0 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) |
3643 | | /* FIXME - this function is not coded yet: |
3644 | | |
3645 | | return _bfd_is_global_symbol_definition (abfd, sym); |
3646 | | |
3647 | | Instead for now assume that the definition is not global, |
3648 | | Even if this is wrong, at least the linker will behave |
3649 | | in the same way that it used to do. */ |
3650 | 0 | return false; |
3651 | | |
3652 | 0 | return true; |
3653 | 0 | } |
3654 | | |
3655 | | /* Search the symbol table of the archive element of the archive ABFD |
3656 | | whose archive map contains a mention of SYMDEF, and determine if |
3657 | | the symbol is defined in this element. */ |
3658 | | static bool |
3659 | | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) |
3660 | 0 | { |
3661 | 0 | Elf_Internal_Shdr * hdr; |
3662 | 0 | size_t symcount; |
3663 | 0 | size_t extsymcount; |
3664 | 0 | size_t extsymoff; |
3665 | 0 | Elf_Internal_Sym *isymbuf; |
3666 | 0 | Elf_Internal_Sym *isym; |
3667 | 0 | Elf_Internal_Sym *isymend; |
3668 | 0 | bool result; |
3669 | |
|
3670 | 0 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL); |
3671 | 0 | if (abfd == NULL) |
3672 | 0 | return false; |
3673 | | |
3674 | 0 | if (! bfd_check_format (abfd, bfd_object)) |
3675 | 0 | return false; |
3676 | | |
3677 | | /* Select the appropriate symbol table. If we don't know if the |
3678 | | object file is an IR object, give linker LTO plugin a chance to |
3679 | | get the correct symbol table. */ |
3680 | 0 | if (abfd->plugin_format == bfd_plugin_yes |
3681 | 0 | || abfd->plugin_format == bfd_plugin_yes_unused |
3682 | 0 | #if BFD_SUPPORTS_PLUGINS |
3683 | 0 | || (abfd->plugin_format == bfd_plugin_unknown |
3684 | 0 | && bfd_link_plugin_object_p (abfd)) |
3685 | 0 | #endif |
3686 | 0 | ) |
3687 | 0 | { |
3688 | | /* Use the IR symbol table if the object has been claimed by |
3689 | | plugin. */ |
3690 | 0 | abfd = abfd->plugin_dummy_bfd; |
3691 | 0 | hdr = &elf_tdata (abfd)->symtab_hdr; |
3692 | 0 | } |
3693 | 0 | else |
3694 | 0 | { |
3695 | 0 | if (elf_use_dt_symtab_p (abfd)) |
3696 | 0 | { |
3697 | 0 | bfd_set_error (bfd_error_wrong_format); |
3698 | 0 | return false; |
3699 | 0 | } |
3700 | | |
3701 | 0 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) |
3702 | 0 | hdr = &elf_tdata (abfd)->symtab_hdr; |
3703 | 0 | else |
3704 | 0 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
3705 | 0 | } |
3706 | | |
3707 | 0 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; |
3708 | | |
3709 | | /* The sh_info field of the symtab header tells us where the |
3710 | | external symbols start. We don't care about the local symbols. */ |
3711 | 0 | if (elf_bad_symtab (abfd)) |
3712 | 0 | { |
3713 | 0 | extsymcount = symcount; |
3714 | 0 | extsymoff = 0; |
3715 | 0 | } |
3716 | 0 | else |
3717 | 0 | { |
3718 | 0 | extsymcount = symcount - hdr->sh_info; |
3719 | 0 | extsymoff = hdr->sh_info; |
3720 | 0 | } |
3721 | |
|
3722 | 0 | if (extsymcount == 0) |
3723 | 0 | return false; |
3724 | | |
3725 | | /* Read in the symbol table. */ |
3726 | 0 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, |
3727 | 0 | NULL, NULL, NULL); |
3728 | 0 | if (isymbuf == NULL) |
3729 | 0 | return false; |
3730 | | |
3731 | | /* Scan the symbol table looking for SYMDEF. */ |
3732 | 0 | result = false; |
3733 | 0 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) |
3734 | 0 | { |
3735 | 0 | const char *name; |
3736 | |
|
3737 | 0 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
3738 | 0 | isym->st_name); |
3739 | 0 | if (name == NULL) |
3740 | 0 | break; |
3741 | | |
3742 | 0 | if (strcmp (name, symdef->name) == 0) |
3743 | 0 | { |
3744 | 0 | result = is_global_data_symbol_definition (abfd, isym); |
3745 | 0 | break; |
3746 | 0 | } |
3747 | 0 | } |
3748 | |
|
3749 | 0 | free (isymbuf); |
3750 | |
|
3751 | 0 | return result; |
3752 | 0 | } |
3753 | | |
3754 | | /* Add an entry to the .dynamic table. */ |
3755 | | |
3756 | | bool |
3757 | | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, |
3758 | | bfd_vma tag, |
3759 | | bfd_vma val) |
3760 | 0 | { |
3761 | 0 | struct elf_link_hash_table *hash_table; |
3762 | 0 | const struct elf_backend_data *bed; |
3763 | 0 | asection *s; |
3764 | 0 | bfd_size_type newsize; |
3765 | 0 | bfd_byte *newcontents; |
3766 | 0 | Elf_Internal_Dyn dyn; |
3767 | |
|
3768 | 0 | hash_table = elf_hash_table (info); |
3769 | 0 | if (! is_elf_hash_table (&hash_table->root)) |
3770 | 0 | return false; |
3771 | | |
3772 | 0 | if (tag == DT_RELA || tag == DT_REL) |
3773 | 0 | hash_table->dynamic_relocs = true; |
3774 | |
|
3775 | 0 | bed = get_elf_backend_data (hash_table->dynobj); |
3776 | 0 | s = hash_table->dynamic; |
3777 | 0 | BFD_ASSERT (s != NULL); |
3778 | |
|
3779 | 0 | newsize = s->size + bed->s->sizeof_dyn; |
3780 | 0 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
3781 | 0 | if (newcontents == NULL) |
3782 | 0 | return false; |
3783 | | |
3784 | 0 | dyn.d_tag = tag; |
3785 | 0 | dyn.d_un.d_val = val; |
3786 | 0 | bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); |
3787 | |
|
3788 | 0 | s->size = newsize; |
3789 | 0 | s->contents = newcontents; |
3790 | |
|
3791 | 0 | return true; |
3792 | 0 | } |
3793 | | |
3794 | | /* Strip zero-sized dynamic sections. */ |
3795 | | |
3796 | | bool |
3797 | | _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info) |
3798 | 0 | { |
3799 | 0 | struct elf_link_hash_table *hash_table; |
3800 | 0 | const struct elf_backend_data *bed; |
3801 | 0 | asection *s, *sdynamic, **pp; |
3802 | 0 | asection *rela_dyn, *rel_dyn; |
3803 | 0 | Elf_Internal_Dyn dyn; |
3804 | 0 | bfd_byte *extdyn, *next; |
3805 | 0 | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); |
3806 | 0 | bool strip_zero_sized; |
3807 | 0 | bool strip_zero_sized_plt; |
3808 | |
|
3809 | 0 | if (bfd_link_relocatable (info)) |
3810 | 0 | return true; |
3811 | | |
3812 | 0 | hash_table = elf_hash_table (info); |
3813 | 0 | if (!is_elf_hash_table (&hash_table->root)) |
3814 | 0 | return false; |
3815 | | |
3816 | 0 | if (!hash_table->dynobj) |
3817 | 0 | return true; |
3818 | | |
3819 | 0 | sdynamic= hash_table->dynamic; |
3820 | 0 | if (!sdynamic) |
3821 | 0 | return true; |
3822 | | |
3823 | 0 | bed = get_elf_backend_data (hash_table->dynobj); |
3824 | 0 | swap_dyn_in = bed->s->swap_dyn_in; |
3825 | |
|
3826 | 0 | strip_zero_sized = false; |
3827 | 0 | strip_zero_sized_plt = false; |
3828 | | |
3829 | | /* Strip zero-sized dynamic sections. */ |
3830 | 0 | rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn"); |
3831 | 0 | rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn"); |
3832 | 0 | for (pp = &info->output_bfd->sections; (s = *pp) != NULL;) |
3833 | 0 | if (s->size == 0 |
3834 | 0 | && (s == rela_dyn |
3835 | 0 | || s == rel_dyn |
3836 | 0 | || s == hash_table->srelplt->output_section |
3837 | 0 | || s == hash_table->splt->output_section)) |
3838 | 0 | { |
3839 | 0 | *pp = s->next; |
3840 | 0 | info->output_bfd->section_count--; |
3841 | 0 | strip_zero_sized = true; |
3842 | 0 | if (s == rela_dyn) |
3843 | 0 | s = rela_dyn; |
3844 | 0 | if (s == rel_dyn) |
3845 | 0 | s = rel_dyn; |
3846 | 0 | else if (s == hash_table->splt->output_section) |
3847 | 0 | { |
3848 | 0 | s = hash_table->splt; |
3849 | 0 | strip_zero_sized_plt = true; |
3850 | 0 | } |
3851 | 0 | else |
3852 | 0 | s = hash_table->srelplt; |
3853 | 0 | s->flags |= SEC_EXCLUDE; |
3854 | 0 | s->output_section = bfd_abs_section_ptr; |
3855 | 0 | } |
3856 | 0 | else |
3857 | 0 | pp = &s->next; |
3858 | |
|
3859 | 0 | if (strip_zero_sized_plt && sdynamic->size != 0) |
3860 | 0 | for (extdyn = sdynamic->contents; |
3861 | 0 | extdyn < sdynamic->contents + sdynamic->size; |
3862 | 0 | extdyn = next) |
3863 | 0 | { |
3864 | 0 | next = extdyn + bed->s->sizeof_dyn; |
3865 | 0 | swap_dyn_in (hash_table->dynobj, extdyn, &dyn); |
3866 | 0 | switch (dyn.d_tag) |
3867 | 0 | { |
3868 | 0 | default: |
3869 | 0 | break; |
3870 | 0 | case DT_JMPREL: |
3871 | 0 | case DT_PLTRELSZ: |
3872 | 0 | case DT_PLTREL: |
3873 | | /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if |
3874 | | the procedure linkage table (the .plt section) has been |
3875 | | removed. */ |
3876 | 0 | memmove (extdyn, next, |
3877 | 0 | sdynamic->size - (next - sdynamic->contents)); |
3878 | 0 | next = extdyn; |
3879 | 0 | } |
3880 | 0 | } |
3881 | | |
3882 | 0 | if (strip_zero_sized) |
3883 | 0 | { |
3884 | | /* Regenerate program headers. */ |
3885 | 0 | elf_seg_map (info->output_bfd) = NULL; |
3886 | 0 | return _bfd_elf_map_sections_to_segments (info->output_bfd, info, |
3887 | 0 | NULL); |
3888 | 0 | } |
3889 | | |
3890 | 0 | return true; |
3891 | 0 | } |
3892 | | |
3893 | | /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error, |
3894 | | 1 if a DT_NEEDED tag already exists, and 0 on success. */ |
3895 | | |
3896 | | int |
3897 | | bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info) |
3898 | 0 | { |
3899 | 0 | struct elf_link_hash_table *hash_table; |
3900 | 0 | size_t strindex; |
3901 | 0 | const char *soname; |
3902 | |
|
3903 | 0 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
3904 | 0 | return -1; |
3905 | | |
3906 | 0 | hash_table = elf_hash_table (info); |
3907 | 0 | soname = elf_dt_name (abfd); |
3908 | 0 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false); |
3909 | 0 | if (strindex == (size_t) -1) |
3910 | 0 | return -1; |
3911 | | |
3912 | 0 | if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) |
3913 | 0 | { |
3914 | 0 | asection *sdyn; |
3915 | 0 | const struct elf_backend_data *bed; |
3916 | 0 | bfd_byte *extdyn; |
3917 | |
|
3918 | 0 | bed = get_elf_backend_data (hash_table->dynobj); |
3919 | 0 | sdyn = hash_table->dynamic; |
3920 | 0 | if (sdyn != NULL && sdyn->size != 0) |
3921 | 0 | for (extdyn = sdyn->contents; |
3922 | 0 | extdyn < sdyn->contents + sdyn->size; |
3923 | 0 | extdyn += bed->s->sizeof_dyn) |
3924 | 0 | { |
3925 | 0 | Elf_Internal_Dyn dyn; |
3926 | |
|
3927 | 0 | bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); |
3928 | 0 | if (dyn.d_tag == DT_NEEDED |
3929 | 0 | && dyn.d_un.d_val == strindex) |
3930 | 0 | { |
3931 | 0 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); |
3932 | 0 | return 1; |
3933 | 0 | } |
3934 | 0 | } |
3935 | 0 | } |
3936 | | |
3937 | 0 | if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) |
3938 | 0 | return -1; |
3939 | | |
3940 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
3941 | 0 | return -1; |
3942 | | |
3943 | 0 | return 0; |
3944 | 0 | } |
3945 | | |
3946 | | /* Return true if SONAME is on the needed list between NEEDED and STOP |
3947 | | (or the end of list if STOP is NULL), and needed by a library that |
3948 | | will be loaded. */ |
3949 | | |
3950 | | static bool |
3951 | | on_needed_list (const char *soname, |
3952 | | struct bfd_link_needed_list *needed, |
3953 | | struct bfd_link_needed_list *stop) |
3954 | 0 | { |
3955 | 0 | struct bfd_link_needed_list *look; |
3956 | 0 | for (look = needed; look != stop; look = look->next) |
3957 | 0 | if (strcmp (soname, look->name) == 0 |
3958 | 0 | && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 |
3959 | | /* If needed by a library that itself is not directly |
3960 | | needed, recursively check whether that library is |
3961 | | indirectly needed. Since we add DT_NEEDED entries to |
3962 | | the end of the list, library dependencies appear after |
3963 | | the library. Therefore search prior to the current |
3964 | | LOOK, preventing possible infinite recursion. */ |
3965 | 0 | || on_needed_list (elf_dt_name (look->by), needed, look))) |
3966 | 0 | return true; |
3967 | | |
3968 | 0 | return false; |
3969 | 0 | } |
3970 | | |
3971 | | /* Sort symbol by value, section, size, and type. */ |
3972 | | static int |
3973 | | elf_sort_symbol (const void *arg1, const void *arg2) |
3974 | 0 | { |
3975 | 0 | const struct elf_link_hash_entry *h1; |
3976 | 0 | const struct elf_link_hash_entry *h2; |
3977 | 0 | bfd_signed_vma vdiff; |
3978 | 0 | int sdiff; |
3979 | 0 | const char *n1; |
3980 | 0 | const char *n2; |
3981 | |
|
3982 | 0 | h1 = *(const struct elf_link_hash_entry **) arg1; |
3983 | 0 | h2 = *(const struct elf_link_hash_entry **) arg2; |
3984 | 0 | vdiff = h1->root.u.def.value - h2->root.u.def.value; |
3985 | 0 | if (vdiff != 0) |
3986 | 0 | return vdiff > 0 ? 1 : -1; |
3987 | | |
3988 | 0 | sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; |
3989 | 0 | if (sdiff != 0) |
3990 | 0 | return sdiff; |
3991 | | |
3992 | | /* Sort so that sized symbols are selected over zero size symbols. */ |
3993 | 0 | vdiff = h1->size - h2->size; |
3994 | 0 | if (vdiff != 0) |
3995 | 0 | return vdiff > 0 ? 1 : -1; |
3996 | | |
3997 | | /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */ |
3998 | 0 | if (h1->type != h2->type) |
3999 | 0 | return h1->type - h2->type; |
4000 | | |
4001 | | /* If symbols are properly sized and typed, and multiple strong |
4002 | | aliases are not defined in a shared library by the user we |
4003 | | shouldn't get here. Unfortunately linker script symbols like |
4004 | | __bss_start sometimes match a user symbol defined at the start of |
4005 | | .bss without proper size and type. We'd like to preference the |
4006 | | user symbol over reserved system symbols. Sort on leading |
4007 | | underscores. */ |
4008 | 0 | n1 = h1->root.root.string; |
4009 | 0 | n2 = h2->root.root.string; |
4010 | 0 | while (*n1 == *n2) |
4011 | 0 | { |
4012 | 0 | if (*n1 == 0) |
4013 | 0 | break; |
4014 | 0 | ++n1; |
4015 | 0 | ++n2; |
4016 | 0 | } |
4017 | 0 | if (*n1 == '_') |
4018 | 0 | return -1; |
4019 | 0 | if (*n2 == '_') |
4020 | 0 | return 1; |
4021 | | |
4022 | | /* Final sort on name selects user symbols like '_u' over reserved |
4023 | | system symbols like '_Z' and also will avoid qsort instability. */ |
4024 | 0 | return *n1 - *n2; |
4025 | 0 | } |
4026 | | |
4027 | | /* This function is used to adjust offsets into .dynstr for |
4028 | | dynamic symbols. This is called via elf_link_hash_traverse. */ |
4029 | | |
4030 | | static bool |
4031 | | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) |
4032 | 0 | { |
4033 | 0 | struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; |
4034 | |
|
4035 | 0 | if (h->dynindx != -1) |
4036 | 0 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); |
4037 | 0 | return true; |
4038 | 0 | } |
4039 | | |
4040 | | /* Assign string offsets in .dynstr, update all structures referencing |
4041 | | them. */ |
4042 | | |
4043 | | static bool |
4044 | | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) |
4045 | 0 | { |
4046 | 0 | struct elf_link_hash_table *hash_table = elf_hash_table (info); |
4047 | 0 | struct elf_link_local_dynamic_entry *entry; |
4048 | 0 | struct elf_strtab_hash *dynstr = hash_table->dynstr; |
4049 | 0 | bfd *dynobj = hash_table->dynobj; |
4050 | 0 | asection *sdyn; |
4051 | 0 | bfd_size_type size; |
4052 | 0 | const struct elf_backend_data *bed; |
4053 | 0 | bfd_byte *extdyn; |
4054 | |
|
4055 | 0 | _bfd_elf_strtab_finalize (dynstr); |
4056 | 0 | size = _bfd_elf_strtab_size (dynstr); |
4057 | | |
4058 | | /* Allow the linker to examine the dynsymtab now it's fully populated. */ |
4059 | |
|
4060 | 0 | if (info->callbacks->examine_strtab) |
4061 | 0 | info->callbacks->examine_strtab (dynstr); |
4062 | |
|
4063 | 0 | bed = get_elf_backend_data (dynobj); |
4064 | 0 | sdyn = hash_table->dynamic; |
4065 | 0 | BFD_ASSERT (sdyn != NULL); |
4066 | | |
4067 | | /* Update all .dynamic entries referencing .dynstr strings. */ |
4068 | 0 | for (extdyn = sdyn->contents; |
4069 | 0 | extdyn < PTR_ADD (sdyn->contents, sdyn->size); |
4070 | 0 | extdyn += bed->s->sizeof_dyn) |
4071 | 0 | { |
4072 | 0 | Elf_Internal_Dyn dyn; |
4073 | |
|
4074 | 0 | bed->s->swap_dyn_in (dynobj, extdyn, &dyn); |
4075 | 0 | switch (dyn.d_tag) |
4076 | 0 | { |
4077 | 0 | case DT_STRSZ: |
4078 | 0 | dyn.d_un.d_val = size; |
4079 | 0 | break; |
4080 | 0 | case DT_NEEDED: |
4081 | 0 | case DT_SONAME: |
4082 | 0 | case DT_RPATH: |
4083 | 0 | case DT_RUNPATH: |
4084 | 0 | case DT_FILTER: |
4085 | 0 | case DT_AUXILIARY: |
4086 | 0 | case DT_AUDIT: |
4087 | 0 | case DT_DEPAUDIT: |
4088 | 0 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); |
4089 | 0 | break; |
4090 | 0 | default: |
4091 | 0 | continue; |
4092 | 0 | } |
4093 | 0 | bed->s->swap_dyn_out (dynobj, &dyn, extdyn); |
4094 | 0 | } |
4095 | | |
4096 | | /* Now update local dynamic symbols. */ |
4097 | 0 | for (entry = hash_table->dynlocal; entry ; entry = entry->next) |
4098 | 0 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, |
4099 | 0 | entry->isym.st_name); |
4100 | | |
4101 | | /* And the rest of dynamic symbols. */ |
4102 | 0 | elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); |
4103 | | |
4104 | | /* Adjust version definitions. */ |
4105 | 0 | if (elf_tdata (output_bfd)->cverdefs) |
4106 | 0 | { |
4107 | 0 | asection *s; |
4108 | 0 | bfd_byte *p; |
4109 | 0 | size_t i; |
4110 | 0 | Elf_Internal_Verdef def; |
4111 | 0 | Elf_Internal_Verdaux defaux; |
4112 | |
|
4113 | 0 | s = bfd_get_linker_section (dynobj, ".gnu.version_d"); |
4114 | 0 | p = s->contents; |
4115 | 0 | do |
4116 | 0 | { |
4117 | 0 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, |
4118 | 0 | &def); |
4119 | 0 | p += sizeof (Elf_External_Verdef); |
4120 | 0 | if (def.vd_aux != sizeof (Elf_External_Verdef)) |
4121 | 0 | continue; |
4122 | 0 | for (i = 0; i < def.vd_cnt; ++i) |
4123 | 0 | { |
4124 | 0 | _bfd_elf_swap_verdaux_in (output_bfd, |
4125 | 0 | (Elf_External_Verdaux *) p, &defaux); |
4126 | 0 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, |
4127 | 0 | defaux.vda_name); |
4128 | 0 | _bfd_elf_swap_verdaux_out (output_bfd, |
4129 | 0 | &defaux, (Elf_External_Verdaux *) p); |
4130 | 0 | p += sizeof (Elf_External_Verdaux); |
4131 | 0 | } |
4132 | 0 | } |
4133 | 0 | while (def.vd_next); |
4134 | 0 | } |
4135 | | |
4136 | | /* Adjust version references. */ |
4137 | 0 | if (elf_tdata (output_bfd)->verref) |
4138 | 0 | { |
4139 | 0 | asection *s; |
4140 | 0 | bfd_byte *p; |
4141 | 0 | size_t i; |
4142 | 0 | Elf_Internal_Verneed need; |
4143 | 0 | Elf_Internal_Vernaux needaux; |
4144 | |
|
4145 | 0 | s = bfd_get_linker_section (dynobj, ".gnu.version_r"); |
4146 | 0 | p = s->contents; |
4147 | 0 | do |
4148 | 0 | { |
4149 | 0 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, |
4150 | 0 | &need); |
4151 | 0 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); |
4152 | 0 | _bfd_elf_swap_verneed_out (output_bfd, &need, |
4153 | 0 | (Elf_External_Verneed *) p); |
4154 | 0 | p += sizeof (Elf_External_Verneed); |
4155 | 0 | for (i = 0; i < need.vn_cnt; ++i) |
4156 | 0 | { |
4157 | 0 | _bfd_elf_swap_vernaux_in (output_bfd, |
4158 | 0 | (Elf_External_Vernaux *) p, &needaux); |
4159 | 0 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, |
4160 | 0 | needaux.vna_name); |
4161 | 0 | _bfd_elf_swap_vernaux_out (output_bfd, |
4162 | 0 | &needaux, |
4163 | 0 | (Elf_External_Vernaux *) p); |
4164 | 0 | p += sizeof (Elf_External_Vernaux); |
4165 | 0 | } |
4166 | 0 | } |
4167 | 0 | while (need.vn_next); |
4168 | 0 | } |
4169 | |
|
4170 | 0 | return true; |
4171 | 0 | } |
4172 | | |
4173 | | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. |
4174 | | The default is to only match when the INPUT and OUTPUT are exactly |
4175 | | the same target. */ |
4176 | | |
4177 | | bool |
4178 | | _bfd_elf_default_relocs_compatible (const bfd_target *input, |
4179 | | const bfd_target *output) |
4180 | 0 | { |
4181 | 0 | return input == output; |
4182 | 0 | } |
4183 | | |
4184 | | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. |
4185 | | This version is used when different targets for the same architecture |
4186 | | are virtually identical. */ |
4187 | | |
4188 | | bool |
4189 | | _bfd_elf_relocs_compatible (const bfd_target *input, |
4190 | | const bfd_target *output) |
4191 | 0 | { |
4192 | 0 | const struct elf_backend_data *obed, *ibed; |
4193 | |
|
4194 | 0 | if (input == output) |
4195 | 0 | return true; |
4196 | | |
4197 | 0 | ibed = xvec_get_elf_backend_data (input); |
4198 | 0 | obed = xvec_get_elf_backend_data (output); |
4199 | |
|
4200 | 0 | if (ibed->arch != obed->arch) |
4201 | 0 | return false; |
4202 | | |
4203 | | /* If both backends are using this function, deem them compatible. */ |
4204 | 0 | return ibed->relocs_compatible == obed->relocs_compatible; |
4205 | 0 | } |
4206 | | |
4207 | | /* Make a special call to the linker "notice" function to tell it that |
4208 | | we are about to handle an as-needed lib, or have finished |
4209 | | processing the lib. */ |
4210 | | |
4211 | | bool |
4212 | | _bfd_elf_notice_as_needed (bfd *ibfd, |
4213 | | struct bfd_link_info *info, |
4214 | | enum notice_asneeded_action act) |
4215 | 0 | { |
4216 | 0 | return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); |
4217 | 0 | } |
4218 | | |
4219 | | /* Call ACTION on each relocation in an ELF object file. */ |
4220 | | |
4221 | | bool |
4222 | | _bfd_elf_link_iterate_on_relocs |
4223 | | (bfd *abfd, struct bfd_link_info *info, |
4224 | | bool (*action) (bfd *, struct bfd_link_info *, asection *, |
4225 | | const Elf_Internal_Rela *)) |
4226 | 0 | { |
4227 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
4228 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
4229 | | |
4230 | | /* If this object is the same format as the output object, and it is |
4231 | | not a shared library, then let the backend look through the |
4232 | | relocs. |
4233 | | |
4234 | | This is required to build global offset table entries and to |
4235 | | arrange for dynamic relocs. It is not required for the |
4236 | | particular common case of linking non PIC code, even when linking |
4237 | | against shared libraries, but unfortunately there is no way of |
4238 | | knowing whether an object file has been compiled PIC or not. |
4239 | | Looking through the relocs is not particularly time consuming. |
4240 | | The problem is that we must either (1) keep the relocs in memory, |
4241 | | which causes the linker to require additional runtime memory or |
4242 | | (2) read the relocs twice from the input file, which wastes time. |
4243 | | This would be a good case for using mmap. |
4244 | | |
4245 | | I have no idea how to handle linking PIC code into a file of a |
4246 | | different format. It probably can't be done. */ |
4247 | 0 | if ((abfd->flags & DYNAMIC) == 0 |
4248 | 0 | && is_elf_hash_table (&htab->root) |
4249 | 0 | && elf_object_id (abfd) == elf_hash_table_id (htab) |
4250 | 0 | && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) |
4251 | 0 | { |
4252 | 0 | asection *o; |
4253 | |
|
4254 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
4255 | 0 | { |
4256 | 0 | Elf_Internal_Rela *internal_relocs; |
4257 | 0 | bool ok; |
4258 | | |
4259 | | /* Don't check relocations in excluded sections. Don't do |
4260 | | anything special with non-loaded, non-alloced sections. |
4261 | | In particular, any relocs in such sections should not |
4262 | | affect GOT and PLT reference counting (ie. we don't |
4263 | | allow them to create GOT or PLT entries), there's no |
4264 | | possibility or desire to optimize TLS relocs, and |
4265 | | there's not much point in propagating relocs to shared |
4266 | | libs that the dynamic linker won't relocate. */ |
4267 | 0 | if ((o->flags & SEC_ALLOC) == 0 |
4268 | 0 | || (o->flags & SEC_RELOC) == 0 |
4269 | 0 | || (o->flags & SEC_EXCLUDE) != 0 |
4270 | 0 | || o->reloc_count == 0 |
4271 | 0 | || ((info->strip == strip_all || info->strip == strip_debugger) |
4272 | 0 | && (o->flags & SEC_DEBUGGING) != 0) |
4273 | 0 | || bfd_is_abs_section (o->output_section)) |
4274 | 0 | continue; |
4275 | | |
4276 | 0 | internal_relocs = _bfd_elf_link_info_read_relocs |
4277 | 0 | (abfd, info, o, NULL, NULL, |
4278 | 0 | _bfd_elf_link_keep_memory (info)); |
4279 | 0 | if (internal_relocs == NULL) |
4280 | 0 | return false; |
4281 | | |
4282 | 0 | ok = action (abfd, info, o, internal_relocs); |
4283 | |
|
4284 | 0 | if (elf_section_data (o)->relocs != internal_relocs) |
4285 | 0 | free (internal_relocs); |
4286 | |
|
4287 | 0 | if (! ok) |
4288 | 0 | return false; |
4289 | 0 | } |
4290 | 0 | } |
4291 | | |
4292 | 0 | return true; |
4293 | 0 | } |
4294 | | |
4295 | | /* Check relocations in an ELF object file. This is called after |
4296 | | all input files have been opened. */ |
4297 | | |
4298 | | bool |
4299 | | _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) |
4300 | 0 | { |
4301 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
4302 | 0 | if (bed->check_relocs != NULL) |
4303 | 0 | return _bfd_elf_link_iterate_on_relocs (abfd, info, |
4304 | 0 | bed->check_relocs); |
4305 | 0 | return true; |
4306 | 0 | } |
4307 | | |
4308 | | /* An entry in the first definition hash table. */ |
4309 | | |
4310 | | struct elf_link_first_hash_entry |
4311 | | { |
4312 | | struct bfd_hash_entry root; |
4313 | | /* The object of the first definition. */ |
4314 | | bfd *abfd; |
4315 | | }; |
4316 | | |
4317 | | /* The function to create a new entry in the first definition hash |
4318 | | table. */ |
4319 | | |
4320 | | static struct bfd_hash_entry * |
4321 | | elf_link_first_hash_newfunc (struct bfd_hash_entry *entry, |
4322 | | struct bfd_hash_table *table, |
4323 | | const char *string) |
4324 | 0 | { |
4325 | 0 | struct elf_link_first_hash_entry *ret = |
4326 | 0 | (struct elf_link_first_hash_entry *) entry; |
4327 | | |
4328 | | /* Allocate the structure if it has not already been allocated by a |
4329 | | subclass. */ |
4330 | 0 | if (ret == NULL) |
4331 | 0 | ret = (struct elf_link_first_hash_entry *) |
4332 | 0 | bfd_hash_allocate (table, |
4333 | 0 | sizeof (struct elf_link_first_hash_entry)); |
4334 | 0 | if (ret == NULL) |
4335 | 0 | return NULL; |
4336 | | |
4337 | | /* Call the allocation method of the superclass. */ |
4338 | 0 | ret = ((struct elf_link_first_hash_entry *) |
4339 | 0 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, |
4340 | 0 | string)); |
4341 | 0 | if (ret != NULL) |
4342 | 0 | ret->abfd = NULL; |
4343 | |
|
4344 | 0 | return (struct bfd_hash_entry *) ret; |
4345 | 0 | } |
4346 | | |
4347 | | /* Add the symbol NAME from ABFD to first hash. */ |
4348 | | |
4349 | | static void |
4350 | | elf_link_add_to_first_hash (bfd *abfd, struct bfd_link_info *info, |
4351 | | const char *name, bool copy) |
4352 | 0 | { |
4353 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
4354 | | /* Skip if there is no first hash. */ |
4355 | 0 | if (htab->first_hash == NULL) |
4356 | 0 | return; |
4357 | | |
4358 | 0 | struct elf_link_first_hash_entry *e |
4359 | 0 | = ((struct elf_link_first_hash_entry *) |
4360 | 0 | bfd_hash_lookup (htab->first_hash, name, true, copy)); |
4361 | 0 | if (e == NULL) |
4362 | 0 | info->callbacks->fatal |
4363 | 0 | (_("%P: %pB: failed to add %s to first hash\n"), abfd, name); |
4364 | | |
4365 | 0 | if (e->abfd == NULL) |
4366 | | /* Store ABFD in abfd. */ |
4367 | 0 | e->abfd = abfd; |
4368 | 0 | } |
4369 | | |
4370 | | /* Add symbols from an ELF object file to the linker hash table. */ |
4371 | | |
4372 | | static bool |
4373 | | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) |
4374 | 0 | { |
4375 | 0 | Elf_Internal_Ehdr *ehdr; |
4376 | 0 | Elf_Internal_Shdr *hdr; |
4377 | 0 | size_t symcount; |
4378 | 0 | size_t extsymcount; |
4379 | 0 | size_t extsymoff; |
4380 | 0 | struct elf_link_hash_entry **sym_hash; |
4381 | 0 | bool dynamic; |
4382 | 0 | Elf_External_Versym *extversym = NULL; |
4383 | 0 | Elf_External_Versym *extversym_end = NULL; |
4384 | 0 | Elf_External_Versym *ever; |
4385 | 0 | struct elf_link_hash_entry *weaks; |
4386 | 0 | struct elf_link_hash_entry **nondeflt_vers = NULL; |
4387 | 0 | size_t nondeflt_vers_cnt = 0; |
4388 | 0 | Elf_Internal_Sym *isymbuf = NULL; |
4389 | 0 | Elf_Internal_Sym *isym; |
4390 | 0 | Elf_Internal_Sym *isymend; |
4391 | 0 | const struct elf_backend_data *bed; |
4392 | 0 | bool add_needed; |
4393 | 0 | struct elf_link_hash_table *htab; |
4394 | 0 | void *alloc_mark = NULL; |
4395 | 0 | struct bfd_hash_entry **old_table = NULL; |
4396 | 0 | unsigned int old_size = 0; |
4397 | 0 | unsigned int old_count = 0; |
4398 | 0 | void *old_tab = NULL; |
4399 | 0 | void *old_ent; |
4400 | 0 | struct bfd_link_hash_entry *old_undefs = NULL; |
4401 | 0 | struct bfd_link_hash_entry *old_undefs_tail = NULL; |
4402 | 0 | void *old_strtab = NULL; |
4403 | 0 | size_t tabsize = 0; |
4404 | 0 | asection *s; |
4405 | 0 | bool just_syms; |
4406 | |
|
4407 | 0 | htab = elf_hash_table (info); |
4408 | 0 | bed = get_elf_backend_data (abfd); |
4409 | |
|
4410 | 0 | if (elf_use_dt_symtab_p (abfd)) |
4411 | 0 | { |
4412 | 0 | bfd_set_error (bfd_error_wrong_format); |
4413 | 0 | return false; |
4414 | 0 | } |
4415 | | |
4416 | 0 | if ((abfd->flags & DYNAMIC) == 0) |
4417 | 0 | { |
4418 | 0 | dynamic = false; |
4419 | 0 | if ((abfd->flags & BFD_PLUGIN) != 0 |
4420 | 0 | && is_elf_hash_table (&htab->root) |
4421 | 0 | && htab->first_hash == NULL) |
4422 | 0 | { |
4423 | | /* Initialize first_hash for an IR input. */ |
4424 | 0 | htab->first_hash = (struct bfd_hash_table *) |
4425 | 0 | bfd_malloc (sizeof (struct bfd_hash_table)); |
4426 | 0 | if (htab->first_hash == NULL |
4427 | 0 | || !bfd_hash_table_init |
4428 | 0 | (htab->first_hash, elf_link_first_hash_newfunc, |
4429 | 0 | sizeof (struct elf_link_first_hash_entry))) |
4430 | 0 | info->callbacks->fatal |
4431 | 0 | (_("%P: first_hash failed to create: %E\n")); |
4432 | 0 | } |
4433 | 0 | } |
4434 | 0 | else |
4435 | 0 | { |
4436 | 0 | dynamic = true; |
4437 | | |
4438 | | /* You can't use -r against a dynamic object. Also, there's no |
4439 | | hope of using a dynamic object which does not exactly match |
4440 | | the format of the output file. */ |
4441 | 0 | if (bfd_link_relocatable (info) |
4442 | 0 | || !is_elf_hash_table (&htab->root) |
4443 | 0 | || info->output_bfd->xvec != abfd->xvec) |
4444 | 0 | { |
4445 | 0 | if (bfd_link_relocatable (info)) |
4446 | 0 | bfd_set_error (bfd_error_invalid_operation); |
4447 | 0 | else |
4448 | 0 | bfd_set_error (bfd_error_wrong_format); |
4449 | 0 | goto error_return; |
4450 | 0 | } |
4451 | 0 | } |
4452 | | |
4453 | 0 | ehdr = elf_elfheader (abfd); |
4454 | 0 | if (info->warn_alternate_em |
4455 | 0 | && bed->elf_machine_code != ehdr->e_machine |
4456 | 0 | && ((bed->elf_machine_alt1 != 0 |
4457 | 0 | && ehdr->e_machine == bed->elf_machine_alt1) |
4458 | 0 | || (bed->elf_machine_alt2 != 0 |
4459 | 0 | && ehdr->e_machine == bed->elf_machine_alt2))) |
4460 | 0 | _bfd_error_handler |
4461 | | /* xgettext:c-format */ |
4462 | 0 | (_("alternate ELF machine code found (%d) in %pB, expecting %d"), |
4463 | 0 | ehdr->e_machine, abfd, bed->elf_machine_code); |
4464 | | |
4465 | | /* As a GNU extension, any input sections which are named |
4466 | | .gnu.warning.SYMBOL are treated as warning symbols for the given |
4467 | | symbol. This differs from .gnu.warning sections, which generate |
4468 | | warnings when they are included in an output file. */ |
4469 | | /* PR 12761: Also generate this warning when building shared libraries. */ |
4470 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
4471 | 0 | { |
4472 | 0 | const char *name; |
4473 | |
|
4474 | 0 | name = bfd_section_name (s); |
4475 | 0 | if (startswith (name, ".gnu.warning.")) |
4476 | 0 | { |
4477 | 0 | char *msg; |
4478 | 0 | bfd_size_type sz; |
4479 | |
|
4480 | 0 | name += sizeof ".gnu.warning." - 1; |
4481 | | |
4482 | | /* If this is a shared object, then look up the symbol |
4483 | | in the hash table. If it is there, and it is already |
4484 | | been defined, then we will not be using the entry |
4485 | | from this shared object, so we don't need to warn. |
4486 | | FIXME: If we see the definition in a regular object |
4487 | | later on, we will warn, but we shouldn't. The only |
4488 | | fix is to keep track of what warnings we are supposed |
4489 | | to emit, and then handle them all at the end of the |
4490 | | link. */ |
4491 | 0 | if (dynamic) |
4492 | 0 | { |
4493 | 0 | struct elf_link_hash_entry *h; |
4494 | |
|
4495 | 0 | h = elf_link_hash_lookup (htab, name, false, false, true); |
4496 | | |
4497 | | /* FIXME: What about bfd_link_hash_common? */ |
4498 | 0 | if (h != NULL |
4499 | 0 | && (h->root.type == bfd_link_hash_defined |
4500 | 0 | || h->root.type == bfd_link_hash_defweak)) |
4501 | 0 | continue; |
4502 | 0 | } |
4503 | | |
4504 | 0 | sz = s->size; |
4505 | 0 | msg = (char *) bfd_alloc (abfd, sz + 1); |
4506 | 0 | if (msg == NULL) |
4507 | 0 | goto error_return; |
4508 | | |
4509 | 0 | if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) |
4510 | 0 | goto error_return; |
4511 | | |
4512 | 0 | msg[sz] = '\0'; |
4513 | |
|
4514 | 0 | if (! (_bfd_generic_link_add_one_symbol |
4515 | 0 | (info, abfd, name, BSF_WARNING, s, 0, msg, |
4516 | 0 | false, bed->collect, NULL))) |
4517 | 0 | goto error_return; |
4518 | | |
4519 | 0 | if (bfd_link_executable (info)) |
4520 | 0 | { |
4521 | | /* Clobber the section size so that the warning does |
4522 | | not get copied into the output file. */ |
4523 | 0 | s->size = 0; |
4524 | | |
4525 | | /* Also set SEC_EXCLUDE, so that symbols defined in |
4526 | | the warning section don't get copied to the output. */ |
4527 | 0 | s->flags |= SEC_EXCLUDE; |
4528 | 0 | } |
4529 | 0 | } |
4530 | 0 | } |
4531 | | |
4532 | 0 | just_syms = ((s = abfd->sections) != NULL |
4533 | 0 | && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); |
4534 | |
|
4535 | 0 | add_needed = true; |
4536 | 0 | if (! dynamic) |
4537 | 0 | { |
4538 | | /* If we are creating a shared library, create all the dynamic |
4539 | | sections immediately. We need to attach them to something, |
4540 | | so we attach them to this BFD, provided it is the right |
4541 | | format and is not from ld --just-symbols. Always create the |
4542 | | dynamic sections for -E/--dynamic-list. FIXME: If there |
4543 | | are no input BFD's of the same format as the output, we can't |
4544 | | make a shared library. */ |
4545 | 0 | if (!just_syms |
4546 | 0 | && (bfd_link_pic (info) |
4547 | 0 | || (!bfd_link_relocatable (info) |
4548 | 0 | && info->nointerp |
4549 | 0 | && (info->export_dynamic || info->dynamic))) |
4550 | 0 | && is_elf_hash_table (&htab->root) |
4551 | 0 | && info->output_bfd->xvec == abfd->xvec |
4552 | 0 | && !htab->dynamic_sections_created) |
4553 | 0 | { |
4554 | 0 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) |
4555 | 0 | goto error_return; |
4556 | 0 | } |
4557 | 0 | } |
4558 | 0 | else if (!is_elf_hash_table (&htab->root)) |
4559 | 0 | goto error_return; |
4560 | 0 | else |
4561 | 0 | { |
4562 | 0 | const char *soname = NULL; |
4563 | 0 | char *audit = NULL; |
4564 | 0 | struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; |
4565 | 0 | const Elf_Internal_Phdr *phdr; |
4566 | 0 | struct elf_link_loaded_list *loaded_lib; |
4567 | | |
4568 | | /* ld --just-symbols and dynamic objects don't mix very well. |
4569 | | ld shouldn't allow it. */ |
4570 | 0 | if (just_syms) |
4571 | 0 | abort (); |
4572 | | |
4573 | | /* If this dynamic lib was specified on the command line with |
4574 | | --as-needed in effect, then we don't want to add a DT_NEEDED |
4575 | | tag unless the lib is actually used. Similary for libs brought |
4576 | | in by another lib's DT_NEEDED. When --no-add-needed is used |
4577 | | on a dynamic lib, we don't want to add a DT_NEEDED entry for |
4578 | | any dynamic library in DT_NEEDED tags in the dynamic lib at |
4579 | | all. */ |
4580 | 0 | add_needed = (elf_dyn_lib_class (abfd) |
4581 | 0 | & (DYN_AS_NEEDED | DYN_DT_NEEDED |
4582 | 0 | | DYN_NO_NEEDED)) == 0; |
4583 | |
|
4584 | 0 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
4585 | 0 | if (s != NULL && s->size != 0 && (s->flags & SEC_HAS_CONTENTS) != 0) |
4586 | 0 | { |
4587 | 0 | bfd_byte *dynbuf; |
4588 | 0 | bfd_byte *extdyn; |
4589 | 0 | unsigned int elfsec; |
4590 | 0 | unsigned long shlink; |
4591 | |
|
4592 | 0 | if (!_bfd_elf_mmap_section_contents (abfd, s, &dynbuf)) |
4593 | 0 | { |
4594 | 0 | error_free_dyn: |
4595 | 0 | _bfd_elf_munmap_section_contents (s, dynbuf); |
4596 | 0 | goto error_return; |
4597 | 0 | } |
4598 | | |
4599 | 0 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
4600 | 0 | if (elfsec == SHN_BAD) |
4601 | 0 | goto error_free_dyn; |
4602 | 0 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
4603 | |
|
4604 | 0 | for (extdyn = dynbuf; |
4605 | 0 | (size_t) (dynbuf + s->size - extdyn) >= bed->s->sizeof_dyn; |
4606 | 0 | extdyn += bed->s->sizeof_dyn) |
4607 | 0 | { |
4608 | 0 | Elf_Internal_Dyn dyn; |
4609 | |
|
4610 | 0 | bed->s->swap_dyn_in (abfd, extdyn, &dyn); |
4611 | 0 | if (dyn.d_tag == DT_SONAME) |
4612 | 0 | { |
4613 | 0 | unsigned int tagv = dyn.d_un.d_val; |
4614 | 0 | soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
4615 | 0 | if (soname == NULL) |
4616 | 0 | goto error_free_dyn; |
4617 | 0 | } |
4618 | 0 | if (dyn.d_tag == DT_NEEDED) |
4619 | 0 | { |
4620 | 0 | struct bfd_link_needed_list *n, **pn; |
4621 | 0 | char *fnm, *anm; |
4622 | 0 | unsigned int tagv = dyn.d_un.d_val; |
4623 | 0 | size_t amt = sizeof (struct bfd_link_needed_list); |
4624 | |
|
4625 | 0 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4626 | 0 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
4627 | 0 | if (n == NULL || fnm == NULL) |
4628 | 0 | goto error_free_dyn; |
4629 | 0 | amt = strlen (fnm) + 1; |
4630 | 0 | anm = (char *) bfd_alloc (abfd, amt); |
4631 | 0 | if (anm == NULL) |
4632 | 0 | goto error_free_dyn; |
4633 | 0 | memcpy (anm, fnm, amt); |
4634 | 0 | n->name = anm; |
4635 | 0 | n->by = abfd; |
4636 | 0 | n->next = NULL; |
4637 | 0 | for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) |
4638 | 0 | ; |
4639 | 0 | *pn = n; |
4640 | 0 | } |
4641 | 0 | if (dyn.d_tag == DT_RUNPATH) |
4642 | 0 | { |
4643 | 0 | struct bfd_link_needed_list *n, **pn; |
4644 | 0 | char *fnm, *anm; |
4645 | 0 | unsigned int tagv = dyn.d_un.d_val; |
4646 | 0 | size_t amt = sizeof (struct bfd_link_needed_list); |
4647 | |
|
4648 | 0 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4649 | 0 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
4650 | 0 | if (n == NULL || fnm == NULL) |
4651 | 0 | goto error_free_dyn; |
4652 | 0 | amt = strlen (fnm) + 1; |
4653 | 0 | anm = (char *) bfd_alloc (abfd, amt); |
4654 | 0 | if (anm == NULL) |
4655 | 0 | goto error_free_dyn; |
4656 | 0 | memcpy (anm, fnm, amt); |
4657 | 0 | n->name = anm; |
4658 | 0 | n->by = abfd; |
4659 | 0 | n->next = NULL; |
4660 | 0 | for (pn = & runpath; |
4661 | 0 | *pn != NULL; |
4662 | 0 | pn = &(*pn)->next) |
4663 | 0 | ; |
4664 | 0 | *pn = n; |
4665 | 0 | } |
4666 | | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ |
4667 | 0 | if (!runpath && dyn.d_tag == DT_RPATH) |
4668 | 0 | { |
4669 | 0 | struct bfd_link_needed_list *n, **pn; |
4670 | 0 | char *fnm, *anm; |
4671 | 0 | unsigned int tagv = dyn.d_un.d_val; |
4672 | 0 | size_t amt = sizeof (struct bfd_link_needed_list); |
4673 | |
|
4674 | 0 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4675 | 0 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
4676 | 0 | if (n == NULL || fnm == NULL) |
4677 | 0 | goto error_free_dyn; |
4678 | 0 | amt = strlen (fnm) + 1; |
4679 | 0 | anm = (char *) bfd_alloc (abfd, amt); |
4680 | 0 | if (anm == NULL) |
4681 | 0 | goto error_free_dyn; |
4682 | 0 | memcpy (anm, fnm, amt); |
4683 | 0 | n->name = anm; |
4684 | 0 | n->by = abfd; |
4685 | 0 | n->next = NULL; |
4686 | 0 | for (pn = & rpath; |
4687 | 0 | *pn != NULL; |
4688 | 0 | pn = &(*pn)->next) |
4689 | 0 | ; |
4690 | 0 | *pn = n; |
4691 | 0 | } |
4692 | 0 | if (dyn.d_tag == DT_AUDIT) |
4693 | 0 | { |
4694 | 0 | unsigned int tagv = dyn.d_un.d_val; |
4695 | 0 | audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
4696 | 0 | } |
4697 | 0 | if (dyn.d_tag == DT_FLAGS_1) |
4698 | 0 | elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0; |
4699 | 0 | } |
4700 | | |
4701 | 0 | _bfd_elf_munmap_section_contents (s, dynbuf); |
4702 | 0 | } |
4703 | | |
4704 | | /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that |
4705 | | frees all more recently bfd_alloc'd blocks as well. */ |
4706 | 0 | if (runpath) |
4707 | 0 | rpath = runpath; |
4708 | |
|
4709 | 0 | if (rpath) |
4710 | 0 | { |
4711 | 0 | struct bfd_link_needed_list **pn; |
4712 | 0 | for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) |
4713 | 0 | ; |
4714 | 0 | *pn = rpath; |
4715 | 0 | } |
4716 | | |
4717 | | /* If we have a PT_GNU_RELRO program header, mark as read-only |
4718 | | all sections contained fully therein. This makes relro |
4719 | | shared library sections appear as they will at run-time. */ |
4720 | 0 | phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; |
4721 | 0 | while (phdr-- > elf_tdata (abfd)->phdr) |
4722 | 0 | if (phdr->p_type == PT_GNU_RELRO) |
4723 | 0 | { |
4724 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
4725 | 0 | { |
4726 | 0 | unsigned int opb = bfd_octets_per_byte (abfd, s); |
4727 | |
|
4728 | 0 | if ((s->flags & SEC_ALLOC) != 0 |
4729 | 0 | && s->vma * opb >= phdr->p_vaddr |
4730 | 0 | && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz) |
4731 | 0 | s->flags |= SEC_READONLY; |
4732 | 0 | } |
4733 | 0 | break; |
4734 | 0 | } |
4735 | | |
4736 | | /* We do not want to include any of the sections in a dynamic |
4737 | | object in the output file. We hack by simply clobbering the |
4738 | | list of sections in the BFD. This could be handled more |
4739 | | cleanly by, say, a new section flag; the existing |
4740 | | SEC_NEVER_LOAD flag is not the one we want, because that one |
4741 | | still implies that the section takes up space in the output |
4742 | | file. */ |
4743 | 0 | bfd_section_list_clear (abfd); |
4744 | | |
4745 | | /* Find the name to use in a DT_NEEDED entry that refers to this |
4746 | | object. If the object has a DT_SONAME entry, we use it. |
4747 | | Otherwise, if the generic linker stuck something in |
4748 | | elf_dt_name, we use that. Otherwise, we just use the file |
4749 | | name. */ |
4750 | 0 | if (soname == NULL || *soname == '\0') |
4751 | 0 | { |
4752 | 0 | soname = elf_dt_name (abfd); |
4753 | 0 | if (soname == NULL || *soname == '\0') |
4754 | 0 | soname = bfd_get_filename (abfd); |
4755 | 0 | } |
4756 | | |
4757 | | /* Save the SONAME because sometimes the linker emulation code |
4758 | | will need to know it. */ |
4759 | 0 | elf_dt_name (abfd) = soname; |
4760 | | |
4761 | | /* If we have already included this dynamic object in the |
4762 | | link, just ignore it. There is no reason to include a |
4763 | | particular dynamic object more than once. */ |
4764 | 0 | for (loaded_lib = htab->dyn_loaded; |
4765 | 0 | loaded_lib != NULL; |
4766 | 0 | loaded_lib = loaded_lib->next) |
4767 | 0 | { |
4768 | 0 | if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0) |
4769 | 0 | return true; |
4770 | 0 | } |
4771 | | |
4772 | | /* Create dynamic sections for backends that require that be done |
4773 | | before setup_gnu_properties. */ |
4774 | 0 | if (add_needed |
4775 | 0 | && !_bfd_elf_link_create_dynamic_sections (abfd, info)) |
4776 | 0 | return false; |
4777 | | |
4778 | | /* Save the DT_AUDIT entry for the linker emulation code. */ |
4779 | 0 | elf_dt_audit (abfd) = audit; |
4780 | 0 | } |
4781 | | |
4782 | | /* If this is a dynamic object, we always link against the .dynsym |
4783 | | symbol table, not the .symtab symbol table. The dynamic linker |
4784 | | will only see the .dynsym symbol table, so there is no reason to |
4785 | | look at .symtab for a dynamic object. */ |
4786 | | |
4787 | 0 | if (! dynamic || elf_dynsymtab (abfd) == 0) |
4788 | 0 | hdr = &elf_tdata (abfd)->symtab_hdr; |
4789 | 0 | else |
4790 | 0 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
4791 | |
|
4792 | 0 | symcount = hdr->sh_size / bed->s->sizeof_sym; |
4793 | | |
4794 | | /* The sh_info field of the symtab header tells us where the |
4795 | | external symbols start. We don't care about the local symbols at |
4796 | | this point. */ |
4797 | 0 | if (elf_bad_symtab (abfd)) |
4798 | 0 | { |
4799 | 0 | extsymcount = symcount; |
4800 | 0 | extsymoff = 0; |
4801 | 0 | } |
4802 | 0 | else |
4803 | 0 | { |
4804 | 0 | extsymcount = symcount - hdr->sh_info; |
4805 | 0 | extsymoff = hdr->sh_info; |
4806 | 0 | } |
4807 | |
|
4808 | 0 | sym_hash = elf_sym_hashes (abfd); |
4809 | 0 | if (extsymcount != 0) |
4810 | 0 | { |
4811 | 0 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, |
4812 | 0 | NULL, NULL, NULL); |
4813 | 0 | if (isymbuf == NULL) |
4814 | 0 | goto error_return; |
4815 | | |
4816 | 0 | if (sym_hash == NULL) |
4817 | 0 | { |
4818 | | /* We store a pointer to the hash table entry for each |
4819 | | external symbol. */ |
4820 | 0 | size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *); |
4821 | 0 | sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); |
4822 | 0 | if (sym_hash == NULL) |
4823 | 0 | goto error_free_sym; |
4824 | 0 | elf_sym_hashes (abfd) = sym_hash; |
4825 | 0 | } |
4826 | 0 | } |
4827 | | |
4828 | 0 | if (dynamic) |
4829 | 0 | { |
4830 | | /* Read in any version definitions. */ |
4831 | 0 | if (!_bfd_elf_slurp_version_tables (abfd, |
4832 | 0 | info->default_imported_symver)) |
4833 | 0 | goto error_free_sym; |
4834 | | |
4835 | | /* Read in the symbol versions, but don't bother to convert them |
4836 | | to internal format. */ |
4837 | 0 | if (elf_dynversym (abfd) != 0) |
4838 | 0 | { |
4839 | 0 | Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr; |
4840 | 0 | bfd_size_type amt = versymhdr->sh_size; |
4841 | |
|
4842 | 0 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0) |
4843 | 0 | goto error_free_sym; |
4844 | 0 | extversym = (Elf_External_Versym *) |
4845 | 0 | _bfd_malloc_and_read (abfd, amt, amt); |
4846 | 0 | if (extversym == NULL) |
4847 | 0 | goto error_free_sym; |
4848 | 0 | extversym_end = extversym + amt / sizeof (*extversym); |
4849 | 0 | } |
4850 | 0 | } |
4851 | | |
4852 | | /* If we are loading an as-needed shared lib, save the symbol table |
4853 | | state before we start adding symbols. If the lib turns out |
4854 | | to be unneeded, restore the state. */ |
4855 | 0 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) |
4856 | 0 | { |
4857 | 0 | unsigned int i; |
4858 | 0 | size_t entsize; |
4859 | |
|
4860 | 0 | for (entsize = 0, i = 0; i < htab->root.table.size; i++) |
4861 | 0 | { |
4862 | 0 | struct bfd_hash_entry *p; |
4863 | 0 | struct elf_link_hash_entry *h; |
4864 | |
|
4865 | 0 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) |
4866 | 0 | { |
4867 | 0 | h = (struct elf_link_hash_entry *) p; |
4868 | 0 | entsize += htab->root.table.entsize; |
4869 | 0 | if (h->root.type == bfd_link_hash_warning) |
4870 | 0 | { |
4871 | 0 | entsize += htab->root.table.entsize; |
4872 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
4873 | 0 | } |
4874 | 0 | if (h->root.type == bfd_link_hash_common) |
4875 | 0 | entsize += sizeof (*h->root.u.c.p); |
4876 | 0 | } |
4877 | 0 | } |
4878 | |
|
4879 | 0 | tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); |
4880 | 0 | old_tab = bfd_malloc (tabsize + entsize); |
4881 | 0 | if (old_tab == NULL) |
4882 | 0 | goto error_free_vers; |
4883 | | |
4884 | | /* Remember the current objalloc pointer, so that all mem for |
4885 | | symbols added can later be reclaimed. */ |
4886 | 0 | alloc_mark = bfd_hash_allocate (&htab->root.table, 1); |
4887 | 0 | if (alloc_mark == NULL) |
4888 | 0 | goto error_free_vers; |
4889 | | |
4890 | | /* Make a special call to the linker "notice" function to |
4891 | | tell it that we are about to handle an as-needed lib. */ |
4892 | 0 | if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) |
4893 | 0 | goto error_free_vers; |
4894 | | |
4895 | | /* Clone the symbol table. Remember some pointers into the |
4896 | | symbol table, and dynamic symbol count. */ |
4897 | 0 | old_ent = (char *) old_tab + tabsize; |
4898 | 0 | memcpy (old_tab, htab->root.table.table, tabsize); |
4899 | 0 | old_undefs = htab->root.undefs; |
4900 | 0 | old_undefs_tail = htab->root.undefs_tail; |
4901 | 0 | old_table = htab->root.table.table; |
4902 | 0 | old_size = htab->root.table.size; |
4903 | 0 | old_count = htab->root.table.count; |
4904 | 0 | old_strtab = NULL; |
4905 | 0 | if (htab->dynstr != NULL) |
4906 | 0 | { |
4907 | 0 | old_strtab = _bfd_elf_strtab_save (htab->dynstr); |
4908 | 0 | if (old_strtab == NULL) |
4909 | 0 | goto error_free_vers; |
4910 | 0 | } |
4911 | | |
4912 | 0 | for (i = 0; i < htab->root.table.size; i++) |
4913 | 0 | { |
4914 | 0 | struct bfd_hash_entry *p; |
4915 | 0 | struct elf_link_hash_entry *h; |
4916 | |
|
4917 | 0 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) |
4918 | 0 | { |
4919 | 0 | h = (struct elf_link_hash_entry *) p; |
4920 | 0 | memcpy (old_ent, h, htab->root.table.entsize); |
4921 | 0 | old_ent = (char *) old_ent + htab->root.table.entsize; |
4922 | 0 | if (h->root.type == bfd_link_hash_warning) |
4923 | 0 | { |
4924 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
4925 | 0 | memcpy (old_ent, h, htab->root.table.entsize); |
4926 | 0 | old_ent = (char *) old_ent + htab->root.table.entsize; |
4927 | 0 | } |
4928 | 0 | if (h->root.type == bfd_link_hash_common) |
4929 | 0 | { |
4930 | 0 | memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p)); |
4931 | 0 | old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); |
4932 | 0 | } |
4933 | 0 | } |
4934 | 0 | } |
4935 | 0 | } |
4936 | | |
4937 | 0 | weaks = NULL; |
4938 | 0 | if (extversym == NULL) |
4939 | 0 | ever = NULL; |
4940 | 0 | else if (extversym + extsymoff < extversym_end) |
4941 | 0 | ever = extversym + extsymoff; |
4942 | 0 | else |
4943 | 0 | { |
4944 | | /* xgettext:c-format */ |
4945 | 0 | _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), |
4946 | 0 | abfd, (long) extsymoff, |
4947 | 0 | (long) (extversym_end - extversym) / sizeof (* extversym)); |
4948 | 0 | bfd_set_error (bfd_error_bad_value); |
4949 | 0 | goto error_free_vers; |
4950 | 0 | } |
4951 | | |
4952 | 0 | if (!bfd_link_relocatable (info) |
4953 | 0 | && bfd_get_lto_type (abfd) == lto_slim_ir_object) |
4954 | 0 | { |
4955 | 0 | _bfd_error_handler |
4956 | 0 | (_("%pB: plugin needed to handle lto object"), abfd); |
4957 | 0 | } |
4958 | |
|
4959 | 0 | for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount); |
4960 | 0 | isym < isymend; |
4961 | 0 | isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) |
4962 | 0 | { |
4963 | 0 | int bind; |
4964 | 0 | bfd_vma value; |
4965 | 0 | asection *sec, *new_sec; |
4966 | 0 | flagword flags; |
4967 | 0 | const char *name; |
4968 | 0 | const char *defvername; |
4969 | 0 | bool must_copy_name = false; |
4970 | 0 | struct elf_link_hash_entry *h; |
4971 | 0 | struct elf_link_hash_entry *hi; |
4972 | 0 | bool definition; |
4973 | 0 | bool size_change_ok; |
4974 | 0 | bool type_change_ok; |
4975 | 0 | bool new_weak; |
4976 | 0 | bool old_weak; |
4977 | 0 | bfd *override; |
4978 | 0 | bool common; |
4979 | 0 | bool discarded; |
4980 | 0 | unsigned int old_alignment; |
4981 | 0 | unsigned int shindex; |
4982 | 0 | bfd *old_bfd; |
4983 | 0 | bool matched; |
4984 | |
|
4985 | 0 | override = NULL; |
4986 | |
|
4987 | 0 | flags = BSF_NO_FLAGS; |
4988 | 0 | sec = NULL; |
4989 | 0 | value = isym->st_value; |
4990 | 0 | common = bed->common_definition (isym); |
4991 | 0 | if (common && info->inhibit_common_definition) |
4992 | 0 | { |
4993 | | /* Treat common symbol as undefined for --no-define-common. */ |
4994 | 0 | isym->st_shndx = SHN_UNDEF; |
4995 | 0 | common = false; |
4996 | 0 | } |
4997 | 0 | discarded = false; |
4998 | |
|
4999 | 0 | bind = ELF_ST_BIND (isym->st_info); |
5000 | 0 | switch (bind) |
5001 | 0 | { |
5002 | 0 | case STB_LOCAL: |
5003 | | /* This should be impossible, since ELF requires that all |
5004 | | global symbols follow all local symbols, and that sh_info |
5005 | | point to the first global symbol. Unfortunately, Irix 5 |
5006 | | screws this up. */ |
5007 | 0 | if (elf_bad_symtab (abfd)) |
5008 | 0 | continue; |
5009 | | |
5010 | | /* If we aren't prepared to handle locals within the globals |
5011 | | then we'll likely segfault on a NULL symbol hash if the |
5012 | | symbol is ever referenced in relocations. */ |
5013 | 0 | shindex = elf_elfheader (abfd)->e_shstrndx; |
5014 | 0 | name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); |
5015 | 0 | _bfd_error_handler (_("%pB: %s local symbol at index %lu" |
5016 | 0 | " (>= sh_info of %lu)"), |
5017 | 0 | abfd, name, (long) (isym - isymbuf + extsymoff), |
5018 | 0 | (long) extsymoff); |
5019 | | |
5020 | | /* Dynamic object relocations are not processed by ld, so |
5021 | | ld won't run into the problem mentioned above. */ |
5022 | 0 | if (dynamic) |
5023 | 0 | continue; |
5024 | 0 | bfd_set_error (bfd_error_bad_value); |
5025 | 0 | goto error_free_vers; |
5026 | | |
5027 | 0 | case STB_GLOBAL: |
5028 | 0 | if (isym->st_shndx != SHN_UNDEF && !common) |
5029 | 0 | flags = BSF_GLOBAL; |
5030 | 0 | break; |
5031 | | |
5032 | 0 | case STB_WEAK: |
5033 | 0 | flags = BSF_WEAK; |
5034 | 0 | break; |
5035 | | |
5036 | 0 | case STB_GNU_UNIQUE: |
5037 | 0 | flags = BSF_GNU_UNIQUE; |
5038 | 0 | break; |
5039 | | |
5040 | 0 | default: |
5041 | | /* Leave it up to the processor backend. */ |
5042 | 0 | break; |
5043 | 0 | } |
5044 | | |
5045 | 0 | if (isym->st_shndx == SHN_UNDEF) |
5046 | 0 | sec = bfd_und_section_ptr; |
5047 | 0 | else if (isym->st_shndx == SHN_ABS) |
5048 | 0 | sec = bfd_abs_section_ptr; |
5049 | 0 | else if (isym->st_shndx == SHN_COMMON) |
5050 | 0 | { |
5051 | 0 | sec = bfd_com_section_ptr; |
5052 | | /* What ELF calls the size we call the value. What ELF |
5053 | | calls the value we call the alignment. */ |
5054 | 0 | value = isym->st_size; |
5055 | 0 | } |
5056 | 0 | else |
5057 | 0 | { |
5058 | 0 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
5059 | 0 | if (sec == NULL) |
5060 | 0 | sec = bfd_abs_section_ptr; |
5061 | 0 | else if (discarded_section (sec)) |
5062 | 0 | { |
5063 | | /* Symbols from discarded section are undefined. We keep |
5064 | | its visibility. */ |
5065 | 0 | sec = bfd_und_section_ptr; |
5066 | 0 | discarded = true; |
5067 | 0 | isym->st_shndx = SHN_UNDEF; |
5068 | 0 | } |
5069 | 0 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
5070 | 0 | value -= sec->vma; |
5071 | 0 | } |
5072 | |
|
5073 | 0 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
5074 | 0 | isym->st_name); |
5075 | 0 | if (name == NULL) |
5076 | 0 | goto error_free_vers; |
5077 | | |
5078 | 0 | if (isym->st_shndx == SHN_COMMON |
5079 | 0 | && (abfd->flags & BFD_PLUGIN) != 0) |
5080 | 0 | { |
5081 | 0 | asection *xc = bfd_get_section_by_name (abfd, "COMMON"); |
5082 | |
|
5083 | 0 | if (xc == NULL) |
5084 | 0 | { |
5085 | 0 | flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP |
5086 | 0 | | SEC_EXCLUDE); |
5087 | 0 | xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); |
5088 | 0 | if (xc == NULL) |
5089 | 0 | goto error_free_vers; |
5090 | 0 | } |
5091 | 0 | sec = xc; |
5092 | 0 | } |
5093 | 0 | else if (isym->st_shndx == SHN_COMMON |
5094 | 0 | && ELF_ST_TYPE (isym->st_info) == STT_TLS |
5095 | 0 | && !bfd_link_relocatable (info)) |
5096 | 0 | { |
5097 | 0 | asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); |
5098 | |
|
5099 | 0 | if (tcomm == NULL) |
5100 | 0 | { |
5101 | 0 | flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON |
5102 | 0 | | SEC_LINKER_CREATED); |
5103 | 0 | tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); |
5104 | 0 | if (tcomm == NULL) |
5105 | 0 | goto error_free_vers; |
5106 | 0 | } |
5107 | 0 | sec = tcomm; |
5108 | 0 | } |
5109 | 0 | else if (bed->elf_add_symbol_hook) |
5110 | 0 | { |
5111 | 0 | if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, |
5112 | 0 | &sec, &value)) |
5113 | 0 | goto error_free_vers; |
5114 | | |
5115 | | /* The hook function sets the name to NULL if this symbol |
5116 | | should be skipped for some reason. */ |
5117 | 0 | if (name == NULL) |
5118 | 0 | continue; |
5119 | 0 | } |
5120 | | |
5121 | | /* Sanity check that all possibilities were handled. */ |
5122 | 0 | if (sec == NULL) |
5123 | 0 | abort (); |
5124 | | |
5125 | | /* Silently discard TLS symbols from --just-syms. There's |
5126 | | no way to combine a static TLS block with a new TLS block |
5127 | | for this executable. */ |
5128 | 0 | if (ELF_ST_TYPE (isym->st_info) == STT_TLS |
5129 | 0 | && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
5130 | 0 | continue; |
5131 | | |
5132 | 0 | if (bfd_is_und_section (sec) |
5133 | 0 | || bfd_is_com_section (sec)) |
5134 | 0 | definition = false; |
5135 | 0 | else |
5136 | 0 | definition = true; |
5137 | |
|
5138 | 0 | size_change_ok = false; |
5139 | 0 | type_change_ok = bed->type_change_ok; |
5140 | 0 | old_weak = false; |
5141 | 0 | matched = false; |
5142 | 0 | old_alignment = 0; |
5143 | 0 | old_bfd = NULL; |
5144 | 0 | new_sec = sec; |
5145 | 0 | defvername = NULL; |
5146 | |
|
5147 | 0 | if (is_elf_hash_table (&htab->root)) |
5148 | 0 | { |
5149 | 0 | Elf_Internal_Versym iver; |
5150 | 0 | unsigned int vernum = 0; |
5151 | 0 | bool skip; |
5152 | |
|
5153 | 0 | if (ever == NULL) |
5154 | 0 | { |
5155 | 0 | if (info->default_imported_symver) |
5156 | | /* Use the default symbol version created earlier. */ |
5157 | 0 | iver.vs_vers = elf_tdata (abfd)->cverdefs; |
5158 | 0 | else |
5159 | 0 | iver.vs_vers = 0; |
5160 | 0 | } |
5161 | 0 | else if (ever >= extversym_end) |
5162 | 0 | { |
5163 | | /* xgettext:c-format */ |
5164 | 0 | _bfd_error_handler (_("%pB: not enough version information"), |
5165 | 0 | abfd); |
5166 | 0 | bfd_set_error (bfd_error_bad_value); |
5167 | 0 | goto error_free_vers; |
5168 | 0 | } |
5169 | 0 | else |
5170 | 0 | _bfd_elf_swap_versym_in (abfd, ever, &iver); |
5171 | | |
5172 | 0 | vernum = iver.vs_vers & VERSYM_VERSION; |
5173 | | |
5174 | | /* If this is a hidden symbol, or if it is not version |
5175 | | 1, we append the version name to the symbol name. |
5176 | | However, we do not modify a non-hidden absolute symbol |
5177 | | if it is not a function, because it might be the version |
5178 | | symbol itself. FIXME: What if it isn't? */ |
5179 | 0 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 |
5180 | 0 | || (vernum > 1 |
5181 | 0 | && (!bfd_is_abs_section (sec) |
5182 | 0 | || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) |
5183 | 0 | { |
5184 | 0 | const char *verstr; |
5185 | 0 | size_t namelen, verlen, newlen; |
5186 | 0 | char *newname, *p; |
5187 | |
|
5188 | 0 | if (isym->st_shndx != SHN_UNDEF) |
5189 | 0 | { |
5190 | 0 | if (vernum > elf_tdata (abfd)->cverdefs) |
5191 | 0 | verstr = NULL; |
5192 | 0 | else if (vernum > 1) |
5193 | 0 | verstr = |
5194 | 0 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; |
5195 | 0 | else |
5196 | 0 | verstr = ""; |
5197 | |
|
5198 | 0 | if (verstr == NULL) |
5199 | 0 | { |
5200 | 0 | _bfd_error_handler |
5201 | | /* xgettext:c-format */ |
5202 | 0 | (_("%pB: %s: invalid version %u (max %d)"), |
5203 | 0 | abfd, name, vernum, |
5204 | 0 | elf_tdata (abfd)->cverdefs); |
5205 | 0 | bfd_set_error (bfd_error_bad_value); |
5206 | 0 | goto error_free_vers; |
5207 | 0 | } |
5208 | 0 | } |
5209 | 0 | else |
5210 | 0 | { |
5211 | | /* We cannot simply test for the number of |
5212 | | entries in the VERNEED section since the |
5213 | | numbers for the needed versions do not start |
5214 | | at 0. */ |
5215 | 0 | Elf_Internal_Verneed *t; |
5216 | |
|
5217 | 0 | verstr = NULL; |
5218 | 0 | for (t = elf_tdata (abfd)->verref; |
5219 | 0 | t != NULL; |
5220 | 0 | t = t->vn_nextref) |
5221 | 0 | { |
5222 | 0 | Elf_Internal_Vernaux *a; |
5223 | |
|
5224 | 0 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
5225 | 0 | { |
5226 | 0 | if (a->vna_other == vernum) |
5227 | 0 | { |
5228 | 0 | verstr = a->vna_nodename; |
5229 | 0 | break; |
5230 | 0 | } |
5231 | 0 | } |
5232 | 0 | if (a != NULL) |
5233 | 0 | break; |
5234 | 0 | } |
5235 | 0 | if (verstr == NULL) |
5236 | 0 | { |
5237 | 0 | _bfd_error_handler |
5238 | | /* xgettext:c-format */ |
5239 | 0 | (_("%pB: %s: invalid needed version %d"), |
5240 | 0 | abfd, name, vernum); |
5241 | 0 | bfd_set_error (bfd_error_bad_value); |
5242 | 0 | goto error_free_vers; |
5243 | 0 | } |
5244 | 0 | } |
5245 | | |
5246 | 0 | namelen = strlen (name); |
5247 | 0 | verlen = strlen (verstr); |
5248 | 0 | newlen = namelen + verlen + 2; |
5249 | 0 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
5250 | 0 | && isym->st_shndx != SHN_UNDEF) |
5251 | 0 | ++newlen; |
5252 | |
|
5253 | 0 | newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); |
5254 | 0 | if (newname == NULL) |
5255 | 0 | goto error_free_vers; |
5256 | 0 | memcpy (newname, name, namelen); |
5257 | 0 | p = newname + namelen; |
5258 | 0 | *p++ = ELF_VER_CHR; |
5259 | | /* If this is a defined non-hidden version symbol, |
5260 | | we add another @ to the name. This indicates the |
5261 | | default version of the symbol. */ |
5262 | 0 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
5263 | 0 | && isym->st_shndx != SHN_UNDEF) |
5264 | 0 | *p++ = ELF_VER_CHR, defvername = name; |
5265 | 0 | memcpy (p, verstr, verlen + 1); |
5266 | |
|
5267 | 0 | name = newname; |
5268 | | /* Since bfd_hash_alloc is used for "name", the string |
5269 | | must be copied if added to first_hash. The string |
5270 | | memory can be freed when an --as-needed library is |
5271 | | not needed. */ |
5272 | 0 | must_copy_name = true; |
5273 | 0 | } |
5274 | | |
5275 | | /* If this symbol has default visibility and the user has |
5276 | | requested we not re-export it, then mark it as hidden. */ |
5277 | 0 | if (!bfd_is_und_section (sec) |
5278 | 0 | && !dynamic |
5279 | 0 | && abfd->no_export |
5280 | 0 | && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) |
5281 | 0 | isym->st_other = (STV_HIDDEN |
5282 | 0 | | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); |
5283 | |
|
5284 | 0 | if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, |
5285 | 0 | sym_hash, &old_bfd, &old_weak, |
5286 | 0 | &old_alignment, &skip, &override, |
5287 | 0 | &type_change_ok, &size_change_ok, |
5288 | 0 | &matched)) |
5289 | 0 | goto error_free_vers; |
5290 | | |
5291 | 0 | if (skip) |
5292 | 0 | continue; |
5293 | | |
5294 | 0 | h = *sym_hash; |
5295 | 0 | while (h->root.type == bfd_link_hash_indirect |
5296 | 0 | || h->root.type == bfd_link_hash_warning) |
5297 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
5298 | | |
5299 | | /* Override a definition only if the new symbol matches the |
5300 | | existing one. */ |
5301 | 0 | if (override && matched) |
5302 | 0 | { |
5303 | 0 | definition = false; |
5304 | 0 | if (htab->first_hash != NULL |
5305 | 0 | && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 |
5306 | 0 | && h->root.non_ir_ref_regular) |
5307 | 0 | { |
5308 | | /* When reloading --as-needed shared objects for new |
5309 | | symbols added from IR inputs, if this shared object |
5310 | | has the first definition, use it. */ |
5311 | 0 | struct elf_link_first_hash_entry *e |
5312 | 0 | = ((struct elf_link_first_hash_entry *) |
5313 | 0 | bfd_hash_lookup (htab->first_hash, name, false, |
5314 | 0 | false)); |
5315 | 0 | if (e != NULL && e->abfd == abfd) |
5316 | 0 | definition = true; |
5317 | 0 | } |
5318 | 0 | } |
5319 | |
|
5320 | 0 | if (h->versioned != unversioned |
5321 | 0 | && elf_tdata (abfd)->verdef != NULL |
5322 | 0 | && vernum > 1 |
5323 | 0 | && definition) |
5324 | 0 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; |
5325 | 0 | } |
5326 | | |
5327 | 0 | if (! (_bfd_generic_link_add_one_symbol |
5328 | 0 | (info, override ? override : abfd, name, flags, sec, value, |
5329 | 0 | NULL, false, bed->collect, |
5330 | 0 | (struct bfd_link_hash_entry **) sym_hash))) |
5331 | 0 | goto error_free_vers; |
5332 | | |
5333 | 0 | h = *sym_hash; |
5334 | | /* We need to make sure that indirect symbol dynamic flags are |
5335 | | updated. */ |
5336 | 0 | hi = h; |
5337 | 0 | while (h->root.type == bfd_link_hash_indirect |
5338 | 0 | || h->root.type == bfd_link_hash_warning) |
5339 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
5340 | |
|
5341 | 0 | *sym_hash = h; |
5342 | | |
5343 | | /* Setting the index to -3 tells elf_link_output_extsym that |
5344 | | this symbol is defined in a discarded section. */ |
5345 | 0 | if (discarded && is_elf_hash_table (&htab->root)) |
5346 | 0 | h->indx = -3; |
5347 | |
|
5348 | 0 | new_weak = (flags & BSF_WEAK) != 0; |
5349 | 0 | if (dynamic |
5350 | 0 | && definition |
5351 | 0 | && new_weak |
5352 | 0 | && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) |
5353 | 0 | && is_elf_hash_table (&htab->root) |
5354 | 0 | && h->u.alias == NULL) |
5355 | 0 | { |
5356 | | /* Keep a list of all weak defined non function symbols from |
5357 | | a dynamic object, using the alias field. Later in this |
5358 | | function we will set the alias field to the correct |
5359 | | value. We only put non-function symbols from dynamic |
5360 | | objects on this list, because that happens to be the only |
5361 | | time we need to know the normal symbol corresponding to a |
5362 | | weak symbol, and the information is time consuming to |
5363 | | figure out. If the alias field is not already NULL, |
5364 | | then this symbol was already defined by some previous |
5365 | | dynamic object, and we will be using that previous |
5366 | | definition anyhow. */ |
5367 | |
|
5368 | 0 | h->u.alias = weaks; |
5369 | 0 | weaks = h; |
5370 | 0 | } |
5371 | | |
5372 | | /* Set the alignment of a common symbol. */ |
5373 | 0 | if ((common || bfd_is_com_section (sec)) |
5374 | 0 | && h->root.type == bfd_link_hash_common) |
5375 | 0 | { |
5376 | 0 | unsigned int align; |
5377 | |
|
5378 | 0 | if (common) |
5379 | 0 | align = bfd_log2 (isym->st_value); |
5380 | 0 | else |
5381 | 0 | { |
5382 | | /* The new symbol is a common symbol in a shared object. |
5383 | | We need to get the alignment from the section. */ |
5384 | 0 | align = new_sec->alignment_power; |
5385 | 0 | } |
5386 | 0 | if (align > old_alignment) |
5387 | 0 | h->root.u.c.p->alignment_power = align; |
5388 | 0 | else |
5389 | 0 | h->root.u.c.p->alignment_power = old_alignment; |
5390 | 0 | } |
5391 | |
|
5392 | 0 | if (is_elf_hash_table (&htab->root)) |
5393 | 0 | { |
5394 | | /* Set a flag in the hash table entry indicating the type of |
5395 | | reference or definition we just found. A dynamic symbol |
5396 | | is one which is referenced or defined by both a regular |
5397 | | object and a shared object. */ |
5398 | 0 | bool dynsym = false; |
5399 | | |
5400 | | /* Plugin symbols aren't normal. Don't set def/ref flags. */ |
5401 | 0 | if ((abfd->flags & BFD_PLUGIN) != 0) |
5402 | 0 | { |
5403 | | /* Except for this flag to track nonweak references. */ |
5404 | 0 | if (!definition |
5405 | 0 | && bind != STB_WEAK) |
5406 | 0 | h->ref_ir_nonweak = 1; |
5407 | 0 | } |
5408 | 0 | else if (!dynamic) |
5409 | 0 | { |
5410 | 0 | if (! definition) |
5411 | 0 | { |
5412 | 0 | h->ref_regular = 1; |
5413 | 0 | if (bind != STB_WEAK) |
5414 | 0 | h->ref_regular_nonweak = 1; |
5415 | 0 | } |
5416 | 0 | else |
5417 | 0 | { |
5418 | 0 | h->def_regular = 1; |
5419 | 0 | if (h->def_dynamic) |
5420 | 0 | { |
5421 | 0 | h->def_dynamic = 0; |
5422 | 0 | h->ref_dynamic = 1; |
5423 | 0 | } |
5424 | 0 | } |
5425 | 0 | } |
5426 | 0 | else |
5427 | 0 | { |
5428 | 0 | if (! definition) |
5429 | 0 | { |
5430 | 0 | h->ref_dynamic = 1; |
5431 | 0 | hi->ref_dynamic = 1; |
5432 | 0 | } |
5433 | 0 | else |
5434 | 0 | { |
5435 | 0 | h->def_dynamic = 1; |
5436 | 0 | hi->def_dynamic = 1; |
5437 | 0 | } |
5438 | 0 | } |
5439 | | |
5440 | | /* If an indirect symbol has been forced local, don't |
5441 | | make the real symbol dynamic. */ |
5442 | 0 | if (h != hi && hi->forced_local) |
5443 | 0 | ; |
5444 | 0 | else if (!dynamic) |
5445 | 0 | { |
5446 | 0 | if (bfd_link_dll (info) |
5447 | 0 | || h->def_dynamic |
5448 | 0 | || h->ref_dynamic) |
5449 | 0 | dynsym = true; |
5450 | 0 | } |
5451 | 0 | else |
5452 | 0 | { |
5453 | 0 | if (h->def_regular |
5454 | 0 | || h->ref_regular |
5455 | 0 | || (h->is_weakalias |
5456 | 0 | && weakdef (h)->dynindx != -1)) |
5457 | 0 | dynsym = true; |
5458 | 0 | } |
5459 | | |
5460 | | /* Check to see if we need to add an indirect symbol for |
5461 | | the default name. */ |
5462 | 0 | if ((definition |
5463 | 0 | || (!override && h->root.type == bfd_link_hash_common)) |
5464 | 0 | && !(hi != h |
5465 | 0 | && hi->versioned == versioned_hidden)) |
5466 | 0 | if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, |
5467 | 0 | sec, value, &old_bfd, &dynsym)) |
5468 | 0 | goto error_free_vers; |
5469 | | |
5470 | | /* Check the alignment when a common symbol is involved. This |
5471 | | can change when a common symbol is overridden by a normal |
5472 | | definition or a common symbol is ignored due to the old |
5473 | | normal definition. We need to make sure the maximum |
5474 | | alignment is maintained. */ |
5475 | 0 | if ((old_alignment || common) |
5476 | 0 | && h->root.type != bfd_link_hash_common) |
5477 | 0 | { |
5478 | 0 | unsigned int common_align; |
5479 | 0 | unsigned int normal_align; |
5480 | 0 | unsigned int symbol_align; |
5481 | 0 | bfd *normal_bfd; |
5482 | 0 | bfd *common_bfd; |
5483 | |
|
5484 | 0 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
5485 | 0 | || h->root.type == bfd_link_hash_defweak); |
5486 | |
|
5487 | 0 | symbol_align = ffs (h->root.u.def.value) - 1; |
5488 | 0 | if (h->root.u.def.section->owner != NULL |
5489 | 0 | && (h->root.u.def.section->owner->flags |
5490 | 0 | & (DYNAMIC | BFD_PLUGIN)) == 0) |
5491 | 0 | { |
5492 | 0 | normal_align = h->root.u.def.section->alignment_power; |
5493 | 0 | if (normal_align > symbol_align) |
5494 | 0 | normal_align = symbol_align; |
5495 | 0 | } |
5496 | 0 | else |
5497 | 0 | normal_align = symbol_align; |
5498 | |
|
5499 | 0 | if (old_alignment) |
5500 | 0 | { |
5501 | 0 | common_align = old_alignment; |
5502 | 0 | common_bfd = old_bfd; |
5503 | 0 | normal_bfd = abfd; |
5504 | 0 | } |
5505 | 0 | else |
5506 | 0 | { |
5507 | 0 | common_align = bfd_log2 (isym->st_value); |
5508 | 0 | common_bfd = abfd; |
5509 | 0 | normal_bfd = old_bfd; |
5510 | 0 | } |
5511 | |
|
5512 | 0 | if (normal_align < common_align) |
5513 | 0 | { |
5514 | | /* PR binutils/2735 */ |
5515 | 0 | if (normal_bfd == NULL) |
5516 | 0 | _bfd_error_handler |
5517 | | /* xgettext:c-format */ |
5518 | 0 | (_("warning: alignment %u of common symbol `%s' in %pB is" |
5519 | 0 | " greater than the alignment (%u) of its section %pA"), |
5520 | 0 | 1 << common_align, name, common_bfd, |
5521 | 0 | 1 << normal_align, h->root.u.def.section); |
5522 | 0 | else |
5523 | 0 | _bfd_error_handler |
5524 | | /* xgettext:c-format */ |
5525 | 0 | (_("warning: alignment %u of normal symbol `%s' in %pB" |
5526 | 0 | " is smaller than %u used by the common definition in %pB"), |
5527 | 0 | 1 << normal_align, name, normal_bfd, |
5528 | 0 | 1 << common_align, common_bfd); |
5529 | | |
5530 | | /* PR 30499: make sure that users understand that this warning is serious. */ |
5531 | 0 | _bfd_error_handler |
5532 | 0 | (_("warning: NOTE: alignment discrepancies can cause real problems. Investigation is advised.")); |
5533 | 0 | } |
5534 | 0 | } |
5535 | | |
5536 | | /* Remember the symbol size if it isn't undefined. */ |
5537 | 0 | if (isym->st_size != 0 |
5538 | 0 | && isym->st_shndx != SHN_UNDEF |
5539 | 0 | && (definition || h->size == 0)) |
5540 | 0 | { |
5541 | 0 | if (h->size != 0 |
5542 | 0 | && h->size != isym->st_size |
5543 | 0 | && ! size_change_ok) |
5544 | 0 | { |
5545 | 0 | _bfd_error_handler |
5546 | | /* xgettext:c-format */ |
5547 | 0 | (_("warning: size of symbol `%s' changed" |
5548 | 0 | " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), |
5549 | 0 | name, (uint64_t) h->size, old_bfd, |
5550 | 0 | (uint64_t) isym->st_size, abfd); |
5551 | | |
5552 | | /* PR 30499: make sure that users understand that this warning is serious. */ |
5553 | 0 | _bfd_error_handler |
5554 | 0 | (_("warning: NOTE: size discrepancies can cause real problems. Investigation is advised.")); |
5555 | 0 | } |
5556 | |
|
5557 | 0 | h->size = isym->st_size; |
5558 | 0 | } |
5559 | | |
5560 | | /* If this is a common symbol, then we always want H->SIZE |
5561 | | to be the size of the common symbol. The code just above |
5562 | | won't fix the size if a common symbol becomes larger. We |
5563 | | don't warn about a size change here, because that is |
5564 | | covered by --warn-common. Allow changes between different |
5565 | | function types. */ |
5566 | 0 | if (h->root.type == bfd_link_hash_common) |
5567 | 0 | h->size = h->root.u.c.size; |
5568 | |
|
5569 | 0 | if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE |
5570 | 0 | && ((definition && !new_weak) |
5571 | 0 | || (old_weak && h->root.type == bfd_link_hash_common) |
5572 | 0 | || h->type == STT_NOTYPE)) |
5573 | 0 | { |
5574 | 0 | unsigned int type = ELF_ST_TYPE (isym->st_info); |
5575 | | |
5576 | | /* Turn an IFUNC symbol from a DSO into a normal FUNC |
5577 | | symbol. */ |
5578 | 0 | if (type == STT_GNU_IFUNC |
5579 | 0 | && (abfd->flags & DYNAMIC) != 0) |
5580 | 0 | type = STT_FUNC; |
5581 | |
|
5582 | 0 | if (h->type != type) |
5583 | 0 | { |
5584 | 0 | if (h->type != STT_NOTYPE && ! type_change_ok) |
5585 | | /* xgettext:c-format */ |
5586 | 0 | _bfd_error_handler |
5587 | 0 | (_("warning: type of symbol `%s' changed" |
5588 | 0 | " from %d to %d in %pB"), |
5589 | 0 | name, h->type, type, abfd); |
5590 | |
|
5591 | 0 | h->type = type; |
5592 | 0 | } |
5593 | 0 | } |
5594 | | |
5595 | | /* Merge st_other field. */ |
5596 | 0 | elf_merge_st_other (abfd, h, isym->st_other, sec, |
5597 | 0 | definition, dynamic); |
5598 | | |
5599 | | /* We don't want to make debug symbol dynamic. */ |
5600 | 0 | if (definition |
5601 | 0 | && (sec->flags & SEC_DEBUGGING) |
5602 | 0 | && !bfd_link_relocatable (info)) |
5603 | 0 | dynsym = false; |
5604 | | |
5605 | | /* Nor should we make plugin symbols dynamic. */ |
5606 | 0 | if ((abfd->flags & BFD_PLUGIN) != 0) |
5607 | 0 | dynsym = false; |
5608 | |
|
5609 | 0 | if (definition) |
5610 | 0 | { |
5611 | 0 | h->target_internal = isym->st_target_internal; |
5612 | 0 | h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; |
5613 | 0 | } |
5614 | | |
5615 | | /* Don't add indirect symbols for .symver x, x@FOO aliases |
5616 | | in IR. Since all data or text symbols in IR have the |
5617 | | same type, value and section, we can't tell if a symbol |
5618 | | is an alias of another symbol by their types, values and |
5619 | | sections. */ |
5620 | 0 | if (definition |
5621 | 0 | && !dynamic |
5622 | 0 | && (abfd->flags & BFD_PLUGIN) == 0) |
5623 | 0 | { |
5624 | 0 | char *p = strchr (name, ELF_VER_CHR); |
5625 | 0 | if (p != NULL && p[1] != ELF_VER_CHR) |
5626 | 0 | { |
5627 | | /* Queue non-default versions so that .symver x, x@FOO |
5628 | | aliases can be checked. */ |
5629 | 0 | if (!nondeflt_vers) |
5630 | 0 | { |
5631 | 0 | size_t amt = ((isymend - isym + 1) |
5632 | 0 | * sizeof (struct elf_link_hash_entry *)); |
5633 | 0 | nondeflt_vers |
5634 | 0 | = (struct elf_link_hash_entry **) bfd_malloc (amt); |
5635 | 0 | if (!nondeflt_vers) |
5636 | 0 | goto error_free_vers; |
5637 | 0 | } |
5638 | 0 | nondeflt_vers[nondeflt_vers_cnt++] = h; |
5639 | 0 | } |
5640 | 0 | } |
5641 | | |
5642 | 0 | if (dynsym && h->dynindx == -1) |
5643 | 0 | { |
5644 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
5645 | 0 | goto error_free_vers; |
5646 | 0 | if (h->is_weakalias |
5647 | 0 | && weakdef (h)->dynindx == -1) |
5648 | 0 | { |
5649 | 0 | if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) |
5650 | 0 | goto error_free_vers; |
5651 | 0 | } |
5652 | 0 | } |
5653 | 0 | else if (h->dynindx != -1) |
5654 | | /* If the symbol already has a dynamic index, but |
5655 | | visibility says it should not be visible, turn it into |
5656 | | a local symbol. */ |
5657 | 0 | switch (ELF_ST_VISIBILITY (h->other)) |
5658 | 0 | { |
5659 | 0 | case STV_INTERNAL: |
5660 | 0 | case STV_HIDDEN: |
5661 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
5662 | 0 | dynsym = false; |
5663 | 0 | break; |
5664 | 0 | } |
5665 | | |
5666 | 0 | if (!add_needed |
5667 | 0 | && matched |
5668 | 0 | && definition |
5669 | 0 | && h->root.type != bfd_link_hash_indirect) |
5670 | 0 | { |
5671 | 0 | if ((dynsym |
5672 | 0 | && h->ref_regular_nonweak) |
5673 | 0 | || (old_bfd != NULL |
5674 | 0 | && (old_bfd->flags & BFD_PLUGIN) != 0 |
5675 | 0 | && h->ref_ir_nonweak |
5676 | 0 | && !info->lto_all_symbols_read) |
5677 | 0 | || (h->ref_dynamic_nonweak |
5678 | 0 | && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 |
5679 | 0 | && !on_needed_list (elf_dt_name (abfd), |
5680 | 0 | htab->needed, NULL))) |
5681 | 0 | { |
5682 | 0 | const char *soname = elf_dt_name (abfd); |
5683 | |
|
5684 | 0 | info->callbacks->minfo ("%!", soname, old_bfd, |
5685 | 0 | h->root.root.string); |
5686 | | |
5687 | | /* A symbol from a library loaded via DT_NEEDED of some |
5688 | | other library is referenced by a regular object. |
5689 | | Add a DT_NEEDED entry for it. Issue an error if |
5690 | | --no-add-needed is used and the reference was not |
5691 | | a weak one. */ |
5692 | 0 | if (old_bfd != NULL |
5693 | 0 | && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) |
5694 | 0 | { |
5695 | 0 | _bfd_error_handler |
5696 | | /* xgettext:c-format */ |
5697 | 0 | (_("%pB: undefined reference to symbol '%s'"), |
5698 | 0 | old_bfd, name); |
5699 | 0 | bfd_set_error (bfd_error_missing_dso); |
5700 | 0 | goto error_free_vers; |
5701 | 0 | } |
5702 | | |
5703 | 0 | elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) |
5704 | 0 | (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); |
5705 | | |
5706 | | /* Create dynamic sections for backends that require |
5707 | | that be done before setup_gnu_properties. */ |
5708 | 0 | if (!_bfd_elf_link_create_dynamic_sections (abfd, info)) |
5709 | 0 | goto error_free_vers; |
5710 | 0 | add_needed = true; |
5711 | 0 | } |
5712 | 0 | else if (dynamic |
5713 | 0 | && h->root.u.def.section->owner == abfd) |
5714 | 0 | { |
5715 | | /* Add this symbol to first hash if this shared |
5716 | | object has the first definition. */ |
5717 | 0 | elf_link_add_to_first_hash (abfd, info, name, must_copy_name); |
5718 | | /* And if it was the default symbol version definition, |
5719 | | also add the short name. */ |
5720 | 0 | if (defvername) |
5721 | 0 | elf_link_add_to_first_hash (abfd, info, defvername, false); |
5722 | 0 | } |
5723 | 0 | } |
5724 | 0 | } |
5725 | 0 | } |
5726 | | |
5727 | 0 | if (info->lto_plugin_active |
5728 | 0 | && !bfd_link_relocatable (info) |
5729 | 0 | && (abfd->flags & BFD_PLUGIN) == 0 |
5730 | 0 | && !just_syms |
5731 | 0 | && extsymcount != 0 |
5732 | 0 | && is_elf_hash_table (&htab->root)) |
5733 | 0 | { |
5734 | 0 | int r_sym_shift; |
5735 | |
|
5736 | 0 | if (bed->s->arch_size == 32) |
5737 | 0 | r_sym_shift = 8; |
5738 | 0 | else |
5739 | 0 | r_sym_shift = 32; |
5740 | | |
5741 | | /* If linker plugin is enabled, set non_ir_ref_regular on symbols |
5742 | | referenced in regular objects so that linker plugin will get |
5743 | | the correct symbol resolution. */ |
5744 | |
|
5745 | 0 | sym_hash = elf_sym_hashes (abfd); |
5746 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
5747 | 0 | { |
5748 | 0 | Elf_Internal_Rela *internal_relocs; |
5749 | 0 | Elf_Internal_Rela *rel, *relend; |
5750 | | |
5751 | | /* Don't check relocations in excluded sections. */ |
5752 | 0 | if ((s->flags & SEC_RELOC) == 0 |
5753 | 0 | || s->reloc_count == 0 |
5754 | 0 | || (s->flags & SEC_EXCLUDE) != 0 |
5755 | 0 | || (s->flags & SEC_DEBUGGING) != 0) |
5756 | 0 | continue; |
5757 | | |
5758 | 0 | internal_relocs = _bfd_elf_link_info_read_relocs |
5759 | 0 | (abfd, info, s, NULL, NULL, |
5760 | 0 | _bfd_elf_link_keep_memory (info)); |
5761 | 0 | if (internal_relocs == NULL) |
5762 | 0 | goto error_free_vers; |
5763 | | |
5764 | 0 | rel = internal_relocs; |
5765 | 0 | relend = rel + s->reloc_count; |
5766 | 0 | for ( ; rel < relend; rel++) |
5767 | 0 | { |
5768 | 0 | unsigned long r_symndx = rel->r_info >> r_sym_shift; |
5769 | 0 | struct elf_link_hash_entry *h; |
5770 | | |
5771 | | /* Skip local symbols. */ |
5772 | 0 | if (r_symndx < extsymoff) |
5773 | 0 | continue; |
5774 | | |
5775 | 0 | h = sym_hash[r_symndx - extsymoff]; |
5776 | 0 | if (h != NULL) |
5777 | 0 | h->root.non_ir_ref_regular = 1; |
5778 | 0 | } |
5779 | |
|
5780 | 0 | if (elf_section_data (s)->relocs != internal_relocs) |
5781 | 0 | free (internal_relocs); |
5782 | 0 | } |
5783 | 0 | } |
5784 | | |
5785 | 0 | free (extversym); |
5786 | 0 | extversym = NULL; |
5787 | 0 | free (isymbuf); |
5788 | 0 | isymbuf = NULL; |
5789 | |
|
5790 | 0 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) |
5791 | 0 | { |
5792 | 0 | unsigned int i; |
5793 | | |
5794 | | /* Restore the symbol table. */ |
5795 | 0 | old_ent = (char *) old_tab + tabsize; |
5796 | 0 | memset (elf_sym_hashes (abfd), 0, |
5797 | 0 | extsymcount * sizeof (struct elf_link_hash_entry *)); |
5798 | 0 | htab->root.table.table = old_table; |
5799 | 0 | htab->root.table.size = old_size; |
5800 | 0 | htab->root.table.count = old_count; |
5801 | 0 | memcpy (htab->root.table.table, old_tab, tabsize); |
5802 | 0 | htab->root.undefs = old_undefs; |
5803 | 0 | htab->root.undefs_tail = old_undefs_tail; |
5804 | 0 | if (htab->dynstr != NULL) |
5805 | 0 | _bfd_elf_strtab_restore (htab->dynstr, old_strtab); |
5806 | 0 | free (old_strtab); |
5807 | 0 | old_strtab = NULL; |
5808 | 0 | for (i = 0; i < htab->root.table.size; i++) |
5809 | 0 | { |
5810 | 0 | struct bfd_hash_entry *p; |
5811 | 0 | struct elf_link_hash_entry *h; |
5812 | 0 | unsigned int non_ir_ref_dynamic; |
5813 | |
|
5814 | 0 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) |
5815 | 0 | { |
5816 | | /* Preserve non_ir_ref_dynamic so that this symbol |
5817 | | will be exported when the dynamic lib becomes needed |
5818 | | in the second pass. */ |
5819 | 0 | h = (struct elf_link_hash_entry *) p; |
5820 | 0 | if (h->root.type == bfd_link_hash_warning) |
5821 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
5822 | 0 | non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; |
5823 | |
|
5824 | 0 | h = (struct elf_link_hash_entry *) p; |
5825 | 0 | memcpy (h, old_ent, htab->root.table.entsize); |
5826 | 0 | old_ent = (char *) old_ent + htab->root.table.entsize; |
5827 | 0 | if (h->root.type == bfd_link_hash_warning) |
5828 | 0 | { |
5829 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
5830 | 0 | memcpy (h, old_ent, htab->root.table.entsize); |
5831 | 0 | old_ent = (char *) old_ent + htab->root.table.entsize; |
5832 | 0 | } |
5833 | 0 | if (h->root.type == bfd_link_hash_common) |
5834 | 0 | { |
5835 | 0 | memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p)); |
5836 | 0 | old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); |
5837 | 0 | } |
5838 | 0 | h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; |
5839 | 0 | } |
5840 | 0 | } |
5841 | | |
5842 | | /* Make a special call to the linker "notice" function to |
5843 | | tell it that symbols added for crefs may need to be removed. */ |
5844 | 0 | if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) |
5845 | 0 | goto error_free_vers; |
5846 | | |
5847 | 0 | free (old_tab); |
5848 | 0 | objalloc_free_block ((struct objalloc *) htab->root.table.memory, |
5849 | 0 | alloc_mark); |
5850 | 0 | free (nondeflt_vers); |
5851 | 0 | return true; |
5852 | 0 | } |
5853 | | |
5854 | 0 | free (old_strtab); |
5855 | 0 | old_strtab = NULL; |
5856 | 0 | if (old_tab != NULL) |
5857 | 0 | { |
5858 | 0 | if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) |
5859 | 0 | goto error_free_vers; |
5860 | 0 | free (old_tab); |
5861 | 0 | old_tab = NULL; |
5862 | 0 | } |
5863 | | |
5864 | | /* Now that all the symbols from this input file are created, if |
5865 | | not performing a relocatable link, handle .symver foo, foo@BAR |
5866 | | such that any relocs against foo become foo@BAR. */ |
5867 | 0 | if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) |
5868 | 0 | { |
5869 | 0 | size_t cnt, symidx; |
5870 | |
|
5871 | 0 | for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) |
5872 | 0 | { |
5873 | 0 | struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; |
5874 | 0 | char *shortname, *p; |
5875 | 0 | size_t amt; |
5876 | |
|
5877 | 0 | p = strchr (h->root.root.string, ELF_VER_CHR); |
5878 | 0 | if (p == NULL |
5879 | 0 | || (h->root.type != bfd_link_hash_defined |
5880 | 0 | && h->root.type != bfd_link_hash_defweak)) |
5881 | 0 | continue; |
5882 | | |
5883 | 0 | amt = p - h->root.root.string; |
5884 | 0 | shortname = (char *) bfd_malloc (amt + 1); |
5885 | 0 | if (!shortname) |
5886 | 0 | goto error_free_vers; |
5887 | 0 | memcpy (shortname, h->root.root.string, amt); |
5888 | 0 | shortname[amt] = '\0'; |
5889 | |
|
5890 | 0 | hi = (struct elf_link_hash_entry *) |
5891 | 0 | bfd_link_hash_lookup (&htab->root, shortname, |
5892 | 0 | false, false, false); |
5893 | 0 | if (hi != NULL |
5894 | 0 | && hi->root.type == h->root.type |
5895 | 0 | && hi->root.u.def.value == h->root.u.def.value |
5896 | 0 | && hi->root.u.def.section == h->root.u.def.section) |
5897 | 0 | { |
5898 | 0 | (*bed->elf_backend_hide_symbol) (info, hi, true); |
5899 | 0 | hi->root.type = bfd_link_hash_indirect; |
5900 | 0 | hi->root.u.i.link = (struct bfd_link_hash_entry *) h; |
5901 | 0 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
5902 | 0 | sym_hash = elf_sym_hashes (abfd); |
5903 | 0 | if (sym_hash) |
5904 | 0 | for (symidx = 0; symidx < extsymcount; ++symidx) |
5905 | 0 | if (sym_hash[symidx] == hi) |
5906 | 0 | { |
5907 | 0 | sym_hash[symidx] = h; |
5908 | 0 | break; |
5909 | 0 | } |
5910 | 0 | } |
5911 | 0 | free (shortname); |
5912 | 0 | } |
5913 | 0 | } |
5914 | 0 | free (nondeflt_vers); |
5915 | 0 | nondeflt_vers = NULL; |
5916 | | |
5917 | | /* Now set the alias field correctly for all the weak defined |
5918 | | symbols we found. The only way to do this is to search all the |
5919 | | symbols. Since we only need the information for non functions in |
5920 | | dynamic objects, that's the only time we actually put anything on |
5921 | | the list WEAKS. We need this information so that if a regular |
5922 | | object refers to a symbol defined weakly in a dynamic object, the |
5923 | | real symbol in the dynamic object is also put in the dynamic |
5924 | | symbols; we also must arrange for both symbols to point to the |
5925 | | same memory location. We could handle the general case of symbol |
5926 | | aliasing, but a general symbol alias can only be generated in |
5927 | | assembler code, handling it correctly would be very time |
5928 | | consuming, and other ELF linkers don't handle general aliasing |
5929 | | either. */ |
5930 | 0 | if (weaks != NULL) |
5931 | 0 | { |
5932 | 0 | struct elf_link_hash_entry **hpp; |
5933 | 0 | struct elf_link_hash_entry **hppend; |
5934 | 0 | struct elf_link_hash_entry **sorted_sym_hash; |
5935 | 0 | struct elf_link_hash_entry *h; |
5936 | 0 | size_t sym_count, amt; |
5937 | | |
5938 | | /* Since we have to search the whole symbol list for each weak |
5939 | | defined symbol, search time for N weak defined symbols will be |
5940 | | O(N^2). Binary search will cut it down to O(NlogN). */ |
5941 | 0 | amt = extsymcount * sizeof (*sorted_sym_hash); |
5942 | 0 | sorted_sym_hash = bfd_malloc (amt); |
5943 | 0 | if (sorted_sym_hash == NULL) |
5944 | 0 | goto error_return; |
5945 | 0 | sym_hash = sorted_sym_hash; |
5946 | 0 | hpp = elf_sym_hashes (abfd); |
5947 | 0 | hppend = hpp + extsymcount; |
5948 | 0 | sym_count = 0; |
5949 | 0 | for (; hpp < hppend; hpp++) |
5950 | 0 | { |
5951 | 0 | h = *hpp; |
5952 | 0 | if (h != NULL |
5953 | 0 | && h->root.type == bfd_link_hash_defined |
5954 | 0 | && !bed->is_function_type (h->type)) |
5955 | 0 | { |
5956 | 0 | *sym_hash = h; |
5957 | 0 | sym_hash++; |
5958 | 0 | sym_count++; |
5959 | 0 | } |
5960 | 0 | } |
5961 | |
|
5962 | 0 | qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), |
5963 | 0 | elf_sort_symbol); |
5964 | |
|
5965 | 0 | while (weaks != NULL) |
5966 | 0 | { |
5967 | 0 | struct elf_link_hash_entry *hlook; |
5968 | 0 | asection *slook; |
5969 | 0 | bfd_vma vlook; |
5970 | 0 | size_t i, j, idx = 0; |
5971 | |
|
5972 | 0 | hlook = weaks; |
5973 | 0 | weaks = hlook->u.alias; |
5974 | 0 | hlook->u.alias = NULL; |
5975 | |
|
5976 | 0 | if (hlook->root.type != bfd_link_hash_defined |
5977 | 0 | && hlook->root.type != bfd_link_hash_defweak) |
5978 | 0 | continue; |
5979 | | |
5980 | 0 | slook = hlook->root.u.def.section; |
5981 | 0 | vlook = hlook->root.u.def.value; |
5982 | |
|
5983 | 0 | i = 0; |
5984 | 0 | j = sym_count; |
5985 | 0 | while (i != j) |
5986 | 0 | { |
5987 | 0 | bfd_signed_vma vdiff; |
5988 | 0 | idx = (i + j) / 2; |
5989 | 0 | h = sorted_sym_hash[idx]; |
5990 | 0 | vdiff = vlook - h->root.u.def.value; |
5991 | 0 | if (vdiff < 0) |
5992 | 0 | j = idx; |
5993 | 0 | else if (vdiff > 0) |
5994 | 0 | i = idx + 1; |
5995 | 0 | else |
5996 | 0 | { |
5997 | 0 | int sdiff = slook->id - h->root.u.def.section->id; |
5998 | 0 | if (sdiff < 0) |
5999 | 0 | j = idx; |
6000 | 0 | else if (sdiff > 0) |
6001 | 0 | i = idx + 1; |
6002 | 0 | else |
6003 | 0 | break; |
6004 | 0 | } |
6005 | 0 | } |
6006 | | |
6007 | | /* We didn't find a value/section match. */ |
6008 | 0 | if (i == j) |
6009 | 0 | continue; |
6010 | | |
6011 | | /* With multiple aliases, or when the weak symbol is already |
6012 | | strongly defined, we have multiple matching symbols and |
6013 | | the binary search above may land on any of them. Step |
6014 | | one past the matching symbol(s). */ |
6015 | 0 | while (++idx != j) |
6016 | 0 | { |
6017 | 0 | h = sorted_sym_hash[idx]; |
6018 | 0 | if (h->root.u.def.section != slook |
6019 | 0 | || h->root.u.def.value != vlook) |
6020 | 0 | break; |
6021 | 0 | } |
6022 | | |
6023 | | /* Now look back over the aliases. Since we sorted by size |
6024 | | as well as value and section, we'll choose the one with |
6025 | | the largest size. */ |
6026 | 0 | while (idx-- != i) |
6027 | 0 | { |
6028 | 0 | h = sorted_sym_hash[idx]; |
6029 | | |
6030 | | /* Stop if value or section doesn't match. */ |
6031 | 0 | if (h->root.u.def.section != slook |
6032 | 0 | || h->root.u.def.value != vlook) |
6033 | 0 | break; |
6034 | 0 | else if (h != hlook) |
6035 | 0 | { |
6036 | 0 | struct elf_link_hash_entry *t; |
6037 | |
|
6038 | 0 | hlook->u.alias = h; |
6039 | 0 | hlook->is_weakalias = 1; |
6040 | 0 | t = h; |
6041 | 0 | if (t->u.alias != NULL) |
6042 | 0 | while (t->u.alias != h) |
6043 | 0 | t = t->u.alias; |
6044 | 0 | t->u.alias = hlook; |
6045 | | |
6046 | | /* If the weak definition is in the list of dynamic |
6047 | | symbols, make sure the real definition is put |
6048 | | there as well. */ |
6049 | 0 | if (hlook->dynindx != -1 && h->dynindx == -1) |
6050 | 0 | { |
6051 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
6052 | 0 | { |
6053 | 0 | err_free_sym_hash: |
6054 | 0 | free (sorted_sym_hash); |
6055 | 0 | goto error_return; |
6056 | 0 | } |
6057 | 0 | } |
6058 | | |
6059 | | /* If the real definition is in the list of dynamic |
6060 | | symbols, make sure the weak definition is put |
6061 | | there as well. If we don't do this, then the |
6062 | | dynamic loader might not merge the entries for the |
6063 | | real definition and the weak definition. */ |
6064 | 0 | if (h->dynindx != -1 && hlook->dynindx == -1) |
6065 | 0 | { |
6066 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) |
6067 | 0 | goto err_free_sym_hash; |
6068 | 0 | } |
6069 | 0 | break; |
6070 | 0 | } |
6071 | 0 | } |
6072 | 0 | } |
6073 | | |
6074 | 0 | free (sorted_sym_hash); |
6075 | 0 | } |
6076 | | |
6077 | 0 | if (bed->check_directives |
6078 | 0 | && !(*bed->check_directives) (abfd, info)) |
6079 | 0 | goto error_return; |
6080 | | |
6081 | | /* If this is a non-traditional link, try to optimize the handling |
6082 | | of the .stab/.stabstr sections. */ |
6083 | 0 | if (! dynamic |
6084 | 0 | && ! info->traditional_format |
6085 | 0 | && is_elf_hash_table (&htab->root) |
6086 | 0 | && (info->strip != strip_all && info->strip != strip_debugger)) |
6087 | 0 | { |
6088 | 0 | asection *stabstr; |
6089 | |
|
6090 | 0 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); |
6091 | 0 | if (stabstr != NULL) |
6092 | 0 | { |
6093 | 0 | bfd_size_type string_offset = 0; |
6094 | 0 | asection *stab; |
6095 | |
|
6096 | 0 | for (stab = abfd->sections; stab; stab = stab->next) |
6097 | 0 | if (startswith (stab->name, ".stab") |
6098 | 0 | && (!stab->name[5] || |
6099 | 0 | (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) |
6100 | 0 | && (stab->flags & SEC_MERGE) == 0 |
6101 | 0 | && !bfd_is_abs_section (stab->output_section)) |
6102 | 0 | { |
6103 | 0 | struct bfd_elf_section_data *secdata; |
6104 | |
|
6105 | 0 | secdata = elf_section_data (stab); |
6106 | 0 | if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, |
6107 | 0 | stabstr, &secdata->sec_info, |
6108 | 0 | &string_offset)) |
6109 | 0 | goto error_return; |
6110 | 0 | if (secdata->sec_info) |
6111 | 0 | stab->sec_info_type = SEC_INFO_TYPE_STABS; |
6112 | 0 | } |
6113 | 0 | } |
6114 | 0 | } |
6115 | | |
6116 | 0 | if (dynamic && add_needed) |
6117 | 0 | { |
6118 | | /* Add this bfd to the loaded list. */ |
6119 | 0 | struct elf_link_loaded_list *n; |
6120 | |
|
6121 | 0 | n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); |
6122 | 0 | if (n == NULL) |
6123 | 0 | goto error_return; |
6124 | 0 | n->abfd = abfd; |
6125 | 0 | n->next = htab->dyn_loaded; |
6126 | 0 | htab->dyn_loaded = n; |
6127 | 0 | } |
6128 | 0 | if (dynamic && !add_needed |
6129 | 0 | && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0) |
6130 | 0 | elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED; |
6131 | |
|
6132 | 0 | return true; |
6133 | | |
6134 | 0 | error_free_vers: |
6135 | 0 | free (old_tab); |
6136 | 0 | free (old_strtab); |
6137 | 0 | free (nondeflt_vers); |
6138 | 0 | free (extversym); |
6139 | 0 | error_free_sym: |
6140 | 0 | free (isymbuf); |
6141 | 0 | error_return: |
6142 | 0 | return false; |
6143 | 0 | } |
6144 | | |
6145 | | /* Return the linker hash table entry of a symbol that might be |
6146 | | satisfied by an archive symbol. Return -1 on error. */ |
6147 | | |
6148 | | struct bfd_link_hash_entry * |
6149 | | _bfd_elf_archive_symbol_lookup (bfd *abfd, |
6150 | | struct bfd_link_info *info, |
6151 | | const char *name) |
6152 | 0 | { |
6153 | 0 | struct bfd_link_hash_entry *h; |
6154 | 0 | char *p, *copy; |
6155 | 0 | size_t len, first; |
6156 | |
|
6157 | 0 | h = bfd_link_hash_lookup (info->hash, name, false, false, true); |
6158 | 0 | if (h != NULL) |
6159 | 0 | return h; |
6160 | | |
6161 | | /* If this is a default version (the name contains @@), look up the |
6162 | | symbol again with only one `@' as well as without the version. |
6163 | | The effect is that references to the symbol with and without the |
6164 | | version will be matched by the default symbol in the archive. */ |
6165 | | |
6166 | 0 | p = strchr (name, ELF_VER_CHR); |
6167 | 0 | if (p == NULL || p[1] != ELF_VER_CHR) |
6168 | 0 | { |
6169 | | /* Add this symbol to first hash if this archive has the first |
6170 | | definition. */ |
6171 | 0 | if (is_elf_hash_table (info->hash)) |
6172 | 0 | elf_link_add_to_first_hash (abfd, info, name, false); |
6173 | 0 | return h; |
6174 | 0 | } |
6175 | | |
6176 | | /* First check with only one `@'. */ |
6177 | 0 | len = strlen (name); |
6178 | 0 | copy = (char *) bfd_alloc (abfd, len); |
6179 | 0 | if (copy == NULL) |
6180 | 0 | return (struct bfd_link_hash_entry *) -1; |
6181 | | |
6182 | 0 | first = p - name + 1; |
6183 | 0 | memcpy (copy, name, first); |
6184 | 0 | memcpy (copy + first, name + first + 1, len - first); |
6185 | |
|
6186 | 0 | h = bfd_link_hash_lookup (info->hash, copy, false, false, true); |
6187 | 0 | if (h == NULL) |
6188 | 0 | { |
6189 | | /* We also need to check references to the symbol without the |
6190 | | version. */ |
6191 | 0 | copy[first - 1] = '\0'; |
6192 | 0 | h = bfd_link_hash_lookup (info->hash, copy, false, false, true); |
6193 | 0 | } |
6194 | |
|
6195 | 0 | bfd_release (abfd, copy); |
6196 | 0 | return h; |
6197 | 0 | } |
6198 | | |
6199 | | /* Add symbols from an ELF archive file to the linker hash table. We |
6200 | | don't use _bfd_generic_link_add_archive_symbols because we need to |
6201 | | handle versioned symbols. |
6202 | | |
6203 | | Fortunately, ELF archive handling is simpler than that done by |
6204 | | _bfd_generic_link_add_archive_symbols, which has to allow for a.out |
6205 | | oddities. In ELF, if we find a symbol in the archive map, and the |
6206 | | symbol is currently undefined, we know that we must pull in that |
6207 | | object file. |
6208 | | |
6209 | | Unfortunately, we do have to make multiple passes over the symbol |
6210 | | table until nothing further is resolved. */ |
6211 | | |
6212 | | static bool |
6213 | | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) |
6214 | 0 | { |
6215 | 0 | symindex c; |
6216 | 0 | unsigned char *included = NULL; |
6217 | 0 | carsym *symdefs; |
6218 | 0 | bool loop; |
6219 | 0 | size_t amt; |
6220 | 0 | const struct elf_backend_data *bed; |
6221 | 0 | struct bfd_link_hash_entry * (*archive_symbol_lookup) |
6222 | 0 | (bfd *, struct bfd_link_info *, const char *); |
6223 | |
|
6224 | 0 | if (! bfd_has_map (abfd)) |
6225 | 0 | { |
6226 | | /* An empty archive is a special case. */ |
6227 | 0 | if (bfd_openr_next_archived_file (abfd, NULL) == NULL) |
6228 | 0 | return true; |
6229 | 0 | bfd_set_error (bfd_error_no_armap); |
6230 | 0 | return false; |
6231 | 0 | } |
6232 | | |
6233 | | /* Keep track of all symbols we know to be already defined, and all |
6234 | | files we know to be already included. This is to speed up the |
6235 | | second and subsequent passes. */ |
6236 | 0 | c = bfd_ardata (abfd)->symdef_count; |
6237 | 0 | if (c == 0) |
6238 | 0 | return true; |
6239 | 0 | amt = c * sizeof (*included); |
6240 | 0 | included = (unsigned char *) bfd_zmalloc (amt); |
6241 | 0 | if (included == NULL) |
6242 | 0 | return false; |
6243 | | |
6244 | 0 | symdefs = bfd_ardata (abfd)->symdefs; |
6245 | 0 | bed = get_elf_backend_data (abfd); |
6246 | 0 | archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; |
6247 | |
|
6248 | 0 | do |
6249 | 0 | { |
6250 | 0 | file_ptr last; |
6251 | 0 | symindex i; |
6252 | 0 | carsym *symdef; |
6253 | 0 | carsym *symdefend; |
6254 | |
|
6255 | 0 | loop = false; |
6256 | 0 | last = -1; |
6257 | |
|
6258 | 0 | symdef = symdefs; |
6259 | 0 | symdefend = symdef + c; |
6260 | 0 | for (i = 0; symdef < symdefend; symdef++, i++) |
6261 | 0 | { |
6262 | 0 | struct bfd_link_hash_entry *h; |
6263 | 0 | bfd *element; |
6264 | 0 | struct bfd_link_hash_entry *undefs_tail; |
6265 | 0 | symindex mark; |
6266 | |
|
6267 | 0 | if (included[i]) |
6268 | 0 | continue; |
6269 | 0 | if (symdef->file_offset == last) |
6270 | 0 | { |
6271 | 0 | included[i] = true; |
6272 | 0 | continue; |
6273 | 0 | } |
6274 | | |
6275 | 0 | h = archive_symbol_lookup (abfd, info, symdef->name); |
6276 | 0 | if (h == (struct bfd_link_hash_entry *) -1) |
6277 | 0 | goto error_return; |
6278 | | |
6279 | 0 | if (h == NULL) |
6280 | 0 | continue; |
6281 | | |
6282 | 0 | if (h->type == bfd_link_hash_undefined) |
6283 | 0 | { |
6284 | 0 | if (is_elf_hash_table (info->hash)) |
6285 | 0 | { |
6286 | | /* If the archive element has already been loaded then one |
6287 | | of the symbols defined by that element might have been |
6288 | | made undefined due to being in a discarded section. */ |
6289 | 0 | if (((struct elf_link_hash_entry *) h)->indx == -3) |
6290 | 0 | continue; |
6291 | | |
6292 | | /* In the pre-LTO-plugin pass we must not mistakenly |
6293 | | include this archive member if an earlier shared |
6294 | | library defined this symbol. */ |
6295 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
6296 | 0 | if (htab->first_hash) |
6297 | 0 | { |
6298 | 0 | struct elf_link_first_hash_entry *e |
6299 | 0 | = ((struct elf_link_first_hash_entry *) |
6300 | 0 | bfd_hash_lookup (htab->first_hash, symdef->name, |
6301 | 0 | false, false)); |
6302 | 0 | if (e |
6303 | 0 | && (e->abfd->flags & DYNAMIC) != 0 |
6304 | 0 | && e->abfd != abfd) |
6305 | 0 | continue; |
6306 | 0 | } |
6307 | 0 | } |
6308 | 0 | } |
6309 | 0 | else if (h->type == bfd_link_hash_common) |
6310 | 0 | { |
6311 | | /* We currently have a common symbol. The archive map contains |
6312 | | a reference to this symbol, so we may want to include it. We |
6313 | | only want to include it however, if this archive element |
6314 | | contains a definition of the symbol, not just another common |
6315 | | declaration of it. |
6316 | | |
6317 | | Unfortunately some archivers (including GNU ar) will put |
6318 | | declarations of common symbols into their archive maps, as |
6319 | | well as real definitions, so we cannot just go by the archive |
6320 | | map alone. Instead we must read in the element's symbol |
6321 | | table and check that to see what kind of symbol definition |
6322 | | this is. */ |
6323 | 0 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) |
6324 | 0 | continue; |
6325 | 0 | } |
6326 | 0 | else |
6327 | 0 | { |
6328 | 0 | if (h->type != bfd_link_hash_undefweak) |
6329 | | /* Symbol must be defined. Don't check it again. */ |
6330 | 0 | included[i] = true; |
6331 | |
|
6332 | 0 | if (!is_elf_hash_table (info->hash)) |
6333 | 0 | continue; |
6334 | 0 | struct elf_link_hash_entry *eh |
6335 | 0 | = (struct elf_link_hash_entry *) h; |
6336 | | /* Ignore the archive if the symbol isn't referenced by a |
6337 | | regular object or isn't defined in a shared object. */ |
6338 | 0 | if (!eh->ref_regular || !eh->def_dynamic) |
6339 | 0 | continue; |
6340 | | /* Ignore the dynamic definition if symbol is first |
6341 | | defined in this archive. */ |
6342 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
6343 | 0 | if (htab->first_hash == NULL) |
6344 | 0 | continue; |
6345 | 0 | struct elf_link_first_hash_entry *e |
6346 | 0 | = ((struct elf_link_first_hash_entry *) |
6347 | 0 | bfd_hash_lookup (htab->first_hash, symdef->name, |
6348 | 0 | false, false)); |
6349 | 0 | if (e == NULL || e->abfd != abfd) |
6350 | 0 | continue; |
6351 | 0 | } |
6352 | | |
6353 | | /* We need to include this archive member. */ |
6354 | 0 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, |
6355 | 0 | info); |
6356 | 0 | if (element == NULL) |
6357 | 0 | goto error_return; |
6358 | | |
6359 | 0 | if (! bfd_check_format (element, bfd_object)) |
6360 | 0 | goto error_return; |
6361 | | |
6362 | 0 | undefs_tail = info->hash->undefs_tail; |
6363 | |
|
6364 | 0 | if (!(*info->callbacks |
6365 | 0 | ->add_archive_element) (info, element, symdef->name, &element)) |
6366 | 0 | continue; |
6367 | 0 | if (!bfd_link_add_symbols (element, info)) |
6368 | 0 | goto error_return; |
6369 | | |
6370 | | /* If there are any new undefined symbols, we need to make |
6371 | | another pass through the archive in order to see whether |
6372 | | they can be defined. FIXME: This isn't perfect, because |
6373 | | common symbols wind up on undefs_tail and because an |
6374 | | undefined symbol which is defined later on in this pass |
6375 | | does not require another pass. This isn't a bug, but it |
6376 | | does make the code less efficient than it could be. */ |
6377 | 0 | if (undefs_tail != info->hash->undefs_tail) |
6378 | 0 | loop = true; |
6379 | | |
6380 | | /* Look backward to mark all symbols from this object file |
6381 | | which we have already seen in this pass. */ |
6382 | 0 | mark = i; |
6383 | 0 | do |
6384 | 0 | { |
6385 | 0 | included[mark] = true; |
6386 | 0 | if (mark == 0) |
6387 | 0 | break; |
6388 | 0 | --mark; |
6389 | 0 | } |
6390 | 0 | while (symdefs[mark].file_offset == symdef->file_offset); |
6391 | | |
6392 | | /* We mark subsequent symbols from this object file as we go |
6393 | | on through the loop. */ |
6394 | 0 | last = symdef->file_offset; |
6395 | 0 | } |
6396 | 0 | } |
6397 | 0 | while (loop); |
6398 | | |
6399 | 0 | free (included); |
6400 | 0 | return true; |
6401 | | |
6402 | 0 | error_return: |
6403 | 0 | free (included); |
6404 | 0 | return false; |
6405 | 0 | } |
6406 | | |
6407 | | /* Given an ELF BFD, add symbols to the global hash table as |
6408 | | appropriate. */ |
6409 | | |
6410 | | bool |
6411 | | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) |
6412 | 0 | { |
6413 | 0 | switch (bfd_get_format (abfd)) |
6414 | 0 | { |
6415 | 0 | case bfd_object: |
6416 | 0 | return elf_link_add_object_symbols (abfd, info); |
6417 | 0 | case bfd_archive: |
6418 | 0 | return elf_link_add_archive_symbols (abfd, info); |
6419 | 0 | default: |
6420 | 0 | bfd_set_error (bfd_error_wrong_format); |
6421 | 0 | return false; |
6422 | 0 | } |
6423 | 0 | } |
6424 | | |
6425 | | struct hash_codes_info |
6426 | | { |
6427 | | unsigned long *hashcodes; |
6428 | | bool error; |
6429 | | }; |
6430 | | |
6431 | | /* This function will be called though elf_link_hash_traverse to store |
6432 | | all hash value of the exported symbols in an array. */ |
6433 | | |
6434 | | static bool |
6435 | | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) |
6436 | 0 | { |
6437 | 0 | struct hash_codes_info *inf = (struct hash_codes_info *) data; |
6438 | 0 | const char *name; |
6439 | 0 | unsigned long ha; |
6440 | 0 | char *alc = NULL; |
6441 | | |
6442 | | /* Ignore indirect symbols. These are added by the versioning code. */ |
6443 | 0 | if (h->dynindx == -1) |
6444 | 0 | return true; |
6445 | | |
6446 | 0 | name = h->root.root.string; |
6447 | 0 | if (h->versioned >= versioned) |
6448 | 0 | { |
6449 | 0 | char *p = strchr (name, ELF_VER_CHR); |
6450 | 0 | if (p != NULL) |
6451 | 0 | { |
6452 | 0 | alc = (char *) bfd_malloc (p - name + 1); |
6453 | 0 | if (alc == NULL) |
6454 | 0 | { |
6455 | 0 | inf->error = true; |
6456 | 0 | return false; |
6457 | 0 | } |
6458 | 0 | memcpy (alc, name, p - name); |
6459 | 0 | alc[p - name] = '\0'; |
6460 | 0 | name = alc; |
6461 | 0 | } |
6462 | 0 | } |
6463 | | |
6464 | | /* Compute the hash value. */ |
6465 | 0 | ha = bfd_elf_hash (name); |
6466 | | |
6467 | | /* Store the found hash value in the array given as the argument. */ |
6468 | 0 | *(inf->hashcodes)++ = ha; |
6469 | | |
6470 | | /* And store it in the struct so that we can put it in the hash table |
6471 | | later. */ |
6472 | 0 | h->u.elf_hash_value = ha; |
6473 | |
|
6474 | 0 | free (alc); |
6475 | 0 | return true; |
6476 | 0 | } |
6477 | | |
6478 | | struct collect_gnu_hash_codes |
6479 | | { |
6480 | | bfd *output_bfd; |
6481 | | const struct elf_backend_data *bed; |
6482 | | unsigned long int nsyms; |
6483 | | unsigned long int maskbits; |
6484 | | unsigned long int *hashcodes; |
6485 | | unsigned long int *hashval; |
6486 | | unsigned long int *indx; |
6487 | | unsigned long int *counts; |
6488 | | bfd_vma *bitmask; |
6489 | | bfd_byte *contents; |
6490 | | bfd_size_type xlat; |
6491 | | long int min_dynindx; |
6492 | | unsigned long int bucketcount; |
6493 | | unsigned long int symindx; |
6494 | | long int local_indx; |
6495 | | long int shift1, shift2; |
6496 | | unsigned long int mask; |
6497 | | bool error; |
6498 | | }; |
6499 | | |
6500 | | /* This function will be called though elf_link_hash_traverse to store |
6501 | | all hash value of the exported symbols in an array. */ |
6502 | | |
6503 | | static bool |
6504 | | elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) |
6505 | 0 | { |
6506 | 0 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
6507 | 0 | const char *name; |
6508 | 0 | unsigned long ha; |
6509 | 0 | char *alc = NULL; |
6510 | | |
6511 | | /* Ignore indirect symbols. These are added by the versioning code. */ |
6512 | 0 | if (h->dynindx == -1) |
6513 | 0 | return true; |
6514 | | |
6515 | | /* Ignore also local symbols and undefined symbols. */ |
6516 | 0 | if (! (*s->bed->elf_hash_symbol) (h)) |
6517 | 0 | return true; |
6518 | | |
6519 | 0 | name = h->root.root.string; |
6520 | 0 | if (h->versioned >= versioned) |
6521 | 0 | { |
6522 | 0 | char *p = strchr (name, ELF_VER_CHR); |
6523 | 0 | if (p != NULL) |
6524 | 0 | { |
6525 | 0 | alc = (char *) bfd_malloc (p - name + 1); |
6526 | 0 | if (alc == NULL) |
6527 | 0 | { |
6528 | 0 | s->error = true; |
6529 | 0 | return false; |
6530 | 0 | } |
6531 | 0 | memcpy (alc, name, p - name); |
6532 | 0 | alc[p - name] = '\0'; |
6533 | 0 | name = alc; |
6534 | 0 | } |
6535 | 0 | } |
6536 | | |
6537 | | /* Compute the hash value. */ |
6538 | 0 | ha = bfd_elf_gnu_hash (name); |
6539 | | |
6540 | | /* Store the found hash value in the array for compute_bucket_count, |
6541 | | and also for .dynsym reordering purposes. */ |
6542 | 0 | s->hashcodes[s->nsyms] = ha; |
6543 | 0 | s->hashval[h->dynindx] = ha; |
6544 | 0 | ++s->nsyms; |
6545 | 0 | if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) |
6546 | 0 | s->min_dynindx = h->dynindx; |
6547 | |
|
6548 | 0 | free (alc); |
6549 | 0 | return true; |
6550 | 0 | } |
6551 | | |
6552 | | /* This function will be called though elf_link_hash_traverse to do |
6553 | | final dynamic symbol renumbering in case of .gnu.hash. |
6554 | | If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index |
6555 | | to the translation table. */ |
6556 | | |
6557 | | static bool |
6558 | | elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) |
6559 | 0 | { |
6560 | 0 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
6561 | 0 | unsigned long int bucket; |
6562 | 0 | unsigned long int val; |
6563 | | |
6564 | | /* Ignore indirect symbols. */ |
6565 | 0 | if (h->dynindx == -1) |
6566 | 0 | return true; |
6567 | | |
6568 | | /* Ignore also local symbols and undefined symbols. */ |
6569 | 0 | if (! (*s->bed->elf_hash_symbol) (h)) |
6570 | 0 | { |
6571 | 0 | if (h->dynindx >= s->min_dynindx) |
6572 | 0 | { |
6573 | 0 | if (s->bed->record_xhash_symbol != NULL) |
6574 | 0 | { |
6575 | 0 | (*s->bed->record_xhash_symbol) (h, 0); |
6576 | 0 | s->local_indx++; |
6577 | 0 | } |
6578 | 0 | else |
6579 | 0 | h->dynindx = s->local_indx++; |
6580 | 0 | } |
6581 | 0 | return true; |
6582 | 0 | } |
6583 | | |
6584 | 0 | bucket = s->hashval[h->dynindx] % s->bucketcount; |
6585 | 0 | val = (s->hashval[h->dynindx] >> s->shift1) |
6586 | 0 | & ((s->maskbits >> s->shift1) - 1); |
6587 | 0 | s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); |
6588 | 0 | s->bitmask[val] |
6589 | 0 | |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); |
6590 | 0 | val = s->hashval[h->dynindx] & ~(unsigned long int) 1; |
6591 | 0 | if (s->counts[bucket] == 1) |
6592 | | /* Last element terminates the chain. */ |
6593 | 0 | val |= 1; |
6594 | 0 | bfd_put_32 (s->output_bfd, val, |
6595 | 0 | s->contents + (s->indx[bucket] - s->symindx) * 4); |
6596 | 0 | --s->counts[bucket]; |
6597 | 0 | if (s->bed->record_xhash_symbol != NULL) |
6598 | 0 | { |
6599 | 0 | bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; |
6600 | |
|
6601 | 0 | (*s->bed->record_xhash_symbol) (h, xlat_loc); |
6602 | 0 | } |
6603 | 0 | else |
6604 | 0 | h->dynindx = s->indx[bucket]++; |
6605 | 0 | return true; |
6606 | 0 | } |
6607 | | |
6608 | | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ |
6609 | | |
6610 | | bool |
6611 | | _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) |
6612 | 0 | { |
6613 | 0 | return !(h->forced_local |
6614 | 0 | || h->root.type == bfd_link_hash_undefined |
6615 | 0 | || h->root.type == bfd_link_hash_undefweak |
6616 | 0 | || ((h->root.type == bfd_link_hash_defined |
6617 | 0 | || h->root.type == bfd_link_hash_defweak) |
6618 | 0 | && h->root.u.def.section->output_section == NULL)); |
6619 | 0 | } |
6620 | | |
6621 | | /* Array used to determine the number of hash table buckets to use |
6622 | | based on the number of symbols there are. If there are fewer than |
6623 | | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, |
6624 | | fewer than 37 we use 17 buckets, and so forth. We never use more |
6625 | | than 32771 buckets. */ |
6626 | | |
6627 | | static const size_t elf_buckets[] = |
6628 | | { |
6629 | | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, |
6630 | | 16411, 32771, 0 |
6631 | | }; |
6632 | | |
6633 | | /* Compute bucket count for hashing table. We do not use a static set |
6634 | | of possible tables sizes anymore. Instead we determine for all |
6635 | | possible reasonable sizes of the table the outcome (i.e., the |
6636 | | number of collisions etc) and choose the best solution. The |
6637 | | weighting functions are not too simple to allow the table to grow |
6638 | | without bounds. Instead one of the weighting factors is the size. |
6639 | | Therefore the result is always a good payoff between few collisions |
6640 | | (= short chain lengths) and table size. */ |
6641 | | static size_t |
6642 | | compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
6643 | | unsigned long int *hashcodes ATTRIBUTE_UNUSED, |
6644 | | unsigned long int nsyms, |
6645 | | int gnu_hash) |
6646 | 0 | { |
6647 | 0 | size_t best_size = 0; |
6648 | 0 | unsigned long int i; |
6649 | |
|
6650 | 0 | if (info->optimize) |
6651 | 0 | { |
6652 | 0 | size_t minsize; |
6653 | 0 | size_t maxsize; |
6654 | 0 | uint64_t best_chlen = ~((uint64_t) 0); |
6655 | 0 | bfd *dynobj = elf_hash_table (info)->dynobj; |
6656 | 0 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; |
6657 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (dynobj); |
6658 | 0 | unsigned long int *counts; |
6659 | 0 | bfd_size_type amt; |
6660 | 0 | unsigned int no_improvement_count = 0; |
6661 | | |
6662 | | /* Possible optimization parameters: if we have NSYMS symbols we say |
6663 | | that the hashing table must at least have NSYMS/4 and at most |
6664 | | 2*NSYMS buckets. */ |
6665 | 0 | minsize = nsyms / 4; |
6666 | 0 | if (minsize == 0) |
6667 | 0 | minsize = 1; |
6668 | 0 | best_size = maxsize = nsyms * 2; |
6669 | 0 | if (gnu_hash) |
6670 | 0 | { |
6671 | 0 | if (minsize < 2) |
6672 | 0 | minsize = 2; |
6673 | 0 | if ((best_size & 31) == 0) |
6674 | 0 | ++best_size; |
6675 | 0 | } |
6676 | | |
6677 | | /* Create array where we count the collisions in. We must use bfd_malloc |
6678 | | since the size could be large. */ |
6679 | 0 | amt = maxsize; |
6680 | 0 | amt *= sizeof (unsigned long int); |
6681 | 0 | counts = (unsigned long int *) bfd_malloc (amt); |
6682 | 0 | if (counts == NULL) |
6683 | 0 | return 0; |
6684 | | |
6685 | | /* Compute the "optimal" size for the hash table. The criteria is a |
6686 | | minimal chain length. The minor criteria is (of course) the size |
6687 | | of the table. */ |
6688 | 0 | for (i = minsize; i < maxsize; ++i) |
6689 | 0 | { |
6690 | | /* Walk through the array of hashcodes and count the collisions. */ |
6691 | 0 | uint64_t max; |
6692 | 0 | unsigned long int j; |
6693 | 0 | unsigned long int fact; |
6694 | |
|
6695 | 0 | if (gnu_hash && (i & 31) == 0) |
6696 | 0 | continue; |
6697 | | |
6698 | 0 | memset (counts, '\0', i * sizeof (unsigned long int)); |
6699 | | |
6700 | | /* Determine how often each hash bucket is used. */ |
6701 | 0 | for (j = 0; j < nsyms; ++j) |
6702 | 0 | ++counts[hashcodes[j] % i]; |
6703 | | |
6704 | | /* For the weight function we need some information about the |
6705 | | pagesize on the target. This is information need not be 100% |
6706 | | accurate. Since this information is not available (so far) we |
6707 | | define it here to a reasonable default value. If it is crucial |
6708 | | to have a better value some day simply define this value. */ |
6709 | 0 | # ifndef BFD_TARGET_PAGESIZE |
6710 | 0 | # define BFD_TARGET_PAGESIZE (4096) |
6711 | 0 | # endif |
6712 | | |
6713 | | /* We in any case need 2 + DYNSYMCOUNT entries for the size values |
6714 | | and the chains. */ |
6715 | 0 | max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; |
6716 | |
|
6717 | 0 | # if 1 |
6718 | | /* Variant 1: optimize for short chains. We add the squares |
6719 | | of all the chain lengths (which favors many small chain |
6720 | | over a few long chains). */ |
6721 | 0 | for (j = 0; j < i; ++j) |
6722 | 0 | max += counts[j] * counts[j]; |
6723 | | |
6724 | | /* This adds penalties for the overall size of the table. */ |
6725 | 0 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
6726 | 0 | max *= fact * fact; |
6727 | | # else |
6728 | | /* Variant 2: Optimize a lot more for small table. Here we |
6729 | | also add squares of the size but we also add penalties for |
6730 | | empty slots (the +1 term). */ |
6731 | | for (j = 0; j < i; ++j) |
6732 | | max += (1 + counts[j]) * (1 + counts[j]); |
6733 | | |
6734 | | /* The overall size of the table is considered, but not as |
6735 | | strong as in variant 1, where it is squared. */ |
6736 | | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
6737 | | max *= fact; |
6738 | | # endif |
6739 | | |
6740 | | /* Compare with current best results. */ |
6741 | 0 | if (max < best_chlen) |
6742 | 0 | { |
6743 | 0 | best_chlen = max; |
6744 | 0 | best_size = i; |
6745 | 0 | no_improvement_count = 0; |
6746 | 0 | } |
6747 | | /* PR 11843: Avoid futile long searches for the best bucket size |
6748 | | when there are a large number of symbols. */ |
6749 | 0 | else if (++no_improvement_count == 100) |
6750 | 0 | break; |
6751 | 0 | } |
6752 | |
|
6753 | 0 | free (counts); |
6754 | 0 | } |
6755 | 0 | else |
6756 | 0 | { |
6757 | 0 | for (i = 0; elf_buckets[i] != 0; i++) |
6758 | 0 | { |
6759 | 0 | best_size = elf_buckets[i]; |
6760 | 0 | if (nsyms < elf_buckets[i + 1]) |
6761 | 0 | break; |
6762 | 0 | } |
6763 | 0 | if (gnu_hash && best_size < 2) |
6764 | 0 | best_size = 2; |
6765 | 0 | } |
6766 | | |
6767 | 0 | return best_size; |
6768 | 0 | } |
6769 | | |
6770 | | /* Size any SHT_GROUP section for ld -r. */ |
6771 | | |
6772 | | bool |
6773 | | _bfd_elf_size_group_sections (struct bfd_link_info *info) |
6774 | 0 | { |
6775 | 0 | bfd *ibfd; |
6776 | 0 | asection *s; |
6777 | |
|
6778 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
6779 | 0 | if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
6780 | 0 | && (s = ibfd->sections) != NULL |
6781 | 0 | && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS |
6782 | 0 | && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) |
6783 | 0 | return false; |
6784 | 0 | return true; |
6785 | 0 | } |
6786 | | |
6787 | | /* Set a default stack segment size. The value in INFO wins. If it |
6788 | | is unset, LEGACY_SYMBOL's value is used, and if that symbol is |
6789 | | undefined it is initialized. */ |
6790 | | |
6791 | | bool |
6792 | | bfd_elf_stack_segment_size (bfd *output_bfd, |
6793 | | struct bfd_link_info *info, |
6794 | | const char *legacy_symbol, |
6795 | | bfd_vma default_size) |
6796 | 0 | { |
6797 | 0 | struct elf_link_hash_entry *h = NULL; |
6798 | | |
6799 | | /* Look for legacy symbol. */ |
6800 | 0 | if (legacy_symbol) |
6801 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, |
6802 | 0 | false, false, false); |
6803 | 0 | if (h && (h->root.type == bfd_link_hash_defined |
6804 | 0 | || h->root.type == bfd_link_hash_defweak) |
6805 | 0 | && h->def_regular |
6806 | 0 | && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) |
6807 | 0 | { |
6808 | | /* The symbol has no type if specified on the command line. */ |
6809 | 0 | h->type = STT_OBJECT; |
6810 | 0 | if (info->stacksize) |
6811 | | /* xgettext:c-format */ |
6812 | 0 | _bfd_error_handler (_("%pB: stack size specified and %s set"), |
6813 | 0 | output_bfd, legacy_symbol); |
6814 | 0 | else if (h->root.u.def.section != bfd_abs_section_ptr) |
6815 | | /* xgettext:c-format */ |
6816 | 0 | _bfd_error_handler (_("%pB: %s not absolute"), |
6817 | 0 | output_bfd, legacy_symbol); |
6818 | 0 | else |
6819 | 0 | info->stacksize = h->root.u.def.value; |
6820 | 0 | } |
6821 | |
|
6822 | 0 | if (!info->stacksize) |
6823 | | /* If the user didn't set a size, or explicitly inhibit the |
6824 | | size, set it now. */ |
6825 | 0 | info->stacksize = default_size; |
6826 | | |
6827 | | /* Provide the legacy symbol, if it is referenced. */ |
6828 | 0 | if (h && (h->root.type == bfd_link_hash_undefined |
6829 | 0 | || h->root.type == bfd_link_hash_undefweak)) |
6830 | 0 | { |
6831 | 0 | struct bfd_link_hash_entry *bh = NULL; |
6832 | |
|
6833 | 0 | if (!(_bfd_generic_link_add_one_symbol |
6834 | 0 | (info, output_bfd, legacy_symbol, |
6835 | 0 | BSF_GLOBAL, bfd_abs_section_ptr, |
6836 | 0 | info->stacksize >= 0 ? info->stacksize : 0, |
6837 | 0 | NULL, false, get_elf_backend_data (output_bfd)->collect, &bh))) |
6838 | 0 | return false; |
6839 | | |
6840 | 0 | h = (struct elf_link_hash_entry *) bh; |
6841 | 0 | h->def_regular = 1; |
6842 | 0 | h->type = STT_OBJECT; |
6843 | 0 | } |
6844 | | |
6845 | 0 | return true; |
6846 | 0 | } |
6847 | | |
6848 | | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ |
6849 | | |
6850 | | struct elf_gc_sweep_symbol_info |
6851 | | { |
6852 | | struct bfd_link_info *info; |
6853 | | void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, |
6854 | | bool); |
6855 | | }; |
6856 | | |
6857 | | static bool |
6858 | | elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) |
6859 | 0 | { |
6860 | 0 | if (!h->mark |
6861 | 0 | && (((h->root.type == bfd_link_hash_defined |
6862 | 0 | || h->root.type == bfd_link_hash_defweak) |
6863 | 0 | && !((h->def_regular || ELF_COMMON_DEF_P (h)) |
6864 | 0 | && h->root.u.def.section->gc_mark)) |
6865 | 0 | || h->root.type == bfd_link_hash_undefined |
6866 | 0 | || h->root.type == bfd_link_hash_undefweak)) |
6867 | 0 | { |
6868 | 0 | struct elf_gc_sweep_symbol_info *inf; |
6869 | |
|
6870 | 0 | inf = (struct elf_gc_sweep_symbol_info *) data; |
6871 | 0 | (*inf->hide_symbol) (inf->info, h, true); |
6872 | 0 | h->def_regular = 0; |
6873 | 0 | h->ref_regular = 0; |
6874 | 0 | h->ref_regular_nonweak = 0; |
6875 | 0 | } |
6876 | |
|
6877 | 0 | return true; |
6878 | 0 | } |
6879 | | |
6880 | | /* Set up the sizes and contents of the ELF dynamic sections. This is |
6881 | | called by the ELF linker emulation before_allocation routine. We |
6882 | | must set the sizes of the sections before the linker sets the |
6883 | | addresses of the various sections. */ |
6884 | | |
6885 | | bool |
6886 | | bfd_elf_size_dynamic_sections (bfd *output_bfd, |
6887 | | const char *soname, |
6888 | | const char *rpath, |
6889 | | const char *filter_shlib, |
6890 | | const char *audit, |
6891 | | const char *depaudit, |
6892 | | const char * const *auxiliary_filters, |
6893 | | struct bfd_link_info *info, |
6894 | | asection **sinterpptr) |
6895 | 0 | { |
6896 | 0 | bfd *dynobj; |
6897 | 0 | const struct elf_backend_data *bed; |
6898 | |
|
6899 | 0 | *sinterpptr = NULL; |
6900 | |
|
6901 | 0 | if (!is_elf_hash_table (info->hash)) |
6902 | 0 | return true; |
6903 | | |
6904 | | /* Any syms created from now on start with -1 in |
6905 | | got.refcount/offset and plt.refcount/offset. */ |
6906 | 0 | elf_hash_table (info)->init_got_refcount |
6907 | 0 | = elf_hash_table (info)->init_got_offset; |
6908 | 0 | elf_hash_table (info)->init_plt_refcount |
6909 | 0 | = elf_hash_table (info)->init_plt_offset; |
6910 | |
|
6911 | 0 | bed = get_elf_backend_data (output_bfd); |
6912 | | |
6913 | | /* The backend may have to create some sections regardless of whether |
6914 | | we're dynamic or not. */ |
6915 | 0 | if (bed->elf_backend_early_size_sections |
6916 | 0 | && !bed->elf_backend_early_size_sections (output_bfd, info)) |
6917 | 0 | return false; |
6918 | | |
6919 | 0 | dynobj = elf_hash_table (info)->dynobj; |
6920 | |
|
6921 | 0 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
6922 | 0 | { |
6923 | 0 | struct bfd_elf_version_tree *verdefs; |
6924 | 0 | struct elf_info_failed asvinfo; |
6925 | 0 | struct bfd_elf_version_tree *t; |
6926 | 0 | struct bfd_elf_version_expr *d; |
6927 | 0 | asection *s; |
6928 | 0 | size_t soname_indx; |
6929 | | |
6930 | | /* If we are supposed to export all symbols into the dynamic symbol |
6931 | | table (this is not the normal case), then do so. */ |
6932 | 0 | if (info->export_dynamic |
6933 | 0 | || (bfd_link_executable (info) && info->dynamic)) |
6934 | 0 | { |
6935 | 0 | struct elf_info_failed eif; |
6936 | |
|
6937 | 0 | eif.info = info; |
6938 | 0 | eif.failed = false; |
6939 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
6940 | 0 | _bfd_elf_export_symbol, |
6941 | 0 | &eif); |
6942 | 0 | if (eif.failed) |
6943 | 0 | return false; |
6944 | 0 | } |
6945 | | |
6946 | 0 | if (soname != NULL) |
6947 | 0 | { |
6948 | 0 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
6949 | 0 | soname, true); |
6950 | 0 | if (soname_indx == (size_t) -1 |
6951 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) |
6952 | 0 | return false; |
6953 | 0 | } |
6954 | 0 | else |
6955 | 0 | soname_indx = (size_t) -1; |
6956 | | |
6957 | | /* Make all global versions with definition. */ |
6958 | 0 | for (t = info->version_info; t != NULL; t = t->next) |
6959 | 0 | for (d = t->globals.list; d != NULL; d = d->next) |
6960 | 0 | if (!d->symver && d->literal) |
6961 | 0 | { |
6962 | 0 | const char *verstr, *name; |
6963 | 0 | size_t namelen, verlen, newlen; |
6964 | 0 | char *newname, *p, leading_char; |
6965 | 0 | struct elf_link_hash_entry *newh; |
6966 | |
|
6967 | 0 | leading_char = bfd_get_symbol_leading_char (output_bfd); |
6968 | 0 | name = d->pattern; |
6969 | 0 | namelen = strlen (name) + (leading_char != '\0'); |
6970 | 0 | verstr = t->name; |
6971 | 0 | verlen = strlen (verstr); |
6972 | 0 | newlen = namelen + verlen + 3; |
6973 | |
|
6974 | 0 | newname = (char *) bfd_malloc (newlen); |
6975 | 0 | if (newname == NULL) |
6976 | 0 | return false; |
6977 | 0 | newname[0] = leading_char; |
6978 | 0 | memcpy (newname + (leading_char != '\0'), name, namelen); |
6979 | | |
6980 | | /* Check the hidden versioned definition. */ |
6981 | 0 | p = newname + namelen; |
6982 | 0 | *p++ = ELF_VER_CHR; |
6983 | 0 | memcpy (p, verstr, verlen + 1); |
6984 | 0 | newh = elf_link_hash_lookup (elf_hash_table (info), |
6985 | 0 | newname, false, false, |
6986 | 0 | false); |
6987 | 0 | if (newh == NULL |
6988 | 0 | || (newh->root.type != bfd_link_hash_defined |
6989 | 0 | && newh->root.type != bfd_link_hash_defweak)) |
6990 | 0 | { |
6991 | | /* Check the default versioned definition. */ |
6992 | 0 | *p++ = ELF_VER_CHR; |
6993 | 0 | memcpy (p, verstr, verlen + 1); |
6994 | 0 | newh = elf_link_hash_lookup (elf_hash_table (info), |
6995 | 0 | newname, false, false, |
6996 | 0 | false); |
6997 | 0 | } |
6998 | 0 | free (newname); |
6999 | | |
7000 | | /* Mark this version if there is a definition and it is |
7001 | | not defined in a shared object. */ |
7002 | 0 | if (newh != NULL |
7003 | 0 | && !newh->def_dynamic |
7004 | 0 | && (newh->root.type == bfd_link_hash_defined |
7005 | 0 | || newh->root.type == bfd_link_hash_defweak)) |
7006 | 0 | d->symver = 1; |
7007 | 0 | } |
7008 | | |
7009 | | /* Attach all the symbols to their version information. */ |
7010 | 0 | asvinfo.info = info; |
7011 | 0 | asvinfo.failed = false; |
7012 | |
|
7013 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
7014 | 0 | _bfd_elf_link_assign_sym_version, |
7015 | 0 | &asvinfo); |
7016 | 0 | if (asvinfo.failed) |
7017 | 0 | return false; |
7018 | | |
7019 | 0 | if (!info->allow_undefined_version) |
7020 | 0 | { |
7021 | | /* Check if all global versions have a definition. */ |
7022 | 0 | bool all_defined = true; |
7023 | 0 | for (t = info->version_info; t != NULL; t = t->next) |
7024 | 0 | for (d = t->globals.list; d != NULL; d = d->next) |
7025 | 0 | if (d->literal && !d->symver && !d->script) |
7026 | 0 | { |
7027 | 0 | _bfd_error_handler |
7028 | 0 | (_("%s: undefined version: %s"), |
7029 | 0 | d->pattern, t->name); |
7030 | 0 | all_defined = false; |
7031 | 0 | } |
7032 | |
|
7033 | 0 | if (!all_defined) |
7034 | 0 | { |
7035 | 0 | bfd_set_error (bfd_error_bad_value); |
7036 | 0 | return false; |
7037 | 0 | } |
7038 | 0 | } |
7039 | | |
7040 | | /* Set up the version definition section. */ |
7041 | 0 | s = bfd_get_linker_section (dynobj, ".gnu.version_d"); |
7042 | 0 | BFD_ASSERT (s != NULL); |
7043 | | |
7044 | | /* We may have created additional version definitions if we are |
7045 | | just linking a regular application. */ |
7046 | 0 | verdefs = info->version_info; |
7047 | | |
7048 | | /* Skip anonymous version tag. */ |
7049 | 0 | if (verdefs != NULL && verdefs->vernum == 0) |
7050 | 0 | verdefs = verdefs->next; |
7051 | |
|
7052 | 0 | if (verdefs == NULL && !info->create_default_symver) |
7053 | 0 | s->flags |= SEC_EXCLUDE; |
7054 | 0 | else |
7055 | 0 | { |
7056 | 0 | unsigned int cdefs; |
7057 | 0 | bfd_size_type size; |
7058 | 0 | bfd_byte *p; |
7059 | 0 | Elf_Internal_Verdef def; |
7060 | 0 | Elf_Internal_Verdaux defaux; |
7061 | 0 | struct bfd_link_hash_entry *bh; |
7062 | 0 | struct elf_link_hash_entry *h; |
7063 | 0 | const char *name; |
7064 | |
|
7065 | 0 | cdefs = 0; |
7066 | 0 | size = 0; |
7067 | | |
7068 | | /* Make space for the base version. */ |
7069 | 0 | size += sizeof (Elf_External_Verdef); |
7070 | 0 | size += sizeof (Elf_External_Verdaux); |
7071 | 0 | ++cdefs; |
7072 | | |
7073 | | /* Make space for the default version. */ |
7074 | 0 | if (info->create_default_symver) |
7075 | 0 | { |
7076 | 0 | size += sizeof (Elf_External_Verdef); |
7077 | 0 | ++cdefs; |
7078 | 0 | } |
7079 | |
|
7080 | 0 | for (t = verdefs; t != NULL; t = t->next) |
7081 | 0 | { |
7082 | 0 | struct bfd_elf_version_deps *n; |
7083 | | |
7084 | | /* Don't emit base version twice. */ |
7085 | 0 | if (t->vernum == 0) |
7086 | 0 | continue; |
7087 | | |
7088 | 0 | size += sizeof (Elf_External_Verdef); |
7089 | 0 | size += sizeof (Elf_External_Verdaux); |
7090 | 0 | ++cdefs; |
7091 | |
|
7092 | 0 | for (n = t->deps; n != NULL; n = n->next) |
7093 | 0 | size += sizeof (Elf_External_Verdaux); |
7094 | 0 | } |
7095 | |
|
7096 | 0 | s->size = size; |
7097 | 0 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
7098 | 0 | if (s->contents == NULL && s->size != 0) |
7099 | 0 | return false; |
7100 | 0 | s->alloced = 1; |
7101 | | |
7102 | | /* Fill in the version definition section. */ |
7103 | |
|
7104 | 0 | p = s->contents; |
7105 | |
|
7106 | 0 | def.vd_version = VER_DEF_CURRENT; |
7107 | 0 | def.vd_flags = VER_FLG_BASE; |
7108 | 0 | def.vd_ndx = 1; |
7109 | 0 | def.vd_cnt = 1; |
7110 | 0 | if (info->create_default_symver) |
7111 | 0 | { |
7112 | 0 | def.vd_aux = 2 * sizeof (Elf_External_Verdef); |
7113 | 0 | def.vd_next = sizeof (Elf_External_Verdef); |
7114 | 0 | } |
7115 | 0 | else |
7116 | 0 | { |
7117 | 0 | def.vd_aux = sizeof (Elf_External_Verdef); |
7118 | 0 | def.vd_next = (sizeof (Elf_External_Verdef) |
7119 | 0 | + sizeof (Elf_External_Verdaux)); |
7120 | 0 | } |
7121 | |
|
7122 | 0 | if (soname_indx != (size_t) -1) |
7123 | 0 | { |
7124 | 0 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
7125 | 0 | soname_indx); |
7126 | 0 | def.vd_hash = bfd_elf_hash (soname); |
7127 | 0 | defaux.vda_name = soname_indx; |
7128 | 0 | name = soname; |
7129 | 0 | } |
7130 | 0 | else |
7131 | 0 | { |
7132 | 0 | size_t indx; |
7133 | |
|
7134 | 0 | name = lbasename (bfd_get_filename (output_bfd)); |
7135 | 0 | def.vd_hash = bfd_elf_hash (name); |
7136 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
7137 | 0 | name, false); |
7138 | 0 | if (indx == (size_t) -1) |
7139 | 0 | return false; |
7140 | 0 | defaux.vda_name = indx; |
7141 | 0 | } |
7142 | 0 | defaux.vda_next = 0; |
7143 | |
|
7144 | 0 | _bfd_elf_swap_verdef_out (output_bfd, &def, |
7145 | 0 | (Elf_External_Verdef *) p); |
7146 | 0 | p += sizeof (Elf_External_Verdef); |
7147 | 0 | if (info->create_default_symver) |
7148 | 0 | { |
7149 | | /* Add a symbol representing this version. */ |
7150 | 0 | bh = NULL; |
7151 | 0 | if (! (_bfd_generic_link_add_one_symbol |
7152 | 0 | (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, |
7153 | 0 | 0, NULL, false, |
7154 | 0 | get_elf_backend_data (dynobj)->collect, &bh))) |
7155 | 0 | return false; |
7156 | 0 | h = (struct elf_link_hash_entry *) bh; |
7157 | 0 | h->non_elf = 0; |
7158 | 0 | h->def_regular = 1; |
7159 | 0 | h->type = STT_OBJECT; |
7160 | 0 | h->verinfo.vertree = NULL; |
7161 | |
|
7162 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
7163 | 0 | return false; |
7164 | | |
7165 | | /* Create a duplicate of the base version with the same |
7166 | | aux block, but different flags. */ |
7167 | 0 | def.vd_flags = 0; |
7168 | 0 | def.vd_ndx = 2; |
7169 | 0 | def.vd_aux = sizeof (Elf_External_Verdef); |
7170 | 0 | if (verdefs) |
7171 | 0 | def.vd_next = (sizeof (Elf_External_Verdef) |
7172 | 0 | + sizeof (Elf_External_Verdaux)); |
7173 | 0 | else |
7174 | 0 | def.vd_next = 0; |
7175 | 0 | _bfd_elf_swap_verdef_out (output_bfd, &def, |
7176 | 0 | (Elf_External_Verdef *) p); |
7177 | 0 | p += sizeof (Elf_External_Verdef); |
7178 | 0 | } |
7179 | 0 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
7180 | 0 | (Elf_External_Verdaux *) p); |
7181 | 0 | p += sizeof (Elf_External_Verdaux); |
7182 | |
|
7183 | 0 | for (t = verdefs; t != NULL; t = t->next) |
7184 | 0 | { |
7185 | 0 | unsigned int cdeps; |
7186 | 0 | struct bfd_elf_version_deps *n; |
7187 | | |
7188 | | /* Don't emit the base version twice. */ |
7189 | 0 | if (t->vernum == 0) |
7190 | 0 | continue; |
7191 | | |
7192 | 0 | cdeps = 0; |
7193 | 0 | for (n = t->deps; n != NULL; n = n->next) |
7194 | 0 | ++cdeps; |
7195 | | |
7196 | | /* Add a symbol representing this version. */ |
7197 | 0 | bh = NULL; |
7198 | 0 | if (! (_bfd_generic_link_add_one_symbol |
7199 | 0 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, |
7200 | 0 | 0, NULL, false, |
7201 | 0 | get_elf_backend_data (dynobj)->collect, &bh))) |
7202 | 0 | return false; |
7203 | 0 | h = (struct elf_link_hash_entry *) bh; |
7204 | 0 | h->non_elf = 0; |
7205 | 0 | h->def_regular = 1; |
7206 | 0 | h->type = STT_OBJECT; |
7207 | 0 | h->verinfo.vertree = t; |
7208 | |
|
7209 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
7210 | 0 | return false; |
7211 | | |
7212 | 0 | def.vd_version = VER_DEF_CURRENT; |
7213 | 0 | def.vd_flags = 0; |
7214 | 0 | if (t->globals.list == NULL |
7215 | 0 | && t->locals.list == NULL |
7216 | 0 | && ! t->used) |
7217 | 0 | def.vd_flags |= VER_FLG_WEAK; |
7218 | 0 | def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); |
7219 | 0 | def.vd_cnt = cdeps + 1; |
7220 | 0 | def.vd_hash = bfd_elf_hash (t->name); |
7221 | 0 | def.vd_aux = sizeof (Elf_External_Verdef); |
7222 | 0 | def.vd_next = 0; |
7223 | | |
7224 | | /* If a basever node is next, it *must* be the last node in |
7225 | | the chain, otherwise Verdef construction breaks. */ |
7226 | 0 | if (t->next != NULL && t->next->vernum == 0) |
7227 | 0 | BFD_ASSERT (t->next->next == NULL); |
7228 | |
|
7229 | 0 | if (t->next != NULL && t->next->vernum != 0) |
7230 | 0 | def.vd_next = (sizeof (Elf_External_Verdef) |
7231 | 0 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); |
7232 | |
|
7233 | 0 | _bfd_elf_swap_verdef_out (output_bfd, &def, |
7234 | 0 | (Elf_External_Verdef *) p); |
7235 | 0 | p += sizeof (Elf_External_Verdef); |
7236 | |
|
7237 | 0 | defaux.vda_name = h->dynstr_index; |
7238 | 0 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
7239 | 0 | h->dynstr_index); |
7240 | 0 | defaux.vda_next = 0; |
7241 | 0 | if (t->deps != NULL) |
7242 | 0 | defaux.vda_next = sizeof (Elf_External_Verdaux); |
7243 | 0 | t->name_indx = defaux.vda_name; |
7244 | |
|
7245 | 0 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
7246 | 0 | (Elf_External_Verdaux *) p); |
7247 | 0 | p += sizeof (Elf_External_Verdaux); |
7248 | |
|
7249 | 0 | for (n = t->deps; n != NULL; n = n->next) |
7250 | 0 | { |
7251 | 0 | if (n->version_needed == NULL) |
7252 | 0 | { |
7253 | | /* This can happen if there was an error in the |
7254 | | version script. */ |
7255 | 0 | defaux.vda_name = 0; |
7256 | 0 | } |
7257 | 0 | else |
7258 | 0 | { |
7259 | 0 | defaux.vda_name = n->version_needed->name_indx; |
7260 | 0 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
7261 | 0 | defaux.vda_name); |
7262 | 0 | } |
7263 | 0 | if (n->next == NULL) |
7264 | 0 | defaux.vda_next = 0; |
7265 | 0 | else |
7266 | 0 | defaux.vda_next = sizeof (Elf_External_Verdaux); |
7267 | |
|
7268 | 0 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
7269 | 0 | (Elf_External_Verdaux *) p); |
7270 | 0 | p += sizeof (Elf_External_Verdaux); |
7271 | 0 | } |
7272 | 0 | } |
7273 | | |
7274 | 0 | elf_tdata (output_bfd)->cverdefs = cdefs; |
7275 | 0 | } |
7276 | 0 | } |
7277 | | |
7278 | 0 | if (info->gc_sections && bed->can_gc_sections) |
7279 | 0 | { |
7280 | 0 | struct elf_gc_sweep_symbol_info sweep_info; |
7281 | | |
7282 | | /* Remove the symbols that were in the swept sections from the |
7283 | | dynamic symbol table. */ |
7284 | 0 | sweep_info.info = info; |
7285 | 0 | sweep_info.hide_symbol = bed->elf_backend_hide_symbol; |
7286 | 0 | elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, |
7287 | 0 | &sweep_info); |
7288 | 0 | } |
7289 | |
|
7290 | 0 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
7291 | 0 | { |
7292 | 0 | asection *s; |
7293 | 0 | struct elf_find_verdep_info sinfo; |
7294 | | |
7295 | | /* Work out the size of the version reference section. */ |
7296 | |
|
7297 | 0 | s = bfd_get_linker_section (dynobj, ".gnu.version_r"); |
7298 | 0 | BFD_ASSERT (s != NULL); |
7299 | |
|
7300 | 0 | sinfo.info = info; |
7301 | 0 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; |
7302 | 0 | if (sinfo.vers == 0) |
7303 | 0 | sinfo.vers = 1; |
7304 | 0 | sinfo.failed = false; |
7305 | |
|
7306 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
7307 | 0 | _bfd_elf_link_find_version_dependencies, |
7308 | 0 | &sinfo); |
7309 | 0 | if (sinfo.failed) |
7310 | 0 | return false; |
7311 | | |
7312 | 0 | bed->elf_backend_add_glibc_version_dependency (&sinfo); |
7313 | 0 | if (sinfo.failed) |
7314 | 0 | return false; |
7315 | | |
7316 | 0 | if (elf_tdata (output_bfd)->verref == NULL) |
7317 | 0 | s->flags |= SEC_EXCLUDE; |
7318 | 0 | else |
7319 | 0 | { |
7320 | 0 | Elf_Internal_Verneed *vn; |
7321 | 0 | unsigned int size; |
7322 | 0 | unsigned int crefs; |
7323 | 0 | bfd_byte *p; |
7324 | | |
7325 | | /* Build the version dependency section. */ |
7326 | 0 | size = 0; |
7327 | 0 | crefs = 0; |
7328 | 0 | for (vn = elf_tdata (output_bfd)->verref; |
7329 | 0 | vn != NULL; |
7330 | 0 | vn = vn->vn_nextref) |
7331 | 0 | { |
7332 | 0 | Elf_Internal_Vernaux *a; |
7333 | |
|
7334 | 0 | size += sizeof (Elf_External_Verneed); |
7335 | 0 | ++crefs; |
7336 | 0 | for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) |
7337 | 0 | size += sizeof (Elf_External_Vernaux); |
7338 | 0 | } |
7339 | |
|
7340 | 0 | s->size = size; |
7341 | 0 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
7342 | 0 | if (s->contents == NULL) |
7343 | 0 | return false; |
7344 | 0 | s->alloced = 1; |
7345 | |
|
7346 | 0 | p = s->contents; |
7347 | 0 | for (vn = elf_tdata (output_bfd)->verref; |
7348 | 0 | vn != NULL; |
7349 | 0 | vn = vn->vn_nextref) |
7350 | 0 | { |
7351 | 0 | unsigned int caux; |
7352 | 0 | Elf_Internal_Vernaux *a; |
7353 | 0 | size_t indx; |
7354 | |
|
7355 | 0 | caux = 0; |
7356 | 0 | for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) |
7357 | 0 | ++caux; |
7358 | |
|
7359 | 0 | vn->vn_version = VER_NEED_CURRENT; |
7360 | 0 | vn->vn_cnt = caux; |
7361 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
7362 | 0 | elf_dt_name (vn->vn_bfd) != NULL |
7363 | 0 | ? elf_dt_name (vn->vn_bfd) |
7364 | 0 | : lbasename (bfd_get_filename |
7365 | 0 | (vn->vn_bfd)), |
7366 | 0 | false); |
7367 | 0 | if (indx == (size_t) -1) |
7368 | 0 | return false; |
7369 | 0 | vn->vn_file = indx; |
7370 | 0 | vn->vn_aux = sizeof (Elf_External_Verneed); |
7371 | 0 | if (vn->vn_nextref == NULL) |
7372 | 0 | vn->vn_next = 0; |
7373 | 0 | else |
7374 | 0 | vn->vn_next = (sizeof (Elf_External_Verneed) |
7375 | 0 | + caux * sizeof (Elf_External_Vernaux)); |
7376 | |
|
7377 | 0 | _bfd_elf_swap_verneed_out (output_bfd, vn, |
7378 | 0 | (Elf_External_Verneed *) p); |
7379 | 0 | p += sizeof (Elf_External_Verneed); |
7380 | |
|
7381 | 0 | for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) |
7382 | 0 | { |
7383 | 0 | a->vna_hash = bfd_elf_hash (a->vna_nodename); |
7384 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
7385 | 0 | a->vna_nodename, false); |
7386 | 0 | if (indx == (size_t) -1) |
7387 | 0 | return false; |
7388 | 0 | a->vna_name = indx; |
7389 | 0 | if (a->vna_nextptr == NULL) |
7390 | 0 | a->vna_next = 0; |
7391 | 0 | else |
7392 | 0 | a->vna_next = sizeof (Elf_External_Vernaux); |
7393 | |
|
7394 | 0 | _bfd_elf_swap_vernaux_out (output_bfd, a, |
7395 | 0 | (Elf_External_Vernaux *) p); |
7396 | 0 | p += sizeof (Elf_External_Vernaux); |
7397 | 0 | } |
7398 | 0 | } |
7399 | | |
7400 | 0 | elf_tdata (output_bfd)->cverrefs = crefs; |
7401 | 0 | } |
7402 | 0 | } |
7403 | | |
7404 | 0 | if (bfd_link_relocatable (info) |
7405 | 0 | && !_bfd_elf_size_group_sections (info)) |
7406 | 0 | return false; |
7407 | | |
7408 | | /* Determine any GNU_STACK segment requirements, after the backend |
7409 | | has had a chance to set a default segment size. */ |
7410 | 0 | if (info->execstack) |
7411 | 0 | { |
7412 | | /* If the user has explicitly requested warnings, then generate one even |
7413 | | though the choice is the result of another command line option. */ |
7414 | 0 | if (info->warn_execstack == 1) |
7415 | 0 | { |
7416 | 0 | if (info->error_execstack) |
7417 | 0 | { |
7418 | 0 | _bfd_error_handler |
7419 | 0 | (_("\ |
7420 | 0 | error: creating an executable stack because of -z execstack command line option")); |
7421 | 0 | return false; |
7422 | 0 | } |
7423 | | |
7424 | 0 | _bfd_error_handler |
7425 | 0 | (_("\ |
7426 | 0 | warning: enabling an executable stack because of -z execstack command line option")); |
7427 | 0 | } |
7428 | | |
7429 | 0 | elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; |
7430 | 0 | } |
7431 | 0 | else if (info->noexecstack) |
7432 | 0 | elf_stack_flags (output_bfd) = PF_R | PF_W; |
7433 | 0 | else |
7434 | 0 | { |
7435 | 0 | bfd *inputobj; |
7436 | 0 | asection *notesec = NULL; |
7437 | 0 | bfd *noteobj = NULL; |
7438 | 0 | bfd *emptyobj = NULL; |
7439 | 0 | int exec = 0; |
7440 | |
|
7441 | 0 | for (inputobj = info->input_bfds; |
7442 | 0 | inputobj; |
7443 | 0 | inputobj = inputobj->link.next) |
7444 | 0 | { |
7445 | 0 | asection *s; |
7446 | |
|
7447 | 0 | if (inputobj->flags |
7448 | 0 | & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) |
7449 | 0 | continue; |
7450 | 0 | s = inputobj->sections; |
7451 | 0 | if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
7452 | 0 | continue; |
7453 | | |
7454 | 0 | s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); |
7455 | 0 | if (s) |
7456 | 0 | { |
7457 | 0 | notesec = s; |
7458 | 0 | if (s->flags & SEC_CODE) |
7459 | 0 | { |
7460 | 0 | noteobj = inputobj; |
7461 | 0 | exec = PF_X; |
7462 | | /* There is no point in scanning the remaining bfds. */ |
7463 | 0 | break; |
7464 | 0 | } |
7465 | 0 | } |
7466 | 0 | else if (bed->default_execstack && info->default_execstack) |
7467 | 0 | { |
7468 | 0 | exec = PF_X; |
7469 | 0 | emptyobj = inputobj; |
7470 | 0 | } |
7471 | 0 | } |
7472 | |
|
7473 | 0 | if (notesec || info->stacksize > 0) |
7474 | 0 | { |
7475 | 0 | if (exec) |
7476 | 0 | { |
7477 | 0 | if (info->warn_execstack != 0) |
7478 | 0 | { |
7479 | | /* PR 29072: Because an executable stack is a serious |
7480 | | security risk, make sure that the user knows that it is |
7481 | | being enabled despite the fact that it was not requested |
7482 | | on the command line. */ |
7483 | 0 | if (noteobj) |
7484 | 0 | { |
7485 | 0 | if (info->error_execstack) |
7486 | 0 | { |
7487 | 0 | _bfd_error_handler (_("\ |
7488 | 0 | error: %s: is triggering the generation of an executable stack (because it has an executable .note.GNU-stack section)"), |
7489 | 0 | bfd_get_filename (noteobj)); |
7490 | 0 | return false; |
7491 | 0 | } |
7492 | | |
7493 | 0 | _bfd_error_handler (_("\ |
7494 | 0 | warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"), |
7495 | 0 | bfd_get_filename (noteobj)); |
7496 | 0 | } |
7497 | 0 | else if (emptyobj) |
7498 | 0 | { |
7499 | 0 | if (info->error_execstack) |
7500 | 0 | { |
7501 | 0 | _bfd_error_handler (_("\ |
7502 | 0 | error: %s: is triggering the generation of an executable stack because it does not have a .note.GNU-stack section"), |
7503 | 0 | bfd_get_filename (emptyobj)); |
7504 | 0 | return false; |
7505 | 0 | } |
7506 | | |
7507 | 0 | _bfd_error_handler (_("\ |
7508 | 0 | warning: %s: missing .note.GNU-stack section implies executable stack"), |
7509 | 0 | bfd_get_filename (emptyobj)); |
7510 | 0 | _bfd_error_handler (_("\ |
7511 | 0 | NOTE: This behaviour is deprecated and will be removed in a future version of the linker")); |
7512 | 0 | } |
7513 | 0 | } |
7514 | 0 | } |
7515 | 0 | elf_stack_flags (output_bfd) = PF_R | PF_W | exec; |
7516 | 0 | } |
7517 | | |
7518 | 0 | if (notesec && exec && bfd_link_relocatable (info) |
7519 | 0 | && notesec->output_section != bfd_abs_section_ptr) |
7520 | 0 | notesec->output_section->flags |= SEC_CODE; |
7521 | 0 | } |
7522 | | |
7523 | 0 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
7524 | 0 | { |
7525 | 0 | struct elf_info_failed eif; |
7526 | 0 | struct elf_link_hash_entry *h; |
7527 | 0 | asection *dynstr; |
7528 | 0 | asection *s; |
7529 | |
|
7530 | 0 | *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); |
7531 | 0 | BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); |
7532 | |
|
7533 | 0 | if (info->symbolic) |
7534 | 0 | { |
7535 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) |
7536 | 0 | return false; |
7537 | 0 | info->flags |= DF_SYMBOLIC; |
7538 | 0 | } |
7539 | | |
7540 | 0 | if (rpath != NULL) |
7541 | 0 | { |
7542 | 0 | size_t indx; |
7543 | 0 | bfd_vma tag; |
7544 | |
|
7545 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, |
7546 | 0 | true); |
7547 | 0 | if (indx == (size_t) -1) |
7548 | 0 | return false; |
7549 | | |
7550 | 0 | tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; |
7551 | 0 | if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) |
7552 | 0 | return false; |
7553 | 0 | } |
7554 | | |
7555 | 0 | if (filter_shlib != NULL) |
7556 | 0 | { |
7557 | 0 | size_t indx; |
7558 | |
|
7559 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
7560 | 0 | filter_shlib, true); |
7561 | 0 | if (indx == (size_t) -1 |
7562 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) |
7563 | 0 | return false; |
7564 | 0 | } |
7565 | | |
7566 | 0 | if (auxiliary_filters != NULL) |
7567 | 0 | { |
7568 | 0 | const char * const *p; |
7569 | |
|
7570 | 0 | for (p = auxiliary_filters; *p != NULL; p++) |
7571 | 0 | { |
7572 | 0 | size_t indx; |
7573 | |
|
7574 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
7575 | 0 | *p, true); |
7576 | 0 | if (indx == (size_t) -1 |
7577 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) |
7578 | 0 | return false; |
7579 | 0 | } |
7580 | 0 | } |
7581 | | |
7582 | 0 | if (audit != NULL) |
7583 | 0 | { |
7584 | 0 | size_t indx; |
7585 | |
|
7586 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, |
7587 | 0 | true); |
7588 | 0 | if (indx == (size_t) -1 |
7589 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) |
7590 | 0 | return false; |
7591 | 0 | } |
7592 | | |
7593 | 0 | if (depaudit != NULL) |
7594 | 0 | { |
7595 | 0 | size_t indx; |
7596 | |
|
7597 | 0 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, |
7598 | 0 | true); |
7599 | 0 | if (indx == (size_t) -1 |
7600 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) |
7601 | 0 | return false; |
7602 | 0 | } |
7603 | | |
7604 | 0 | eif.info = info; |
7605 | 0 | eif.failed = false; |
7606 | | |
7607 | | /* Find all symbols which were defined in a dynamic object and make |
7608 | | the backend pick a reasonable value for them. */ |
7609 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
7610 | 0 | _bfd_elf_adjust_dynamic_symbol, |
7611 | 0 | &eif); |
7612 | 0 | if (eif.failed) |
7613 | 0 | return false; |
7614 | | |
7615 | | /* Add some entries to the .dynamic section. We fill in some of the |
7616 | | values later, in bfd_elf_final_link, but we must add the entries |
7617 | | now so that we know the final size of the .dynamic section. */ |
7618 | | |
7619 | | /* If there are initialization and/or finalization functions to |
7620 | | call then add the corresponding DT_INIT/DT_FINI entries. */ |
7621 | 0 | h = (info->init_function |
7622 | 0 | ? elf_link_hash_lookup (elf_hash_table (info), |
7623 | 0 | info->init_function, false, |
7624 | 0 | false, false) |
7625 | 0 | : NULL); |
7626 | 0 | if (h != NULL |
7627 | 0 | && (h->ref_regular |
7628 | 0 | || h->def_regular)) |
7629 | 0 | { |
7630 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) |
7631 | 0 | return false; |
7632 | 0 | } |
7633 | 0 | h = (info->fini_function |
7634 | 0 | ? elf_link_hash_lookup (elf_hash_table (info), |
7635 | 0 | info->fini_function, false, |
7636 | 0 | false, false) |
7637 | 0 | : NULL); |
7638 | 0 | if (h != NULL |
7639 | 0 | && (h->ref_regular |
7640 | 0 | || h->def_regular)) |
7641 | 0 | { |
7642 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) |
7643 | 0 | return false; |
7644 | 0 | } |
7645 | | |
7646 | 0 | s = bfd_get_section_by_name (output_bfd, ".preinit_array"); |
7647 | 0 | if (s != NULL && s->linker_has_input) |
7648 | 0 | { |
7649 | | /* DT_PREINIT_ARRAY is not allowed in shared library. */ |
7650 | 0 | if (! bfd_link_executable (info)) |
7651 | 0 | { |
7652 | 0 | bfd *sub; |
7653 | 0 | asection *o; |
7654 | |
|
7655 | 0 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
7656 | 0 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour |
7657 | 0 | && (o = sub->sections) != NULL |
7658 | 0 | && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) |
7659 | 0 | for (o = sub->sections; o != NULL; o = o->next) |
7660 | 0 | if (elf_section_data (o)->this_hdr.sh_type |
7661 | 0 | == SHT_PREINIT_ARRAY) |
7662 | 0 | { |
7663 | 0 | _bfd_error_handler |
7664 | 0 | (_("%pB: .preinit_array section is not allowed in DSO"), |
7665 | 0 | sub); |
7666 | 0 | break; |
7667 | 0 | } |
7668 | |
|
7669 | 0 | bfd_set_error (bfd_error_nonrepresentable_section); |
7670 | 0 | return false; |
7671 | 0 | } |
7672 | | |
7673 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) |
7674 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) |
7675 | 0 | return false; |
7676 | 0 | } |
7677 | 0 | s = bfd_get_section_by_name (output_bfd, ".init_array"); |
7678 | 0 | if (s != NULL && s->linker_has_input) |
7679 | 0 | { |
7680 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) |
7681 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) |
7682 | 0 | return false; |
7683 | 0 | } |
7684 | 0 | s = bfd_get_section_by_name (output_bfd, ".fini_array"); |
7685 | 0 | if (s != NULL && s->linker_has_input) |
7686 | 0 | { |
7687 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) |
7688 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) |
7689 | 0 | return false; |
7690 | 0 | } |
7691 | | |
7692 | 0 | dynstr = bfd_get_linker_section (dynobj, ".dynstr"); |
7693 | | /* If .dynstr is excluded from the link, we don't want any of |
7694 | | these tags. Strictly, we should be checking each section |
7695 | | individually; This quick check covers for the case where |
7696 | | someone does a /DISCARD/ : { *(*) }. */ |
7697 | 0 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) |
7698 | 0 | { |
7699 | 0 | bfd_size_type strsize; |
7700 | |
|
7701 | 0 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
7702 | 0 | if ((info->emit_hash |
7703 | 0 | && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) |
7704 | 0 | || (info->emit_gnu_hash |
7705 | 0 | && (bed->record_xhash_symbol == NULL |
7706 | 0 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) |
7707 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) |
7708 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) |
7709 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) |
7710 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, |
7711 | 0 | bed->s->sizeof_sym) |
7712 | 0 | || (info->gnu_flags_1 |
7713 | 0 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1, |
7714 | 0 | info->gnu_flags_1))) |
7715 | 0 | return false; |
7716 | 0 | } |
7717 | 0 | } |
7718 | | |
7719 | 0 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) |
7720 | 0 | return false; |
7721 | | |
7722 | | /* The backend must work out the sizes of all the other dynamic |
7723 | | sections. */ |
7724 | 0 | if (bed->elf_backend_late_size_sections != NULL |
7725 | 0 | && !bed->elf_backend_late_size_sections (output_bfd, info)) |
7726 | 0 | return false; |
7727 | | |
7728 | 0 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
7729 | 0 | { |
7730 | 0 | if (elf_tdata (output_bfd)->cverdefs) |
7731 | 0 | { |
7732 | 0 | unsigned int crefs = elf_tdata (output_bfd)->cverdefs; |
7733 | |
|
7734 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) |
7735 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) |
7736 | 0 | return false; |
7737 | 0 | } |
7738 | | |
7739 | 0 | if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) |
7740 | 0 | { |
7741 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) |
7742 | 0 | return false; |
7743 | 0 | } |
7744 | 0 | else if (info->flags & DF_BIND_NOW) |
7745 | 0 | { |
7746 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) |
7747 | 0 | return false; |
7748 | 0 | } |
7749 | | |
7750 | 0 | if (info->flags_1) |
7751 | 0 | { |
7752 | 0 | if (bfd_link_executable (info)) |
7753 | 0 | info->flags_1 &= ~ (DF_1_INITFIRST |
7754 | 0 | | DF_1_NODELETE |
7755 | 0 | | DF_1_NOOPEN); |
7756 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) |
7757 | 0 | return false; |
7758 | 0 | } |
7759 | | |
7760 | 0 | if (elf_tdata (output_bfd)->cverrefs) |
7761 | 0 | { |
7762 | 0 | unsigned int crefs = elf_tdata (output_bfd)->cverrefs; |
7763 | |
|
7764 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) |
7765 | 0 | || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) |
7766 | 0 | return false; |
7767 | 0 | } |
7768 | | |
7769 | 0 | if ((elf_tdata (output_bfd)->cverrefs == 0 |
7770 | 0 | && elf_tdata (output_bfd)->cverdefs == 0) |
7771 | 0 | || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) |
7772 | 0 | { |
7773 | 0 | asection *s; |
7774 | |
|
7775 | 0 | s = bfd_get_linker_section (dynobj, ".gnu.version"); |
7776 | 0 | s->flags |= SEC_EXCLUDE; |
7777 | 0 | } |
7778 | 0 | } |
7779 | 0 | return true; |
7780 | 0 | } |
7781 | | |
7782 | | /* Find the first non-excluded output section. We'll use its |
7783 | | section symbol for some emitted relocs. */ |
7784 | | void |
7785 | | _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) |
7786 | 0 | { |
7787 | 0 | asection *s; |
7788 | 0 | asection *found = NULL; |
7789 | |
|
7790 | 0 | for (s = output_bfd->sections; s != NULL; s = s->next) |
7791 | 0 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC |
7792 | 0 | && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) |
7793 | 0 | { |
7794 | 0 | found = s; |
7795 | 0 | if ((s->flags & SEC_THREAD_LOCAL) == 0) |
7796 | 0 | break; |
7797 | 0 | } |
7798 | 0 | elf_hash_table (info)->text_index_section = found; |
7799 | 0 | } |
7800 | | |
7801 | | /* Find two non-excluded output sections, one for code, one for data. |
7802 | | We'll use their section symbols for some emitted relocs. */ |
7803 | | void |
7804 | | _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) |
7805 | 0 | { |
7806 | 0 | asection *s; |
7807 | 0 | asection *found = NULL; |
7808 | | |
7809 | | /* Data first, since setting text_index_section changes |
7810 | | _bfd_elf_omit_section_dynsym_default. */ |
7811 | 0 | for (s = output_bfd->sections; s != NULL; s = s->next) |
7812 | 0 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC |
7813 | 0 | && !(s->flags & SEC_READONLY) |
7814 | 0 | && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) |
7815 | 0 | { |
7816 | 0 | found = s; |
7817 | 0 | if ((s->flags & SEC_THREAD_LOCAL) == 0) |
7818 | 0 | break; |
7819 | 0 | } |
7820 | 0 | elf_hash_table (info)->data_index_section = found; |
7821 | |
|
7822 | 0 | for (s = output_bfd->sections; s != NULL; s = s->next) |
7823 | 0 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC |
7824 | 0 | && (s->flags & SEC_READONLY) |
7825 | 0 | && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) |
7826 | 0 | { |
7827 | 0 | found = s; |
7828 | 0 | break; |
7829 | 0 | } |
7830 | 0 | elf_hash_table (info)->text_index_section = found; |
7831 | 0 | } |
7832 | | |
7833 | | #define GNU_HASH_SECTION_NAME(bed) \ |
7834 | 0 | (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" |
7835 | | |
7836 | | bool |
7837 | | bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) |
7838 | 0 | { |
7839 | 0 | const struct elf_backend_data *bed; |
7840 | 0 | unsigned long section_sym_count; |
7841 | 0 | bfd_size_type dynsymcount = 0; |
7842 | |
|
7843 | 0 | if (!is_elf_hash_table (info->hash)) |
7844 | 0 | return true; |
7845 | | |
7846 | 0 | bed = get_elf_backend_data (output_bfd); |
7847 | 0 | (*bed->elf_backend_init_index_section) (output_bfd, info); |
7848 | | |
7849 | | /* Assign dynsym indices. In a shared library we generate a section |
7850 | | symbol for each output section, which come first. Next come all |
7851 | | of the back-end allocated local dynamic syms, followed by the rest |
7852 | | of the global symbols. |
7853 | | |
7854 | | This is usually not needed for static binaries, however backends |
7855 | | can request to always do it, e.g. the MIPS backend uses dynamic |
7856 | | symbol counts to lay out GOT, which will be produced in the |
7857 | | presence of GOT relocations even in static binaries (holding fixed |
7858 | | data in that case, to satisfy those relocations). */ |
7859 | |
|
7860 | 0 | if (elf_hash_table (info)->dynamic_sections_created |
7861 | 0 | || bed->always_renumber_dynsyms) |
7862 | 0 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, |
7863 | 0 | §ion_sym_count); |
7864 | |
|
7865 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
7866 | 0 | { |
7867 | 0 | bfd *dynobj; |
7868 | 0 | asection *s; |
7869 | 0 | unsigned int dtagcount; |
7870 | |
|
7871 | 0 | dynobj = elf_hash_table (info)->dynobj; |
7872 | | |
7873 | | /* Work out the size of the symbol version section. */ |
7874 | 0 | s = bfd_get_linker_section (dynobj, ".gnu.version"); |
7875 | 0 | BFD_ASSERT (s != NULL); |
7876 | 0 | if ((s->flags & SEC_EXCLUDE) == 0) |
7877 | 0 | { |
7878 | 0 | s->size = dynsymcount * sizeof (Elf_External_Versym); |
7879 | 0 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
7880 | 0 | if (s->contents == NULL) |
7881 | 0 | return false; |
7882 | 0 | s->alloced = 1; |
7883 | |
|
7884 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) |
7885 | 0 | return false; |
7886 | 0 | } |
7887 | | |
7888 | | /* Set the size of the .dynsym and .hash sections. We counted |
7889 | | the number of dynamic symbols in elf_link_add_object_symbols. |
7890 | | We will build the contents of .dynsym and .hash when we build |
7891 | | the final symbol table, because until then we do not know the |
7892 | | correct value to give the symbols. We built the .dynstr |
7893 | | section as we went along in elf_link_add_object_symbols. */ |
7894 | 0 | s = elf_hash_table (info)->dynsym; |
7895 | 0 | BFD_ASSERT (s != NULL); |
7896 | 0 | s->size = dynsymcount * bed->s->sizeof_sym; |
7897 | |
|
7898 | 0 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
7899 | 0 | if (s->contents == NULL) |
7900 | 0 | return false; |
7901 | 0 | s->alloced = 1; |
7902 | | |
7903 | | /* The first entry in .dynsym is a dummy symbol. Clear all the |
7904 | | section syms, in case we don't output them all. */ |
7905 | 0 | ++section_sym_count; |
7906 | 0 | memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); |
7907 | |
|
7908 | 0 | elf_hash_table (info)->bucketcount = 0; |
7909 | | |
7910 | | /* Compute the size of the hashing table. As a side effect this |
7911 | | computes the hash values for all the names we export. */ |
7912 | 0 | if (info->emit_hash) |
7913 | 0 | { |
7914 | 0 | unsigned long int *hashcodes; |
7915 | 0 | struct hash_codes_info hashinf; |
7916 | 0 | bfd_size_type amt; |
7917 | 0 | unsigned long int nsyms; |
7918 | 0 | size_t bucketcount; |
7919 | 0 | size_t hash_entry_size; |
7920 | | |
7921 | | /* Compute the hash values for all exported symbols. At the same |
7922 | | time store the values in an array so that we could use them for |
7923 | | optimizations. */ |
7924 | 0 | amt = dynsymcount * sizeof (unsigned long int); |
7925 | 0 | hashcodes = (unsigned long int *) bfd_malloc (amt); |
7926 | 0 | if (hashcodes == NULL) |
7927 | 0 | return false; |
7928 | 0 | hashinf.hashcodes = hashcodes; |
7929 | 0 | hashinf.error = false; |
7930 | | |
7931 | | /* Put all hash values in HASHCODES. */ |
7932 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
7933 | 0 | elf_collect_hash_codes, &hashinf); |
7934 | 0 | if (hashinf.error) |
7935 | 0 | { |
7936 | 0 | free (hashcodes); |
7937 | 0 | return false; |
7938 | 0 | } |
7939 | | |
7940 | 0 | nsyms = hashinf.hashcodes - hashcodes; |
7941 | 0 | bucketcount |
7942 | 0 | = compute_bucket_count (info, hashcodes, nsyms, 0); |
7943 | 0 | free (hashcodes); |
7944 | |
|
7945 | 0 | if (bucketcount == 0 && nsyms > 0) |
7946 | 0 | return false; |
7947 | | |
7948 | 0 | elf_hash_table (info)->bucketcount = bucketcount; |
7949 | |
|
7950 | 0 | s = bfd_get_linker_section (dynobj, ".hash"); |
7951 | 0 | BFD_ASSERT (s != NULL); |
7952 | 0 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
7953 | 0 | s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); |
7954 | 0 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
7955 | 0 | if (s->contents == NULL) |
7956 | 0 | return false; |
7957 | 0 | s->alloced = 1; |
7958 | |
|
7959 | 0 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); |
7960 | 0 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, |
7961 | 0 | s->contents + hash_entry_size); |
7962 | 0 | } |
7963 | | |
7964 | 0 | if (info->emit_gnu_hash) |
7965 | 0 | { |
7966 | 0 | size_t i, cnt; |
7967 | 0 | unsigned char *contents; |
7968 | 0 | struct collect_gnu_hash_codes cinfo; |
7969 | 0 | bfd_size_type amt; |
7970 | 0 | size_t bucketcount; |
7971 | |
|
7972 | 0 | memset (&cinfo, 0, sizeof (cinfo)); |
7973 | | |
7974 | | /* Compute the hash values for all exported symbols. At the same |
7975 | | time store the values in an array so that we could use them for |
7976 | | optimizations. */ |
7977 | 0 | amt = dynsymcount * 2 * sizeof (unsigned long int); |
7978 | 0 | cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); |
7979 | 0 | if (cinfo.hashcodes == NULL) |
7980 | 0 | return false; |
7981 | | |
7982 | 0 | cinfo.hashval = cinfo.hashcodes + dynsymcount; |
7983 | 0 | cinfo.min_dynindx = -1; |
7984 | 0 | cinfo.output_bfd = output_bfd; |
7985 | 0 | cinfo.bed = bed; |
7986 | | |
7987 | | /* Put all hash values in HASHCODES. */ |
7988 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
7989 | 0 | elf_collect_gnu_hash_codes, &cinfo); |
7990 | 0 | if (cinfo.error) |
7991 | 0 | { |
7992 | 0 | free (cinfo.hashcodes); |
7993 | 0 | return false; |
7994 | 0 | } |
7995 | | |
7996 | 0 | bucketcount |
7997 | 0 | = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); |
7998 | |
|
7999 | 0 | if (bucketcount == 0) |
8000 | 0 | { |
8001 | 0 | free (cinfo.hashcodes); |
8002 | 0 | return false; |
8003 | 0 | } |
8004 | | |
8005 | 0 | s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); |
8006 | 0 | BFD_ASSERT (s != NULL); |
8007 | |
|
8008 | 0 | if (cinfo.nsyms == 0) |
8009 | 0 | { |
8010 | | /* Empty .gnu.hash or .MIPS.xhash section is special. */ |
8011 | 0 | BFD_ASSERT (cinfo.min_dynindx == -1); |
8012 | 0 | free (cinfo.hashcodes); |
8013 | 0 | s->size = 5 * 4 + bed->s->arch_size / 8; |
8014 | 0 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
8015 | 0 | if (contents == NULL) |
8016 | 0 | return false; |
8017 | 0 | s->contents = contents; |
8018 | 0 | s->alloced = 1; |
8019 | | /* 1 empty bucket. */ |
8020 | 0 | bfd_put_32 (output_bfd, 1, contents); |
8021 | | /* SYMIDX above the special symbol 0. */ |
8022 | 0 | bfd_put_32 (output_bfd, 1, contents + 4); |
8023 | | /* Just one word for bitmask. */ |
8024 | 0 | bfd_put_32 (output_bfd, 1, contents + 8); |
8025 | | /* Only hash fn bloom filter. */ |
8026 | 0 | bfd_put_32 (output_bfd, 0, contents + 12); |
8027 | | /* No hashes are valid - empty bitmask. */ |
8028 | 0 | bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); |
8029 | | /* No hashes in the only bucket. */ |
8030 | 0 | bfd_put_32 (output_bfd, 0, |
8031 | 0 | contents + 16 + bed->s->arch_size / 8); |
8032 | 0 | } |
8033 | 0 | else |
8034 | 0 | { |
8035 | 0 | unsigned long int maskwords, maskbitslog2, x; |
8036 | 0 | BFD_ASSERT (cinfo.min_dynindx != -1); |
8037 | |
|
8038 | 0 | x = cinfo.nsyms; |
8039 | 0 | maskbitslog2 = 1; |
8040 | 0 | while ((x >>= 1) != 0) |
8041 | 0 | ++maskbitslog2; |
8042 | 0 | if (maskbitslog2 < 3) |
8043 | 0 | maskbitslog2 = 5; |
8044 | 0 | else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) |
8045 | 0 | maskbitslog2 = maskbitslog2 + 3; |
8046 | 0 | else |
8047 | 0 | maskbitslog2 = maskbitslog2 + 2; |
8048 | 0 | if (bed->s->arch_size == 64) |
8049 | 0 | { |
8050 | 0 | if (maskbitslog2 == 5) |
8051 | 0 | maskbitslog2 = 6; |
8052 | 0 | cinfo.shift1 = 6; |
8053 | 0 | } |
8054 | 0 | else |
8055 | 0 | cinfo.shift1 = 5; |
8056 | 0 | cinfo.mask = (1 << cinfo.shift1) - 1; |
8057 | 0 | cinfo.shift2 = maskbitslog2; |
8058 | 0 | cinfo.maskbits = 1 << maskbitslog2; |
8059 | 0 | maskwords = 1 << (maskbitslog2 - cinfo.shift1); |
8060 | 0 | amt = bucketcount * sizeof (unsigned long int) * 2; |
8061 | 0 | amt += maskwords * sizeof (bfd_vma); |
8062 | 0 | cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); |
8063 | 0 | if (cinfo.bitmask == NULL) |
8064 | 0 | { |
8065 | 0 | free (cinfo.hashcodes); |
8066 | 0 | return false; |
8067 | 0 | } |
8068 | | |
8069 | 0 | cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); |
8070 | 0 | cinfo.indx = cinfo.counts + bucketcount; |
8071 | 0 | cinfo.symindx = dynsymcount - cinfo.nsyms; |
8072 | 0 | memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); |
8073 | | |
8074 | | /* Determine how often each hash bucket is used. */ |
8075 | 0 | memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); |
8076 | 0 | for (i = 0; i < cinfo.nsyms; ++i) |
8077 | 0 | ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; |
8078 | |
|
8079 | 0 | for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) |
8080 | 0 | if (cinfo.counts[i] != 0) |
8081 | 0 | { |
8082 | 0 | cinfo.indx[i] = cnt; |
8083 | 0 | cnt += cinfo.counts[i]; |
8084 | 0 | } |
8085 | 0 | BFD_ASSERT (cnt == dynsymcount); |
8086 | 0 | cinfo.bucketcount = bucketcount; |
8087 | 0 | cinfo.local_indx = cinfo.min_dynindx; |
8088 | |
|
8089 | 0 | s->size = (4 + bucketcount + cinfo.nsyms) * 4; |
8090 | 0 | s->size += cinfo.maskbits / 8; |
8091 | 0 | if (bed->record_xhash_symbol != NULL) |
8092 | 0 | s->size += cinfo.nsyms * 4; |
8093 | 0 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
8094 | 0 | if (contents == NULL) |
8095 | 0 | { |
8096 | 0 | free (cinfo.bitmask); |
8097 | 0 | free (cinfo.hashcodes); |
8098 | 0 | return false; |
8099 | 0 | } |
8100 | | |
8101 | 0 | s->contents = contents; |
8102 | 0 | s->alloced = 1; |
8103 | 0 | bfd_put_32 (output_bfd, bucketcount, contents); |
8104 | 0 | bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); |
8105 | 0 | bfd_put_32 (output_bfd, maskwords, contents + 8); |
8106 | 0 | bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); |
8107 | 0 | contents += 16 + cinfo.maskbits / 8; |
8108 | |
|
8109 | 0 | for (i = 0; i < bucketcount; ++i) |
8110 | 0 | { |
8111 | 0 | if (cinfo.counts[i] == 0) |
8112 | 0 | bfd_put_32 (output_bfd, 0, contents); |
8113 | 0 | else |
8114 | 0 | bfd_put_32 (output_bfd, cinfo.indx[i], contents); |
8115 | 0 | contents += 4; |
8116 | 0 | } |
8117 | |
|
8118 | 0 | cinfo.contents = contents; |
8119 | |
|
8120 | 0 | cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; |
8121 | | /* Renumber dynamic symbols, if populating .gnu.hash section. |
8122 | | If using .MIPS.xhash, populate the translation table. */ |
8123 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
8124 | 0 | elf_gnu_hash_process_symidx, &cinfo); |
8125 | |
|
8126 | 0 | contents = s->contents + 16; |
8127 | 0 | for (i = 0; i < maskwords; ++i) |
8128 | 0 | { |
8129 | 0 | bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], |
8130 | 0 | contents); |
8131 | 0 | contents += bed->s->arch_size / 8; |
8132 | 0 | } |
8133 | | |
8134 | 0 | free (cinfo.bitmask); |
8135 | 0 | free (cinfo.hashcodes); |
8136 | 0 | } |
8137 | 0 | } |
8138 | | |
8139 | 0 | s = bfd_get_linker_section (dynobj, ".dynstr"); |
8140 | 0 | BFD_ASSERT (s != NULL); |
8141 | |
|
8142 | 0 | elf_finalize_dynstr (output_bfd, info); |
8143 | |
|
8144 | 0 | s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
8145 | |
|
8146 | 0 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) |
8147 | 0 | if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) |
8148 | 0 | return false; |
8149 | 0 | } |
8150 | | |
8151 | 0 | return true; |
8152 | 0 | } |
8153 | | |
8154 | | /* Make sure sec_info_type is cleared if sec_info is cleared too. */ |
8155 | | |
8156 | | static void |
8157 | | merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, |
8158 | | asection *sec) |
8159 | 0 | { |
8160 | 0 | BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); |
8161 | 0 | sec->sec_info_type = SEC_INFO_TYPE_NONE; |
8162 | 0 | } |
8163 | | |
8164 | | /* Finish SHF_MERGE section merging. */ |
8165 | | |
8166 | | bool |
8167 | | _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) |
8168 | 0 | { |
8169 | 0 | bfd *ibfd; |
8170 | 0 | asection *sec; |
8171 | |
|
8172 | 0 | if (ENABLE_CHECKING && !is_elf_hash_table (info->hash)) |
8173 | 0 | abort (); |
8174 | | |
8175 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
8176 | 0 | if ((ibfd->flags & DYNAMIC) == 0 |
8177 | 0 | && bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
8178 | 0 | && (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
8179 | 0 | == get_elf_backend_data (obfd)->s->elfclass)) |
8180 | 0 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
8181 | 0 | if ((sec->flags & SEC_MERGE) != 0 |
8182 | 0 | && !bfd_is_abs_section (sec->output_section)) |
8183 | 0 | { |
8184 | 0 | struct bfd_elf_section_data *secdata; |
8185 | |
|
8186 | 0 | secdata = elf_section_data (sec); |
8187 | 0 | if (! _bfd_add_merge_section (obfd, |
8188 | 0 | &elf_hash_table (info)->merge_info, |
8189 | 0 | sec, &secdata->sec_info)) |
8190 | 0 | return false; |
8191 | 0 | else if (secdata->sec_info) |
8192 | 0 | sec->sec_info_type = SEC_INFO_TYPE_MERGE; |
8193 | 0 | } |
8194 | | |
8195 | 0 | if (elf_hash_table (info)->merge_info != NULL) |
8196 | 0 | return _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, |
8197 | 0 | merge_sections_remove_hook); |
8198 | 0 | return true; |
8199 | 0 | } |
8200 | | |
8201 | | /* Create an entry in an ELF linker hash table. */ |
8202 | | |
8203 | | struct bfd_hash_entry * |
8204 | | _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
8205 | | struct bfd_hash_table *table, |
8206 | | const char *string) |
8207 | 0 | { |
8208 | | /* Allocate the structure if it has not already been allocated by a |
8209 | | subclass. */ |
8210 | 0 | if (entry == NULL) |
8211 | 0 | { |
8212 | 0 | entry = (struct bfd_hash_entry *) |
8213 | 0 | bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); |
8214 | 0 | if (entry == NULL) |
8215 | 0 | return entry; |
8216 | 0 | } |
8217 | | |
8218 | | /* Call the allocation method of the superclass. */ |
8219 | 0 | entry = _bfd_link_hash_newfunc (entry, table, string); |
8220 | 0 | if (entry != NULL) |
8221 | 0 | { |
8222 | 0 | struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; |
8223 | 0 | struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; |
8224 | | |
8225 | | /* Set local fields. */ |
8226 | 0 | ret->indx = -1; |
8227 | 0 | ret->dynindx = -1; |
8228 | 0 | ret->got = htab->init_got_refcount; |
8229 | 0 | ret->plt = htab->init_plt_refcount; |
8230 | 0 | memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) |
8231 | 0 | - offsetof (struct elf_link_hash_entry, size))); |
8232 | | /* Assume that we have been called by a non-ELF symbol reader. |
8233 | | This flag is then reset by the code which reads an ELF input |
8234 | | file. This ensures that a symbol created by a non-ELF symbol |
8235 | | reader will have the flag set correctly. */ |
8236 | 0 | ret->non_elf = 1; |
8237 | 0 | } |
8238 | |
|
8239 | 0 | return entry; |
8240 | 0 | } |
8241 | | |
8242 | | /* Copy data from an indirect symbol to its direct symbol, hiding the |
8243 | | old indirect symbol. Also used for copying flags to a weakdef. */ |
8244 | | |
8245 | | void |
8246 | | _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, |
8247 | | struct elf_link_hash_entry *dir, |
8248 | | struct elf_link_hash_entry *ind) |
8249 | 0 | { |
8250 | 0 | struct elf_link_hash_table *htab; |
8251 | |
|
8252 | 0 | if (ind->dyn_relocs != NULL) |
8253 | 0 | { |
8254 | 0 | if (dir->dyn_relocs != NULL) |
8255 | 0 | { |
8256 | 0 | struct elf_dyn_relocs **pp; |
8257 | 0 | struct elf_dyn_relocs *p; |
8258 | | |
8259 | | /* Add reloc counts against the indirect sym to the direct sym |
8260 | | list. Merge any entries against the same section. */ |
8261 | 0 | for (pp = &ind->dyn_relocs; (p = *pp) != NULL; ) |
8262 | 0 | { |
8263 | 0 | struct elf_dyn_relocs *q; |
8264 | |
|
8265 | 0 | for (q = dir->dyn_relocs; q != NULL; q = q->next) |
8266 | 0 | if (q->sec == p->sec) |
8267 | 0 | { |
8268 | 0 | q->pc_count += p->pc_count; |
8269 | 0 | q->count += p->count; |
8270 | 0 | *pp = p->next; |
8271 | 0 | break; |
8272 | 0 | } |
8273 | 0 | if (q == NULL) |
8274 | 0 | pp = &p->next; |
8275 | 0 | } |
8276 | 0 | *pp = dir->dyn_relocs; |
8277 | 0 | } |
8278 | |
|
8279 | 0 | dir->dyn_relocs = ind->dyn_relocs; |
8280 | 0 | ind->dyn_relocs = NULL; |
8281 | 0 | } |
8282 | | |
8283 | | /* Copy down any references that we may have already seen to the |
8284 | | symbol which just became indirect. */ |
8285 | |
|
8286 | 0 | if (dir->versioned != versioned_hidden) |
8287 | 0 | dir->ref_dynamic |= ind->ref_dynamic; |
8288 | 0 | dir->ref_regular |= ind->ref_regular; |
8289 | 0 | dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
8290 | 0 | dir->non_got_ref |= ind->non_got_ref; |
8291 | 0 | dir->needs_plt |= ind->needs_plt; |
8292 | 0 | dir->pointer_equality_needed |= ind->pointer_equality_needed; |
8293 | |
|
8294 | 0 | if (ind->root.type != bfd_link_hash_indirect) |
8295 | 0 | return; |
8296 | | |
8297 | | /* Copy over the global and procedure linkage table refcount entries. |
8298 | | These may have been already set up by a check_relocs routine. */ |
8299 | 0 | htab = elf_hash_table (info); |
8300 | 0 | if (ind->got.refcount > htab->init_got_refcount.refcount) |
8301 | 0 | { |
8302 | 0 | if (dir->got.refcount < 0) |
8303 | 0 | dir->got.refcount = 0; |
8304 | 0 | dir->got.refcount += ind->got.refcount; |
8305 | 0 | ind->got.refcount = htab->init_got_refcount.refcount; |
8306 | 0 | } |
8307 | |
|
8308 | 0 | if (ind->plt.refcount > htab->init_plt_refcount.refcount) |
8309 | 0 | { |
8310 | 0 | if (dir->plt.refcount < 0) |
8311 | 0 | dir->plt.refcount = 0; |
8312 | 0 | dir->plt.refcount += ind->plt.refcount; |
8313 | 0 | ind->plt.refcount = htab->init_plt_refcount.refcount; |
8314 | 0 | } |
8315 | |
|
8316 | 0 | if (ind->dynindx != -1) |
8317 | 0 | { |
8318 | 0 | if (dir->dynindx != -1) |
8319 | 0 | _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); |
8320 | 0 | dir->dynindx = ind->dynindx; |
8321 | 0 | dir->dynstr_index = ind->dynstr_index; |
8322 | 0 | ind->dynindx = -1; |
8323 | 0 | ind->dynstr_index = 0; |
8324 | 0 | } |
8325 | 0 | } |
8326 | | |
8327 | | void |
8328 | | _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, |
8329 | | struct elf_link_hash_entry *h, |
8330 | | bool force_local) |
8331 | 0 | { |
8332 | | /* STT_GNU_IFUNC symbol must go through PLT. */ |
8333 | 0 | if (h->type != STT_GNU_IFUNC) |
8334 | 0 | { |
8335 | 0 | h->plt = elf_hash_table (info)->init_plt_offset; |
8336 | 0 | h->needs_plt = 0; |
8337 | 0 | } |
8338 | 0 | if (force_local) |
8339 | 0 | { |
8340 | 0 | h->forced_local = 1; |
8341 | 0 | if (h->dynindx != -1) |
8342 | 0 | { |
8343 | 0 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
8344 | 0 | h->dynstr_index); |
8345 | 0 | h->dynindx = -1; |
8346 | 0 | h->dynstr_index = 0; |
8347 | 0 | } |
8348 | 0 | } |
8349 | 0 | } |
8350 | | |
8351 | | /* Hide a symbol. */ |
8352 | | |
8353 | | void |
8354 | | _bfd_elf_link_hide_symbol (bfd *output_bfd, |
8355 | | struct bfd_link_info *info, |
8356 | | struct bfd_link_hash_entry *h) |
8357 | 0 | { |
8358 | 0 | if (is_elf_hash_table (info->hash)) |
8359 | 0 | { |
8360 | 0 | const struct elf_backend_data *bed |
8361 | 0 | = get_elf_backend_data (output_bfd); |
8362 | 0 | struct elf_link_hash_entry *eh |
8363 | 0 | = (struct elf_link_hash_entry *) h; |
8364 | 0 | bed->elf_backend_hide_symbol (info, eh, true); |
8365 | 0 | eh->def_dynamic = 0; |
8366 | 0 | eh->ref_dynamic = 0; |
8367 | 0 | eh->dynamic_def = 0; |
8368 | 0 | } |
8369 | 0 | } |
8370 | | |
8371 | | /* Initialize an ELF linker hash table. *TABLE has been zeroed by our |
8372 | | caller. */ |
8373 | | |
8374 | | bool |
8375 | | _bfd_elf_link_hash_table_init |
8376 | | (struct elf_link_hash_table *table, |
8377 | | bfd *abfd, |
8378 | | struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, |
8379 | | struct bfd_hash_table *, |
8380 | | const char *), |
8381 | | unsigned int entsize) |
8382 | 0 | { |
8383 | 0 | bool ret; |
8384 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
8385 | 0 | int can_refcount = bed->can_refcount; |
8386 | |
|
8387 | 0 | table->init_got_refcount.refcount = can_refcount - 1; |
8388 | 0 | table->init_plt_refcount.refcount = can_refcount - 1; |
8389 | 0 | table->init_got_offset.offset = -(bfd_vma) 1; |
8390 | 0 | table->init_plt_offset.offset = -(bfd_vma) 1; |
8391 | | /* The first dynamic symbol is a dummy. */ |
8392 | 0 | table->dynsymcount = 1; |
8393 | |
|
8394 | 0 | ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); |
8395 | |
|
8396 | 0 | table->root.type = bfd_link_elf_hash_table; |
8397 | 0 | table->hash_table_id = bed->target_id; |
8398 | 0 | table->target_os = bed->target_os; |
8399 | 0 | table->root.hash_table_free = _bfd_elf_link_hash_table_free; |
8400 | |
|
8401 | 0 | return ret; |
8402 | 0 | } |
8403 | | |
8404 | | /* Create an ELF linker hash table. */ |
8405 | | |
8406 | | struct bfd_link_hash_table * |
8407 | | _bfd_elf_link_hash_table_create (bfd *abfd) |
8408 | 0 | { |
8409 | 0 | struct elf_link_hash_table *ret; |
8410 | 0 | size_t amt = sizeof (struct elf_link_hash_table); |
8411 | |
|
8412 | 0 | ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); |
8413 | 0 | if (ret == NULL) |
8414 | 0 | return NULL; |
8415 | | |
8416 | 0 | if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, |
8417 | 0 | sizeof (struct elf_link_hash_entry))) |
8418 | 0 | { |
8419 | 0 | free (ret); |
8420 | 0 | return NULL; |
8421 | 0 | } |
8422 | | |
8423 | 0 | return &ret->root; |
8424 | 0 | } |
8425 | | |
8426 | | /* Destroy an ELF linker hash table. */ |
8427 | | |
8428 | | void |
8429 | | _bfd_elf_link_hash_table_free (bfd *obfd) |
8430 | 0 | { |
8431 | 0 | struct elf_link_hash_table *htab; |
8432 | |
|
8433 | 0 | htab = (struct elf_link_hash_table *) obfd->link.hash; |
8434 | 0 | if (htab->dynstr != NULL) |
8435 | 0 | _bfd_elf_strtab_free (htab->dynstr); |
8436 | 0 | _bfd_merge_sections_free (htab->merge_info); |
8437 | | /* NB: htab->dynamic->contents is always allocated by bfd_realloc. */ |
8438 | 0 | if (htab->dynamic != NULL) |
8439 | 0 | { |
8440 | 0 | free (htab->dynamic->contents); |
8441 | 0 | htab->dynamic->contents = NULL; |
8442 | 0 | } |
8443 | 0 | if (htab->first_hash != NULL) |
8444 | 0 | { |
8445 | 0 | bfd_hash_table_free (htab->first_hash); |
8446 | 0 | free (htab->first_hash); |
8447 | 0 | } |
8448 | 0 | if (htab->eh_info.frame_hdr_is_compact) |
8449 | 0 | free (htab->eh_info.u.compact.entries); |
8450 | 0 | else |
8451 | 0 | free (htab->eh_info.u.dwarf.array); |
8452 | 0 | _bfd_generic_link_hash_table_free (obfd); |
8453 | 0 | } |
8454 | | |
8455 | | /* This is a hook for the ELF emulation code in the generic linker to |
8456 | | tell the backend linker what file name to use for the DT_NEEDED |
8457 | | entry for a dynamic object. */ |
8458 | | |
8459 | | void |
8460 | | bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) |
8461 | 0 | { |
8462 | 0 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
8463 | 0 | && bfd_get_format (abfd) == bfd_object) |
8464 | 0 | elf_dt_name (abfd) = name; |
8465 | 0 | } |
8466 | | |
8467 | | int |
8468 | | bfd_elf_get_dyn_lib_class (bfd *abfd) |
8469 | 0 | { |
8470 | 0 | int lib_class; |
8471 | 0 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
8472 | 0 | && bfd_get_format (abfd) == bfd_object) |
8473 | 0 | lib_class = elf_dyn_lib_class (abfd); |
8474 | 0 | else |
8475 | 0 | lib_class = 0; |
8476 | 0 | return lib_class; |
8477 | 0 | } |
8478 | | |
8479 | | void |
8480 | | bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) |
8481 | 0 | { |
8482 | 0 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
8483 | 0 | && bfd_get_format (abfd) == bfd_object) |
8484 | 0 | elf_dyn_lib_class (abfd) = lib_class; |
8485 | 0 | } |
8486 | | |
8487 | | /* Get the list of DT_NEEDED entries for a link. This is a hook for |
8488 | | the linker ELF emulation code. */ |
8489 | | |
8490 | | struct bfd_link_needed_list * |
8491 | | bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, |
8492 | | struct bfd_link_info *info) |
8493 | 0 | { |
8494 | 0 | if (! is_elf_hash_table (info->hash)) |
8495 | 0 | return NULL; |
8496 | 0 | return elf_hash_table (info)->needed; |
8497 | 0 | } |
8498 | | |
8499 | | /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a |
8500 | | hook for the linker ELF emulation code. */ |
8501 | | |
8502 | | struct bfd_link_needed_list * |
8503 | | bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, |
8504 | | struct bfd_link_info *info) |
8505 | 0 | { |
8506 | 0 | if (! is_elf_hash_table (info->hash)) |
8507 | 0 | return NULL; |
8508 | 0 | return elf_hash_table (info)->runpath; |
8509 | 0 | } |
8510 | | |
8511 | | /* Get the name actually used for a dynamic object for a link. This |
8512 | | is the SONAME entry if there is one. Otherwise, it is the string |
8513 | | passed to bfd_elf_set_dt_needed_name, or it is the filename. */ |
8514 | | |
8515 | | const char * |
8516 | | bfd_elf_get_dt_soname (bfd *abfd) |
8517 | 0 | { |
8518 | 0 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
8519 | 0 | && bfd_get_format (abfd) == bfd_object) |
8520 | 0 | return elf_dt_name (abfd); |
8521 | 0 | return NULL; |
8522 | 0 | } |
8523 | | |
8524 | | /* Get the list of DT_NEEDED entries from a BFD. This is a hook for |
8525 | | the ELF linker emulation code. */ |
8526 | | |
8527 | | bool |
8528 | | bfd_elf_get_bfd_needed_list (bfd *abfd, |
8529 | | struct bfd_link_needed_list **pneeded) |
8530 | 0 | { |
8531 | 0 | asection *s; |
8532 | 0 | bfd_byte *dynbuf = NULL; |
8533 | 0 | unsigned int elfsec; |
8534 | 0 | unsigned long shlink; |
8535 | 0 | bfd_byte *extdyn, *extdynend; |
8536 | 0 | size_t extdynsize; |
8537 | 0 | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); |
8538 | |
|
8539 | 0 | *pneeded = NULL; |
8540 | |
|
8541 | 0 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour |
8542 | 0 | || bfd_get_format (abfd) != bfd_object) |
8543 | 0 | return true; |
8544 | | |
8545 | 0 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
8546 | 0 | if (s == NULL || s->size == 0 || (s->flags & SEC_HAS_CONTENTS) == 0) |
8547 | 0 | return true; |
8548 | | |
8549 | 0 | if (!_bfd_elf_mmap_section_contents (abfd, s, &dynbuf)) |
8550 | 0 | goto error_return; |
8551 | | |
8552 | 0 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
8553 | 0 | if (elfsec == SHN_BAD) |
8554 | 0 | goto error_return; |
8555 | | |
8556 | 0 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
8557 | |
|
8558 | 0 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
8559 | 0 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; |
8560 | |
|
8561 | 0 | for (extdyn = dynbuf, extdynend = dynbuf + s->size; |
8562 | 0 | (size_t) (extdynend - extdyn) >= extdynsize; |
8563 | 0 | extdyn += extdynsize) |
8564 | 0 | { |
8565 | 0 | Elf_Internal_Dyn dyn; |
8566 | |
|
8567 | 0 | (*swap_dyn_in) (abfd, extdyn, &dyn); |
8568 | |
|
8569 | 0 | if (dyn.d_tag == DT_NULL) |
8570 | 0 | break; |
8571 | | |
8572 | 0 | if (dyn.d_tag == DT_NEEDED) |
8573 | 0 | { |
8574 | 0 | const char *string; |
8575 | 0 | struct bfd_link_needed_list *l; |
8576 | 0 | unsigned int tagv = dyn.d_un.d_val; |
8577 | 0 | size_t amt; |
8578 | |
|
8579 | 0 | string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
8580 | 0 | if (string == NULL) |
8581 | 0 | goto error_return; |
8582 | | |
8583 | 0 | amt = sizeof *l; |
8584 | 0 | l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
8585 | 0 | if (l == NULL) |
8586 | 0 | goto error_return; |
8587 | | |
8588 | 0 | l->by = abfd; |
8589 | 0 | l->name = string; |
8590 | 0 | l->next = *pneeded; |
8591 | 0 | *pneeded = l; |
8592 | 0 | } |
8593 | 0 | } |
8594 | | |
8595 | 0 | _bfd_elf_munmap_section_contents (s, dynbuf); |
8596 | |
|
8597 | 0 | return true; |
8598 | | |
8599 | 0 | error_return: |
8600 | 0 | _bfd_elf_munmap_section_contents (s, dynbuf); |
8601 | 0 | return false; |
8602 | 0 | } |
8603 | | |
8604 | | struct elf_symbuf_symbol |
8605 | | { |
8606 | | unsigned long st_name; /* Symbol name, index in string tbl */ |
8607 | | unsigned char st_info; /* Type and binding attributes */ |
8608 | | unsigned char st_other; /* Visibilty, and target specific */ |
8609 | | }; |
8610 | | |
8611 | | struct elf_symbuf_head |
8612 | | { |
8613 | | struct elf_symbuf_symbol *ssym; |
8614 | | size_t count; |
8615 | | unsigned int st_shndx; |
8616 | | }; |
8617 | | |
8618 | | struct elf_symbol |
8619 | | { |
8620 | | union |
8621 | | { |
8622 | | Elf_Internal_Sym *isym; |
8623 | | struct elf_symbuf_symbol *ssym; |
8624 | | void *p; |
8625 | | } u; |
8626 | | const char *name; |
8627 | | }; |
8628 | | |
8629 | | /* Sort references to symbols by ascending section number. */ |
8630 | | |
8631 | | static int |
8632 | | elf_sort_elf_symbol (const void *arg1, const void *arg2) |
8633 | 0 | { |
8634 | 0 | const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; |
8635 | 0 | const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; |
8636 | |
|
8637 | 0 | if (s1->st_shndx != s2->st_shndx) |
8638 | 0 | return s1->st_shndx > s2->st_shndx ? 1 : -1; |
8639 | | /* Final sort by the address of the sym in the symbuf ensures |
8640 | | a stable sort. */ |
8641 | 0 | if (s1 != s2) |
8642 | 0 | return s1 > s2 ? 1 : -1; |
8643 | 0 | return 0; |
8644 | 0 | } |
8645 | | |
8646 | | static int |
8647 | | elf_sym_name_compare (const void *arg1, const void *arg2) |
8648 | 0 | { |
8649 | 0 | const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; |
8650 | 0 | const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; |
8651 | 0 | int ret = strcmp (s1->name, s2->name); |
8652 | 0 | if (ret != 0) |
8653 | 0 | return ret; |
8654 | 0 | if (s1->u.p != s2->u.p) |
8655 | 0 | return s1->u.p > s2->u.p ? 1 : -1; |
8656 | 0 | return 0; |
8657 | 0 | } |
8658 | | |
8659 | | static struct elf_symbuf_head * |
8660 | | elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) |
8661 | 0 | { |
8662 | 0 | Elf_Internal_Sym **ind, **indbufend, **indbuf; |
8663 | 0 | struct elf_symbuf_symbol *ssym; |
8664 | 0 | struct elf_symbuf_head *ssymbuf, *ssymhead; |
8665 | 0 | size_t i, shndx_count, total_size, amt; |
8666 | |
|
8667 | 0 | amt = symcount * sizeof (*indbuf); |
8668 | 0 | indbuf = (Elf_Internal_Sym **) bfd_malloc (amt); |
8669 | 0 | if (indbuf == NULL) |
8670 | 0 | return NULL; |
8671 | | |
8672 | 0 | for (ind = indbuf, i = 0; i < symcount; i++) |
8673 | 0 | if (isymbuf[i].st_shndx != SHN_UNDEF) |
8674 | 0 | *ind++ = &isymbuf[i]; |
8675 | 0 | indbufend = ind; |
8676 | |
|
8677 | 0 | qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), |
8678 | 0 | elf_sort_elf_symbol); |
8679 | |
|
8680 | 0 | shndx_count = 0; |
8681 | 0 | if (indbufend > indbuf) |
8682 | 0 | for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) |
8683 | 0 | if (ind[0]->st_shndx != ind[1]->st_shndx) |
8684 | 0 | shndx_count++; |
8685 | |
|
8686 | 0 | total_size = ((shndx_count + 1) * sizeof (*ssymbuf) |
8687 | 0 | + (indbufend - indbuf) * sizeof (*ssym)); |
8688 | 0 | ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); |
8689 | 0 | if (ssymbuf == NULL) |
8690 | 0 | { |
8691 | 0 | free (indbuf); |
8692 | 0 | return NULL; |
8693 | 0 | } |
8694 | | |
8695 | 0 | ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); |
8696 | 0 | ssymbuf->ssym = NULL; |
8697 | 0 | ssymbuf->count = shndx_count; |
8698 | 0 | ssymbuf->st_shndx = 0; |
8699 | 0 | for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) |
8700 | 0 | { |
8701 | 0 | if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) |
8702 | 0 | { |
8703 | 0 | ssymhead++; |
8704 | 0 | ssymhead->ssym = ssym; |
8705 | 0 | ssymhead->count = 0; |
8706 | 0 | ssymhead->st_shndx = (*ind)->st_shndx; |
8707 | 0 | } |
8708 | 0 | ssym->st_name = (*ind)->st_name; |
8709 | 0 | ssym->st_info = (*ind)->st_info; |
8710 | 0 | ssym->st_other = (*ind)->st_other; |
8711 | 0 | ssymhead->count++; |
8712 | 0 | } |
8713 | 0 | BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count |
8714 | 0 | && (uintptr_t) ssym - (uintptr_t) ssymbuf == total_size); |
8715 | |
|
8716 | 0 | free (indbuf); |
8717 | 0 | return ssymbuf; |
8718 | 0 | } |
8719 | | |
8720 | | /* Check if 2 sections define the same set of local and global |
8721 | | symbols. */ |
8722 | | |
8723 | | static bool |
8724 | | bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, |
8725 | | struct bfd_link_info *info) |
8726 | 0 | { |
8727 | 0 | bfd *bfd1, *bfd2; |
8728 | 0 | const struct elf_backend_data *bed1, *bed2; |
8729 | 0 | Elf_Internal_Shdr *hdr1, *hdr2; |
8730 | 0 | size_t symcount1, symcount2; |
8731 | 0 | Elf_Internal_Sym *isymbuf1, *isymbuf2; |
8732 | 0 | struct elf_symbuf_head *ssymbuf1, *ssymbuf2; |
8733 | 0 | Elf_Internal_Sym *isym, *isymend; |
8734 | 0 | struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; |
8735 | 0 | size_t count1, count2, sec_count1, sec_count2, i; |
8736 | 0 | unsigned int shndx1, shndx2; |
8737 | 0 | bool result; |
8738 | 0 | bool ignore_section_symbol_p; |
8739 | |
|
8740 | 0 | bfd1 = sec1->owner; |
8741 | 0 | bfd2 = sec2->owner; |
8742 | | |
8743 | | /* Both sections have to be in ELF. */ |
8744 | 0 | if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour |
8745 | 0 | || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) |
8746 | 0 | return false; |
8747 | | |
8748 | 0 | if (elf_section_type (sec1) != elf_section_type (sec2)) |
8749 | 0 | return false; |
8750 | | |
8751 | 0 | shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); |
8752 | 0 | shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); |
8753 | 0 | if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) |
8754 | 0 | return false; |
8755 | | |
8756 | 0 | bed1 = get_elf_backend_data (bfd1); |
8757 | 0 | bed2 = get_elf_backend_data (bfd2); |
8758 | 0 | hdr1 = &elf_tdata (bfd1)->symtab_hdr; |
8759 | 0 | symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; |
8760 | 0 | hdr2 = &elf_tdata (bfd2)->symtab_hdr; |
8761 | 0 | symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; |
8762 | |
|
8763 | 0 | if (symcount1 == 0 || symcount2 == 0) |
8764 | 0 | return false; |
8765 | | |
8766 | 0 | result = false; |
8767 | 0 | isymbuf1 = NULL; |
8768 | 0 | isymbuf2 = NULL; |
8769 | 0 | ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; |
8770 | 0 | ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; |
8771 | | |
8772 | | /* Ignore section symbols only when matching non-debugging sections |
8773 | | or linkonce section with comdat section. */ |
8774 | 0 | ignore_section_symbol_p |
8775 | 0 | = ((sec1->flags & SEC_DEBUGGING) == 0 |
8776 | 0 | || ((elf_section_flags (sec1) & SHF_GROUP) |
8777 | 0 | != (elf_section_flags (sec2) & SHF_GROUP))); |
8778 | |
|
8779 | 0 | if (ssymbuf1 == NULL) |
8780 | 0 | { |
8781 | 0 | isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, |
8782 | 0 | NULL, NULL, NULL); |
8783 | 0 | if (isymbuf1 == NULL) |
8784 | 0 | goto done; |
8785 | | |
8786 | 0 | if (info != NULL && !info->reduce_memory_overheads) |
8787 | 0 | { |
8788 | 0 | ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); |
8789 | 0 | elf_tdata (bfd1)->symbuf = ssymbuf1; |
8790 | 0 | } |
8791 | 0 | } |
8792 | | |
8793 | 0 | if (ssymbuf1 == NULL || ssymbuf2 == NULL) |
8794 | 0 | { |
8795 | 0 | isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, |
8796 | 0 | NULL, NULL, NULL); |
8797 | 0 | if (isymbuf2 == NULL) |
8798 | 0 | goto done; |
8799 | | |
8800 | 0 | if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads) |
8801 | 0 | { |
8802 | 0 | ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); |
8803 | 0 | elf_tdata (bfd2)->symbuf = ssymbuf2; |
8804 | 0 | } |
8805 | 0 | } |
8806 | | |
8807 | 0 | if (ssymbuf1 != NULL && ssymbuf2 != NULL) |
8808 | 0 | { |
8809 | | /* Optimized faster version. */ |
8810 | 0 | size_t lo, hi, mid; |
8811 | 0 | struct elf_symbol *symp; |
8812 | 0 | struct elf_symbuf_symbol *ssym, *ssymend; |
8813 | |
|
8814 | 0 | lo = 0; |
8815 | 0 | hi = ssymbuf1->count; |
8816 | 0 | ssymbuf1++; |
8817 | 0 | count1 = 0; |
8818 | 0 | sec_count1 = 0; |
8819 | 0 | while (lo < hi) |
8820 | 0 | { |
8821 | 0 | mid = (lo + hi) / 2; |
8822 | 0 | if (shndx1 < ssymbuf1[mid].st_shndx) |
8823 | 0 | hi = mid; |
8824 | 0 | else if (shndx1 > ssymbuf1[mid].st_shndx) |
8825 | 0 | lo = mid + 1; |
8826 | 0 | else |
8827 | 0 | { |
8828 | 0 | count1 = ssymbuf1[mid].count; |
8829 | 0 | ssymbuf1 += mid; |
8830 | 0 | break; |
8831 | 0 | } |
8832 | 0 | } |
8833 | 0 | if (ignore_section_symbol_p) |
8834 | 0 | { |
8835 | 0 | for (i = 0; i < count1; i++) |
8836 | 0 | if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION) |
8837 | 0 | sec_count1++; |
8838 | 0 | count1 -= sec_count1; |
8839 | 0 | } |
8840 | |
|
8841 | 0 | lo = 0; |
8842 | 0 | hi = ssymbuf2->count; |
8843 | 0 | ssymbuf2++; |
8844 | 0 | count2 = 0; |
8845 | 0 | sec_count2 = 0; |
8846 | 0 | while (lo < hi) |
8847 | 0 | { |
8848 | 0 | mid = (lo + hi) / 2; |
8849 | 0 | if (shndx2 < ssymbuf2[mid].st_shndx) |
8850 | 0 | hi = mid; |
8851 | 0 | else if (shndx2 > ssymbuf2[mid].st_shndx) |
8852 | 0 | lo = mid + 1; |
8853 | 0 | else |
8854 | 0 | { |
8855 | 0 | count2 = ssymbuf2[mid].count; |
8856 | 0 | ssymbuf2 += mid; |
8857 | 0 | break; |
8858 | 0 | } |
8859 | 0 | } |
8860 | 0 | if (ignore_section_symbol_p) |
8861 | 0 | { |
8862 | 0 | for (i = 0; i < count2; i++) |
8863 | 0 | if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION) |
8864 | 0 | sec_count2++; |
8865 | 0 | count2 -= sec_count2; |
8866 | 0 | } |
8867 | |
|
8868 | 0 | if (count1 == 0 || count2 == 0 || count1 != count2) |
8869 | 0 | goto done; |
8870 | | |
8871 | 0 | symtable1 |
8872 | 0 | = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); |
8873 | 0 | symtable2 |
8874 | 0 | = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); |
8875 | 0 | if (symtable1 == NULL || symtable2 == NULL) |
8876 | 0 | goto done; |
8877 | | |
8878 | 0 | symp = symtable1; |
8879 | 0 | for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1; |
8880 | 0 | ssym < ssymend; ssym++) |
8881 | 0 | if (sec_count1 == 0 |
8882 | 0 | || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) |
8883 | 0 | { |
8884 | 0 | symp->u.ssym = ssym; |
8885 | 0 | symp->name = bfd_elf_string_from_elf_section (bfd1, |
8886 | 0 | hdr1->sh_link, |
8887 | 0 | ssym->st_name); |
8888 | 0 | if (symp->name == NULL) |
8889 | 0 | goto done; |
8890 | 0 | symp++; |
8891 | 0 | } |
8892 | | |
8893 | 0 | symp = symtable2; |
8894 | 0 | for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2; |
8895 | 0 | ssym < ssymend; ssym++) |
8896 | 0 | if (sec_count2 == 0 |
8897 | 0 | || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) |
8898 | 0 | { |
8899 | 0 | symp->u.ssym = ssym; |
8900 | 0 | symp->name = bfd_elf_string_from_elf_section (bfd2, |
8901 | 0 | hdr2->sh_link, |
8902 | 0 | ssym->st_name); |
8903 | 0 | if (symp->name == NULL) |
8904 | 0 | goto done; |
8905 | 0 | symp++; |
8906 | 0 | } |
8907 | | |
8908 | | /* Sort symbol by name. */ |
8909 | 0 | qsort (symtable1, count1, sizeof (struct elf_symbol), |
8910 | 0 | elf_sym_name_compare); |
8911 | 0 | qsort (symtable2, count1, sizeof (struct elf_symbol), |
8912 | 0 | elf_sym_name_compare); |
8913 | |
|
8914 | 0 | for (i = 0; i < count1; i++) |
8915 | | /* Two symbols must have the same binding, type and name. */ |
8916 | 0 | if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info |
8917 | 0 | || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other |
8918 | 0 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) |
8919 | 0 | goto done; |
8920 | | |
8921 | 0 | result = true; |
8922 | 0 | goto done; |
8923 | 0 | } |
8924 | | |
8925 | 0 | symtable1 = (struct elf_symbol *) |
8926 | 0 | bfd_malloc (symcount1 * sizeof (struct elf_symbol)); |
8927 | 0 | symtable2 = (struct elf_symbol *) |
8928 | 0 | bfd_malloc (symcount2 * sizeof (struct elf_symbol)); |
8929 | 0 | if (symtable1 == NULL || symtable2 == NULL) |
8930 | 0 | goto done; |
8931 | | |
8932 | | /* Count definitions in the section. */ |
8933 | 0 | count1 = 0; |
8934 | 0 | for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) |
8935 | 0 | if (isym->st_shndx == shndx1 |
8936 | 0 | && (!ignore_section_symbol_p |
8937 | 0 | || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) |
8938 | 0 | symtable1[count1++].u.isym = isym; |
8939 | |
|
8940 | 0 | count2 = 0; |
8941 | 0 | for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) |
8942 | 0 | if (isym->st_shndx == shndx2 |
8943 | 0 | && (!ignore_section_symbol_p |
8944 | 0 | || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) |
8945 | 0 | symtable2[count2++].u.isym = isym; |
8946 | |
|
8947 | 0 | if (count1 == 0 || count2 == 0 || count1 != count2) |
8948 | 0 | goto done; |
8949 | | |
8950 | 0 | for (i = 0; i < count1; i++) |
8951 | 0 | { |
8952 | 0 | symtable1[i].name |
8953 | 0 | = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, |
8954 | 0 | symtable1[i].u.isym->st_name); |
8955 | 0 | if (symtable1[i].name == NULL) |
8956 | 0 | goto done; |
8957 | 0 | } |
8958 | | |
8959 | 0 | for (i = 0; i < count2; i++) |
8960 | 0 | { |
8961 | 0 | symtable2[i].name |
8962 | 0 | = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, |
8963 | 0 | symtable2[i].u.isym->st_name); |
8964 | 0 | if (symtable2[i].name == NULL) |
8965 | 0 | goto done; |
8966 | 0 | } |
8967 | | |
8968 | | /* Sort symbol by name. */ |
8969 | 0 | qsort (symtable1, count1, sizeof (struct elf_symbol), |
8970 | 0 | elf_sym_name_compare); |
8971 | 0 | qsort (symtable2, count1, sizeof (struct elf_symbol), |
8972 | 0 | elf_sym_name_compare); |
8973 | |
|
8974 | 0 | for (i = 0; i < count1; i++) |
8975 | | /* Two symbols must have the same binding, type and name. */ |
8976 | 0 | if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info |
8977 | 0 | || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other |
8978 | 0 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) |
8979 | 0 | goto done; |
8980 | | |
8981 | 0 | result = true; |
8982 | |
|
8983 | 0 | done: |
8984 | 0 | free (symtable1); |
8985 | 0 | free (symtable2); |
8986 | 0 | free (isymbuf1); |
8987 | 0 | free (isymbuf2); |
8988 | |
|
8989 | 0 | return result; |
8990 | 0 | } |
8991 | | |
8992 | | /* Return TRUE if 2 section types are compatible. */ |
8993 | | |
8994 | | bool |
8995 | | _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, |
8996 | | bfd *bbfd, const asection *bsec) |
8997 | 0 | { |
8998 | 0 | if (asec == NULL |
8999 | 0 | || bsec == NULL |
9000 | 0 | || abfd->xvec->flavour != bfd_target_elf_flavour |
9001 | 0 | || bbfd->xvec->flavour != bfd_target_elf_flavour) |
9002 | 0 | return true; |
9003 | | |
9004 | 0 | return elf_section_type (asec) == elf_section_type (bsec); |
9005 | 0 | } |
9006 | | |
9007 | | /* Final phase of ELF linker. */ |
9008 | | |
9009 | | /* A structure we use to avoid passing large numbers of arguments. */ |
9010 | | |
9011 | | struct elf_final_link_info |
9012 | | { |
9013 | | /* General link information. */ |
9014 | | struct bfd_link_info *info; |
9015 | | /* Output BFD. */ |
9016 | | bfd *output_bfd; |
9017 | | /* Symbol string table. */ |
9018 | | struct elf_strtab_hash *symstrtab; |
9019 | | /* .hash section. */ |
9020 | | asection *hash_sec; |
9021 | | /* symbol version section (.gnu.version). */ |
9022 | | asection *symver_sec; |
9023 | | /* Buffer large enough to hold contents of any section. */ |
9024 | | bfd_byte *contents; |
9025 | | /* Buffer large enough to hold external relocs of any section. */ |
9026 | | void *external_relocs; |
9027 | | /* Buffer large enough to hold internal relocs of any section. */ |
9028 | | Elf_Internal_Rela *internal_relocs; |
9029 | | /* Buffer large enough to hold external local symbols of any input |
9030 | | BFD. */ |
9031 | | bfd_byte *external_syms; |
9032 | | /* And a buffer for symbol section indices. */ |
9033 | | Elf_External_Sym_Shndx *locsym_shndx; |
9034 | | /* Buffer large enough to hold internal local symbols of any input |
9035 | | BFD. */ |
9036 | | Elf_Internal_Sym *internal_syms; |
9037 | | /* Array large enough to hold a symbol index for each local symbol |
9038 | | of any input BFD. */ |
9039 | | long *indices; |
9040 | | /* Array large enough to hold a section pointer for each local |
9041 | | symbol of any input BFD. */ |
9042 | | asection **sections; |
9043 | | /* Buffer for SHT_SYMTAB_SHNDX section. */ |
9044 | | Elf_External_Sym_Shndx *symshndxbuf; |
9045 | | /* Number of STT_FILE syms seen. */ |
9046 | | size_t filesym_count; |
9047 | | /* Local symbol hash table. */ |
9048 | | struct bfd_hash_table local_hash_table; |
9049 | | }; |
9050 | | |
9051 | | struct local_hash_entry |
9052 | | { |
9053 | | /* Base hash table entry structure. */ |
9054 | | struct bfd_hash_entry root; |
9055 | | /* Size of the local symbol name. */ |
9056 | | size_t size; |
9057 | | /* Number of the duplicated local symbol names. */ |
9058 | | long count; |
9059 | | }; |
9060 | | |
9061 | | /* Create an entry in the local symbol hash table. */ |
9062 | | |
9063 | | static struct bfd_hash_entry * |
9064 | | local_hash_newfunc (struct bfd_hash_entry *entry, |
9065 | | struct bfd_hash_table *table, |
9066 | | const char *string) |
9067 | 0 | { |
9068 | | |
9069 | | /* Allocate the structure if it has not already been allocated by a |
9070 | | subclass. */ |
9071 | 0 | if (entry == NULL) |
9072 | 0 | { |
9073 | 0 | entry = bfd_hash_allocate (table, |
9074 | 0 | sizeof (struct local_hash_entry)); |
9075 | 0 | if (entry == NULL) |
9076 | 0 | return entry; |
9077 | 0 | } |
9078 | | |
9079 | | /* Call the allocation method of the superclass. */ |
9080 | 0 | entry = bfd_hash_newfunc (entry, table, string); |
9081 | 0 | if (entry != NULL) |
9082 | 0 | { |
9083 | 0 | ((struct local_hash_entry *) entry)->count = 0; |
9084 | 0 | ((struct local_hash_entry *) entry)->size = 0; |
9085 | 0 | } |
9086 | |
|
9087 | 0 | return entry; |
9088 | 0 | } |
9089 | | |
9090 | | /* This struct is used to pass information to elf_link_output_extsym. */ |
9091 | | |
9092 | | struct elf_outext_info |
9093 | | { |
9094 | | bool failed; |
9095 | | bool localsyms; |
9096 | | bool file_sym_done; |
9097 | | struct elf_final_link_info *flinfo; |
9098 | | }; |
9099 | | |
9100 | | |
9101 | | /* Support for evaluating a complex relocation. |
9102 | | |
9103 | | Complex relocations are generalized, self-describing relocations. The |
9104 | | implementation of them consists of two parts: complex symbols, and the |
9105 | | relocations themselves. |
9106 | | |
9107 | | The relocations use a reserved elf-wide relocation type code (R_RELC |
9108 | | external / BFD_RELOC_RELC internal) and an encoding of relocation field |
9109 | | information (start bit, end bit, word width, etc) into the addend. This |
9110 | | information is extracted from CGEN-generated operand tables within gas. |
9111 | | |
9112 | | Complex symbols are mangled symbols (STT_RELC external / BSF_RELC |
9113 | | internal) representing prefix-notation expressions, including but not |
9114 | | limited to those sorts of expressions normally encoded as addends in the |
9115 | | addend field. The symbol mangling format is: |
9116 | | |
9117 | | <node> := <literal> |
9118 | | | <unary-operator> ':' <node> |
9119 | | | <binary-operator> ':' <node> ':' <node> |
9120 | | ; |
9121 | | |
9122 | | <literal> := 's' <digits=N> ':' <N character symbol name> |
9123 | | | 'S' <digits=N> ':' <N character section name> |
9124 | | | '#' <hexdigits> |
9125 | | ; |
9126 | | |
9127 | | <binary-operator> := as in C |
9128 | | <unary-operator> := as in C, plus "0-" for unambiguous negation. */ |
9129 | | |
9130 | | static void |
9131 | | set_symbol_value (bfd *bfd_with_globals, |
9132 | | Elf_Internal_Sym *isymbuf, |
9133 | | size_t locsymcount, |
9134 | | size_t symidx, |
9135 | | bfd_vma val) |
9136 | 0 | { |
9137 | 0 | struct elf_link_hash_entry *h; |
9138 | 0 | size_t extsymoff = locsymcount; |
9139 | |
|
9140 | 0 | if (symidx < locsymcount) |
9141 | 0 | { |
9142 | 0 | Elf_Internal_Sym *sym; |
9143 | |
|
9144 | 0 | sym = isymbuf + symidx; |
9145 | 0 | if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) |
9146 | 0 | { |
9147 | | /* It is a local symbol: move it to the |
9148 | | "absolute" section and give it a value. */ |
9149 | 0 | sym->st_shndx = SHN_ABS; |
9150 | 0 | sym->st_value = val; |
9151 | 0 | return; |
9152 | 0 | } |
9153 | 0 | BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); |
9154 | 0 | extsymoff = 0; |
9155 | 0 | } |
9156 | | |
9157 | | /* It is a global symbol: set its link type |
9158 | | to "defined" and give it a value. */ |
9159 | 0 | h = get_link_hash_entry (elf_sym_hashes (bfd_with_globals), symidx, extsymoff); |
9160 | 0 | if (h == NULL) |
9161 | 0 | { |
9162 | | /* FIXMEL What should we do ? */ |
9163 | 0 | return; |
9164 | 0 | } |
9165 | 0 | h->root.type = bfd_link_hash_defined; |
9166 | 0 | h->root.u.def.value = val; |
9167 | 0 | h->root.u.def.section = bfd_abs_section_ptr; |
9168 | 0 | } |
9169 | | |
9170 | | static bool |
9171 | | resolve_symbol (const char *name, |
9172 | | bfd *input_bfd, |
9173 | | struct elf_final_link_info *flinfo, |
9174 | | bfd_vma *result, |
9175 | | Elf_Internal_Sym *isymbuf, |
9176 | | size_t locsymcount) |
9177 | 0 | { |
9178 | 0 | Elf_Internal_Sym *sym; |
9179 | 0 | struct bfd_link_hash_entry *global_entry; |
9180 | 0 | const char *candidate = NULL; |
9181 | 0 | Elf_Internal_Shdr *symtab_hdr; |
9182 | 0 | size_t i; |
9183 | |
|
9184 | 0 | symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; |
9185 | |
|
9186 | 0 | for (i = 0; i < locsymcount; ++ i) |
9187 | 0 | { |
9188 | 0 | sym = isymbuf + i; |
9189 | |
|
9190 | 0 | if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) |
9191 | 0 | continue; |
9192 | | |
9193 | 0 | candidate = bfd_elf_string_from_elf_section (input_bfd, |
9194 | 0 | symtab_hdr->sh_link, |
9195 | 0 | sym->st_name); |
9196 | | #ifdef DEBUG |
9197 | | printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", |
9198 | | name, candidate, (unsigned long) sym->st_value); |
9199 | | #endif |
9200 | 0 | if (candidate && strcmp (candidate, name) == 0) |
9201 | 0 | { |
9202 | 0 | asection *sec = flinfo->sections [i]; |
9203 | |
|
9204 | 0 | *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); |
9205 | 0 | *result += sec->output_offset + sec->output_section->vma; |
9206 | | #ifdef DEBUG |
9207 | | printf ("Found symbol with value %8.8lx\n", |
9208 | | (unsigned long) *result); |
9209 | | #endif |
9210 | 0 | return true; |
9211 | 0 | } |
9212 | 0 | } |
9213 | | |
9214 | | /* Hmm, haven't found it yet. perhaps it is a global. */ |
9215 | 0 | global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, |
9216 | 0 | false, false, true); |
9217 | 0 | if (!global_entry) |
9218 | 0 | return false; |
9219 | | |
9220 | 0 | if (global_entry->type == bfd_link_hash_defined |
9221 | 0 | || global_entry->type == bfd_link_hash_defweak) |
9222 | 0 | { |
9223 | 0 | *result = (global_entry->u.def.value |
9224 | 0 | + global_entry->u.def.section->output_section->vma |
9225 | 0 | + global_entry->u.def.section->output_offset); |
9226 | | #ifdef DEBUG |
9227 | | printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", |
9228 | | global_entry->root.string, (unsigned long) *result); |
9229 | | #endif |
9230 | 0 | return true; |
9231 | 0 | } |
9232 | | |
9233 | 0 | return false; |
9234 | 0 | } |
9235 | | |
9236 | | /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in |
9237 | | bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section |
9238 | | names like "foo.end" which is the end address of section "foo". */ |
9239 | | |
9240 | | static bool |
9241 | | resolve_section (const char *name, |
9242 | | asection *sections, |
9243 | | bfd_vma *result, |
9244 | | bfd * abfd) |
9245 | 0 | { |
9246 | 0 | asection *curr; |
9247 | 0 | unsigned int len; |
9248 | |
|
9249 | 0 | for (curr = sections; curr; curr = curr->next) |
9250 | 0 | if (strcmp (curr->name, name) == 0) |
9251 | 0 | { |
9252 | 0 | *result = curr->vma; |
9253 | 0 | return true; |
9254 | 0 | } |
9255 | | |
9256 | | /* Hmm. still haven't found it. try pseudo-section names. */ |
9257 | | /* FIXME: This could be coded more efficiently... */ |
9258 | 0 | for (curr = sections; curr; curr = curr->next) |
9259 | 0 | { |
9260 | 0 | len = strlen (curr->name); |
9261 | 0 | if (len > strlen (name)) |
9262 | 0 | continue; |
9263 | | |
9264 | 0 | if (strncmp (curr->name, name, len) == 0) |
9265 | 0 | { |
9266 | 0 | if (startswith (name + len, ".end")) |
9267 | 0 | { |
9268 | 0 | *result = (curr->vma |
9269 | 0 | + curr->size / bfd_octets_per_byte (abfd, curr)); |
9270 | 0 | return true; |
9271 | 0 | } |
9272 | | |
9273 | | /* Insert more pseudo-section names here, if you like. */ |
9274 | 0 | } |
9275 | 0 | } |
9276 | | |
9277 | 0 | return false; |
9278 | 0 | } |
9279 | | |
9280 | | static void |
9281 | | undefined_reference (const char *reftype, const char *name) |
9282 | 0 | { |
9283 | | /* xgettext:c-format */ |
9284 | 0 | _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), |
9285 | 0 | reftype, name); |
9286 | 0 | bfd_set_error (bfd_error_bad_value); |
9287 | 0 | } |
9288 | | |
9289 | | static bool |
9290 | | eval_symbol (bfd_vma *result, |
9291 | | const char **symp, |
9292 | | bfd *input_bfd, |
9293 | | struct elf_final_link_info *flinfo, |
9294 | | bfd_vma dot, |
9295 | | Elf_Internal_Sym *isymbuf, |
9296 | | size_t locsymcount, |
9297 | | int signed_p) |
9298 | 0 | { |
9299 | 0 | size_t len; |
9300 | 0 | size_t symlen; |
9301 | 0 | bfd_vma a; |
9302 | 0 | bfd_vma b; |
9303 | 0 | char symbuf[4096]; |
9304 | 0 | const char *sym = *symp; |
9305 | 0 | const char *symend; |
9306 | 0 | bool symbol_is_section = false; |
9307 | |
|
9308 | 0 | len = strlen (sym); |
9309 | 0 | symend = sym + len; |
9310 | |
|
9311 | 0 | if (len < 1 || len > sizeof (symbuf)) |
9312 | 0 | { |
9313 | 0 | bfd_set_error (bfd_error_invalid_operation); |
9314 | 0 | return false; |
9315 | 0 | } |
9316 | | |
9317 | 0 | switch (* sym) |
9318 | 0 | { |
9319 | 0 | case '.': |
9320 | 0 | *result = dot; |
9321 | 0 | *symp = sym + 1; |
9322 | 0 | return true; |
9323 | | |
9324 | 0 | case '#': |
9325 | 0 | ++sym; |
9326 | 0 | *result = strtoul (sym, (char **) symp, 16); |
9327 | 0 | return true; |
9328 | | |
9329 | 0 | case 'S': |
9330 | 0 | symbol_is_section = true; |
9331 | | /* Fall through. */ |
9332 | 0 | case 's': |
9333 | 0 | ++sym; |
9334 | 0 | symlen = strtol (sym, (char **) symp, 10); |
9335 | 0 | sym = *symp + 1; /* Skip the trailing ':'. */ |
9336 | |
|
9337 | 0 | if (symend < sym || symlen + 1 > sizeof (symbuf)) |
9338 | 0 | { |
9339 | 0 | bfd_set_error (bfd_error_invalid_operation); |
9340 | 0 | return false; |
9341 | 0 | } |
9342 | | |
9343 | 0 | memcpy (symbuf, sym, symlen); |
9344 | 0 | symbuf[symlen] = '\0'; |
9345 | 0 | *symp = sym + symlen; |
9346 | | |
9347 | | /* Is it always possible, with complex symbols, that gas "mis-guessed" |
9348 | | the symbol as a section, or vice-versa. so we're pretty liberal in our |
9349 | | interpretation here; section means "try section first", not "must be a |
9350 | | section", and likewise with symbol. */ |
9351 | |
|
9352 | 0 | if (symbol_is_section) |
9353 | 0 | { |
9354 | 0 | if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) |
9355 | 0 | && !resolve_symbol (symbuf, input_bfd, flinfo, result, |
9356 | 0 | isymbuf, locsymcount)) |
9357 | 0 | { |
9358 | 0 | undefined_reference ("section", symbuf); |
9359 | 0 | return false; |
9360 | 0 | } |
9361 | 0 | } |
9362 | 0 | else |
9363 | 0 | { |
9364 | 0 | if (!resolve_symbol (symbuf, input_bfd, flinfo, result, |
9365 | 0 | isymbuf, locsymcount) |
9366 | 0 | && !resolve_section (symbuf, flinfo->output_bfd->sections, |
9367 | 0 | result, input_bfd)) |
9368 | 0 | { |
9369 | 0 | undefined_reference ("symbol", symbuf); |
9370 | 0 | return false; |
9371 | 0 | } |
9372 | 0 | } |
9373 | | |
9374 | 0 | return true; |
9375 | | |
9376 | | /* All that remains are operators. */ |
9377 | | |
9378 | 0 | #define UNARY_OP(op) \ |
9379 | 0 | if (startswith (sym, #op)) \ |
9380 | 0 | { \ |
9381 | 0 | sym += strlen (#op); \ |
9382 | 0 | if (*sym == ':') \ |
9383 | 0 | ++sym; \ |
9384 | 0 | *symp = sym; \ |
9385 | 0 | if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ |
9386 | 0 | isymbuf, locsymcount, signed_p)) \ |
9387 | 0 | return false; \ |
9388 | 0 | if (signed_p) \ |
9389 | 0 | *result = op ((bfd_signed_vma) a); \ |
9390 | 0 | else \ |
9391 | 0 | *result = op a; \ |
9392 | 0 | return true; \ |
9393 | 0 | } |
9394 | | |
9395 | 0 | #define BINARY_OP_HEAD(op) \ |
9396 | 0 | if (startswith (sym, #op)) \ |
9397 | 0 | { \ |
9398 | 0 | sym += strlen (#op); \ |
9399 | 0 | if (*sym == ':') \ |
9400 | 0 | ++sym; \ |
9401 | 0 | *symp = sym; \ |
9402 | 0 | if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ |
9403 | 0 | isymbuf, locsymcount, signed_p)) \ |
9404 | 0 | return false; \ |
9405 | 0 | ++*symp; \ |
9406 | 0 | if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ |
9407 | 0 | isymbuf, locsymcount, signed_p)) \ |
9408 | 0 | return false; |
9409 | 0 | #define BINARY_OP_TAIL(op) \ |
9410 | 0 | if (signed_p) \ |
9411 | 0 | *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ |
9412 | 0 | else \ |
9413 | 0 | *result = a op b; \ |
9414 | 0 | return true; \ |
9415 | 0 | } |
9416 | 0 | #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op) |
9417 | | |
9418 | 0 | default: |
9419 | 0 | UNARY_OP (0-); |
9420 | 0 | BINARY_OP_HEAD (<<); |
9421 | 0 | if (b >= sizeof (a) * CHAR_BIT) |
9422 | 0 | { |
9423 | 0 | *result = 0; |
9424 | 0 | return true; |
9425 | 0 | } |
9426 | 0 | signed_p = 0; |
9427 | 0 | BINARY_OP_TAIL (<<); |
9428 | 0 | BINARY_OP_HEAD (>>); |
9429 | 0 | if (b >= sizeof (a) * CHAR_BIT) |
9430 | 0 | { |
9431 | 0 | *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0; |
9432 | 0 | return true; |
9433 | 0 | } |
9434 | 0 | BINARY_OP_TAIL (>>); |
9435 | 0 | BINARY_OP (==); |
9436 | 0 | BINARY_OP (!=); |
9437 | 0 | BINARY_OP (<=); |
9438 | 0 | BINARY_OP (>=); |
9439 | 0 | BINARY_OP (&&); |
9440 | 0 | BINARY_OP (||); |
9441 | 0 | UNARY_OP (~); |
9442 | 0 | UNARY_OP (!); |
9443 | 0 | BINARY_OP (*); |
9444 | 0 | BINARY_OP_HEAD (/); |
9445 | 0 | if (b == 0) |
9446 | 0 | { |
9447 | 0 | _bfd_error_handler (_("division by zero")); |
9448 | 0 | bfd_set_error (bfd_error_bad_value); |
9449 | 0 | return false; |
9450 | 0 | } |
9451 | 0 | BINARY_OP_TAIL (/); |
9452 | 0 | BINARY_OP_HEAD (%); |
9453 | 0 | if (b == 0) |
9454 | 0 | { |
9455 | 0 | _bfd_error_handler (_("division by zero")); |
9456 | 0 | bfd_set_error (bfd_error_bad_value); |
9457 | 0 | return false; |
9458 | 0 | } |
9459 | 0 | BINARY_OP_TAIL (%); |
9460 | 0 | BINARY_OP (^); |
9461 | 0 | BINARY_OP (|); |
9462 | 0 | BINARY_OP (&); |
9463 | 0 | BINARY_OP (+); |
9464 | 0 | BINARY_OP (-); |
9465 | 0 | BINARY_OP (<); |
9466 | 0 | BINARY_OP (>); |
9467 | 0 | #undef UNARY_OP |
9468 | 0 | #undef BINARY_OP |
9469 | 0 | _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); |
9470 | 0 | bfd_set_error (bfd_error_invalid_operation); |
9471 | 0 | return false; |
9472 | 0 | } |
9473 | 0 | } |
9474 | | |
9475 | | static void |
9476 | | put_value (bfd_vma size, |
9477 | | unsigned long chunksz, |
9478 | | bfd *input_bfd, |
9479 | | bfd_vma x, |
9480 | | bfd_byte *location) |
9481 | 0 | { |
9482 | 0 | location += (size - chunksz); |
9483 | |
|
9484 | 0 | for (; size; size -= chunksz, location -= chunksz) |
9485 | 0 | { |
9486 | 0 | switch (chunksz) |
9487 | 0 | { |
9488 | 0 | case 1: |
9489 | 0 | bfd_put_8 (input_bfd, x, location); |
9490 | 0 | x >>= 8; |
9491 | 0 | break; |
9492 | 0 | case 2: |
9493 | 0 | bfd_put_16 (input_bfd, x, location); |
9494 | 0 | x >>= 16; |
9495 | 0 | break; |
9496 | 0 | case 4: |
9497 | 0 | bfd_put_32 (input_bfd, x, location); |
9498 | | /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ |
9499 | 0 | x >>= 16; |
9500 | 0 | x >>= 16; |
9501 | 0 | break; |
9502 | 0 | #ifdef BFD64 |
9503 | 0 | case 8: |
9504 | 0 | bfd_put_64 (input_bfd, x, location); |
9505 | | /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ |
9506 | 0 | x >>= 32; |
9507 | 0 | x >>= 32; |
9508 | 0 | break; |
9509 | 0 | #endif |
9510 | 0 | default: |
9511 | 0 | abort (); |
9512 | 0 | break; |
9513 | 0 | } |
9514 | 0 | } |
9515 | 0 | } |
9516 | | |
9517 | | static bfd_vma |
9518 | | get_value (bfd_vma size, |
9519 | | unsigned long chunksz, |
9520 | | bfd *input_bfd, |
9521 | | bfd_byte *location) |
9522 | 0 | { |
9523 | 0 | int shift; |
9524 | 0 | bfd_vma x = 0; |
9525 | | |
9526 | | /* Sanity checks. */ |
9527 | 0 | BFD_ASSERT (chunksz <= sizeof (x) |
9528 | 0 | && size >= chunksz |
9529 | 0 | && chunksz != 0 |
9530 | 0 | && (size % chunksz) == 0 |
9531 | 0 | && input_bfd != NULL |
9532 | 0 | && location != NULL); |
9533 | |
|
9534 | 0 | if (chunksz == sizeof (x)) |
9535 | 0 | { |
9536 | 0 | BFD_ASSERT (size == chunksz); |
9537 | | |
9538 | | /* Make sure that we do not perform an undefined shift operation. |
9539 | | We know that size == chunksz so there will only be one iteration |
9540 | | of the loop below. */ |
9541 | 0 | shift = 0; |
9542 | 0 | } |
9543 | 0 | else |
9544 | 0 | shift = 8 * chunksz; |
9545 | |
|
9546 | 0 | for (; size; size -= chunksz, location += chunksz) |
9547 | 0 | { |
9548 | 0 | switch (chunksz) |
9549 | 0 | { |
9550 | 0 | case 1: |
9551 | 0 | x = (x << shift) | bfd_get_8 (input_bfd, location); |
9552 | 0 | break; |
9553 | 0 | case 2: |
9554 | 0 | x = (x << shift) | bfd_get_16 (input_bfd, location); |
9555 | 0 | break; |
9556 | 0 | case 4: |
9557 | 0 | x = (x << shift) | bfd_get_32 (input_bfd, location); |
9558 | 0 | break; |
9559 | 0 | #ifdef BFD64 |
9560 | 0 | case 8: |
9561 | 0 | x = (x << shift) | bfd_get_64 (input_bfd, location); |
9562 | 0 | break; |
9563 | 0 | #endif |
9564 | 0 | default: |
9565 | 0 | abort (); |
9566 | 0 | } |
9567 | 0 | } |
9568 | 0 | return x; |
9569 | 0 | } |
9570 | | |
9571 | | static void |
9572 | | decode_complex_addend (unsigned long *start, /* in bits */ |
9573 | | unsigned long *oplen, /* in bits */ |
9574 | | unsigned long *len, /* in bits */ |
9575 | | unsigned long *wordsz, /* in bytes */ |
9576 | | unsigned long *chunksz, /* in bytes */ |
9577 | | unsigned long *lsb0_p, |
9578 | | unsigned long *signed_p, |
9579 | | unsigned long *trunc_p, |
9580 | | unsigned long encoded) |
9581 | 0 | { |
9582 | 0 | * start = encoded & 0x3F; |
9583 | 0 | * len = (encoded >> 6) & 0x3F; |
9584 | 0 | * oplen = (encoded >> 12) & 0x3F; |
9585 | 0 | * wordsz = (encoded >> 18) & 0xF; |
9586 | 0 | * chunksz = (encoded >> 22) & 0xF; |
9587 | 0 | * lsb0_p = (encoded >> 27) & 1; |
9588 | 0 | * signed_p = (encoded >> 28) & 1; |
9589 | 0 | * trunc_p = (encoded >> 29) & 1; |
9590 | 0 | } |
9591 | | |
9592 | | bfd_reloc_status_type |
9593 | | bfd_elf_perform_complex_relocation (bfd *input_bfd, |
9594 | | asection *input_section, |
9595 | | bfd_byte *contents, |
9596 | | Elf_Internal_Rela *rel, |
9597 | | bfd_vma relocation) |
9598 | 0 | { |
9599 | 0 | bfd_vma shift, x, mask; |
9600 | 0 | unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; |
9601 | 0 | bfd_reloc_status_type r; |
9602 | 0 | bfd_size_type octets; |
9603 | | |
9604 | | /* Perform this reloc, since it is complex. |
9605 | | (this is not to say that it necessarily refers to a complex |
9606 | | symbol; merely that it is a self-describing CGEN based reloc. |
9607 | | i.e. the addend has the complete reloc information (bit start, end, |
9608 | | word size, etc) encoded within it.). */ |
9609 | |
|
9610 | 0 | decode_complex_addend (&start, &oplen, &len, &wordsz, |
9611 | 0 | &chunksz, &lsb0_p, &signed_p, |
9612 | 0 | &trunc_p, rel->r_addend); |
9613 | |
|
9614 | 0 | mask = (((1L << (len - 1)) - 1) << 1) | 1; |
9615 | |
|
9616 | 0 | if (lsb0_p) |
9617 | 0 | shift = (start + 1) - len; |
9618 | 0 | else |
9619 | 0 | shift = (8 * wordsz) - (start + len); |
9620 | |
|
9621 | 0 | octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); |
9622 | 0 | x = get_value (wordsz, chunksz, input_bfd, contents + octets); |
9623 | |
|
9624 | | #ifdef DEBUG |
9625 | | printf ("Doing complex reloc: " |
9626 | | "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " |
9627 | | "chunksz %ld, start %ld, len %ld, oplen %ld\n" |
9628 | | " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", |
9629 | | lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, |
9630 | | oplen, (unsigned long) x, (unsigned long) mask, |
9631 | | (unsigned long) relocation); |
9632 | | #endif |
9633 | |
|
9634 | 0 | r = bfd_reloc_ok; |
9635 | 0 | if (! trunc_p) |
9636 | | /* Now do an overflow check. */ |
9637 | 0 | r = bfd_check_overflow ((signed_p |
9638 | 0 | ? complain_overflow_signed |
9639 | 0 | : complain_overflow_unsigned), |
9640 | 0 | len, 0, (8 * wordsz), |
9641 | 0 | relocation); |
9642 | | |
9643 | | /* Do the deed. */ |
9644 | 0 | x = (x & ~(mask << shift)) | ((relocation & mask) << shift); |
9645 | |
|
9646 | | #ifdef DEBUG |
9647 | | printf (" relocation: %8.8lx\n" |
9648 | | " shifted mask: %8.8lx\n" |
9649 | | " shifted/masked reloc: %8.8lx\n" |
9650 | | " result: %8.8lx\n", |
9651 | | (unsigned long) relocation, (unsigned long) (mask << shift), |
9652 | | (unsigned long) ((relocation & mask) << shift), (unsigned long) x); |
9653 | | #endif |
9654 | 0 | put_value (wordsz, chunksz, input_bfd, x, contents + octets); |
9655 | 0 | return r; |
9656 | 0 | } |
9657 | | |
9658 | | /* Functions to read r_offset from external (target order) reloc |
9659 | | entry. Faster than bfd_getl32 et al, because we let the compiler |
9660 | | know the value is aligned. */ |
9661 | | |
9662 | | static bfd_vma |
9663 | | ext32l_r_offset (const void *p) |
9664 | 0 | { |
9665 | 0 | union aligned32 |
9666 | 0 | { |
9667 | 0 | uint32_t v; |
9668 | 0 | unsigned char c[4]; |
9669 | 0 | }; |
9670 | 0 | const union aligned32 *a |
9671 | 0 | = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; |
9672 | |
|
9673 | 0 | uint32_t aval = ( (uint32_t) a->c[0] |
9674 | 0 | | (uint32_t) a->c[1] << 8 |
9675 | 0 | | (uint32_t) a->c[2] << 16 |
9676 | 0 | | (uint32_t) a->c[3] << 24); |
9677 | 0 | return aval; |
9678 | 0 | } |
9679 | | |
9680 | | static bfd_vma |
9681 | | ext32b_r_offset (const void *p) |
9682 | 0 | { |
9683 | 0 | union aligned32 |
9684 | 0 | { |
9685 | 0 | uint32_t v; |
9686 | 0 | unsigned char c[4]; |
9687 | 0 | }; |
9688 | 0 | const union aligned32 *a |
9689 | 0 | = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; |
9690 | |
|
9691 | 0 | uint32_t aval = ( (uint32_t) a->c[0] << 24 |
9692 | 0 | | (uint32_t) a->c[1] << 16 |
9693 | 0 | | (uint32_t) a->c[2] << 8 |
9694 | 0 | | (uint32_t) a->c[3]); |
9695 | 0 | return aval; |
9696 | 0 | } |
9697 | | |
9698 | | static bfd_vma |
9699 | | ext64l_r_offset (const void *p) |
9700 | 0 | { |
9701 | 0 | union aligned64 |
9702 | 0 | { |
9703 | 0 | uint64_t v; |
9704 | 0 | unsigned char c[8]; |
9705 | 0 | }; |
9706 | 0 | const union aligned64 *a |
9707 | 0 | = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; |
9708 | |
|
9709 | 0 | uint64_t aval = ( (uint64_t) a->c[0] |
9710 | 0 | | (uint64_t) a->c[1] << 8 |
9711 | 0 | | (uint64_t) a->c[2] << 16 |
9712 | 0 | | (uint64_t) a->c[3] << 24 |
9713 | 0 | | (uint64_t) a->c[4] << 32 |
9714 | 0 | | (uint64_t) a->c[5] << 40 |
9715 | 0 | | (uint64_t) a->c[6] << 48 |
9716 | 0 | | (uint64_t) a->c[7] << 56); |
9717 | 0 | return aval; |
9718 | 0 | } |
9719 | | |
9720 | | static bfd_vma |
9721 | | ext64b_r_offset (const void *p) |
9722 | 0 | { |
9723 | 0 | union aligned64 |
9724 | 0 | { |
9725 | 0 | uint64_t v; |
9726 | 0 | unsigned char c[8]; |
9727 | 0 | }; |
9728 | 0 | const union aligned64 *a |
9729 | 0 | = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; |
9730 | |
|
9731 | 0 | uint64_t aval = ( (uint64_t) a->c[0] << 56 |
9732 | 0 | | (uint64_t) a->c[1] << 48 |
9733 | 0 | | (uint64_t) a->c[2] << 40 |
9734 | 0 | | (uint64_t) a->c[3] << 32 |
9735 | 0 | | (uint64_t) a->c[4] << 24 |
9736 | 0 | | (uint64_t) a->c[5] << 16 |
9737 | 0 | | (uint64_t) a->c[6] << 8 |
9738 | 0 | | (uint64_t) a->c[7]); |
9739 | 0 | return aval; |
9740 | 0 | } |
9741 | | |
9742 | | /* When performing a relocatable link, the input relocations are |
9743 | | preserved. But, if they reference global symbols, the indices |
9744 | | referenced must be updated. Update all the relocations found in |
9745 | | RELDATA. */ |
9746 | | |
9747 | | static bool |
9748 | | elf_link_adjust_relocs (bfd *abfd, |
9749 | | asection *sec, |
9750 | | struct bfd_elf_section_reloc_data *reldata, |
9751 | | bool sort, |
9752 | | struct bfd_link_info *info) |
9753 | 0 | { |
9754 | 0 | unsigned int i; |
9755 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
9756 | 0 | bfd_byte *erela; |
9757 | 0 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
9758 | 0 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
9759 | 0 | bfd_vma r_type_mask; |
9760 | 0 | int r_sym_shift; |
9761 | 0 | unsigned int count = reldata->count; |
9762 | 0 | struct elf_link_hash_entry **rel_hash = reldata->hashes; |
9763 | |
|
9764 | 0 | if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) |
9765 | 0 | { |
9766 | 0 | swap_in = bed->s->swap_reloc_in; |
9767 | 0 | swap_out = bed->s->swap_reloc_out; |
9768 | 0 | } |
9769 | 0 | else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) |
9770 | 0 | { |
9771 | 0 | swap_in = bed->s->swap_reloca_in; |
9772 | 0 | swap_out = bed->s->swap_reloca_out; |
9773 | 0 | } |
9774 | 0 | else |
9775 | 0 | abort (); |
9776 | | |
9777 | 0 | if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) |
9778 | 0 | abort (); |
9779 | | |
9780 | 0 | if (bed->s->arch_size == 32) |
9781 | 0 | { |
9782 | 0 | r_type_mask = 0xff; |
9783 | 0 | r_sym_shift = 8; |
9784 | 0 | } |
9785 | 0 | else |
9786 | 0 | { |
9787 | 0 | r_type_mask = 0xffffffff; |
9788 | 0 | r_sym_shift = 32; |
9789 | 0 | } |
9790 | |
|
9791 | 0 | erela = reldata->hdr->contents; |
9792 | 0 | for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) |
9793 | 0 | { |
9794 | 0 | Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; |
9795 | 0 | unsigned int j; |
9796 | |
|
9797 | 0 | if (*rel_hash == NULL) |
9798 | 0 | continue; |
9799 | | |
9800 | 0 | if ((*rel_hash)->indx == -2 |
9801 | 0 | && info->gc_sections |
9802 | 0 | && ! info->gc_keep_exported) |
9803 | 0 | { |
9804 | | /* PR 21524: Let the user know if a symbol was removed by garbage collection. */ |
9805 | 0 | _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), |
9806 | 0 | abfd, sec, |
9807 | 0 | (*rel_hash)->root.root.string); |
9808 | 0 | _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), |
9809 | 0 | abfd, sec); |
9810 | 0 | bfd_set_error (bfd_error_invalid_operation); |
9811 | 0 | return false; |
9812 | 0 | } |
9813 | 0 | BFD_ASSERT ((*rel_hash)->indx >= 0); |
9814 | |
|
9815 | 0 | (*swap_in) (abfd, erela, irela); |
9816 | 0 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) |
9817 | 0 | irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift |
9818 | 0 | | (irela[j].r_info & r_type_mask)); |
9819 | 0 | (*swap_out) (abfd, irela, erela); |
9820 | 0 | } |
9821 | | |
9822 | 0 | if (bed->elf_backend_update_relocs) |
9823 | 0 | (*bed->elf_backend_update_relocs) (sec, reldata); |
9824 | |
|
9825 | 0 | if (sort && count != 0) |
9826 | 0 | { |
9827 | 0 | bfd_vma (*ext_r_off) (const void *); |
9828 | 0 | bfd_vma r_off; |
9829 | 0 | size_t elt_size; |
9830 | 0 | bfd_byte *base, *end, *p, *loc; |
9831 | 0 | bfd_byte *buf = NULL; |
9832 | |
|
9833 | 0 | if (bed->s->arch_size == 32) |
9834 | 0 | { |
9835 | 0 | if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) |
9836 | 0 | ext_r_off = ext32l_r_offset; |
9837 | 0 | else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) |
9838 | 0 | ext_r_off = ext32b_r_offset; |
9839 | 0 | else |
9840 | 0 | abort (); |
9841 | 0 | } |
9842 | 0 | else |
9843 | 0 | { |
9844 | 0 | if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) |
9845 | 0 | ext_r_off = ext64l_r_offset; |
9846 | 0 | else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) |
9847 | 0 | ext_r_off = ext64b_r_offset; |
9848 | 0 | else |
9849 | 0 | abort (); |
9850 | 0 | } |
9851 | | |
9852 | | /* Must use a stable sort here. A modified insertion sort, |
9853 | | since the relocs are mostly sorted already. */ |
9854 | 0 | elt_size = reldata->hdr->sh_entsize; |
9855 | 0 | base = reldata->hdr->contents; |
9856 | 0 | end = base + count * elt_size; |
9857 | 0 | if (elt_size > sizeof (Elf64_External_Rela)) |
9858 | 0 | abort (); |
9859 | | |
9860 | | /* Ensure the first element is lowest. This acts as a sentinel, |
9861 | | speeding the main loop below. */ |
9862 | 0 | r_off = (*ext_r_off) (base); |
9863 | 0 | for (p = loc = base; (p += elt_size) < end; ) |
9864 | 0 | { |
9865 | 0 | bfd_vma r_off2 = (*ext_r_off) (p); |
9866 | 0 | if (r_off > r_off2) |
9867 | 0 | { |
9868 | 0 | r_off = r_off2; |
9869 | 0 | loc = p; |
9870 | 0 | } |
9871 | 0 | } |
9872 | 0 | if (loc != base) |
9873 | 0 | { |
9874 | | /* Don't just swap *base and *loc as that changes the order |
9875 | | of the original base[0] and base[1] if they happen to |
9876 | | have the same r_offset. */ |
9877 | 0 | bfd_byte onebuf[sizeof (Elf64_External_Rela)]; |
9878 | 0 | memcpy (onebuf, loc, elt_size); |
9879 | 0 | memmove (base + elt_size, base, loc - base); |
9880 | 0 | memcpy (base, onebuf, elt_size); |
9881 | 0 | } |
9882 | |
|
9883 | 0 | for (p = base + elt_size; (p += elt_size) < end; ) |
9884 | 0 | { |
9885 | | /* base to p is sorted, *p is next to insert. */ |
9886 | 0 | r_off = (*ext_r_off) (p); |
9887 | | /* Search the sorted region for location to insert. */ |
9888 | 0 | loc = p - elt_size; |
9889 | 0 | while (r_off < (*ext_r_off) (loc)) |
9890 | 0 | loc -= elt_size; |
9891 | 0 | loc += elt_size; |
9892 | 0 | if (loc != p) |
9893 | 0 | { |
9894 | | /* Chances are there is a run of relocs to insert here, |
9895 | | from one of more input files. Files are not always |
9896 | | linked in order due to the way elf_link_input_bfd is |
9897 | | called. See pr17666. */ |
9898 | 0 | size_t sortlen = p - loc; |
9899 | 0 | bfd_vma r_off2 = (*ext_r_off) (loc); |
9900 | 0 | size_t runlen = elt_size; |
9901 | 0 | bfd_vma r_off_runend = r_off; |
9902 | 0 | bfd_vma r_off_runend_next; |
9903 | 0 | size_t buf_size = 96 * 1024; |
9904 | 0 | while (p + runlen < end |
9905 | 0 | && (sortlen <= buf_size |
9906 | 0 | || runlen + elt_size <= buf_size) |
9907 | | /* run must not break the ordering of base..loc+1 */ |
9908 | 0 | && r_off2 > (r_off_runend_next = (*ext_r_off) (p + runlen)) |
9909 | | /* run must be already sorted */ |
9910 | 0 | && r_off_runend_next >= r_off_runend) |
9911 | 0 | { |
9912 | 0 | runlen += elt_size; |
9913 | 0 | r_off_runend = r_off_runend_next; |
9914 | 0 | } |
9915 | 0 | if (buf == NULL) |
9916 | 0 | { |
9917 | 0 | buf = bfd_malloc (buf_size); |
9918 | 0 | if (buf == NULL) |
9919 | 0 | return false; |
9920 | 0 | } |
9921 | 0 | if (runlen < sortlen) |
9922 | 0 | { |
9923 | 0 | memcpy (buf, p, runlen); |
9924 | 0 | memmove (loc + runlen, loc, sortlen); |
9925 | 0 | memcpy (loc, buf, runlen); |
9926 | 0 | } |
9927 | 0 | else |
9928 | 0 | { |
9929 | 0 | memcpy (buf, loc, sortlen); |
9930 | 0 | memmove (loc, p, runlen); |
9931 | 0 | memcpy (loc + runlen, buf, sortlen); |
9932 | 0 | } |
9933 | 0 | p += runlen - elt_size; |
9934 | 0 | } |
9935 | 0 | } |
9936 | | /* Hashes are no longer valid. */ |
9937 | 0 | free (reldata->hashes); |
9938 | 0 | reldata->hashes = NULL; |
9939 | 0 | free (buf); |
9940 | 0 | } |
9941 | 0 | return true; |
9942 | 0 | } |
9943 | | |
9944 | | struct elf_link_sort_rela |
9945 | | { |
9946 | | union { |
9947 | | bfd_vma offset; |
9948 | | bfd_vma sym_mask; |
9949 | | } u; |
9950 | | enum elf_reloc_type_class type; |
9951 | | /* We use this as an array of size int_rels_per_ext_rel. */ |
9952 | | Elf_Internal_Rela rela[1]; |
9953 | | }; |
9954 | | |
9955 | | /* qsort stability here and for cmp2 is only an issue if multiple |
9956 | | dynamic relocations are emitted at the same address. But targets |
9957 | | that apply a series of dynamic relocations each operating on the |
9958 | | result of the prior relocation can't use -z combreloc as |
9959 | | implemented anyway. Such schemes tend to be broken by sorting on |
9960 | | symbol index. That leaves dynamic NONE relocs as the only other |
9961 | | case where ld might emit multiple relocs at the same address, and |
9962 | | those are only emitted due to target bugs. */ |
9963 | | |
9964 | | static int |
9965 | | elf_link_sort_cmp1 (const void *A, const void *B) |
9966 | 0 | { |
9967 | 0 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
9968 | 0 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; |
9969 | 0 | int relativea, relativeb; |
9970 | |
|
9971 | 0 | relativea = a->type == reloc_class_relative; |
9972 | 0 | relativeb = b->type == reloc_class_relative; |
9973 | |
|
9974 | 0 | if (relativea < relativeb) |
9975 | 0 | return 1; |
9976 | 0 | if (relativea > relativeb) |
9977 | 0 | return -1; |
9978 | 0 | if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) |
9979 | 0 | return -1; |
9980 | 0 | if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) |
9981 | 0 | return 1; |
9982 | 0 | if (a->rela->r_offset < b->rela->r_offset) |
9983 | 0 | return -1; |
9984 | 0 | if (a->rela->r_offset > b->rela->r_offset) |
9985 | 0 | return 1; |
9986 | 0 | return 0; |
9987 | 0 | } |
9988 | | |
9989 | | static int |
9990 | | elf_link_sort_cmp2 (const void *A, const void *B) |
9991 | 0 | { |
9992 | 0 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
9993 | 0 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; |
9994 | |
|
9995 | 0 | if (a->type < b->type) |
9996 | 0 | return -1; |
9997 | 0 | if (a->type > b->type) |
9998 | 0 | return 1; |
9999 | 0 | if (a->u.offset < b->u.offset) |
10000 | 0 | return -1; |
10001 | 0 | if (a->u.offset > b->u.offset) |
10002 | 0 | return 1; |
10003 | 0 | if (a->rela->r_offset < b->rela->r_offset) |
10004 | 0 | return -1; |
10005 | 0 | if (a->rela->r_offset > b->rela->r_offset) |
10006 | 0 | return 1; |
10007 | 0 | return 0; |
10008 | 0 | } |
10009 | | |
10010 | | static size_t |
10011 | | elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) |
10012 | 0 | { |
10013 | 0 | asection *dynamic_relocs; |
10014 | 0 | asection *rela_dyn; |
10015 | 0 | asection *rel_dyn; |
10016 | 0 | bfd_size_type count, size; |
10017 | 0 | size_t i, ret, sort_elt, ext_size; |
10018 | 0 | bfd_byte *sort, *s_non_relative, *p; |
10019 | 0 | struct elf_link_sort_rela *sq; |
10020 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
10021 | 0 | int i2e = bed->s->int_rels_per_ext_rel; |
10022 | 0 | unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
10023 | 0 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
10024 | 0 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
10025 | 0 | struct bfd_link_order *lo; |
10026 | 0 | bfd_vma r_sym_mask; |
10027 | 0 | bool use_rela; |
10028 | | |
10029 | | /* Find a dynamic reloc section. */ |
10030 | 0 | rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); |
10031 | 0 | rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); |
10032 | 0 | if (rela_dyn != NULL && rela_dyn->size > 0 |
10033 | 0 | && rel_dyn != NULL && rel_dyn->size > 0) |
10034 | 0 | { |
10035 | 0 | bool use_rela_initialised = false; |
10036 | | |
10037 | | /* This is just here to stop gcc from complaining. |
10038 | | Its initialization checking code is not perfect. */ |
10039 | 0 | use_rela = true; |
10040 | | |
10041 | | /* Both sections are present. Examine the sizes |
10042 | | of the indirect sections to help us choose. */ |
10043 | 0 | for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) |
10044 | 0 | if (lo->type == bfd_indirect_link_order) |
10045 | 0 | { |
10046 | 0 | asection *o = lo->u.indirect.section; |
10047 | |
|
10048 | 0 | if ((o->size % bed->s->sizeof_rela) == 0) |
10049 | 0 | { |
10050 | 0 | if ((o->size % bed->s->sizeof_rel) == 0) |
10051 | | /* Section size is divisible by both rel and rela sizes. |
10052 | | It is of no help to us. */ |
10053 | 0 | ; |
10054 | 0 | else |
10055 | 0 | { |
10056 | | /* Section size is only divisible by rela. */ |
10057 | 0 | if (use_rela_initialised && !use_rela) |
10058 | 0 | { |
10059 | 0 | _bfd_error_handler (_("%pB: unable to sort relocs - " |
10060 | 0 | "they are in more than one size"), |
10061 | 0 | abfd); |
10062 | 0 | bfd_set_error (bfd_error_invalid_operation); |
10063 | 0 | return 0; |
10064 | 0 | } |
10065 | 0 | else |
10066 | 0 | { |
10067 | 0 | use_rela = true; |
10068 | 0 | use_rela_initialised = true; |
10069 | 0 | } |
10070 | 0 | } |
10071 | 0 | } |
10072 | 0 | else if ((o->size % bed->s->sizeof_rel) == 0) |
10073 | 0 | { |
10074 | | /* Section size is only divisible by rel. */ |
10075 | 0 | if (use_rela_initialised && use_rela) |
10076 | 0 | { |
10077 | 0 | _bfd_error_handler (_("%pB: unable to sort relocs - " |
10078 | 0 | "they are in more than one size"), |
10079 | 0 | abfd); |
10080 | 0 | bfd_set_error (bfd_error_invalid_operation); |
10081 | 0 | return 0; |
10082 | 0 | } |
10083 | 0 | else |
10084 | 0 | { |
10085 | 0 | use_rela = false; |
10086 | 0 | use_rela_initialised = true; |
10087 | 0 | } |
10088 | 0 | } |
10089 | 0 | else |
10090 | 0 | { |
10091 | | /* The section size is not divisible by either - |
10092 | | something is wrong. */ |
10093 | 0 | _bfd_error_handler (_("%pB: unable to sort relocs - " |
10094 | 0 | "they are of an unknown size"), abfd); |
10095 | 0 | bfd_set_error (bfd_error_invalid_operation); |
10096 | 0 | return 0; |
10097 | 0 | } |
10098 | 0 | } |
10099 | | |
10100 | 0 | for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) |
10101 | 0 | if (lo->type == bfd_indirect_link_order) |
10102 | 0 | { |
10103 | 0 | asection *o = lo->u.indirect.section; |
10104 | |
|
10105 | 0 | if ((o->size % bed->s->sizeof_rela) == 0) |
10106 | 0 | { |
10107 | 0 | if ((o->size % bed->s->sizeof_rel) == 0) |
10108 | | /* Section size is divisible by both rel and rela sizes. |
10109 | | It is of no help to us. */ |
10110 | 0 | ; |
10111 | 0 | else |
10112 | 0 | { |
10113 | | /* Section size is only divisible by rela. */ |
10114 | 0 | if (use_rela_initialised && !use_rela) |
10115 | 0 | { |
10116 | 0 | _bfd_error_handler (_("%pB: unable to sort relocs - " |
10117 | 0 | "they are in more than one size"), |
10118 | 0 | abfd); |
10119 | 0 | bfd_set_error (bfd_error_invalid_operation); |
10120 | 0 | return 0; |
10121 | 0 | } |
10122 | 0 | else |
10123 | 0 | { |
10124 | 0 | use_rela = true; |
10125 | 0 | use_rela_initialised = true; |
10126 | 0 | } |
10127 | 0 | } |
10128 | 0 | } |
10129 | 0 | else if ((o->size % bed->s->sizeof_rel) == 0) |
10130 | 0 | { |
10131 | | /* Section size is only divisible by rel. */ |
10132 | 0 | if (use_rela_initialised && use_rela) |
10133 | 0 | { |
10134 | 0 | _bfd_error_handler (_("%pB: unable to sort relocs - " |
10135 | 0 | "they are in more than one size"), |
10136 | 0 | abfd); |
10137 | 0 | bfd_set_error (bfd_error_invalid_operation); |
10138 | 0 | return 0; |
10139 | 0 | } |
10140 | 0 | else |
10141 | 0 | { |
10142 | 0 | use_rela = false; |
10143 | 0 | use_rela_initialised = true; |
10144 | 0 | } |
10145 | 0 | } |
10146 | 0 | else |
10147 | 0 | { |
10148 | | /* The section size is not divisible by either - |
10149 | | something is wrong. */ |
10150 | 0 | _bfd_error_handler (_("%pB: unable to sort relocs - " |
10151 | 0 | "they are of an unknown size"), abfd); |
10152 | 0 | bfd_set_error (bfd_error_invalid_operation); |
10153 | 0 | return 0; |
10154 | 0 | } |
10155 | 0 | } |
10156 | | |
10157 | 0 | if (! use_rela_initialised) |
10158 | | /* Make a guess. */ |
10159 | 0 | use_rela = true; |
10160 | 0 | } |
10161 | 0 | else if (rela_dyn != NULL && rela_dyn->size > 0) |
10162 | 0 | use_rela = true; |
10163 | 0 | else if (rel_dyn != NULL && rel_dyn->size > 0) |
10164 | 0 | use_rela = false; |
10165 | 0 | else |
10166 | 0 | return 0; |
10167 | | |
10168 | 0 | if (use_rela) |
10169 | 0 | { |
10170 | 0 | dynamic_relocs = rela_dyn; |
10171 | 0 | ext_size = bed->s->sizeof_rela; |
10172 | 0 | swap_in = bed->s->swap_reloca_in; |
10173 | 0 | swap_out = bed->s->swap_reloca_out; |
10174 | 0 | } |
10175 | 0 | else |
10176 | 0 | { |
10177 | 0 | dynamic_relocs = rel_dyn; |
10178 | 0 | ext_size = bed->s->sizeof_rel; |
10179 | 0 | swap_in = bed->s->swap_reloc_in; |
10180 | 0 | swap_out = bed->s->swap_reloc_out; |
10181 | 0 | } |
10182 | |
|
10183 | 0 | size = 0; |
10184 | 0 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
10185 | 0 | if (lo->type == bfd_indirect_link_order) |
10186 | 0 | size += lo->u.indirect.section->size; |
10187 | |
|
10188 | 0 | if (size != dynamic_relocs->size) |
10189 | 0 | return 0; |
10190 | | |
10191 | 0 | sort_elt = (sizeof (struct elf_link_sort_rela) |
10192 | 0 | + (i2e - 1) * sizeof (Elf_Internal_Rela)); |
10193 | |
|
10194 | 0 | count = dynamic_relocs->size / ext_size; |
10195 | 0 | if (count == 0) |
10196 | 0 | return 0; |
10197 | 0 | sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); |
10198 | |
|
10199 | 0 | if (sort == NULL) |
10200 | 0 | { |
10201 | 0 | (*info->callbacks->warning) |
10202 | 0 | (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); |
10203 | 0 | return 0; |
10204 | 0 | } |
10205 | | |
10206 | 0 | if (bed->s->arch_size == 32) |
10207 | 0 | r_sym_mask = ~(bfd_vma) 0xff; |
10208 | 0 | else |
10209 | 0 | r_sym_mask = ~(bfd_vma) 0xffffffff; |
10210 | |
|
10211 | 0 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
10212 | 0 | if (lo->type == bfd_indirect_link_order) |
10213 | 0 | { |
10214 | 0 | bfd_byte *erel, *erelend; |
10215 | 0 | asection *o = lo->u.indirect.section; |
10216 | |
|
10217 | 0 | if (o->contents == NULL && o->size != 0) |
10218 | 0 | { |
10219 | | /* This is a reloc section that is being handled as a normal |
10220 | | section. See bfd_section_from_shdr. We can't combine |
10221 | | relocs in this case. */ |
10222 | 0 | free (sort); |
10223 | 0 | return 0; |
10224 | 0 | } |
10225 | 0 | erel = o->contents; |
10226 | 0 | erelend = o->contents + o->size; |
10227 | 0 | p = sort + o->output_offset * opb / ext_size * sort_elt; |
10228 | |
|
10229 | 0 | while (erel < erelend) |
10230 | 0 | { |
10231 | 0 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; |
10232 | |
|
10233 | 0 | (*swap_in) (abfd, erel, s->rela); |
10234 | 0 | s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); |
10235 | 0 | s->u.sym_mask = r_sym_mask; |
10236 | 0 | p += sort_elt; |
10237 | 0 | erel += ext_size; |
10238 | 0 | } |
10239 | 0 | } |
10240 | | |
10241 | 0 | qsort (sort, count, sort_elt, elf_link_sort_cmp1); |
10242 | |
|
10243 | 0 | for (i = 0, p = sort; i < count; i++, p += sort_elt) |
10244 | 0 | { |
10245 | 0 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; |
10246 | 0 | if (s->type != reloc_class_relative) |
10247 | 0 | break; |
10248 | 0 | } |
10249 | 0 | ret = i; |
10250 | 0 | s_non_relative = p; |
10251 | |
|
10252 | 0 | sq = (struct elf_link_sort_rela *) s_non_relative; |
10253 | 0 | for (; i < count; i++, p += sort_elt) |
10254 | 0 | { |
10255 | 0 | struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; |
10256 | 0 | if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) |
10257 | 0 | sq = sp; |
10258 | 0 | sp->u.offset = sq->rela->r_offset; |
10259 | 0 | } |
10260 | |
|
10261 | 0 | qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); |
10262 | |
|
10263 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
10264 | 0 | if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) |
10265 | 0 | { |
10266 | | /* We have plt relocs in .rela.dyn. */ |
10267 | 0 | sq = (struct elf_link_sort_rela *) sort; |
10268 | 0 | for (i = 0; i < count; i++) |
10269 | 0 | if (sq[count - i - 1].type != reloc_class_plt) |
10270 | 0 | break; |
10271 | 0 | if (i != 0 && htab->srelplt->size == i * ext_size) |
10272 | 0 | { |
10273 | 0 | struct bfd_link_order **plo; |
10274 | | /* Put srelplt link_order last. This is so the output_offset |
10275 | | set in the next loop is correct for DT_JMPREL. */ |
10276 | 0 | for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) |
10277 | 0 | if ((*plo)->type == bfd_indirect_link_order |
10278 | 0 | && (*plo)->u.indirect.section == htab->srelplt) |
10279 | 0 | { |
10280 | 0 | lo = *plo; |
10281 | 0 | *plo = lo->next; |
10282 | 0 | } |
10283 | 0 | else |
10284 | 0 | plo = &(*plo)->next; |
10285 | 0 | *plo = lo; |
10286 | 0 | lo->next = NULL; |
10287 | 0 | dynamic_relocs->map_tail.link_order = lo; |
10288 | 0 | } |
10289 | 0 | } |
10290 | |
|
10291 | 0 | p = sort; |
10292 | 0 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
10293 | 0 | if (lo->type == bfd_indirect_link_order) |
10294 | 0 | { |
10295 | 0 | bfd_byte *erel, *erelend; |
10296 | 0 | asection *o = lo->u.indirect.section; |
10297 | |
|
10298 | 0 | erel = o->contents; |
10299 | 0 | erelend = o->contents + o->size; |
10300 | 0 | o->output_offset = (p - sort) / sort_elt * ext_size / opb; |
10301 | 0 | while (erel < erelend) |
10302 | 0 | { |
10303 | 0 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; |
10304 | 0 | (*swap_out) (abfd, s->rela, erel); |
10305 | 0 | p += sort_elt; |
10306 | 0 | erel += ext_size; |
10307 | 0 | } |
10308 | 0 | } |
10309 | |
|
10310 | 0 | free (sort); |
10311 | 0 | *psec = dynamic_relocs; |
10312 | 0 | return ret; |
10313 | 0 | } |
10314 | | |
10315 | | /* Add a symbol to the output symbol string table. */ |
10316 | | |
10317 | | static int |
10318 | | elf_link_output_symstrtab (void *finf, |
10319 | | const char *name, |
10320 | | Elf_Internal_Sym *elfsym, |
10321 | | asection *input_sec, |
10322 | | struct elf_link_hash_entry *h) |
10323 | 0 | { |
10324 | 0 | struct elf_final_link_info *flinfo = finf; |
10325 | 0 | int (*output_symbol_hook) |
10326 | 0 | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, |
10327 | 0 | struct elf_link_hash_entry *); |
10328 | 0 | struct elf_link_hash_table *hash_table; |
10329 | 0 | const struct elf_backend_data *bed; |
10330 | 0 | bfd_size_type strtabsize; |
10331 | |
|
10332 | 0 | BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); |
10333 | |
|
10334 | 0 | bed = get_elf_backend_data (flinfo->output_bfd); |
10335 | 0 | output_symbol_hook = bed->elf_backend_link_output_symbol_hook; |
10336 | 0 | if (output_symbol_hook != NULL) |
10337 | 0 | { |
10338 | 0 | int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); |
10339 | 0 | if (ret != 1) |
10340 | 0 | return ret; |
10341 | 0 | } |
10342 | | |
10343 | 0 | if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) |
10344 | 0 | elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; |
10345 | 0 | if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) |
10346 | 0 | elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; |
10347 | |
|
10348 | 0 | if (name == NULL || *name == '\0') |
10349 | 0 | elfsym->st_name = (unsigned long) -1; |
10350 | 0 | else |
10351 | 0 | { |
10352 | | /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize |
10353 | | to get the final offset for st_name. */ |
10354 | 0 | char *versioned_name = (char *) name; |
10355 | 0 | if (h != NULL) |
10356 | 0 | { |
10357 | 0 | if (h->versioned == versioned && h->def_dynamic) |
10358 | 0 | { |
10359 | | /* Keep only one '@' for versioned symbols defined in |
10360 | | shared objects. */ |
10361 | 0 | char *version = strrchr (name, ELF_VER_CHR); |
10362 | 0 | char *base_end = strchr (name, ELF_VER_CHR); |
10363 | 0 | if (version != base_end) |
10364 | 0 | { |
10365 | 0 | size_t base_len; |
10366 | 0 | size_t len = strlen (name); |
10367 | 0 | versioned_name = bfd_alloc (flinfo->output_bfd, len); |
10368 | 0 | if (versioned_name == NULL) |
10369 | 0 | return 0; |
10370 | 0 | base_len = base_end - name; |
10371 | 0 | memcpy (versioned_name, name, base_len); |
10372 | 0 | memcpy (versioned_name + base_len, version, |
10373 | 0 | len - base_len); |
10374 | 0 | } |
10375 | 0 | } |
10376 | 0 | } |
10377 | 0 | else if (flinfo->info->unique_symbol |
10378 | 0 | && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL) |
10379 | 0 | { |
10380 | 0 | struct local_hash_entry *lh; |
10381 | 0 | size_t count_len; |
10382 | 0 | size_t base_len; |
10383 | 0 | char buf[30]; |
10384 | 0 | switch (ELF_ST_TYPE (elfsym->st_info)) |
10385 | 0 | { |
10386 | 0 | case STT_FILE: |
10387 | 0 | case STT_SECTION: |
10388 | 0 | break; |
10389 | 0 | default: |
10390 | 0 | lh = (struct local_hash_entry *) bfd_hash_lookup |
10391 | 0 | (&flinfo->local_hash_table, name, true, false); |
10392 | 0 | if (lh == NULL) |
10393 | 0 | return 0; |
10394 | | /* Always append ".COUNT" to local symbols to avoid |
10395 | | potential conflicts with local symbol "XXX.COUNT". */ |
10396 | 0 | sprintf (buf, "%lx", lh->count); |
10397 | 0 | base_len = lh->size; |
10398 | 0 | if (!base_len) |
10399 | 0 | { |
10400 | 0 | base_len = strlen (name); |
10401 | 0 | lh->size = base_len; |
10402 | 0 | } |
10403 | 0 | count_len = strlen (buf); |
10404 | 0 | versioned_name = bfd_alloc (flinfo->output_bfd, |
10405 | 0 | base_len + count_len + 2); |
10406 | 0 | if (versioned_name == NULL) |
10407 | 0 | return 0; |
10408 | 0 | memcpy (versioned_name, name, base_len); |
10409 | 0 | versioned_name[base_len] = '.'; |
10410 | 0 | memcpy (versioned_name + base_len + 1, buf, |
10411 | 0 | count_len + 1); |
10412 | 0 | lh->count++; |
10413 | 0 | break; |
10414 | 0 | } |
10415 | 0 | } |
10416 | 0 | elfsym->st_name |
10417 | 0 | = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, |
10418 | 0 | versioned_name, false); |
10419 | 0 | if (elfsym->st_name == (unsigned long) -1) |
10420 | 0 | return 0; |
10421 | 0 | } |
10422 | | |
10423 | 0 | hash_table = elf_hash_table (flinfo->info); |
10424 | 0 | strtabsize = hash_table->strtabsize; |
10425 | 0 | if (strtabsize <= flinfo->output_bfd->symcount) |
10426 | 0 | { |
10427 | 0 | strtabsize += strtabsize; |
10428 | 0 | hash_table->strtabsize = strtabsize; |
10429 | 0 | strtabsize *= sizeof (*hash_table->strtab); |
10430 | 0 | hash_table->strtab |
10431 | 0 | = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, |
10432 | 0 | strtabsize); |
10433 | 0 | if (hash_table->strtab == NULL) |
10434 | 0 | return 0; |
10435 | 0 | } |
10436 | 0 | hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym; |
10437 | 0 | hash_table->strtab[flinfo->output_bfd->symcount].dest_index |
10438 | 0 | = flinfo->output_bfd->symcount; |
10439 | 0 | flinfo->output_bfd->symcount += 1; |
10440 | |
|
10441 | 0 | return 1; |
10442 | 0 | } |
10443 | | |
10444 | | /* Swap symbols out to the symbol table and flush the output symbols to |
10445 | | the file. */ |
10446 | | |
10447 | | static bool |
10448 | | elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) |
10449 | 0 | { |
10450 | 0 | struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); |
10451 | 0 | size_t amt; |
10452 | 0 | size_t i; |
10453 | 0 | const struct elf_backend_data *bed; |
10454 | 0 | bfd_byte *symbuf; |
10455 | 0 | Elf_Internal_Shdr *hdr; |
10456 | 0 | file_ptr pos; |
10457 | 0 | bool ret; |
10458 | |
|
10459 | 0 | if (flinfo->output_bfd->symcount == 0) |
10460 | 0 | return true; |
10461 | | |
10462 | 0 | BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); |
10463 | |
|
10464 | 0 | bed = get_elf_backend_data (flinfo->output_bfd); |
10465 | |
|
10466 | 0 | amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; |
10467 | 0 | symbuf = (bfd_byte *) bfd_malloc (amt); |
10468 | 0 | if (symbuf == NULL) |
10469 | 0 | return false; |
10470 | | |
10471 | 0 | if (flinfo->symshndxbuf) |
10472 | 0 | { |
10473 | 0 | amt = sizeof (Elf_External_Sym_Shndx); |
10474 | 0 | amt *= bfd_get_symcount (flinfo->output_bfd); |
10475 | 0 | flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); |
10476 | 0 | if (flinfo->symshndxbuf == NULL) |
10477 | 0 | { |
10478 | 0 | free (symbuf); |
10479 | 0 | return false; |
10480 | 0 | } |
10481 | 0 | } |
10482 | | |
10483 | | /* Now swap out the symbols. */ |
10484 | 0 | for (i = 0; i < flinfo->output_bfd->symcount; i++) |
10485 | 0 | { |
10486 | 0 | struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; |
10487 | 0 | if (elfsym->sym.st_name == (unsigned long) -1) |
10488 | 0 | elfsym->sym.st_name = 0; |
10489 | 0 | else |
10490 | 0 | elfsym->sym.st_name |
10491 | 0 | = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, |
10492 | 0 | elfsym->sym.st_name); |
10493 | | |
10494 | | /* Inform the linker of the addition of this symbol. */ |
10495 | |
|
10496 | 0 | if (flinfo->info->callbacks->ctf_new_symbol) |
10497 | 0 | flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index, |
10498 | 0 | &elfsym->sym); |
10499 | |
|
10500 | 0 | bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, |
10501 | 0 | ((bfd_byte *) symbuf |
10502 | 0 | + (elfsym->dest_index |
10503 | 0 | * bed->s->sizeof_sym)), |
10504 | 0 | NPTR_ADD (flinfo->symshndxbuf, |
10505 | 0 | elfsym->dest_index)); |
10506 | 0 | } |
10507 | |
|
10508 | 0 | hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; |
10509 | 0 | pos = hdr->sh_offset + hdr->sh_size; |
10510 | 0 | amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; |
10511 | 0 | if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 |
10512 | 0 | && bfd_write (symbuf, amt, flinfo->output_bfd) == amt) |
10513 | 0 | { |
10514 | 0 | hdr->sh_size += amt; |
10515 | 0 | ret = true; |
10516 | 0 | } |
10517 | 0 | else |
10518 | 0 | ret = false; |
10519 | |
|
10520 | 0 | free (symbuf); |
10521 | 0 | return ret; |
10522 | 0 | } |
10523 | | |
10524 | | /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ |
10525 | | |
10526 | | static bool |
10527 | | check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) |
10528 | 0 | { |
10529 | 0 | if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) |
10530 | 0 | && sym->st_shndx < SHN_LORESERVE) |
10531 | 0 | { |
10532 | | /* The gABI doesn't support dynamic symbols in output sections |
10533 | | beyond 64k. */ |
10534 | 0 | _bfd_error_handler |
10535 | | /* xgettext:c-format */ |
10536 | 0 | (_("%pB: too many sections: %d (>= %d)"), |
10537 | 0 | abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); |
10538 | 0 | bfd_set_error (bfd_error_nonrepresentable_section); |
10539 | 0 | return false; |
10540 | 0 | } |
10541 | 0 | return true; |
10542 | 0 | } |
10543 | | |
10544 | | /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in |
10545 | | allowing an unsatisfied unversioned symbol in the DSO to match a |
10546 | | versioned symbol that would normally require an explicit version. |
10547 | | We also handle the case that a DSO references a hidden symbol |
10548 | | which may be satisfied by a versioned symbol in another DSO. */ |
10549 | | |
10550 | | static bool |
10551 | | elf_link_check_versioned_symbol (struct bfd_link_info *info, |
10552 | | const struct elf_backend_data *bed, |
10553 | | struct elf_link_hash_entry *h) |
10554 | 0 | { |
10555 | 0 | bfd *abfd; |
10556 | 0 | struct elf_link_loaded_list *loaded; |
10557 | |
|
10558 | 0 | if (!is_elf_hash_table (info->hash)) |
10559 | 0 | return false; |
10560 | | |
10561 | | /* Check indirect symbol. */ |
10562 | 0 | while (h->root.type == bfd_link_hash_indirect) |
10563 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
10564 | |
|
10565 | 0 | switch (h->root.type) |
10566 | 0 | { |
10567 | 0 | default: |
10568 | 0 | abfd = NULL; |
10569 | 0 | break; |
10570 | | |
10571 | 0 | case bfd_link_hash_undefined: |
10572 | 0 | case bfd_link_hash_undefweak: |
10573 | 0 | abfd = h->root.u.undef.abfd; |
10574 | 0 | if (abfd == NULL |
10575 | 0 | || (abfd->flags & DYNAMIC) == 0 |
10576 | 0 | || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) |
10577 | 0 | return false; |
10578 | 0 | break; |
10579 | | |
10580 | 0 | case bfd_link_hash_defined: |
10581 | 0 | case bfd_link_hash_defweak: |
10582 | 0 | abfd = h->root.u.def.section->owner; |
10583 | 0 | break; |
10584 | | |
10585 | 0 | case bfd_link_hash_common: |
10586 | 0 | abfd = h->root.u.c.p->section->owner; |
10587 | 0 | break; |
10588 | 0 | } |
10589 | 0 | BFD_ASSERT (abfd != NULL); |
10590 | |
|
10591 | 0 | for (loaded = elf_hash_table (info)->dyn_loaded; |
10592 | 0 | loaded != NULL; |
10593 | 0 | loaded = loaded->next) |
10594 | 0 | { |
10595 | 0 | bfd *input; |
10596 | 0 | Elf_Internal_Shdr *hdr; |
10597 | 0 | size_t symcount; |
10598 | 0 | size_t extsymcount; |
10599 | 0 | size_t extsymoff; |
10600 | 0 | Elf_Internal_Shdr *versymhdr; |
10601 | 0 | Elf_Internal_Sym *isym; |
10602 | 0 | Elf_Internal_Sym *isymend; |
10603 | 0 | Elf_Internal_Sym *isymbuf; |
10604 | 0 | Elf_External_Versym *ever; |
10605 | 0 | Elf_External_Versym *extversym; |
10606 | |
|
10607 | 0 | input = loaded->abfd; |
10608 | | |
10609 | | /* We check each DSO for a possible hidden versioned definition. */ |
10610 | 0 | if (input == abfd |
10611 | 0 | || elf_dynversym (input) == 0) |
10612 | 0 | continue; |
10613 | | |
10614 | 0 | hdr = &elf_tdata (input)->dynsymtab_hdr; |
10615 | |
|
10616 | 0 | symcount = hdr->sh_size / bed->s->sizeof_sym; |
10617 | 0 | if (elf_bad_symtab (input)) |
10618 | 0 | { |
10619 | 0 | extsymcount = symcount; |
10620 | 0 | extsymoff = 0; |
10621 | 0 | } |
10622 | 0 | else |
10623 | 0 | { |
10624 | 0 | extsymcount = symcount - hdr->sh_info; |
10625 | 0 | extsymoff = hdr->sh_info; |
10626 | 0 | } |
10627 | |
|
10628 | 0 | if (extsymcount == 0) |
10629 | 0 | continue; |
10630 | | |
10631 | 0 | isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, |
10632 | 0 | NULL, NULL, NULL); |
10633 | 0 | if (isymbuf == NULL) |
10634 | 0 | return false; |
10635 | | |
10636 | | /* Read in any version definitions. */ |
10637 | 0 | versymhdr = &elf_tdata (input)->dynversym_hdr; |
10638 | 0 | if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 |
10639 | 0 | || (extversym = (Elf_External_Versym *) |
10640 | 0 | _bfd_malloc_and_read (input, versymhdr->sh_size, |
10641 | 0 | versymhdr->sh_size)) == NULL) |
10642 | 0 | { |
10643 | 0 | free (isymbuf); |
10644 | 0 | return false; |
10645 | 0 | } |
10646 | | |
10647 | 0 | ever = extversym + extsymoff; |
10648 | 0 | isymend = isymbuf + extsymcount; |
10649 | 0 | for (isym = isymbuf; isym < isymend; isym++, ever++) |
10650 | 0 | { |
10651 | 0 | const char *name; |
10652 | 0 | Elf_Internal_Versym iver; |
10653 | 0 | unsigned short version_index; |
10654 | |
|
10655 | 0 | if (ELF_ST_BIND (isym->st_info) == STB_LOCAL |
10656 | 0 | || isym->st_shndx == SHN_UNDEF) |
10657 | 0 | continue; |
10658 | | |
10659 | 0 | name = bfd_elf_string_from_elf_section (input, |
10660 | 0 | hdr->sh_link, |
10661 | 0 | isym->st_name); |
10662 | 0 | if (strcmp (name, h->root.root.string) != 0) |
10663 | 0 | continue; |
10664 | | |
10665 | 0 | _bfd_elf_swap_versym_in (input, ever, &iver); |
10666 | |
|
10667 | 0 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
10668 | 0 | && !(h->def_regular |
10669 | 0 | && h->forced_local)) |
10670 | 0 | { |
10671 | | /* If we have a non-hidden versioned sym, then it should |
10672 | | have provided a definition for the undefined sym unless |
10673 | | it is defined in a non-shared object and forced local. |
10674 | | */ |
10675 | 0 | abort (); |
10676 | 0 | } |
10677 | | |
10678 | 0 | version_index = iver.vs_vers & VERSYM_VERSION; |
10679 | 0 | if (version_index == 1 || version_index == 2) |
10680 | 0 | { |
10681 | | /* This is the base or first version. We can use it. */ |
10682 | 0 | free (extversym); |
10683 | 0 | free (isymbuf); |
10684 | 0 | return true; |
10685 | 0 | } |
10686 | 0 | } |
10687 | | |
10688 | 0 | free (extversym); |
10689 | 0 | free (isymbuf); |
10690 | 0 | } |
10691 | | |
10692 | 0 | return false; |
10693 | 0 | } |
10694 | | |
10695 | | /* Convert ELF common symbol TYPE. */ |
10696 | | |
10697 | | static int |
10698 | | elf_link_convert_common_type (struct bfd_link_info *info, int type) |
10699 | 0 | { |
10700 | | /* Commom symbol can only appear in relocatable link. */ |
10701 | 0 | if (!bfd_link_relocatable (info)) |
10702 | 0 | abort (); |
10703 | 0 | switch (info->elf_stt_common) |
10704 | 0 | { |
10705 | 0 | case unchanged: |
10706 | 0 | break; |
10707 | 0 | case elf_stt_common: |
10708 | 0 | type = STT_COMMON; |
10709 | 0 | break; |
10710 | 0 | case no_elf_stt_common: |
10711 | 0 | type = STT_OBJECT; |
10712 | 0 | break; |
10713 | 0 | } |
10714 | 0 | return type; |
10715 | 0 | } |
10716 | | |
10717 | | /* Add an external symbol to the symbol table. This is called from |
10718 | | the hash table traversal routine. When generating a shared object, |
10719 | | we go through the symbol table twice. The first time we output |
10720 | | anything that might have been forced to local scope in a version |
10721 | | script. The second time we output the symbols that are still |
10722 | | global symbols. */ |
10723 | | |
10724 | | static bool |
10725 | | elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) |
10726 | 0 | { |
10727 | 0 | struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; |
10728 | 0 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; |
10729 | 0 | struct elf_final_link_info *flinfo = eoinfo->flinfo; |
10730 | 0 | bool strip; |
10731 | 0 | Elf_Internal_Sym sym; |
10732 | 0 | asection *input_sec; |
10733 | 0 | const struct elf_backend_data *bed; |
10734 | 0 | long indx; |
10735 | 0 | int ret; |
10736 | 0 | unsigned int type; |
10737 | |
|
10738 | 0 | if (h->root.type == bfd_link_hash_warning) |
10739 | 0 | { |
10740 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
10741 | 0 | if (h->root.type == bfd_link_hash_new) |
10742 | 0 | return true; |
10743 | 0 | } |
10744 | | |
10745 | | /* Decide whether to output this symbol in this pass. */ |
10746 | 0 | if (eoinfo->localsyms) |
10747 | 0 | { |
10748 | 0 | if (!h->forced_local) |
10749 | 0 | return true; |
10750 | 0 | } |
10751 | 0 | else |
10752 | 0 | { |
10753 | 0 | if (h->forced_local) |
10754 | 0 | return true; |
10755 | 0 | } |
10756 | | |
10757 | 0 | bed = get_elf_backend_data (flinfo->output_bfd); |
10758 | |
|
10759 | 0 | if (h->root.type == bfd_link_hash_undefined) |
10760 | 0 | { |
10761 | | /* If we have an undefined symbol reference here then it must have |
10762 | | come from a shared library that is being linked in. (Undefined |
10763 | | references in regular files have already been handled unless |
10764 | | they are in unreferenced sections which are removed by garbage |
10765 | | collection). */ |
10766 | 0 | bool ignore_undef = false; |
10767 | | |
10768 | | /* Some symbols may be special in that the fact that they're |
10769 | | undefined can be safely ignored - let backend determine that. */ |
10770 | 0 | if (bed->elf_backend_ignore_undef_symbol) |
10771 | 0 | ignore_undef = bed->elf_backend_ignore_undef_symbol (h); |
10772 | | |
10773 | | /* If we are reporting errors for this situation then do so now. */ |
10774 | 0 | if (!ignore_undef |
10775 | 0 | && h->ref_dynamic_nonweak |
10776 | 0 | && (!h->ref_regular || flinfo->info->gc_sections) |
10777 | 0 | && !elf_link_check_versioned_symbol (flinfo->info, bed, h) |
10778 | 0 | && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) |
10779 | 0 | { |
10780 | 0 | flinfo->info->callbacks->undefined_symbol |
10781 | 0 | (flinfo->info, h->root.root.string, |
10782 | 0 | h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0, |
10783 | 0 | flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE |
10784 | 0 | && !flinfo->info->warn_unresolved_syms); |
10785 | 0 | } |
10786 | | |
10787 | | /* Strip a global symbol defined in a discarded section. */ |
10788 | 0 | if (h->indx == -3) |
10789 | 0 | return true; |
10790 | 0 | } |
10791 | | |
10792 | | /* We should also warn if a forced local symbol is referenced from |
10793 | | shared libraries. */ |
10794 | 0 | if (bfd_link_executable (flinfo->info) |
10795 | 0 | && h->forced_local |
10796 | 0 | && h->ref_dynamic |
10797 | 0 | && h->def_regular |
10798 | 0 | && !h->dynamic_def |
10799 | 0 | && h->ref_dynamic_nonweak |
10800 | 0 | && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) |
10801 | 0 | { |
10802 | 0 | bfd *def_bfd; |
10803 | 0 | const char *msg; |
10804 | 0 | struct elf_link_hash_entry *hi = h; |
10805 | | |
10806 | | /* Check indirect symbol. */ |
10807 | 0 | while (hi->root.type == bfd_link_hash_indirect) |
10808 | 0 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
10809 | |
|
10810 | 0 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) |
10811 | | /* xgettext:c-format */ |
10812 | 0 | msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); |
10813 | 0 | else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
10814 | | /* xgettext:c-format */ |
10815 | 0 | msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); |
10816 | 0 | else |
10817 | | /* xgettext:c-format */ |
10818 | 0 | msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); |
10819 | 0 | def_bfd = flinfo->output_bfd; |
10820 | 0 | if (hi->root.u.def.section != bfd_abs_section_ptr) |
10821 | 0 | def_bfd = hi->root.u.def.section->owner; |
10822 | 0 | _bfd_error_handler (msg, flinfo->output_bfd, |
10823 | 0 | h->root.root.string, def_bfd); |
10824 | 0 | bfd_set_error (bfd_error_bad_value); |
10825 | 0 | eoinfo->failed = true; |
10826 | 0 | return false; |
10827 | 0 | } |
10828 | | |
10829 | | /* We don't want to output symbols that have never been mentioned by |
10830 | | a regular file, or that we have been told to strip. However, if |
10831 | | h->indx is set to -2, the symbol is used by a reloc and we must |
10832 | | output it. */ |
10833 | 0 | strip = false; |
10834 | 0 | if (h->indx == -2) |
10835 | 0 | ; |
10836 | 0 | else if ((h->def_dynamic |
10837 | 0 | || h->ref_dynamic |
10838 | 0 | || h->root.type == bfd_link_hash_new) |
10839 | 0 | && !h->def_regular |
10840 | 0 | && !h->ref_regular) |
10841 | 0 | strip = true; |
10842 | 0 | else if (flinfo->info->strip == strip_all) |
10843 | 0 | strip = true; |
10844 | 0 | else if (flinfo->info->strip == strip_some |
10845 | 0 | && bfd_hash_lookup (flinfo->info->keep_hash, |
10846 | 0 | h->root.root.string, false, false) == NULL) |
10847 | 0 | strip = true; |
10848 | 0 | else if ((h->root.type == bfd_link_hash_defined |
10849 | 0 | || h->root.type == bfd_link_hash_defweak) |
10850 | 0 | && ((flinfo->info->strip_discarded |
10851 | 0 | && discarded_section (h->root.u.def.section)) |
10852 | 0 | || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 |
10853 | 0 | && h->root.u.def.section->owner != NULL |
10854 | 0 | && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) |
10855 | 0 | strip = true; |
10856 | 0 | else if ((h->root.type == bfd_link_hash_undefined |
10857 | 0 | || h->root.type == bfd_link_hash_undefweak) |
10858 | 0 | && h->root.u.undef.abfd != NULL |
10859 | 0 | && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) |
10860 | 0 | strip = true; |
10861 | | |
10862 | | /* Remember if this symbol should be stripped. */ |
10863 | 0 | bool should_strip = strip; |
10864 | | |
10865 | | /* Strip undefined weak symbols link if they don't have relocation. */ |
10866 | 0 | if (!strip) |
10867 | 0 | strip = !h->has_reloc && h->root.type == bfd_link_hash_undefweak; |
10868 | |
|
10869 | 0 | type = h->type; |
10870 | | |
10871 | | /* If we're stripping it, and it's not a dynamic symbol, there's |
10872 | | nothing else to do. However, if it is a forced local symbol or |
10873 | | an ifunc symbol we need to give the backend finish_dynamic_symbol |
10874 | | function a chance to make it dynamic. */ |
10875 | 0 | if (strip |
10876 | 0 | && h->dynindx == -1 |
10877 | 0 | && type != STT_GNU_IFUNC |
10878 | 0 | && !h->forced_local) |
10879 | 0 | return true; |
10880 | | |
10881 | 0 | sym.st_value = 0; |
10882 | 0 | sym.st_size = h->size; |
10883 | 0 | sym.st_other = h->other; |
10884 | 0 | switch (h->root.type) |
10885 | 0 | { |
10886 | 0 | default: |
10887 | 0 | case bfd_link_hash_new: |
10888 | 0 | case bfd_link_hash_warning: |
10889 | 0 | abort (); |
10890 | 0 | return false; |
10891 | | |
10892 | 0 | case bfd_link_hash_undefined: |
10893 | 0 | case bfd_link_hash_undefweak: |
10894 | 0 | input_sec = bfd_und_section_ptr; |
10895 | 0 | sym.st_shndx = SHN_UNDEF; |
10896 | 0 | break; |
10897 | | |
10898 | 0 | case bfd_link_hash_defined: |
10899 | 0 | case bfd_link_hash_defweak: |
10900 | 0 | { |
10901 | 0 | input_sec = h->root.u.def.section; |
10902 | 0 | if (input_sec->output_section != NULL) |
10903 | 0 | { |
10904 | 0 | sym.st_shndx = |
10905 | 0 | _bfd_elf_section_from_bfd_section (flinfo->output_bfd, |
10906 | 0 | input_sec->output_section); |
10907 | 0 | if (sym.st_shndx == SHN_BAD) |
10908 | 0 | { |
10909 | 0 | _bfd_error_handler |
10910 | | /* xgettext:c-format */ |
10911 | 0 | (_("%pB: could not find output section %pA for input section %pA"), |
10912 | 0 | flinfo->output_bfd, input_sec->output_section, input_sec); |
10913 | 0 | bfd_set_error (bfd_error_nonrepresentable_section); |
10914 | 0 | eoinfo->failed = true; |
10915 | 0 | return false; |
10916 | 0 | } |
10917 | | |
10918 | | /* ELF symbols in relocatable files are section relative, |
10919 | | but in nonrelocatable files they are virtual |
10920 | | addresses. */ |
10921 | 0 | sym.st_value = h->root.u.def.value + input_sec->output_offset; |
10922 | 0 | if (!bfd_link_relocatable (flinfo->info)) |
10923 | 0 | { |
10924 | 0 | sym.st_value += input_sec->output_section->vma; |
10925 | 0 | if (h->type == STT_TLS) |
10926 | 0 | { |
10927 | 0 | asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; |
10928 | 0 | if (tls_sec != NULL) |
10929 | 0 | sym.st_value -= tls_sec->vma; |
10930 | 0 | } |
10931 | 0 | } |
10932 | 0 | } |
10933 | 0 | else |
10934 | 0 | { |
10935 | 0 | BFD_ASSERT (input_sec->owner == NULL |
10936 | 0 | || (input_sec->owner->flags & DYNAMIC) != 0); |
10937 | 0 | sym.st_shndx = SHN_UNDEF; |
10938 | 0 | input_sec = bfd_und_section_ptr; |
10939 | 0 | } |
10940 | 0 | } |
10941 | 0 | break; |
10942 | | |
10943 | 0 | case bfd_link_hash_common: |
10944 | 0 | input_sec = h->root.u.c.p->section; |
10945 | 0 | sym.st_shndx = bed->common_section_index (input_sec); |
10946 | 0 | sym.st_value = 1 << h->root.u.c.p->alignment_power; |
10947 | 0 | break; |
10948 | | |
10949 | 0 | case bfd_link_hash_indirect: |
10950 | | /* These symbols are created by symbol versioning. They point |
10951 | | to the decorated version of the name. For example, if the |
10952 | | symbol foo@@GNU_1.2 is the default, which should be used when |
10953 | | foo is used with no version, then we add an indirect symbol |
10954 | | foo which points to foo@@GNU_1.2. We ignore these symbols, |
10955 | | since the indirected symbol is already in the hash table. */ |
10956 | 0 | return true; |
10957 | 0 | } |
10958 | | |
10959 | 0 | if (type == STT_COMMON || type == STT_OBJECT) |
10960 | 0 | switch (h->root.type) |
10961 | 0 | { |
10962 | 0 | case bfd_link_hash_common: |
10963 | 0 | type = elf_link_convert_common_type (flinfo->info, type); |
10964 | 0 | break; |
10965 | 0 | case bfd_link_hash_defined: |
10966 | 0 | case bfd_link_hash_defweak: |
10967 | 0 | if (bed->common_definition (&sym)) |
10968 | 0 | type = elf_link_convert_common_type (flinfo->info, type); |
10969 | 0 | else |
10970 | 0 | type = STT_OBJECT; |
10971 | 0 | break; |
10972 | 0 | case bfd_link_hash_undefined: |
10973 | 0 | case bfd_link_hash_undefweak: |
10974 | 0 | break; |
10975 | 0 | default: |
10976 | 0 | abort (); |
10977 | 0 | } |
10978 | | |
10979 | 0 | if (h->forced_local) |
10980 | 0 | { |
10981 | 0 | sym.st_info = ELF_ST_INFO (STB_LOCAL, type); |
10982 | | /* Turn off visibility on local symbol. */ |
10983 | 0 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); |
10984 | 0 | } |
10985 | | /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ |
10986 | 0 | else if (h->unique_global && h->def_regular) |
10987 | 0 | sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); |
10988 | 0 | else if (h->root.type == bfd_link_hash_undefweak |
10989 | 0 | || h->root.type == bfd_link_hash_defweak) |
10990 | 0 | sym.st_info = ELF_ST_INFO (STB_WEAK, type); |
10991 | 0 | else |
10992 | 0 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); |
10993 | 0 | sym.st_target_internal = h->target_internal; |
10994 | | |
10995 | | /* Give the processor backend a chance to tweak the symbol value, |
10996 | | and also to finish up anything that needs to be done for this |
10997 | | symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for |
10998 | | forced local syms when non-shared is due to a historical quirk. |
10999 | | STT_GNU_IFUNC symbol must go through PLT. */ |
11000 | 0 | if ((h->type == STT_GNU_IFUNC |
11001 | 0 | && h->def_regular |
11002 | 0 | && !bfd_link_relocatable (flinfo->info)) |
11003 | 0 | || ((h->dynindx != -1 |
11004 | 0 | || h->forced_local) |
11005 | 0 | && ((bfd_link_pic (flinfo->info) |
11006 | 0 | && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
11007 | 0 | || h->root.type != bfd_link_hash_undefweak)) |
11008 | 0 | || !h->forced_local) |
11009 | 0 | && elf_hash_table (flinfo->info)->dynamic_sections_created)) |
11010 | 0 | { |
11011 | 0 | if (! ((*bed->elf_backend_finish_dynamic_symbol) |
11012 | 0 | (flinfo->output_bfd, flinfo->info, h, &sym))) |
11013 | 0 | { |
11014 | 0 | eoinfo->failed = true; |
11015 | 0 | return false; |
11016 | 0 | } |
11017 | | /* If a symbol is in the dynamic symbol table and isn't a |
11018 | | should-strip symbol, also keep it in the symbol table. */ |
11019 | 0 | if (!should_strip) |
11020 | 0 | strip = false; |
11021 | 0 | } |
11022 | | |
11023 | | /* If we are marking the symbol as undefined, and there are no |
11024 | | non-weak references to this symbol from a regular object, then |
11025 | | mark the symbol as weak undefined; if there are non-weak |
11026 | | references, mark the symbol as strong. We can't do this earlier, |
11027 | | because it might not be marked as undefined until the |
11028 | | finish_dynamic_symbol routine gets through with it. */ |
11029 | 0 | if (sym.st_shndx == SHN_UNDEF |
11030 | 0 | && h->ref_regular |
11031 | 0 | && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL |
11032 | 0 | || ELF_ST_BIND (sym.st_info) == STB_WEAK)) |
11033 | 0 | { |
11034 | 0 | int bindtype; |
11035 | 0 | type = ELF_ST_TYPE (sym.st_info); |
11036 | | |
11037 | | /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ |
11038 | 0 | if (type == STT_GNU_IFUNC) |
11039 | 0 | type = STT_FUNC; |
11040 | |
|
11041 | 0 | if (h->ref_regular_nonweak) |
11042 | 0 | bindtype = STB_GLOBAL; |
11043 | 0 | else |
11044 | 0 | bindtype = STB_WEAK; |
11045 | 0 | sym.st_info = ELF_ST_INFO (bindtype, type); |
11046 | 0 | } |
11047 | | |
11048 | | /* If this is a symbol defined in a dynamic library, don't use the |
11049 | | symbol size from the dynamic library. Relinking an executable |
11050 | | against a new library may introduce gratuitous changes in the |
11051 | | executable's symbols if we keep the size. */ |
11052 | 0 | if (sym.st_shndx == SHN_UNDEF |
11053 | 0 | && !h->def_regular |
11054 | 0 | && h->def_dynamic) |
11055 | 0 | sym.st_size = 0; |
11056 | | |
11057 | | /* If a non-weak symbol with non-default visibility is not defined |
11058 | | locally, it is a fatal error. */ |
11059 | 0 | if (!bfd_link_relocatable (flinfo->info) |
11060 | 0 | && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT |
11061 | 0 | && ELF_ST_BIND (sym.st_info) != STB_WEAK |
11062 | 0 | && h->root.type == bfd_link_hash_undefined |
11063 | 0 | && !h->def_regular) |
11064 | 0 | { |
11065 | 0 | const char *msg; |
11066 | |
|
11067 | 0 | if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) |
11068 | | /* xgettext:c-format */ |
11069 | 0 | msg = _("%pB: protected symbol `%s' isn't defined"); |
11070 | 0 | else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) |
11071 | | /* xgettext:c-format */ |
11072 | 0 | msg = _("%pB: internal symbol `%s' isn't defined"); |
11073 | 0 | else |
11074 | | /* xgettext:c-format */ |
11075 | 0 | msg = _("%pB: hidden symbol `%s' isn't defined"); |
11076 | 0 | _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); |
11077 | 0 | bfd_set_error (bfd_error_bad_value); |
11078 | 0 | eoinfo->failed = true; |
11079 | 0 | return false; |
11080 | 0 | } |
11081 | | |
11082 | | /* If this symbol should be put in the .dynsym section, then put it |
11083 | | there now. We already know the symbol index. We also fill in |
11084 | | the entry in the .hash section. */ |
11085 | 0 | if (h->dynindx != -1 |
11086 | 0 | && elf_hash_table (flinfo->info)->dynamic_sections_created |
11087 | 0 | && elf_hash_table (flinfo->info)->dynsym != NULL |
11088 | 0 | && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) |
11089 | 0 | { |
11090 | 0 | bfd_byte *esym; |
11091 | | |
11092 | | /* Since there is no version information in the dynamic string, |
11093 | | if there is no version info in symbol version section, we will |
11094 | | have a run-time problem if not linking executable, referenced |
11095 | | by shared library, or not bound locally. */ |
11096 | 0 | if (h->verinfo.verdef == NULL |
11097 | 0 | && (!bfd_link_executable (flinfo->info) |
11098 | 0 | || h->ref_dynamic |
11099 | 0 | || !h->def_regular)) |
11100 | 0 | { |
11101 | 0 | char *p = strrchr (h->root.root.string, ELF_VER_CHR); |
11102 | |
|
11103 | 0 | if (p && p [1] != '\0') |
11104 | 0 | { |
11105 | 0 | _bfd_error_handler |
11106 | | /* xgettext:c-format */ |
11107 | 0 | (_("%pB: no symbol version section for versioned symbol `%s'"), |
11108 | 0 | flinfo->output_bfd, h->root.root.string); |
11109 | 0 | eoinfo->failed = true; |
11110 | 0 | return false; |
11111 | 0 | } |
11112 | 0 | } |
11113 | | |
11114 | 0 | sym.st_name = h->dynstr_index; |
11115 | 0 | esym = (elf_hash_table (flinfo->info)->dynsym->contents |
11116 | 0 | + h->dynindx * bed->s->sizeof_sym); |
11117 | 0 | if (!check_dynsym (flinfo->output_bfd, &sym)) |
11118 | 0 | { |
11119 | 0 | eoinfo->failed = true; |
11120 | 0 | return false; |
11121 | 0 | } |
11122 | | |
11123 | | /* Inform the linker of the addition of this symbol. */ |
11124 | | |
11125 | 0 | if (flinfo->info->callbacks->ctf_new_dynsym) |
11126 | 0 | flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym); |
11127 | |
|
11128 | 0 | bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); |
11129 | |
|
11130 | 0 | if (flinfo->hash_sec != NULL) |
11131 | 0 | { |
11132 | 0 | size_t hash_entry_size; |
11133 | 0 | bfd_byte *bucketpos; |
11134 | 0 | bfd_vma chain; |
11135 | 0 | size_t bucketcount; |
11136 | 0 | size_t bucket; |
11137 | |
|
11138 | 0 | bucketcount = elf_hash_table (flinfo->info)->bucketcount; |
11139 | 0 | bucket = h->u.elf_hash_value % bucketcount; |
11140 | |
|
11141 | 0 | hash_entry_size |
11142 | 0 | = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; |
11143 | 0 | bucketpos = ((bfd_byte *) flinfo->hash_sec->contents |
11144 | 0 | + (bucket + 2) * hash_entry_size); |
11145 | 0 | chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); |
11146 | 0 | bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, |
11147 | 0 | bucketpos); |
11148 | 0 | bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, |
11149 | 0 | ((bfd_byte *) flinfo->hash_sec->contents |
11150 | 0 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); |
11151 | 0 | } |
11152 | | |
11153 | 0 | if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) |
11154 | 0 | { |
11155 | 0 | Elf_Internal_Versym iversym; |
11156 | 0 | Elf_External_Versym *eversym; |
11157 | |
|
11158 | 0 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
11159 | 0 | { |
11160 | 0 | if (h->verinfo.verdef == NULL |
11161 | 0 | || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) |
11162 | 0 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) |
11163 | 0 | iversym.vs_vers = 1; |
11164 | 0 | else |
11165 | 0 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; |
11166 | 0 | } |
11167 | 0 | else |
11168 | 0 | { |
11169 | 0 | if (h->verinfo.vertree == NULL) |
11170 | 0 | iversym.vs_vers = 1; |
11171 | 0 | else |
11172 | 0 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; |
11173 | 0 | if (flinfo->info->create_default_symver) |
11174 | 0 | iversym.vs_vers++; |
11175 | 0 | } |
11176 | | |
11177 | | /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is |
11178 | | defined locally. */ |
11179 | 0 | if (h->versioned == versioned_hidden && h->def_regular) |
11180 | 0 | iversym.vs_vers |= VERSYM_HIDDEN; |
11181 | |
|
11182 | 0 | eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; |
11183 | 0 | eversym += h->dynindx; |
11184 | 0 | _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); |
11185 | 0 | } |
11186 | 0 | } |
11187 | | |
11188 | | /* If the symbol is undefined, and we didn't output it to .dynsym, |
11189 | | strip it from .symtab too. Obviously we can't do this for |
11190 | | relocatable output or when needed for --emit-relocs. */ |
11191 | 0 | else if (input_sec == bfd_und_section_ptr |
11192 | 0 | && h->indx != -2 |
11193 | | /* PR 22319 Do not strip global undefined symbols marked as being needed. */ |
11194 | 0 | && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) |
11195 | 0 | && !bfd_link_relocatable (flinfo->info)) |
11196 | 0 | return true; |
11197 | | |
11198 | | /* Also strip others that we couldn't earlier due to dynamic symbol |
11199 | | processing. */ |
11200 | 0 | if (strip) |
11201 | 0 | return true; |
11202 | 0 | if ((input_sec->flags & SEC_EXCLUDE) != 0) |
11203 | 0 | return true; |
11204 | | |
11205 | | /* Output a FILE symbol so that following locals are not associated |
11206 | | with the wrong input file. We need one for forced local symbols |
11207 | | if we've seen more than one FILE symbol or when we have exactly |
11208 | | one FILE symbol but global symbols are present in a file other |
11209 | | than the one with the FILE symbol. We also need one if linker |
11210 | | defined symbols are present. In practice these conditions are |
11211 | | always met, so just emit the FILE symbol unconditionally. */ |
11212 | 0 | if (eoinfo->localsyms |
11213 | 0 | && !eoinfo->file_sym_done |
11214 | 0 | && eoinfo->flinfo->filesym_count != 0) |
11215 | 0 | { |
11216 | 0 | Elf_Internal_Sym fsym; |
11217 | |
|
11218 | 0 | memset (&fsym, 0, sizeof (fsym)); |
11219 | 0 | fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
11220 | 0 | fsym.st_shndx = SHN_ABS; |
11221 | 0 | if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, |
11222 | 0 | bfd_und_section_ptr, NULL)) |
11223 | 0 | return false; |
11224 | | |
11225 | 0 | eoinfo->file_sym_done = true; |
11226 | 0 | } |
11227 | | |
11228 | 0 | indx = bfd_get_symcount (flinfo->output_bfd); |
11229 | 0 | ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, |
11230 | 0 | input_sec, h); |
11231 | 0 | if (ret == 0) |
11232 | 0 | { |
11233 | 0 | eoinfo->failed = true; |
11234 | 0 | return false; |
11235 | 0 | } |
11236 | 0 | else if (ret == 1) |
11237 | 0 | h->indx = indx; |
11238 | 0 | else if (h->indx == -2) |
11239 | 0 | abort(); |
11240 | | |
11241 | 0 | return true; |
11242 | 0 | } |
11243 | | |
11244 | | /* Return TRUE if special handling is done for relocs in SEC against |
11245 | | symbols defined in discarded sections. */ |
11246 | | |
11247 | | static bool |
11248 | | elf_section_ignore_discarded_relocs (asection *sec) |
11249 | 0 | { |
11250 | 0 | const struct elf_backend_data *bed; |
11251 | |
|
11252 | 0 | switch (sec->sec_info_type) |
11253 | 0 | { |
11254 | 0 | case SEC_INFO_TYPE_STABS: |
11255 | 0 | case SEC_INFO_TYPE_EH_FRAME: |
11256 | 0 | case SEC_INFO_TYPE_EH_FRAME_ENTRY: |
11257 | 0 | case SEC_INFO_TYPE_SFRAME: |
11258 | 0 | return true; |
11259 | 0 | default: |
11260 | 0 | break; |
11261 | 0 | } |
11262 | | |
11263 | 0 | bed = get_elf_backend_data (sec->owner); |
11264 | 0 | if (bed->elf_backend_ignore_discarded_relocs != NULL |
11265 | 0 | && (*bed->elf_backend_ignore_discarded_relocs) (sec)) |
11266 | 0 | return true; |
11267 | | |
11268 | 0 | return false; |
11269 | 0 | } |
11270 | | |
11271 | | /* Return a mask saying how ld should treat relocations in SEC against |
11272 | | symbols defined in discarded sections. If this function returns |
11273 | | COMPLAIN set, ld will issue a warning message. If this function |
11274 | | returns PRETEND set, and the discarded section was link-once and the |
11275 | | same size as the kept link-once section, ld will pretend that the |
11276 | | symbol was actually defined in the kept section. Otherwise ld will |
11277 | | zero the reloc (at least that is the intent, but some cooperation by |
11278 | | the target dependent code is needed, particularly for REL targets). */ |
11279 | | |
11280 | | unsigned int |
11281 | | _bfd_elf_default_action_discarded (asection *sec) |
11282 | 0 | { |
11283 | 0 | const struct elf_backend_data *bed; |
11284 | 0 | bed = get_elf_backend_data (sec->owner); |
11285 | |
|
11286 | 0 | if (sec->flags & SEC_DEBUGGING) |
11287 | 0 | return PRETEND; |
11288 | | |
11289 | 0 | if (strcmp (".eh_frame", sec->name) == 0) |
11290 | 0 | return 0; |
11291 | | |
11292 | 0 | if (bed->elf_backend_can_make_multiple_eh_frame |
11293 | 0 | && strncmp (sec->name, ".eh_frame.", 10) == 0) |
11294 | 0 | return 0; |
11295 | | |
11296 | 0 | if (strcmp (".sframe", sec->name) == 0) |
11297 | 0 | return 0; |
11298 | | |
11299 | 0 | if (strcmp (".gcc_except_table", sec->name) == 0) |
11300 | 0 | return 0; |
11301 | | |
11302 | 0 | return COMPLAIN | PRETEND; |
11303 | 0 | } |
11304 | | |
11305 | | /* Find a match between a section and a member of a section group. */ |
11306 | | |
11307 | | static asection * |
11308 | | match_group_member (asection *sec, asection *group, |
11309 | | struct bfd_link_info *info) |
11310 | 0 | { |
11311 | 0 | asection *first = elf_next_in_group (group); |
11312 | 0 | asection *s = first; |
11313 | |
|
11314 | 0 | while (s != NULL) |
11315 | 0 | { |
11316 | 0 | if (bfd_elf_match_symbols_in_sections (s, sec, info)) |
11317 | 0 | return s; |
11318 | | |
11319 | 0 | s = elf_next_in_group (s); |
11320 | 0 | if (s == first) |
11321 | 0 | break; |
11322 | 0 | } |
11323 | | |
11324 | 0 | return NULL; |
11325 | 0 | } |
11326 | | |
11327 | | /* Check if the kept section of a discarded section SEC can be used |
11328 | | to replace it. Return the replacement if it is OK. Otherwise return |
11329 | | NULL. */ |
11330 | | |
11331 | | asection * |
11332 | | _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) |
11333 | 0 | { |
11334 | 0 | asection *kept; |
11335 | |
|
11336 | 0 | kept = sec->kept_section; |
11337 | 0 | if (kept != NULL) |
11338 | 0 | { |
11339 | 0 | if ((kept->flags & SEC_GROUP) != 0) |
11340 | 0 | kept = match_group_member (sec, kept, info); |
11341 | 0 | if (kept != NULL) |
11342 | 0 | { |
11343 | 0 | if ((sec->rawsize != 0 ? sec->rawsize : sec->size) |
11344 | 0 | != (kept->rawsize != 0 ? kept->rawsize : kept->size)) |
11345 | 0 | kept = NULL; |
11346 | 0 | else |
11347 | 0 | { |
11348 | | /* Get the real kept section. */ |
11349 | 0 | asection *next; |
11350 | 0 | for (next = kept->kept_section; |
11351 | 0 | next != NULL; |
11352 | 0 | next = next->kept_section) |
11353 | 0 | kept = next; |
11354 | 0 | } |
11355 | 0 | } |
11356 | 0 | sec->kept_section = kept; |
11357 | 0 | } |
11358 | 0 | return kept; |
11359 | 0 | } |
11360 | | |
11361 | | /* Link an input file into the linker output file. This function |
11362 | | handles all the sections and relocations of the input file at once. |
11363 | | This is so that we only have to read the local symbols once, and |
11364 | | don't have to keep them in memory. */ |
11365 | | |
11366 | | static bool |
11367 | | elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) |
11368 | 0 | { |
11369 | 0 | int (*relocate_section) |
11370 | 0 | (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
11371 | 0 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); |
11372 | 0 | bfd *output_bfd; |
11373 | 0 | Elf_Internal_Shdr *symtab_hdr; |
11374 | 0 | size_t locsymcount; |
11375 | 0 | size_t extsymoff; |
11376 | 0 | Elf_Internal_Sym *isymbuf; |
11377 | 0 | Elf_Internal_Sym *isym; |
11378 | 0 | Elf_Internal_Sym *isymend; |
11379 | 0 | long *pindex; |
11380 | 0 | asection **ppsection; |
11381 | 0 | asection *o; |
11382 | 0 | const struct elf_backend_data *bed; |
11383 | 0 | struct elf_link_hash_entry **sym_hashes; |
11384 | 0 | bfd_size_type address_size; |
11385 | 0 | bfd_vma r_type_mask; |
11386 | 0 | int r_sym_shift; |
11387 | 0 | bool have_file_sym = false; |
11388 | |
|
11389 | 0 | output_bfd = flinfo->output_bfd; |
11390 | 0 | bed = get_elf_backend_data (output_bfd); |
11391 | 0 | relocate_section = bed->elf_backend_relocate_section; |
11392 | | |
11393 | | /* If this is a dynamic object, we don't want to do anything here: |
11394 | | we don't want the local symbols, and we don't want the section |
11395 | | contents. */ |
11396 | 0 | if ((input_bfd->flags & DYNAMIC) != 0) |
11397 | 0 | return true; |
11398 | | |
11399 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
11400 | 0 | if (elf_bad_symtab (input_bfd)) |
11401 | 0 | { |
11402 | 0 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; |
11403 | 0 | extsymoff = 0; |
11404 | 0 | } |
11405 | 0 | else |
11406 | 0 | { |
11407 | 0 | locsymcount = symtab_hdr->sh_info; |
11408 | 0 | extsymoff = symtab_hdr->sh_info; |
11409 | 0 | } |
11410 | | |
11411 | | /* Enable GNU OSABI features in the output BFD that are used in the input |
11412 | | BFD. */ |
11413 | 0 | if (bed->elf_osabi == ELFOSABI_NONE |
11414 | 0 | || bed->elf_osabi == ELFOSABI_GNU |
11415 | 0 | || bed->elf_osabi == ELFOSABI_FREEBSD) |
11416 | 0 | elf_tdata (output_bfd)->has_gnu_osabi |
11417 | 0 | |= (elf_tdata (input_bfd)->has_gnu_osabi |
11418 | 0 | & (bfd_link_relocatable (flinfo->info) |
11419 | 0 | ? -1 : ~elf_gnu_osabi_retain)); |
11420 | | |
11421 | | /* Read the local symbols. */ |
11422 | 0 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
11423 | 0 | if (isymbuf == NULL && locsymcount != 0) |
11424 | 0 | { |
11425 | 0 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, |
11426 | 0 | flinfo->internal_syms, |
11427 | 0 | flinfo->external_syms, |
11428 | 0 | flinfo->locsym_shndx); |
11429 | 0 | if (isymbuf == NULL) |
11430 | 0 | return false; |
11431 | 0 | } |
11432 | | |
11433 | | /* Find local symbol sections and adjust values of symbols in |
11434 | | SEC_MERGE sections. Write out those local symbols we know are |
11435 | | going into the output file. */ |
11436 | 0 | isymend = PTR_ADD (isymbuf, locsymcount); |
11437 | 0 | for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; |
11438 | 0 | isym < isymend; |
11439 | 0 | isym++, pindex++, ppsection++) |
11440 | 0 | { |
11441 | 0 | asection *isec; |
11442 | 0 | const char *name; |
11443 | 0 | Elf_Internal_Sym osym; |
11444 | 0 | long indx; |
11445 | 0 | int ret; |
11446 | |
|
11447 | 0 | *pindex = -1; |
11448 | |
|
11449 | 0 | if (elf_bad_symtab (input_bfd)) |
11450 | 0 | { |
11451 | 0 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) |
11452 | 0 | { |
11453 | 0 | *ppsection = NULL; |
11454 | 0 | continue; |
11455 | 0 | } |
11456 | 0 | } |
11457 | | |
11458 | 0 | if (isym->st_shndx == SHN_UNDEF) |
11459 | 0 | isec = bfd_und_section_ptr; |
11460 | 0 | else if (isym->st_shndx == SHN_ABS) |
11461 | 0 | isec = bfd_abs_section_ptr; |
11462 | 0 | else if (isym->st_shndx == SHN_COMMON) |
11463 | 0 | isec = bfd_com_section_ptr; |
11464 | 0 | else |
11465 | 0 | { |
11466 | 0 | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
11467 | 0 | if (isec == NULL) |
11468 | 0 | { |
11469 | | /* Don't attempt to output symbols with st_shnx in the |
11470 | | reserved range other than SHN_ABS and SHN_COMMON. */ |
11471 | 0 | isec = bfd_und_section_ptr; |
11472 | 0 | } |
11473 | 0 | else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE |
11474 | 0 | && ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
11475 | 0 | isym->st_value = |
11476 | 0 | _bfd_merged_section_offset (output_bfd, &isec, |
11477 | 0 | elf_section_data (isec)->sec_info, |
11478 | 0 | isym->st_value); |
11479 | 0 | } |
11480 | |
|
11481 | 0 | *ppsection = isec; |
11482 | | |
11483 | | /* Don't output the first, undefined, symbol. In fact, don't |
11484 | | output any undefined local symbol. */ |
11485 | 0 | if (isec == bfd_und_section_ptr) |
11486 | 0 | continue; |
11487 | | |
11488 | 0 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
11489 | 0 | { |
11490 | | /* We never output section symbols. Instead, we use the |
11491 | | section symbol of the corresponding section in the output |
11492 | | file. */ |
11493 | 0 | continue; |
11494 | 0 | } |
11495 | | |
11496 | | /* If we are stripping all symbols, we don't want to output this |
11497 | | one. */ |
11498 | 0 | if (flinfo->info->strip == strip_all) |
11499 | 0 | continue; |
11500 | | |
11501 | | /* If we are discarding all local symbols, we don't want to |
11502 | | output this one. If we are generating a relocatable output |
11503 | | file, then some of the local symbols may be required by |
11504 | | relocs; we output them below as we discover that they are |
11505 | | needed. */ |
11506 | 0 | if (flinfo->info->discard == discard_all) |
11507 | 0 | continue; |
11508 | | |
11509 | | /* If this symbol is defined in a section which we are |
11510 | | discarding, we don't need to keep it. */ |
11511 | 0 | if (isym->st_shndx < SHN_LORESERVE |
11512 | 0 | && (isec->output_section == NULL |
11513 | 0 | || bfd_section_removed_from_list (output_bfd, |
11514 | 0 | isec->output_section))) |
11515 | 0 | continue; |
11516 | | |
11517 | | /* Get the name of the symbol. */ |
11518 | 0 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, |
11519 | 0 | isym->st_name); |
11520 | 0 | if (name == NULL) |
11521 | 0 | return false; |
11522 | | |
11523 | | /* See if we are discarding symbols with this name. */ |
11524 | 0 | if ((flinfo->info->strip == strip_some |
11525 | 0 | && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false) |
11526 | 0 | == NULL)) |
11527 | 0 | || (((flinfo->info->discard == discard_sec_merge |
11528 | 0 | && (isec->flags & SEC_MERGE) |
11529 | 0 | && !bfd_link_relocatable (flinfo->info)) |
11530 | 0 | || flinfo->info->discard == discard_l) |
11531 | 0 | && bfd_is_local_label_name (input_bfd, name))) |
11532 | 0 | continue; |
11533 | | |
11534 | 0 | if (ELF_ST_TYPE (isym->st_info) == STT_FILE) |
11535 | 0 | { |
11536 | 0 | if (input_bfd->lto_output) |
11537 | | /* -flto puts a temp file name here. This means builds |
11538 | | are not reproducible. Discard the symbol. */ |
11539 | 0 | continue; |
11540 | 0 | have_file_sym = true; |
11541 | 0 | flinfo->filesym_count += 1; |
11542 | 0 | } |
11543 | 0 | if (!have_file_sym) |
11544 | 0 | { |
11545 | | /* In the absence of debug info, bfd_find_nearest_line uses |
11546 | | FILE symbols to determine the source file for local |
11547 | | function symbols. Provide a FILE symbol here if input |
11548 | | files lack such, so that their symbols won't be |
11549 | | associated with a previous input file. It's not the |
11550 | | source file, but the best we can do. */ |
11551 | 0 | const char *filename; |
11552 | 0 | have_file_sym = true; |
11553 | 0 | flinfo->filesym_count += 1; |
11554 | 0 | memset (&osym, 0, sizeof (osym)); |
11555 | 0 | osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
11556 | 0 | osym.st_shndx = SHN_ABS; |
11557 | 0 | if (input_bfd->lto_output) |
11558 | 0 | filename = NULL; |
11559 | 0 | else |
11560 | 0 | filename = lbasename (bfd_get_filename (input_bfd)); |
11561 | 0 | if (!elf_link_output_symstrtab (flinfo, filename, &osym, |
11562 | 0 | bfd_abs_section_ptr, NULL)) |
11563 | 0 | return false; |
11564 | 0 | } |
11565 | | |
11566 | 0 | osym = *isym; |
11567 | | |
11568 | | /* Adjust the section index for the output file. */ |
11569 | 0 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, |
11570 | 0 | isec->output_section); |
11571 | 0 | if (osym.st_shndx == SHN_BAD) |
11572 | 0 | return false; |
11573 | | |
11574 | | /* ELF symbols in relocatable files are section relative, but |
11575 | | in executable files they are virtual addresses. Note that |
11576 | | this code assumes that all ELF sections have an associated |
11577 | | BFD section with a reasonable value for output_offset; below |
11578 | | we assume that they also have a reasonable value for |
11579 | | output_section. Any special sections must be set up to meet |
11580 | | these requirements. */ |
11581 | 0 | osym.st_value += isec->output_offset; |
11582 | 0 | if (!bfd_link_relocatable (flinfo->info)) |
11583 | 0 | { |
11584 | 0 | osym.st_value += isec->output_section->vma; |
11585 | 0 | if (ELF_ST_TYPE (osym.st_info) == STT_TLS) |
11586 | 0 | { |
11587 | | /* STT_TLS symbols are relative to PT_TLS segment base. */ |
11588 | 0 | if (elf_hash_table (flinfo->info)->tls_sec != NULL) |
11589 | 0 | osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; |
11590 | 0 | else |
11591 | 0 | osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), |
11592 | 0 | STT_NOTYPE); |
11593 | 0 | } |
11594 | 0 | } |
11595 | |
|
11596 | 0 | indx = bfd_get_symcount (output_bfd); |
11597 | 0 | ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); |
11598 | 0 | if (ret == 0) |
11599 | 0 | return false; |
11600 | 0 | else if (ret == 1) |
11601 | 0 | *pindex = indx; |
11602 | 0 | } |
11603 | | |
11604 | 0 | if (bed->s->arch_size == 32) |
11605 | 0 | { |
11606 | 0 | r_type_mask = 0xff; |
11607 | 0 | r_sym_shift = 8; |
11608 | 0 | address_size = 4; |
11609 | 0 | } |
11610 | 0 | else |
11611 | 0 | { |
11612 | 0 | r_type_mask = 0xffffffff; |
11613 | 0 | r_sym_shift = 32; |
11614 | 0 | address_size = 8; |
11615 | 0 | } |
11616 | | |
11617 | | /* Relocate the contents of each section. */ |
11618 | 0 | sym_hashes = elf_sym_hashes (input_bfd); |
11619 | 0 | for (o = input_bfd->sections; o != NULL; o = o->next) |
11620 | 0 | { |
11621 | 0 | bfd_byte *contents; |
11622 | |
|
11623 | 0 | if (! o->linker_mark) |
11624 | 0 | { |
11625 | | /* This section was omitted from the link. */ |
11626 | 0 | continue; |
11627 | 0 | } |
11628 | | |
11629 | 0 | if (!flinfo->info->resolve_section_groups |
11630 | 0 | && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) |
11631 | 0 | { |
11632 | | /* Deal with the group signature symbol. */ |
11633 | 0 | struct bfd_elf_section_data *sec_data = elf_section_data (o); |
11634 | 0 | unsigned long symndx = sec_data->this_hdr.sh_info; |
11635 | 0 | asection *osec = o->output_section; |
11636 | |
|
11637 | 0 | BFD_ASSERT (bfd_link_relocatable (flinfo->info)); |
11638 | 0 | if (symndx >= locsymcount |
11639 | 0 | || (elf_bad_symtab (input_bfd) |
11640 | 0 | && flinfo->sections[symndx] == NULL)) |
11641 | 0 | { |
11642 | 0 | struct elf_link_hash_entry *h; |
11643 | |
|
11644 | 0 | h = get_link_hash_entry (sym_hashes, symndx, extsymoff); |
11645 | 0 | if (h == NULL) |
11646 | 0 | { |
11647 | 0 | _bfd_error_handler |
11648 | | /* xgettext:c-format */ |
11649 | 0 | (_("error: %pB: unable to create group section symbol"), |
11650 | 0 | input_bfd); |
11651 | 0 | bfd_set_error (bfd_error_bad_value); |
11652 | 0 | return false; |
11653 | 0 | } |
11654 | | |
11655 | | /* Arrange for symbol to be output. */ |
11656 | 0 | h->indx = -2; |
11657 | 0 | elf_section_data (osec)->this_hdr.sh_info = -2; |
11658 | 0 | } |
11659 | 0 | else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) |
11660 | 0 | { |
11661 | | /* We'll use the output section target_index. */ |
11662 | 0 | asection *sec = flinfo->sections[symndx]->output_section; |
11663 | 0 | elf_section_data (osec)->this_hdr.sh_info = sec->target_index; |
11664 | 0 | } |
11665 | 0 | else |
11666 | 0 | { |
11667 | 0 | if (flinfo->indices[symndx] == -1) |
11668 | 0 | { |
11669 | | /* Otherwise output the local symbol now. */ |
11670 | 0 | Elf_Internal_Sym sym = isymbuf[symndx]; |
11671 | 0 | asection *sec = flinfo->sections[symndx]->output_section; |
11672 | 0 | const char *name; |
11673 | 0 | long indx; |
11674 | 0 | int ret; |
11675 | |
|
11676 | 0 | name = bfd_elf_string_from_elf_section (input_bfd, |
11677 | 0 | symtab_hdr->sh_link, |
11678 | 0 | sym.st_name); |
11679 | 0 | if (name == NULL) |
11680 | 0 | return false; |
11681 | | |
11682 | 0 | sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, |
11683 | 0 | sec); |
11684 | 0 | if (sym.st_shndx == SHN_BAD) |
11685 | 0 | return false; |
11686 | | |
11687 | 0 | sym.st_value += o->output_offset; |
11688 | |
|
11689 | 0 | indx = bfd_get_symcount (output_bfd); |
11690 | 0 | ret = elf_link_output_symstrtab (flinfo, name, &sym, o, |
11691 | 0 | NULL); |
11692 | 0 | if (ret == 0) |
11693 | 0 | return false; |
11694 | 0 | else if (ret == 1) |
11695 | 0 | flinfo->indices[symndx] = indx; |
11696 | 0 | else |
11697 | 0 | abort (); |
11698 | 0 | } |
11699 | 0 | elf_section_data (osec)->this_hdr.sh_info |
11700 | 0 | = flinfo->indices[symndx]; |
11701 | 0 | } |
11702 | 0 | } |
11703 | | |
11704 | 0 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
11705 | 0 | || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) |
11706 | 0 | continue; |
11707 | | |
11708 | 0 | if ((o->flags & SEC_LINKER_CREATED) != 0) |
11709 | 0 | { |
11710 | | /* Section was created by _bfd_elf_link_create_dynamic_sections |
11711 | | or somesuch. */ |
11712 | 0 | continue; |
11713 | 0 | } |
11714 | | |
11715 | | /* Get the contents of the section. They have been cached by a |
11716 | | relaxation routine. Note that o is a section in an input |
11717 | | file, so the contents field will not have been set by any of |
11718 | | the routines which work on output files. */ |
11719 | 0 | if (elf_section_data (o)->this_hdr.contents != NULL) |
11720 | 0 | { |
11721 | 0 | contents = elf_section_data (o)->this_hdr.contents; |
11722 | 0 | if (bed->caches_rawsize |
11723 | 0 | && o->rawsize != 0 |
11724 | 0 | && o->rawsize < o->size) |
11725 | 0 | { |
11726 | 0 | memcpy (flinfo->contents, contents, o->rawsize); |
11727 | 0 | contents = flinfo->contents; |
11728 | 0 | } |
11729 | 0 | } |
11730 | 0 | else if (!(o->flags & SEC_RELOC) |
11731 | 0 | && !bed->elf_backend_write_section |
11732 | 0 | && o->sec_info_type == SEC_INFO_TYPE_MERGE) |
11733 | | /* A MERGE section that has no relocations doesn't need the |
11734 | | contents anymore, they have been recorded earlier. Except |
11735 | | if the backend has special provisions for writing sections. */ |
11736 | 0 | contents = NULL; |
11737 | 0 | else |
11738 | 0 | { |
11739 | 0 | contents = flinfo->contents; |
11740 | 0 | if (! _bfd_elf_link_mmap_section_contents (input_bfd, o, |
11741 | 0 | &contents)) |
11742 | 0 | return false; |
11743 | 0 | } |
11744 | | |
11745 | 0 | if ((o->flags & SEC_RELOC) != 0) |
11746 | 0 | { |
11747 | 0 | Elf_Internal_Rela *internal_relocs; |
11748 | 0 | Elf_Internal_Rela *rel, *relend; |
11749 | 0 | int action_discarded; |
11750 | 0 | int ret; |
11751 | | |
11752 | | /* Get the swapped relocs. */ |
11753 | 0 | internal_relocs |
11754 | 0 | = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o, |
11755 | 0 | flinfo->external_relocs, |
11756 | 0 | flinfo->internal_relocs, |
11757 | 0 | false); |
11758 | 0 | if (internal_relocs == NULL |
11759 | 0 | && o->reloc_count > 0) |
11760 | 0 | return false; |
11761 | | |
11762 | 0 | action_discarded = -1; |
11763 | 0 | if (!elf_section_ignore_discarded_relocs (o)) |
11764 | 0 | action_discarded = (*bed->action_discarded) (o); |
11765 | | |
11766 | | /* Run through the relocs evaluating complex reloc symbols and |
11767 | | looking for relocs against symbols from discarded sections |
11768 | | or section symbols from removed link-once sections. |
11769 | | Complain about relocs against discarded sections. Zero |
11770 | | relocs against removed link-once sections. */ |
11771 | |
|
11772 | 0 | rel = internal_relocs; |
11773 | 0 | relend = rel + o->reloc_count; |
11774 | 0 | for ( ; rel < relend; rel++) |
11775 | 0 | { |
11776 | 0 | unsigned long r_symndx = rel->r_info >> r_sym_shift; |
11777 | 0 | unsigned int s_type; |
11778 | 0 | asection **ps, *sec; |
11779 | 0 | struct elf_link_hash_entry *h = NULL; |
11780 | 0 | const char *sym_name; |
11781 | |
|
11782 | 0 | if (r_symndx == STN_UNDEF) |
11783 | 0 | continue; |
11784 | | |
11785 | 0 | if (r_symndx >= locsymcount |
11786 | 0 | || (elf_bad_symtab (input_bfd) |
11787 | 0 | && flinfo->sections[r_symndx] == NULL)) |
11788 | 0 | { |
11789 | 0 | h = get_link_hash_entry (sym_hashes, r_symndx, extsymoff); |
11790 | | |
11791 | | /* Badly formatted input files can contain relocs that |
11792 | | reference non-existant symbols. Check here so that |
11793 | | we do not seg fault. */ |
11794 | 0 | if (h == NULL) |
11795 | 0 | { |
11796 | 0 | _bfd_error_handler |
11797 | | /* xgettext:c-format */ |
11798 | 0 | (_("error: %pB contains a reloc (%#" PRIx64 ") for section '%pA' " |
11799 | 0 | "that references a non-existent global symbol"), |
11800 | 0 | input_bfd, (uint64_t) rel->r_info, o); |
11801 | 0 | bfd_set_error (bfd_error_bad_value); |
11802 | 0 | return false; |
11803 | 0 | } |
11804 | | |
11805 | 0 | s_type = h->type; |
11806 | | |
11807 | | /* If a plugin symbol is referenced from a non-IR file, |
11808 | | mark the symbol as undefined. Note that the |
11809 | | linker may attach linker created dynamic sections |
11810 | | to the plugin bfd. Symbols defined in linker |
11811 | | created sections are not plugin symbols. */ |
11812 | 0 | if ((h->root.non_ir_ref_regular |
11813 | 0 | || h->root.non_ir_ref_dynamic) |
11814 | 0 | && (h->root.type == bfd_link_hash_defined |
11815 | 0 | || h->root.type == bfd_link_hash_defweak) |
11816 | 0 | && (h->root.u.def.section->flags |
11817 | 0 | & SEC_LINKER_CREATED) == 0 |
11818 | 0 | && h->root.u.def.section->owner != NULL |
11819 | 0 | && (h->root.u.def.section->owner->flags |
11820 | 0 | & BFD_PLUGIN) != 0) |
11821 | 0 | { |
11822 | 0 | h->root.type = bfd_link_hash_undefined; |
11823 | 0 | h->root.u.undef.abfd = h->root.u.def.section->owner; |
11824 | 0 | } |
11825 | |
|
11826 | 0 | ps = NULL; |
11827 | 0 | if (h->root.type == bfd_link_hash_defined |
11828 | 0 | || h->root.type == bfd_link_hash_defweak) |
11829 | 0 | ps = &h->root.u.def.section; |
11830 | |
|
11831 | 0 | sym_name = h->root.root.string; |
11832 | 0 | } |
11833 | 0 | else |
11834 | 0 | { |
11835 | 0 | Elf_Internal_Sym *sym = isymbuf + r_symndx; |
11836 | |
|
11837 | 0 | s_type = ELF_ST_TYPE (sym->st_info); |
11838 | 0 | ps = &flinfo->sections[r_symndx]; |
11839 | 0 | sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
11840 | 0 | sym, *ps); |
11841 | 0 | } |
11842 | | |
11843 | 0 | if ((s_type == STT_RELC || s_type == STT_SRELC) |
11844 | 0 | && !bfd_link_relocatable (flinfo->info)) |
11845 | 0 | { |
11846 | 0 | bfd_vma val; |
11847 | 0 | bfd_vma dot = (rel->r_offset |
11848 | 0 | + o->output_offset + o->output_section->vma); |
11849 | | #ifdef DEBUG |
11850 | | printf ("Encountered a complex symbol!"); |
11851 | | printf (" (input_bfd %s, section %s, reloc %ld\n", |
11852 | | bfd_get_filename (input_bfd), o->name, |
11853 | | (long) (rel - internal_relocs)); |
11854 | | printf (" symbol: idx %8.8lx, name %s\n", |
11855 | | r_symndx, sym_name); |
11856 | | printf (" reloc : info %8.8lx, addr %8.8lx\n", |
11857 | | (unsigned long) rel->r_info, |
11858 | | (unsigned long) rel->r_offset); |
11859 | | #endif |
11860 | 0 | if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, |
11861 | 0 | isymbuf, locsymcount, s_type == STT_SRELC)) |
11862 | 0 | return false; |
11863 | | |
11864 | | /* Symbol evaluated OK. Update to absolute value. */ |
11865 | 0 | set_symbol_value (input_bfd, isymbuf, locsymcount, |
11866 | 0 | r_symndx, val); |
11867 | 0 | continue; |
11868 | 0 | } |
11869 | | |
11870 | 0 | if (action_discarded != -1 && ps != NULL) |
11871 | 0 | { |
11872 | | /* Complain if the definition comes from a |
11873 | | discarded section. */ |
11874 | 0 | if ((sec = *ps) != NULL && discarded_section (sec)) |
11875 | 0 | { |
11876 | 0 | BFD_ASSERT (r_symndx != STN_UNDEF); |
11877 | 0 | if (action_discarded & COMPLAIN) |
11878 | 0 | (*flinfo->info->callbacks->einfo) |
11879 | | /* xgettext:c-format */ |
11880 | 0 | (_("%X`%s' referenced in section `%pA' of %pB: " |
11881 | 0 | "defined in discarded section `%pA' of %pB\n"), |
11882 | 0 | sym_name, o, input_bfd, sec, sec->owner); |
11883 | | |
11884 | | /* Try to do the best we can to support buggy old |
11885 | | versions of gcc. Pretend that the symbol is |
11886 | | really defined in the kept linkonce section. |
11887 | | FIXME: This is quite broken. Modifying the |
11888 | | symbol here means we will be changing all later |
11889 | | uses of the symbol, not just in this section. */ |
11890 | 0 | if (action_discarded & PRETEND) |
11891 | 0 | { |
11892 | 0 | asection *kept; |
11893 | |
|
11894 | 0 | kept = _bfd_elf_check_kept_section (sec, |
11895 | 0 | flinfo->info); |
11896 | 0 | if (kept != NULL) |
11897 | 0 | { |
11898 | 0 | *ps = kept; |
11899 | 0 | continue; |
11900 | 0 | } |
11901 | 0 | } |
11902 | 0 | } |
11903 | 0 | } |
11904 | 0 | } |
11905 | | |
11906 | | /* Relocate the section by invoking a back end routine. |
11907 | | |
11908 | | The back end routine is responsible for adjusting the |
11909 | | section contents as necessary, and (if using Rela relocs |
11910 | | and generating a relocatable output file) adjusting the |
11911 | | reloc addend as necessary. |
11912 | | |
11913 | | The back end routine does not have to worry about setting |
11914 | | the reloc address or the reloc symbol index. |
11915 | | |
11916 | | The back end routine is given a pointer to the swapped in |
11917 | | internal symbols, and can access the hash table entries |
11918 | | for the external symbols via elf_sym_hashes (input_bfd). |
11919 | | |
11920 | | When generating relocatable output, the back end routine |
11921 | | must handle STB_LOCAL/STT_SECTION symbols specially. The |
11922 | | output symbol is going to be a section symbol |
11923 | | corresponding to the output section, which will require |
11924 | | the addend to be adjusted. */ |
11925 | | |
11926 | 0 | ret = (*relocate_section) (output_bfd, flinfo->info, |
11927 | 0 | input_bfd, o, contents, |
11928 | 0 | internal_relocs, |
11929 | 0 | isymbuf, |
11930 | 0 | flinfo->sections); |
11931 | 0 | if (!ret) |
11932 | 0 | return false; |
11933 | | |
11934 | 0 | if (ret == 2 |
11935 | 0 | || bfd_link_relocatable (flinfo->info) |
11936 | 0 | || flinfo->info->emitrelocations) |
11937 | 0 | { |
11938 | 0 | Elf_Internal_Rela *irela; |
11939 | 0 | Elf_Internal_Rela *irelaend, *irelamid; |
11940 | 0 | bfd_vma last_offset; |
11941 | 0 | struct elf_link_hash_entry **rel_hash; |
11942 | 0 | struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; |
11943 | 0 | Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; |
11944 | 0 | unsigned int next_erel; |
11945 | 0 | bool rela_normal; |
11946 | 0 | struct bfd_elf_section_data *esdi, *esdo; |
11947 | |
|
11948 | 0 | esdi = elf_section_data (o); |
11949 | 0 | esdo = elf_section_data (o->output_section); |
11950 | 0 | rela_normal = false; |
11951 | | |
11952 | | /* Adjust the reloc addresses and symbol indices. */ |
11953 | |
|
11954 | 0 | irela = internal_relocs; |
11955 | 0 | irelaend = irela + o->reloc_count; |
11956 | 0 | rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count); |
11957 | | /* We start processing the REL relocs, if any. When we reach |
11958 | | IRELAMID in the loop, we switch to the RELA relocs. */ |
11959 | 0 | irelamid = irela; |
11960 | 0 | if (esdi->rel.hdr != NULL) |
11961 | 0 | irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) |
11962 | 0 | * bed->s->int_rels_per_ext_rel); |
11963 | 0 | rel_hash_list = rel_hash; |
11964 | 0 | rela_hash_list = NULL; |
11965 | 0 | last_offset = o->output_offset; |
11966 | 0 | if (!bfd_link_relocatable (flinfo->info)) |
11967 | 0 | last_offset += o->output_section->vma; |
11968 | 0 | for (next_erel = 0; irela < irelaend; irela++, next_erel++) |
11969 | 0 | { |
11970 | 0 | unsigned long r_symndx; |
11971 | 0 | asection *sec; |
11972 | 0 | Elf_Internal_Sym sym; |
11973 | |
|
11974 | 0 | if (next_erel == bed->s->int_rels_per_ext_rel) |
11975 | 0 | { |
11976 | 0 | rel_hash++; |
11977 | 0 | next_erel = 0; |
11978 | 0 | } |
11979 | |
|
11980 | 0 | if (irela == irelamid) |
11981 | 0 | { |
11982 | 0 | rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count); |
11983 | 0 | rela_hash_list = rel_hash; |
11984 | 0 | rela_normal = bed->rela_normal; |
11985 | 0 | } |
11986 | |
|
11987 | 0 | irela->r_offset = _bfd_elf_section_offset (output_bfd, |
11988 | 0 | flinfo->info, o, |
11989 | 0 | irela->r_offset); |
11990 | 0 | if (irela->r_offset >= (bfd_vma) -2) |
11991 | 0 | { |
11992 | | /* This is a reloc for a deleted entry or somesuch. |
11993 | | Turn it into an R_*_NONE reloc, at the same |
11994 | | offset as the last reloc. elf_eh_frame.c and |
11995 | | bfd_elf_discard_info rely on reloc offsets |
11996 | | being ordered. */ |
11997 | 0 | irela->r_offset = last_offset; |
11998 | 0 | irela->r_info = 0; |
11999 | 0 | irela->r_addend = 0; |
12000 | 0 | continue; |
12001 | 0 | } |
12002 | | |
12003 | 0 | irela->r_offset += o->output_offset; |
12004 | | |
12005 | | /* Relocs in an executable have to be virtual addresses. */ |
12006 | 0 | if (!bfd_link_relocatable (flinfo->info)) |
12007 | 0 | irela->r_offset += o->output_section->vma; |
12008 | |
|
12009 | 0 | last_offset = irela->r_offset; |
12010 | |
|
12011 | 0 | r_symndx = irela->r_info >> r_sym_shift; |
12012 | 0 | if (r_symndx == STN_UNDEF) |
12013 | 0 | continue; |
12014 | | |
12015 | 0 | if (r_symndx >= locsymcount |
12016 | 0 | || (elf_bad_symtab (input_bfd) |
12017 | 0 | && flinfo->sections[r_symndx] == NULL)) |
12018 | 0 | { |
12019 | 0 | struct elf_link_hash_entry *rh; |
12020 | | |
12021 | | /* This is a reloc against a global symbol. We |
12022 | | have not yet output all the local symbols, so |
12023 | | we do not know the symbol index of any global |
12024 | | symbol. We set the rel_hash entry for this |
12025 | | reloc to point to the global hash table entry |
12026 | | for this symbol. The symbol index is then |
12027 | | set at the end of bfd_elf_final_link. */ |
12028 | 0 | rh = get_link_hash_entry (elf_sym_hashes (input_bfd), |
12029 | 0 | r_symndx, extsymoff); |
12030 | 0 | if (rh == NULL) |
12031 | 0 | { |
12032 | | /* FIXME: Generate an error ? */ |
12033 | 0 | continue; |
12034 | 0 | } |
12035 | | |
12036 | | /* Setting the index to -2 tells elf_link_output_extsym |
12037 | | that this symbol is used by a reloc. */ |
12038 | 0 | BFD_ASSERT (rh->indx < 0); |
12039 | 0 | rh->indx = -2; |
12040 | 0 | *rel_hash = rh; |
12041 | |
|
12042 | 0 | continue; |
12043 | 0 | } |
12044 | | |
12045 | | /* This is a reloc against a local symbol. */ |
12046 | | |
12047 | 0 | *rel_hash = NULL; |
12048 | 0 | sym = isymbuf[r_symndx]; |
12049 | 0 | sec = flinfo->sections[r_symndx]; |
12050 | 0 | if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) |
12051 | 0 | { |
12052 | | /* I suppose the backend ought to fill in the |
12053 | | section of any STT_SECTION symbol against a |
12054 | | processor specific section. */ |
12055 | 0 | r_symndx = STN_UNDEF; |
12056 | 0 | if (bfd_is_abs_section (sec)) |
12057 | 0 | ; |
12058 | 0 | else if (sec == NULL || sec->owner == NULL) |
12059 | 0 | { |
12060 | 0 | bfd_set_error (bfd_error_bad_value); |
12061 | 0 | return false; |
12062 | 0 | } |
12063 | 0 | else |
12064 | 0 | { |
12065 | 0 | asection *osec = sec->output_section; |
12066 | | |
12067 | | /* If we have discarded a section, the output |
12068 | | section will be the absolute section. In |
12069 | | case of discarded SEC_MERGE sections, use |
12070 | | the kept section. relocate_section should |
12071 | | have already handled discarded linkonce |
12072 | | sections. */ |
12073 | 0 | if (bfd_is_abs_section (osec) |
12074 | 0 | && sec->kept_section != NULL |
12075 | 0 | && sec->kept_section->output_section != NULL) |
12076 | 0 | { |
12077 | 0 | osec = sec->kept_section->output_section; |
12078 | 0 | irela->r_addend -= osec->vma; |
12079 | 0 | } |
12080 | |
|
12081 | 0 | if (!bfd_is_abs_section (osec)) |
12082 | 0 | { |
12083 | 0 | r_symndx = osec->target_index; |
12084 | 0 | if (r_symndx == STN_UNDEF) |
12085 | 0 | { |
12086 | 0 | irela->r_addend += osec->vma; |
12087 | 0 | osec = _bfd_nearby_section (output_bfd, osec, |
12088 | 0 | osec->vma); |
12089 | 0 | irela->r_addend -= osec->vma; |
12090 | 0 | r_symndx = osec->target_index; |
12091 | 0 | } |
12092 | 0 | } |
12093 | 0 | } |
12094 | | |
12095 | | /* Adjust the addend according to where the |
12096 | | section winds up in the output section. */ |
12097 | 0 | if (rela_normal) |
12098 | 0 | irela->r_addend += sec->output_offset; |
12099 | 0 | } |
12100 | 0 | else |
12101 | 0 | { |
12102 | 0 | if (flinfo->indices[r_symndx] == -1) |
12103 | 0 | { |
12104 | 0 | unsigned long shlink; |
12105 | 0 | const char *name; |
12106 | 0 | asection *osec; |
12107 | 0 | long indx; |
12108 | |
|
12109 | 0 | if (flinfo->info->strip == strip_all) |
12110 | 0 | { |
12111 | | /* You can't do ld -r -s. */ |
12112 | 0 | bfd_set_error (bfd_error_invalid_operation); |
12113 | 0 | return false; |
12114 | 0 | } |
12115 | | |
12116 | | /* This symbol was skipped earlier, but |
12117 | | since it is needed by a reloc, we |
12118 | | must output it now. */ |
12119 | 0 | shlink = symtab_hdr->sh_link; |
12120 | 0 | name = (bfd_elf_string_from_elf_section |
12121 | 0 | (input_bfd, shlink, sym.st_name)); |
12122 | 0 | if (name == NULL) |
12123 | 0 | return false; |
12124 | | |
12125 | 0 | osec = sec->output_section; |
12126 | 0 | sym.st_shndx = |
12127 | 0 | _bfd_elf_section_from_bfd_section (output_bfd, |
12128 | 0 | osec); |
12129 | 0 | if (sym.st_shndx == SHN_BAD) |
12130 | 0 | return false; |
12131 | | |
12132 | 0 | sym.st_value += sec->output_offset; |
12133 | 0 | if (!bfd_link_relocatable (flinfo->info)) |
12134 | 0 | { |
12135 | 0 | sym.st_value += osec->vma; |
12136 | 0 | if (ELF_ST_TYPE (sym.st_info) == STT_TLS) |
12137 | 0 | { |
12138 | 0 | struct elf_link_hash_table *htab |
12139 | 0 | = elf_hash_table (flinfo->info); |
12140 | | |
12141 | | /* STT_TLS symbols are relative to PT_TLS |
12142 | | segment base. */ |
12143 | 0 | if (htab->tls_sec != NULL) |
12144 | 0 | sym.st_value -= htab->tls_sec->vma; |
12145 | 0 | else |
12146 | 0 | sym.st_info |
12147 | 0 | = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), |
12148 | 0 | STT_NOTYPE); |
12149 | 0 | } |
12150 | 0 | } |
12151 | |
|
12152 | 0 | indx = bfd_get_symcount (output_bfd); |
12153 | 0 | ret = elf_link_output_symstrtab (flinfo, name, |
12154 | 0 | &sym, sec, |
12155 | 0 | NULL); |
12156 | 0 | if (ret == 0) |
12157 | 0 | return false; |
12158 | 0 | else if (ret == 1) |
12159 | 0 | flinfo->indices[r_symndx] = indx; |
12160 | 0 | else |
12161 | 0 | abort (); |
12162 | 0 | } |
12163 | | |
12164 | 0 | r_symndx = flinfo->indices[r_symndx]; |
12165 | 0 | } |
12166 | | |
12167 | 0 | irela->r_info = ((bfd_vma) r_symndx << r_sym_shift |
12168 | 0 | | (irela->r_info & r_type_mask)); |
12169 | 0 | } |
12170 | | |
12171 | | /* Swap out the relocs. */ |
12172 | 0 | input_rel_hdr = esdi->rel.hdr; |
12173 | 0 | if (input_rel_hdr && input_rel_hdr->sh_size != 0) |
12174 | 0 | { |
12175 | 0 | if (!bed->elf_backend_emit_relocs (output_bfd, o, |
12176 | 0 | input_rel_hdr, |
12177 | 0 | internal_relocs, |
12178 | 0 | rel_hash_list)) |
12179 | 0 | return false; |
12180 | 0 | internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) |
12181 | 0 | * bed->s->int_rels_per_ext_rel); |
12182 | 0 | rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); |
12183 | 0 | } |
12184 | | |
12185 | 0 | input_rela_hdr = esdi->rela.hdr; |
12186 | 0 | if (input_rela_hdr && input_rela_hdr->sh_size != 0) |
12187 | 0 | { |
12188 | 0 | if (!bed->elf_backend_emit_relocs (output_bfd, o, |
12189 | 0 | input_rela_hdr, |
12190 | 0 | internal_relocs, |
12191 | 0 | rela_hash_list)) |
12192 | 0 | return false; |
12193 | 0 | } |
12194 | 0 | } |
12195 | 0 | } |
12196 | | |
12197 | | /* Write out the modified section contents. */ |
12198 | 0 | if (bed->elf_backend_write_section |
12199 | 0 | && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, |
12200 | 0 | contents)) |
12201 | 0 | { |
12202 | | /* Section written out. */ |
12203 | 0 | } |
12204 | 0 | else switch (o->sec_info_type) |
12205 | 0 | { |
12206 | 0 | case SEC_INFO_TYPE_STABS: |
12207 | 0 | if (! (_bfd_write_section_stabs |
12208 | 0 | (output_bfd, |
12209 | 0 | &elf_hash_table (flinfo->info)->stab_info, |
12210 | 0 | o, &elf_section_data (o)->sec_info, contents))) |
12211 | 0 | return false; |
12212 | 0 | break; |
12213 | 0 | case SEC_INFO_TYPE_MERGE: |
12214 | 0 | if (! _bfd_write_merged_section (output_bfd, o, |
12215 | 0 | elf_section_data (o)->sec_info)) |
12216 | 0 | return false; |
12217 | 0 | break; |
12218 | 0 | case SEC_INFO_TYPE_EH_FRAME: |
12219 | 0 | { |
12220 | 0 | if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, |
12221 | 0 | o, contents)) |
12222 | 0 | return false; |
12223 | 0 | } |
12224 | 0 | break; |
12225 | 0 | case SEC_INFO_TYPE_EH_FRAME_ENTRY: |
12226 | 0 | { |
12227 | 0 | if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, |
12228 | 0 | flinfo->info, |
12229 | 0 | o, contents)) |
12230 | 0 | return false; |
12231 | 0 | } |
12232 | 0 | break; |
12233 | 0 | case SEC_INFO_TYPE_SFRAME: |
12234 | 0 | { |
12235 | | /* Merge SFrame section into the SFrame encoder context of the |
12236 | | output_bfd's section. The final .sframe output section will |
12237 | | be written out later. */ |
12238 | 0 | if (!_bfd_elf_merge_section_sframe (output_bfd, flinfo->info, |
12239 | 0 | o, contents)) |
12240 | 0 | return false; |
12241 | 0 | } |
12242 | 0 | break; |
12243 | 0 | default: |
12244 | 0 | { |
12245 | 0 | if (! (o->flags & SEC_EXCLUDE)) |
12246 | 0 | { |
12247 | 0 | file_ptr offset = (file_ptr) o->output_offset; |
12248 | 0 | bfd_size_type todo = o->size; |
12249 | |
|
12250 | 0 | offset *= bfd_octets_per_byte (output_bfd, o); |
12251 | |
|
12252 | 0 | if ((o->flags & SEC_ELF_REVERSE_COPY) |
12253 | 0 | && o->size > address_size) |
12254 | 0 | { |
12255 | | /* Reverse-copy input section to output. */ |
12256 | |
|
12257 | 0 | if ((o->size & (address_size - 1)) != 0 |
12258 | 0 | || (o->reloc_count != 0 |
12259 | 0 | && (o->size * bed->s->int_rels_per_ext_rel |
12260 | 0 | != o->reloc_count * address_size))) |
12261 | 0 | { |
12262 | 0 | _bfd_error_handler |
12263 | | /* xgettext:c-format */ |
12264 | 0 | (_("error: %pB: size of section %pA is not " |
12265 | 0 | "multiple of address size"), |
12266 | 0 | input_bfd, o); |
12267 | 0 | bfd_set_error (bfd_error_bad_value); |
12268 | 0 | return false; |
12269 | 0 | } |
12270 | | |
12271 | 0 | do |
12272 | 0 | { |
12273 | 0 | todo -= address_size; |
12274 | 0 | if (! bfd_set_section_contents (output_bfd, |
12275 | 0 | o->output_section, |
12276 | 0 | contents + todo, |
12277 | 0 | offset, |
12278 | 0 | address_size)) |
12279 | 0 | return false; |
12280 | 0 | if (todo == 0) |
12281 | 0 | break; |
12282 | 0 | offset += address_size; |
12283 | 0 | } |
12284 | 0 | while (1); |
12285 | 0 | } |
12286 | 0 | else if (! bfd_set_section_contents (output_bfd, |
12287 | 0 | o->output_section, |
12288 | 0 | contents, |
12289 | 0 | offset, todo)) |
12290 | 0 | return false; |
12291 | 0 | } |
12292 | 0 | } |
12293 | 0 | break; |
12294 | 0 | } |
12295 | | |
12296 | | /* Munmap the section contents for each input section. */ |
12297 | 0 | _bfd_elf_link_munmap_section_contents (o); |
12298 | 0 | } |
12299 | | |
12300 | 0 | return true; |
12301 | 0 | } |
12302 | | |
12303 | | /* Generate a reloc when linking an ELF file. This is a reloc |
12304 | | requested by the linker, and does not come from any input file. This |
12305 | | is used to build constructor and destructor tables when linking |
12306 | | with -Ur. */ |
12307 | | |
12308 | | static bool |
12309 | | elf_reloc_link_order (bfd *output_bfd, |
12310 | | struct bfd_link_info *info, |
12311 | | asection *output_section, |
12312 | | struct bfd_link_order *link_order) |
12313 | 0 | { |
12314 | 0 | reloc_howto_type *howto; |
12315 | 0 | long indx; |
12316 | 0 | bfd_vma offset; |
12317 | 0 | bfd_vma addend; |
12318 | 0 | struct bfd_elf_section_reloc_data *reldata; |
12319 | 0 | struct elf_link_hash_entry **rel_hash_ptr; |
12320 | 0 | Elf_Internal_Shdr *rel_hdr; |
12321 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
12322 | 0 | Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; |
12323 | 0 | bfd_byte *erel; |
12324 | 0 | unsigned int i; |
12325 | 0 | struct bfd_elf_section_data *esdo = elf_section_data (output_section); |
12326 | |
|
12327 | 0 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); |
12328 | 0 | if (howto == NULL) |
12329 | 0 | { |
12330 | 0 | bfd_set_error (bfd_error_bad_value); |
12331 | 0 | return false; |
12332 | 0 | } |
12333 | | |
12334 | 0 | addend = link_order->u.reloc.p->addend; |
12335 | |
|
12336 | 0 | if (esdo->rel.hdr) |
12337 | 0 | reldata = &esdo->rel; |
12338 | 0 | else if (esdo->rela.hdr) |
12339 | 0 | reldata = &esdo->rela; |
12340 | 0 | else |
12341 | 0 | { |
12342 | 0 | reldata = NULL; |
12343 | 0 | BFD_ASSERT (0); |
12344 | 0 | } |
12345 | | |
12346 | | /* Figure out the symbol index. */ |
12347 | 0 | rel_hash_ptr = reldata->hashes + reldata->count; |
12348 | 0 | if (link_order->type == bfd_section_reloc_link_order) |
12349 | 0 | { |
12350 | 0 | indx = link_order->u.reloc.p->u.section->target_index; |
12351 | 0 | BFD_ASSERT (indx != 0); |
12352 | 0 | *rel_hash_ptr = NULL; |
12353 | 0 | } |
12354 | 0 | else |
12355 | 0 | { |
12356 | 0 | struct elf_link_hash_entry *h; |
12357 | | |
12358 | | /* Treat a reloc against a defined symbol as though it were |
12359 | | actually against the section. */ |
12360 | 0 | h = ((struct elf_link_hash_entry *) |
12361 | 0 | bfd_wrapped_link_hash_lookup (output_bfd, info, |
12362 | 0 | link_order->u.reloc.p->u.name, |
12363 | 0 | false, false, true)); |
12364 | 0 | if (h != NULL |
12365 | 0 | && (h->root.type == bfd_link_hash_defined |
12366 | 0 | || h->root.type == bfd_link_hash_defweak)) |
12367 | 0 | { |
12368 | 0 | asection *section; |
12369 | |
|
12370 | 0 | section = h->root.u.def.section; |
12371 | 0 | indx = section->output_section->target_index; |
12372 | 0 | *rel_hash_ptr = NULL; |
12373 | | /* It seems that we ought to add the symbol value to the |
12374 | | addend here, but in practice it has already been added |
12375 | | because it was passed to constructor_callback. */ |
12376 | 0 | addend += section->output_section->vma + section->output_offset; |
12377 | 0 | } |
12378 | 0 | else if (h != NULL) |
12379 | 0 | { |
12380 | | /* Setting the index to -2 tells elf_link_output_extsym that |
12381 | | this symbol is used by a reloc. */ |
12382 | 0 | h->indx = -2; |
12383 | 0 | *rel_hash_ptr = h; |
12384 | 0 | indx = 0; |
12385 | 0 | } |
12386 | 0 | else |
12387 | 0 | { |
12388 | 0 | (*info->callbacks->unattached_reloc) |
12389 | 0 | (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); |
12390 | 0 | indx = 0; |
12391 | 0 | } |
12392 | 0 | } |
12393 | | |
12394 | | /* If this is an inplace reloc, we must write the addend into the |
12395 | | object file. */ |
12396 | 0 | if (howto->partial_inplace && addend != 0) |
12397 | 0 | { |
12398 | 0 | bfd_size_type size; |
12399 | 0 | bfd_reloc_status_type rstat; |
12400 | 0 | bfd_byte *buf; |
12401 | 0 | bool ok; |
12402 | 0 | const char *sym_name; |
12403 | 0 | bfd_size_type octets; |
12404 | |
|
12405 | 0 | size = (bfd_size_type) bfd_get_reloc_size (howto); |
12406 | 0 | buf = (bfd_byte *) bfd_zmalloc (size); |
12407 | 0 | if (buf == NULL && size != 0) |
12408 | 0 | return false; |
12409 | 0 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); |
12410 | 0 | switch (rstat) |
12411 | 0 | { |
12412 | 0 | case bfd_reloc_ok: |
12413 | 0 | break; |
12414 | | |
12415 | 0 | default: |
12416 | 0 | case bfd_reloc_outofrange: |
12417 | 0 | abort (); |
12418 | | |
12419 | 0 | case bfd_reloc_overflow: |
12420 | 0 | if (link_order->type == bfd_section_reloc_link_order) |
12421 | 0 | sym_name = bfd_section_name (link_order->u.reloc.p->u.section); |
12422 | 0 | else |
12423 | 0 | sym_name = link_order->u.reloc.p->u.name; |
12424 | 0 | (*info->callbacks->reloc_overflow) (info, NULL, sym_name, |
12425 | 0 | howto->name, addend, NULL, NULL, |
12426 | 0 | (bfd_vma) 0); |
12427 | 0 | break; |
12428 | 0 | } |
12429 | | |
12430 | 0 | octets = link_order->offset * bfd_octets_per_byte (output_bfd, |
12431 | 0 | output_section); |
12432 | 0 | ok = bfd_set_section_contents (output_bfd, output_section, buf, |
12433 | 0 | octets, size); |
12434 | 0 | free (buf); |
12435 | 0 | if (! ok) |
12436 | 0 | return false; |
12437 | 0 | } |
12438 | | |
12439 | | /* The address of a reloc is relative to the section in a |
12440 | | relocatable file, and is a virtual address in an executable |
12441 | | file. */ |
12442 | 0 | offset = link_order->offset; |
12443 | 0 | if (! bfd_link_relocatable (info)) |
12444 | 0 | offset += output_section->vma; |
12445 | |
|
12446 | 0 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) |
12447 | 0 | { |
12448 | 0 | irel[i].r_offset = offset; |
12449 | 0 | irel[i].r_info = 0; |
12450 | 0 | irel[i].r_addend = 0; |
12451 | 0 | } |
12452 | 0 | if (bed->s->arch_size == 32) |
12453 | 0 | irel[0].r_info = ELF32_R_INFO (indx, howto->type); |
12454 | 0 | else |
12455 | 0 | irel[0].r_info = ELF64_R_INFO (indx, howto->type); |
12456 | |
|
12457 | 0 | rel_hdr = reldata->hdr; |
12458 | 0 | erel = rel_hdr->contents; |
12459 | 0 | if (rel_hdr->sh_type == SHT_REL) |
12460 | 0 | { |
12461 | 0 | erel += reldata->count * bed->s->sizeof_rel; |
12462 | 0 | (*bed->s->swap_reloc_out) (output_bfd, irel, erel); |
12463 | 0 | } |
12464 | 0 | else |
12465 | 0 | { |
12466 | 0 | irel[0].r_addend = addend; |
12467 | 0 | erel += reldata->count * bed->s->sizeof_rela; |
12468 | 0 | (*bed->s->swap_reloca_out) (output_bfd, irel, erel); |
12469 | 0 | } |
12470 | |
|
12471 | 0 | ++reldata->count; |
12472 | |
|
12473 | 0 | return true; |
12474 | 0 | } |
12475 | | |
12476 | | /* Generate an import library in INFO->implib_bfd from symbols in ABFD. |
12477 | | Returns TRUE upon success, FALSE otherwise. */ |
12478 | | |
12479 | | static bool |
12480 | | elf_output_implib (bfd *abfd, struct bfd_link_info *info) |
12481 | 0 | { |
12482 | 0 | bool ret = false; |
12483 | 0 | bfd *implib_bfd; |
12484 | 0 | const struct elf_backend_data *bed; |
12485 | 0 | flagword flags; |
12486 | 0 | enum bfd_architecture arch; |
12487 | 0 | unsigned int mach; |
12488 | 0 | asymbol **sympp = NULL; |
12489 | 0 | long symsize; |
12490 | 0 | long symcount; |
12491 | 0 | long src_count; |
12492 | 0 | elf_symbol_type *osymbuf; |
12493 | 0 | size_t amt; |
12494 | |
|
12495 | 0 | implib_bfd = info->out_implib_bfd; |
12496 | 0 | bed = get_elf_backend_data (abfd); |
12497 | |
|
12498 | 0 | if (!bfd_set_format (implib_bfd, bfd_object)) |
12499 | 0 | return false; |
12500 | | |
12501 | | /* Use flag from executable but make it a relocatable object. */ |
12502 | 0 | flags = bfd_get_file_flags (abfd); |
12503 | 0 | flags &= ~HAS_RELOC; |
12504 | 0 | if (!bfd_set_start_address (implib_bfd, 0) |
12505 | 0 | || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) |
12506 | 0 | return false; |
12507 | | |
12508 | | /* Copy architecture of output file to import library file. */ |
12509 | 0 | arch = bfd_get_arch (abfd); |
12510 | 0 | mach = bfd_get_mach (abfd); |
12511 | 0 | if (!bfd_set_arch_mach (implib_bfd, arch, mach) |
12512 | 0 | && (abfd->target_defaulted |
12513 | 0 | || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) |
12514 | 0 | return false; |
12515 | | |
12516 | | /* Get symbol table size. */ |
12517 | 0 | symsize = bfd_get_symtab_upper_bound (abfd); |
12518 | 0 | if (symsize < 0) |
12519 | 0 | return false; |
12520 | | |
12521 | | /* Read in the symbol table. */ |
12522 | 0 | sympp = (asymbol **) bfd_malloc (symsize); |
12523 | 0 | if (sympp == NULL) |
12524 | 0 | return false; |
12525 | | |
12526 | 0 | symcount = bfd_canonicalize_symtab (abfd, sympp); |
12527 | 0 | if (symcount < 0) |
12528 | 0 | goto free_sym_buf; |
12529 | | |
12530 | | /* Allow the BFD backend to copy any private header data it |
12531 | | understands from the output BFD to the import library BFD. */ |
12532 | 0 | if (! bfd_copy_private_header_data (abfd, implib_bfd)) |
12533 | 0 | goto free_sym_buf; |
12534 | | |
12535 | | /* Filter symbols to appear in the import library. */ |
12536 | 0 | if (bed->elf_backend_filter_implib_symbols) |
12537 | 0 | symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, |
12538 | 0 | symcount); |
12539 | 0 | else |
12540 | 0 | symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); |
12541 | 0 | if (symcount == 0) |
12542 | 0 | { |
12543 | 0 | bfd_set_error (bfd_error_no_symbols); |
12544 | 0 | _bfd_error_handler (_("%pB: no symbol found for import library"), |
12545 | 0 | implib_bfd); |
12546 | 0 | goto free_sym_buf; |
12547 | 0 | } |
12548 | | |
12549 | | |
12550 | | /* Make symbols absolute. */ |
12551 | 0 | amt = symcount * sizeof (*osymbuf); |
12552 | 0 | osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt); |
12553 | 0 | if (osymbuf == NULL) |
12554 | 0 | goto free_sym_buf; |
12555 | | |
12556 | 0 | for (src_count = 0; src_count < symcount; src_count++) |
12557 | 0 | { |
12558 | 0 | memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], |
12559 | 0 | sizeof (*osymbuf)); |
12560 | 0 | osymbuf[src_count].symbol.section = bfd_abs_section_ptr; |
12561 | 0 | osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; |
12562 | 0 | osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; |
12563 | 0 | osymbuf[src_count].internal_elf_sym.st_value = |
12564 | 0 | osymbuf[src_count].symbol.value; |
12565 | 0 | sympp[src_count] = &osymbuf[src_count].symbol; |
12566 | 0 | } |
12567 | |
|
12568 | 0 | bfd_set_symtab (implib_bfd, sympp, symcount); |
12569 | | |
12570 | | /* Allow the BFD backend to copy any private data it understands |
12571 | | from the output BFD to the import library BFD. This is done last |
12572 | | to permit the routine to look at the filtered symbol table. */ |
12573 | 0 | if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) |
12574 | 0 | goto free_sym_buf; |
12575 | | |
12576 | 0 | if (!bfd_close (implib_bfd)) |
12577 | 0 | goto free_sym_buf; |
12578 | | |
12579 | 0 | ret = true; |
12580 | |
|
12581 | 0 | free_sym_buf: |
12582 | 0 | free (sympp); |
12583 | 0 | return ret; |
12584 | 0 | } |
12585 | | |
12586 | | static void |
12587 | | elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) |
12588 | 0 | { |
12589 | 0 | asection *o; |
12590 | |
|
12591 | 0 | if (flinfo->symstrtab != NULL) |
12592 | 0 | _bfd_elf_strtab_free (flinfo->symstrtab); |
12593 | 0 | free (flinfo->contents); |
12594 | 0 | free (flinfo->external_relocs); |
12595 | 0 | free (flinfo->internal_relocs); |
12596 | 0 | free (flinfo->external_syms); |
12597 | 0 | free (flinfo->locsym_shndx); |
12598 | 0 | free (flinfo->internal_syms); |
12599 | 0 | free (flinfo->indices); |
12600 | 0 | free (flinfo->sections); |
12601 | 0 | if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) |
12602 | 0 | free (flinfo->symshndxbuf); |
12603 | 0 | for (o = obfd->sections; o != NULL; o = o->next) |
12604 | 0 | { |
12605 | 0 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
12606 | 0 | free (esdo->rel.hashes); |
12607 | 0 | free (esdo->rela.hashes); |
12608 | 0 | } |
12609 | 0 | } |
12610 | | |
12611 | | /* Do the final step of an ELF link. */ |
12612 | | |
12613 | | bool |
12614 | | bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
12615 | 0 | { |
12616 | 0 | bool dynamic; |
12617 | 0 | bool emit_relocs; |
12618 | 0 | bfd *dynobj; |
12619 | 0 | struct elf_final_link_info flinfo; |
12620 | 0 | asection *o; |
12621 | 0 | struct bfd_link_order *p; |
12622 | 0 | bfd *sub; |
12623 | 0 | bfd_size_type max_contents_size; |
12624 | 0 | bfd_size_type max_external_reloc_size; |
12625 | 0 | bfd_size_type max_internal_reloc_count; |
12626 | 0 | bfd_size_type max_sym_count; |
12627 | 0 | bfd_size_type max_sym_shndx_count; |
12628 | 0 | Elf_Internal_Sym elfsym; |
12629 | 0 | unsigned int i; |
12630 | 0 | Elf_Internal_Shdr *symtab_hdr; |
12631 | 0 | Elf_Internal_Shdr *symtab_shndx_hdr; |
12632 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
12633 | 0 | struct elf_outext_info eoinfo; |
12634 | 0 | bool merged; |
12635 | 0 | size_t relativecount; |
12636 | 0 | size_t relr_entsize; |
12637 | 0 | asection *reldyn = 0; |
12638 | 0 | bfd_size_type amt; |
12639 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
12640 | 0 | bool sections_removed; |
12641 | |
|
12642 | 0 | if (!is_elf_hash_table (&htab->root)) |
12643 | 0 | return false; |
12644 | | |
12645 | 0 | if (bfd_link_pic (info)) |
12646 | 0 | abfd->flags |= DYNAMIC; |
12647 | |
|
12648 | 0 | dynamic = htab->dynamic_sections_created; |
12649 | 0 | dynobj = htab->dynobj; |
12650 | |
|
12651 | 0 | emit_relocs = (bfd_link_relocatable (info) |
12652 | 0 | || info->emitrelocations); |
12653 | |
|
12654 | 0 | memset (&flinfo, 0, sizeof (flinfo)); |
12655 | 0 | flinfo.info = info; |
12656 | 0 | flinfo.output_bfd = abfd; |
12657 | 0 | flinfo.symstrtab = _bfd_elf_strtab_init (); |
12658 | 0 | if (flinfo.symstrtab == NULL) |
12659 | 0 | return false; |
12660 | | |
12661 | 0 | if (! dynamic) |
12662 | 0 | { |
12663 | 0 | flinfo.hash_sec = NULL; |
12664 | 0 | flinfo.symver_sec = NULL; |
12665 | 0 | } |
12666 | 0 | else |
12667 | 0 | { |
12668 | 0 | flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); |
12669 | | /* Note that dynsym_sec can be NULL (on VMS). */ |
12670 | 0 | flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); |
12671 | | /* Note that it is OK if symver_sec is NULL. */ |
12672 | 0 | } |
12673 | |
|
12674 | 0 | if (info->unique_symbol |
12675 | 0 | && !bfd_hash_table_init (&flinfo.local_hash_table, |
12676 | 0 | local_hash_newfunc, |
12677 | 0 | sizeof (struct local_hash_entry))) |
12678 | 0 | return false; |
12679 | | |
12680 | | /* The object attributes have been merged. Remove the input |
12681 | | sections from the link, and set the contents of the output |
12682 | | section. */ |
12683 | 0 | sections_removed = false; |
12684 | 0 | const char *obj_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; |
12685 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
12686 | 0 | { |
12687 | 0 | bool remove_section = false; |
12688 | |
|
12689 | 0 | if ((obj_attrs_section && strcmp (o->name, obj_attrs_section) == 0) |
12690 | 0 | || strcmp (o->name, ".gnu.attributes") == 0) |
12691 | 0 | { |
12692 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
12693 | 0 | { |
12694 | 0 | asection *input_section; |
12695 | |
|
12696 | 0 | if (p->type != bfd_indirect_link_order) |
12697 | 0 | continue; |
12698 | 0 | input_section = p->u.indirect.section; |
12699 | | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
12700 | | elf_link_input_bfd ignores this section. */ |
12701 | 0 | input_section->flags &= ~SEC_HAS_CONTENTS; |
12702 | 0 | } |
12703 | | |
12704 | | /* Skip this section later on. */ |
12705 | 0 | o->map_head.link_order = NULL; |
12706 | |
|
12707 | 0 | bfd_vma attr_size = bfd_elf_obj_attr_size (abfd); |
12708 | | /* Once ELF headers have been written, the size of a section is |
12709 | | frozen. We need to set the size of the attribute section before |
12710 | | _bfd_elf_compute_section_file_positions. */ |
12711 | 0 | bfd_set_section_size (o, attr_size); |
12712 | 0 | if (attr_size > 0) |
12713 | 0 | elf_obj_build_attributes (abfd) = o; |
12714 | 0 | else |
12715 | 0 | remove_section = true; |
12716 | 0 | } |
12717 | 0 | else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) |
12718 | 0 | { |
12719 | | /* Remove empty group section from linker output. */ |
12720 | 0 | remove_section = true; |
12721 | 0 | } |
12722 | 0 | if (remove_section) |
12723 | 0 | { |
12724 | 0 | o->flags |= SEC_EXCLUDE; |
12725 | 0 | bfd_section_list_remove (abfd, o); |
12726 | 0 | abfd->section_count--; |
12727 | 0 | sections_removed = true; |
12728 | 0 | } |
12729 | 0 | } |
12730 | 0 | if (sections_removed) |
12731 | 0 | _bfd_fix_excluded_sec_syms (abfd, info); |
12732 | | |
12733 | | /* Count up the number of relocations we will output for each output |
12734 | | section, so that we know the sizes of the reloc sections. We |
12735 | | also figure out some maximum sizes. */ |
12736 | 0 | #ifdef USE_MMAP |
12737 | 0 | if (bed->use_mmap) |
12738 | 0 | { |
12739 | | /* Mmap is used only if section size >= the minimum mmap section |
12740 | | size. The initial max_contents_size value covers all sections |
12741 | | smaller than the minimum mmap section size. It may be increased |
12742 | | for compressed or linker created sections or sections whose |
12743 | | rawsize != size. max_external_reloc_size covers all relocation |
12744 | | sections smaller than the minimum mmap section size. */ |
12745 | 0 | max_contents_size = _bfd_minimum_mmap_size; |
12746 | 0 | max_external_reloc_size = _bfd_minimum_mmap_size; |
12747 | 0 | } |
12748 | 0 | else |
12749 | 0 | #endif |
12750 | 0 | { |
12751 | 0 | max_contents_size = 0; |
12752 | 0 | max_external_reloc_size = 0; |
12753 | 0 | } |
12754 | 0 | max_internal_reloc_count = 0; |
12755 | 0 | max_sym_count = 0; |
12756 | 0 | max_sym_shndx_count = 0; |
12757 | 0 | merged = false; |
12758 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
12759 | 0 | { |
12760 | 0 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
12761 | 0 | o->reloc_count = 0; |
12762 | |
|
12763 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
12764 | 0 | { |
12765 | 0 | unsigned int reloc_count = 0; |
12766 | 0 | unsigned int additional_reloc_count = 0; |
12767 | 0 | struct bfd_elf_section_data *esdi = NULL; |
12768 | |
|
12769 | 0 | if (p->type == bfd_section_reloc_link_order |
12770 | 0 | || p->type == bfd_symbol_reloc_link_order) |
12771 | 0 | reloc_count = 1; |
12772 | 0 | else if (p->type == bfd_indirect_link_order) |
12773 | 0 | { |
12774 | 0 | asection *sec; |
12775 | |
|
12776 | 0 | sec = p->u.indirect.section; |
12777 | | |
12778 | | /* Mark all sections which are to be included in the |
12779 | | link. This will normally be every section. We need |
12780 | | to do this so that we can identify any sections which |
12781 | | the linker has decided to not include. */ |
12782 | 0 | sec->linker_mark = true; |
12783 | |
|
12784 | 0 | if (sec->flags & SEC_MERGE) |
12785 | 0 | merged = true; |
12786 | |
|
12787 | 0 | #ifdef USE_MMAP |
12788 | | /* Mmap is used only on non-compressed, non-linker created |
12789 | | sections whose rawsize == size. */ |
12790 | 0 | if (!bed->use_mmap |
12791 | 0 | || sec->compress_status != COMPRESS_SECTION_NONE |
12792 | 0 | || (sec->flags & SEC_LINKER_CREATED) != 0 |
12793 | 0 | || sec->rawsize != sec->size) |
12794 | 0 | #endif |
12795 | 0 | { |
12796 | 0 | if (sec->rawsize > max_contents_size) |
12797 | 0 | max_contents_size = sec->rawsize; |
12798 | 0 | if (sec->size > max_contents_size) |
12799 | 0 | max_contents_size = sec->size; |
12800 | 0 | } |
12801 | |
|
12802 | 0 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour |
12803 | 0 | && (sec->owner->flags & DYNAMIC) == 0) |
12804 | 0 | { |
12805 | 0 | size_t sym_count; |
12806 | | |
12807 | | /* We are interested in just local symbols, not all |
12808 | | symbols. */ |
12809 | 0 | if (elf_bad_symtab (sec->owner)) |
12810 | 0 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size |
12811 | 0 | / bed->s->sizeof_sym); |
12812 | 0 | else |
12813 | 0 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; |
12814 | |
|
12815 | 0 | if (sym_count > max_sym_count) |
12816 | 0 | max_sym_count = sym_count; |
12817 | |
|
12818 | 0 | if (sym_count > max_sym_shndx_count |
12819 | 0 | && elf_symtab_shndx_list (sec->owner) != NULL) |
12820 | 0 | max_sym_shndx_count = sym_count; |
12821 | |
|
12822 | 0 | esdi = elf_section_data (sec); |
12823 | |
|
12824 | 0 | if (esdi->this_hdr.sh_type == SHT_REL |
12825 | 0 | || esdi->this_hdr.sh_type == SHT_RELA) |
12826 | | /* Some backends use reloc_count in relocation sections |
12827 | | to count particular types of relocs. Of course, |
12828 | | reloc sections themselves can't have relocations. */ |
12829 | 0 | ; |
12830 | 0 | else if (emit_relocs) |
12831 | 0 | { |
12832 | 0 | reloc_count = sec->reloc_count; |
12833 | 0 | if (bed->elf_backend_count_additional_relocs) |
12834 | 0 | { |
12835 | 0 | int c; |
12836 | 0 | c = (*bed->elf_backend_count_additional_relocs) (sec); |
12837 | 0 | additional_reloc_count += c; |
12838 | 0 | } |
12839 | 0 | } |
12840 | 0 | else if (bed->elf_backend_count_relocs) |
12841 | 0 | reloc_count = (*bed->elf_backend_count_relocs) (info, sec); |
12842 | |
|
12843 | 0 | if ((sec->flags & SEC_RELOC) != 0) |
12844 | 0 | { |
12845 | 0 | #ifdef USE_MMAP |
12846 | 0 | if (!bed->use_mmap) |
12847 | 0 | #endif |
12848 | 0 | { |
12849 | 0 | size_t ext_size = 0; |
12850 | |
|
12851 | 0 | if (esdi->rel.hdr != NULL) |
12852 | 0 | ext_size = esdi->rel.hdr->sh_size; |
12853 | 0 | if (esdi->rela.hdr != NULL) |
12854 | 0 | ext_size += esdi->rela.hdr->sh_size; |
12855 | |
|
12856 | 0 | if (ext_size > max_external_reloc_size) |
12857 | 0 | max_external_reloc_size = ext_size; |
12858 | 0 | } |
12859 | 0 | if (sec->reloc_count > max_internal_reloc_count) |
12860 | 0 | max_internal_reloc_count = sec->reloc_count; |
12861 | 0 | } |
12862 | 0 | } |
12863 | 0 | } |
12864 | |
|
12865 | 0 | if (reloc_count == 0) |
12866 | 0 | continue; |
12867 | | |
12868 | 0 | reloc_count += additional_reloc_count; |
12869 | 0 | o->reloc_count += reloc_count; |
12870 | |
|
12871 | 0 | if (p->type == bfd_indirect_link_order && emit_relocs) |
12872 | 0 | { |
12873 | 0 | if (esdi->rel.hdr) |
12874 | 0 | { |
12875 | 0 | esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); |
12876 | 0 | esdo->rel.count += additional_reloc_count; |
12877 | 0 | } |
12878 | 0 | if (esdi->rela.hdr) |
12879 | 0 | { |
12880 | 0 | esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); |
12881 | 0 | esdo->rela.count += additional_reloc_count; |
12882 | 0 | } |
12883 | 0 | } |
12884 | 0 | else |
12885 | 0 | { |
12886 | 0 | if (o->use_rela_p) |
12887 | 0 | esdo->rela.count += reloc_count; |
12888 | 0 | else |
12889 | 0 | esdo->rel.count += reloc_count; |
12890 | 0 | } |
12891 | 0 | } |
12892 | |
|
12893 | 0 | if (o->reloc_count > 0) |
12894 | 0 | o->flags |= SEC_RELOC; |
12895 | 0 | else |
12896 | 0 | { |
12897 | | /* Explicitly clear the SEC_RELOC flag. The linker tends to |
12898 | | set it (this is probably a bug) and if it is set |
12899 | | assign_section_numbers will create a reloc section. */ |
12900 | 0 | o->flags &=~ SEC_RELOC; |
12901 | 0 | } |
12902 | | |
12903 | | /* If the SEC_ALLOC flag is not set, force the section VMA to |
12904 | | zero. This is done in elf_fake_sections as well, but forcing |
12905 | | the VMA to 0 here will ensure that relocs against these |
12906 | | sections are handled correctly. */ |
12907 | 0 | if ((o->flags & SEC_ALLOC) == 0 |
12908 | 0 | && ! o->user_set_vma) |
12909 | 0 | o->vma = 0; |
12910 | 0 | } |
12911 | |
|
12912 | 0 | if (! bfd_link_relocatable (info) && merged) |
12913 | 0 | elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); |
12914 | | |
12915 | | /* Figure out the file positions for everything but the symbol table |
12916 | | and the relocs. We set symcount to force assign_section_numbers |
12917 | | to create a symbol table. */ |
12918 | 0 | abfd->symcount = info->strip != strip_all || emit_relocs; |
12919 | 0 | BFD_ASSERT (! abfd->output_has_begun); |
12920 | 0 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) |
12921 | 0 | goto error_return; |
12922 | | |
12923 | | /* Set sizes, and assign file positions for reloc sections. */ |
12924 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
12925 | 0 | { |
12926 | 0 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
12927 | 0 | if ((o->flags & SEC_RELOC) != 0) |
12928 | 0 | { |
12929 | 0 | if (esdo->rel.hdr |
12930 | 0 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) |
12931 | 0 | goto error_return; |
12932 | | |
12933 | 0 | if (esdo->rela.hdr |
12934 | 0 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) |
12935 | 0 | goto error_return; |
12936 | 0 | } |
12937 | | |
12938 | | /* _bfd_elf_compute_section_file_positions makes temporary use |
12939 | | of target_index. Reset it. */ |
12940 | 0 | o->target_index = 0; |
12941 | | |
12942 | | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them |
12943 | | to count upwards while actually outputting the relocations. */ |
12944 | 0 | esdo->rel.count = 0; |
12945 | 0 | esdo->rela.count = 0; |
12946 | |
|
12947 | 0 | if ((esdo->this_hdr.sh_offset == (file_ptr) -1) |
12948 | 0 | && !bfd_section_is_ctf (o)) |
12949 | 0 | { |
12950 | | /* Cache the section contents so that they can be compressed |
12951 | | later. Use bfd_malloc since it will be freed by |
12952 | | bfd_compress_section_contents. */ |
12953 | 0 | unsigned char *contents = esdo->this_hdr.contents; |
12954 | 0 | if (contents != NULL) |
12955 | 0 | abort (); |
12956 | 0 | contents |
12957 | 0 | = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); |
12958 | 0 | if (contents == NULL) |
12959 | 0 | goto error_return; |
12960 | 0 | esdo->this_hdr.contents = contents; |
12961 | 0 | } |
12962 | 0 | } |
12963 | | |
12964 | | /* We have now assigned file positions for all the sections except .symtab, |
12965 | | .strtab, and non-loaded reloc and compressed debugging sections. We start |
12966 | | the .symtab section at the current file position, and write directly to it. |
12967 | | We build the .strtab section in memory. */ |
12968 | 0 | abfd->symcount = 0; |
12969 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
12970 | | /* sh_name is set in prep_headers. */ |
12971 | 0 | symtab_hdr->sh_type = SHT_SYMTAB; |
12972 | | /* sh_flags, sh_addr and sh_size all start off zero. */ |
12973 | 0 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; |
12974 | | /* sh_link is set in assign_section_numbers. */ |
12975 | | /* sh_info is set below. */ |
12976 | | /* sh_offset is set just below. */ |
12977 | 0 | symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
12978 | |
|
12979 | 0 | if (max_sym_count < 20) |
12980 | 0 | max_sym_count = 20; |
12981 | 0 | htab->strtabsize = max_sym_count; |
12982 | 0 | amt = max_sym_count * sizeof (struct elf_sym_strtab); |
12983 | 0 | htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); |
12984 | 0 | if (htab->strtab == NULL) |
12985 | 0 | goto error_return; |
12986 | | /* The real buffer will be allocated in elf_link_swap_symbols_out. */ |
12987 | 0 | flinfo.symshndxbuf |
12988 | 0 | = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) |
12989 | 0 | ? (Elf_External_Sym_Shndx *) -1 : NULL); |
12990 | |
|
12991 | 0 | if (info->strip != strip_all || emit_relocs) |
12992 | 0 | { |
12993 | 0 | file_ptr off = elf_next_file_pos (abfd); |
12994 | |
|
12995 | 0 | _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true, 0); |
12996 | | |
12997 | | /* Note that at this point elf_next_file_pos (abfd) is |
12998 | | incorrect. We do not yet know the size of the .symtab section. |
12999 | | We correct next_file_pos below, after we do know the size. */ |
13000 | | |
13001 | | /* Start writing out the symbol table. The first symbol is always a |
13002 | | dummy symbol. */ |
13003 | 0 | elfsym.st_value = 0; |
13004 | 0 | elfsym.st_size = 0; |
13005 | 0 | elfsym.st_info = 0; |
13006 | 0 | elfsym.st_other = 0; |
13007 | 0 | elfsym.st_shndx = SHN_UNDEF; |
13008 | 0 | elfsym.st_target_internal = 0; |
13009 | 0 | if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, |
13010 | 0 | bfd_und_section_ptr, NULL) != 1) |
13011 | 0 | goto error_return; |
13012 | | |
13013 | | /* Output a symbol for each section if asked or they are used for |
13014 | | relocs. These symbols usually have no names. We store the |
13015 | | index of each one in the index field of the section, so that |
13016 | | we can find it again when outputting relocs. */ |
13017 | | |
13018 | 0 | if (bfd_keep_unused_section_symbols (abfd) || emit_relocs) |
13019 | 0 | { |
13020 | 0 | bool name_local_sections |
13021 | 0 | = (bed->elf_backend_name_local_section_symbols |
13022 | 0 | && bed->elf_backend_name_local_section_symbols (abfd)); |
13023 | 0 | const char *name = NULL; |
13024 | |
|
13025 | 0 | elfsym.st_size = 0; |
13026 | 0 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
13027 | 0 | elfsym.st_other = 0; |
13028 | 0 | elfsym.st_value = 0; |
13029 | 0 | elfsym.st_target_internal = 0; |
13030 | 0 | for (i = 1; i < elf_numsections (abfd); i++) |
13031 | 0 | { |
13032 | 0 | o = bfd_section_from_elf_index (abfd, i); |
13033 | 0 | if (o != NULL) |
13034 | 0 | { |
13035 | 0 | o->target_index = bfd_get_symcount (abfd); |
13036 | 0 | elfsym.st_shndx = i; |
13037 | 0 | if (!bfd_link_relocatable (info)) |
13038 | 0 | elfsym.st_value = o->vma; |
13039 | 0 | if (name_local_sections) |
13040 | 0 | name = o->name; |
13041 | 0 | if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o, |
13042 | 0 | NULL) != 1) |
13043 | 0 | goto error_return; |
13044 | 0 | } |
13045 | 0 | } |
13046 | 0 | } |
13047 | 0 | } |
13048 | | |
13049 | | /* On some targets like Irix 5 the symbol split between local and global |
13050 | | ones recorded in the sh_info field needs to be done between section |
13051 | | and all other symbols. */ |
13052 | 0 | if (bed->elf_backend_elfsym_local_is_section |
13053 | 0 | && bed->elf_backend_elfsym_local_is_section (abfd)) |
13054 | 0 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
13055 | | |
13056 | | /* Allocate some memory to hold information read in from the input |
13057 | | files. */ |
13058 | 0 | if (max_contents_size != 0) |
13059 | 0 | { |
13060 | 0 | flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
13061 | 0 | if (flinfo.contents == NULL) |
13062 | 0 | goto error_return; |
13063 | 0 | } |
13064 | | |
13065 | 0 | if (max_external_reloc_size != 0) |
13066 | 0 | { |
13067 | 0 | flinfo.external_relocs = bfd_malloc (max_external_reloc_size); |
13068 | 0 | if (flinfo.external_relocs == NULL) |
13069 | 0 | goto error_return; |
13070 | 0 | } |
13071 | | |
13072 | 0 | if (max_internal_reloc_count != 0) |
13073 | 0 | { |
13074 | 0 | amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); |
13075 | 0 | flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); |
13076 | 0 | if (flinfo.internal_relocs == NULL) |
13077 | 0 | goto error_return; |
13078 | 0 | } |
13079 | | |
13080 | 0 | if (max_sym_count != 0) |
13081 | 0 | { |
13082 | 0 | amt = max_sym_count * bed->s->sizeof_sym; |
13083 | 0 | flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); |
13084 | 0 | if (flinfo.external_syms == NULL) |
13085 | 0 | goto error_return; |
13086 | | |
13087 | 0 | amt = max_sym_count * sizeof (Elf_Internal_Sym); |
13088 | 0 | flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); |
13089 | 0 | if (flinfo.internal_syms == NULL) |
13090 | 0 | goto error_return; |
13091 | | |
13092 | 0 | amt = max_sym_count * sizeof (long); |
13093 | 0 | flinfo.indices = (long int *) bfd_malloc (amt); |
13094 | 0 | if (flinfo.indices == NULL) |
13095 | 0 | goto error_return; |
13096 | | |
13097 | 0 | amt = max_sym_count * sizeof (asection *); |
13098 | 0 | flinfo.sections = (asection **) bfd_malloc (amt); |
13099 | 0 | if (flinfo.sections == NULL) |
13100 | 0 | goto error_return; |
13101 | 0 | } |
13102 | | |
13103 | 0 | if (max_sym_shndx_count != 0) |
13104 | 0 | { |
13105 | 0 | amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); |
13106 | 0 | flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); |
13107 | 0 | if (flinfo.locsym_shndx == NULL) |
13108 | 0 | goto error_return; |
13109 | 0 | } |
13110 | | |
13111 | 0 | if (htab->tls_sec) |
13112 | 0 | { |
13113 | 0 | bfd_vma base, end = 0; /* Both bytes. */ |
13114 | 0 | asection *sec; |
13115 | |
|
13116 | 0 | for (sec = htab->tls_sec; |
13117 | 0 | sec && (sec->flags & SEC_THREAD_LOCAL); |
13118 | 0 | sec = sec->next) |
13119 | 0 | { |
13120 | 0 | bfd_size_type size = sec->size; |
13121 | 0 | unsigned int opb = bfd_octets_per_byte (abfd, sec); |
13122 | |
|
13123 | 0 | if (size == 0 |
13124 | 0 | && (sec->flags & SEC_HAS_CONTENTS) == 0) |
13125 | 0 | { |
13126 | 0 | struct bfd_link_order *ord = sec->map_tail.link_order; |
13127 | |
|
13128 | 0 | if (ord != NULL) |
13129 | 0 | size = ord->offset * opb + ord->size; |
13130 | 0 | } |
13131 | 0 | end = sec->vma + size / opb; |
13132 | 0 | } |
13133 | 0 | base = htab->tls_sec->vma; |
13134 | | /* Only align end of TLS section if static TLS doesn't have special |
13135 | | alignment requirements. */ |
13136 | 0 | if (bed->static_tls_alignment == 1) |
13137 | 0 | end = align_power (end, htab->tls_sec->alignment_power); |
13138 | 0 | htab->tls_size = end - base; |
13139 | 0 | } |
13140 | |
|
13141 | 0 | if (!_bfd_elf_fixup_eh_frame_hdr (info)) |
13142 | 0 | return false; |
13143 | | |
13144 | | /* Finish relative relocations here after regular symbol processing |
13145 | | is finished if DT_RELR is enabled. */ |
13146 | 0 | if (info->enable_dt_relr |
13147 | 0 | && bed->finish_relative_relocs |
13148 | 0 | && !bed->finish_relative_relocs (info)) |
13149 | 0 | info->callbacks->fatal |
13150 | 0 | (_("%P: %pB: failed to finish relative relocations\n"), abfd); |
13151 | | |
13152 | | /* Since ELF permits relocations to be against local symbols, we |
13153 | | must have the local symbols available when we do the relocations. |
13154 | | Since we would rather only read the local symbols once, and we |
13155 | | would rather not keep them in memory, we handle all the |
13156 | | relocations for a single input file at the same time. |
13157 | | |
13158 | | Unfortunately, there is no way to know the total number of local |
13159 | | symbols until we have seen all of them, and the local symbol |
13160 | | indices precede the global symbol indices. This means that when |
13161 | | we are generating relocatable output, and we see a reloc against |
13162 | | a global symbol, we can not know the symbol index until we have |
13163 | | finished examining all the local symbols to see which ones we are |
13164 | | going to output. To deal with this, we keep the relocations in |
13165 | | memory, and don't output them until the end of the link. This is |
13166 | | an unfortunate waste of memory, but I don't see a good way around |
13167 | | it. Fortunately, it only happens when performing a relocatable |
13168 | | link, which is not the common case. FIXME: If keep_memory is set |
13169 | | we could write the relocs out and then read them again; I don't |
13170 | | know how bad the memory loss will be. */ |
13171 | | |
13172 | 0 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
13173 | 0 | sub->output_has_begun = false; |
13174 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
13175 | 0 | { |
13176 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
13177 | 0 | { |
13178 | 0 | if (p->type == bfd_indirect_link_order |
13179 | 0 | && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) |
13180 | 0 | == bfd_target_elf_flavour) |
13181 | 0 | && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) |
13182 | 0 | { |
13183 | 0 | if (! sub->output_has_begun) |
13184 | 0 | { |
13185 | 0 | if (! elf_link_input_bfd (&flinfo, sub)) |
13186 | 0 | goto error_return; |
13187 | 0 | sub->output_has_begun = true; |
13188 | 0 | } |
13189 | 0 | } |
13190 | 0 | else if (p->type == bfd_section_reloc_link_order |
13191 | 0 | || p->type == bfd_symbol_reloc_link_order) |
13192 | 0 | { |
13193 | 0 | if (! elf_reloc_link_order (abfd, info, o, p)) |
13194 | 0 | goto error_return; |
13195 | 0 | } |
13196 | 0 | else |
13197 | 0 | { |
13198 | 0 | if (! _bfd_default_link_order (abfd, info, o, p)) |
13199 | 0 | { |
13200 | 0 | if (p->type == bfd_indirect_link_order |
13201 | 0 | && (bfd_get_flavour (sub) |
13202 | 0 | == bfd_target_elf_flavour) |
13203 | 0 | && (elf_elfheader (sub)->e_ident[EI_CLASS] |
13204 | 0 | != bed->s->elfclass)) |
13205 | 0 | { |
13206 | 0 | const char *iclass, *oclass; |
13207 | |
|
13208 | 0 | switch (bed->s->elfclass) |
13209 | 0 | { |
13210 | 0 | case ELFCLASS64: oclass = "ELFCLASS64"; break; |
13211 | 0 | case ELFCLASS32: oclass = "ELFCLASS32"; break; |
13212 | 0 | case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; |
13213 | 0 | default: abort (); |
13214 | 0 | } |
13215 | | |
13216 | 0 | switch (elf_elfheader (sub)->e_ident[EI_CLASS]) |
13217 | 0 | { |
13218 | 0 | case ELFCLASS64: iclass = "ELFCLASS64"; break; |
13219 | 0 | case ELFCLASS32: iclass = "ELFCLASS32"; break; |
13220 | 0 | case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; |
13221 | 0 | default: abort (); |
13222 | 0 | } |
13223 | | |
13224 | 0 | bfd_set_error (bfd_error_wrong_format); |
13225 | 0 | _bfd_error_handler |
13226 | | /* xgettext:c-format */ |
13227 | 0 | (_("%pB: file class %s incompatible with %s"), |
13228 | 0 | sub, iclass, oclass); |
13229 | 0 | } |
13230 | | |
13231 | 0 | goto error_return; |
13232 | 0 | } |
13233 | 0 | } |
13234 | 0 | } |
13235 | 0 | } |
13236 | | |
13237 | | /* Free symbol buffer if needed. */ |
13238 | 0 | if (!info->reduce_memory_overheads) |
13239 | 0 | { |
13240 | 0 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
13241 | 0 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour) |
13242 | 0 | { |
13243 | 0 | free (elf_tdata (sub)->symbuf); |
13244 | 0 | elf_tdata (sub)->symbuf = NULL; |
13245 | 0 | } |
13246 | 0 | } |
13247 | | |
13248 | | /* Output any global symbols that got converted to local in a |
13249 | | version script or due to symbol visibility. We do this in a |
13250 | | separate step since ELF requires all local symbols to appear |
13251 | | prior to any global symbols. FIXME: We should only do this if |
13252 | | some global symbols were, in fact, converted to become local. |
13253 | | FIXME: Will this work correctly with the Irix 5 linker? */ |
13254 | 0 | eoinfo.failed = false; |
13255 | 0 | eoinfo.flinfo = &flinfo; |
13256 | 0 | eoinfo.localsyms = true; |
13257 | 0 | eoinfo.file_sym_done = false; |
13258 | 0 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); |
13259 | 0 | if (eoinfo.failed) |
13260 | 0 | goto error_return; |
13261 | | |
13262 | | /* If backend needs to output some local symbols not present in the hash |
13263 | | table, do it now. */ |
13264 | 0 | if (bed->elf_backend_output_arch_local_syms) |
13265 | 0 | { |
13266 | 0 | if (! ((*bed->elf_backend_output_arch_local_syms) |
13267 | 0 | (abfd, info, &flinfo, elf_link_output_symstrtab))) |
13268 | 0 | goto error_return; |
13269 | 0 | } |
13270 | | |
13271 | | /* That wrote out all the local symbols. Finish up the symbol table |
13272 | | with the global symbols. Even if we want to strip everything we |
13273 | | can, we still need to deal with those global symbols that got |
13274 | | converted to local in a version script. */ |
13275 | | |
13276 | | /* The sh_info field records the index of the first non local symbol. */ |
13277 | 0 | if (!symtab_hdr->sh_info) |
13278 | 0 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
13279 | |
|
13280 | 0 | if (dynamic |
13281 | 0 | && htab->dynsym != NULL |
13282 | 0 | && htab->dynsym->output_section != bfd_abs_section_ptr) |
13283 | 0 | { |
13284 | 0 | Elf_Internal_Sym sym; |
13285 | 0 | bfd_byte *dynsym = htab->dynsym->contents; |
13286 | |
|
13287 | 0 | o = htab->dynsym->output_section; |
13288 | 0 | elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; |
13289 | | |
13290 | | /* Write out the section symbols for the output sections. */ |
13291 | 0 | if (bfd_link_pic (info) |
13292 | 0 | || htab->is_relocatable_executable) |
13293 | 0 | { |
13294 | 0 | asection *s; |
13295 | |
|
13296 | 0 | sym.st_size = 0; |
13297 | 0 | sym.st_name = 0; |
13298 | 0 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
13299 | 0 | sym.st_other = 0; |
13300 | 0 | sym.st_target_internal = 0; |
13301 | |
|
13302 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
13303 | 0 | { |
13304 | 0 | int indx; |
13305 | 0 | bfd_byte *dest; |
13306 | 0 | long dynindx; |
13307 | |
|
13308 | 0 | dynindx = elf_section_data (s)->dynindx; |
13309 | 0 | if (dynindx <= 0) |
13310 | 0 | continue; |
13311 | 0 | indx = elf_section_data (s)->this_idx; |
13312 | 0 | BFD_ASSERT (indx > 0); |
13313 | 0 | sym.st_shndx = indx; |
13314 | 0 | if (! check_dynsym (abfd, &sym)) |
13315 | 0 | goto error_return; |
13316 | 0 | sym.st_value = s->vma; |
13317 | 0 | dest = dynsym + dynindx * bed->s->sizeof_sym; |
13318 | | |
13319 | | /* Inform the linker of the addition of this symbol. */ |
13320 | |
|
13321 | 0 | if (info->callbacks->ctf_new_dynsym) |
13322 | 0 | info->callbacks->ctf_new_dynsym (dynindx, &sym); |
13323 | |
|
13324 | 0 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); |
13325 | 0 | } |
13326 | 0 | } |
13327 | | |
13328 | | /* Write out the local dynsyms. */ |
13329 | 0 | if (htab->dynlocal) |
13330 | 0 | { |
13331 | 0 | struct elf_link_local_dynamic_entry *e; |
13332 | 0 | for (e = htab->dynlocal; e ; e = e->next) |
13333 | 0 | { |
13334 | 0 | asection *s; |
13335 | 0 | bfd_byte *dest; |
13336 | | |
13337 | | /* Copy the internal symbol and turn off visibility. |
13338 | | Note that we saved a word of storage and overwrote |
13339 | | the original st_name with the dynstr_index. */ |
13340 | 0 | sym = e->isym; |
13341 | 0 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); |
13342 | 0 | sym.st_shndx = SHN_UNDEF; |
13343 | |
|
13344 | 0 | s = bfd_section_from_elf_index (e->input_bfd, |
13345 | 0 | e->isym.st_shndx); |
13346 | 0 | if (s != NULL |
13347 | 0 | && s->output_section != NULL |
13348 | 0 | && elf_section_data (s->output_section) != NULL) |
13349 | 0 | { |
13350 | 0 | sym.st_shndx = |
13351 | 0 | elf_section_data (s->output_section)->this_idx; |
13352 | 0 | if (! check_dynsym (abfd, &sym)) |
13353 | 0 | goto error_return; |
13354 | 0 | sym.st_value = (s->output_section->vma |
13355 | 0 | + s->output_offset |
13356 | 0 | + e->isym.st_value); |
13357 | 0 | } |
13358 | | |
13359 | | /* Inform the linker of the addition of this symbol. */ |
13360 | | |
13361 | 0 | if (info->callbacks->ctf_new_dynsym) |
13362 | 0 | info->callbacks->ctf_new_dynsym (e->dynindx, &sym); |
13363 | |
|
13364 | 0 | dest = dynsym + e->dynindx * bed->s->sizeof_sym; |
13365 | 0 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); |
13366 | 0 | } |
13367 | 0 | } |
13368 | 0 | } |
13369 | | |
13370 | | /* We get the global symbols from the hash table. */ |
13371 | 0 | eoinfo.failed = false; |
13372 | 0 | eoinfo.localsyms = false; |
13373 | 0 | eoinfo.flinfo = &flinfo; |
13374 | 0 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); |
13375 | 0 | if (eoinfo.failed) |
13376 | 0 | goto error_return; |
13377 | | |
13378 | | /* If backend needs to output some symbols not present in the hash |
13379 | | table, do it now. */ |
13380 | 0 | if (bed->elf_backend_output_arch_syms |
13381 | 0 | && (info->strip != strip_all || emit_relocs)) |
13382 | 0 | { |
13383 | 0 | if (! ((*bed->elf_backend_output_arch_syms) |
13384 | 0 | (abfd, info, &flinfo, elf_link_output_symstrtab))) |
13385 | 0 | goto error_return; |
13386 | 0 | } |
13387 | | |
13388 | | /* Finalize the .strtab section. */ |
13389 | 0 | _bfd_elf_strtab_finalize (flinfo.symstrtab); |
13390 | | |
13391 | | /* Swap out the .strtab section. */ |
13392 | 0 | if (!elf_link_swap_symbols_out (&flinfo)) |
13393 | 0 | goto error_return; |
13394 | 0 | free (htab->strtab); |
13395 | 0 | htab->strtab = NULL; |
13396 | | |
13397 | | /* Now we know the size of the symtab section. */ |
13398 | 0 | if (bfd_get_symcount (abfd) > 0) |
13399 | 0 | { |
13400 | | /* Finish up and write out the symbol string table (.strtab) |
13401 | | section. */ |
13402 | 0 | Elf_Internal_Shdr *symstrtab_hdr = NULL; |
13403 | 0 | file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; |
13404 | |
|
13405 | 0 | if (elf_symtab_shndx_list (abfd)) |
13406 | 0 | { |
13407 | 0 | symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; |
13408 | |
|
13409 | 0 | if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) |
13410 | 0 | { |
13411 | 0 | symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; |
13412 | 0 | symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); |
13413 | 0 | symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); |
13414 | 0 | amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); |
13415 | 0 | symtab_shndx_hdr->sh_size = amt; |
13416 | |
|
13417 | 0 | off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, |
13418 | 0 | off, true, 0); |
13419 | |
|
13420 | 0 | if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 |
13421 | 0 | || (bfd_write (flinfo.symshndxbuf, amt, abfd) != amt)) |
13422 | 0 | goto error_return; |
13423 | 0 | } |
13424 | 0 | } |
13425 | | |
13426 | 0 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
13427 | | /* sh_name was set in prep_headers. */ |
13428 | 0 | symstrtab_hdr->sh_type = SHT_STRTAB; |
13429 | 0 | symstrtab_hdr->sh_flags = bed->elf_strtab_flags; |
13430 | 0 | symstrtab_hdr->sh_addr = 0; |
13431 | 0 | symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); |
13432 | 0 | symstrtab_hdr->sh_entsize = 0; |
13433 | 0 | symstrtab_hdr->sh_link = 0; |
13434 | 0 | symstrtab_hdr->sh_info = 0; |
13435 | | /* sh_offset is set just below. */ |
13436 | 0 | symstrtab_hdr->sh_addralign = 1; |
13437 | |
|
13438 | 0 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, |
13439 | 0 | off, true, 0); |
13440 | 0 | elf_next_file_pos (abfd) = off; |
13441 | |
|
13442 | 0 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 |
13443 | 0 | || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) |
13444 | 0 | goto error_return; |
13445 | 0 | } |
13446 | | |
13447 | 0 | if (info->out_implib_bfd && !elf_output_implib (abfd, info)) |
13448 | 0 | { |
13449 | 0 | _bfd_error_handler (_("%pB: failed to generate import library"), |
13450 | 0 | info->out_implib_bfd); |
13451 | 0 | goto error_return; |
13452 | 0 | } |
13453 | | |
13454 | | /* Adjust the relocs to have the correct symbol indices. */ |
13455 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
13456 | 0 | { |
13457 | 0 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
13458 | 0 | bool sort; |
13459 | |
|
13460 | 0 | if ((o->flags & SEC_RELOC) == 0) |
13461 | 0 | continue; |
13462 | | |
13463 | 0 | sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); |
13464 | 0 | if (esdo->rel.hdr != NULL |
13465 | 0 | && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) |
13466 | 0 | goto error_return; |
13467 | 0 | if (esdo->rela.hdr != NULL |
13468 | 0 | && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) |
13469 | 0 | goto error_return; |
13470 | | |
13471 | | /* Set the reloc_count field to 0 to prevent write_relocs from |
13472 | | trying to swap the relocs out itself. */ |
13473 | 0 | o->reloc_count = 0; |
13474 | 0 | } |
13475 | | |
13476 | 0 | relativecount = 0; |
13477 | 0 | if (dynamic && info->combreloc && dynobj != NULL) |
13478 | 0 | relativecount = elf_link_sort_relocs (abfd, info, &reldyn); |
13479 | |
|
13480 | 0 | relr_entsize = 0; |
13481 | 0 | if (htab->srelrdyn != NULL |
13482 | 0 | && htab->srelrdyn->output_section != NULL |
13483 | 0 | && htab->srelrdyn->size != 0) |
13484 | 0 | { |
13485 | 0 | asection *s = htab->srelrdyn->output_section; |
13486 | 0 | relr_entsize = elf_section_data (s)->this_hdr.sh_entsize; |
13487 | 0 | if (relr_entsize == 0) |
13488 | 0 | { |
13489 | 0 | relr_entsize = bed->s->arch_size / 8; |
13490 | 0 | elf_section_data (s)->this_hdr.sh_entsize = relr_entsize; |
13491 | 0 | } |
13492 | 0 | } |
13493 | | |
13494 | | /* If we are linking against a dynamic object, or generating a |
13495 | | shared library, finish up the dynamic linking information. */ |
13496 | 0 | if (dynamic) |
13497 | 0 | { |
13498 | 0 | bfd_byte *dyncon, *dynconend; |
13499 | | |
13500 | | /* Fix up .dynamic entries. */ |
13501 | 0 | o = htab->dynamic; |
13502 | 0 | BFD_ASSERT (o != NULL); |
13503 | |
|
13504 | 0 | dyncon = o->contents; |
13505 | 0 | dynconend = PTR_ADD (o->contents, o->size); |
13506 | 0 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) |
13507 | 0 | { |
13508 | 0 | Elf_Internal_Dyn dyn; |
13509 | 0 | const char *name; |
13510 | 0 | unsigned int type; |
13511 | 0 | bfd_size_type sh_size; |
13512 | 0 | bfd_vma sh_addr; |
13513 | |
|
13514 | 0 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); |
13515 | |
|
13516 | 0 | switch (dyn.d_tag) |
13517 | 0 | { |
13518 | 0 | default: |
13519 | 0 | continue; |
13520 | 0 | case DT_NULL: |
13521 | 0 | if (relativecount != 0) |
13522 | 0 | { |
13523 | 0 | switch (elf_section_data (reldyn)->this_hdr.sh_type) |
13524 | 0 | { |
13525 | 0 | case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; |
13526 | 0 | case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; |
13527 | 0 | } |
13528 | 0 | if (dyn.d_tag != DT_NULL |
13529 | 0 | && dynconend - dyncon >= bed->s->sizeof_dyn) |
13530 | 0 | { |
13531 | 0 | dyn.d_un.d_val = relativecount; |
13532 | 0 | relativecount = 0; |
13533 | 0 | break; |
13534 | 0 | } |
13535 | 0 | relativecount = 0; |
13536 | 0 | } |
13537 | 0 | if (relr_entsize != 0) |
13538 | 0 | { |
13539 | 0 | if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn) |
13540 | 0 | { |
13541 | 0 | asection *s = htab->srelrdyn; |
13542 | 0 | dyn.d_tag = DT_RELR; |
13543 | 0 | dyn.d_un.d_ptr |
13544 | 0 | = s->output_section->vma + s->output_offset; |
13545 | 0 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); |
13546 | 0 | dyncon += bed->s->sizeof_dyn; |
13547 | |
|
13548 | 0 | dyn.d_tag = DT_RELRSZ; |
13549 | 0 | dyn.d_un.d_val = s->size; |
13550 | 0 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); |
13551 | 0 | dyncon += bed->s->sizeof_dyn; |
13552 | |
|
13553 | 0 | dyn.d_tag = DT_RELRENT; |
13554 | 0 | dyn.d_un.d_val = relr_entsize; |
13555 | 0 | relr_entsize = 0; |
13556 | 0 | break; |
13557 | 0 | } |
13558 | 0 | relr_entsize = 0; |
13559 | 0 | } |
13560 | 0 | continue; |
13561 | | |
13562 | 0 | case DT_INIT: |
13563 | 0 | name = info->init_function; |
13564 | 0 | goto get_sym; |
13565 | 0 | case DT_FINI: |
13566 | 0 | name = info->fini_function; |
13567 | 0 | get_sym: |
13568 | 0 | { |
13569 | 0 | struct elf_link_hash_entry *h; |
13570 | |
|
13571 | 0 | h = elf_link_hash_lookup (htab, name, false, false, true); |
13572 | 0 | if (h != NULL |
13573 | 0 | && (h->root.type == bfd_link_hash_defined |
13574 | 0 | || h->root.type == bfd_link_hash_defweak)) |
13575 | 0 | { |
13576 | 0 | dyn.d_un.d_ptr = h->root.u.def.value; |
13577 | 0 | o = h->root.u.def.section; |
13578 | 0 | if (o->output_section != NULL) |
13579 | 0 | dyn.d_un.d_ptr += (o->output_section->vma |
13580 | 0 | + o->output_offset); |
13581 | 0 | else |
13582 | 0 | { |
13583 | | /* The symbol is imported from another shared |
13584 | | library and does not apply to this one. */ |
13585 | 0 | dyn.d_un.d_ptr = 0; |
13586 | 0 | } |
13587 | 0 | break; |
13588 | 0 | } |
13589 | 0 | } |
13590 | 0 | continue; |
13591 | | |
13592 | 0 | case DT_PREINIT_ARRAYSZ: |
13593 | 0 | name = ".preinit_array"; |
13594 | 0 | goto get_out_size; |
13595 | 0 | case DT_INIT_ARRAYSZ: |
13596 | 0 | name = ".init_array"; |
13597 | 0 | goto get_out_size; |
13598 | 0 | case DT_FINI_ARRAYSZ: |
13599 | 0 | name = ".fini_array"; |
13600 | 0 | get_out_size: |
13601 | 0 | o = bfd_get_section_by_name (abfd, name); |
13602 | 0 | if (o == NULL) |
13603 | 0 | { |
13604 | 0 | _bfd_error_handler |
13605 | 0 | (_("could not find section %s"), name); |
13606 | 0 | goto error_return; |
13607 | 0 | } |
13608 | 0 | if (o->size == 0) |
13609 | 0 | _bfd_error_handler |
13610 | 0 | (_("warning: %s section has zero size"), name); |
13611 | 0 | dyn.d_un.d_val = o->size; |
13612 | 0 | break; |
13613 | | |
13614 | 0 | case DT_PREINIT_ARRAY: |
13615 | 0 | name = ".preinit_array"; |
13616 | 0 | goto get_out_vma; |
13617 | 0 | case DT_INIT_ARRAY: |
13618 | 0 | name = ".init_array"; |
13619 | 0 | goto get_out_vma; |
13620 | 0 | case DT_FINI_ARRAY: |
13621 | 0 | name = ".fini_array"; |
13622 | 0 | get_out_vma: |
13623 | 0 | o = bfd_get_section_by_name (abfd, name); |
13624 | 0 | goto do_vma; |
13625 | | |
13626 | 0 | case DT_HASH: |
13627 | 0 | name = ".hash"; |
13628 | 0 | goto get_vma; |
13629 | 0 | case DT_GNU_HASH: |
13630 | 0 | name = ".gnu.hash"; |
13631 | 0 | goto get_vma; |
13632 | 0 | case DT_STRTAB: |
13633 | 0 | name = ".dynstr"; |
13634 | 0 | goto get_vma; |
13635 | 0 | case DT_SYMTAB: |
13636 | 0 | name = ".dynsym"; |
13637 | 0 | goto get_vma; |
13638 | 0 | case DT_VERDEF: |
13639 | 0 | name = ".gnu.version_d"; |
13640 | 0 | goto get_vma; |
13641 | 0 | case DT_VERNEED: |
13642 | 0 | name = ".gnu.version_r"; |
13643 | 0 | goto get_vma; |
13644 | 0 | case DT_VERSYM: |
13645 | 0 | name = ".gnu.version"; |
13646 | 0 | get_vma: |
13647 | 0 | o = bfd_get_linker_section (dynobj, name); |
13648 | 0 | do_vma: |
13649 | 0 | if (o == NULL || bfd_is_abs_section (o->output_section)) |
13650 | 0 | { |
13651 | 0 | _bfd_error_handler |
13652 | 0 | (_("could not find section %s"), name); |
13653 | 0 | goto error_return; |
13654 | 0 | } |
13655 | 0 | if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) |
13656 | 0 | { |
13657 | 0 | _bfd_error_handler |
13658 | 0 | (_("warning: section '%s' is being made into a note"), name); |
13659 | 0 | bfd_set_error (bfd_error_nonrepresentable_section); |
13660 | 0 | goto error_return; |
13661 | 0 | } |
13662 | 0 | dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; |
13663 | 0 | break; |
13664 | | |
13665 | 0 | case DT_REL: |
13666 | 0 | case DT_RELA: |
13667 | 0 | case DT_RELSZ: |
13668 | 0 | case DT_RELASZ: |
13669 | 0 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) |
13670 | 0 | type = SHT_REL; |
13671 | 0 | else |
13672 | 0 | type = SHT_RELA; |
13673 | 0 | sh_size = 0; |
13674 | 0 | sh_addr = 0; |
13675 | 0 | for (i = 1; i < elf_numsections (abfd); i++) |
13676 | 0 | { |
13677 | 0 | Elf_Internal_Shdr *hdr; |
13678 | |
|
13679 | 0 | hdr = elf_elfsections (abfd)[i]; |
13680 | 0 | if (hdr->sh_type == type |
13681 | 0 | && (hdr->sh_flags & SHF_ALLOC) != 0) |
13682 | 0 | { |
13683 | 0 | sh_size += hdr->sh_size; |
13684 | 0 | if (sh_addr == 0 |
13685 | 0 | || sh_addr > hdr->sh_addr) |
13686 | 0 | sh_addr = hdr->sh_addr; |
13687 | 0 | } |
13688 | 0 | } |
13689 | |
|
13690 | 0 | if (bed->dtrel_excludes_plt && htab->srelplt != NULL) |
13691 | 0 | { |
13692 | 0 | unsigned int opb = bfd_octets_per_byte (abfd, o); |
13693 | | |
13694 | | /* Don't count procedure linkage table relocs in the |
13695 | | overall reloc count. */ |
13696 | 0 | sh_size -= htab->srelplt->size; |
13697 | 0 | if (sh_size == 0) |
13698 | | /* If the size is zero, make the address zero too. |
13699 | | This is to avoid a glibc bug. If the backend |
13700 | | emits DT_RELA/DT_RELASZ even when DT_RELASZ is |
13701 | | zero, then we'll put DT_RELA at the end of |
13702 | | DT_JMPREL. glibc will interpret the end of |
13703 | | DT_RELA matching the end of DT_JMPREL as the |
13704 | | case where DT_RELA includes DT_JMPREL, and for |
13705 | | LD_BIND_NOW will decide that processing DT_RELA |
13706 | | will process the PLT relocs too. Net result: |
13707 | | No PLT relocs applied. */ |
13708 | 0 | sh_addr = 0; |
13709 | | |
13710 | | /* If .rela.plt is the first .rela section, exclude |
13711 | | it from DT_RELA. */ |
13712 | 0 | else if (sh_addr == (htab->srelplt->output_section->vma |
13713 | 0 | + htab->srelplt->output_offset) * opb) |
13714 | 0 | sh_addr += htab->srelplt->size; |
13715 | 0 | } |
13716 | |
|
13717 | 0 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) |
13718 | 0 | dyn.d_un.d_val = sh_size; |
13719 | 0 | else |
13720 | 0 | dyn.d_un.d_ptr = sh_addr; |
13721 | 0 | break; |
13722 | 0 | } |
13723 | 0 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); |
13724 | 0 | } |
13725 | 0 | } |
13726 | | |
13727 | | /* If we have created any dynamic sections, then output them. */ |
13728 | 0 | if (dynobj != NULL) |
13729 | 0 | { |
13730 | 0 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) |
13731 | 0 | goto error_return; |
13732 | | |
13733 | | /* Check for DT_TEXTREL (late, in case the backend removes it). */ |
13734 | 0 | if (bfd_link_textrel_check (info) |
13735 | 0 | && (o = htab->dynamic) != NULL |
13736 | 0 | && o->size != 0) |
13737 | 0 | { |
13738 | 0 | bfd_byte *dyncon, *dynconend; |
13739 | |
|
13740 | 0 | dyncon = o->contents; |
13741 | 0 | dynconend = o->contents + o->size; |
13742 | 0 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) |
13743 | 0 | { |
13744 | 0 | Elf_Internal_Dyn dyn; |
13745 | |
|
13746 | 0 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); |
13747 | |
|
13748 | 0 | if (dyn.d_tag == DT_TEXTREL) |
13749 | 0 | { |
13750 | 0 | if (info->textrel_check == textrel_check_error) |
13751 | 0 | info->callbacks->einfo |
13752 | 0 | (_("%P%X: read-only segment has dynamic relocations\n")); |
13753 | 0 | else if (bfd_link_dll (info)) |
13754 | 0 | info->callbacks->einfo |
13755 | 0 | (_("%P: warning: creating DT_TEXTREL in a shared object\n")); |
13756 | 0 | else if (bfd_link_pde (info)) |
13757 | 0 | info->callbacks->einfo |
13758 | 0 | (_("%P: warning: creating DT_TEXTREL in a PDE\n")); |
13759 | 0 | else |
13760 | 0 | info->callbacks->einfo |
13761 | 0 | (_("%P: warning: creating DT_TEXTREL in a PIE\n")); |
13762 | 0 | break; |
13763 | 0 | } |
13764 | 0 | } |
13765 | 0 | } |
13766 | |
|
13767 | 0 | for (o = dynobj->sections; o != NULL; o = o->next) |
13768 | 0 | { |
13769 | 0 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
13770 | 0 | || o->size == 0 |
13771 | 0 | || o->output_section == bfd_abs_section_ptr) |
13772 | 0 | continue; |
13773 | 0 | if ((o->flags & SEC_LINKER_CREATED) == 0) |
13774 | 0 | { |
13775 | | /* At this point, we are only interested in sections |
13776 | | created by _bfd_elf_link_create_dynamic_sections. */ |
13777 | 0 | continue; |
13778 | 0 | } |
13779 | 0 | if (htab->stab_info.stabstr == o) |
13780 | 0 | continue; |
13781 | 0 | if (htab->eh_info.hdr_sec == o) |
13782 | 0 | continue; |
13783 | 0 | if (strcmp (o->name, ".dynstr") != 0) |
13784 | 0 | { |
13785 | 0 | bfd_size_type octets = ((file_ptr) o->output_offset |
13786 | 0 | * bfd_octets_per_byte (abfd, o)); |
13787 | 0 | if (!bfd_set_section_contents (abfd, o->output_section, |
13788 | 0 | o->contents, octets, o->size)) |
13789 | 0 | goto error_return; |
13790 | 0 | } |
13791 | 0 | else |
13792 | 0 | { |
13793 | | /* The contents of the .dynstr section are actually in a |
13794 | | stringtab. */ |
13795 | 0 | file_ptr off; |
13796 | |
|
13797 | 0 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; |
13798 | 0 | if (bfd_seek (abfd, off, SEEK_SET) != 0 |
13799 | 0 | || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) |
13800 | 0 | goto error_return; |
13801 | 0 | } |
13802 | 0 | } |
13803 | 0 | } |
13804 | | |
13805 | 0 | if (!info->resolve_section_groups) |
13806 | 0 | { |
13807 | 0 | bool failed = false; |
13808 | |
|
13809 | 0 | BFD_ASSERT (bfd_link_relocatable (info)); |
13810 | 0 | bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); |
13811 | 0 | if (failed) |
13812 | 0 | goto error_return; |
13813 | 0 | } |
13814 | | |
13815 | | /* If we have optimized stabs strings, output them. */ |
13816 | 0 | if (htab->stab_info.stabstr != NULL) |
13817 | 0 | { |
13818 | 0 | if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) |
13819 | 0 | goto error_return; |
13820 | 0 | } |
13821 | | |
13822 | 0 | if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) |
13823 | 0 | goto error_return; |
13824 | | |
13825 | 0 | if (! _bfd_elf_write_section_sframe (abfd, info)) |
13826 | 0 | goto error_return; |
13827 | | |
13828 | 0 | if (! _bfd_elf_write_section_build_attributes (abfd, info)) |
13829 | 0 | goto error_ret2; |
13830 | | |
13831 | 0 | if (info->callbacks->emit_ctf) |
13832 | 0 | info->callbacks->emit_ctf (); |
13833 | |
|
13834 | 0 | elf_final_link_free (abfd, &flinfo); |
13835 | |
|
13836 | 0 | if (info->unique_symbol) |
13837 | 0 | bfd_hash_table_free (&flinfo.local_hash_table); |
13838 | 0 | return true; |
13839 | | |
13840 | 0 | error_return: |
13841 | 0 | free (htab->strtab); |
13842 | 0 | htab->strtab = NULL; |
13843 | 0 | elf_final_link_free (abfd, &flinfo); |
13844 | 0 | error_ret2: |
13845 | 0 | if (info->unique_symbol) |
13846 | 0 | bfd_hash_table_free (&flinfo.local_hash_table); |
13847 | 0 | return false; |
13848 | 0 | } |
13849 | | |
13850 | | /* Initialize COOKIE for input bfd ABFD. */ |
13851 | | |
13852 | | static bool |
13853 | | init_reloc_cookie (struct elf_reloc_cookie *cookie, |
13854 | | struct bfd_link_info *info, bfd *abfd, |
13855 | | bool keep_memory) |
13856 | 0 | { |
13857 | 0 | Elf_Internal_Shdr *symtab_hdr; |
13858 | 0 | const struct elf_backend_data *bed; |
13859 | |
|
13860 | 0 | bed = get_elf_backend_data (abfd); |
13861 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
13862 | |
|
13863 | 0 | cookie->abfd = abfd; |
13864 | 0 | cookie->sym_hashes = elf_sym_hashes (abfd); |
13865 | 0 | cookie->bad_symtab = elf_bad_symtab (abfd); |
13866 | 0 | if (cookie->bad_symtab) |
13867 | 0 | { |
13868 | 0 | cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; |
13869 | 0 | cookie->extsymoff = 0; |
13870 | 0 | } |
13871 | 0 | else |
13872 | 0 | { |
13873 | 0 | cookie->locsymcount = symtab_hdr->sh_info; |
13874 | 0 | cookie->extsymoff = symtab_hdr->sh_info; |
13875 | 0 | } |
13876 | |
|
13877 | 0 | if (bed->s->arch_size == 32) |
13878 | 0 | cookie->r_sym_shift = 8; |
13879 | 0 | else |
13880 | 0 | cookie->r_sym_shift = 32; |
13881 | |
|
13882 | 0 | cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; |
13883 | 0 | if (cookie->locsyms == NULL && cookie->locsymcount != 0) |
13884 | 0 | { |
13885 | 0 | cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
13886 | 0 | cookie->locsymcount, 0, |
13887 | 0 | NULL, NULL, NULL); |
13888 | 0 | if (cookie->locsyms == NULL) |
13889 | 0 | { |
13890 | 0 | info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); |
13891 | 0 | return false; |
13892 | 0 | } |
13893 | 0 | if (keep_memory || _bfd_elf_link_keep_memory (info)) |
13894 | 0 | { |
13895 | 0 | symtab_hdr->contents = (bfd_byte *) cookie->locsyms; |
13896 | 0 | info->cache_size += (cookie->locsymcount |
13897 | 0 | * sizeof (Elf_Internal_Sym)); |
13898 | 0 | } |
13899 | 0 | } |
13900 | 0 | return true; |
13901 | 0 | } |
13902 | | |
13903 | | /* Free the memory allocated by init_reloc_cookie, if appropriate. */ |
13904 | | |
13905 | | static void |
13906 | | fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) |
13907 | 0 | { |
13908 | 0 | Elf_Internal_Shdr *symtab_hdr; |
13909 | |
|
13910 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
13911 | 0 | if (symtab_hdr->contents != (unsigned char *) cookie->locsyms) |
13912 | 0 | free (cookie->locsyms); |
13913 | 0 | } |
13914 | | |
13915 | | /* Initialize the relocation information in COOKIE for input section SEC |
13916 | | of input bfd ABFD. */ |
13917 | | |
13918 | | static bool |
13919 | | init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, |
13920 | | struct bfd_link_info *info, bfd *abfd, |
13921 | | asection *sec, bool keep_memory) |
13922 | 0 | { |
13923 | 0 | if (sec->reloc_count == 0) |
13924 | 0 | { |
13925 | 0 | cookie->rels = NULL; |
13926 | 0 | cookie->relend = NULL; |
13927 | 0 | } |
13928 | 0 | else |
13929 | 0 | { |
13930 | 0 | cookie->rels = _bfd_elf_link_info_read_relocs |
13931 | 0 | (abfd, info, sec, NULL, NULL, |
13932 | 0 | keep_memory || _bfd_elf_link_keep_memory (info)); |
13933 | 0 | if (cookie->rels == NULL) |
13934 | 0 | return false; |
13935 | 0 | cookie->rel = cookie->rels; |
13936 | 0 | cookie->relend = cookie->rels + sec->reloc_count; |
13937 | 0 | } |
13938 | 0 | cookie->rel = cookie->rels; |
13939 | 0 | return true; |
13940 | 0 | } |
13941 | | |
13942 | | /* Free the memory allocated by init_reloc_cookie_rels, |
13943 | | if appropriate. */ |
13944 | | |
13945 | | static void |
13946 | | fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, |
13947 | | asection *sec) |
13948 | 0 | { |
13949 | 0 | if (elf_section_data (sec)->relocs != cookie->rels) |
13950 | 0 | free (cookie->rels); |
13951 | 0 | } |
13952 | | |
13953 | | /* Initialize the whole of COOKIE for input section SEC. */ |
13954 | | |
13955 | | static bool |
13956 | | init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, |
13957 | | struct bfd_link_info *info, |
13958 | | asection *sec, bool keep_memory) |
13959 | 0 | { |
13960 | 0 | if (!init_reloc_cookie (cookie, info, sec->owner, keep_memory)) |
13961 | 0 | goto error1; |
13962 | 0 | if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec, |
13963 | 0 | keep_memory)) |
13964 | 0 | goto error2; |
13965 | 0 | return true; |
13966 | | |
13967 | 0 | error2: |
13968 | 0 | fini_reloc_cookie (cookie, sec->owner); |
13969 | 0 | error1: |
13970 | 0 | return false; |
13971 | 0 | } |
13972 | | |
13973 | | /* Free the memory allocated by init_reloc_cookie_for_section, |
13974 | | if appropriate. */ |
13975 | | |
13976 | | static void |
13977 | | fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, |
13978 | | asection *sec) |
13979 | 0 | { |
13980 | 0 | fini_reloc_cookie_rels (cookie, sec); |
13981 | 0 | fini_reloc_cookie (cookie, sec->owner); |
13982 | 0 | } |
13983 | | |
13984 | | /* Garbage collect unused sections. */ |
13985 | | |
13986 | | /* Default gc_mark_hook. */ |
13987 | | |
13988 | | asection * |
13989 | | _bfd_elf_gc_mark_hook (asection *sec, |
13990 | | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
13991 | | Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, |
13992 | | struct elf_link_hash_entry *h, |
13993 | | Elf_Internal_Sym *sym) |
13994 | 0 | { |
13995 | 0 | if (h == NULL) |
13996 | 0 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
13997 | | |
13998 | 0 | switch (h->root.type) |
13999 | 0 | { |
14000 | 0 | case bfd_link_hash_defined: |
14001 | 0 | case bfd_link_hash_defweak: |
14002 | 0 | return h->root.u.def.section; |
14003 | | |
14004 | 0 | case bfd_link_hash_common: |
14005 | 0 | return h->root.u.c.p->section; |
14006 | | |
14007 | 0 | default: |
14008 | 0 | return NULL; |
14009 | 0 | } |
14010 | 0 | } |
14011 | | |
14012 | | /* Return the debug definition section. */ |
14013 | | |
14014 | | static asection * |
14015 | | elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, |
14016 | | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
14017 | | Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, |
14018 | | struct elf_link_hash_entry *h, |
14019 | | Elf_Internal_Sym *sym) |
14020 | 0 | { |
14021 | 0 | if (h != NULL) |
14022 | 0 | { |
14023 | | /* Return the global debug definition section. */ |
14024 | 0 | if ((h->root.type == bfd_link_hash_defined |
14025 | 0 | || h->root.type == bfd_link_hash_defweak) |
14026 | 0 | && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) |
14027 | 0 | return h->root.u.def.section; |
14028 | 0 | } |
14029 | 0 | else |
14030 | 0 | { |
14031 | | /* Return the local debug definition section. */ |
14032 | 0 | asection *isec = bfd_section_from_elf_index (sec->owner, |
14033 | 0 | sym->st_shndx); |
14034 | 0 | if (isec != NULL && (isec->flags & SEC_DEBUGGING) != 0) |
14035 | 0 | return isec; |
14036 | 0 | } |
14037 | | |
14038 | 0 | return NULL; |
14039 | 0 | } |
14040 | | |
14041 | | /* COOKIE->rel describes a relocation against section SEC, which is |
14042 | | a section we've decided to keep. Return the section that contains |
14043 | | the relocation symbol, or NULL if no section contains it. */ |
14044 | | |
14045 | | asection * |
14046 | | _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, |
14047 | | elf_gc_mark_hook_fn gc_mark_hook, |
14048 | | struct elf_reloc_cookie *cookie, |
14049 | | bool *start_stop) |
14050 | 0 | { |
14051 | 0 | unsigned long r_symndx; |
14052 | 0 | struct elf_link_hash_entry *h, *hw; |
14053 | |
|
14054 | 0 | r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; |
14055 | 0 | if (r_symndx == STN_UNDEF) |
14056 | 0 | return NULL; |
14057 | | |
14058 | 0 | h = get_ext_sym_hash_from_cookie (cookie, r_symndx); |
14059 | 0 | if (h == NULL) |
14060 | 0 | { |
14061 | | /* A corrupt input file can lead to a situation where the index |
14062 | | does not reference either a local or an external symbol. */ |
14063 | 0 | if (r_symndx >= cookie->locsymcount) |
14064 | 0 | return NULL; |
14065 | | |
14066 | 0 | return (*gc_mark_hook) (sec, info, cookie->rel, NULL, |
14067 | 0 | &cookie->locsyms[r_symndx]); |
14068 | 0 | } |
14069 | | |
14070 | 0 | bool was_marked = h->mark; |
14071 | |
|
14072 | 0 | h->mark = 1; |
14073 | | /* Keep all aliases of the symbol too. If an object symbol |
14074 | | needs to be copied into .dynbss then all of its aliases |
14075 | | should be present as dynamic symbols, not just the one used |
14076 | | on the copy relocation. */ |
14077 | 0 | hw = h; |
14078 | 0 | while (hw->is_weakalias) |
14079 | 0 | { |
14080 | 0 | hw = hw->u.alias; |
14081 | 0 | hw->mark = 1; |
14082 | 0 | } |
14083 | |
|
14084 | 0 | if (!was_marked && h->start_stop && !h->root.ldscript_def) |
14085 | 0 | { |
14086 | 0 | if (info->start_stop_gc) |
14087 | 0 | return NULL; |
14088 | | |
14089 | | /* To work around a glibc bug, mark XXX input sections |
14090 | | when there is a reference to __start_XXX or __stop_XXX |
14091 | | symbols. */ |
14092 | 0 | else if (start_stop != NULL) |
14093 | 0 | { |
14094 | 0 | asection *s = h->u2.start_stop_section; |
14095 | 0 | *start_stop = true; |
14096 | 0 | return s; |
14097 | 0 | } |
14098 | 0 | } |
14099 | | |
14100 | 0 | return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); |
14101 | 0 | } |
14102 | | |
14103 | | /* COOKIE->rel describes a relocation against section SEC, which is |
14104 | | a section we've decided to keep. Mark the section that contains |
14105 | | the relocation symbol. */ |
14106 | | |
14107 | | bool |
14108 | | _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, |
14109 | | asection *sec, |
14110 | | elf_gc_mark_hook_fn gc_mark_hook, |
14111 | | struct elf_reloc_cookie *cookie) |
14112 | 0 | { |
14113 | 0 | asection *rsec; |
14114 | 0 | bool start_stop = false; |
14115 | |
|
14116 | 0 | rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); |
14117 | 0 | while (rsec != NULL) |
14118 | 0 | { |
14119 | 0 | if (!rsec->gc_mark) |
14120 | 0 | { |
14121 | 0 | if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour |
14122 | 0 | || (rsec->owner->flags & DYNAMIC) != 0) |
14123 | 0 | rsec->gc_mark = 1; |
14124 | 0 | else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) |
14125 | 0 | return false; |
14126 | 0 | } |
14127 | 0 | if (!start_stop) |
14128 | 0 | break; |
14129 | 0 | rsec = bfd_get_next_section_by_name (rsec->owner, rsec); |
14130 | 0 | } |
14131 | 0 | return true; |
14132 | 0 | } |
14133 | | |
14134 | | /* The mark phase of garbage collection. For a given section, mark |
14135 | | it and any sections in this section's group, and all the sections |
14136 | | which define symbols to which it refers. */ |
14137 | | |
14138 | | bool |
14139 | | _bfd_elf_gc_mark (struct bfd_link_info *info, |
14140 | | asection *sec, |
14141 | | elf_gc_mark_hook_fn gc_mark_hook) |
14142 | 0 | { |
14143 | 0 | bool ret; |
14144 | 0 | asection *group_sec, *eh_frame; |
14145 | |
|
14146 | 0 | sec->gc_mark = 1; |
14147 | | |
14148 | | /* Mark all the sections in the group. */ |
14149 | 0 | group_sec = elf_section_data (sec)->next_in_group; |
14150 | 0 | if (group_sec && !group_sec->gc_mark) |
14151 | 0 | if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) |
14152 | 0 | return false; |
14153 | | |
14154 | | /* Look through the section relocs. */ |
14155 | 0 | ret = true; |
14156 | 0 | eh_frame = elf_eh_frame_section (sec->owner); |
14157 | 0 | if ((sec->flags & SEC_RELOC) != 0 |
14158 | 0 | && sec->reloc_count > 0 |
14159 | 0 | && sec != eh_frame) |
14160 | 0 | { |
14161 | 0 | struct elf_reloc_cookie cookie; |
14162 | |
|
14163 | 0 | if (!init_reloc_cookie_for_section (&cookie, info, sec, false)) |
14164 | 0 | ret = false; |
14165 | 0 | else |
14166 | 0 | { |
14167 | 0 | for (; cookie.rel < cookie.relend; cookie.rel++) |
14168 | 0 | if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) |
14169 | 0 | { |
14170 | 0 | ret = false; |
14171 | 0 | break; |
14172 | 0 | } |
14173 | 0 | fini_reloc_cookie_for_section (&cookie, sec); |
14174 | 0 | } |
14175 | 0 | } |
14176 | |
|
14177 | 0 | if (ret && eh_frame && elf_fde_list (sec)) |
14178 | 0 | { |
14179 | 0 | struct elf_reloc_cookie cookie; |
14180 | | |
14181 | | /* NB: When --no-keep-memory is used, the symbol table and |
14182 | | relocation info for eh_frame are freed after they are retrieved |
14183 | | for each text section in the input object. If an input object |
14184 | | has many text sections, the same data is retrieved and freed |
14185 | | many times which can take a very long time. Always keep the |
14186 | | symbol table and relocation info for eh_frame to avoid it. */ |
14187 | 0 | if (!init_reloc_cookie_for_section (&cookie, info, eh_frame, |
14188 | 0 | true)) |
14189 | 0 | ret = false; |
14190 | 0 | else |
14191 | 0 | { |
14192 | 0 | if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, |
14193 | 0 | gc_mark_hook, &cookie)) |
14194 | 0 | ret = false; |
14195 | 0 | fini_reloc_cookie_for_section (&cookie, eh_frame); |
14196 | 0 | } |
14197 | 0 | } |
14198 | |
|
14199 | 0 | eh_frame = elf_section_eh_frame_entry (sec); |
14200 | 0 | if (ret && eh_frame && !eh_frame->gc_mark) |
14201 | 0 | if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) |
14202 | 0 | ret = false; |
14203 | |
|
14204 | 0 | return ret; |
14205 | 0 | } |
14206 | | |
14207 | | /* Scan and mark sections in a special or debug section group. */ |
14208 | | |
14209 | | static void |
14210 | | _bfd_elf_gc_mark_debug_special_section_group (asection *grp) |
14211 | 0 | { |
14212 | | /* Point to first section of section group. */ |
14213 | 0 | asection *ssec; |
14214 | | /* Used to iterate the section group. */ |
14215 | 0 | asection *msec; |
14216 | |
|
14217 | 0 | bool is_special_grp = true; |
14218 | 0 | bool is_debug_grp = true; |
14219 | | |
14220 | | /* First scan to see if group contains any section other than debug |
14221 | | and special section. */ |
14222 | 0 | ssec = msec = elf_next_in_group (grp); |
14223 | 0 | do |
14224 | 0 | { |
14225 | 0 | if ((msec->flags & SEC_DEBUGGING) == 0) |
14226 | 0 | is_debug_grp = false; |
14227 | |
|
14228 | 0 | if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) |
14229 | 0 | is_special_grp = false; |
14230 | |
|
14231 | 0 | msec = elf_next_in_group (msec); |
14232 | 0 | } |
14233 | 0 | while (msec != ssec); |
14234 | | |
14235 | | /* If this is a pure debug section group or pure special section group, |
14236 | | keep all sections in this group. */ |
14237 | 0 | if (is_debug_grp || is_special_grp) |
14238 | 0 | { |
14239 | 0 | do |
14240 | 0 | { |
14241 | 0 | msec->gc_mark = 1; |
14242 | 0 | msec = elf_next_in_group (msec); |
14243 | 0 | } |
14244 | 0 | while (msec != ssec); |
14245 | 0 | } |
14246 | 0 | } |
14247 | | |
14248 | | /* Keep debug and special sections. */ |
14249 | | |
14250 | | bool |
14251 | | _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, |
14252 | | elf_gc_mark_hook_fn mark_hook) |
14253 | 0 | { |
14254 | 0 | bfd *ibfd; |
14255 | |
|
14256 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
14257 | 0 | { |
14258 | 0 | asection *isec; |
14259 | 0 | bool some_kept; |
14260 | 0 | bool debug_frag_seen; |
14261 | 0 | bool has_kept_debug_info; |
14262 | |
|
14263 | 0 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
14264 | 0 | continue; |
14265 | 0 | isec = ibfd->sections; |
14266 | 0 | if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
14267 | 0 | continue; |
14268 | | |
14269 | | /* Ensure all linker created sections are kept, |
14270 | | see if any other section is already marked, |
14271 | | and note if we have any fragmented debug sections. */ |
14272 | 0 | debug_frag_seen = some_kept = has_kept_debug_info = false; |
14273 | 0 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
14274 | 0 | { |
14275 | 0 | if ((isec->flags & SEC_LINKER_CREATED) != 0) |
14276 | 0 | isec->gc_mark = 1; |
14277 | 0 | else if (isec->gc_mark |
14278 | 0 | && (isec->flags & SEC_ALLOC) != 0 |
14279 | 0 | && elf_section_type (isec) != SHT_NOTE) |
14280 | 0 | some_kept = true; |
14281 | 0 | else |
14282 | 0 | { |
14283 | | /* Since all sections, except for backend specific ones, |
14284 | | have been garbage collected, call mark_hook on this |
14285 | | section if any of its linked-to sections is marked. */ |
14286 | 0 | asection *linked_to_sec; |
14287 | 0 | for (linked_to_sec = elf_linked_to_section (isec); |
14288 | 0 | linked_to_sec != NULL && !linked_to_sec->linker_mark; |
14289 | 0 | linked_to_sec = elf_linked_to_section (linked_to_sec)) |
14290 | 0 | { |
14291 | 0 | if (linked_to_sec->gc_mark) |
14292 | 0 | { |
14293 | 0 | if (!_bfd_elf_gc_mark (info, isec, mark_hook)) |
14294 | 0 | return false; |
14295 | 0 | break; |
14296 | 0 | } |
14297 | 0 | linked_to_sec->linker_mark = 1; |
14298 | 0 | } |
14299 | 0 | for (linked_to_sec = elf_linked_to_section (isec); |
14300 | 0 | linked_to_sec != NULL && linked_to_sec->linker_mark; |
14301 | 0 | linked_to_sec = elf_linked_to_section (linked_to_sec)) |
14302 | 0 | linked_to_sec->linker_mark = 0; |
14303 | 0 | } |
14304 | | |
14305 | 0 | if (!debug_frag_seen |
14306 | 0 | && (isec->flags & SEC_DEBUGGING) |
14307 | 0 | && startswith (isec->name, ".debug_line.")) |
14308 | 0 | debug_frag_seen = true; |
14309 | 0 | else if (strcmp (bfd_section_name (isec), |
14310 | 0 | "__patchable_function_entries") == 0 |
14311 | 0 | && elf_linked_to_section (isec) == NULL) |
14312 | 0 | info->callbacks->fatal (_("%P: %pB(%pA): error: " |
14313 | 0 | "need linked-to section " |
14314 | 0 | "for --gc-sections\n"), |
14315 | 0 | isec->owner, isec); |
14316 | 0 | } |
14317 | | |
14318 | | /* If no non-note alloc section in this file will be kept, then |
14319 | | we can toss out the debug and special sections. */ |
14320 | 0 | if (!some_kept) |
14321 | 0 | continue; |
14322 | | |
14323 | | /* Keep debug and special sections like .comment when they are |
14324 | | not part of a group. Also keep section groups that contain |
14325 | | just debug sections or special sections. NB: Sections with |
14326 | | linked-to section has been handled above. */ |
14327 | 0 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
14328 | 0 | { |
14329 | 0 | if ((isec->flags & SEC_GROUP) != 0) |
14330 | 0 | _bfd_elf_gc_mark_debug_special_section_group (isec); |
14331 | 0 | else if (((isec->flags & SEC_DEBUGGING) != 0 |
14332 | 0 | || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) |
14333 | 0 | && elf_next_in_group (isec) == NULL |
14334 | 0 | && elf_linked_to_section (isec) == NULL) |
14335 | 0 | isec->gc_mark = 1; |
14336 | 0 | if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) |
14337 | 0 | has_kept_debug_info = true; |
14338 | 0 | } |
14339 | | |
14340 | | /* Look for CODE sections which are going to be discarded, |
14341 | | and find and discard any fragmented debug sections which |
14342 | | are associated with that code section. */ |
14343 | 0 | if (debug_frag_seen) |
14344 | 0 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
14345 | 0 | if ((isec->flags & SEC_CODE) != 0 |
14346 | 0 | && isec->gc_mark == 0) |
14347 | 0 | { |
14348 | 0 | unsigned int ilen; |
14349 | 0 | asection *dsec; |
14350 | |
|
14351 | 0 | ilen = strlen (isec->name); |
14352 | | |
14353 | | /* Association is determined by the name of the debug |
14354 | | section containing the name of the code section as |
14355 | | a suffix. For example .debug_line.text.foo is a |
14356 | | debug section associated with .text.foo. */ |
14357 | 0 | for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) |
14358 | 0 | { |
14359 | 0 | unsigned int dlen; |
14360 | |
|
14361 | 0 | if (dsec->gc_mark == 0 |
14362 | 0 | || (dsec->flags & SEC_DEBUGGING) == 0) |
14363 | 0 | continue; |
14364 | | |
14365 | 0 | dlen = strlen (dsec->name); |
14366 | |
|
14367 | 0 | if (dlen > ilen |
14368 | 0 | && strncmp (dsec->name + (dlen - ilen), |
14369 | 0 | isec->name, ilen) == 0) |
14370 | 0 | dsec->gc_mark = 0; |
14371 | 0 | } |
14372 | 0 | } |
14373 | | |
14374 | | /* Mark debug sections referenced by kept debug sections. */ |
14375 | 0 | if (has_kept_debug_info) |
14376 | 0 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
14377 | 0 | if (isec->gc_mark |
14378 | 0 | && (isec->flags & SEC_DEBUGGING) != 0) |
14379 | 0 | if (!_bfd_elf_gc_mark (info, isec, |
14380 | 0 | elf_gc_mark_debug_section)) |
14381 | 0 | return false; |
14382 | 0 | } |
14383 | 0 | return true; |
14384 | 0 | } |
14385 | | |
14386 | | static bool |
14387 | | elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) |
14388 | 0 | { |
14389 | 0 | bfd *sub; |
14390 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
14391 | |
|
14392 | 0 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
14393 | 0 | { |
14394 | 0 | asection *o; |
14395 | |
|
14396 | 0 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour |
14397 | 0 | || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) |
14398 | 0 | || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) |
14399 | 0 | continue; |
14400 | 0 | o = sub->sections; |
14401 | 0 | if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
14402 | 0 | continue; |
14403 | | |
14404 | 0 | for (o = sub->sections; o != NULL; o = o->next) |
14405 | 0 | { |
14406 | | /* When any section in a section group is kept, we keep all |
14407 | | sections in the section group. If the first member of |
14408 | | the section group is excluded, we will also exclude the |
14409 | | group section. */ |
14410 | 0 | if (o->flags & SEC_GROUP) |
14411 | 0 | { |
14412 | 0 | asection *first = elf_next_in_group (o); |
14413 | 0 | if (first != NULL) |
14414 | 0 | o->gc_mark = first->gc_mark; |
14415 | 0 | } |
14416 | |
|
14417 | 0 | if (o->gc_mark) |
14418 | 0 | continue; |
14419 | | |
14420 | | /* Skip sweeping sections already excluded. */ |
14421 | 0 | if (o->flags & SEC_EXCLUDE) |
14422 | 0 | continue; |
14423 | | |
14424 | | /* Since this is early in the link process, it is simple |
14425 | | to remove a section from the output. */ |
14426 | 0 | o->flags |= SEC_EXCLUDE; |
14427 | |
|
14428 | 0 | if (info->print_gc_sections && o->size != 0) |
14429 | | /* xgettext:c-format */ |
14430 | 0 | _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), |
14431 | 0 | o, sub); |
14432 | 0 | } |
14433 | 0 | } |
14434 | |
|
14435 | 0 | return true; |
14436 | 0 | } |
14437 | | |
14438 | | /* Propagate collected vtable information. This is called through |
14439 | | elf_link_hash_traverse. */ |
14440 | | |
14441 | | static bool |
14442 | | elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) |
14443 | 0 | { |
14444 | | /* Those that are not vtables. */ |
14445 | 0 | if (h->start_stop |
14446 | 0 | || h->u2.vtable == NULL |
14447 | 0 | || h->u2.vtable->parent == NULL) |
14448 | 0 | return true; |
14449 | | |
14450 | | /* Those vtables that do not have parents, we cannot merge. */ |
14451 | 0 | if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) |
14452 | 0 | return true; |
14453 | | |
14454 | | /* If we've already been done, exit. */ |
14455 | 0 | if (h->u2.vtable->used && h->u2.vtable->used[-1]) |
14456 | 0 | return true; |
14457 | | |
14458 | | /* Make sure the parent's table is up to date. */ |
14459 | 0 | elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); |
14460 | |
|
14461 | 0 | if (h->u2.vtable->used == NULL) |
14462 | 0 | { |
14463 | | /* None of this table's entries were referenced. Re-use the |
14464 | | parent's table. */ |
14465 | 0 | h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; |
14466 | 0 | h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; |
14467 | 0 | } |
14468 | 0 | else |
14469 | 0 | { |
14470 | 0 | size_t n; |
14471 | 0 | bool *cu, *pu; |
14472 | | |
14473 | | /* Or the parent's entries into ours. */ |
14474 | 0 | cu = h->u2.vtable->used; |
14475 | 0 | cu[-1] = true; |
14476 | 0 | pu = h->u2.vtable->parent->u2.vtable->used; |
14477 | 0 | if (pu != NULL) |
14478 | 0 | { |
14479 | 0 | const struct elf_backend_data *bed; |
14480 | 0 | unsigned int log_file_align; |
14481 | |
|
14482 | 0 | bed = get_elf_backend_data (h->root.u.def.section->owner); |
14483 | 0 | log_file_align = bed->s->log_file_align; |
14484 | 0 | n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; |
14485 | 0 | while (n--) |
14486 | 0 | { |
14487 | 0 | if (*pu) |
14488 | 0 | *cu = true; |
14489 | 0 | pu++; |
14490 | 0 | cu++; |
14491 | 0 | } |
14492 | 0 | } |
14493 | 0 | } |
14494 | |
|
14495 | 0 | return true; |
14496 | 0 | } |
14497 | | |
14498 | | struct link_info_ok |
14499 | | { |
14500 | | struct bfd_link_info *info; |
14501 | | bool ok; |
14502 | | }; |
14503 | | |
14504 | | static bool |
14505 | | elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, |
14506 | | void *ptr) |
14507 | 0 | { |
14508 | 0 | asection *sec; |
14509 | 0 | bfd_vma hstart, hend; |
14510 | 0 | Elf_Internal_Rela *relstart, *relend, *rel; |
14511 | 0 | const struct elf_backend_data *bed; |
14512 | 0 | unsigned int log_file_align; |
14513 | 0 | struct link_info_ok *info = (struct link_info_ok *) ptr; |
14514 | | |
14515 | | /* Take care of both those symbols that do not describe vtables as |
14516 | | well as those that are not loaded. */ |
14517 | 0 | if (h->start_stop |
14518 | 0 | || h->u2.vtable == NULL |
14519 | 0 | || h->u2.vtable->parent == NULL) |
14520 | 0 | return true; |
14521 | | |
14522 | 0 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
14523 | 0 | || h->root.type == bfd_link_hash_defweak); |
14524 | |
|
14525 | 0 | sec = h->root.u.def.section; |
14526 | 0 | hstart = h->root.u.def.value; |
14527 | 0 | hend = hstart + h->size; |
14528 | |
|
14529 | 0 | relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info, |
14530 | 0 | sec, NULL, NULL, true); |
14531 | 0 | if (!relstart) |
14532 | 0 | return info->ok = false; |
14533 | 0 | bed = get_elf_backend_data (sec->owner); |
14534 | 0 | log_file_align = bed->s->log_file_align; |
14535 | |
|
14536 | 0 | relend = relstart + sec->reloc_count; |
14537 | |
|
14538 | 0 | for (rel = relstart; rel < relend; ++rel) |
14539 | 0 | if (rel->r_offset >= hstart && rel->r_offset < hend) |
14540 | 0 | { |
14541 | | /* If the entry is in use, do nothing. */ |
14542 | 0 | if (h->u2.vtable->used |
14543 | 0 | && (rel->r_offset - hstart) < h->u2.vtable->size) |
14544 | 0 | { |
14545 | 0 | bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; |
14546 | 0 | if (h->u2.vtable->used[entry]) |
14547 | 0 | continue; |
14548 | 0 | } |
14549 | | /* Otherwise, kill it. */ |
14550 | 0 | rel->r_offset = rel->r_info = rel->r_addend = 0; |
14551 | 0 | } |
14552 | |
|
14553 | 0 | return true; |
14554 | 0 | } |
14555 | | |
14556 | | /* Mark sections containing dynamically referenced symbols. When |
14557 | | building shared libraries, we must assume that any visible symbol is |
14558 | | referenced. */ |
14559 | | |
14560 | | bool |
14561 | | bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) |
14562 | 0 | { |
14563 | 0 | struct bfd_link_info *info = (struct bfd_link_info *) inf; |
14564 | 0 | struct bfd_elf_dynamic_list *d = info->dynamic_list; |
14565 | |
|
14566 | 0 | if ((h->root.type == bfd_link_hash_defined |
14567 | 0 | || h->root.type == bfd_link_hash_defweak) |
14568 | 0 | && (!h->start_stop |
14569 | 0 | || h->root.ldscript_def |
14570 | 0 | || !info->start_stop_gc) |
14571 | 0 | && ((h->ref_dynamic && !h->forced_local) |
14572 | 0 | || ((h->def_regular || ELF_COMMON_DEF_P (h)) |
14573 | 0 | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
14574 | 0 | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
14575 | 0 | && (!bfd_link_executable (info) |
14576 | 0 | || info->gc_keep_exported |
14577 | 0 | || info->export_dynamic |
14578 | 0 | || (h->dynamic |
14579 | 0 | && d != NULL |
14580 | 0 | && (*d->match) (&d->head, NULL, h->root.root.string))) |
14581 | 0 | && (h->versioned >= versioned |
14582 | 0 | || !bfd_hide_sym_by_version (info->version_info, |
14583 | 0 | h->root.root.string))))) |
14584 | 0 | h->root.u.def.section->flags |= SEC_KEEP; |
14585 | |
|
14586 | 0 | return true; |
14587 | 0 | } |
14588 | | |
14589 | | /* Keep all sections containing symbols undefined on the command-line, |
14590 | | and the section containing the entry symbol. */ |
14591 | | |
14592 | | void |
14593 | | _bfd_elf_gc_keep (struct bfd_link_info *info) |
14594 | 0 | { |
14595 | 0 | struct bfd_sym_chain *sym; |
14596 | |
|
14597 | 0 | for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) |
14598 | 0 | { |
14599 | 0 | struct elf_link_hash_entry *h; |
14600 | |
|
14601 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), sym->name, |
14602 | 0 | false, false, false); |
14603 | |
|
14604 | 0 | if (h != NULL |
14605 | 0 | && (h->root.type == bfd_link_hash_defined |
14606 | 0 | || h->root.type == bfd_link_hash_defweak) |
14607 | 0 | && !bfd_is_const_section (h->root.u.def.section)) |
14608 | 0 | h->root.u.def.section->flags |= SEC_KEEP; |
14609 | 0 | } |
14610 | 0 | } |
14611 | | |
14612 | | bool |
14613 | | bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, |
14614 | | struct bfd_link_info *info) |
14615 | 0 | { |
14616 | 0 | bfd *ibfd = info->input_bfds; |
14617 | |
|
14618 | 0 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
14619 | 0 | { |
14620 | 0 | asection *sec; |
14621 | 0 | struct elf_reloc_cookie cookie; |
14622 | |
|
14623 | 0 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
14624 | 0 | continue; |
14625 | 0 | sec = ibfd->sections; |
14626 | 0 | if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
14627 | 0 | continue; |
14628 | | |
14629 | 0 | if (!init_reloc_cookie (&cookie, info, ibfd, false)) |
14630 | 0 | return false; |
14631 | | |
14632 | 0 | for (sec = ibfd->sections; sec; sec = sec->next) |
14633 | 0 | { |
14634 | 0 | if (startswith (bfd_section_name (sec), ".eh_frame_entry") |
14635 | 0 | && init_reloc_cookie_rels (&cookie, info, ibfd, sec, |
14636 | 0 | false)) |
14637 | 0 | { |
14638 | 0 | _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); |
14639 | 0 | fini_reloc_cookie_rels (&cookie, sec); |
14640 | 0 | } |
14641 | 0 | } |
14642 | 0 | } |
14643 | 0 | return true; |
14644 | 0 | } |
14645 | | |
14646 | | /* Do mark and sweep of unused sections. */ |
14647 | | |
14648 | | bool |
14649 | | bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) |
14650 | 0 | { |
14651 | 0 | bool ok = true; |
14652 | 0 | bfd *sub; |
14653 | 0 | elf_gc_mark_hook_fn gc_mark_hook; |
14654 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
14655 | 0 | struct elf_link_hash_table *htab; |
14656 | 0 | struct link_info_ok info_ok; |
14657 | |
|
14658 | 0 | if (!bed->can_gc_sections |
14659 | 0 | || !is_elf_hash_table (info->hash)) |
14660 | 0 | { |
14661 | 0 | _bfd_error_handler(_("warning: gc-sections option ignored")); |
14662 | 0 | return true; |
14663 | 0 | } |
14664 | | |
14665 | 0 | bed->gc_keep (info); |
14666 | 0 | htab = elf_hash_table (info); |
14667 | | |
14668 | | /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section |
14669 | | at the .eh_frame section if we can mark the FDEs individually. */ |
14670 | 0 | for (sub = info->input_bfds; |
14671 | 0 | info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; |
14672 | 0 | sub = sub->link.next) |
14673 | 0 | { |
14674 | 0 | asection *sec; |
14675 | 0 | struct elf_reloc_cookie cookie; |
14676 | |
|
14677 | 0 | sec = sub->sections; |
14678 | 0 | if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
14679 | 0 | continue; |
14680 | 0 | sec = bfd_get_section_by_name (sub, ".eh_frame"); |
14681 | 0 | while (sec && init_reloc_cookie_for_section (&cookie, info, sec, |
14682 | 0 | false)) |
14683 | 0 | { |
14684 | 0 | _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); |
14685 | 0 | if (elf_section_data (sec)->sec_info |
14686 | 0 | && (sec->flags & SEC_LINKER_CREATED) == 0) |
14687 | 0 | elf_eh_frame_section (sub) = sec; |
14688 | 0 | fini_reloc_cookie_for_section (&cookie, sec); |
14689 | 0 | sec = bfd_get_next_section_by_name (NULL, sec); |
14690 | 0 | } |
14691 | 0 | } |
14692 | | |
14693 | | /* Apply transitive closure to the vtable entry usage info. */ |
14694 | 0 | elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); |
14695 | 0 | if (!ok) |
14696 | 0 | return false; |
14697 | | |
14698 | | /* Kill the vtable relocations that were not used. */ |
14699 | 0 | info_ok.info = info; |
14700 | 0 | info_ok.ok = true; |
14701 | 0 | elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok); |
14702 | 0 | if (!info_ok.ok) |
14703 | 0 | return false; |
14704 | | |
14705 | | /* Mark dynamically referenced symbols. */ |
14706 | 0 | if (htab->dynamic_sections_created || info->gc_keep_exported) |
14707 | 0 | elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); |
14708 | | |
14709 | | /* Grovel through relocs to find out who stays ... */ |
14710 | 0 | gc_mark_hook = bed->gc_mark_hook; |
14711 | 0 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
14712 | 0 | { |
14713 | 0 | asection *o; |
14714 | |
|
14715 | 0 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour |
14716 | 0 | || elf_object_id (sub) != elf_hash_table_id (htab) |
14717 | 0 | || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) |
14718 | 0 | continue; |
14719 | | |
14720 | 0 | o = sub->sections; |
14721 | 0 | if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
14722 | 0 | continue; |
14723 | | |
14724 | | /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). |
14725 | | Also treat note sections as a root, if the section is not part |
14726 | | of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as |
14727 | | well as FINI_ARRAY sections for ld -r. */ |
14728 | 0 | for (o = sub->sections; o != NULL; o = o->next) |
14729 | 0 | if (!o->gc_mark |
14730 | 0 | && (o->flags & SEC_EXCLUDE) == 0 |
14731 | 0 | && ((o->flags & SEC_KEEP) != 0 |
14732 | 0 | || (bfd_link_relocatable (info) |
14733 | 0 | && ((elf_section_data (o)->this_hdr.sh_type |
14734 | 0 | == SHT_PREINIT_ARRAY) |
14735 | 0 | || (elf_section_data (o)->this_hdr.sh_type |
14736 | 0 | == SHT_INIT_ARRAY) |
14737 | 0 | || (elf_section_data (o)->this_hdr.sh_type |
14738 | 0 | == SHT_FINI_ARRAY))) |
14739 | 0 | || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE |
14740 | 0 | && elf_next_in_group (o) == NULL |
14741 | 0 | && elf_linked_to_section (o) == NULL) |
14742 | 0 | || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain) |
14743 | 0 | && (elf_section_flags (o) & SHF_GNU_RETAIN)))) |
14744 | 0 | { |
14745 | 0 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) |
14746 | 0 | return false; |
14747 | 0 | } |
14748 | 0 | } |
14749 | | |
14750 | | /* Allow the backend to mark additional target specific sections. */ |
14751 | 0 | bed->gc_mark_extra_sections (info, gc_mark_hook); |
14752 | | |
14753 | | /* ... and mark SEC_EXCLUDE for those that go. */ |
14754 | 0 | return elf_gc_sweep (abfd, info); |
14755 | 0 | } |
14756 | | |
14757 | | /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ |
14758 | | |
14759 | | bool |
14760 | | bfd_elf_gc_record_vtinherit (bfd *abfd, |
14761 | | asection *sec, |
14762 | | struct elf_link_hash_entry *h, |
14763 | | bfd_vma offset) |
14764 | 0 | { |
14765 | 0 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; |
14766 | 0 | struct elf_link_hash_entry **search, *child; |
14767 | 0 | size_t extsymcount; |
14768 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
14769 | | |
14770 | | /* The sh_info field of the symtab header tells us where the |
14771 | | external symbols start. We don't care about the local symbols at |
14772 | | this point. */ |
14773 | 0 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; |
14774 | 0 | if (!elf_bad_symtab (abfd)) |
14775 | 0 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; |
14776 | |
|
14777 | 0 | sym_hashes = elf_sym_hashes (abfd); |
14778 | 0 | sym_hashes_end = PTR_ADD (sym_hashes, extsymcount); |
14779 | | |
14780 | | /* Hunt down the child symbol, which is in this section at the same |
14781 | | offset as the relocation. */ |
14782 | 0 | for (search = sym_hashes; search != sym_hashes_end; ++search) |
14783 | 0 | { |
14784 | 0 | if ((child = *search) != NULL |
14785 | 0 | && (child->root.type == bfd_link_hash_defined |
14786 | 0 | || child->root.type == bfd_link_hash_defweak) |
14787 | 0 | && child->root.u.def.section == sec |
14788 | 0 | && child->root.u.def.value == offset) |
14789 | 0 | goto win; |
14790 | 0 | } |
14791 | | |
14792 | | /* xgettext:c-format */ |
14793 | 0 | _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), |
14794 | 0 | abfd, sec, (uint64_t) offset); |
14795 | 0 | bfd_set_error (bfd_error_invalid_operation); |
14796 | 0 | return false; |
14797 | | |
14798 | 0 | win: |
14799 | 0 | if (!child->u2.vtable) |
14800 | 0 | { |
14801 | 0 | child->u2.vtable = ((struct elf_link_virtual_table_entry *) |
14802 | 0 | bfd_zalloc (abfd, sizeof (*child->u2.vtable))); |
14803 | 0 | if (!child->u2.vtable) |
14804 | 0 | return false; |
14805 | 0 | } |
14806 | 0 | if (!h) |
14807 | 0 | { |
14808 | | /* This *should* only be the absolute section. It could potentially |
14809 | | be that someone has defined a non-global vtable though, which |
14810 | | would be bad. It isn't worth paging in the local symbols to be |
14811 | | sure though; that case should simply be handled by the assembler. */ |
14812 | |
|
14813 | 0 | child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; |
14814 | 0 | } |
14815 | 0 | else |
14816 | 0 | child->u2.vtable->parent = h; |
14817 | |
|
14818 | 0 | return true; |
14819 | 0 | } |
14820 | | |
14821 | | /* Called from check_relocs to record the existence of a VTENTRY reloc. */ |
14822 | | |
14823 | | bool |
14824 | | bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, |
14825 | | struct elf_link_hash_entry *h, |
14826 | | bfd_vma addend) |
14827 | 0 | { |
14828 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
14829 | 0 | unsigned int log_file_align = bed->s->log_file_align; |
14830 | |
|
14831 | 0 | if (!h) |
14832 | 0 | { |
14833 | | /* xgettext:c-format */ |
14834 | 0 | _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), |
14835 | 0 | abfd, sec); |
14836 | 0 | bfd_set_error (bfd_error_bad_value); |
14837 | 0 | return false; |
14838 | 0 | } |
14839 | | |
14840 | 0 | if (!h->u2.vtable) |
14841 | 0 | { |
14842 | 0 | h->u2.vtable = ((struct elf_link_virtual_table_entry *) |
14843 | 0 | bfd_zalloc (abfd, sizeof (*h->u2.vtable))); |
14844 | 0 | if (!h->u2.vtable) |
14845 | 0 | return false; |
14846 | 0 | } |
14847 | | |
14848 | 0 | if (addend >= h->u2.vtable->size) |
14849 | 0 | { |
14850 | 0 | size_t size, bytes, file_align; |
14851 | 0 | bool *ptr = h->u2.vtable->used; |
14852 | | |
14853 | | /* While the symbol is undefined, we have to be prepared to handle |
14854 | | a zero size. */ |
14855 | 0 | file_align = 1 << log_file_align; |
14856 | 0 | if (h->root.type == bfd_link_hash_undefined) |
14857 | 0 | size = addend + file_align; |
14858 | 0 | else |
14859 | 0 | { |
14860 | 0 | size = h->size; |
14861 | 0 | if (addend >= size) |
14862 | 0 | { |
14863 | | /* Oops! We've got a reference past the defined end of |
14864 | | the table. This is probably a bug -- shall we warn? */ |
14865 | 0 | size = addend + file_align; |
14866 | 0 | } |
14867 | 0 | } |
14868 | 0 | size = (size + file_align - 1) & -file_align; |
14869 | | |
14870 | | /* Allocate one extra entry for use as a "done" flag for the |
14871 | | consolidation pass. */ |
14872 | 0 | bytes = ((size >> log_file_align) + 1) * sizeof (bool); |
14873 | |
|
14874 | 0 | if (ptr) |
14875 | 0 | { |
14876 | 0 | ptr = (bool *) bfd_realloc (ptr - 1, bytes); |
14877 | |
|
14878 | 0 | if (ptr != NULL) |
14879 | 0 | { |
14880 | 0 | size_t oldbytes; |
14881 | |
|
14882 | 0 | oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) |
14883 | 0 | * sizeof (bool)); |
14884 | 0 | memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); |
14885 | 0 | } |
14886 | 0 | } |
14887 | 0 | else |
14888 | 0 | ptr = (bool *) bfd_zmalloc (bytes); |
14889 | |
|
14890 | 0 | if (ptr == NULL) |
14891 | 0 | return false; |
14892 | | |
14893 | | /* And arrange for that done flag to be at index -1. */ |
14894 | 0 | h->u2.vtable->used = ptr + 1; |
14895 | 0 | h->u2.vtable->size = size; |
14896 | 0 | } |
14897 | | |
14898 | 0 | h->u2.vtable->used[addend >> log_file_align] = true; |
14899 | |
|
14900 | 0 | return true; |
14901 | 0 | } |
14902 | | |
14903 | | /* Map an ELF section header flag to its corresponding string. */ |
14904 | | typedef struct |
14905 | | { |
14906 | | char *flag_name; |
14907 | | flagword flag_value; |
14908 | | } elf_flags_to_name_table; |
14909 | | |
14910 | | static const elf_flags_to_name_table elf_flags_to_names [] = |
14911 | | { |
14912 | | { "SHF_WRITE", SHF_WRITE }, |
14913 | | { "SHF_ALLOC", SHF_ALLOC }, |
14914 | | { "SHF_EXECINSTR", SHF_EXECINSTR }, |
14915 | | { "SHF_MERGE", SHF_MERGE }, |
14916 | | { "SHF_STRINGS", SHF_STRINGS }, |
14917 | | { "SHF_INFO_LINK", SHF_INFO_LINK}, |
14918 | | { "SHF_LINK_ORDER", SHF_LINK_ORDER}, |
14919 | | { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, |
14920 | | { "SHF_GROUP", SHF_GROUP }, |
14921 | | { "SHF_TLS", SHF_TLS }, |
14922 | | { "SHF_MASKOS", SHF_MASKOS }, |
14923 | | { "SHF_EXCLUDE", SHF_EXCLUDE }, |
14924 | | }; |
14925 | | |
14926 | | /* Returns TRUE if the section is to be included, otherwise FALSE. */ |
14927 | | bool |
14928 | | bfd_elf_lookup_section_flags (struct bfd_link_info *info, |
14929 | | struct flag_info *flaginfo, |
14930 | | asection *section) |
14931 | 0 | { |
14932 | 0 | const bfd_vma sh_flags = elf_section_flags (section); |
14933 | |
|
14934 | 0 | if (!flaginfo->flags_initialized) |
14935 | 0 | { |
14936 | 0 | bfd *obfd = info->output_bfd; |
14937 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); |
14938 | 0 | struct flag_info_list *tf = flaginfo->flag_list; |
14939 | 0 | int with_hex = 0; |
14940 | 0 | int without_hex = 0; |
14941 | |
|
14942 | 0 | for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) |
14943 | 0 | { |
14944 | 0 | unsigned i; |
14945 | 0 | flagword (*lookup) (char *); |
14946 | |
|
14947 | 0 | lookup = bed->elf_backend_lookup_section_flags_hook; |
14948 | 0 | if (lookup != NULL) |
14949 | 0 | { |
14950 | 0 | flagword hexval = (*lookup) ((char *) tf->name); |
14951 | |
|
14952 | 0 | if (hexval != 0) |
14953 | 0 | { |
14954 | 0 | if (tf->with == with_flags) |
14955 | 0 | with_hex |= hexval; |
14956 | 0 | else if (tf->with == without_flags) |
14957 | 0 | without_hex |= hexval; |
14958 | 0 | tf->valid = true; |
14959 | 0 | continue; |
14960 | 0 | } |
14961 | 0 | } |
14962 | 0 | for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) |
14963 | 0 | { |
14964 | 0 | if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) |
14965 | 0 | { |
14966 | 0 | if (tf->with == with_flags) |
14967 | 0 | with_hex |= elf_flags_to_names[i].flag_value; |
14968 | 0 | else if (tf->with == without_flags) |
14969 | 0 | without_hex |= elf_flags_to_names[i].flag_value; |
14970 | 0 | tf->valid = true; |
14971 | 0 | break; |
14972 | 0 | } |
14973 | 0 | } |
14974 | 0 | if (!tf->valid) |
14975 | 0 | { |
14976 | 0 | info->callbacks->einfo |
14977 | 0 | (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); |
14978 | 0 | return false; |
14979 | 0 | } |
14980 | 0 | } |
14981 | 0 | flaginfo->flags_initialized = true; |
14982 | 0 | flaginfo->only_with_flags |= with_hex; |
14983 | 0 | flaginfo->not_with_flags |= without_hex; |
14984 | 0 | } |
14985 | | |
14986 | 0 | if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) |
14987 | 0 | return false; |
14988 | | |
14989 | 0 | if ((flaginfo->not_with_flags & sh_flags) != 0) |
14990 | 0 | return false; |
14991 | | |
14992 | 0 | return true; |
14993 | 0 | } |
14994 | | |
14995 | | struct alloc_got_off_arg { |
14996 | | bfd_vma gotoff; |
14997 | | struct bfd_link_info *info; |
14998 | | }; |
14999 | | |
15000 | | /* We need a special top-level link routine to convert got reference counts |
15001 | | to real got offsets. */ |
15002 | | |
15003 | | static bool |
15004 | | elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) |
15005 | 0 | { |
15006 | 0 | struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; |
15007 | 0 | bfd *obfd = gofarg->info->output_bfd; |
15008 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); |
15009 | |
|
15010 | 0 | if (h->got.refcount > 0) |
15011 | 0 | { |
15012 | 0 | h->got.offset = gofarg->gotoff; |
15013 | 0 | gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); |
15014 | 0 | } |
15015 | 0 | else |
15016 | 0 | h->got.offset = (bfd_vma) -1; |
15017 | |
|
15018 | 0 | return true; |
15019 | 0 | } |
15020 | | |
15021 | | /* And an accompanying bit to work out final got entry offsets once |
15022 | | we're done. Should be called from final_link. */ |
15023 | | |
15024 | | bool |
15025 | | bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, |
15026 | | struct bfd_link_info *info) |
15027 | 0 | { |
15028 | 0 | bfd *i; |
15029 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
15030 | 0 | bfd_vma gotoff; |
15031 | 0 | struct alloc_got_off_arg gofarg; |
15032 | |
|
15033 | 0 | BFD_ASSERT (abfd == info->output_bfd); |
15034 | |
|
15035 | 0 | if (! is_elf_hash_table (info->hash)) |
15036 | 0 | return false; |
15037 | | |
15038 | | /* The GOT offset is relative to the .got section, but the GOT header is |
15039 | | put into the .got.plt section, if the backend uses it. */ |
15040 | 0 | if (bed->want_got_plt) |
15041 | 0 | gotoff = 0; |
15042 | 0 | else |
15043 | 0 | gotoff = bed->got_header_size; |
15044 | | |
15045 | | /* Do the local .got entries first. */ |
15046 | 0 | for (i = info->input_bfds; i; i = i->link.next) |
15047 | 0 | { |
15048 | 0 | bfd_signed_vma *local_got; |
15049 | 0 | size_t j, locsymcount; |
15050 | 0 | Elf_Internal_Shdr *symtab_hdr; |
15051 | |
|
15052 | 0 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) |
15053 | 0 | continue; |
15054 | | |
15055 | 0 | local_got = elf_local_got_refcounts (i); |
15056 | 0 | if (!local_got) |
15057 | 0 | continue; |
15058 | | |
15059 | 0 | symtab_hdr = &elf_tdata (i)->symtab_hdr; |
15060 | 0 | if (elf_bad_symtab (i)) |
15061 | 0 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; |
15062 | 0 | else |
15063 | 0 | locsymcount = symtab_hdr->sh_info; |
15064 | |
|
15065 | 0 | for (j = 0; j < locsymcount; ++j) |
15066 | 0 | { |
15067 | 0 | if (local_got[j] > 0) |
15068 | 0 | { |
15069 | 0 | local_got[j] = gotoff; |
15070 | 0 | gotoff += bed->got_elt_size (abfd, info, NULL, i, j); |
15071 | 0 | } |
15072 | 0 | else |
15073 | 0 | local_got[j] = (bfd_vma) -1; |
15074 | 0 | } |
15075 | 0 | } |
15076 | | |
15077 | | /* Then the global .got entries. .plt refcounts are handled by |
15078 | | adjust_dynamic_symbol */ |
15079 | 0 | gofarg.gotoff = gotoff; |
15080 | 0 | gofarg.info = info; |
15081 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
15082 | 0 | elf_gc_allocate_got_offsets, |
15083 | 0 | &gofarg); |
15084 | 0 | return true; |
15085 | 0 | } |
15086 | | |
15087 | | /* Many folk need no more in the way of final link than this, once |
15088 | | got entry reference counting is enabled. */ |
15089 | | |
15090 | | bool |
15091 | | bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) |
15092 | 0 | { |
15093 | 0 | if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) |
15094 | 0 | return false; |
15095 | | |
15096 | | /* Invoke the regular ELF backend linker to do all the work. */ |
15097 | 0 | return bfd_elf_final_link (abfd, info); |
15098 | 0 | } |
15099 | | |
15100 | | bool |
15101 | | bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) |
15102 | 0 | { |
15103 | 0 | struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; |
15104 | |
|
15105 | 0 | if (rcookie->bad_symtab) |
15106 | 0 | rcookie->rel = rcookie->rels; |
15107 | |
|
15108 | 0 | for (; rcookie->rel < rcookie->relend; rcookie->rel++) |
15109 | 0 | { |
15110 | 0 | unsigned long r_symndx; |
15111 | |
|
15112 | 0 | if (! rcookie->bad_symtab) |
15113 | 0 | if (rcookie->rel->r_offset > offset) |
15114 | 0 | return false; |
15115 | 0 | if (rcookie->rel->r_offset != offset) |
15116 | 0 | continue; |
15117 | | |
15118 | 0 | r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; |
15119 | 0 | if (r_symndx == STN_UNDEF) |
15120 | 0 | return true; |
15121 | | |
15122 | 0 | struct elf_link_hash_entry *h; |
15123 | |
|
15124 | 0 | h = get_ext_sym_hash_from_cookie (rcookie, r_symndx); |
15125 | | |
15126 | 0 | if (h != NULL) |
15127 | 0 | { |
15128 | 0 | if ((h->root.type == bfd_link_hash_defined |
15129 | 0 | || h->root.type == bfd_link_hash_defweak) |
15130 | 0 | && (h->root.u.def.section->owner != rcookie->abfd |
15131 | 0 | || h->root.u.def.section->kept_section != NULL |
15132 | 0 | || discarded_section (h->root.u.def.section))) |
15133 | 0 | return true; |
15134 | 0 | } |
15135 | 0 | else |
15136 | 0 | { |
15137 | 0 | if (r_symndx >= rcookie->locsymcount) |
15138 | | /* This can happen with corrupt input. */ |
15139 | 0 | return false; |
15140 | | |
15141 | | /* It's not a relocation against a global symbol, |
15142 | | but it could be a relocation against a local |
15143 | | symbol for a discarded section. */ |
15144 | 0 | asection *isec; |
15145 | 0 | Elf_Internal_Sym *isym; |
15146 | | |
15147 | | /* Need to: get the symbol; get the section. */ |
15148 | 0 | isym = &rcookie->locsyms[r_symndx]; |
15149 | 0 | isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); |
15150 | 0 | if (isec != NULL |
15151 | 0 | && (isec->kept_section != NULL |
15152 | 0 | || discarded_section (isec))) |
15153 | 0 | return true; |
15154 | 0 | } |
15155 | | |
15156 | 0 | return false; |
15157 | 0 | } |
15158 | 0 | return false; |
15159 | 0 | } |
15160 | | |
15161 | | /* Discard unneeded references to discarded sections. |
15162 | | Returns -1 on error, 1 if any section's size was changed, 0 if |
15163 | | nothing changed. This function assumes that the relocations are in |
15164 | | sorted order, which is true for all known assemblers. */ |
15165 | | |
15166 | | int |
15167 | | bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) |
15168 | 0 | { |
15169 | 0 | struct elf_reloc_cookie cookie; |
15170 | 0 | asection *o; |
15171 | 0 | bfd *abfd; |
15172 | 0 | int changed = 0; |
15173 | |
|
15174 | 0 | if (info->traditional_format |
15175 | 0 | || !is_elf_hash_table (info->hash)) |
15176 | 0 | return 0; |
15177 | | |
15178 | 0 | o = bfd_get_section_by_name (output_bfd, ".stab"); |
15179 | 0 | if (o != NULL) |
15180 | 0 | { |
15181 | 0 | asection *i; |
15182 | |
|
15183 | 0 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) |
15184 | 0 | { |
15185 | 0 | if (i->size == 0 |
15186 | 0 | || i->reloc_count == 0 |
15187 | 0 | || i->sec_info_type != SEC_INFO_TYPE_STABS) |
15188 | 0 | continue; |
15189 | | |
15190 | 0 | abfd = i->owner; |
15191 | 0 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
15192 | 0 | continue; |
15193 | | |
15194 | 0 | if (!init_reloc_cookie_for_section (&cookie, info, i, false)) |
15195 | 0 | return -1; |
15196 | | |
15197 | 0 | if (_bfd_discard_section_stabs (abfd, i, |
15198 | 0 | elf_section_data (i)->sec_info, |
15199 | 0 | bfd_elf_reloc_symbol_deleted_p, |
15200 | 0 | &cookie)) |
15201 | 0 | changed = 1; |
15202 | |
|
15203 | 0 | fini_reloc_cookie_for_section (&cookie, i); |
15204 | 0 | } |
15205 | 0 | } |
15206 | | |
15207 | 0 | o = NULL; |
15208 | 0 | if (info->eh_frame_hdr_type != COMPACT_EH_HDR) |
15209 | 0 | o = bfd_get_section_by_name (output_bfd, ".eh_frame"); |
15210 | 0 | if (o != NULL) |
15211 | 0 | { |
15212 | 0 | asection *i; |
15213 | 0 | int eh_changed = 0; |
15214 | 0 | unsigned int eh_alignment; /* Octets. */ |
15215 | |
|
15216 | 0 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) |
15217 | 0 | { |
15218 | 0 | if (i->size == 0) |
15219 | 0 | continue; |
15220 | | |
15221 | 0 | abfd = i->owner; |
15222 | 0 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
15223 | 0 | continue; |
15224 | | |
15225 | 0 | if (!init_reloc_cookie_for_section (&cookie, info, i, false)) |
15226 | 0 | return -1; |
15227 | | |
15228 | 0 | _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); |
15229 | 0 | if (_bfd_elf_discard_section_eh_frame (abfd, info, i, |
15230 | 0 | bfd_elf_reloc_symbol_deleted_p, |
15231 | 0 | &cookie)) |
15232 | 0 | { |
15233 | 0 | eh_changed = 1; |
15234 | 0 | if (i->size != i->rawsize) |
15235 | 0 | changed = 1; |
15236 | 0 | } |
15237 | |
|
15238 | 0 | fini_reloc_cookie_for_section (&cookie, i); |
15239 | 0 | } |
15240 | | |
15241 | 0 | eh_alignment = ((1 << o->alignment_power) |
15242 | 0 | * bfd_octets_per_byte (output_bfd, o)); |
15243 | | /* Skip over zero terminator, and prevent empty sections from |
15244 | | adding alignment padding at the end. */ |
15245 | 0 | for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) |
15246 | 0 | if (i->size == 0) |
15247 | 0 | i->flags |= SEC_EXCLUDE; |
15248 | 0 | else if (i->size > 4) |
15249 | 0 | break; |
15250 | | /* The last non-empty eh_frame section doesn't need padding. */ |
15251 | 0 | if (i != NULL) |
15252 | 0 | i = i->map_tail.s; |
15253 | | /* Any prior sections must pad the last FDE out to the output |
15254 | | section alignment. Otherwise we might have zero padding |
15255 | | between sections, which would be seen as a terminator. */ |
15256 | 0 | for (; i != NULL; i = i->map_tail.s) |
15257 | 0 | if (i->size == 4) |
15258 | | /* All but the last zero terminator should have been removed. */ |
15259 | 0 | BFD_FAIL (); |
15260 | 0 | else |
15261 | 0 | { |
15262 | 0 | bfd_size_type size |
15263 | 0 | = (i->size + eh_alignment - 1) & -eh_alignment; |
15264 | 0 | if (i->size != size) |
15265 | 0 | { |
15266 | 0 | i->size = size; |
15267 | 0 | changed = 1; |
15268 | 0 | eh_changed = 1; |
15269 | 0 | } |
15270 | 0 | } |
15271 | 0 | if (eh_changed) |
15272 | 0 | elf_link_hash_traverse (elf_hash_table (info), |
15273 | 0 | _bfd_elf_adjust_eh_frame_global_symbol, NULL); |
15274 | 0 | } |
15275 | | |
15276 | 0 | o = bfd_get_section_by_name (output_bfd, ".sframe"); |
15277 | 0 | if (o != NULL) |
15278 | 0 | { |
15279 | 0 | asection *i; |
15280 | |
|
15281 | 0 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) |
15282 | 0 | { |
15283 | 0 | if (i->size == 0) |
15284 | 0 | continue; |
15285 | | |
15286 | 0 | abfd = i->owner; |
15287 | 0 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
15288 | 0 | continue; |
15289 | | |
15290 | 0 | if (!init_reloc_cookie_for_section (&cookie, info, i, false)) |
15291 | 0 | return -1; |
15292 | | |
15293 | 0 | if (_bfd_elf_parse_sframe (abfd, info, i, &cookie)) |
15294 | 0 | { |
15295 | 0 | if (_bfd_elf_discard_section_sframe (i, |
15296 | 0 | bfd_elf_reloc_symbol_deleted_p, |
15297 | 0 | &cookie)) |
15298 | 0 | { |
15299 | 0 | if (i->size != i->rawsize) |
15300 | 0 | changed = 1; |
15301 | 0 | } |
15302 | 0 | } |
15303 | 0 | fini_reloc_cookie_for_section (&cookie, i); |
15304 | 0 | } |
15305 | | /* Update the reference to the output .sframe section. Used to |
15306 | | determine later if PT_GNU_SFRAME segment is to be generated. */ |
15307 | 0 | if (!_bfd_elf_set_section_sframe (output_bfd, info)) |
15308 | 0 | return -1; |
15309 | 0 | } |
15310 | | |
15311 | 0 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
15312 | 0 | { |
15313 | 0 | const struct elf_backend_data *bed; |
15314 | 0 | asection *s; |
15315 | |
|
15316 | 0 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
15317 | 0 | continue; |
15318 | 0 | s = abfd->sections; |
15319 | 0 | if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
15320 | 0 | continue; |
15321 | | |
15322 | 0 | bed = get_elf_backend_data (abfd); |
15323 | |
|
15324 | 0 | if (bed->elf_backend_discard_info != NULL) |
15325 | 0 | { |
15326 | 0 | if (!init_reloc_cookie (&cookie, info, abfd, false)) |
15327 | 0 | return -1; |
15328 | | |
15329 | 0 | if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) |
15330 | 0 | changed = 1; |
15331 | |
|
15332 | 0 | fini_reloc_cookie (&cookie, abfd); |
15333 | 0 | } |
15334 | 0 | } |
15335 | | |
15336 | 0 | if (info->eh_frame_hdr_type == COMPACT_EH_HDR) |
15337 | 0 | _bfd_elf_end_eh_frame_parsing (info); |
15338 | |
|
15339 | 0 | if (_bfd_elf_discard_section_eh_frame_hdr (info)) |
15340 | 0 | changed = 1; |
15341 | |
|
15342 | 0 | return changed; |
15343 | 0 | } |
15344 | | |
15345 | | bool |
15346 | | _bfd_elf_section_already_linked (bfd *abfd, |
15347 | | asection *sec, |
15348 | | struct bfd_link_info *info) |
15349 | 0 | { |
15350 | 0 | flagword flags; |
15351 | 0 | const char *name, *key; |
15352 | 0 | struct bfd_section_already_linked *l; |
15353 | 0 | struct bfd_section_already_linked_hash_entry *already_linked_list; |
15354 | |
|
15355 | 0 | if (sec->output_section == bfd_abs_section_ptr) |
15356 | 0 | return false; |
15357 | | |
15358 | 0 | flags = sec->flags; |
15359 | | |
15360 | | /* Return if it isn't a linkonce section. A comdat group section |
15361 | | also has SEC_LINK_ONCE set. */ |
15362 | 0 | if ((flags & SEC_LINK_ONCE) == 0) |
15363 | 0 | return false; |
15364 | | |
15365 | | /* Don't put group member sections on our list of already linked |
15366 | | sections. They are handled as a group via their group section. */ |
15367 | 0 | if (elf_sec_group (sec) != NULL) |
15368 | 0 | return false; |
15369 | | |
15370 | | /* For a SHT_GROUP section, use the group signature as the key. */ |
15371 | 0 | name = sec->name; |
15372 | 0 | if ((flags & SEC_GROUP) != 0 |
15373 | 0 | && elf_next_in_group (sec) != NULL |
15374 | 0 | && elf_group_name (elf_next_in_group (sec)) != NULL) |
15375 | 0 | key = elf_group_name (elf_next_in_group (sec)); |
15376 | 0 | else |
15377 | 0 | { |
15378 | | /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ |
15379 | 0 | if (startswith (name, ".gnu.linkonce.") |
15380 | 0 | && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) |
15381 | 0 | key++; |
15382 | 0 | else |
15383 | | /* Must be a user linkonce section that doesn't follow gcc's |
15384 | | naming convention. In this case we won't be matching |
15385 | | single member groups. */ |
15386 | 0 | key = name; |
15387 | 0 | } |
15388 | |
|
15389 | 0 | already_linked_list = bfd_section_already_linked_table_lookup (key); |
15390 | |
|
15391 | 0 | for (l = already_linked_list->entry; l != NULL; l = l->next) |
15392 | 0 | { |
15393 | | /* We may have 2 different types of sections on the list: group |
15394 | | sections with a signature of <key> (<key> is some string), |
15395 | | and linkonce sections named .gnu.linkonce.<type>.<key>. |
15396 | | Match like sections. LTO plugin sections are an exception. |
15397 | | They are always named .gnu.linkonce.t.<key> and match either |
15398 | | type of section. */ |
15399 | 0 | if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) |
15400 | 0 | && ((flags & SEC_GROUP) != 0 |
15401 | 0 | || strcmp (name, l->sec->name) == 0)) |
15402 | 0 | || (l->sec->owner->flags & BFD_PLUGIN) != 0 |
15403 | 0 | || (sec->owner->flags & BFD_PLUGIN) != 0) |
15404 | 0 | { |
15405 | | /* The section has already been linked. See if we should |
15406 | | issue a warning. */ |
15407 | 0 | if (!_bfd_handle_already_linked (sec, l, info)) |
15408 | 0 | return false; |
15409 | | |
15410 | 0 | if (flags & SEC_GROUP) |
15411 | 0 | { |
15412 | 0 | asection *first = elf_next_in_group (sec); |
15413 | 0 | asection *s = first; |
15414 | |
|
15415 | 0 | while (s != NULL) |
15416 | 0 | { |
15417 | 0 | s->output_section = bfd_abs_section_ptr; |
15418 | | /* Record which group discards it. */ |
15419 | 0 | s->kept_section = l->sec; |
15420 | 0 | s = elf_next_in_group (s); |
15421 | | /* These lists are circular. */ |
15422 | 0 | if (s == first) |
15423 | 0 | break; |
15424 | 0 | } |
15425 | 0 | } |
15426 | |
|
15427 | 0 | return true; |
15428 | 0 | } |
15429 | 0 | } |
15430 | | |
15431 | | /* A single member comdat group section may be discarded by a |
15432 | | linkonce section and vice versa. */ |
15433 | 0 | if ((flags & SEC_GROUP) != 0) |
15434 | 0 | { |
15435 | 0 | asection *first = elf_next_in_group (sec); |
15436 | |
|
15437 | 0 | if (first != NULL && elf_next_in_group (first) == first) |
15438 | | /* Check this single member group against linkonce sections. */ |
15439 | 0 | for (l = already_linked_list->entry; l != NULL; l = l->next) |
15440 | 0 | if ((l->sec->flags & SEC_GROUP) == 0 |
15441 | 0 | && bfd_elf_match_symbols_in_sections (l->sec, first, info)) |
15442 | 0 | { |
15443 | 0 | first->output_section = bfd_abs_section_ptr; |
15444 | 0 | first->kept_section = l->sec; |
15445 | 0 | sec->output_section = bfd_abs_section_ptr; |
15446 | 0 | break; |
15447 | 0 | } |
15448 | 0 | } |
15449 | 0 | else |
15450 | | /* Check this linkonce section against single member groups. */ |
15451 | 0 | for (l = already_linked_list->entry; l != NULL; l = l->next) |
15452 | 0 | if (l->sec->flags & SEC_GROUP) |
15453 | 0 | { |
15454 | 0 | asection *first = elf_next_in_group (l->sec); |
15455 | |
|
15456 | 0 | if (first != NULL |
15457 | 0 | && elf_next_in_group (first) == first |
15458 | 0 | && bfd_elf_match_symbols_in_sections (first, sec, info)) |
15459 | 0 | { |
15460 | 0 | sec->output_section = bfd_abs_section_ptr; |
15461 | 0 | sec->kept_section = first; |
15462 | 0 | break; |
15463 | 0 | } |
15464 | 0 | } |
15465 | | |
15466 | | /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' |
15467 | | referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 |
15468 | | specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' |
15469 | | prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its |
15470 | | matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded |
15471 | | but its `.gnu.linkonce.t.F' is discarded means we chose one-only |
15472 | | `.gnu.linkonce.t.F' section from a different bfd not requiring any |
15473 | | `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. |
15474 | | The reverse order cannot happen as there is never a bfd with only the |
15475 | | `.gnu.linkonce.r.F' section. The order of sections in a bfd does not |
15476 | | matter as here were are looking only for cross-bfd sections. */ |
15477 | |
|
15478 | 0 | if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r.")) |
15479 | 0 | for (l = already_linked_list->entry; l != NULL; l = l->next) |
15480 | 0 | if ((l->sec->flags & SEC_GROUP) == 0 |
15481 | 0 | && startswith (l->sec->name, ".gnu.linkonce.t.")) |
15482 | 0 | { |
15483 | 0 | if (abfd != l->sec->owner) |
15484 | 0 | sec->output_section = bfd_abs_section_ptr; |
15485 | 0 | break; |
15486 | 0 | } |
15487 | | |
15488 | | /* This is the first section with this name. Record it. */ |
15489 | 0 | if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) |
15490 | 0 | info->callbacks->fatal (_("%P: already_linked_table: %E\n")); |
15491 | 0 | return sec->output_section == bfd_abs_section_ptr; |
15492 | 0 | } |
15493 | | |
15494 | | bool |
15495 | | _bfd_elf_common_definition (Elf_Internal_Sym *sym) |
15496 | 0 | { |
15497 | 0 | return sym->st_shndx == SHN_COMMON; |
15498 | 0 | } |
15499 | | |
15500 | | unsigned int |
15501 | | _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) |
15502 | 0 | { |
15503 | 0 | return SHN_COMMON; |
15504 | 0 | } |
15505 | | |
15506 | | asection * |
15507 | | _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) |
15508 | 0 | { |
15509 | 0 | return bfd_com_section_ptr; |
15510 | 0 | } |
15511 | | |
15512 | | bfd_vma |
15513 | | _bfd_elf_default_got_elt_size (bfd *abfd, |
15514 | | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
15515 | | struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, |
15516 | | bfd *ibfd ATTRIBUTE_UNUSED, |
15517 | | unsigned long symndx ATTRIBUTE_UNUSED) |
15518 | 0 | { |
15519 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
15520 | 0 | return bed->s->arch_size / 8; |
15521 | 0 | } |
15522 | | |
15523 | | /* Routines to support the creation of dynamic relocs. */ |
15524 | | |
15525 | | /* Returns the name of the dynamic reloc section associated with SEC. */ |
15526 | | |
15527 | | static const char * |
15528 | | get_dynamic_reloc_section_name (bfd * abfd, |
15529 | | asection * sec, |
15530 | | bool is_rela) |
15531 | 0 | { |
15532 | 0 | char *name; |
15533 | 0 | const char *old_name = bfd_section_name (sec); |
15534 | 0 | const char *prefix = is_rela ? ".rela" : ".rel"; |
15535 | |
|
15536 | 0 | if (old_name == NULL) |
15537 | 0 | return NULL; |
15538 | | |
15539 | 0 | name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); |
15540 | 0 | sprintf (name, "%s%s", prefix, old_name); |
15541 | |
|
15542 | 0 | return name; |
15543 | 0 | } |
15544 | | |
15545 | | /* Returns the dynamic reloc section associated with SEC. |
15546 | | If necessary compute the name of the dynamic reloc section based |
15547 | | on SEC's name (looked up in ABFD's string table) and the setting |
15548 | | of IS_RELA. */ |
15549 | | |
15550 | | asection * |
15551 | | _bfd_elf_get_dynamic_reloc_section (bfd *abfd, |
15552 | | asection *sec, |
15553 | | bool is_rela) |
15554 | 0 | { |
15555 | 0 | asection *reloc_sec = elf_section_data (sec)->sreloc; |
15556 | |
|
15557 | 0 | if (reloc_sec == NULL) |
15558 | 0 | { |
15559 | 0 | const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela); |
15560 | |
|
15561 | 0 | if (name != NULL) |
15562 | 0 | { |
15563 | 0 | reloc_sec = bfd_get_linker_section (abfd, name); |
15564 | |
|
15565 | 0 | if (reloc_sec != NULL) |
15566 | 0 | elf_section_data (sec)->sreloc = reloc_sec; |
15567 | 0 | } |
15568 | 0 | } |
15569 | |
|
15570 | 0 | return reloc_sec; |
15571 | 0 | } |
15572 | | |
15573 | | /* Returns the dynamic reloc section associated with SEC. If the |
15574 | | section does not exist it is created and attached to the DYNOBJ |
15575 | | bfd and stored in the SRELOC field of SEC's elf_section_data |
15576 | | structure. |
15577 | | |
15578 | | ALIGNMENT is the alignment for the newly created section and |
15579 | | IS_RELA defines whether the name should be .rela.<SEC's name> |
15580 | | or .rel.<SEC's name>. The section name is looked up in the |
15581 | | string table associated with ABFD. */ |
15582 | | |
15583 | | asection * |
15584 | | _bfd_elf_make_dynamic_reloc_section (asection *sec, |
15585 | | bfd *dynobj, |
15586 | | unsigned int alignment, |
15587 | | bfd *abfd, |
15588 | | bool is_rela) |
15589 | 0 | { |
15590 | 0 | asection * reloc_sec = elf_section_data (sec)->sreloc; |
15591 | |
|
15592 | 0 | if (reloc_sec == NULL) |
15593 | 0 | { |
15594 | 0 | const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); |
15595 | |
|
15596 | 0 | if (name == NULL) |
15597 | 0 | return NULL; |
15598 | | |
15599 | 0 | reloc_sec = bfd_get_linker_section (dynobj, name); |
15600 | |
|
15601 | 0 | if (reloc_sec == NULL) |
15602 | 0 | { |
15603 | 0 | flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY |
15604 | 0 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); |
15605 | 0 | if ((sec->flags & SEC_ALLOC) != 0) |
15606 | 0 | flags |= SEC_ALLOC | SEC_LOAD; |
15607 | |
|
15608 | 0 | reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); |
15609 | 0 | if (reloc_sec != NULL) |
15610 | 0 | { |
15611 | | /* _bfd_elf_get_sec_type_attr chooses a section type by |
15612 | | name. Override as it may be wrong, eg. for a user |
15613 | | section named "auto" we'll get ".relauto" which is |
15614 | | seen to be a .rela section. */ |
15615 | 0 | elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; |
15616 | 0 | if (!bfd_set_section_alignment (reloc_sec, alignment)) |
15617 | 0 | reloc_sec = NULL; |
15618 | 0 | } |
15619 | 0 | } |
15620 | |
|
15621 | 0 | elf_section_data (sec)->sreloc = reloc_sec; |
15622 | 0 | } |
15623 | | |
15624 | 0 | return reloc_sec; |
15625 | 0 | } |
15626 | | |
15627 | | /* Copy the ELF symbol type and other attributes for a linker script |
15628 | | assignment from HSRC to HDEST. Generally this should be treated as |
15629 | | if we found a strong non-dynamic definition for HDEST (except that |
15630 | | ld ignores multiple definition errors). */ |
15631 | | void |
15632 | | _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, |
15633 | | struct bfd_link_hash_entry *hdest, |
15634 | | struct bfd_link_hash_entry *hsrc) |
15635 | 0 | { |
15636 | 0 | struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; |
15637 | 0 | struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; |
15638 | 0 | Elf_Internal_Sym isym; |
15639 | |
|
15640 | 0 | ehdest->type = ehsrc->type; |
15641 | 0 | ehdest->target_internal = ehsrc->target_internal; |
15642 | |
|
15643 | 0 | isym.st_other = ehsrc->other; |
15644 | 0 | elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false); |
15645 | 0 | } |
15646 | | |
15647 | | /* Append a RELA relocation REL to section S in BFD. */ |
15648 | | |
15649 | | void |
15650 | | elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
15651 | 0 | { |
15652 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
15653 | 0 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); |
15654 | 0 | BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); |
15655 | 0 | bed->s->swap_reloca_out (abfd, rel, loc); |
15656 | 0 | } |
15657 | | |
15658 | | /* Append a REL relocation REL to section S in BFD. */ |
15659 | | |
15660 | | void |
15661 | | elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
15662 | 0 | { |
15663 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
15664 | 0 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); |
15665 | 0 | BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); |
15666 | 0 | bed->s->swap_reloc_out (abfd, rel, loc); |
15667 | 0 | } |
15668 | | |
15669 | | /* Define __start, __stop, .startof. or .sizeof. symbol. */ |
15670 | | |
15671 | | struct bfd_link_hash_entry * |
15672 | | bfd_elf_define_start_stop (struct bfd_link_info *info, |
15673 | | const char *symbol, asection *sec) |
15674 | 0 | { |
15675 | 0 | struct elf_link_hash_entry *h; |
15676 | |
|
15677 | 0 | h = elf_link_hash_lookup (elf_hash_table (info), symbol, |
15678 | 0 | false, false, true); |
15679 | | /* NB: Common symbols will be turned into definition later. */ |
15680 | 0 | if (h != NULL |
15681 | 0 | && !h->root.ldscript_def |
15682 | 0 | && (h->root.type == bfd_link_hash_undefined |
15683 | 0 | || h->root.type == bfd_link_hash_undefweak |
15684 | 0 | || ((h->ref_regular || h->def_dynamic) |
15685 | 0 | && !h->def_regular |
15686 | 0 | && h->root.type != bfd_link_hash_common))) |
15687 | 0 | { |
15688 | 0 | bool was_dynamic = h->ref_dynamic || h->def_dynamic; |
15689 | 0 | h->verinfo.verdef = NULL; |
15690 | 0 | h->root.type = bfd_link_hash_defined; |
15691 | 0 | h->root.u.def.section = sec; |
15692 | 0 | h->root.u.def.value = 0; |
15693 | 0 | h->def_regular = 1; |
15694 | 0 | h->def_dynamic = 0; |
15695 | 0 | h->start_stop = 1; |
15696 | 0 | h->u2.start_stop_section = sec; |
15697 | 0 | if (symbol[0] == '.') |
15698 | 0 | { |
15699 | | /* .startof. and .sizeof. symbols are local. */ |
15700 | 0 | const struct elf_backend_data *bed; |
15701 | 0 | bed = get_elf_backend_data (info->output_bfd); |
15702 | 0 | (*bed->elf_backend_hide_symbol) (info, h, true); |
15703 | 0 | } |
15704 | 0 | else |
15705 | 0 | { |
15706 | 0 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) |
15707 | 0 | h->other = ((h->other & ~ELF_ST_VISIBILITY (-1)) |
15708 | 0 | | info->start_stop_visibility); |
15709 | 0 | if (was_dynamic) |
15710 | 0 | bfd_elf_link_record_dynamic_symbol (info, h); |
15711 | 0 | } |
15712 | 0 | return &h->root; |
15713 | 0 | } |
15714 | 0 | return NULL; |
15715 | 0 | } |
15716 | | |
15717 | | /* Find dynamic relocs for H that apply to read-only sections. */ |
15718 | | |
15719 | | asection * |
15720 | | _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h) |
15721 | 0 | { |
15722 | 0 | struct elf_dyn_relocs *p; |
15723 | |
|
15724 | 0 | for (p = h->dyn_relocs; p != NULL; p = p->next) |
15725 | 0 | { |
15726 | 0 | asection *s = p->sec->output_section; |
15727 | |
|
15728 | 0 | if (s != NULL && (s->flags & SEC_READONLY) != 0) |
15729 | 0 | return p->sec; |
15730 | 0 | } |
15731 | 0 | return NULL; |
15732 | 0 | } |
15733 | | |
15734 | | /* Set DF_TEXTREL if we find any dynamic relocs that apply to |
15735 | | read-only sections. */ |
15736 | | |
15737 | | bool |
15738 | | _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf) |
15739 | 0 | { |
15740 | 0 | asection *sec; |
15741 | |
|
15742 | 0 | if (h->root.type == bfd_link_hash_indirect) |
15743 | 0 | return true; |
15744 | | |
15745 | 0 | sec = _bfd_elf_readonly_dynrelocs (h); |
15746 | 0 | if (sec != NULL) |
15747 | 0 | { |
15748 | 0 | struct bfd_link_info *info = (struct bfd_link_info *) inf; |
15749 | |
|
15750 | 0 | info->flags |= DF_TEXTREL; |
15751 | | /* xgettext:c-format */ |
15752 | 0 | info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' " |
15753 | 0 | "in read-only section `%pA'\n"), |
15754 | 0 | sec->owner, h->root.root.string, sec); |
15755 | |
|
15756 | 0 | if (bfd_link_textrel_check (info)) |
15757 | | /* xgettext:c-format */ |
15758 | 0 | info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' " |
15759 | 0 | "in read-only section `%pA'\n"), |
15760 | 0 | sec->owner, h->root.root.string, sec); |
15761 | | |
15762 | | /* Not an error, just cut short the traversal. */ |
15763 | 0 | return false; |
15764 | 0 | } |
15765 | 0 | return true; |
15766 | 0 | } |
15767 | | |
15768 | | /* Add dynamic tags. */ |
15769 | | |
15770 | | bool |
15771 | | _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info, |
15772 | | bool need_dynamic_reloc) |
15773 | 0 | { |
15774 | 0 | struct elf_link_hash_table *htab = elf_hash_table (info); |
15775 | |
|
15776 | 0 | if (htab->dynamic_sections_created) |
15777 | 0 | { |
15778 | | /* Add some entries to the .dynamic section. We fill in the |
15779 | | values later, in finish_dynamic_sections, but we must add |
15780 | | the entries now so that we get the correct size for the |
15781 | | .dynamic section. The DT_DEBUG entry is filled in by the |
15782 | | dynamic linker and used by the debugger. */ |
15783 | 0 | #define add_dynamic_entry(TAG, VAL) \ |
15784 | 0 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
15785 | |
|
15786 | 0 | const struct elf_backend_data *bed |
15787 | 0 | = get_elf_backend_data (output_bfd); |
15788 | |
|
15789 | 0 | if (bfd_link_executable (info)) |
15790 | 0 | { |
15791 | 0 | if (!add_dynamic_entry (DT_DEBUG, 0)) |
15792 | 0 | return false; |
15793 | 0 | } |
15794 | | |
15795 | 0 | if (htab->dt_pltgot_required || htab->splt->size != 0) |
15796 | 0 | { |
15797 | | /* DT_PLTGOT is used by prelink even if there is no PLT |
15798 | | relocation. */ |
15799 | 0 | if (!add_dynamic_entry (DT_PLTGOT, 0)) |
15800 | 0 | return false; |
15801 | 0 | } |
15802 | | |
15803 | 0 | if (htab->dt_jmprel_required || htab->srelplt->size != 0) |
15804 | 0 | { |
15805 | 0 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
15806 | 0 | || !add_dynamic_entry (DT_PLTREL, |
15807 | 0 | (bed->rela_plts_and_copies_p |
15808 | 0 | ? DT_RELA : DT_REL)) |
15809 | 0 | || !add_dynamic_entry (DT_JMPREL, 0)) |
15810 | 0 | return false; |
15811 | 0 | } |
15812 | | |
15813 | 0 | if (htab->tlsdesc_plt |
15814 | 0 | && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) |
15815 | 0 | || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) |
15816 | 0 | return false; |
15817 | | |
15818 | 0 | if (need_dynamic_reloc) |
15819 | 0 | { |
15820 | 0 | if (bed->rela_plts_and_copies_p) |
15821 | 0 | { |
15822 | 0 | if (!add_dynamic_entry (DT_RELA, 0) |
15823 | 0 | || !add_dynamic_entry (DT_RELASZ, 0) |
15824 | 0 | || !add_dynamic_entry (DT_RELAENT, |
15825 | 0 | bed->s->sizeof_rela)) |
15826 | 0 | return false; |
15827 | 0 | } |
15828 | 0 | else |
15829 | 0 | { |
15830 | 0 | if (!add_dynamic_entry (DT_REL, 0) |
15831 | 0 | || !add_dynamic_entry (DT_RELSZ, 0) |
15832 | 0 | || !add_dynamic_entry (DT_RELENT, |
15833 | 0 | bed->s->sizeof_rel)) |
15834 | 0 | return false; |
15835 | 0 | } |
15836 | | |
15837 | | /* If any dynamic relocs apply to a read-only section, |
15838 | | then we need a DT_TEXTREL entry. */ |
15839 | 0 | if ((info->flags & DF_TEXTREL) == 0) |
15840 | 0 | elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel, |
15841 | 0 | info); |
15842 | |
|
15843 | 0 | if ((info->flags & DF_TEXTREL) != 0) |
15844 | 0 | { |
15845 | 0 | if (htab->ifunc_resolvers) |
15846 | 0 | info->callbacks->einfo |
15847 | 0 | (_("%P: warning: GNU indirect functions with DT_TEXTREL " |
15848 | 0 | "may result in a segfault at runtime; recompile with %s\n"), |
15849 | 0 | bfd_link_dll (info) ? "-fPIC" : "-fPIE"); |
15850 | |
|
15851 | 0 | if (!add_dynamic_entry (DT_TEXTREL, 0)) |
15852 | 0 | return false; |
15853 | 0 | } |
15854 | 0 | } |
15855 | 0 | } |
15856 | 0 | #undef add_dynamic_entry |
15857 | | |
15858 | 0 | return true; |
15859 | 0 | } |