/src/binutils-gdb/bfd/elfxx-mips.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* MIPS-specific support for ELF |
2 | | Copyright (C) 1993-2025 Free Software Foundation, Inc. |
3 | | |
4 | | Most of the information added by Ian Lance Taylor, Cygnus Support, |
5 | | <ian@cygnus.com>. |
6 | | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. |
7 | | <mark@codesourcery.com> |
8 | | Traditional MIPS targets support added by Koundinya.K, Dansk Data |
9 | | Elektronik & Operations Research Group. <kk@ddeorg.soft.net> |
10 | | |
11 | | This file is part of BFD, the Binary File Descriptor library. |
12 | | |
13 | | This program is free software; you can redistribute it and/or modify |
14 | | it under the terms of the GNU General Public License as published by |
15 | | the Free Software Foundation; either version 3 of the License, or |
16 | | (at your option) any later version. |
17 | | |
18 | | This program is distributed in the hope that it will be useful, |
19 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
20 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
21 | | GNU General Public License for more details. |
22 | | |
23 | | You should have received a copy of the GNU General Public License |
24 | | along with this program; if not, write to the Free Software |
25 | | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
26 | | MA 02110-1301, USA. */ |
27 | | |
28 | | |
29 | | /* This file handles functionality common to the different MIPS ABI's. */ |
30 | | |
31 | | #include "sysdep.h" |
32 | | #include "bfd.h" |
33 | | #include "libbfd.h" |
34 | | #include "libiberty.h" |
35 | | #include "elf-bfd.h" |
36 | | #include "ecoff-bfd.h" |
37 | | #include "elfxx-mips.h" |
38 | | #include "elf/mips.h" |
39 | | #include "elf-vxworks.h" |
40 | | #include "dwarf2.h" |
41 | | |
42 | | /* Get the ECOFF swapping routines. */ |
43 | | #include "coff/sym.h" |
44 | | #include "coff/symconst.h" |
45 | | #include "coff/ecoff.h" |
46 | | #include "coff/mips.h" |
47 | | |
48 | | #include "hashtab.h" |
49 | | |
50 | | /* Types of TLS GOT entry. */ |
51 | | enum mips_got_tls_type { |
52 | | GOT_TLS_NONE, |
53 | | GOT_TLS_GD, |
54 | | GOT_TLS_LDM, |
55 | | GOT_TLS_IE |
56 | | }; |
57 | | |
58 | | /* This structure is used to hold information about one GOT entry. |
59 | | There are four types of entry: |
60 | | |
61 | | (1) an absolute address |
62 | | requires: abfd == NULL |
63 | | fields: d.address |
64 | | |
65 | | (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd |
66 | | requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM |
67 | | fields: abfd, symndx, d.addend, tls_type |
68 | | |
69 | | (3) a SYMBOL address, where SYMBOL is not local to an input bfd |
70 | | requires: abfd != NULL, symndx == -1 |
71 | | fields: d.h, tls_type |
72 | | |
73 | | (4) a TLS LDM slot |
74 | | requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM |
75 | | fields: none; there's only one of these per GOT. */ |
76 | | struct mips_got_entry |
77 | | { |
78 | | /* One input bfd that needs the GOT entry. */ |
79 | | bfd *abfd; |
80 | | /* The index of the symbol, as stored in the relocation r_info, if |
81 | | we have a local symbol; -1 otherwise. */ |
82 | | long symndx; |
83 | | union |
84 | | { |
85 | | /* If abfd == NULL, an address that must be stored in the got. */ |
86 | | bfd_vma address; |
87 | | /* If abfd != NULL && symndx != -1, the addend of the relocation |
88 | | that should be added to the symbol value. */ |
89 | | bfd_vma addend; |
90 | | /* If abfd != NULL && symndx == -1, the hash table entry |
91 | | corresponding to a symbol in the GOT. The symbol's entry |
92 | | is in the local area if h->global_got_area is GGA_NONE, |
93 | | otherwise it is in the global area. */ |
94 | | struct mips_elf_link_hash_entry *h; |
95 | | } d; |
96 | | |
97 | | /* The TLS type of this GOT entry. An LDM GOT entry will be a local |
98 | | symbol entry with r_symndx == 0. */ |
99 | | unsigned char tls_type; |
100 | | |
101 | | /* True if we have filled in the GOT contents for a TLS entry, |
102 | | and created the associated relocations. */ |
103 | | unsigned char tls_initialized; |
104 | | |
105 | | /* The offset from the beginning of the .got section to the entry |
106 | | corresponding to this symbol+addend. If it's a global symbol |
107 | | whose offset is yet to be decided, it's going to be -1. */ |
108 | | long gotidx; |
109 | | }; |
110 | | |
111 | | /* This structure represents a GOT page reference from an input bfd. |
112 | | Each instance represents a symbol + ADDEND, where the representation |
113 | | of the symbol depends on whether it is local to the input bfd. |
114 | | If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. |
115 | | Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. |
116 | | |
117 | | Page references with SYMNDX >= 0 always become page references |
118 | | in the output. Page references with SYMNDX < 0 only become page |
119 | | references if the symbol binds locally; in other cases, the page |
120 | | reference decays to a global GOT reference. */ |
121 | | struct mips_got_page_ref |
122 | | { |
123 | | long symndx; |
124 | | union |
125 | | { |
126 | | struct mips_elf_link_hash_entry *h; |
127 | | bfd *abfd; |
128 | | } u; |
129 | | bfd_vma addend; |
130 | | }; |
131 | | |
132 | | /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. |
133 | | The structures form a non-overlapping list that is sorted by increasing |
134 | | MIN_ADDEND. */ |
135 | | struct mips_got_page_range |
136 | | { |
137 | | struct mips_got_page_range *next; |
138 | | bfd_signed_vma min_addend; |
139 | | bfd_signed_vma max_addend; |
140 | | }; |
141 | | |
142 | | /* This structure describes the range of addends that are applied to page |
143 | | relocations against a given section. */ |
144 | | struct mips_got_page_entry |
145 | | { |
146 | | /* The section that these entries are based on. */ |
147 | | asection *sec; |
148 | | /* The ranges for this page entry. */ |
149 | | struct mips_got_page_range *ranges; |
150 | | /* The maximum number of page entries needed for RANGES. */ |
151 | | bfd_vma num_pages; |
152 | | }; |
153 | | |
154 | | /* This structure is used to hold .got information when linking. */ |
155 | | |
156 | | struct mips_got_info |
157 | | { |
158 | | /* The number of global .got entries. */ |
159 | | unsigned int global_gotno; |
160 | | /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ |
161 | | unsigned int reloc_only_gotno; |
162 | | /* The number of .got slots used for TLS. */ |
163 | | unsigned int tls_gotno; |
164 | | /* The first unused TLS .got entry. Used only during |
165 | | mips_elf_initialize_tls_index. */ |
166 | | unsigned int tls_assigned_gotno; |
167 | | /* The number of local .got entries, eventually including page entries. */ |
168 | | unsigned int local_gotno; |
169 | | /* The maximum number of page entries needed. */ |
170 | | unsigned int page_gotno; |
171 | | /* The number of relocations needed for the GOT entries. */ |
172 | | unsigned int relocs; |
173 | | /* The first unused local .got entry. */ |
174 | | unsigned int assigned_low_gotno; |
175 | | /* The last unused local .got entry. */ |
176 | | unsigned int assigned_high_gotno; |
177 | | /* A hash table holding members of the got. */ |
178 | | struct htab *got_entries; |
179 | | /* A hash table holding mips_got_page_ref structures. */ |
180 | | struct htab *got_page_refs; |
181 | | /* A hash table of mips_got_page_entry structures. */ |
182 | | struct htab *got_page_entries; |
183 | | /* In multi-got links, a pointer to the next got (err, rather, most |
184 | | of the time, it points to the previous got). */ |
185 | | struct mips_got_info *next; |
186 | | }; |
187 | | |
188 | | /* Structure passed when merging bfds' gots. */ |
189 | | |
190 | | struct mips_elf_got_per_bfd_arg |
191 | | { |
192 | | /* The output bfd. */ |
193 | | bfd *obfd; |
194 | | /* The link information. */ |
195 | | struct bfd_link_info *info; |
196 | | /* A pointer to the primary got, i.e., the one that's going to get |
197 | | the implicit relocations from DT_MIPS_LOCAL_GOTNO and |
198 | | DT_MIPS_GOTSYM. */ |
199 | | struct mips_got_info *primary; |
200 | | /* A non-primary got we're trying to merge with other input bfd's |
201 | | gots. */ |
202 | | struct mips_got_info *current; |
203 | | /* The maximum number of got entries that can be addressed with a |
204 | | 16-bit offset. */ |
205 | | unsigned int max_count; |
206 | | /* The maximum number of page entries needed by each got. */ |
207 | | unsigned int max_pages; |
208 | | /* The total number of global entries which will live in the |
209 | | primary got and be automatically relocated. This includes |
210 | | those not referenced by the primary GOT but included in |
211 | | the "master" GOT. */ |
212 | | unsigned int global_count; |
213 | | }; |
214 | | |
215 | | /* A structure used to pass information to htab_traverse callbacks |
216 | | when laying out the GOT. */ |
217 | | |
218 | | struct mips_elf_traverse_got_arg |
219 | | { |
220 | | struct bfd_link_info *info; |
221 | | struct mips_got_info *g; |
222 | | int value; |
223 | | }; |
224 | | |
225 | | struct _mips_elf_section_data |
226 | | { |
227 | | struct bfd_elf_section_data elf; |
228 | | union |
229 | | { |
230 | | bfd_byte *tdata; |
231 | | } u; |
232 | | }; |
233 | | |
234 | | #define mips_elf_section_data(sec) \ |
235 | 0 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
236 | | |
237 | | #define is_mips_elf(bfd) \ |
238 | 0 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
239 | 0 | && elf_tdata (bfd) != NULL \ |
240 | 0 | && elf_object_id (bfd) == MIPS_ELF_DATA) |
241 | | |
242 | | /* The ABI says that every symbol used by dynamic relocations must have |
243 | | a global GOT entry. Among other things, this provides the dynamic |
244 | | linker with a free, directly-indexed cache. The GOT can therefore |
245 | | contain symbols that are not referenced by GOT relocations themselves |
246 | | (in other words, it may have symbols that are not referenced by things |
247 | | like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). |
248 | | |
249 | | GOT relocations are less likely to overflow if we put the associated |
250 | | GOT entries towards the beginning. We therefore divide the global |
251 | | GOT entries into two areas: "normal" and "reloc-only". Entries in |
252 | | the first area can be used for both dynamic relocations and GP-relative |
253 | | accesses, while those in the "reloc-only" area are for dynamic |
254 | | relocations only. |
255 | | |
256 | | These GGA_* ("Global GOT Area") values are organised so that lower |
257 | | values are more general than higher values. Also, non-GGA_NONE |
258 | | values are ordered by the position of the area in the GOT. */ |
259 | 0 | #define GGA_NORMAL 0 |
260 | 0 | #define GGA_RELOC_ONLY 1 |
261 | 0 | #define GGA_NONE 2 |
262 | | |
263 | | /* Information about a non-PIC interface to a PIC function. There are |
264 | | two ways of creating these interfaces. The first is to add: |
265 | | |
266 | | lui $25,%hi(func) |
267 | | addiu $25,$25,%lo(func) |
268 | | |
269 | | immediately before a PIC function "func". The second is to add: |
270 | | |
271 | | lui $25,%hi(func) |
272 | | j func |
273 | | addiu $25,$25,%lo(func) |
274 | | |
275 | | to a separate trampoline section. |
276 | | |
277 | | Stubs of the first kind go in a new section immediately before the |
278 | | target function. Stubs of the second kind go in a single section |
279 | | pointed to by the hash table's "strampoline" field. */ |
280 | | struct mips_elf_la25_stub { |
281 | | /* The generated section that contains this stub. */ |
282 | | asection *stub_section; |
283 | | |
284 | | /* The offset of the stub from the start of STUB_SECTION. */ |
285 | | bfd_vma offset; |
286 | | |
287 | | /* One symbol for the original function. Its location is available |
288 | | in H->root.root.u.def. */ |
289 | | struct mips_elf_link_hash_entry *h; |
290 | | }; |
291 | | |
292 | | /* Macros for populating a mips_elf_la25_stub. */ |
293 | | |
294 | | #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ |
295 | | #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ |
296 | | #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */ |
297 | | #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ |
298 | | #define LA25_LUI_MICROMIPS(VAL) \ |
299 | 0 | (0x41b90000 | (VAL)) /* lui t9,VAL */ |
300 | | #define LA25_J_MICROMIPS(VAL) \ |
301 | 0 | (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ |
302 | | #define LA25_ADDIU_MICROMIPS(VAL) \ |
303 | 0 | (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ |
304 | | |
305 | | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
306 | | the dynamic symbols. */ |
307 | | |
308 | | struct mips_elf_hash_sort_data |
309 | | { |
310 | | /* The symbol in the global GOT with the lowest dynamic symbol table |
311 | | index. */ |
312 | | struct elf_link_hash_entry *low; |
313 | | /* The least dynamic symbol table index corresponding to a non-TLS |
314 | | symbol with a GOT entry. */ |
315 | | bfd_size_type min_got_dynindx; |
316 | | /* The greatest dynamic symbol table index corresponding to a symbol |
317 | | with a GOT entry that is not referenced (e.g., a dynamic symbol |
318 | | with dynamic relocations pointing to it from non-primary GOTs). */ |
319 | | bfd_size_type max_unref_got_dynindx; |
320 | | /* The greatest dynamic symbol table index corresponding to a local |
321 | | symbol. */ |
322 | | bfd_size_type max_local_dynindx; |
323 | | /* The greatest dynamic symbol table index corresponding to an external |
324 | | symbol without a GOT entry. */ |
325 | | bfd_size_type max_non_got_dynindx; |
326 | | /* If non-NULL, output BFD for .MIPS.xhash finalization. */ |
327 | | bfd *output_bfd; |
328 | | /* If non-NULL, pointer to contents of .MIPS.xhash for filling in |
329 | | real final dynindx. */ |
330 | | bfd_byte *mipsxhash; |
331 | | }; |
332 | | |
333 | | /* We make up to two PLT entries if needed, one for standard MIPS code |
334 | | and one for compressed code, either a MIPS16 or microMIPS one. We |
335 | | keep a separate record of traditional lazy-binding stubs, for easier |
336 | | processing. */ |
337 | | |
338 | | struct plt_entry |
339 | | { |
340 | | /* Traditional SVR4 stub offset, or -1 if none. */ |
341 | | bfd_vma stub_offset; |
342 | | |
343 | | /* Standard PLT entry offset, or -1 if none. */ |
344 | | bfd_vma mips_offset; |
345 | | |
346 | | /* Compressed PLT entry offset, or -1 if none. */ |
347 | | bfd_vma comp_offset; |
348 | | |
349 | | /* The corresponding .got.plt index, or -1 if none. */ |
350 | | bfd_vma gotplt_index; |
351 | | |
352 | | /* Whether we need a standard PLT entry. */ |
353 | | unsigned int need_mips : 1; |
354 | | |
355 | | /* Whether we need a compressed PLT entry. */ |
356 | | unsigned int need_comp : 1; |
357 | | }; |
358 | | |
359 | | /* The MIPS ELF linker needs additional information for each symbol in |
360 | | the global hash table. */ |
361 | | |
362 | | struct mips_elf_link_hash_entry |
363 | | { |
364 | | struct elf_link_hash_entry root; |
365 | | |
366 | | /* External symbol information. */ |
367 | | EXTR esym; |
368 | | |
369 | | /* The la25 stub we have created for ths symbol, if any. */ |
370 | | struct mips_elf_la25_stub *la25_stub; |
371 | | |
372 | | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
373 | | this symbol. */ |
374 | | unsigned int possibly_dynamic_relocs; |
375 | | |
376 | | /* If there is a stub that 32 bit functions should use to call this |
377 | | 16 bit function, this points to the section containing the stub. */ |
378 | | asection *fn_stub; |
379 | | |
380 | | /* If there is a stub that 16 bit functions should use to call this |
381 | | 32 bit function, this points to the section containing the stub. */ |
382 | | asection *call_stub; |
383 | | |
384 | | /* This is like the call_stub field, but it is used if the function |
385 | | being called returns a floating point value. */ |
386 | | asection *call_fp_stub; |
387 | | |
388 | | /* If non-zero, location in .MIPS.xhash to write real final dynindx. */ |
389 | | bfd_vma mipsxhash_loc; |
390 | | |
391 | | /* The highest GGA_* value that satisfies all references to this symbol. */ |
392 | | unsigned int global_got_area : 2; |
393 | | |
394 | | /* True if all GOT relocations against this symbol are for calls. This is |
395 | | a looser condition than no_fn_stub below, because there may be other |
396 | | non-call non-GOT relocations against the symbol. */ |
397 | | unsigned int got_only_for_calls : 1; |
398 | | |
399 | | /* True if one of the relocations described by possibly_dynamic_relocs |
400 | | is against a readonly section. */ |
401 | | unsigned int readonly_reloc : 1; |
402 | | |
403 | | /* True if there is a relocation against this symbol that must be |
404 | | resolved by the static linker (in other words, if the relocation |
405 | | cannot possibly be made dynamic). */ |
406 | | unsigned int has_static_relocs : 1; |
407 | | |
408 | | /* True if we must not create a .MIPS.stubs entry for this symbol. |
409 | | This is set, for example, if there are relocations related to |
410 | | taking the function's address, i.e. any but R_MIPS_CALL*16 ones. |
411 | | See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ |
412 | | unsigned int no_fn_stub : 1; |
413 | | |
414 | | /* Whether we need the fn_stub; this is true if this symbol appears |
415 | | in any relocs other than a 16 bit call. */ |
416 | | unsigned int need_fn_stub : 1; |
417 | | |
418 | | /* True if this symbol is referenced by branch relocations from |
419 | | any non-PIC input file. This is used to determine whether an |
420 | | la25 stub is required. */ |
421 | | unsigned int has_nonpic_branches : 1; |
422 | | |
423 | | /* Does this symbol need a traditional MIPS lazy-binding stub |
424 | | (as opposed to a PLT entry)? */ |
425 | | unsigned int needs_lazy_stub : 1; |
426 | | |
427 | | /* Does this symbol resolve to a PLT entry? */ |
428 | | unsigned int use_plt_entry : 1; |
429 | | }; |
430 | | |
431 | | /* MIPS ELF linker hash table. */ |
432 | | |
433 | | struct mips_elf_link_hash_table |
434 | | { |
435 | | struct elf_link_hash_table root; |
436 | | |
437 | | /* The number of .rtproc entries. */ |
438 | | bfd_size_type procedure_count; |
439 | | |
440 | | /* The size of the .compact_rel section (if SGI_COMPAT). */ |
441 | | bfd_size_type compact_rel_size; |
442 | | |
443 | | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry |
444 | | is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ |
445 | | bool use_rld_obj_head; |
446 | | |
447 | | /* The __rld_map or __rld_obj_head symbol. */ |
448 | | struct elf_link_hash_entry *rld_symbol; |
449 | | |
450 | | /* This is set if we see any mips16 stub sections. */ |
451 | | bool mips16_stubs_seen; |
452 | | |
453 | | /* True if we can generate copy relocs and PLTs. */ |
454 | | bool use_plts_and_copy_relocs; |
455 | | |
456 | | /* True if we can only use 32-bit microMIPS instructions. */ |
457 | | bool insn32; |
458 | | |
459 | | /* True if we suppress checks for invalid branches between ISA modes. */ |
460 | | bool ignore_branch_isa; |
461 | | |
462 | | /* True if we are targetting R6 compact branches. */ |
463 | | bool compact_branches; |
464 | | |
465 | | /* True if we already reported the small-data section overflow. */ |
466 | | bool small_data_overflow_reported; |
467 | | |
468 | | /* True if we use the special `__gnu_absolute_zero' symbol. */ |
469 | | bool use_absolute_zero; |
470 | | |
471 | | /* True if we have been configured for a GNU target. */ |
472 | | bool gnu_target; |
473 | | |
474 | | /* Shortcuts to some dynamic sections, or NULL if they are not |
475 | | being used. */ |
476 | | asection *srelplt2; |
477 | | asection *sstubs; |
478 | | |
479 | | /* The master GOT information. */ |
480 | | struct mips_got_info *got_info; |
481 | | |
482 | | /* The global symbol in the GOT with the lowest index in the dynamic |
483 | | symbol table. */ |
484 | | struct elf_link_hash_entry *global_gotsym; |
485 | | |
486 | | /* The size of the PLT header in bytes. */ |
487 | | bfd_vma plt_header_size; |
488 | | |
489 | | /* The size of a standard PLT entry in bytes. */ |
490 | | bfd_vma plt_mips_entry_size; |
491 | | |
492 | | /* The size of a compressed PLT entry in bytes. */ |
493 | | bfd_vma plt_comp_entry_size; |
494 | | |
495 | | /* The offset of the next standard PLT entry to create. */ |
496 | | bfd_vma plt_mips_offset; |
497 | | |
498 | | /* The offset of the next compressed PLT entry to create. */ |
499 | | bfd_vma plt_comp_offset; |
500 | | |
501 | | /* The index of the next .got.plt entry to create. */ |
502 | | bfd_vma plt_got_index; |
503 | | |
504 | | /* The number of functions that need a lazy-binding stub. */ |
505 | | bfd_vma lazy_stub_count; |
506 | | |
507 | | /* The size of a function stub entry in bytes. */ |
508 | | bfd_vma function_stub_size; |
509 | | |
510 | | /* The number of reserved entries at the beginning of the GOT. */ |
511 | | unsigned int reserved_gotno; |
512 | | |
513 | | /* The section used for mips_elf_la25_stub trampolines. |
514 | | See the comment above that structure for details. */ |
515 | | asection *strampoline; |
516 | | |
517 | | /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) |
518 | | pairs. */ |
519 | | htab_t la25_stubs; |
520 | | |
521 | | /* A function FN (NAME, IS, OS) that creates a new input section |
522 | | called NAME and links it to output section OS. If IS is nonnull, |
523 | | the new section should go immediately before it, otherwise it |
524 | | should go at the (current) beginning of OS. |
525 | | |
526 | | The function returns the new section on success, otherwise it |
527 | | returns null. */ |
528 | | asection *(*add_stub_section) (const char *, asection *, asection *); |
529 | | |
530 | | /* Is the PLT header compressed? */ |
531 | | unsigned int plt_header_is_comp : 1; |
532 | | }; |
533 | | |
534 | | /* Get the MIPS ELF linker hash table from a link_info structure. */ |
535 | | |
536 | | #define mips_elf_hash_table(p) \ |
537 | 0 | ((is_elf_hash_table ((p)->hash) \ |
538 | 0 | && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \ |
539 | 0 | ? (struct mips_elf_link_hash_table *) (p)->hash : NULL) |
540 | | |
541 | | /* A structure used to communicate with htab_traverse callbacks. */ |
542 | | struct mips_htab_traverse_info |
543 | | { |
544 | | /* The usual link-wide information. */ |
545 | | struct bfd_link_info *info; |
546 | | bfd *output_bfd; |
547 | | |
548 | | /* Starts off FALSE and is set to TRUE if the link should be aborted. */ |
549 | | bool error; |
550 | | }; |
551 | | |
552 | | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or |
553 | | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section |
554 | | that contains the relocation field and DATA points to the start of |
555 | | INPUT_SECTION. */ |
556 | | |
557 | | struct mips_hi16 |
558 | | { |
559 | | struct mips_hi16 *next; |
560 | | bfd_byte *data; |
561 | | asection *input_section; |
562 | | arelent rel; |
563 | | }; |
564 | | |
565 | | /* MIPS ELF private object data. */ |
566 | | |
567 | | struct mips_elf_obj_tdata |
568 | | { |
569 | | /* Generic ELF private object data. */ |
570 | | struct elf_obj_tdata root; |
571 | | |
572 | | /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ |
573 | | bfd *abi_fp_bfd; |
574 | | |
575 | | /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ |
576 | | bfd *abi_msa_bfd; |
577 | | |
578 | | /* The abiflags for this object. */ |
579 | | Elf_Internal_ABIFlags_v0 abiflags; |
580 | | bool abiflags_valid; |
581 | | |
582 | | /* The GOT requirements of input bfds. */ |
583 | | struct mips_got_info *got; |
584 | | |
585 | | /* Used by _bfd_mips_elf_find_nearest_line. The structure could be |
586 | | included directly in this one, but there's no point to wasting |
587 | | the memory just for the infrequently called find_nearest_line. */ |
588 | | struct mips_elf_find_line *find_line_info; |
589 | | |
590 | | /* An array of stub sections indexed by symbol number. */ |
591 | | asection **local_stubs; |
592 | | asection **local_call_stubs; |
593 | | |
594 | | /* The Irix 5 support uses two virtual sections, which represent |
595 | | text/data symbols defined in dynamic objects. */ |
596 | | asection *elf_data_section; |
597 | | asection *elf_text_section; |
598 | | |
599 | | struct mips_hi16 *mips_hi16_list; |
600 | | }; |
601 | | |
602 | | /* Get MIPS ELF private object data from BFD's tdata. */ |
603 | | |
604 | | #define mips_elf_tdata(bfd) \ |
605 | 1.96M | ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) |
606 | | |
607 | | #define TLS_RELOC_P(r_type) \ |
608 | 0 | (r_type == R_MIPS_TLS_DTPMOD32 \ |
609 | 0 | || r_type == R_MIPS_TLS_DTPMOD64 \ |
610 | 0 | || r_type == R_MIPS_TLS_DTPREL32 \ |
611 | 0 | || r_type == R_MIPS_TLS_DTPREL64 \ |
612 | 0 | || r_type == R_MIPS_TLS_GD \ |
613 | 0 | || r_type == R_MIPS_TLS_LDM \ |
614 | 0 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ |
615 | 0 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ |
616 | 0 | || r_type == R_MIPS_TLS_GOTTPREL \ |
617 | 0 | || r_type == R_MIPS_TLS_TPREL32 \ |
618 | 0 | || r_type == R_MIPS_TLS_TPREL64 \ |
619 | 0 | || r_type == R_MIPS_TLS_TPREL_HI16 \ |
620 | 0 | || r_type == R_MIPS_TLS_TPREL_LO16 \ |
621 | 0 | || r_type == R_MIPS16_TLS_GD \ |
622 | 0 | || r_type == R_MIPS16_TLS_LDM \ |
623 | 0 | || r_type == R_MIPS16_TLS_DTPREL_HI16 \ |
624 | 0 | || r_type == R_MIPS16_TLS_DTPREL_LO16 \ |
625 | 0 | || r_type == R_MIPS16_TLS_GOTTPREL \ |
626 | 0 | || r_type == R_MIPS16_TLS_TPREL_HI16 \ |
627 | 0 | || r_type == R_MIPS16_TLS_TPREL_LO16 \ |
628 | 0 | || r_type == R_MICROMIPS_TLS_GD \ |
629 | 0 | || r_type == R_MICROMIPS_TLS_LDM \ |
630 | 0 | || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ |
631 | 0 | || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ |
632 | 0 | || r_type == R_MICROMIPS_TLS_GOTTPREL \ |
633 | 0 | || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ |
634 | 0 | || r_type == R_MICROMIPS_TLS_TPREL_LO16) |
635 | | |
636 | | /* Structure used to pass information to mips_elf_output_extsym. */ |
637 | | |
638 | | struct extsym_info |
639 | | { |
640 | | bfd *abfd; |
641 | | struct bfd_link_info *info; |
642 | | struct ecoff_debug_info *debug; |
643 | | const struct ecoff_debug_swap *swap; |
644 | | bool failed; |
645 | | }; |
646 | | |
647 | | /* The names of the runtime procedure table symbols used on IRIX5. */ |
648 | | |
649 | | static const char * const mips_elf_dynsym_rtproc_names[] = |
650 | | { |
651 | | "_procedure_table", |
652 | | "_procedure_string_table", |
653 | | "_procedure_table_size", |
654 | | NULL |
655 | | }; |
656 | | |
657 | | /* These structures are used to generate the .compact_rel section on |
658 | | IRIX5. */ |
659 | | |
660 | | typedef struct |
661 | | { |
662 | | unsigned long id1; /* Always one? */ |
663 | | unsigned long num; /* Number of compact relocation entries. */ |
664 | | unsigned long id2; /* Always two? */ |
665 | | unsigned long offset; /* The file offset of the first relocation. */ |
666 | | unsigned long reserved0; /* Zero? */ |
667 | | unsigned long reserved1; /* Zero? */ |
668 | | } Elf32_compact_rel; |
669 | | |
670 | | typedef struct |
671 | | { |
672 | | bfd_byte id1[4]; |
673 | | bfd_byte num[4]; |
674 | | bfd_byte id2[4]; |
675 | | bfd_byte offset[4]; |
676 | | bfd_byte reserved0[4]; |
677 | | bfd_byte reserved1[4]; |
678 | | } Elf32_External_compact_rel; |
679 | | |
680 | | typedef struct |
681 | | { |
682 | | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
683 | | unsigned int rtype : 4; /* Relocation types. See below. */ |
684 | | unsigned int dist2to : 8; |
685 | | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
686 | | unsigned long konst; /* KONST field. See below. */ |
687 | | unsigned long vaddr; /* VADDR to be relocated. */ |
688 | | } Elf32_crinfo; |
689 | | |
690 | | typedef struct |
691 | | { |
692 | | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
693 | | unsigned int rtype : 4; /* Relocation types. See below. */ |
694 | | unsigned int dist2to : 8; |
695 | | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
696 | | unsigned long konst; /* KONST field. See below. */ |
697 | | } Elf32_crinfo2; |
698 | | |
699 | | typedef struct |
700 | | { |
701 | | bfd_byte info[4]; |
702 | | bfd_byte konst[4]; |
703 | | bfd_byte vaddr[4]; |
704 | | } Elf32_External_crinfo; |
705 | | |
706 | | typedef struct |
707 | | { |
708 | | bfd_byte info[4]; |
709 | | bfd_byte konst[4]; |
710 | | } Elf32_External_crinfo2; |
711 | | |
712 | | /* These are the constants used to swap the bitfields in a crinfo. */ |
713 | | |
714 | 0 | #define CRINFO_CTYPE (0x1U) |
715 | 0 | #define CRINFO_CTYPE_SH (31) |
716 | 0 | #define CRINFO_RTYPE (0xfU) |
717 | 0 | #define CRINFO_RTYPE_SH (27) |
718 | 0 | #define CRINFO_DIST2TO (0xffU) |
719 | 0 | #define CRINFO_DIST2TO_SH (19) |
720 | 0 | #define CRINFO_RELVADDR (0x7ffffU) |
721 | 0 | #define CRINFO_RELVADDR_SH (0) |
722 | | |
723 | | /* A compact relocation info has long (3 words) or short (2 words) |
724 | | formats. A short format doesn't have VADDR field and relvaddr |
725 | | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ |
726 | | #define CRF_MIPS_LONG 1 |
727 | | #define CRF_MIPS_SHORT 0 |
728 | | |
729 | | /* There are 4 types of compact relocation at least. The value KONST |
730 | | has different meaning for each type: |
731 | | |
732 | | (type) (konst) |
733 | | CT_MIPS_REL32 Address in data |
734 | | CT_MIPS_WORD Address in word (XXX) |
735 | | CT_MIPS_GPHI_LO GP - vaddr |
736 | | CT_MIPS_JMPAD Address to jump |
737 | | */ |
738 | | |
739 | | #define CRT_MIPS_REL32 0xa |
740 | | #define CRT_MIPS_WORD 0xb |
741 | | #define CRT_MIPS_GPHI_LO 0xc |
742 | | #define CRT_MIPS_JMPAD 0xd |
743 | | |
744 | 0 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) |
745 | 0 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) |
746 | 0 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) |
747 | 0 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) |
748 | | |
749 | | /* The structure of the runtime procedure descriptor created by the |
750 | | loader for use by the static exception system. */ |
751 | | |
752 | | typedef struct runtime_pdr { |
753 | | bfd_vma adr; /* Memory address of start of procedure. */ |
754 | | long regmask; /* Save register mask. */ |
755 | | long regoffset; /* Save register offset. */ |
756 | | long fregmask; /* Save floating point register mask. */ |
757 | | long fregoffset; /* Save floating point register offset. */ |
758 | | long frameoffset; /* Frame size. */ |
759 | | short framereg; /* Frame pointer register. */ |
760 | | short pcreg; /* Offset or reg of return pc. */ |
761 | | long irpss; /* Index into the runtime string table. */ |
762 | | long reserved; |
763 | | struct exception_info *exception_info;/* Pointer to exception array. */ |
764 | | } RPDR, *pRPDR; |
765 | | #define cbRPDR sizeof (RPDR) |
766 | | #define rpdNil ((pRPDR) 0) |
767 | | |
768 | | static struct mips_got_entry *mips_elf_create_local_got_entry |
769 | | (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, |
770 | | struct mips_elf_link_hash_entry *, int); |
771 | | static bool mips_elf_sort_hash_table_f |
772 | | (struct mips_elf_link_hash_entry *, void *); |
773 | | static bfd_vma mips_elf_high |
774 | | (bfd_vma); |
775 | | static bool mips_elf_create_dynamic_relocation |
776 | | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
777 | | struct mips_elf_link_hash_entry *, asection *, bfd_vma, |
778 | | bfd_vma *, asection *); |
779 | | static bfd_vma mips_elf_adjust_gp |
780 | | (bfd *, struct mips_got_info *, bfd *); |
781 | | |
782 | | /* This will be used when we sort the dynamic relocation records. */ |
783 | | static bfd *reldyn_sorting_bfd; |
784 | | |
785 | | /* True if ABFD is for CPUs with load interlocking that include |
786 | | non-MIPS1 CPUs and R3900. */ |
787 | | #define LOAD_INTERLOCKS_P(abfd) \ |
788 | 0 | ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != EF_MIPS_ARCH_1) \ |
789 | 0 | || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == EF_MIPS_MACH_3900)) |
790 | | |
791 | | /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. |
792 | | This should be safe for all architectures. We enable this predicate |
793 | | for RM9000 for now. */ |
794 | | #define JAL_TO_BAL_P(abfd) \ |
795 | 0 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == EF_MIPS_MACH_9000) |
796 | | |
797 | | /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. |
798 | | This should be safe for all architectures. We enable this predicate for |
799 | | all CPUs. */ |
800 | 0 | #define JALR_TO_BAL_P(abfd) 1 |
801 | | |
802 | | /* True if ABFD is for CPUs that are faster if JR is converted to B. |
803 | | This should be safe for all architectures. We enable this predicate for |
804 | | all CPUs. */ |
805 | 0 | #define JR_TO_B_P(abfd) 1 |
806 | | |
807 | | /* True if ABFD is a PIC object. */ |
808 | | #define PIC_OBJECT_P(abfd) \ |
809 | 0 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) |
810 | | |
811 | | /* Nonzero if ABFD is using the O32 ABI. */ |
812 | | #define ABI_O32_P(abfd) \ |
813 | | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_O32) |
814 | | |
815 | | /* Nonzero if ABFD is using the N32 ABI. */ |
816 | | #define ABI_N32_P(abfd) \ |
817 | 4.46k | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) |
818 | | |
819 | | /* Nonzero if ABFD is using the N64 ABI. */ |
820 | | #define ABI_64_P(abfd) \ |
821 | 3.64k | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
822 | | |
823 | | /* Nonzero if ABFD is using NewABI conventions. */ |
824 | 2.13k | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) |
825 | | |
826 | | /* Nonzero if ABFD has microMIPS code. */ |
827 | | #define MICROMIPS_P(abfd) \ |
828 | 70 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) |
829 | | |
830 | | /* Nonzero if ABFD is MIPS R6. */ |
831 | | #define MIPSR6_P(abfd) \ |
832 | 0 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R6 \ |
833 | 0 | || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64R6) |
834 | | |
835 | | /* The IRIX compatibility level we are striving for. */ |
836 | | #define IRIX_COMPAT(abfd) \ |
837 | 6 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) |
838 | | |
839 | | /* Whether we are trying to be compatible with IRIX at all. */ |
840 | | #define SGI_COMPAT(abfd) \ |
841 | 6 | (IRIX_COMPAT (abfd) != ict_none) |
842 | | |
843 | | /* The name of the options section. */ |
844 | | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ |
845 | 2.13k | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
846 | | |
847 | | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
848 | | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ |
849 | | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ |
850 | 9.94k | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) |
851 | | |
852 | | /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ |
853 | | #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ |
854 | 489 | (strcmp (NAME, ".MIPS.abiflags") == 0) |
855 | | |
856 | | /* Whether the section is readonly. */ |
857 | | #define MIPS_ELF_READONLY_SECTION(sec) \ |
858 | 0 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ |
859 | 0 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
860 | | |
861 | | /* The name of the stub section. */ |
862 | 0 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
863 | | |
864 | | /* The size of an external REL relocation. */ |
865 | | #define MIPS_ELF_REL_SIZE(abfd) \ |
866 | 0 | (get_elf_backend_data (abfd)->s->sizeof_rel) |
867 | | |
868 | | /* The size of an external RELA relocation. */ |
869 | | #define MIPS_ELF_RELA_SIZE(abfd) \ |
870 | 0 | (get_elf_backend_data (abfd)->s->sizeof_rela) |
871 | | |
872 | | /* The size of an external dynamic table entry. */ |
873 | | #define MIPS_ELF_DYN_SIZE(abfd) \ |
874 | 0 | (get_elf_backend_data (abfd)->s->sizeof_dyn) |
875 | | |
876 | | /* The size of a GOT entry. */ |
877 | | #define MIPS_ELF_GOT_SIZE(abfd) \ |
878 | 0 | (get_elf_backend_data (abfd)->s->arch_size / 8) |
879 | | |
880 | | /* The size of the .rld_map section. */ |
881 | | #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ |
882 | 0 | (get_elf_backend_data (abfd)->s->arch_size / 8) |
883 | | |
884 | | /* The size of a symbol-table entry. */ |
885 | | #define MIPS_ELF_SYM_SIZE(abfd) \ |
886 | 0 | (get_elf_backend_data (abfd)->s->sizeof_sym) |
887 | | |
888 | | /* The default alignment for sections, as a power of two. */ |
889 | | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ |
890 | 0 | (get_elf_backend_data (abfd)->s->log_file_align) |
891 | | |
892 | | /* Get word-sized data. */ |
893 | | #define MIPS_ELF_GET_WORD(abfd, ptr) \ |
894 | | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) |
895 | | |
896 | | /* Put out word-sized data. */ |
897 | | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ |
898 | 0 | (ABI_64_P (abfd) \ |
899 | 0 | ? bfd_put_64 (abfd, val, ptr) \ |
900 | 0 | : bfd_put_32 (abfd, val, ptr)) |
901 | | |
902 | | /* The opcode for word-sized loads (LW or LD). */ |
903 | | #define MIPS_ELF_LOAD_WORD(abfd) \ |
904 | 0 | (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) |
905 | | |
906 | | /* Add a dynamic symbol table-entry. */ |
907 | | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
908 | 0 | _bfd_elf_add_dynamic_entry (info, tag, val) |
909 | | |
910 | | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ |
911 | 13 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela)) |
912 | | |
913 | | /* The name of the dynamic relocation section. */ |
914 | | #define MIPS_ELF_REL_DYN_NAME(INFO) \ |
915 | 0 | (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ |
916 | 0 | ? ".rela.dyn" : ".rel.dyn") |
917 | | |
918 | | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
919 | | from smaller values. Start with zero, widen, *then* decrement. */ |
920 | 0 | #define MINUS_ONE (((bfd_vma)0) - 1) |
921 | 0 | #define MINUS_TWO (((bfd_vma)0) - 2) |
922 | | |
923 | | /* The value to write into got[1] for SVR4 targets, to identify it is |
924 | | a GNU object. The dynamic linker can then use got[1] to store the |
925 | | module pointer. */ |
926 | | #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ |
927 | | ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) |
928 | | |
929 | | /* The offset of $gp from the beginning of the .got section. */ |
930 | | #define ELF_MIPS_GP_OFFSET(INFO) \ |
931 | 0 | (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ |
932 | 0 | ? 0x0 : 0x7ff0) |
933 | | |
934 | | /* The maximum size of the GOT for it to be addressable using 16-bit |
935 | | offsets from $gp. */ |
936 | 0 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
937 | | |
938 | | /* Instructions which appear in a stub. */ |
939 | | #define STUB_LW(abfd) \ |
940 | | ((ABI_64_P (abfd) \ |
941 | | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ |
942 | | : 0x8f998010)) /* lw t9,0x8010(gp) */ |
943 | | #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ |
944 | | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ |
945 | | #define STUB_JALR 0x0320f809 /* jalr ra,t9 */ |
946 | | #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */ |
947 | | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
948 | | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ |
949 | | #define STUB_LI16S(abfd, VAL) \ |
950 | | ((ABI_64_P (abfd) \ |
951 | | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ |
952 | | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ |
953 | | |
954 | | /* Likewise for the microMIPS ASE. */ |
955 | | #define STUB_LW_MICROMIPS(abfd) \ |
956 | 0 | (ABI_64_P (abfd) \ |
957 | 0 | ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ |
958 | 0 | : 0xff3c8010) /* lw t9,0x8010(gp) */ |
959 | | #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ |
960 | 0 | #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ |
961 | | #define STUB_LUI_MICROMIPS(VAL) \ |
962 | 0 | (0x41b80000 + (VAL)) /* lui t8,VAL */ |
963 | | #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ |
964 | 0 | #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ |
965 | | #define STUB_ORI_MICROMIPS(VAL) \ |
966 | 0 | (0x53180000 + (VAL)) /* ori t8,t8,VAL */ |
967 | | #define STUB_LI16U_MICROMIPS(VAL) \ |
968 | 0 | (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ |
969 | | #define STUB_LI16S_MICROMIPS(abfd, VAL) \ |
970 | 0 | (ABI_64_P (abfd) \ |
971 | 0 | ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ |
972 | 0 | : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ |
973 | | |
974 | 0 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
975 | 0 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 |
976 | 0 | #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 |
977 | 0 | #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 |
978 | 0 | #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 |
979 | 0 | #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 |
980 | | |
981 | | /* The name of the dynamic interpreter. This is put in the .interp |
982 | | section. */ |
983 | | |
984 | | #define ELF_DYNAMIC_INTERPRETER(abfd) \ |
985 | 0 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ |
986 | 0 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ |
987 | 0 | : "/usr/lib/libc.so.1") |
988 | | |
989 | | #ifdef BFD64 |
990 | | #define MNAME(bfd,pre,pos) \ |
991 | | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) |
992 | | #define ELF_R_SYM(bfd, i) \ |
993 | 0 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) |
994 | | #define ELF_R_TYPE(bfd, i) \ |
995 | 0 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) |
996 | | #define ELF_R_INFO(bfd, s, t) \ |
997 | 0 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) |
998 | | #else |
999 | | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
1000 | | #define ELF_R_SYM(bfd, i) \ |
1001 | | (ELF32_R_SYM (i)) |
1002 | | #define ELF_R_TYPE(bfd, i) \ |
1003 | | (ELF32_R_TYPE (i)) |
1004 | | #define ELF_R_INFO(bfd, s, t) \ |
1005 | | (ELF32_R_INFO (s, t)) |
1006 | | #endif |
1007 | | |
1008 | | /* The mips16 compiler uses a couple of special sections to handle |
1009 | | floating point arguments. |
1010 | | |
1011 | | Section names that look like .mips16.fn.FNNAME contain stubs that |
1012 | | copy floating point arguments from the fp regs to the gp regs and |
1013 | | then jump to FNNAME. If any 32 bit function calls FNNAME, the |
1014 | | call should be redirected to the stub instead. If no 32 bit |
1015 | | function calls FNNAME, the stub should be discarded. We need to |
1016 | | consider any reference to the function, not just a call, because |
1017 | | if the address of the function is taken we will need the stub, |
1018 | | since the address might be passed to a 32 bit function. |
1019 | | |
1020 | | Section names that look like .mips16.call.FNNAME contain stubs |
1021 | | that copy floating point arguments from the gp regs to the fp |
1022 | | regs and then jump to FNNAME. If FNNAME is a 32 bit function, |
1023 | | then any 16 bit function that calls FNNAME should be redirected |
1024 | | to the stub instead. If FNNAME is not a 32 bit function, the |
1025 | | stub should be discarded. |
1026 | | |
1027 | | .mips16.call.fp.FNNAME sections are similar, but contain stubs |
1028 | | which call FNNAME and then copy the return value from the fp regs |
1029 | | to the gp regs. These stubs store the return value in $18 while |
1030 | | calling FNNAME; any function which might call one of these stubs |
1031 | | must arrange to save $18 around the call. (This case is not |
1032 | | needed for 32 bit functions that call 16 bit functions, because |
1033 | | 16 bit functions always return floating point values in both |
1034 | | $f0/$f1 and $2/$3.) |
1035 | | |
1036 | | Note that in all cases FNNAME might be defined statically. |
1037 | | Therefore, FNNAME is not used literally. Instead, the relocation |
1038 | | information will indicate which symbol the section is for. |
1039 | | |
1040 | | We record any stubs that we find in the symbol table. */ |
1041 | | |
1042 | 0 | #define FN_STUB ".mips16.fn." |
1043 | 0 | #define CALL_STUB ".mips16.call." |
1044 | 0 | #define CALL_FP_STUB ".mips16.call.fp." |
1045 | | |
1046 | 0 | #define FN_STUB_P(name) startswith (name, FN_STUB) |
1047 | 0 | #define CALL_STUB_P(name) startswith (name, CALL_STUB) |
1048 | 0 | #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB) |
1049 | | |
1050 | | /* The format of the first PLT entry in an O32 executable. */ |
1051 | | static const bfd_vma mips_o32_exec_plt0_entry[] = |
1052 | | { |
1053 | | 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
1054 | | 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ |
1055 | | 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ |
1056 | | 0x031cc023, /* subu $24, $24, $28 */ |
1057 | | 0x03e07825, /* or t7, ra, zero */ |
1058 | | 0x0018c082, /* srl $24, $24, 2 */ |
1059 | | 0x0320f809, /* jalr $25 */ |
1060 | | 0x2718fffe /* subu $24, $24, 2 */ |
1061 | | }; |
1062 | | |
1063 | | /* The format of the first PLT entry in an O32 executable using compact |
1064 | | jumps. */ |
1065 | | static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] = |
1066 | | { |
1067 | | 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
1068 | | 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ |
1069 | | 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ |
1070 | | 0x031cc023, /* subu $24, $24, $28 */ |
1071 | | 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
1072 | | 0x0018c082, /* srl $24, $24, 2 */ |
1073 | | 0x2718fffe, /* subu $24, $24, 2 */ |
1074 | | 0xf8190000 /* jalrc $25 */ |
1075 | | }; |
1076 | | |
1077 | | /* The format of the first PLT entry in an N32 executable. Different |
1078 | | because gp ($28) is not available; we use t2 ($14) instead. */ |
1079 | | static const bfd_vma mips_n32_exec_plt0_entry[] = |
1080 | | { |
1081 | | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1082 | | 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ |
1083 | | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
1084 | | 0x030ec023, /* subu $24, $24, $14 */ |
1085 | | 0x03e07825, /* or t7, ra, zero */ |
1086 | | 0x0018c082, /* srl $24, $24, 2 */ |
1087 | | 0x0320f809, /* jalr $25 */ |
1088 | | 0x2718fffe /* subu $24, $24, 2 */ |
1089 | | }; |
1090 | | |
1091 | | /* The format of the first PLT entry in an N32 executable using compact |
1092 | | jumps. Different because gp ($28) is not available; we use t2 ($14) |
1093 | | instead. */ |
1094 | | static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] = |
1095 | | { |
1096 | | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1097 | | 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ |
1098 | | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
1099 | | 0x030ec023, /* subu $24, $24, $14 */ |
1100 | | 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
1101 | | 0x0018c082, /* srl $24, $24, 2 */ |
1102 | | 0x2718fffe, /* subu $24, $24, 2 */ |
1103 | | 0xf8190000 /* jalrc $25 */ |
1104 | | }; |
1105 | | |
1106 | | /* The format of the first PLT entry in an N64 executable. Different |
1107 | | from N32 because of the increased size of GOT entries. */ |
1108 | | static const bfd_vma mips_n64_exec_plt0_entry[] = |
1109 | | { |
1110 | | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1111 | | 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ |
1112 | | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
1113 | | 0x030ec023, /* subu $24, $24, $14 */ |
1114 | | 0x03e07825, /* or t7, ra, zero */ |
1115 | | 0x0018c0c2, /* srl $24, $24, 3 */ |
1116 | | 0x0320f809, /* jalr $25 */ |
1117 | | 0x2718fffe /* subu $24, $24, 2 */ |
1118 | | }; |
1119 | | |
1120 | | /* The format of the first PLT entry in an N64 executable using compact |
1121 | | jumps. Different from N32 because of the increased size of GOT |
1122 | | entries. */ |
1123 | | static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] = |
1124 | | { |
1125 | | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1126 | | 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ |
1127 | | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
1128 | | 0x030ec023, /* subu $24, $24, $14 */ |
1129 | | 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ |
1130 | | 0x0018c0c2, /* srl $24, $24, 3 */ |
1131 | | 0x2718fffe, /* subu $24, $24, 2 */ |
1132 | | 0xf8190000 /* jalrc $25 */ |
1133 | | }; |
1134 | | |
1135 | | |
1136 | | /* The format of the microMIPS first PLT entry in an O32 executable. |
1137 | | We rely on v0 ($2) rather than t8 ($24) to contain the address |
1138 | | of the GOTPLT entry handled, so this stub may only be used when |
1139 | | all the subsequent PLT entries are microMIPS code too. |
1140 | | |
1141 | | The trailing NOP is for alignment and correct disassembly only. */ |
1142 | | static const bfd_vma micromips_o32_exec_plt0_entry[] = |
1143 | | { |
1144 | | 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ |
1145 | | 0xff23, 0x0000, /* lw $25, 0($3) */ |
1146 | | 0x0535, /* subu $2, $2, $3 */ |
1147 | | 0x2525, /* srl $2, $2, 2 */ |
1148 | | 0x3302, 0xfffe, /* subu $24, $2, 2 */ |
1149 | | 0x0dff, /* move $15, $31 */ |
1150 | | 0x45f9, /* jalrs $25 */ |
1151 | | 0x0f83, /* move $28, $3 */ |
1152 | | 0x0c00 /* nop */ |
1153 | | }; |
1154 | | |
1155 | | /* The format of the microMIPS first PLT entry in an O32 executable |
1156 | | in the insn32 mode. */ |
1157 | | static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = |
1158 | | { |
1159 | | 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ |
1160 | | 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ |
1161 | | 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ |
1162 | | 0x0398, 0xc1d0, /* subu $24, $24, $28 */ |
1163 | | 0x001f, 0x7a90, /* or $15, $31, zero */ |
1164 | | 0x0318, 0x1040, /* srl $24, $24, 2 */ |
1165 | | 0x03f9, 0x0f3c, /* jalr $25 */ |
1166 | | 0x3318, 0xfffe /* subu $24, $24, 2 */ |
1167 | | }; |
1168 | | |
1169 | | /* The format of subsequent standard PLT entries. */ |
1170 | | static const bfd_vma mips_exec_plt_entry[] = |
1171 | | { |
1172 | | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
1173 | | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ |
1174 | | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ |
1175 | | 0x03200008 /* jr $25 */ |
1176 | | }; |
1177 | | |
1178 | | static const bfd_vma mipsr6_exec_plt_entry[] = |
1179 | | { |
1180 | | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
1181 | | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ |
1182 | | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ |
1183 | | 0x03200009 /* jr $25 */ |
1184 | | }; |
1185 | | |
1186 | | static const bfd_vma mipsr6_exec_plt_entry_compact[] = |
1187 | | { |
1188 | | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
1189 | | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ |
1190 | | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ |
1191 | | 0xd8190000 /* jic $25, 0 */ |
1192 | | }; |
1193 | | |
1194 | | /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) |
1195 | | and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not |
1196 | | directly addressable. */ |
1197 | | static const bfd_vma mips16_o32_exec_plt_entry[] = |
1198 | | { |
1199 | | 0xb203, /* lw $2, 12($pc) */ |
1200 | | 0x9a60, /* lw $3, 0($2) */ |
1201 | | 0x651a, /* move $24, $2 */ |
1202 | | 0xeb00, /* jr $3 */ |
1203 | | 0x653b, /* move $25, $3 */ |
1204 | | 0x6500, /* nop */ |
1205 | | 0x0000, 0x0000 /* .word (.got.plt entry) */ |
1206 | | }; |
1207 | | |
1208 | | /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) |
1209 | | as a temporary because t8 ($24) is not addressable with ADDIUPC. */ |
1210 | | static const bfd_vma micromips_o32_exec_plt_entry[] = |
1211 | | { |
1212 | | 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ |
1213 | | 0xff22, 0x0000, /* lw $25, 0($2) */ |
1214 | | 0x4599, /* jr $25 */ |
1215 | | 0x0f02 /* move $24, $2 */ |
1216 | | }; |
1217 | | |
1218 | | /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ |
1219 | | static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = |
1220 | | { |
1221 | | 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ |
1222 | | 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ |
1223 | | 0x0019, 0x0f3c, /* jr $25 */ |
1224 | | 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ |
1225 | | }; |
1226 | | |
1227 | | /* The format of the first PLT entry in a VxWorks executable. */ |
1228 | | static const bfd_vma mips_vxworks_exec_plt0_entry[] = |
1229 | | { |
1230 | | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ |
1231 | | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ |
1232 | | 0x8f390008, /* lw t9, 8(t9) */ |
1233 | | 0x00000000, /* nop */ |
1234 | | 0x03200008, /* jr t9 */ |
1235 | | 0x00000000 /* nop */ |
1236 | | }; |
1237 | | |
1238 | | /* The format of subsequent PLT entries. */ |
1239 | | static const bfd_vma mips_vxworks_exec_plt_entry[] = |
1240 | | { |
1241 | | 0x10000000, /* b .PLT_resolver */ |
1242 | | 0x24180000, /* li t8, <pltindex> */ |
1243 | | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ |
1244 | | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ |
1245 | | 0x8f390000, /* lw t9, 0(t9) */ |
1246 | | 0x00000000, /* nop */ |
1247 | | 0x03200008, /* jr t9 */ |
1248 | | 0x00000000 /* nop */ |
1249 | | }; |
1250 | | |
1251 | | /* The format of the first PLT entry in a VxWorks shared object. */ |
1252 | | static const bfd_vma mips_vxworks_shared_plt0_entry[] = |
1253 | | { |
1254 | | 0x8f990008, /* lw t9, 8(gp) */ |
1255 | | 0x00000000, /* nop */ |
1256 | | 0x03200008, /* jr t9 */ |
1257 | | 0x00000000, /* nop */ |
1258 | | 0x00000000, /* nop */ |
1259 | | 0x00000000 /* nop */ |
1260 | | }; |
1261 | | |
1262 | | /* The format of subsequent PLT entries. */ |
1263 | | static const bfd_vma mips_vxworks_shared_plt_entry[] = |
1264 | | { |
1265 | | 0x10000000, /* b .PLT_resolver */ |
1266 | | 0x24180000 /* li t8, <pltindex> */ |
1267 | | }; |
1268 | | |
1269 | | /* microMIPS 32-bit opcode helper installer. */ |
1270 | | |
1271 | | static void |
1272 | | bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) |
1273 | 0 | { |
1274 | 0 | bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); |
1275 | 0 | bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); |
1276 | 0 | } |
1277 | | |
1278 | | /* microMIPS 32-bit opcode helper retriever. */ |
1279 | | |
1280 | | static bfd_vma |
1281 | | bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) |
1282 | 0 | { |
1283 | 0 | return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); |
1284 | 0 | } |
1285 | | |
1286 | | /* Look up an entry in a MIPS ELF linker hash table. */ |
1287 | | |
1288 | | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ |
1289 | 0 | ((struct mips_elf_link_hash_entry *) \ |
1290 | 0 | elf_link_hash_lookup (&(table)->root, (string), (create), \ |
1291 | 0 | (copy), (follow))) |
1292 | | |
1293 | | /* Traverse a MIPS ELF linker hash table. */ |
1294 | | |
1295 | | #define mips_elf_link_hash_traverse(table, func, info) \ |
1296 | 0 | (elf_link_hash_traverse \ |
1297 | 0 | (&(table)->root, \ |
1298 | 0 | (bool (*) (struct elf_link_hash_entry *, void *)) (func), \ |
1299 | 0 | (info))) |
1300 | | |
1301 | | /* Find the base offsets for thread-local storage in this object, |
1302 | | for GD/LD and IE/LE respectively. */ |
1303 | | |
1304 | 0 | #define TP_OFFSET 0x7000 |
1305 | 0 | #define DTP_OFFSET 0x8000 |
1306 | | |
1307 | | static bfd_vma |
1308 | | dtprel_base (struct bfd_link_info *info) |
1309 | 0 | { |
1310 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
1311 | 0 | if (elf_hash_table (info)->tls_sec == NULL) |
1312 | 0 | return 0; |
1313 | 0 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; |
1314 | 0 | } |
1315 | | |
1316 | | static bfd_vma |
1317 | | tprel_base (struct bfd_link_info *info) |
1318 | 0 | { |
1319 | | /* If tls_sec is NULL, we should have signalled an error already. */ |
1320 | 0 | if (elf_hash_table (info)->tls_sec == NULL) |
1321 | 0 | return 0; |
1322 | 0 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; |
1323 | 0 | } |
1324 | | |
1325 | | /* Create an entry in a MIPS ELF linker hash table. */ |
1326 | | |
1327 | | static struct bfd_hash_entry * |
1328 | | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
1329 | | struct bfd_hash_table *table, const char *string) |
1330 | 0 | { |
1331 | 0 | struct mips_elf_link_hash_entry *ret = |
1332 | 0 | (struct mips_elf_link_hash_entry *) entry; |
1333 | | |
1334 | | /* Allocate the structure if it has not already been allocated by a |
1335 | | subclass. */ |
1336 | 0 | if (ret == NULL) |
1337 | 0 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); |
1338 | 0 | if (ret == NULL) |
1339 | 0 | return (struct bfd_hash_entry *) ret; |
1340 | | |
1341 | | /* Call the allocation method of the superclass. */ |
1342 | 0 | ret = ((struct mips_elf_link_hash_entry *) |
1343 | 0 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
1344 | 0 | table, string)); |
1345 | 0 | if (ret != NULL) |
1346 | 0 | { |
1347 | | /* Set local fields. */ |
1348 | 0 | memset (&ret->esym, 0, sizeof (EXTR)); |
1349 | | /* We use -2 as a marker to indicate that the information has |
1350 | | not been set. -1 means there is no associated ifd. */ |
1351 | 0 | ret->esym.ifd = -2; |
1352 | 0 | ret->la25_stub = 0; |
1353 | 0 | ret->possibly_dynamic_relocs = 0; |
1354 | 0 | ret->fn_stub = NULL; |
1355 | 0 | ret->call_stub = NULL; |
1356 | 0 | ret->call_fp_stub = NULL; |
1357 | 0 | ret->mipsxhash_loc = 0; |
1358 | 0 | ret->global_got_area = GGA_NONE; |
1359 | 0 | ret->got_only_for_calls = true; |
1360 | 0 | ret->readonly_reloc = false; |
1361 | 0 | ret->has_static_relocs = false; |
1362 | 0 | ret->no_fn_stub = false; |
1363 | 0 | ret->need_fn_stub = false; |
1364 | 0 | ret->has_nonpic_branches = false; |
1365 | 0 | ret->needs_lazy_stub = false; |
1366 | 0 | ret->use_plt_entry = false; |
1367 | 0 | } |
1368 | |
|
1369 | 0 | return (struct bfd_hash_entry *) ret; |
1370 | 0 | } |
1371 | | |
1372 | | /* Allocate MIPS ELF private object data. */ |
1373 | | |
1374 | | bool |
1375 | | _bfd_mips_elf_mkobject (bfd *abfd) |
1376 | 3.06M | { |
1377 | 3.06M | return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata)); |
1378 | 3.06M | } |
1379 | | |
1380 | | /* MIPS ELF uses a special find_nearest_line routine in order the |
1381 | | handle the ECOFF debugging information. */ |
1382 | | |
1383 | | struct mips_elf_find_line |
1384 | | { |
1385 | | struct ecoff_debug_info d; |
1386 | | struct ecoff_find_line i; |
1387 | | }; |
1388 | | |
1389 | | bool |
1390 | | _bfd_mips_elf_free_cached_info (bfd *abfd) |
1391 | 117k | { |
1392 | 117k | struct mips_elf_obj_tdata *tdata; |
1393 | | |
1394 | 117k | if ((bfd_get_format (abfd) == bfd_object |
1395 | 117k | || bfd_get_format (abfd) == bfd_core) |
1396 | 117k | && (tdata = mips_elf_tdata (abfd)) != NULL) |
1397 | 47.3k | { |
1398 | 47.3k | BFD_ASSERT (tdata->root.object_id == MIPS_ELF_DATA); |
1399 | 47.3k | while (tdata->mips_hi16_list != NULL) |
1400 | 8 | { |
1401 | 8 | struct mips_hi16 *hi = tdata->mips_hi16_list; |
1402 | 8 | tdata->mips_hi16_list = hi->next; |
1403 | 8 | free (hi); |
1404 | 8 | } |
1405 | 47.3k | if (tdata->find_line_info != NULL) |
1406 | 337 | _bfd_ecoff_free_ecoff_debug_info (&tdata->find_line_info->d); |
1407 | 47.3k | } |
1408 | 117k | return _bfd_elf_free_cached_info (abfd); |
1409 | 117k | } |
1410 | | |
1411 | | bool |
1412 | | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
1413 | 1.12M | { |
1414 | 1.12M | struct _mips_elf_section_data *sdata; |
1415 | | |
1416 | 1.12M | sdata = bfd_zalloc (abfd, sizeof (*sdata)); |
1417 | 1.12M | if (sdata == NULL) |
1418 | 0 | return false; |
1419 | 1.12M | sec->used_by_bfd = sdata; |
1420 | | |
1421 | 1.12M | return _bfd_elf_new_section_hook (abfd, sec); |
1422 | 1.12M | } |
1423 | | |
1424 | | /* Read ECOFF debugging information from a .mdebug section into a |
1425 | | ecoff_debug_info structure. */ |
1426 | | |
1427 | | bool |
1428 | | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
1429 | | struct ecoff_debug_info *debug) |
1430 | 3.90k | { |
1431 | 3.90k | HDRR *symhdr; |
1432 | 3.90k | const struct ecoff_debug_swap *swap; |
1433 | 3.90k | char *ext_hdr; |
1434 | | |
1435 | 3.90k | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1436 | 3.90k | memset (debug, 0, sizeof (*debug)); |
1437 | | |
1438 | 3.90k | ext_hdr = bfd_malloc (swap->external_hdr_size); |
1439 | 3.90k | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
1440 | 0 | goto error_return; |
1441 | | |
1442 | 3.90k | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
1443 | 3.90k | swap->external_hdr_size)) |
1444 | 278 | goto error_return; |
1445 | | |
1446 | 3.62k | symhdr = &debug->symbolic_header; |
1447 | 3.62k | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); |
1448 | 3.62k | free (ext_hdr); |
1449 | 3.62k | ext_hdr = NULL; |
1450 | | |
1451 | | /* The symbolic header contains absolute file offsets and sizes to |
1452 | | read. */ |
1453 | 3.62k | #define READ(ptr, offset, count, size) \ |
1454 | 19.6k | do \ |
1455 | 19.6k | { \ |
1456 | 19.6k | size_t amt; \ |
1457 | 19.6k | debug->ptr = NULL; \ |
1458 | 19.6k | if (symhdr->count == 0) \ |
1459 | 19.6k | break; \ |
1460 | 19.6k | if (_bfd_mul_overflow (size, symhdr->count, &amt)) \ |
1461 | 7.82k | { \ |
1462 | 0 | bfd_set_error (bfd_error_file_too_big); \ |
1463 | 0 | goto error_return; \ |
1464 | 0 | } \ |
1465 | 7.82k | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \ |
1466 | 7.82k | goto error_return; \ |
1467 | 7.82k | debug->ptr = _bfd_malloc_and_read (abfd, amt + 1, amt); \ |
1468 | 6.53k | if (debug->ptr == NULL) \ |
1469 | 6.53k | goto error_return; \ |
1470 | 6.53k | ((char *) debug->ptr)[amt] = 0; \ |
1471 | 4.53k | } while (0) |
1472 | | |
1473 | 3.62k | READ (line, cbLineOffset, cbLine, sizeof (unsigned char)); |
1474 | 2.63k | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size); |
1475 | 2.36k | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size); |
1476 | 2.12k | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size); |
1477 | 1.94k | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size); |
1478 | 1.72k | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext)); |
1479 | 1.48k | READ (ss, cbSsOffset, issMax, sizeof (char)); |
1480 | 1.29k | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char)); |
1481 | 1.05k | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size); |
1482 | 819 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size); |
1483 | 572 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size); |
1484 | 337 | #undef READ |
1485 | | |
1486 | 337 | return true; |
1487 | | |
1488 | 3.56k | error_return: |
1489 | 3.56k | free (ext_hdr); |
1490 | 3.56k | _bfd_ecoff_free_ecoff_debug_info (debug); |
1491 | 3.56k | return false; |
1492 | 572 | } |
1493 | | |
1494 | | /* Swap RPDR (runtime procedure table entry) for output. */ |
1495 | | |
1496 | | static void |
1497 | | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
1498 | 0 | { |
1499 | 0 | H_PUT_S32 (abfd, in->adr, ex->p_adr); |
1500 | 0 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); |
1501 | 0 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); |
1502 | 0 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); |
1503 | 0 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); |
1504 | 0 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); |
1505 | |
|
1506 | 0 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); |
1507 | 0 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); |
1508 | |
|
1509 | 0 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); |
1510 | 0 | } |
1511 | | |
1512 | | /* Create a runtime procedure table from the .mdebug section. */ |
1513 | | |
1514 | | static bool |
1515 | | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
1516 | | struct bfd_link_info *info, asection *s, |
1517 | | struct ecoff_debug_info *debug) |
1518 | 0 | { |
1519 | 0 | const struct ecoff_debug_swap *swap; |
1520 | 0 | HDRR *hdr = &debug->symbolic_header; |
1521 | 0 | RPDR *rpdr, *rp; |
1522 | 0 | struct rpdr_ext *erp; |
1523 | 0 | void *rtproc; |
1524 | 0 | struct pdr_ext *epdr; |
1525 | 0 | struct sym_ext *esym; |
1526 | 0 | char *ss, **sv; |
1527 | 0 | char *str; |
1528 | 0 | bfd_size_type size; |
1529 | 0 | bfd_size_type count; |
1530 | 0 | unsigned long sindex; |
1531 | 0 | unsigned long i; |
1532 | 0 | PDR pdr; |
1533 | 0 | SYMR sym; |
1534 | 0 | const char *no_name_func = _("static procedure (no name)"); |
1535 | |
|
1536 | 0 | epdr = NULL; |
1537 | 0 | rpdr = NULL; |
1538 | 0 | esym = NULL; |
1539 | 0 | ss = NULL; |
1540 | 0 | sv = NULL; |
1541 | |
|
1542 | 0 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1543 | |
|
1544 | 0 | sindex = strlen (no_name_func) + 1; |
1545 | 0 | count = hdr->ipdMax; |
1546 | 0 | if (count > 0) |
1547 | 0 | { |
1548 | 0 | size = swap->external_pdr_size; |
1549 | |
|
1550 | 0 | epdr = bfd_malloc (size * count); |
1551 | 0 | if (epdr == NULL) |
1552 | 0 | goto error_return; |
1553 | | |
1554 | 0 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
1555 | 0 | goto error_return; |
1556 | | |
1557 | 0 | size = sizeof (RPDR); |
1558 | 0 | rp = rpdr = bfd_malloc (size * count); |
1559 | 0 | if (rpdr == NULL) |
1560 | 0 | goto error_return; |
1561 | | |
1562 | 0 | size = sizeof (char *); |
1563 | 0 | sv = bfd_malloc (size * count); |
1564 | 0 | if (sv == NULL) |
1565 | 0 | goto error_return; |
1566 | | |
1567 | 0 | count = hdr->isymMax; |
1568 | 0 | size = swap->external_sym_size; |
1569 | 0 | esym = bfd_malloc (size * count); |
1570 | 0 | if (esym == NULL) |
1571 | 0 | goto error_return; |
1572 | | |
1573 | 0 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
1574 | 0 | goto error_return; |
1575 | | |
1576 | 0 | count = hdr->issMax; |
1577 | 0 | ss = bfd_malloc (count); |
1578 | 0 | if (ss == NULL) |
1579 | 0 | goto error_return; |
1580 | 0 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
1581 | 0 | goto error_return; |
1582 | | |
1583 | 0 | count = hdr->ipdMax; |
1584 | 0 | for (i = 0; i < (unsigned long) count; i++, rp++) |
1585 | 0 | { |
1586 | 0 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1587 | 0 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); |
1588 | 0 | rp->adr = sym.value; |
1589 | 0 | rp->regmask = pdr.regmask; |
1590 | 0 | rp->regoffset = pdr.regoffset; |
1591 | 0 | rp->fregmask = pdr.fregmask; |
1592 | 0 | rp->fregoffset = pdr.fregoffset; |
1593 | 0 | rp->frameoffset = pdr.frameoffset; |
1594 | 0 | rp->framereg = pdr.framereg; |
1595 | 0 | rp->pcreg = pdr.pcreg; |
1596 | 0 | rp->irpss = sindex; |
1597 | 0 | sv[i] = ss + sym.iss; |
1598 | 0 | sindex += strlen (sv[i]) + 1; |
1599 | 0 | } |
1600 | 0 | } |
1601 | | |
1602 | 0 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; |
1603 | 0 | size = BFD_ALIGN (size, 16); |
1604 | 0 | rtproc = bfd_alloc (abfd, size); |
1605 | 0 | if (rtproc == NULL) |
1606 | 0 | { |
1607 | 0 | mips_elf_hash_table (info)->procedure_count = 0; |
1608 | 0 | goto error_return; |
1609 | 0 | } |
1610 | | |
1611 | 0 | mips_elf_hash_table (info)->procedure_count = count + 2; |
1612 | |
|
1613 | 0 | erp = rtproc; |
1614 | 0 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1615 | 0 | erp++; |
1616 | 0 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); |
1617 | 0 | strcpy (str, no_name_func); |
1618 | 0 | str += strlen (no_name_func) + 1; |
1619 | 0 | for (i = 0; i < count; i++) |
1620 | 0 | { |
1621 | 0 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); |
1622 | 0 | strcpy (str, sv[i]); |
1623 | 0 | str += strlen (sv[i]) + 1; |
1624 | 0 | } |
1625 | 0 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); |
1626 | | |
1627 | | /* Set the size and contents of .rtproc section. */ |
1628 | 0 | s->size = size; |
1629 | 0 | s->contents = rtproc; |
1630 | | |
1631 | | /* Skip this section later on (I don't think this currently |
1632 | | matters, but someday it might). */ |
1633 | 0 | s->map_head.link_order = NULL; |
1634 | |
|
1635 | 0 | free (epdr); |
1636 | 0 | free (rpdr); |
1637 | 0 | free (esym); |
1638 | 0 | free (ss); |
1639 | 0 | free (sv); |
1640 | 0 | return true; |
1641 | | |
1642 | 0 | error_return: |
1643 | 0 | free (epdr); |
1644 | 0 | free (rpdr); |
1645 | 0 | free (esym); |
1646 | 0 | free (ss); |
1647 | 0 | free (sv); |
1648 | 0 | return false; |
1649 | 0 | } |
1650 | | |
1651 | | /* We're going to create a stub for H. Create a symbol for the stub's |
1652 | | value and size, to help make the disassembly easier to read. */ |
1653 | | |
1654 | | static bool |
1655 | | mips_elf_create_stub_symbol (struct bfd_link_info *info, |
1656 | | struct mips_elf_link_hash_entry *h, |
1657 | | const char *prefix, asection *s, bfd_vma value, |
1658 | | bfd_vma size) |
1659 | 0 | { |
1660 | 0 | bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other); |
1661 | 0 | struct bfd_link_hash_entry *bh; |
1662 | 0 | struct elf_link_hash_entry *elfh; |
1663 | 0 | char *name; |
1664 | 0 | bool res; |
1665 | |
|
1666 | 0 | if (micromips_p) |
1667 | 0 | value |= 1; |
1668 | | |
1669 | | /* Create a new symbol. */ |
1670 | 0 | name = concat (prefix, h->root.root.root.string, NULL); |
1671 | 0 | bh = NULL; |
1672 | 0 | res = _bfd_generic_link_add_one_symbol (info, s->owner, name, |
1673 | 0 | BSF_LOCAL, s, value, NULL, |
1674 | 0 | true, false, &bh); |
1675 | 0 | free (name); |
1676 | 0 | if (! res) |
1677 | 0 | return false; |
1678 | | |
1679 | | /* Make it a local function. */ |
1680 | 0 | elfh = (struct elf_link_hash_entry *) bh; |
1681 | 0 | elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); |
1682 | 0 | elfh->size = size; |
1683 | 0 | elfh->forced_local = 1; |
1684 | 0 | if (micromips_p) |
1685 | 0 | elfh->other = ELF_ST_SET_MICROMIPS (elfh->other); |
1686 | 0 | return true; |
1687 | 0 | } |
1688 | | |
1689 | | /* We're about to redefine H. Create a symbol to represent H's |
1690 | | current value and size, to help make the disassembly easier |
1691 | | to read. */ |
1692 | | |
1693 | | static bool |
1694 | | mips_elf_create_shadow_symbol (struct bfd_link_info *info, |
1695 | | struct mips_elf_link_hash_entry *h, |
1696 | | const char *prefix) |
1697 | 0 | { |
1698 | 0 | struct bfd_link_hash_entry *bh; |
1699 | 0 | struct elf_link_hash_entry *elfh; |
1700 | 0 | char *name; |
1701 | 0 | asection *s; |
1702 | 0 | bfd_vma value; |
1703 | 0 | bool res; |
1704 | | |
1705 | | /* Read the symbol's value. */ |
1706 | 0 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined |
1707 | 0 | || h->root.root.type == bfd_link_hash_defweak); |
1708 | 0 | s = h->root.root.u.def.section; |
1709 | 0 | value = h->root.root.u.def.value; |
1710 | | |
1711 | | /* Create a new symbol. */ |
1712 | 0 | name = concat (prefix, h->root.root.root.string, NULL); |
1713 | 0 | bh = NULL; |
1714 | 0 | res = _bfd_generic_link_add_one_symbol (info, s->owner, name, |
1715 | 0 | BSF_LOCAL, s, value, NULL, |
1716 | 0 | true, false, &bh); |
1717 | 0 | free (name); |
1718 | 0 | if (! res) |
1719 | 0 | return false; |
1720 | | |
1721 | | /* Make it local and copy the other attributes from H. */ |
1722 | 0 | elfh = (struct elf_link_hash_entry *) bh; |
1723 | 0 | elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); |
1724 | 0 | elfh->other = h->root.other; |
1725 | 0 | elfh->size = h->root.size; |
1726 | 0 | elfh->forced_local = 1; |
1727 | 0 | return true; |
1728 | 0 | } |
1729 | | |
1730 | | /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 |
1731 | | function rather than to a hard-float stub. */ |
1732 | | |
1733 | | static bool |
1734 | | section_allows_mips16_refs_p (asection *section) |
1735 | 0 | { |
1736 | 0 | const char *name; |
1737 | |
|
1738 | 0 | name = bfd_section_name (section); |
1739 | 0 | return (FN_STUB_P (name) |
1740 | 0 | || CALL_STUB_P (name) |
1741 | 0 | || CALL_FP_STUB_P (name) |
1742 | 0 | || strcmp (name, ".pdr") == 0); |
1743 | 0 | } |
1744 | | |
1745 | | /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 |
1746 | | stub section of some kind. Return the R_SYMNDX of the target |
1747 | | function, or 0 if we can't decide which function that is. */ |
1748 | | |
1749 | | static unsigned long |
1750 | | mips16_stub_symndx (const struct elf_backend_data *bed, |
1751 | | asection *sec ATTRIBUTE_UNUSED, |
1752 | | const Elf_Internal_Rela *relocs, |
1753 | | const Elf_Internal_Rela *relend) |
1754 | 0 | { |
1755 | 0 | int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; |
1756 | 0 | const Elf_Internal_Rela *rel; |
1757 | | |
1758 | | /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent |
1759 | | one in a compound relocation. */ |
1760 | 0 | for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) |
1761 | 0 | if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) |
1762 | 0 | return ELF_R_SYM (sec->owner, rel->r_info); |
1763 | | |
1764 | | /* Otherwise trust the first relocation, whatever its kind. This is |
1765 | | the traditional behavior. */ |
1766 | 0 | if (relocs < relend) |
1767 | 0 | return ELF_R_SYM (sec->owner, relocs->r_info); |
1768 | | |
1769 | 0 | return 0; |
1770 | 0 | } |
1771 | | |
1772 | | /* Check the mips16 stubs for a particular symbol, and see if we can |
1773 | | discard them. */ |
1774 | | |
1775 | | static void |
1776 | | mips_elf_check_mips16_stubs (struct bfd_link_info *info, |
1777 | | struct mips_elf_link_hash_entry *h) |
1778 | 0 | { |
1779 | | /* Dynamic symbols must use the standard call interface, in case other |
1780 | | objects try to call them. */ |
1781 | 0 | if (h->fn_stub != NULL |
1782 | 0 | && h->root.dynindx != -1) |
1783 | 0 | { |
1784 | 0 | mips_elf_create_shadow_symbol (info, h, ".mips16."); |
1785 | 0 | h->need_fn_stub = true; |
1786 | 0 | } |
1787 | |
|
1788 | 0 | if (h->fn_stub != NULL |
1789 | 0 | && ! h->need_fn_stub) |
1790 | 0 | { |
1791 | | /* We don't need the fn_stub; the only references to this symbol |
1792 | | are 16 bit calls. Clobber the size to 0 to prevent it from |
1793 | | being included in the link. */ |
1794 | 0 | h->fn_stub->size = 0; |
1795 | 0 | h->fn_stub->flags &= ~SEC_RELOC; |
1796 | 0 | h->fn_stub->reloc_count = 0; |
1797 | 0 | h->fn_stub->flags |= SEC_EXCLUDE; |
1798 | 0 | h->fn_stub->output_section = bfd_abs_section_ptr; |
1799 | 0 | } |
1800 | |
|
1801 | 0 | if (h->call_stub != NULL |
1802 | 0 | && ELF_ST_IS_MIPS16 (h->root.other)) |
1803 | 0 | { |
1804 | | /* We don't need the call_stub; this is a 16 bit function, so |
1805 | | calls from other 16 bit functions are OK. Clobber the size |
1806 | | to 0 to prevent it from being included in the link. */ |
1807 | 0 | h->call_stub->size = 0; |
1808 | 0 | h->call_stub->flags &= ~SEC_RELOC; |
1809 | 0 | h->call_stub->reloc_count = 0; |
1810 | 0 | h->call_stub->flags |= SEC_EXCLUDE; |
1811 | 0 | h->call_stub->output_section = bfd_abs_section_ptr; |
1812 | 0 | } |
1813 | |
|
1814 | 0 | if (h->call_fp_stub != NULL |
1815 | 0 | && ELF_ST_IS_MIPS16 (h->root.other)) |
1816 | 0 | { |
1817 | | /* We don't need the call_stub; this is a 16 bit function, so |
1818 | | calls from other 16 bit functions are OK. Clobber the size |
1819 | | to 0 to prevent it from being included in the link. */ |
1820 | 0 | h->call_fp_stub->size = 0; |
1821 | 0 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1822 | 0 | h->call_fp_stub->reloc_count = 0; |
1823 | 0 | h->call_fp_stub->flags |= SEC_EXCLUDE; |
1824 | 0 | h->call_fp_stub->output_section = bfd_abs_section_ptr; |
1825 | 0 | } |
1826 | 0 | } |
1827 | | |
1828 | | /* Hashtable callbacks for mips_elf_la25_stubs. */ |
1829 | | |
1830 | | static hashval_t |
1831 | | mips_elf_la25_stub_hash (const void *entry_) |
1832 | 0 | { |
1833 | 0 | const struct mips_elf_la25_stub *entry; |
1834 | |
|
1835 | 0 | entry = (struct mips_elf_la25_stub *) entry_; |
1836 | 0 | return entry->h->root.root.u.def.section->id |
1837 | 0 | + entry->h->root.root.u.def.value; |
1838 | 0 | } |
1839 | | |
1840 | | static int |
1841 | | mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) |
1842 | 0 | { |
1843 | 0 | const struct mips_elf_la25_stub *entry1, *entry2; |
1844 | |
|
1845 | 0 | entry1 = (struct mips_elf_la25_stub *) entry1_; |
1846 | 0 | entry2 = (struct mips_elf_la25_stub *) entry2_; |
1847 | 0 | return ((entry1->h->root.root.u.def.section |
1848 | 0 | == entry2->h->root.root.u.def.section) |
1849 | 0 | && (entry1->h->root.root.u.def.value |
1850 | 0 | == entry2->h->root.root.u.def.value)); |
1851 | 0 | } |
1852 | | |
1853 | | /* Called by the linker to set up the la25 stub-creation code. FN is |
1854 | | the linker's implementation of add_stub_function. Return true on |
1855 | | success. */ |
1856 | | |
1857 | | bool |
1858 | | _bfd_mips_elf_init_stubs (struct bfd_link_info *info, |
1859 | | asection *(*fn) (const char *, asection *, |
1860 | | asection *)) |
1861 | 0 | { |
1862 | 0 | struct mips_elf_link_hash_table *htab; |
1863 | |
|
1864 | 0 | htab = mips_elf_hash_table (info); |
1865 | 0 | if (htab == NULL) |
1866 | 0 | return false; |
1867 | | |
1868 | 0 | htab->add_stub_section = fn; |
1869 | 0 | htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, |
1870 | 0 | mips_elf_la25_stub_eq, NULL); |
1871 | 0 | if (htab->la25_stubs == NULL) |
1872 | 0 | return false; |
1873 | | |
1874 | 0 | return true; |
1875 | 0 | } |
1876 | | |
1877 | | /* Return true if H is a locally-defined PIC function, in the sense |
1878 | | that it or its fn_stub might need $25 to be valid on entry. |
1879 | | Note that MIPS16 functions set up $gp using PC-relative instructions, |
1880 | | so they themselves never need $25 to be valid. Only non-MIPS16 |
1881 | | entry points are of interest here. */ |
1882 | | |
1883 | | static bool |
1884 | | mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) |
1885 | 0 | { |
1886 | 0 | return ((h->root.root.type == bfd_link_hash_defined |
1887 | 0 | || h->root.root.type == bfd_link_hash_defweak) |
1888 | 0 | && h->root.def_regular |
1889 | 0 | && !bfd_is_abs_section (h->root.root.u.def.section) |
1890 | 0 | && !bfd_is_und_section (h->root.root.u.def.section) |
1891 | 0 | && (!ELF_ST_IS_MIPS16 (h->root.other) |
1892 | 0 | || (h->fn_stub && h->need_fn_stub)) |
1893 | 0 | && (PIC_OBJECT_P (h->root.root.u.def.section->owner) |
1894 | 0 | || ELF_ST_IS_MIPS_PIC (h->root.other))); |
1895 | 0 | } |
1896 | | |
1897 | | /* Set *SEC to the input section that contains the target of STUB. |
1898 | | Return the offset of the target from the start of that section. */ |
1899 | | |
1900 | | static bfd_vma |
1901 | | mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, |
1902 | | asection **sec) |
1903 | 0 | { |
1904 | 0 | if (ELF_ST_IS_MIPS16 (stub->h->root.other)) |
1905 | 0 | { |
1906 | 0 | BFD_ASSERT (stub->h->need_fn_stub); |
1907 | 0 | *sec = stub->h->fn_stub; |
1908 | 0 | return 0; |
1909 | 0 | } |
1910 | 0 | else |
1911 | 0 | { |
1912 | 0 | *sec = stub->h->root.root.u.def.section; |
1913 | 0 | return stub->h->root.root.u.def.value; |
1914 | 0 | } |
1915 | 0 | } |
1916 | | |
1917 | | /* STUB describes an la25 stub that we have decided to implement |
1918 | | by inserting an LUI/ADDIU pair before the target function. |
1919 | | Create the section and redirect the function symbol to it. */ |
1920 | | |
1921 | | static bool |
1922 | | mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, |
1923 | | struct bfd_link_info *info) |
1924 | 0 | { |
1925 | 0 | struct mips_elf_link_hash_table *htab; |
1926 | 0 | char *name; |
1927 | 0 | asection *s, *input_section; |
1928 | 0 | unsigned int align; |
1929 | |
|
1930 | 0 | htab = mips_elf_hash_table (info); |
1931 | 0 | if (htab == NULL) |
1932 | 0 | return false; |
1933 | | |
1934 | | /* Create a unique name for the new section. */ |
1935 | 0 | name = bfd_malloc (11 + sizeof (".text.stub.")); |
1936 | 0 | if (name == NULL) |
1937 | 0 | return false; |
1938 | 0 | sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); |
1939 | | |
1940 | | /* Create the section. */ |
1941 | 0 | mips_elf_get_la25_target (stub, &input_section); |
1942 | 0 | s = htab->add_stub_section (name, input_section, |
1943 | 0 | input_section->output_section); |
1944 | 0 | if (s == NULL) |
1945 | 0 | return false; |
1946 | | |
1947 | | /* Make sure that any padding goes before the stub. */ |
1948 | 0 | align = input_section->alignment_power; |
1949 | 0 | if (!bfd_link_align_section (s, align)) |
1950 | 0 | return false; |
1951 | 0 | if (align > 3) |
1952 | 0 | s->size = (1 << align) - 8; |
1953 | | |
1954 | | /* Create a symbol for the stub. */ |
1955 | 0 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); |
1956 | 0 | stub->stub_section = s; |
1957 | 0 | stub->offset = s->size; |
1958 | | |
1959 | | /* Allocate room for it. */ |
1960 | 0 | s->size += 8; |
1961 | 0 | return true; |
1962 | 0 | } |
1963 | | |
1964 | | /* STUB describes an la25 stub that we have decided to implement |
1965 | | with a separate trampoline. Allocate room for it and redirect |
1966 | | the function symbol to it. */ |
1967 | | |
1968 | | static bool |
1969 | | mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, |
1970 | | struct bfd_link_info *info) |
1971 | 0 | { |
1972 | 0 | struct mips_elf_link_hash_table *htab; |
1973 | 0 | asection *s; |
1974 | |
|
1975 | 0 | htab = mips_elf_hash_table (info); |
1976 | 0 | if (htab == NULL) |
1977 | 0 | return false; |
1978 | | |
1979 | | /* Create a trampoline section, if we haven't already. */ |
1980 | 0 | s = htab->strampoline; |
1981 | 0 | if (s == NULL) |
1982 | 0 | { |
1983 | 0 | asection *input_section = stub->h->root.root.u.def.section; |
1984 | 0 | s = htab->add_stub_section (".text", NULL, |
1985 | 0 | input_section->output_section); |
1986 | 0 | if (s == NULL || !bfd_link_align_section (s, 4)) |
1987 | 0 | return false; |
1988 | 0 | htab->strampoline = s; |
1989 | 0 | } |
1990 | | |
1991 | | /* Create a symbol for the stub. */ |
1992 | 0 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); |
1993 | 0 | stub->stub_section = s; |
1994 | 0 | stub->offset = s->size; |
1995 | | |
1996 | | /* Allocate room for it. */ |
1997 | 0 | s->size += 16; |
1998 | 0 | return true; |
1999 | 0 | } |
2000 | | |
2001 | | /* H describes a symbol that needs an la25 stub. Make sure that an |
2002 | | appropriate stub exists and point H at it. */ |
2003 | | |
2004 | | static bool |
2005 | | mips_elf_add_la25_stub (struct bfd_link_info *info, |
2006 | | struct mips_elf_link_hash_entry *h) |
2007 | 0 | { |
2008 | 0 | struct mips_elf_link_hash_table *htab; |
2009 | 0 | struct mips_elf_la25_stub search, *stub; |
2010 | 0 | bool use_trampoline_p; |
2011 | 0 | asection *s; |
2012 | 0 | bfd_vma value; |
2013 | 0 | void **slot; |
2014 | | |
2015 | | /* Describe the stub we want. */ |
2016 | 0 | search.stub_section = NULL; |
2017 | 0 | search.offset = 0; |
2018 | 0 | search.h = h; |
2019 | | |
2020 | | /* See if we've already created an equivalent stub. */ |
2021 | 0 | htab = mips_elf_hash_table (info); |
2022 | 0 | if (htab == NULL) |
2023 | 0 | return false; |
2024 | | |
2025 | 0 | slot = htab_find_slot (htab->la25_stubs, &search, INSERT); |
2026 | 0 | if (slot == NULL) |
2027 | 0 | return false; |
2028 | | |
2029 | 0 | stub = (struct mips_elf_la25_stub *) *slot; |
2030 | 0 | if (stub != NULL) |
2031 | 0 | { |
2032 | | /* We can reuse the existing stub. */ |
2033 | 0 | h->la25_stub = stub; |
2034 | 0 | return true; |
2035 | 0 | } |
2036 | | |
2037 | | /* Create a permanent copy of ENTRY and add it to the hash table. */ |
2038 | 0 | stub = bfd_malloc (sizeof (search)); |
2039 | 0 | if (stub == NULL) |
2040 | 0 | return false; |
2041 | 0 | *stub = search; |
2042 | 0 | *slot = stub; |
2043 | | |
2044 | | /* Prefer to use LUI/ADDIU stubs if the function is at the beginning |
2045 | | of the section and if we would need no more than 2 nops. */ |
2046 | 0 | value = mips_elf_get_la25_target (stub, &s); |
2047 | 0 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
2048 | 0 | value &= ~1; |
2049 | 0 | use_trampoline_p = (value != 0 || s->alignment_power > 4); |
2050 | |
|
2051 | 0 | h->la25_stub = stub; |
2052 | 0 | return (use_trampoline_p |
2053 | 0 | ? mips_elf_add_la25_trampoline (stub, info) |
2054 | 0 | : mips_elf_add_la25_intro (stub, info)); |
2055 | 0 | } |
2056 | | |
2057 | | /* A mips_elf_link_hash_traverse callback that is called before sizing |
2058 | | sections. DATA points to a mips_htab_traverse_info structure. */ |
2059 | | |
2060 | | static bool |
2061 | | mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) |
2062 | 0 | { |
2063 | 0 | struct mips_htab_traverse_info *hti; |
2064 | |
|
2065 | 0 | hti = (struct mips_htab_traverse_info *) data; |
2066 | 0 | if (!bfd_link_relocatable (hti->info)) |
2067 | 0 | mips_elf_check_mips16_stubs (hti->info, h); |
2068 | |
|
2069 | 0 | if (mips_elf_local_pic_function_p (h)) |
2070 | 0 | { |
2071 | | /* PR 12845: If H is in a section that has been garbage |
2072 | | collected it will have its output section set to *ABS*. */ |
2073 | 0 | if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) |
2074 | 0 | return true; |
2075 | | |
2076 | | /* H is a function that might need $25 to be valid on entry. |
2077 | | If we're creating a non-PIC relocatable object, mark H as |
2078 | | being PIC. If we're creating a non-relocatable object with |
2079 | | non-PIC branches and jumps to H, make sure that H has an la25 |
2080 | | stub. */ |
2081 | 0 | if (bfd_link_relocatable (hti->info)) |
2082 | 0 | { |
2083 | 0 | if (!PIC_OBJECT_P (hti->output_bfd)) |
2084 | 0 | h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); |
2085 | 0 | } |
2086 | 0 | else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) |
2087 | 0 | { |
2088 | 0 | hti->error = true; |
2089 | 0 | return false; |
2090 | 0 | } |
2091 | 0 | } |
2092 | 0 | return true; |
2093 | 0 | } |
2094 | | |
2095 | | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
2096 | | Most mips16 instructions are 16 bits, but these instructions |
2097 | | are 32 bits. |
2098 | | |
2099 | | The format of these instructions is: |
2100 | | |
2101 | | +--------------+--------------------------------+ |
2102 | | | JALX | X| Imm 20:16 | Imm 25:21 | |
2103 | | +--------------+--------------------------------+ |
2104 | | | Immediate 15:0 | |
2105 | | +-----------------------------------------------+ |
2106 | | |
2107 | | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. |
2108 | | Note that the immediate value in the first word is swapped. |
2109 | | |
2110 | | When producing a relocatable object file, R_MIPS16_26 is |
2111 | | handled mostly like R_MIPS_26. In particular, the addend is |
2112 | | stored as a straight 26-bit value in a 32-bit instruction. |
2113 | | (gas makes life simpler for itself by never adjusting a |
2114 | | R_MIPS16_26 reloc to be against a section, so the addend is |
2115 | | always zero). However, the 32 bit instruction is stored as 2 |
2116 | | 16-bit values, rather than a single 32-bit value. In a |
2117 | | big-endian file, the result is the same; in a little-endian |
2118 | | file, the two 16-bit halves of the 32 bit value are swapped. |
2119 | | This is so that a disassembler can recognize the jal |
2120 | | instruction. |
2121 | | |
2122 | | When doing a final link, R_MIPS16_26 is treated as a 32 bit |
2123 | | instruction stored as two 16-bit values. The addend A is the |
2124 | | contents of the targ26 field. The calculation is the same as |
2125 | | R_MIPS_26. When storing the calculated value, reorder the |
2126 | | immediate value as shown above, and don't forget to store the |
2127 | | value as two 16-bit values. |
2128 | | |
2129 | | To put it in MIPS ABI terms, the relocation field is T-targ26-16, |
2130 | | defined as |
2131 | | |
2132 | | big-endian: |
2133 | | +--------+----------------------+ |
2134 | | | | | |
2135 | | | | targ26-16 | |
2136 | | |31 26|25 0| |
2137 | | +--------+----------------------+ |
2138 | | |
2139 | | little-endian: |
2140 | | +----------+------+-------------+ |
2141 | | | | | | |
2142 | | | sub1 | | sub2 | |
2143 | | |0 9|10 15|16 31| |
2144 | | +----------+--------------------+ |
2145 | | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is |
2146 | | ((sub1 << 16) | sub2)). |
2147 | | |
2148 | | When producing a relocatable object file, the calculation is |
2149 | | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
2150 | | When producing a fully linked file, the calculation is |
2151 | | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
2152 | | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) |
2153 | | |
2154 | | The table below lists the other MIPS16 instruction relocations. |
2155 | | Each one is calculated in the same way as the non-MIPS16 relocation |
2156 | | given on the right, but using the extended MIPS16 layout of 16-bit |
2157 | | immediate fields: |
2158 | | |
2159 | | R_MIPS16_GPREL R_MIPS_GPREL16 |
2160 | | R_MIPS16_GOT16 R_MIPS_GOT16 |
2161 | | R_MIPS16_CALL16 R_MIPS_CALL16 |
2162 | | R_MIPS16_HI16 R_MIPS_HI16 |
2163 | | R_MIPS16_LO16 R_MIPS_LO16 |
2164 | | |
2165 | | A typical instruction will have a format like this: |
2166 | | |
2167 | | +--------------+--------------------------------+ |
2168 | | | EXTEND | Imm 10:5 | Imm 15:11 | |
2169 | | +--------------+--------------------------------+ |
2170 | | | Major | rx | ry | Imm 4:0 | |
2171 | | +--------------+--------------------------------+ |
2172 | | |
2173 | | EXTEND is the five bit value 11110. Major is the instruction |
2174 | | opcode. |
2175 | | |
2176 | | All we need to do here is shuffle the bits appropriately. |
2177 | | As above, the two 16-bit halves must be swapped on a |
2178 | | little-endian system. |
2179 | | |
2180 | | Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the |
2181 | | relocatable field is shifted by 1 rather than 2 and the same bit |
2182 | | shuffling is done as with the relocations above. */ |
2183 | | |
2184 | | static inline bool |
2185 | | mips16_reloc_p (int r_type) |
2186 | 1.44k | { |
2187 | 1.44k | switch (r_type) |
2188 | 1.44k | { |
2189 | 42 | case R_MIPS16_26: |
2190 | 51 | case R_MIPS16_GPREL: |
2191 | 51 | case R_MIPS16_GOT16: |
2192 | 53 | case R_MIPS16_CALL16: |
2193 | 69 | case R_MIPS16_HI16: |
2194 | 105 | case R_MIPS16_LO16: |
2195 | 129 | case R_MIPS16_TLS_GD: |
2196 | 129 | case R_MIPS16_TLS_LDM: |
2197 | 129 | case R_MIPS16_TLS_DTPREL_HI16: |
2198 | 131 | case R_MIPS16_TLS_DTPREL_LO16: |
2199 | 133 | case R_MIPS16_TLS_GOTTPREL: |
2200 | 133 | case R_MIPS16_TLS_TPREL_HI16: |
2201 | 133 | case R_MIPS16_TLS_TPREL_LO16: |
2202 | 133 | case R_MIPS16_PC16_S1: |
2203 | 133 | return true; |
2204 | | |
2205 | 1.30k | default: |
2206 | 1.30k | return false; |
2207 | 1.44k | } |
2208 | 1.44k | } |
2209 | | |
2210 | | /* Check if a microMIPS reloc. */ |
2211 | | |
2212 | | static inline bool |
2213 | | micromips_reloc_p (unsigned int r_type) |
2214 | 1.49k | { |
2215 | 1.49k | return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; |
2216 | 1.49k | } |
2217 | | |
2218 | | /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped |
2219 | | on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1, |
2220 | | R_MICROMIPS_PC10_S1 and R_MICROMIPS_GPREL7_S2 relocs that apply to |
2221 | | 16-bit instructions. */ |
2222 | | |
2223 | | static inline bool |
2224 | | micromips_reloc_shuffle_p (unsigned int r_type) |
2225 | 1.30k | { |
2226 | 1.30k | return (micromips_reloc_p (r_type) |
2227 | 1.30k | && r_type != R_MICROMIPS_PC7_S1 |
2228 | 1.30k | && r_type != R_MICROMIPS_PC10_S1 |
2229 | 1.30k | && r_type != R_MICROMIPS_GPREL7_S2); |
2230 | 1.30k | } |
2231 | | |
2232 | | static inline bool |
2233 | | got16_reloc_p (int r_type) |
2234 | 0 | { |
2235 | 0 | return (r_type == R_MIPS_GOT16 |
2236 | 0 | || r_type == R_MIPS16_GOT16 |
2237 | 0 | || r_type == R_MICROMIPS_GOT16); |
2238 | 0 | } |
2239 | | |
2240 | | static inline bool |
2241 | | call16_reloc_p (int r_type) |
2242 | 0 | { |
2243 | 0 | return (r_type == R_MIPS_CALL16 |
2244 | 0 | || r_type == R_MIPS16_CALL16 |
2245 | 0 | || r_type == R_MICROMIPS_CALL16); |
2246 | 0 | } |
2247 | | |
2248 | | static inline bool |
2249 | | got_disp_reloc_p (unsigned int r_type) |
2250 | 0 | { |
2251 | 0 | return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; |
2252 | 0 | } |
2253 | | |
2254 | | static inline bool |
2255 | | got_page_reloc_p (unsigned int r_type) |
2256 | 0 | { |
2257 | 0 | return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; |
2258 | 0 | } |
2259 | | |
2260 | | static inline bool |
2261 | | got_lo16_reloc_p (unsigned int r_type) |
2262 | 0 | { |
2263 | 0 | return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; |
2264 | 0 | } |
2265 | | |
2266 | | static inline bool |
2267 | | call_hi16_reloc_p (unsigned int r_type) |
2268 | 0 | { |
2269 | 0 | return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; |
2270 | 0 | } |
2271 | | |
2272 | | static inline bool |
2273 | | call_lo16_reloc_p (unsigned int r_type) |
2274 | 0 | { |
2275 | 0 | return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; |
2276 | 0 | } |
2277 | | |
2278 | | static inline bool |
2279 | | hi16_reloc_p (int r_type) |
2280 | 0 | { |
2281 | 0 | return (r_type == R_MIPS_HI16 |
2282 | 0 | || r_type == R_MIPS16_HI16 |
2283 | 0 | || r_type == R_MICROMIPS_HI16 |
2284 | 0 | || r_type == R_MIPS_PCHI16); |
2285 | 0 | } |
2286 | | |
2287 | | static inline bool |
2288 | | lo16_reloc_p (int r_type) |
2289 | 0 | { |
2290 | 0 | return (r_type == R_MIPS_LO16 |
2291 | 0 | || r_type == R_MIPS16_LO16 |
2292 | 0 | || r_type == R_MICROMIPS_LO16 |
2293 | 0 | || r_type == R_MIPS_PCLO16); |
2294 | 0 | } |
2295 | | |
2296 | | static inline bool |
2297 | | mips16_call_reloc_p (int r_type) |
2298 | 0 | { |
2299 | 0 | return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; |
2300 | 0 | } |
2301 | | |
2302 | | static inline bool |
2303 | | jal_reloc_p (int r_type) |
2304 | 0 | { |
2305 | 0 | return (r_type == R_MIPS_26 |
2306 | 0 | || r_type == R_MIPS16_26 |
2307 | 0 | || r_type == R_MICROMIPS_26_S1); |
2308 | 0 | } |
2309 | | |
2310 | | static inline bool |
2311 | | b_reloc_p (int r_type) |
2312 | 0 | { |
2313 | 0 | return (r_type == R_MIPS_PC26_S2 |
2314 | 0 | || r_type == R_MIPS_PC21_S2 |
2315 | 0 | || r_type == R_MIPS_PC16 |
2316 | 0 | || r_type == R_MIPS_GNU_REL16_S2 |
2317 | 0 | || r_type == R_MIPS16_PC16_S1 |
2318 | 0 | || r_type == R_MICROMIPS_PC16_S1 |
2319 | 0 | || r_type == R_MICROMIPS_PC10_S1 |
2320 | 0 | || r_type == R_MICROMIPS_PC7_S1); |
2321 | 0 | } |
2322 | | |
2323 | | static inline bool |
2324 | | aligned_pcrel_reloc_p (int r_type) |
2325 | 0 | { |
2326 | 0 | return (r_type == R_MIPS_PC18_S3 |
2327 | 0 | || r_type == R_MIPS_PC19_S2); |
2328 | 0 | } |
2329 | | |
2330 | | static inline bool |
2331 | | branch_reloc_p (int r_type) |
2332 | 0 | { |
2333 | 0 | return (r_type == R_MIPS_26 |
2334 | 0 | || r_type == R_MIPS_PC26_S2 |
2335 | 0 | || r_type == R_MIPS_PC21_S2 |
2336 | 0 | || r_type == R_MIPS_PC16 |
2337 | 0 | || r_type == R_MIPS_GNU_REL16_S2); |
2338 | 0 | } |
2339 | | |
2340 | | static inline bool |
2341 | | mips16_branch_reloc_p (int r_type) |
2342 | 0 | { |
2343 | 0 | return (r_type == R_MIPS16_26 |
2344 | 0 | || r_type == R_MIPS16_PC16_S1); |
2345 | 0 | } |
2346 | | |
2347 | | static inline bool |
2348 | | micromips_branch_reloc_p (int r_type) |
2349 | 0 | { |
2350 | 0 | return (r_type == R_MICROMIPS_26_S1 |
2351 | 0 | || r_type == R_MICROMIPS_PC16_S1 |
2352 | 0 | || r_type == R_MICROMIPS_PC10_S1 |
2353 | 0 | || r_type == R_MICROMIPS_PC7_S1); |
2354 | 0 | } |
2355 | | |
2356 | | static inline bool |
2357 | | tls_gd_reloc_p (unsigned int r_type) |
2358 | 0 | { |
2359 | 0 | return (r_type == R_MIPS_TLS_GD |
2360 | 0 | || r_type == R_MIPS16_TLS_GD |
2361 | 0 | || r_type == R_MICROMIPS_TLS_GD); |
2362 | 0 | } |
2363 | | |
2364 | | static inline bool |
2365 | | tls_ldm_reloc_p (unsigned int r_type) |
2366 | 0 | { |
2367 | 0 | return (r_type == R_MIPS_TLS_LDM |
2368 | 0 | || r_type == R_MIPS16_TLS_LDM |
2369 | 0 | || r_type == R_MICROMIPS_TLS_LDM); |
2370 | 0 | } |
2371 | | |
2372 | | static inline bool |
2373 | | tls_gottprel_reloc_p (unsigned int r_type) |
2374 | 0 | { |
2375 | 0 | return (r_type == R_MIPS_TLS_GOTTPREL |
2376 | 0 | || r_type == R_MIPS16_TLS_GOTTPREL |
2377 | 0 | || r_type == R_MICROMIPS_TLS_GOTTPREL); |
2378 | 0 | } |
2379 | | |
2380 | | static inline bool |
2381 | | needs_shuffle (int r_type) |
2382 | 1.44k | { |
2383 | 1.44k | return mips16_reloc_p (r_type) || micromips_reloc_shuffle_p (r_type); |
2384 | 1.44k | } |
2385 | | |
2386 | | void |
2387 | | _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, |
2388 | | bool jal_shuffle, bfd_byte *data) |
2389 | 703 | { |
2390 | 703 | bfd_vma first, second, val; |
2391 | | |
2392 | 703 | if (!needs_shuffle (r_type)) |
2393 | 607 | return; |
2394 | | |
2395 | | /* Pick up the first and second halfwords of the instruction. */ |
2396 | 96 | first = bfd_get_16 (abfd, data); |
2397 | 96 | second = bfd_get_16 (abfd, data + 2); |
2398 | 96 | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) |
2399 | 53 | val = first << 16 | second; |
2400 | 43 | else if (r_type != R_MIPS16_26) |
2401 | 43 | val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) |
2402 | 43 | | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); |
2403 | 0 | else |
2404 | 0 | val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) |
2405 | 0 | | ((first & 0x1f) << 21) | second); |
2406 | 96 | bfd_put_32 (abfd, val, data); |
2407 | 96 | } |
2408 | | |
2409 | | void |
2410 | | _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, |
2411 | | bool jal_shuffle, bfd_byte *data) |
2412 | 703 | { |
2413 | 703 | bfd_vma first, second, val; |
2414 | | |
2415 | 703 | if (!needs_shuffle (r_type)) |
2416 | 607 | return; |
2417 | | |
2418 | 96 | val = bfd_get_32 (abfd, data); |
2419 | 96 | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) |
2420 | 53 | { |
2421 | 53 | second = val & 0xffff; |
2422 | 53 | first = val >> 16; |
2423 | 53 | } |
2424 | 43 | else if (r_type != R_MIPS16_26) |
2425 | 43 | { |
2426 | 43 | second = ((val >> 11) & 0xffe0) | (val & 0x1f); |
2427 | 43 | first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); |
2428 | 43 | } |
2429 | 0 | else |
2430 | 0 | { |
2431 | 0 | second = val & 0xffff; |
2432 | 0 | first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) |
2433 | 0 | | ((val >> 21) & 0x1f); |
2434 | 0 | } |
2435 | 96 | bfd_put_16 (abfd, second, data + 2); |
2436 | 96 | bfd_put_16 (abfd, first, data); |
2437 | 96 | } |
2438 | | |
2439 | | /* Perform reloc offset checking. |
2440 | | We can only use bfd_reloc_offset_in_range, which takes into account |
2441 | | the size of the field being relocated, when section contents will |
2442 | | be accessed because mips object files may use relocations that seem |
2443 | | to access beyond section limits. |
2444 | | gas/testsuite/gas/mips/dla-reloc.s is an example that puts |
2445 | | R_MIPS_SUB, a 64-bit relocation, on the last instruction in the |
2446 | | section. The R_MIPS_SUB applies to the addend for the next reloc |
2447 | | rather than the section contents. |
2448 | | |
2449 | | CHECK is CHECK_STD for the standard bfd_reloc_offset_in_range check, |
2450 | | CHECK_INPLACE to only check partial_inplace relocs, and |
2451 | | CHECK_SHUFFLE to only check relocs that shuffle/unshuffle. */ |
2452 | | |
2453 | | bool |
2454 | | _bfd_mips_reloc_offset_in_range (bfd *abfd, asection *input_section, |
2455 | | arelent *reloc_entry, enum reloc_check check) |
2456 | 780 | { |
2457 | 780 | if (check == check_inplace && !reloc_entry->howto->partial_inplace) |
2458 | 3 | return true; |
2459 | 777 | if (check == check_shuffle && !needs_shuffle (reloc_entry->howto->type)) |
2460 | 20 | return true; |
2461 | 757 | return bfd_reloc_offset_in_range (reloc_entry->howto, abfd, |
2462 | 757 | input_section, reloc_entry->address); |
2463 | 777 | } |
2464 | | |
2465 | | bfd_reloc_status_type |
2466 | | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
2467 | | arelent *reloc_entry, asection *input_section, |
2468 | | bool relocatable, void *data, bfd_vma gp) |
2469 | 52 | { |
2470 | 52 | bfd_vma relocation; |
2471 | 52 | bfd_signed_vma val; |
2472 | 52 | bfd_reloc_status_type status; |
2473 | | |
2474 | 52 | if (bfd_is_com_section (symbol->section)) |
2475 | 3 | relocation = 0; |
2476 | 49 | else |
2477 | 49 | relocation = symbol->value; |
2478 | | |
2479 | 52 | if (symbol->section->output_section != NULL) |
2480 | 52 | { |
2481 | 52 | relocation += symbol->section->output_section->vma; |
2482 | 52 | relocation += symbol->section->output_offset; |
2483 | 52 | } |
2484 | | |
2485 | | /* Set val to the offset into the section or symbol. */ |
2486 | 52 | val = reloc_entry->addend; |
2487 | | |
2488 | 52 | _bfd_mips_elf_sign_extend (val, 16); |
2489 | | |
2490 | | /* Adjust val for the final section location and GP value. If we |
2491 | | are producing relocatable output, we don't want to do this for |
2492 | | an external symbol. */ |
2493 | 52 | if (! relocatable |
2494 | 52 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
2495 | 52 | val += relocation - gp; |
2496 | | |
2497 | 52 | if (reloc_entry->howto->partial_inplace) |
2498 | 21 | { |
2499 | 21 | if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, |
2500 | 21 | reloc_entry->address)) |
2501 | 2 | return bfd_reloc_outofrange; |
2502 | | |
2503 | 19 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
2504 | 19 | (bfd_byte *) data |
2505 | 19 | + reloc_entry->address); |
2506 | 19 | if (status != bfd_reloc_ok) |
2507 | 2 | return status; |
2508 | 19 | } |
2509 | 31 | else |
2510 | 31 | reloc_entry->addend = val; |
2511 | | |
2512 | 48 | if (relocatable) |
2513 | 0 | reloc_entry->address += input_section->output_offset; |
2514 | | |
2515 | 48 | return bfd_reloc_ok; |
2516 | 52 | } |
2517 | | |
2518 | | /* A howto special_function for REL *HI16 relocations. We can only |
2519 | | calculate the correct value once we've seen the partnering |
2520 | | *LO16 relocation, so just save the information for later. |
2521 | | |
2522 | | The ABI requires that the *LO16 immediately follow the *HI16. |
2523 | | However, as a GNU extension, we permit an arbitrary number of |
2524 | | *HI16s to be associated with a single *LO16. This significantly |
2525 | | simplies the relocation handling in gcc. */ |
2526 | | |
2527 | | bfd_reloc_status_type |
2528 | | _bfd_mips_elf_hi16_reloc (bfd *abfd, arelent *reloc_entry, |
2529 | | asymbol *symbol ATTRIBUTE_UNUSED, void *data, |
2530 | | asection *input_section, bfd *output_bfd, |
2531 | | char **error_message ATTRIBUTE_UNUSED) |
2532 | 43 | { |
2533 | 43 | struct mips_hi16 *n; |
2534 | 43 | struct mips_elf_obj_tdata *tdata; |
2535 | | |
2536 | 43 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
2537 | 8 | return bfd_reloc_outofrange; |
2538 | | |
2539 | 35 | n = bfd_malloc (sizeof *n); |
2540 | 35 | if (n == NULL) |
2541 | 0 | return bfd_reloc_outofrange; |
2542 | | |
2543 | 35 | tdata = mips_elf_tdata (abfd); |
2544 | 35 | n->next = tdata->mips_hi16_list; |
2545 | 35 | n->data = data; |
2546 | 35 | n->input_section = input_section; |
2547 | 35 | n->rel = *reloc_entry; |
2548 | 35 | tdata->mips_hi16_list = n; |
2549 | | |
2550 | 35 | if (output_bfd != NULL) |
2551 | 0 | reloc_entry->address += input_section->output_offset; |
2552 | | |
2553 | 35 | return bfd_reloc_ok; |
2554 | 35 | } |
2555 | | |
2556 | | /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just |
2557 | | like any other 16-bit relocation when applied to global symbols, but is |
2558 | | treated in the same as R_MIPS_HI16 when applied to local symbols. */ |
2559 | | |
2560 | | bfd_reloc_status_type |
2561 | | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
2562 | | void *data, asection *input_section, |
2563 | | bfd *output_bfd, char **error_message) |
2564 | 32 | { |
2565 | 32 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 |
2566 | 32 | || bfd_is_und_section (bfd_asymbol_section (symbol)) |
2567 | 32 | || bfd_is_com_section (bfd_asymbol_section (symbol))) |
2568 | | /* The relocation is against a global symbol. */ |
2569 | 0 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
2570 | 0 | input_section, output_bfd, |
2571 | 0 | error_message); |
2572 | | |
2573 | 32 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, |
2574 | 32 | input_section, output_bfd, error_message); |
2575 | 32 | } |
2576 | | |
2577 | | /* A howto special_function for REL *LO16 relocations. The *LO16 itself |
2578 | | is a straightforward 16 bit inplace relocation, but we must deal with |
2579 | | any partnering high-part relocations as well. */ |
2580 | | |
2581 | | bfd_reloc_status_type |
2582 | | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
2583 | | void *data, asection *input_section, |
2584 | | bfd *output_bfd, char **error_message) |
2585 | 18 | { |
2586 | 18 | bfd_vma vallo; |
2587 | 18 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
2588 | 18 | struct mips_elf_obj_tdata *tdata; |
2589 | | |
2590 | 18 | if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, |
2591 | 18 | reloc_entry->address)) |
2592 | 2 | return bfd_reloc_outofrange; |
2593 | | |
2594 | 16 | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, |
2595 | 16 | location); |
2596 | | /* The high 16 bits of the addend are stored in the high insn, the |
2597 | | low 16 bits in the low insn, but there is a catch: You can't |
2598 | | just concatenate the high and low parts. The high part of the |
2599 | | addend is adjusted for the fact that the low part is sign |
2600 | | extended. For example, an addend of 0x38000 would have 0x0004 in |
2601 | | the high part and 0x8000 (=0xff..f8000) in the low part. |
2602 | | To extract the actual addend, calculate (a) |
2603 | | ((hi & 0xffff) << 16) + ((lo & 0xffff) ^ 0x8000) - 0x8000. |
2604 | | We will be applying (symbol + addend) & 0xffff to the low insn, |
2605 | | and we want to apply (b) (symbol + addend + 0x8000) >> 16 to the |
2606 | | high insn (the +0x8000 adjusting for when the applied low part is |
2607 | | negative). Substituting (a) into (b) and recognising that |
2608 | | (hi & 0xffff) is already in the high insn gives a high part |
2609 | | addend adjustment of (lo & 0xffff) ^ 0x8000. */ |
2610 | 16 | vallo = (bfd_get_32 (abfd, location) & 0xffff) ^ 0x8000; |
2611 | 16 | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, |
2612 | 16 | location); |
2613 | | |
2614 | 16 | tdata = mips_elf_tdata (abfd); |
2615 | 30 | while (tdata->mips_hi16_list != NULL) |
2616 | 14 | { |
2617 | 14 | bfd_reloc_status_type ret; |
2618 | 14 | struct mips_hi16 *hi; |
2619 | | |
2620 | 14 | hi = tdata->mips_hi16_list; |
2621 | | |
2622 | | /* R_MIPS*_GOT16 relocations are something of a special case. We |
2623 | | want to install the addend in the same way as for a R_MIPS*_HI16 |
2624 | | relocation (with a rightshift of 16). However, since GOT16 |
2625 | | relocations can also be used with global symbols, their howto |
2626 | | has a rightshift of 0. */ |
2627 | 14 | if (hi->rel.howto->type == R_MIPS_GOT16) |
2628 | 0 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false); |
2629 | 14 | else if (hi->rel.howto->type == R_MIPS16_GOT16) |
2630 | 8 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false); |
2631 | 6 | else if (hi->rel.howto->type == R_MICROMIPS_GOT16) |
2632 | 5 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false); |
2633 | | |
2634 | 14 | hi->rel.addend += vallo; |
2635 | | |
2636 | 14 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
2637 | 14 | hi->input_section, output_bfd, |
2638 | 14 | error_message); |
2639 | 14 | if (ret != bfd_reloc_ok) |
2640 | 0 | return ret; |
2641 | | |
2642 | 14 | tdata->mips_hi16_list = hi->next; |
2643 | 14 | free (hi); |
2644 | 14 | } |
2645 | | |
2646 | 16 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
2647 | 16 | input_section, output_bfd, |
2648 | 16 | error_message); |
2649 | 16 | } |
2650 | | |
2651 | | /* A generic howto special_function. This calculates and installs the |
2652 | | relocation itself, thus avoiding the oft-discussed problems in |
2653 | | bfd_perform_relocation and bfd_install_relocation. */ |
2654 | | |
2655 | | bfd_reloc_status_type |
2656 | | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, |
2657 | | asymbol *symbol, void *data ATTRIBUTE_UNUSED, |
2658 | | asection *input_section, bfd *output_bfd, |
2659 | | char **error_message ATTRIBUTE_UNUSED) |
2660 | 737 | { |
2661 | 737 | bfd_signed_vma val; |
2662 | 737 | bfd_reloc_status_type status; |
2663 | 737 | bool relocatable; |
2664 | | |
2665 | 737 | relocatable = (output_bfd != NULL); |
2666 | | |
2667 | 737 | if (!_bfd_mips_reloc_offset_in_range (abfd, input_section, reloc_entry, |
2668 | 737 | (relocatable |
2669 | 737 | ? check_inplace : check_std))) |
2670 | 80 | return bfd_reloc_outofrange; |
2671 | | |
2672 | | /* Build up the field adjustment in VAL. */ |
2673 | 657 | val = 0; |
2674 | 657 | if ((!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) |
2675 | 657 | && symbol->section->output_section != NULL) |
2676 | 657 | { |
2677 | | /* Either we're calculating the final field value or we have a |
2678 | | relocation against a section symbol. Add in the section's |
2679 | | offset or address. */ |
2680 | 657 | val += symbol->section->output_section->vma; |
2681 | 657 | val += symbol->section->output_offset; |
2682 | 657 | } |
2683 | | |
2684 | 657 | if (!relocatable) |
2685 | 657 | { |
2686 | | /* We're calculating the final field value. Add in the symbol's value |
2687 | | and, if pc-relative, subtract the address of the field itself. */ |
2688 | 657 | val += symbol->value; |
2689 | 657 | if (reloc_entry->howto->pc_relative) |
2690 | 35 | { |
2691 | 35 | val -= input_section->output_section->vma; |
2692 | 35 | val -= input_section->output_offset; |
2693 | 35 | val -= reloc_entry->address; |
2694 | 35 | } |
2695 | 657 | } |
2696 | | |
2697 | | /* VAL is now the final adjustment. If we're keeping this relocation |
2698 | | in the output file, and if the relocation uses a separate addend, |
2699 | | we just need to add VAL to that addend. Otherwise we need to add |
2700 | | VAL to the relocation field itself. */ |
2701 | 657 | if (relocatable && !reloc_entry->howto->partial_inplace) |
2702 | 0 | reloc_entry->addend += val; |
2703 | 657 | else |
2704 | 657 | { |
2705 | 657 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
2706 | | |
2707 | | /* Add in the separate addend, if any. */ |
2708 | 657 | val += reloc_entry->addend; |
2709 | | |
2710 | | /* Add VAL to the relocation field. */ |
2711 | 657 | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, |
2712 | 657 | location); |
2713 | 657 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
2714 | 657 | location); |
2715 | 657 | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, |
2716 | 657 | location); |
2717 | | |
2718 | 657 | if (status != bfd_reloc_ok) |
2719 | 44 | return status; |
2720 | 657 | } |
2721 | | |
2722 | 613 | if (relocatable) |
2723 | 0 | reloc_entry->address += input_section->output_offset; |
2724 | | |
2725 | 613 | return bfd_reloc_ok; |
2726 | 657 | } |
2727 | | |
2728 | | /* Swap an entry in a .gptab section. Note that these routines rely |
2729 | | on the equivalence of the two elements of the union. */ |
2730 | | |
2731 | | static void |
2732 | | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
2733 | | Elf32_gptab *in) |
2734 | 0 | { |
2735 | 0 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); |
2736 | 0 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); |
2737 | 0 | } |
2738 | | |
2739 | | static void |
2740 | | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
2741 | | Elf32_External_gptab *ex) |
2742 | 0 | { |
2743 | 0 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); |
2744 | 0 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); |
2745 | 0 | } |
2746 | | |
2747 | | static void |
2748 | | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
2749 | | Elf32_External_compact_rel *ex) |
2750 | 0 | { |
2751 | 0 | H_PUT_32 (abfd, in->id1, ex->id1); |
2752 | 0 | H_PUT_32 (abfd, in->num, ex->num); |
2753 | 0 | H_PUT_32 (abfd, in->id2, ex->id2); |
2754 | 0 | H_PUT_32 (abfd, in->offset, ex->offset); |
2755 | 0 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); |
2756 | 0 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); |
2757 | 0 | } |
2758 | | |
2759 | | static void |
2760 | | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
2761 | | Elf32_External_crinfo *ex) |
2762 | 0 | { |
2763 | 0 | unsigned long l; |
2764 | |
|
2765 | 0 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) |
2766 | 0 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) |
2767 | 0 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) |
2768 | 0 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); |
2769 | 0 | H_PUT_32 (abfd, l, ex->info); |
2770 | 0 | H_PUT_32 (abfd, in->konst, ex->konst); |
2771 | 0 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); |
2772 | 0 | } |
2773 | | |
2774 | | /* A .reginfo section holds a single Elf32_RegInfo structure. These |
2775 | | routines swap this structure in and out. They are used outside of |
2776 | | BFD, so they are globally visible. */ |
2777 | | |
2778 | | void |
2779 | | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
2780 | | Elf32_RegInfo *in) |
2781 | 48 | { |
2782 | 48 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
2783 | 48 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
2784 | 48 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
2785 | 48 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
2786 | 48 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
2787 | 48 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); |
2788 | 48 | } |
2789 | | |
2790 | | void |
2791 | | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
2792 | | Elf32_External_RegInfo *ex) |
2793 | 0 | { |
2794 | 0 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
2795 | 0 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
2796 | 0 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
2797 | 0 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
2798 | 0 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
2799 | 0 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); |
2800 | 0 | } |
2801 | | |
2802 | | /* In the 64 bit ABI, the .MIPS.options section holds register |
2803 | | information in an Elf64_Reginfo structure. These routines swap |
2804 | | them in and out. They are globally visible because they are used |
2805 | | outside of BFD. These routines are here so that gas can call them |
2806 | | without worrying about whether the 64 bit ABI has been included. */ |
2807 | | |
2808 | | void |
2809 | | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
2810 | | Elf64_Internal_RegInfo *in) |
2811 | 2.08k | { |
2812 | 2.08k | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
2813 | 2.08k | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); |
2814 | 2.08k | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
2815 | 2.08k | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
2816 | 2.08k | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
2817 | 2.08k | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
2818 | 2.08k | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); |
2819 | 2.08k | } |
2820 | | |
2821 | | void |
2822 | | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
2823 | | Elf64_External_RegInfo *ex) |
2824 | 0 | { |
2825 | 0 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
2826 | 0 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); |
2827 | 0 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
2828 | 0 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
2829 | 0 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
2830 | 0 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
2831 | 0 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); |
2832 | 0 | } |
2833 | | |
2834 | | /* Swap in an options header. */ |
2835 | | |
2836 | | void |
2837 | | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
2838 | | Elf_Internal_Options *in) |
2839 | 7.75k | { |
2840 | 7.75k | in->kind = H_GET_8 (abfd, ex->kind); |
2841 | 7.75k | in->size = H_GET_8 (abfd, ex->size); |
2842 | 7.75k | in->section = H_GET_16 (abfd, ex->section); |
2843 | 7.75k | in->info = H_GET_32 (abfd, ex->info); |
2844 | 7.75k | } |
2845 | | |
2846 | | /* Swap out an options header. */ |
2847 | | |
2848 | | void |
2849 | | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
2850 | | Elf_External_Options *ex) |
2851 | 0 | { |
2852 | 0 | H_PUT_8 (abfd, in->kind, ex->kind); |
2853 | 0 | H_PUT_8 (abfd, in->size, ex->size); |
2854 | 0 | H_PUT_16 (abfd, in->section, ex->section); |
2855 | 0 | H_PUT_32 (abfd, in->info, ex->info); |
2856 | 0 | } |
2857 | | |
2858 | | /* Swap in an abiflags structure. */ |
2859 | | |
2860 | | void |
2861 | | bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, |
2862 | | const Elf_External_ABIFlags_v0 *ex, |
2863 | | Elf_Internal_ABIFlags_v0 *in) |
2864 | 0 | { |
2865 | 0 | in->version = H_GET_16 (abfd, ex->version); |
2866 | 0 | in->isa_level = H_GET_8 (abfd, ex->isa_level); |
2867 | 0 | in->isa_rev = H_GET_8 (abfd, ex->isa_rev); |
2868 | 0 | in->gpr_size = H_GET_8 (abfd, ex->gpr_size); |
2869 | 0 | in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); |
2870 | 0 | in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); |
2871 | 0 | in->fp_abi = H_GET_8 (abfd, ex->fp_abi); |
2872 | 0 | in->isa_ext = H_GET_32 (abfd, ex->isa_ext); |
2873 | 0 | in->ases = H_GET_32 (abfd, ex->ases); |
2874 | 0 | in->flags1 = H_GET_32 (abfd, ex->flags1); |
2875 | 0 | in->flags2 = H_GET_32 (abfd, ex->flags2); |
2876 | 0 | } |
2877 | | |
2878 | | /* Swap out an abiflags structure. */ |
2879 | | |
2880 | | void |
2881 | | bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, |
2882 | | const Elf_Internal_ABIFlags_v0 *in, |
2883 | | Elf_External_ABIFlags_v0 *ex) |
2884 | 0 | { |
2885 | 0 | H_PUT_16 (abfd, in->version, ex->version); |
2886 | 0 | H_PUT_8 (abfd, in->isa_level, ex->isa_level); |
2887 | 0 | H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); |
2888 | 0 | H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); |
2889 | 0 | H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); |
2890 | 0 | H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); |
2891 | 0 | H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); |
2892 | 0 | H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); |
2893 | 0 | H_PUT_32 (abfd, in->ases, ex->ases); |
2894 | 0 | H_PUT_32 (abfd, in->flags1, ex->flags1); |
2895 | 0 | H_PUT_32 (abfd, in->flags2, ex->flags2); |
2896 | 0 | } |
2897 | | |
2898 | | /* This function is called via qsort() to sort the dynamic relocation |
2899 | | entries by increasing r_symndx value. */ |
2900 | | |
2901 | | static int |
2902 | | sort_dynamic_relocs (const void *arg1, const void *arg2) |
2903 | 0 | { |
2904 | 0 | Elf_Internal_Rela int_reloc1; |
2905 | 0 | Elf_Internal_Rela int_reloc2; |
2906 | 0 | int diff; |
2907 | |
|
2908 | 0 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
2909 | 0 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); |
2910 | |
|
2911 | 0 | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
2912 | 0 | if (diff != 0) |
2913 | 0 | return diff; |
2914 | | |
2915 | 0 | if (int_reloc1.r_offset < int_reloc2.r_offset) |
2916 | 0 | return -1; |
2917 | 0 | if (int_reloc1.r_offset > int_reloc2.r_offset) |
2918 | 0 | return 1; |
2919 | 0 | return 0; |
2920 | 0 | } |
2921 | | |
2922 | | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
2923 | | |
2924 | | static int |
2925 | | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
2926 | | const void *arg2 ATTRIBUTE_UNUSED) |
2927 | 0 | { |
2928 | 0 | #ifdef BFD64 |
2929 | 0 | Elf_Internal_Rela int_reloc1[3]; |
2930 | 0 | Elf_Internal_Rela int_reloc2[3]; |
2931 | |
|
2932 | 0 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
2933 | 0 | (reldyn_sorting_bfd, arg1, int_reloc1); |
2934 | 0 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
2935 | 0 | (reldyn_sorting_bfd, arg2, int_reloc2); |
2936 | |
|
2937 | 0 | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
2938 | 0 | return -1; |
2939 | 0 | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) |
2940 | 0 | return 1; |
2941 | | |
2942 | 0 | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) |
2943 | 0 | return -1; |
2944 | 0 | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) |
2945 | 0 | return 1; |
2946 | 0 | return 0; |
2947 | | #else |
2948 | | abort (); |
2949 | | #endif |
2950 | 0 | } |
2951 | | |
2952 | | |
2953 | | /* This routine is used to write out ECOFF debugging external symbol |
2954 | | information. It is called via mips_elf_link_hash_traverse. The |
2955 | | ECOFF external symbol information must match the ELF external |
2956 | | symbol information. Unfortunately, at this point we don't know |
2957 | | whether a symbol is required by reloc information, so the two |
2958 | | tables may wind up being different. We must sort out the external |
2959 | | symbol information before we can set the final size of the .mdebug |
2960 | | section, and we must set the size of the .mdebug section before we |
2961 | | can relocate any sections, and we can't know which symbols are |
2962 | | required by relocation until we relocate the sections. |
2963 | | Fortunately, it is relatively unlikely that any symbol will be |
2964 | | stripped but required by a reloc. In particular, it can not happen |
2965 | | when generating a final executable. */ |
2966 | | |
2967 | | static bool |
2968 | | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
2969 | 0 | { |
2970 | 0 | struct extsym_info *einfo = data; |
2971 | 0 | bool strip; |
2972 | 0 | asection *sec, *output_section; |
2973 | |
|
2974 | 0 | if (h->root.indx == -2) |
2975 | 0 | strip = false; |
2976 | 0 | else if ((h->root.def_dynamic |
2977 | 0 | || h->root.ref_dynamic |
2978 | 0 | || h->root.type == bfd_link_hash_new) |
2979 | 0 | && !h->root.def_regular |
2980 | 0 | && !h->root.ref_regular) |
2981 | 0 | strip = true; |
2982 | 0 | else if (einfo->info->strip == strip_all |
2983 | 0 | || (einfo->info->strip == strip_some |
2984 | 0 | && bfd_hash_lookup (einfo->info->keep_hash, |
2985 | 0 | h->root.root.root.string, |
2986 | 0 | false, false) == NULL)) |
2987 | 0 | strip = true; |
2988 | 0 | else |
2989 | 0 | strip = false; |
2990 | |
|
2991 | 0 | if (strip) |
2992 | 0 | return true; |
2993 | | |
2994 | 0 | if (h->esym.ifd == -2) |
2995 | 0 | { |
2996 | 0 | h->esym.jmptbl = 0; |
2997 | 0 | h->esym.cobol_main = 0; |
2998 | 0 | h->esym.weakext = 0; |
2999 | 0 | h->esym.reserved = 0; |
3000 | 0 | h->esym.ifd = ifdNil; |
3001 | 0 | h->esym.asym.value = 0; |
3002 | 0 | h->esym.asym.st = stGlobal; |
3003 | |
|
3004 | 0 | if (h->root.root.type == bfd_link_hash_undefined |
3005 | 0 | || h->root.root.type == bfd_link_hash_undefweak) |
3006 | 0 | { |
3007 | 0 | const char *name; |
3008 | | |
3009 | | /* Use undefined class. Also, set class and type for some |
3010 | | special symbols. */ |
3011 | 0 | name = h->root.root.root.string; |
3012 | 0 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
3013 | 0 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
3014 | 0 | { |
3015 | 0 | h->esym.asym.sc = scData; |
3016 | 0 | h->esym.asym.st = stLabel; |
3017 | 0 | h->esym.asym.value = 0; |
3018 | 0 | } |
3019 | 0 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
3020 | 0 | { |
3021 | 0 | h->esym.asym.sc = scAbs; |
3022 | 0 | h->esym.asym.st = stLabel; |
3023 | 0 | h->esym.asym.value = |
3024 | 0 | mips_elf_hash_table (einfo->info)->procedure_count; |
3025 | 0 | } |
3026 | 0 | else |
3027 | 0 | h->esym.asym.sc = scUndefined; |
3028 | 0 | } |
3029 | 0 | else if (h->root.root.type != bfd_link_hash_defined |
3030 | 0 | && h->root.root.type != bfd_link_hash_defweak) |
3031 | 0 | h->esym.asym.sc = scAbs; |
3032 | 0 | else |
3033 | 0 | { |
3034 | 0 | const char *name; |
3035 | |
|
3036 | 0 | sec = h->root.root.u.def.section; |
3037 | 0 | output_section = sec->output_section; |
3038 | | |
3039 | | /* When making a shared library and symbol h is the one from |
3040 | | the another shared library, OUTPUT_SECTION may be null. */ |
3041 | 0 | if (output_section == NULL) |
3042 | 0 | h->esym.asym.sc = scUndefined; |
3043 | 0 | else |
3044 | 0 | { |
3045 | 0 | name = bfd_section_name (output_section); |
3046 | |
|
3047 | 0 | if (strcmp (name, ".text") == 0) |
3048 | 0 | h->esym.asym.sc = scText; |
3049 | 0 | else if (strcmp (name, ".data") == 0) |
3050 | 0 | h->esym.asym.sc = scData; |
3051 | 0 | else if (strcmp (name, ".sdata") == 0) |
3052 | 0 | h->esym.asym.sc = scSData; |
3053 | 0 | else if (strcmp (name, ".rodata") == 0 |
3054 | 0 | || strcmp (name, ".rdata") == 0) |
3055 | 0 | h->esym.asym.sc = scRData; |
3056 | 0 | else if (strcmp (name, ".bss") == 0) |
3057 | 0 | h->esym.asym.sc = scBss; |
3058 | 0 | else if (strcmp (name, ".sbss") == 0) |
3059 | 0 | h->esym.asym.sc = scSBss; |
3060 | 0 | else if (strcmp (name, ".init") == 0) |
3061 | 0 | h->esym.asym.sc = scInit; |
3062 | 0 | else if (strcmp (name, ".fini") == 0) |
3063 | 0 | h->esym.asym.sc = scFini; |
3064 | 0 | else |
3065 | 0 | h->esym.asym.sc = scAbs; |
3066 | 0 | } |
3067 | 0 | } |
3068 | |
|
3069 | 0 | h->esym.asym.reserved = 0; |
3070 | 0 | h->esym.asym.index = indexNil; |
3071 | 0 | } |
3072 | |
|
3073 | 0 | if (h->root.root.type == bfd_link_hash_common) |
3074 | 0 | h->esym.asym.value = h->root.root.u.c.size; |
3075 | 0 | else if (h->root.root.type == bfd_link_hash_defined |
3076 | 0 | || h->root.root.type == bfd_link_hash_defweak) |
3077 | 0 | { |
3078 | 0 | if (h->esym.asym.sc == scCommon) |
3079 | 0 | h->esym.asym.sc = scBss; |
3080 | 0 | else if (h->esym.asym.sc == scSCommon) |
3081 | 0 | h->esym.asym.sc = scSBss; |
3082 | |
|
3083 | 0 | sec = h->root.root.u.def.section; |
3084 | 0 | output_section = sec->output_section; |
3085 | 0 | if (output_section != NULL) |
3086 | 0 | h->esym.asym.value = (h->root.root.u.def.value |
3087 | 0 | + sec->output_offset |
3088 | 0 | + output_section->vma); |
3089 | 0 | else |
3090 | 0 | h->esym.asym.value = 0; |
3091 | 0 | } |
3092 | 0 | else |
3093 | 0 | { |
3094 | 0 | struct mips_elf_link_hash_entry *hd = h; |
3095 | |
|
3096 | 0 | while (hd->root.root.type == bfd_link_hash_indirect) |
3097 | 0 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
3098 | |
|
3099 | 0 | if (hd->needs_lazy_stub) |
3100 | 0 | { |
3101 | 0 | BFD_ASSERT (hd->root.plt.plist != NULL); |
3102 | 0 | BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); |
3103 | | /* Set type and value for a symbol with a function stub. */ |
3104 | 0 | h->esym.asym.st = stProc; |
3105 | 0 | sec = hd->root.root.u.def.section; |
3106 | 0 | if (sec == NULL) |
3107 | 0 | h->esym.asym.value = 0; |
3108 | 0 | else |
3109 | 0 | { |
3110 | 0 | output_section = sec->output_section; |
3111 | 0 | if (output_section != NULL) |
3112 | 0 | h->esym.asym.value = (hd->root.plt.plist->stub_offset |
3113 | 0 | + sec->output_offset |
3114 | 0 | + output_section->vma); |
3115 | 0 | else |
3116 | 0 | h->esym.asym.value = 0; |
3117 | 0 | } |
3118 | 0 | } |
3119 | 0 | } |
3120 | |
|
3121 | 0 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, |
3122 | 0 | h->root.root.root.string, |
3123 | 0 | &h->esym)) |
3124 | 0 | { |
3125 | 0 | einfo->failed = true; |
3126 | 0 | return false; |
3127 | 0 | } |
3128 | | |
3129 | 0 | return true; |
3130 | 0 | } |
3131 | | |
3132 | | /* A comparison routine used to sort .gptab entries. */ |
3133 | | |
3134 | | static int |
3135 | | gptab_compare (const void *p1, const void *p2) |
3136 | 0 | { |
3137 | 0 | const Elf32_gptab *a1 = p1; |
3138 | 0 | const Elf32_gptab *a2 = p2; |
3139 | |
|
3140 | 0 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; |
3141 | 0 | } |
3142 | | |
3143 | | /* Functions to manage the got entry hash table. */ |
3144 | | |
3145 | | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit |
3146 | | hash number. */ |
3147 | | |
3148 | | static inline hashval_t |
3149 | | mips_elf_hash_bfd_vma (bfd_vma addr) |
3150 | 0 | { |
3151 | 0 | #ifdef BFD64 |
3152 | 0 | return addr + (addr >> 32); |
3153 | | #else |
3154 | | return addr; |
3155 | | #endif |
3156 | 0 | } |
3157 | | |
3158 | | static hashval_t |
3159 | | mips_elf_got_entry_hash (const void *entry_) |
3160 | 0 | { |
3161 | 0 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; |
3162 | |
|
3163 | 0 | return (entry->symndx |
3164 | 0 | + ((entry->tls_type == GOT_TLS_LDM) << 18) |
3165 | 0 | + (entry->tls_type == GOT_TLS_LDM ? 0 |
3166 | 0 | : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
3167 | 0 | : entry->symndx >= 0 ? (entry->abfd->id |
3168 | 0 | + mips_elf_hash_bfd_vma (entry->d.addend)) |
3169 | 0 | : entry->d.h->root.root.root.hash)); |
3170 | 0 | } |
3171 | | |
3172 | | static int |
3173 | | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
3174 | 0 | { |
3175 | 0 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; |
3176 | 0 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; |
3177 | |
|
3178 | 0 | return (e1->symndx == e2->symndx |
3179 | 0 | && e1->tls_type == e2->tls_type |
3180 | 0 | && (e1->tls_type == GOT_TLS_LDM ? true |
3181 | 0 | : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address |
3182 | 0 | : e1->symndx >= 0 ? (e1->abfd == e2->abfd |
3183 | 0 | && e1->d.addend == e2->d.addend) |
3184 | 0 | : e2->abfd && e1->d.h == e2->d.h)); |
3185 | 0 | } |
3186 | | |
3187 | | static hashval_t |
3188 | | mips_got_page_ref_hash (const void *ref_) |
3189 | 0 | { |
3190 | 0 | const struct mips_got_page_ref *ref; |
3191 | |
|
3192 | 0 | ref = (const struct mips_got_page_ref *) ref_; |
3193 | 0 | return ((ref->symndx >= 0 |
3194 | 0 | ? (hashval_t) (ref->u.abfd->id + ref->symndx) |
3195 | 0 | : ref->u.h->root.root.root.hash) |
3196 | 0 | + mips_elf_hash_bfd_vma (ref->addend)); |
3197 | 0 | } |
3198 | | |
3199 | | static int |
3200 | | mips_got_page_ref_eq (const void *ref1_, const void *ref2_) |
3201 | 0 | { |
3202 | 0 | const struct mips_got_page_ref *ref1, *ref2; |
3203 | |
|
3204 | 0 | ref1 = (const struct mips_got_page_ref *) ref1_; |
3205 | 0 | ref2 = (const struct mips_got_page_ref *) ref2_; |
3206 | 0 | return (ref1->symndx == ref2->symndx |
3207 | 0 | && (ref1->symndx < 0 |
3208 | 0 | ? ref1->u.h == ref2->u.h |
3209 | 0 | : ref1->u.abfd == ref2->u.abfd) |
3210 | 0 | && ref1->addend == ref2->addend); |
3211 | 0 | } |
3212 | | |
3213 | | static hashval_t |
3214 | | mips_got_page_entry_hash (const void *entry_) |
3215 | 0 | { |
3216 | 0 | const struct mips_got_page_entry *entry; |
3217 | |
|
3218 | 0 | entry = (const struct mips_got_page_entry *) entry_; |
3219 | 0 | return entry->sec->id; |
3220 | 0 | } |
3221 | | |
3222 | | static int |
3223 | | mips_got_page_entry_eq (const void *entry1_, const void *entry2_) |
3224 | 0 | { |
3225 | 0 | const struct mips_got_page_entry *entry1, *entry2; |
3226 | |
|
3227 | 0 | entry1 = (const struct mips_got_page_entry *) entry1_; |
3228 | 0 | entry2 = (const struct mips_got_page_entry *) entry2_; |
3229 | 0 | return entry1->sec == entry2->sec; |
3230 | 0 | } |
3231 | | |
3232 | | /* Create and return a new mips_got_info structure. */ |
3233 | | |
3234 | | static struct mips_got_info * |
3235 | | mips_elf_create_got_info (bfd *abfd) |
3236 | 0 | { |
3237 | 0 | struct mips_got_info *g; |
3238 | |
|
3239 | 0 | g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); |
3240 | 0 | if (g == NULL) |
3241 | 0 | return NULL; |
3242 | | |
3243 | 0 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
3244 | 0 | mips_elf_got_entry_eq, NULL); |
3245 | 0 | if (g->got_entries == NULL) |
3246 | 0 | return NULL; |
3247 | | |
3248 | 0 | g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, |
3249 | 0 | mips_got_page_ref_eq, NULL); |
3250 | 0 | if (g->got_page_refs == NULL) |
3251 | 0 | return NULL; |
3252 | | |
3253 | 0 | return g; |
3254 | 0 | } |
3255 | | |
3256 | | /* Return the GOT info for input bfd ABFD, trying to create a new one if |
3257 | | CREATE_P and if ABFD doesn't already have a GOT. */ |
3258 | | |
3259 | | static struct mips_got_info * |
3260 | | mips_elf_bfd_got (bfd *abfd, bool create_p) |
3261 | 0 | { |
3262 | 0 | struct mips_elf_obj_tdata *tdata; |
3263 | |
|
3264 | 0 | if (!is_mips_elf (abfd)) |
3265 | 0 | return NULL; |
3266 | | |
3267 | 0 | tdata = mips_elf_tdata (abfd); |
3268 | 0 | if (!tdata->got && create_p) |
3269 | 0 | tdata->got = mips_elf_create_got_info (abfd); |
3270 | 0 | return tdata->got; |
3271 | 0 | } |
3272 | | |
3273 | | /* Record that ABFD should use output GOT G. */ |
3274 | | |
3275 | | static void |
3276 | | mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) |
3277 | 0 | { |
3278 | 0 | struct mips_elf_obj_tdata *tdata; |
3279 | |
|
3280 | 0 | BFD_ASSERT (is_mips_elf (abfd)); |
3281 | 0 | tdata = mips_elf_tdata (abfd); |
3282 | 0 | if (tdata->got) |
3283 | 0 | { |
3284 | | /* The GOT structure itself and the hash table entries are |
3285 | | allocated to a bfd, but the hash tables aren't. */ |
3286 | 0 | htab_delete (tdata->got->got_entries); |
3287 | 0 | htab_delete (tdata->got->got_page_refs); |
3288 | 0 | if (tdata->got->got_page_entries) |
3289 | 0 | htab_delete (tdata->got->got_page_entries); |
3290 | 0 | } |
3291 | 0 | tdata->got = g; |
3292 | 0 | } |
3293 | | |
3294 | | /* Return the dynamic relocation section. If it doesn't exist, try to |
3295 | | create a new it if CREATE_P, otherwise return NULL. Also return NULL |
3296 | | if creation fails. */ |
3297 | | |
3298 | | static asection * |
3299 | | mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p) |
3300 | 0 | { |
3301 | 0 | const char *dname; |
3302 | 0 | asection *sreloc; |
3303 | 0 | bfd *dynobj; |
3304 | |
|
3305 | 0 | dname = MIPS_ELF_REL_DYN_NAME (info); |
3306 | 0 | dynobj = elf_hash_table (info)->dynobj; |
3307 | 0 | sreloc = bfd_get_linker_section (dynobj, dname); |
3308 | 0 | if (sreloc == NULL && create_p) |
3309 | 0 | { |
3310 | 0 | sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, |
3311 | 0 | (SEC_ALLOC |
3312 | 0 | | SEC_LOAD |
3313 | 0 | | SEC_HAS_CONTENTS |
3314 | 0 | | SEC_IN_MEMORY |
3315 | 0 | | SEC_LINKER_CREATED |
3316 | 0 | | SEC_READONLY)); |
3317 | 0 | if (sreloc == NULL |
3318 | 0 | || !bfd_set_section_alignment (sreloc, |
3319 | 0 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
3320 | 0 | return NULL; |
3321 | 0 | } |
3322 | 0 | return sreloc; |
3323 | 0 | } |
3324 | | |
3325 | | /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ |
3326 | | |
3327 | | static int |
3328 | | mips_elf_reloc_tls_type (unsigned int r_type) |
3329 | 0 | { |
3330 | 0 | if (tls_gd_reloc_p (r_type)) |
3331 | 0 | return GOT_TLS_GD; |
3332 | | |
3333 | 0 | if (tls_ldm_reloc_p (r_type)) |
3334 | 0 | return GOT_TLS_LDM; |
3335 | | |
3336 | 0 | if (tls_gottprel_reloc_p (r_type)) |
3337 | 0 | return GOT_TLS_IE; |
3338 | | |
3339 | 0 | return GOT_TLS_NONE; |
3340 | 0 | } |
3341 | | |
3342 | | /* Return the number of GOT slots needed for GOT TLS type TYPE. */ |
3343 | | |
3344 | | static int |
3345 | | mips_tls_got_entries (unsigned int type) |
3346 | 0 | { |
3347 | 0 | switch (type) |
3348 | 0 | { |
3349 | 0 | case GOT_TLS_GD: |
3350 | 0 | case GOT_TLS_LDM: |
3351 | 0 | return 2; |
3352 | | |
3353 | 0 | case GOT_TLS_IE: |
3354 | 0 | return 1; |
3355 | | |
3356 | 0 | case GOT_TLS_NONE: |
3357 | 0 | return 0; |
3358 | 0 | } |
3359 | 0 | abort (); |
3360 | 0 | } |
3361 | | |
3362 | | /* Count the number of relocations needed for a TLS GOT entry, with |
3363 | | access types from TLS_TYPE, and symbol H (or a local symbol if H |
3364 | | is NULL). */ |
3365 | | |
3366 | | static int |
3367 | | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, |
3368 | | struct elf_link_hash_entry *h) |
3369 | 0 | { |
3370 | 0 | int indx = 0; |
3371 | 0 | bool need_relocs = false; |
3372 | 0 | bool dyn = elf_hash_table (info)->dynamic_sections_created; |
3373 | |
|
3374 | 0 | if (h != NULL |
3375 | 0 | && h->dynindx != -1 |
3376 | 0 | && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
3377 | 0 | && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) |
3378 | 0 | indx = h->dynindx; |
3379 | |
|
3380 | 0 | if ((bfd_link_dll (info) || indx != 0) |
3381 | 0 | && (h == NULL |
3382 | 0 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
3383 | 0 | || h->root.type != bfd_link_hash_undefweak)) |
3384 | 0 | need_relocs = true; |
3385 | |
|
3386 | 0 | if (!need_relocs) |
3387 | 0 | return 0; |
3388 | | |
3389 | 0 | switch (tls_type) |
3390 | 0 | { |
3391 | 0 | case GOT_TLS_GD: |
3392 | 0 | return indx != 0 ? 2 : 1; |
3393 | | |
3394 | 0 | case GOT_TLS_IE: |
3395 | 0 | return 1; |
3396 | | |
3397 | 0 | case GOT_TLS_LDM: |
3398 | 0 | return bfd_link_dll (info) ? 1 : 0; |
3399 | | |
3400 | 0 | default: |
3401 | 0 | return 0; |
3402 | 0 | } |
3403 | 0 | } |
3404 | | |
3405 | | /* Add the number of GOT entries and TLS relocations required by ENTRY |
3406 | | to G. */ |
3407 | | |
3408 | | static void |
3409 | | mips_elf_count_got_entry (struct bfd_link_info *info, |
3410 | | struct mips_got_info *g, |
3411 | | struct mips_got_entry *entry) |
3412 | 0 | { |
3413 | 0 | if (entry->tls_type) |
3414 | 0 | { |
3415 | 0 | g->tls_gotno += mips_tls_got_entries (entry->tls_type); |
3416 | 0 | g->relocs += mips_tls_got_relocs (info, entry->tls_type, |
3417 | 0 | entry->symndx < 0 |
3418 | 0 | ? &entry->d.h->root : NULL); |
3419 | 0 | } |
3420 | 0 | else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) |
3421 | 0 | g->local_gotno += 1; |
3422 | 0 | else |
3423 | 0 | g->global_gotno += 1; |
3424 | 0 | } |
3425 | | |
3426 | | /* Output a simple dynamic relocation into SRELOC. */ |
3427 | | |
3428 | | static void |
3429 | | mips_elf_output_dynamic_relocation (bfd *output_bfd, |
3430 | | asection *sreloc, |
3431 | | unsigned long reloc_index, |
3432 | | unsigned long indx, |
3433 | | int r_type, |
3434 | | bfd_vma offset) |
3435 | 0 | { |
3436 | 0 | Elf_Internal_Rela rel[3]; |
3437 | |
|
3438 | 0 | memset (rel, 0, sizeof (rel)); |
3439 | |
|
3440 | 0 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); |
3441 | 0 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
3442 | |
|
3443 | 0 | if (ABI_64_P (output_bfd)) |
3444 | 0 | { |
3445 | 0 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
3446 | 0 | (output_bfd, &rel[0], |
3447 | 0 | (sreloc->contents |
3448 | 0 | + reloc_index * sizeof (Elf64_Mips_External_Rel))); |
3449 | 0 | } |
3450 | 0 | else |
3451 | 0 | bfd_elf32_swap_reloc_out |
3452 | 0 | (output_bfd, &rel[0], |
3453 | 0 | (sreloc->contents |
3454 | 0 | + reloc_index * sizeof (Elf32_External_Rel))); |
3455 | 0 | } |
3456 | | |
3457 | | /* Initialize a set of TLS GOT entries for one symbol. */ |
3458 | | |
3459 | | static void |
3460 | | mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, |
3461 | | struct mips_got_entry *entry, |
3462 | | struct mips_elf_link_hash_entry *h, |
3463 | | bfd_vma value) |
3464 | 0 | { |
3465 | 0 | bool dyn = elf_hash_table (info)->dynamic_sections_created; |
3466 | 0 | struct mips_elf_link_hash_table *htab; |
3467 | 0 | int indx; |
3468 | 0 | asection *sreloc, *sgot; |
3469 | 0 | bfd_vma got_offset, got_offset2; |
3470 | 0 | bool need_relocs = false; |
3471 | |
|
3472 | 0 | htab = mips_elf_hash_table (info); |
3473 | 0 | if (htab == NULL) |
3474 | 0 | return; |
3475 | | |
3476 | 0 | sgot = htab->root.sgot; |
3477 | |
|
3478 | 0 | indx = 0; |
3479 | 0 | if (h != NULL |
3480 | 0 | && h->root.dynindx != -1 |
3481 | 0 | && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root) |
3482 | 0 | && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) |
3483 | 0 | indx = h->root.dynindx; |
3484 | |
|
3485 | 0 | if (entry->tls_initialized) |
3486 | 0 | return; |
3487 | | |
3488 | 0 | if ((bfd_link_dll (info) || indx != 0) |
3489 | 0 | && (h == NULL |
3490 | 0 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT |
3491 | 0 | || h->root.type != bfd_link_hash_undefweak)) |
3492 | 0 | need_relocs = true; |
3493 | | |
3494 | | /* MINUS_ONE means the symbol is not defined in this object. It may not |
3495 | | be defined at all; assume that the value doesn't matter in that |
3496 | | case. Otherwise complain if we would use the value. */ |
3497 | 0 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) |
3498 | 0 | || h->root.root.type == bfd_link_hash_undefweak); |
3499 | | |
3500 | | /* Emit necessary relocations. */ |
3501 | 0 | sreloc = mips_elf_rel_dyn_section (info, false); |
3502 | 0 | got_offset = entry->gotidx; |
3503 | |
|
3504 | 0 | switch (entry->tls_type) |
3505 | 0 | { |
3506 | 0 | case GOT_TLS_GD: |
3507 | | /* General Dynamic. */ |
3508 | 0 | got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); |
3509 | |
|
3510 | 0 | if (need_relocs) |
3511 | 0 | { |
3512 | 0 | mips_elf_output_dynamic_relocation |
3513 | 0 | (abfd, sreloc, sreloc->reloc_count++, indx, |
3514 | 0 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
3515 | 0 | sgot->output_offset + sgot->output_section->vma + got_offset); |
3516 | |
|
3517 | 0 | if (indx) |
3518 | 0 | mips_elf_output_dynamic_relocation |
3519 | 0 | (abfd, sreloc, sreloc->reloc_count++, indx, |
3520 | 0 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, |
3521 | 0 | sgot->output_offset + sgot->output_section->vma + got_offset2); |
3522 | 0 | else |
3523 | 0 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
3524 | 0 | sgot->contents + got_offset2); |
3525 | 0 | } |
3526 | 0 | else |
3527 | 0 | { |
3528 | 0 | MIPS_ELF_PUT_WORD (abfd, 1, |
3529 | 0 | sgot->contents + got_offset); |
3530 | 0 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
3531 | 0 | sgot->contents + got_offset2); |
3532 | 0 | } |
3533 | 0 | break; |
3534 | | |
3535 | 0 | case GOT_TLS_IE: |
3536 | | /* Initial Exec model. */ |
3537 | 0 | if (need_relocs) |
3538 | 0 | { |
3539 | 0 | if (indx == 0) |
3540 | 0 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, |
3541 | 0 | sgot->contents + got_offset); |
3542 | 0 | else |
3543 | 0 | MIPS_ELF_PUT_WORD (abfd, 0, |
3544 | 0 | sgot->contents + got_offset); |
3545 | |
|
3546 | 0 | mips_elf_output_dynamic_relocation |
3547 | 0 | (abfd, sreloc, sreloc->reloc_count++, indx, |
3548 | 0 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, |
3549 | 0 | sgot->output_offset + sgot->output_section->vma + got_offset); |
3550 | 0 | } |
3551 | 0 | else |
3552 | 0 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), |
3553 | 0 | sgot->contents + got_offset); |
3554 | 0 | break; |
3555 | | |
3556 | 0 | case GOT_TLS_LDM: |
3557 | | /* The initial offset is zero, and the LD offsets will include the |
3558 | | bias by DTP_OFFSET. */ |
3559 | 0 | MIPS_ELF_PUT_WORD (abfd, 0, |
3560 | 0 | sgot->contents + got_offset |
3561 | 0 | + MIPS_ELF_GOT_SIZE (abfd)); |
3562 | |
|
3563 | 0 | if (!bfd_link_dll (info)) |
3564 | 0 | MIPS_ELF_PUT_WORD (abfd, 1, |
3565 | 0 | sgot->contents + got_offset); |
3566 | 0 | else |
3567 | 0 | mips_elf_output_dynamic_relocation |
3568 | 0 | (abfd, sreloc, sreloc->reloc_count++, indx, |
3569 | 0 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
3570 | 0 | sgot->output_offset + sgot->output_section->vma + got_offset); |
3571 | 0 | break; |
3572 | | |
3573 | 0 | default: |
3574 | 0 | abort (); |
3575 | 0 | } |
3576 | | |
3577 | 0 | entry->tls_initialized = true; |
3578 | 0 | } |
3579 | | |
3580 | | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
3581 | | for global symbol H. .got.plt comes before the GOT, so the offset |
3582 | | will be negative. */ |
3583 | | |
3584 | | static bfd_vma |
3585 | | mips_elf_gotplt_index (struct bfd_link_info *info, |
3586 | | struct elf_link_hash_entry *h) |
3587 | 0 | { |
3588 | 0 | bfd_vma got_address, got_value; |
3589 | 0 | struct mips_elf_link_hash_table *htab; |
3590 | |
|
3591 | 0 | htab = mips_elf_hash_table (info); |
3592 | 0 | BFD_ASSERT (htab != NULL); |
3593 | |
|
3594 | 0 | BFD_ASSERT (h->plt.plist != NULL); |
3595 | 0 | BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); |
3596 | | |
3597 | | /* Calculate the address of the associated .got.plt entry. */ |
3598 | 0 | got_address = (htab->root.sgotplt->output_section->vma |
3599 | 0 | + htab->root.sgotplt->output_offset |
3600 | 0 | + (h->plt.plist->gotplt_index |
3601 | 0 | * MIPS_ELF_GOT_SIZE (info->output_bfd))); |
3602 | | |
3603 | | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ |
3604 | 0 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma |
3605 | 0 | + htab->root.hgot->root.u.def.section->output_offset |
3606 | 0 | + htab->root.hgot->root.u.def.value); |
3607 | |
|
3608 | 0 | return got_address - got_value; |
3609 | 0 | } |
3610 | | |
3611 | | /* Return the GOT offset for address VALUE. If there is not yet a GOT |
3612 | | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
3613 | | create a TLS GOT entry instead. Return -1 if no satisfactory GOT |
3614 | | offset can be found. */ |
3615 | | |
3616 | | static bfd_vma |
3617 | | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
3618 | | bfd_vma value, unsigned long r_symndx, |
3619 | | struct mips_elf_link_hash_entry *h, int r_type) |
3620 | 0 | { |
3621 | 0 | struct mips_elf_link_hash_table *htab; |
3622 | 0 | struct mips_got_entry *entry; |
3623 | |
|
3624 | 0 | htab = mips_elf_hash_table (info); |
3625 | 0 | BFD_ASSERT (htab != NULL); |
3626 | |
|
3627 | 0 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, |
3628 | 0 | r_symndx, h, r_type); |
3629 | 0 | if (!entry) |
3630 | 0 | return MINUS_ONE; |
3631 | | |
3632 | 0 | if (entry->tls_type) |
3633 | 0 | mips_elf_initialize_tls_slots (abfd, info, entry, h, value); |
3634 | 0 | return entry->gotidx; |
3635 | 0 | } |
3636 | | |
3637 | | /* Return the GOT index of global symbol H in the primary GOT. */ |
3638 | | |
3639 | | static bfd_vma |
3640 | | mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, |
3641 | | struct elf_link_hash_entry *h) |
3642 | 0 | { |
3643 | 0 | struct mips_elf_link_hash_table *htab; |
3644 | 0 | long global_got_dynindx; |
3645 | 0 | struct mips_got_info *g; |
3646 | 0 | bfd_vma got_index; |
3647 | |
|
3648 | 0 | htab = mips_elf_hash_table (info); |
3649 | 0 | BFD_ASSERT (htab != NULL); |
3650 | |
|
3651 | 0 | global_got_dynindx = 0; |
3652 | 0 | if (htab->global_gotsym != NULL) |
3653 | 0 | global_got_dynindx = htab->global_gotsym->dynindx; |
3654 | | |
3655 | | /* Once we determine the global GOT entry with the lowest dynamic |
3656 | | symbol table index, we must put all dynamic symbols with greater |
3657 | | indices into the primary GOT. That makes it easy to calculate the |
3658 | | GOT offset. */ |
3659 | 0 | BFD_ASSERT (h->dynindx >= global_got_dynindx); |
3660 | 0 | g = mips_elf_bfd_got (obfd, false); |
3661 | 0 | got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) |
3662 | 0 | * MIPS_ELF_GOT_SIZE (obfd)); |
3663 | 0 | BFD_ASSERT (got_index < htab->root.sgot->size); |
3664 | |
|
3665 | 0 | return got_index; |
3666 | 0 | } |
3667 | | |
3668 | | /* Return the GOT index for the global symbol indicated by H, which is |
3669 | | referenced by a relocation of type R_TYPE in IBFD. */ |
3670 | | |
3671 | | static bfd_vma |
3672 | | mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, |
3673 | | struct elf_link_hash_entry *h, int r_type) |
3674 | 0 | { |
3675 | 0 | struct mips_elf_link_hash_table *htab; |
3676 | 0 | struct mips_got_info *g; |
3677 | 0 | struct mips_got_entry lookup, *entry; |
3678 | 0 | bfd_vma gotidx; |
3679 | |
|
3680 | 0 | htab = mips_elf_hash_table (info); |
3681 | 0 | BFD_ASSERT (htab != NULL); |
3682 | |
|
3683 | 0 | g = mips_elf_bfd_got (ibfd, false); |
3684 | 0 | BFD_ASSERT (g); |
3685 | |
|
3686 | 0 | lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
3687 | 0 | if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false)) |
3688 | 0 | return mips_elf_primary_global_got_index (obfd, info, h); |
3689 | | |
3690 | 0 | lookup.abfd = ibfd; |
3691 | 0 | lookup.symndx = -1; |
3692 | 0 | lookup.d.h = (struct mips_elf_link_hash_entry *) h; |
3693 | 0 | entry = htab_find (g->got_entries, &lookup); |
3694 | 0 | BFD_ASSERT (entry); |
3695 | |
|
3696 | 0 | gotidx = entry->gotidx; |
3697 | 0 | BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); |
3698 | |
|
3699 | 0 | if (lookup.tls_type) |
3700 | 0 | { |
3701 | 0 | bfd_vma value = MINUS_ONE; |
3702 | |
|
3703 | 0 | if ((h->root.type == bfd_link_hash_defined |
3704 | 0 | || h->root.type == bfd_link_hash_defweak) |
3705 | 0 | && h->root.u.def.section->output_section) |
3706 | 0 | value = (h->root.u.def.value |
3707 | 0 | + h->root.u.def.section->output_offset |
3708 | 0 | + h->root.u.def.section->output_section->vma); |
3709 | |
|
3710 | 0 | mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); |
3711 | 0 | } |
3712 | 0 | return gotidx; |
3713 | 0 | } |
3714 | | |
3715 | | /* Find a GOT page entry that points to within 32KB of VALUE. These |
3716 | | entries are supposed to be placed at small offsets in the GOT, i.e., |
3717 | | within 32KB of GP. Return the index of the GOT entry, or -1 if no |
3718 | | entry could be created. If OFFSETP is nonnull, use it to return the |
3719 | | offset of the GOT entry from VALUE. */ |
3720 | | |
3721 | | static bfd_vma |
3722 | | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
3723 | | bfd_vma value, bfd_vma *offsetp) |
3724 | 0 | { |
3725 | 0 | bfd_vma page, got_index; |
3726 | 0 | struct mips_got_entry *entry; |
3727 | |
|
3728 | 0 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
3729 | 0 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, |
3730 | 0 | NULL, R_MIPS_GOT_PAGE); |
3731 | |
|
3732 | 0 | if (!entry) |
3733 | 0 | return MINUS_ONE; |
3734 | | |
3735 | 0 | got_index = entry->gotidx; |
3736 | |
|
3737 | 0 | if (offsetp) |
3738 | 0 | *offsetp = value - entry->d.address; |
3739 | |
|
3740 | 0 | return got_index; |
3741 | 0 | } |
3742 | | |
3743 | | /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. |
3744 | | EXTERNAL is true if the relocation was originally against a global |
3745 | | symbol that binds locally. */ |
3746 | | |
3747 | | static bfd_vma |
3748 | | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
3749 | | bfd_vma value, bool external) |
3750 | 0 | { |
3751 | 0 | struct mips_got_entry *entry; |
3752 | | |
3753 | | /* GOT16 relocations against local symbols are followed by a LO16 |
3754 | | relocation; those against global symbols are not. Thus if the |
3755 | | symbol was originally local, the GOT16 relocation should load the |
3756 | | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ |
3757 | 0 | if (! external) |
3758 | 0 | value = mips_elf_high (value) << 16; |
3759 | | |
3760 | | /* It doesn't matter whether the original relocation was R_MIPS_GOT16, |
3761 | | R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the |
3762 | | same in all cases. */ |
3763 | 0 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, |
3764 | 0 | NULL, R_MIPS_GOT16); |
3765 | 0 | if (entry) |
3766 | 0 | return entry->gotidx; |
3767 | 0 | else |
3768 | 0 | return MINUS_ONE; |
3769 | 0 | } |
3770 | | |
3771 | | /* Returns the offset for the entry at the INDEXth position |
3772 | | in the GOT. */ |
3773 | | |
3774 | | static bfd_vma |
3775 | | mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, |
3776 | | bfd *input_bfd, bfd_vma got_index) |
3777 | 0 | { |
3778 | 0 | struct mips_elf_link_hash_table *htab; |
3779 | 0 | asection *sgot; |
3780 | 0 | bfd_vma gp; |
3781 | |
|
3782 | 0 | htab = mips_elf_hash_table (info); |
3783 | 0 | BFD_ASSERT (htab != NULL); |
3784 | |
|
3785 | 0 | sgot = htab->root.sgot; |
3786 | 0 | gp = _bfd_get_gp_value (output_bfd) |
3787 | 0 | + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); |
3788 | |
|
3789 | 0 | return sgot->output_section->vma + sgot->output_offset + got_index - gp; |
3790 | 0 | } |
3791 | | |
3792 | | /* Create and return a local GOT entry for VALUE, which was calculated |
3793 | | from a symbol belonging to INPUT_SECTON. Return NULL if it could not |
3794 | | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry |
3795 | | instead. */ |
3796 | | |
3797 | | static struct mips_got_entry * |
3798 | | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
3799 | | bfd *ibfd, bfd_vma value, |
3800 | | unsigned long r_symndx, |
3801 | | struct mips_elf_link_hash_entry *h, |
3802 | | int r_type) |
3803 | 0 | { |
3804 | 0 | struct mips_got_entry lookup, *entry; |
3805 | 0 | void **loc; |
3806 | 0 | struct mips_got_info *g; |
3807 | 0 | struct mips_elf_link_hash_table *htab; |
3808 | 0 | bfd_vma gotidx; |
3809 | |
|
3810 | 0 | htab = mips_elf_hash_table (info); |
3811 | 0 | BFD_ASSERT (htab != NULL); |
3812 | |
|
3813 | 0 | g = mips_elf_bfd_got (ibfd, false); |
3814 | 0 | if (g == NULL) |
3815 | 0 | { |
3816 | 0 | g = mips_elf_bfd_got (abfd, false); |
3817 | 0 | BFD_ASSERT (g != NULL); |
3818 | 0 | } |
3819 | | |
3820 | | /* This function shouldn't be called for symbols that live in the global |
3821 | | area of the GOT. */ |
3822 | 0 | BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); |
3823 | |
|
3824 | 0 | lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
3825 | 0 | if (lookup.tls_type) |
3826 | 0 | { |
3827 | 0 | lookup.abfd = ibfd; |
3828 | 0 | if (tls_ldm_reloc_p (r_type)) |
3829 | 0 | { |
3830 | 0 | lookup.symndx = 0; |
3831 | 0 | lookup.d.addend = 0; |
3832 | 0 | } |
3833 | 0 | else if (h == NULL) |
3834 | 0 | { |
3835 | 0 | lookup.symndx = r_symndx; |
3836 | 0 | lookup.d.addend = 0; |
3837 | 0 | } |
3838 | 0 | else |
3839 | 0 | { |
3840 | 0 | lookup.symndx = -1; |
3841 | 0 | lookup.d.h = h; |
3842 | 0 | } |
3843 | |
|
3844 | 0 | entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); |
3845 | 0 | BFD_ASSERT (entry); |
3846 | |
|
3847 | 0 | gotidx = entry->gotidx; |
3848 | 0 | BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); |
3849 | |
|
3850 | 0 | return entry; |
3851 | 0 | } |
3852 | | |
3853 | 0 | lookup.abfd = NULL; |
3854 | 0 | lookup.symndx = -1; |
3855 | 0 | lookup.d.address = value; |
3856 | 0 | loc = htab_find_slot (g->got_entries, &lookup, INSERT); |
3857 | 0 | if (!loc) |
3858 | 0 | return NULL; |
3859 | | |
3860 | 0 | entry = (struct mips_got_entry *) *loc; |
3861 | 0 | if (entry) |
3862 | 0 | return entry; |
3863 | | |
3864 | 0 | if (g->assigned_low_gotno > g->assigned_high_gotno) |
3865 | 0 | { |
3866 | | /* We didn't allocate enough space in the GOT. */ |
3867 | 0 | _bfd_error_handler |
3868 | 0 | (_("not enough GOT space for local GOT entries")); |
3869 | 0 | bfd_set_error (bfd_error_bad_value); |
3870 | 0 | return NULL; |
3871 | 0 | } |
3872 | | |
3873 | 0 | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); |
3874 | 0 | if (!entry) |
3875 | 0 | return NULL; |
3876 | | |
3877 | 0 | if (got16_reloc_p (r_type) |
3878 | 0 | || call16_reloc_p (r_type) |
3879 | 0 | || got_page_reloc_p (r_type) |
3880 | 0 | || got_disp_reloc_p (r_type)) |
3881 | 0 | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; |
3882 | 0 | else |
3883 | 0 | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; |
3884 | |
|
3885 | 0 | *entry = lookup; |
3886 | 0 | *loc = entry; |
3887 | |
|
3888 | 0 | MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx); |
3889 | | |
3890 | | /* These GOT entries need a dynamic relocation on VxWorks. */ |
3891 | 0 | if (htab->root.target_os == is_vxworks) |
3892 | 0 | { |
3893 | 0 | Elf_Internal_Rela outrel; |
3894 | 0 | asection *s; |
3895 | 0 | bfd_byte *rloc; |
3896 | 0 | bfd_vma got_address; |
3897 | |
|
3898 | 0 | s = mips_elf_rel_dyn_section (info, false); |
3899 | 0 | got_address = (htab->root.sgot->output_section->vma |
3900 | 0 | + htab->root.sgot->output_offset |
3901 | 0 | + entry->gotidx); |
3902 | |
|
3903 | 0 | rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
3904 | 0 | outrel.r_offset = got_address; |
3905 | 0 | outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); |
3906 | 0 | outrel.r_addend = value; |
3907 | 0 | bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); |
3908 | 0 | } |
3909 | |
|
3910 | 0 | return entry; |
3911 | 0 | } |
3912 | | |
3913 | | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
3914 | | The number might be exact or a worst-case estimate, depending on how |
3915 | | much information is available to elf_backend_omit_section_dynsym at |
3916 | | the current linking stage. */ |
3917 | | |
3918 | | static bfd_size_type |
3919 | | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) |
3920 | 0 | { |
3921 | 0 | bfd_size_type count; |
3922 | |
|
3923 | 0 | count = 0; |
3924 | 0 | if (bfd_link_pic (info)) |
3925 | 0 | { |
3926 | 0 | asection *p; |
3927 | 0 | const struct elf_backend_data *bed; |
3928 | |
|
3929 | 0 | bed = get_elf_backend_data (output_bfd); |
3930 | 0 | for (p = output_bfd->sections; p ; p = p->next) |
3931 | 0 | if ((p->flags & SEC_EXCLUDE) == 0 |
3932 | 0 | && (p->flags & SEC_ALLOC) != 0 |
3933 | 0 | && elf_hash_table (info)->dynamic_relocs |
3934 | 0 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) |
3935 | 0 | ++count; |
3936 | 0 | } |
3937 | 0 | return count; |
3938 | 0 | } |
3939 | | |
3940 | | /* Sort the dynamic symbol table so that symbols that need GOT entries |
3941 | | appear towards the end. */ |
3942 | | |
3943 | | static bool |
3944 | | mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) |
3945 | 0 | { |
3946 | 0 | struct mips_elf_link_hash_table *htab; |
3947 | 0 | struct mips_elf_hash_sort_data hsd; |
3948 | 0 | struct mips_got_info *g; |
3949 | |
|
3950 | 0 | htab = mips_elf_hash_table (info); |
3951 | 0 | BFD_ASSERT (htab != NULL); |
3952 | |
|
3953 | 0 | if (htab->root.dynsymcount == 0) |
3954 | 0 | return true; |
3955 | | |
3956 | 0 | g = htab->got_info; |
3957 | 0 | if (g == NULL) |
3958 | 0 | return true; |
3959 | | |
3960 | 0 | hsd.low = NULL; |
3961 | 0 | hsd.max_unref_got_dynindx |
3962 | 0 | = hsd.min_got_dynindx |
3963 | 0 | = (htab->root.dynsymcount - g->reloc_only_gotno); |
3964 | | /* Add 1 to local symbol indices to account for the mandatory NULL entry |
3965 | | at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */ |
3966 | 0 | hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1; |
3967 | 0 | hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1; |
3968 | 0 | hsd.output_bfd = abfd; |
3969 | 0 | if (htab->root.dynobj != NULL |
3970 | 0 | && htab->root.dynamic_sections_created |
3971 | 0 | && info->emit_gnu_hash) |
3972 | 0 | { |
3973 | 0 | asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash"); |
3974 | 0 | BFD_ASSERT (s != NULL); |
3975 | 0 | hsd.mipsxhash = s->contents; |
3976 | 0 | BFD_ASSERT (hsd.mipsxhash != NULL); |
3977 | 0 | } |
3978 | 0 | else |
3979 | 0 | hsd.mipsxhash = NULL; |
3980 | 0 | mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd); |
3981 | | |
3982 | | /* There should have been enough room in the symbol table to |
3983 | | accommodate both the GOT and non-GOT symbols. */ |
3984 | 0 | BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1); |
3985 | 0 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
3986 | 0 | BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount); |
3987 | 0 | BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno); |
3988 | | |
3989 | | /* Now we know which dynamic symbol has the lowest dynamic symbol |
3990 | | table index in the GOT. */ |
3991 | 0 | htab->global_gotsym = hsd.low; |
3992 | |
|
3993 | 0 | return true; |
3994 | 0 | } |
3995 | | |
3996 | | /* If H needs a GOT entry, assign it the highest available dynamic |
3997 | | index. Otherwise, assign it the lowest available dynamic |
3998 | | index. */ |
3999 | | |
4000 | | static bool |
4001 | | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
4002 | 0 | { |
4003 | 0 | struct mips_elf_hash_sort_data *hsd = data; |
4004 | | |
4005 | | /* Symbols without dynamic symbol table entries aren't interesting |
4006 | | at all. */ |
4007 | 0 | if (h->root.dynindx == -1) |
4008 | 0 | return true; |
4009 | | |
4010 | 0 | switch (h->global_got_area) |
4011 | 0 | { |
4012 | 0 | case GGA_NONE: |
4013 | 0 | if (h->root.forced_local) |
4014 | 0 | h->root.dynindx = hsd->max_local_dynindx++; |
4015 | 0 | else |
4016 | 0 | h->root.dynindx = hsd->max_non_got_dynindx++; |
4017 | 0 | break; |
4018 | | |
4019 | 0 | case GGA_NORMAL: |
4020 | 0 | h->root.dynindx = --hsd->min_got_dynindx; |
4021 | 0 | hsd->low = (struct elf_link_hash_entry *) h; |
4022 | 0 | break; |
4023 | | |
4024 | 0 | case GGA_RELOC_ONLY: |
4025 | 0 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
4026 | 0 | hsd->low = (struct elf_link_hash_entry *) h; |
4027 | 0 | h->root.dynindx = hsd->max_unref_got_dynindx++; |
4028 | 0 | break; |
4029 | 0 | } |
4030 | | |
4031 | | /* Populate the .MIPS.xhash translation table entry with |
4032 | | the symbol dynindx. */ |
4033 | 0 | if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL) |
4034 | 0 | bfd_put_32 (hsd->output_bfd, h->root.dynindx, |
4035 | 0 | hsd->mipsxhash + h->mipsxhash_loc); |
4036 | |
|
4037 | 0 | return true; |
4038 | 0 | } |
4039 | | |
4040 | | /* Record that input bfd ABFD requires a GOT entry like *LOOKUP |
4041 | | (which is owned by the caller and shouldn't be added to the |
4042 | | hash table directly). */ |
4043 | | |
4044 | | static bool |
4045 | | mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, |
4046 | | struct mips_got_entry *lookup) |
4047 | 0 | { |
4048 | 0 | struct mips_elf_link_hash_table *htab; |
4049 | 0 | struct mips_got_entry *entry; |
4050 | 0 | struct mips_got_info *g; |
4051 | 0 | void **loc, **bfd_loc; |
4052 | | |
4053 | | /* Make sure there's a slot for this entry in the master GOT. */ |
4054 | 0 | htab = mips_elf_hash_table (info); |
4055 | 0 | g = htab->got_info; |
4056 | 0 | loc = htab_find_slot (g->got_entries, lookup, INSERT); |
4057 | 0 | if (!loc) |
4058 | 0 | return false; |
4059 | | |
4060 | | /* Populate the entry if it isn't already. */ |
4061 | 0 | entry = (struct mips_got_entry *) *loc; |
4062 | 0 | if (!entry) |
4063 | 0 | { |
4064 | 0 | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); |
4065 | 0 | if (!entry) |
4066 | 0 | return false; |
4067 | | |
4068 | 0 | lookup->tls_initialized = false; |
4069 | 0 | lookup->gotidx = -1; |
4070 | 0 | *entry = *lookup; |
4071 | 0 | *loc = entry; |
4072 | 0 | } |
4073 | | |
4074 | | /* Reuse the same GOT entry for the BFD's GOT. */ |
4075 | 0 | g = mips_elf_bfd_got (abfd, true); |
4076 | 0 | if (!g) |
4077 | 0 | return false; |
4078 | | |
4079 | 0 | bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); |
4080 | 0 | if (!bfd_loc) |
4081 | 0 | return false; |
4082 | | |
4083 | 0 | if (!*bfd_loc) |
4084 | 0 | *bfd_loc = entry; |
4085 | 0 | return true; |
4086 | 0 | } |
4087 | | |
4088 | | /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT |
4089 | | entry for it. FOR_CALL is true if the caller is only interested in |
4090 | | using the GOT entry for calls. */ |
4091 | | |
4092 | | static bool |
4093 | | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
4094 | | bfd *abfd, struct bfd_link_info *info, |
4095 | | bool for_call, int r_type) |
4096 | 0 | { |
4097 | 0 | struct mips_elf_link_hash_table *htab; |
4098 | 0 | struct mips_elf_link_hash_entry *hmips; |
4099 | 0 | struct mips_got_entry entry; |
4100 | 0 | unsigned char tls_type; |
4101 | |
|
4102 | 0 | htab = mips_elf_hash_table (info); |
4103 | 0 | BFD_ASSERT (htab != NULL); |
4104 | |
|
4105 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
4106 | 0 | if (!for_call) |
4107 | 0 | hmips->got_only_for_calls = false; |
4108 | | |
4109 | | /* A global symbol in the GOT must also be in the dynamic symbol |
4110 | | table. */ |
4111 | 0 | if (h->dynindx == -1) |
4112 | 0 | { |
4113 | 0 | switch (ELF_ST_VISIBILITY (h->other)) |
4114 | 0 | { |
4115 | 0 | case STV_INTERNAL: |
4116 | 0 | case STV_HIDDEN: |
4117 | 0 | _bfd_mips_elf_hide_symbol (info, h, true); |
4118 | 0 | break; |
4119 | 0 | } |
4120 | 0 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
4121 | 0 | return false; |
4122 | 0 | } |
4123 | | |
4124 | 0 | tls_type = mips_elf_reloc_tls_type (r_type); |
4125 | 0 | if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) |
4126 | 0 | hmips->global_got_area = GGA_NORMAL; |
4127 | |
|
4128 | 0 | entry.abfd = abfd; |
4129 | 0 | entry.symndx = -1; |
4130 | 0 | entry.d.h = (struct mips_elf_link_hash_entry *) h; |
4131 | 0 | entry.tls_type = tls_type; |
4132 | 0 | return mips_elf_record_got_entry (info, abfd, &entry); |
4133 | 0 | } |
4134 | | |
4135 | | /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, |
4136 | | where SYMNDX is a local symbol. Reserve a GOT entry for it. */ |
4137 | | |
4138 | | static bool |
4139 | | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
4140 | | struct bfd_link_info *info, int r_type) |
4141 | 0 | { |
4142 | 0 | struct mips_elf_link_hash_table *htab; |
4143 | 0 | struct mips_got_info *g; |
4144 | 0 | struct mips_got_entry entry; |
4145 | |
|
4146 | 0 | htab = mips_elf_hash_table (info); |
4147 | 0 | BFD_ASSERT (htab != NULL); |
4148 | |
|
4149 | 0 | g = htab->got_info; |
4150 | 0 | BFD_ASSERT (g != NULL); |
4151 | |
|
4152 | 0 | entry.abfd = abfd; |
4153 | 0 | entry.symndx = symndx; |
4154 | 0 | entry.d.addend = addend; |
4155 | 0 | entry.tls_type = mips_elf_reloc_tls_type (r_type); |
4156 | 0 | return mips_elf_record_got_entry (info, abfd, &entry); |
4157 | 0 | } |
4158 | | |
4159 | | /* Record that ABFD has a page relocation against SYMNDX + ADDEND. |
4160 | | H is the symbol's hash table entry, or null if SYMNDX is local |
4161 | | to ABFD. */ |
4162 | | |
4163 | | static bool |
4164 | | mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, |
4165 | | long symndx, struct elf_link_hash_entry *h, |
4166 | | bfd_signed_vma addend) |
4167 | 0 | { |
4168 | 0 | struct mips_elf_link_hash_table *htab; |
4169 | 0 | struct mips_got_info *g1, *g2; |
4170 | 0 | struct mips_got_page_ref lookup, *entry; |
4171 | 0 | void **loc, **bfd_loc; |
4172 | |
|
4173 | 0 | htab = mips_elf_hash_table (info); |
4174 | 0 | BFD_ASSERT (htab != NULL); |
4175 | |
|
4176 | 0 | g1 = htab->got_info; |
4177 | 0 | BFD_ASSERT (g1 != NULL); |
4178 | |
|
4179 | 0 | if (h) |
4180 | 0 | { |
4181 | 0 | lookup.symndx = -1; |
4182 | 0 | lookup.u.h = (struct mips_elf_link_hash_entry *) h; |
4183 | 0 | } |
4184 | 0 | else |
4185 | 0 | { |
4186 | 0 | lookup.symndx = symndx; |
4187 | 0 | lookup.u.abfd = abfd; |
4188 | 0 | } |
4189 | 0 | lookup.addend = addend; |
4190 | 0 | loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); |
4191 | 0 | if (loc == NULL) |
4192 | 0 | return false; |
4193 | | |
4194 | 0 | entry = (struct mips_got_page_ref *) *loc; |
4195 | 0 | if (!entry) |
4196 | 0 | { |
4197 | 0 | entry = bfd_alloc (abfd, sizeof (*entry)); |
4198 | 0 | if (!entry) |
4199 | 0 | return false; |
4200 | | |
4201 | 0 | *entry = lookup; |
4202 | 0 | *loc = entry; |
4203 | 0 | } |
4204 | | |
4205 | | /* Add the same entry to the BFD's GOT. */ |
4206 | 0 | g2 = mips_elf_bfd_got (abfd, true); |
4207 | 0 | if (!g2) |
4208 | 0 | return false; |
4209 | | |
4210 | 0 | bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); |
4211 | 0 | if (!bfd_loc) |
4212 | 0 | return false; |
4213 | | |
4214 | 0 | if (!*bfd_loc) |
4215 | 0 | *bfd_loc = entry; |
4216 | |
|
4217 | 0 | return true; |
4218 | 0 | } |
4219 | | |
4220 | | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ |
4221 | | |
4222 | | static void |
4223 | | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, |
4224 | | unsigned int n) |
4225 | 0 | { |
4226 | 0 | asection *s; |
4227 | 0 | struct mips_elf_link_hash_table *htab; |
4228 | |
|
4229 | 0 | htab = mips_elf_hash_table (info); |
4230 | 0 | BFD_ASSERT (htab != NULL); |
4231 | |
|
4232 | 0 | s = mips_elf_rel_dyn_section (info, false); |
4233 | 0 | BFD_ASSERT (s != NULL); |
4234 | |
|
4235 | 0 | if (htab->root.target_os == is_vxworks) |
4236 | 0 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); |
4237 | 0 | else |
4238 | 0 | { |
4239 | 0 | if (s->size == 0) |
4240 | 0 | { |
4241 | | /* Make room for a null element. */ |
4242 | 0 | s->size += MIPS_ELF_REL_SIZE (abfd); |
4243 | 0 | ++s->reloc_count; |
4244 | 0 | } |
4245 | 0 | s->size += n * MIPS_ELF_REL_SIZE (abfd); |
4246 | 0 | } |
4247 | 0 | } |
4248 | | |
4249 | | /* A htab_traverse callback for GOT entries, with DATA pointing to a |
4250 | | mips_elf_traverse_got_arg structure. Count the number of GOT |
4251 | | entries and TLS relocs. Set DATA->value to true if we need |
4252 | | to resolve indirect or warning symbols and then recreate the GOT. */ |
4253 | | |
4254 | | static int |
4255 | | mips_elf_check_recreate_got (void **entryp, void *data) |
4256 | 0 | { |
4257 | 0 | struct mips_got_entry *entry; |
4258 | 0 | struct mips_elf_traverse_got_arg *arg; |
4259 | |
|
4260 | 0 | entry = (struct mips_got_entry *) *entryp; |
4261 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4262 | 0 | if (entry->abfd != NULL && entry->symndx == -1) |
4263 | 0 | { |
4264 | 0 | struct mips_elf_link_hash_entry *h; |
4265 | |
|
4266 | 0 | h = entry->d.h; |
4267 | 0 | if (h->root.root.type == bfd_link_hash_indirect |
4268 | 0 | || h->root.root.type == bfd_link_hash_warning) |
4269 | 0 | { |
4270 | 0 | arg->value = true; |
4271 | 0 | return 0; |
4272 | 0 | } |
4273 | 0 | } |
4274 | 0 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
4275 | 0 | return 1; |
4276 | 0 | } |
4277 | | |
4278 | | /* A htab_traverse callback for GOT entries, with DATA pointing to a |
4279 | | mips_elf_traverse_got_arg structure. Add all entries to DATA->g, |
4280 | | converting entries for indirect and warning symbols into entries |
4281 | | for the target symbol. Set DATA->g to null on error. */ |
4282 | | |
4283 | | static int |
4284 | | mips_elf_recreate_got (void **entryp, void *data) |
4285 | 0 | { |
4286 | 0 | struct mips_got_entry new_entry, *entry; |
4287 | 0 | struct mips_elf_traverse_got_arg *arg; |
4288 | 0 | void **slot; |
4289 | |
|
4290 | 0 | entry = (struct mips_got_entry *) *entryp; |
4291 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4292 | 0 | if (entry->abfd != NULL |
4293 | 0 | && entry->symndx == -1 |
4294 | 0 | && (entry->d.h->root.root.type == bfd_link_hash_indirect |
4295 | 0 | || entry->d.h->root.root.type == bfd_link_hash_warning)) |
4296 | 0 | { |
4297 | 0 | struct mips_elf_link_hash_entry *h; |
4298 | |
|
4299 | 0 | new_entry = *entry; |
4300 | 0 | entry = &new_entry; |
4301 | 0 | h = entry->d.h; |
4302 | 0 | do |
4303 | 0 | { |
4304 | 0 | BFD_ASSERT (h->global_got_area == GGA_NONE); |
4305 | 0 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
4306 | 0 | } |
4307 | 0 | while (h->root.root.type == bfd_link_hash_indirect |
4308 | 0 | || h->root.root.type == bfd_link_hash_warning); |
4309 | 0 | entry->d.h = h; |
4310 | 0 | } |
4311 | 0 | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); |
4312 | 0 | if (slot == NULL) |
4313 | 0 | { |
4314 | 0 | arg->g = NULL; |
4315 | 0 | return 0; |
4316 | 0 | } |
4317 | 0 | if (*slot == NULL) |
4318 | 0 | { |
4319 | 0 | if (entry == &new_entry) |
4320 | 0 | { |
4321 | 0 | entry = bfd_alloc (entry->abfd, sizeof (*entry)); |
4322 | 0 | if (!entry) |
4323 | 0 | { |
4324 | 0 | arg->g = NULL; |
4325 | 0 | return 0; |
4326 | 0 | } |
4327 | 0 | *entry = new_entry; |
4328 | 0 | } |
4329 | 0 | *slot = entry; |
4330 | 0 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
4331 | 0 | } |
4332 | 0 | return 1; |
4333 | 0 | } |
4334 | | |
4335 | | /* Return the maximum number of GOT page entries required for RANGE. */ |
4336 | | |
4337 | | static bfd_vma |
4338 | | mips_elf_pages_for_range (const struct mips_got_page_range *range) |
4339 | 0 | { |
4340 | 0 | return (range->max_addend - range->min_addend + 0x1ffff) >> 16; |
4341 | 0 | } |
4342 | | |
4343 | | /* Record that G requires a page entry that can reach SEC + ADDEND. */ |
4344 | | |
4345 | | static bool |
4346 | | mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, |
4347 | | asection *sec, bfd_signed_vma addend) |
4348 | 0 | { |
4349 | 0 | struct mips_got_info *g = arg->g; |
4350 | 0 | struct mips_got_page_entry lookup, *entry; |
4351 | 0 | struct mips_got_page_range **range_ptr, *range; |
4352 | 0 | bfd_vma old_pages, new_pages; |
4353 | 0 | void **loc; |
4354 | | |
4355 | | /* Find the mips_got_page_entry hash table entry for this section. */ |
4356 | 0 | lookup.sec = sec; |
4357 | 0 | loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); |
4358 | 0 | if (loc == NULL) |
4359 | 0 | return false; |
4360 | | |
4361 | | /* Create a mips_got_page_entry if this is the first time we've |
4362 | | seen the section. */ |
4363 | 0 | entry = (struct mips_got_page_entry *) *loc; |
4364 | 0 | if (!entry) |
4365 | 0 | { |
4366 | 0 | entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); |
4367 | 0 | if (!entry) |
4368 | 0 | return false; |
4369 | | |
4370 | 0 | entry->sec = sec; |
4371 | 0 | *loc = entry; |
4372 | 0 | } |
4373 | | |
4374 | | /* Skip over ranges whose maximum extent cannot share a page entry |
4375 | | with ADDEND. */ |
4376 | 0 | range_ptr = &entry->ranges; |
4377 | 0 | while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) |
4378 | 0 | range_ptr = &(*range_ptr)->next; |
4379 | | |
4380 | | /* If we scanned to the end of the list, or found a range whose |
4381 | | minimum extent cannot share a page entry with ADDEND, create |
4382 | | a new singleton range. */ |
4383 | 0 | range = *range_ptr; |
4384 | 0 | if (!range || addend < range->min_addend - 0xffff) |
4385 | 0 | { |
4386 | 0 | range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); |
4387 | 0 | if (!range) |
4388 | 0 | return false; |
4389 | | |
4390 | 0 | range->next = *range_ptr; |
4391 | 0 | range->min_addend = addend; |
4392 | 0 | range->max_addend = addend; |
4393 | |
|
4394 | 0 | *range_ptr = range; |
4395 | 0 | entry->num_pages++; |
4396 | 0 | g->page_gotno++; |
4397 | 0 | return true; |
4398 | 0 | } |
4399 | | |
4400 | | /* Remember how many pages the old range contributed. */ |
4401 | 0 | old_pages = mips_elf_pages_for_range (range); |
4402 | | |
4403 | | /* Update the ranges. */ |
4404 | 0 | if (addend < range->min_addend) |
4405 | 0 | range->min_addend = addend; |
4406 | 0 | else if (addend > range->max_addend) |
4407 | 0 | { |
4408 | 0 | if (range->next && addend >= range->next->min_addend - 0xffff) |
4409 | 0 | { |
4410 | 0 | old_pages += mips_elf_pages_for_range (range->next); |
4411 | 0 | range->max_addend = range->next->max_addend; |
4412 | 0 | range->next = range->next->next; |
4413 | 0 | } |
4414 | 0 | else |
4415 | 0 | range->max_addend = addend; |
4416 | 0 | } |
4417 | | |
4418 | | /* Record any change in the total estimate. */ |
4419 | 0 | new_pages = mips_elf_pages_for_range (range); |
4420 | 0 | if (old_pages != new_pages) |
4421 | 0 | { |
4422 | 0 | entry->num_pages += new_pages - old_pages; |
4423 | 0 | g->page_gotno += new_pages - old_pages; |
4424 | 0 | } |
4425 | |
|
4426 | 0 | return true; |
4427 | 0 | } |
4428 | | |
4429 | | /* A htab_traverse callback for which *REFP points to a mips_got_page_ref |
4430 | | and for which DATA points to a mips_elf_traverse_got_arg. Work out |
4431 | | whether the page reference described by *REFP needs a GOT page entry, |
4432 | | and record that entry in DATA->g if so. Set DATA->g to null on failure. */ |
4433 | | |
4434 | | static int |
4435 | | mips_elf_resolve_got_page_ref (void **refp, void *data) |
4436 | 0 | { |
4437 | 0 | struct mips_got_page_ref *ref; |
4438 | 0 | struct mips_elf_traverse_got_arg *arg; |
4439 | 0 | struct mips_elf_link_hash_table *htab; |
4440 | 0 | asection *sec; |
4441 | 0 | bfd_vma addend; |
4442 | |
|
4443 | 0 | ref = (struct mips_got_page_ref *) *refp; |
4444 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4445 | 0 | htab = mips_elf_hash_table (arg->info); |
4446 | |
|
4447 | 0 | if (ref->symndx < 0) |
4448 | 0 | { |
4449 | 0 | struct mips_elf_link_hash_entry *h; |
4450 | | |
4451 | | /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ |
4452 | 0 | h = ref->u.h; |
4453 | 0 | if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) |
4454 | 0 | return 1; |
4455 | | |
4456 | | /* Ignore undefined symbols; we'll issue an error later if |
4457 | | appropriate. */ |
4458 | 0 | if (!((h->root.root.type == bfd_link_hash_defined |
4459 | 0 | || h->root.root.type == bfd_link_hash_defweak) |
4460 | 0 | && h->root.root.u.def.section)) |
4461 | 0 | return 1; |
4462 | | |
4463 | 0 | sec = h->root.root.u.def.section; |
4464 | 0 | addend = h->root.root.u.def.value + ref->addend; |
4465 | 0 | } |
4466 | 0 | else |
4467 | 0 | { |
4468 | 0 | Elf_Internal_Sym *isym; |
4469 | | |
4470 | | /* Read in the symbol. */ |
4471 | 0 | isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd, |
4472 | 0 | ref->symndx); |
4473 | 0 | if (isym == NULL) |
4474 | 0 | { |
4475 | 0 | arg->g = NULL; |
4476 | 0 | return 0; |
4477 | 0 | } |
4478 | | |
4479 | | /* Get the associated input section. */ |
4480 | 0 | sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); |
4481 | 0 | if (sec == NULL) |
4482 | 0 | { |
4483 | 0 | arg->g = NULL; |
4484 | 0 | return 0; |
4485 | 0 | } |
4486 | | |
4487 | | /* If this is a mergable section, work out the section and offset |
4488 | | of the merged data. For section symbols, the addend specifies |
4489 | | of the offset _of_ the first byte in the data, otherwise it |
4490 | | specifies the offset _from_ the first byte. */ |
4491 | 0 | if (sec->flags & SEC_MERGE) |
4492 | 0 | { |
4493 | 0 | void *secinfo; |
4494 | |
|
4495 | 0 | secinfo = elf_section_data (sec)->sec_info; |
4496 | 0 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
4497 | 0 | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, |
4498 | 0 | isym->st_value + ref->addend); |
4499 | 0 | else |
4500 | 0 | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, |
4501 | 0 | isym->st_value) + ref->addend; |
4502 | 0 | } |
4503 | 0 | else |
4504 | 0 | addend = isym->st_value + ref->addend; |
4505 | 0 | } |
4506 | 0 | if (!mips_elf_record_got_page_entry (arg, sec, addend)) |
4507 | 0 | { |
4508 | 0 | arg->g = NULL; |
4509 | 0 | return 0; |
4510 | 0 | } |
4511 | 0 | return 1; |
4512 | 0 | } |
4513 | | |
4514 | | /* If any entries in G->got_entries are for indirect or warning symbols, |
4515 | | replace them with entries for the target symbol. Convert g->got_page_refs |
4516 | | into got_page_entry structures and estimate the number of page entries |
4517 | | that they require. */ |
4518 | | |
4519 | | static bool |
4520 | | mips_elf_resolve_final_got_entries (struct bfd_link_info *info, |
4521 | | struct mips_got_info *g) |
4522 | 0 | { |
4523 | 0 | struct mips_elf_traverse_got_arg tga; |
4524 | 0 | struct mips_got_info oldg; |
4525 | |
|
4526 | 0 | oldg = *g; |
4527 | |
|
4528 | 0 | tga.info = info; |
4529 | 0 | tga.g = g; |
4530 | 0 | tga.value = false; |
4531 | 0 | htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); |
4532 | 0 | if (tga.value) |
4533 | 0 | { |
4534 | 0 | *g = oldg; |
4535 | 0 | g->got_entries = htab_create (htab_size (oldg.got_entries), |
4536 | 0 | mips_elf_got_entry_hash, |
4537 | 0 | mips_elf_got_entry_eq, NULL); |
4538 | 0 | if (!g->got_entries) |
4539 | 0 | return false; |
4540 | | |
4541 | 0 | htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); |
4542 | 0 | if (!tga.g) |
4543 | 0 | return false; |
4544 | | |
4545 | 0 | htab_delete (oldg.got_entries); |
4546 | 0 | } |
4547 | | |
4548 | 0 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, |
4549 | 0 | mips_got_page_entry_eq, NULL); |
4550 | 0 | if (g->got_page_entries == NULL) |
4551 | 0 | return false; |
4552 | | |
4553 | 0 | tga.info = info; |
4554 | 0 | tga.g = g; |
4555 | 0 | htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); |
4556 | |
|
4557 | 0 | return true; |
4558 | 0 | } |
4559 | | |
4560 | | /* Return true if a GOT entry for H should live in the local rather than |
4561 | | global GOT area. */ |
4562 | | |
4563 | | static bool |
4564 | | mips_use_local_got_p (struct bfd_link_info *info, |
4565 | | struct mips_elf_link_hash_entry *h) |
4566 | 0 | { |
4567 | | /* Symbols that aren't in the dynamic symbol table must live in the |
4568 | | local GOT. This includes symbols that are completely undefined |
4569 | | and which therefore don't bind locally. We'll report undefined |
4570 | | symbols later if appropriate. */ |
4571 | 0 | if (h->root.dynindx == -1) |
4572 | 0 | return true; |
4573 | | |
4574 | | /* Absolute symbols, if ever they need a GOT entry, cannot ever go |
4575 | | to the local GOT, as they would be implicitly relocated by the |
4576 | | base address by the dynamic loader. */ |
4577 | 0 | if (bfd_is_abs_symbol (&h->root.root)) |
4578 | 0 | return false; |
4579 | | |
4580 | | /* Symbols that bind locally can (and in the case of forced-local |
4581 | | symbols, must) live in the local GOT. */ |
4582 | 0 | if (h->got_only_for_calls |
4583 | 0 | ? SYMBOL_CALLS_LOCAL (info, &h->root) |
4584 | 0 | : SYMBOL_REFERENCES_LOCAL (info, &h->root)) |
4585 | 0 | return true; |
4586 | | |
4587 | | /* If this is an executable that must provide a definition of the symbol, |
4588 | | either though PLTs or copy relocations, then that address should go in |
4589 | | the local rather than global GOT. */ |
4590 | 0 | if (bfd_link_executable (info) && h->has_static_relocs) |
4591 | 0 | return true; |
4592 | | |
4593 | 0 | return false; |
4594 | 0 | } |
4595 | | |
4596 | | /* A mips_elf_link_hash_traverse callback for which DATA points to the |
4597 | | link_info structure. Decide whether the hash entry needs an entry in |
4598 | | the global part of the primary GOT, setting global_got_area accordingly. |
4599 | | Count the number of global symbols that are in the primary GOT only |
4600 | | because they have relocations against them (reloc_only_gotno). */ |
4601 | | |
4602 | | static bool |
4603 | | mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) |
4604 | 0 | { |
4605 | 0 | struct bfd_link_info *info; |
4606 | 0 | struct mips_elf_link_hash_table *htab; |
4607 | 0 | struct mips_got_info *g; |
4608 | |
|
4609 | 0 | info = (struct bfd_link_info *) data; |
4610 | 0 | htab = mips_elf_hash_table (info); |
4611 | 0 | g = htab->got_info; |
4612 | 0 | if (h->global_got_area != GGA_NONE) |
4613 | 0 | { |
4614 | | /* Make a final decision about whether the symbol belongs in the |
4615 | | local or global GOT. */ |
4616 | 0 | if (mips_use_local_got_p (info, h)) |
4617 | | /* The symbol belongs in the local GOT. We no longer need this |
4618 | | entry if it was only used for relocations; those relocations |
4619 | | will be against the null or section symbol instead of H. */ |
4620 | 0 | h->global_got_area = GGA_NONE; |
4621 | 0 | else if (htab->root.target_os == is_vxworks |
4622 | 0 | && h->got_only_for_calls |
4623 | 0 | && h->root.plt.plist->mips_offset != MINUS_ONE) |
4624 | | /* On VxWorks, calls can refer directly to the .got.plt entry; |
4625 | | they don't need entries in the regular GOT. .got.plt entries |
4626 | | will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ |
4627 | 0 | h->global_got_area = GGA_NONE; |
4628 | 0 | else if (h->global_got_area == GGA_RELOC_ONLY) |
4629 | 0 | { |
4630 | 0 | g->reloc_only_gotno++; |
4631 | 0 | g->global_gotno++; |
4632 | 0 | } |
4633 | 0 | } |
4634 | 0 | return 1; |
4635 | 0 | } |
4636 | | |
4637 | | /* A htab_traverse callback for GOT entries. Add each one to the GOT |
4638 | | given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ |
4639 | | |
4640 | | static int |
4641 | | mips_elf_add_got_entry (void **entryp, void *data) |
4642 | 0 | { |
4643 | 0 | struct mips_got_entry *entry; |
4644 | 0 | struct mips_elf_traverse_got_arg *arg; |
4645 | 0 | void **slot; |
4646 | |
|
4647 | 0 | entry = (struct mips_got_entry *) *entryp; |
4648 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4649 | 0 | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); |
4650 | 0 | if (!slot) |
4651 | 0 | { |
4652 | 0 | arg->g = NULL; |
4653 | 0 | return 0; |
4654 | 0 | } |
4655 | 0 | if (!*slot) |
4656 | 0 | { |
4657 | 0 | *slot = entry; |
4658 | 0 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
4659 | 0 | } |
4660 | 0 | return 1; |
4661 | 0 | } |
4662 | | |
4663 | | /* A htab_traverse callback for GOT page entries. Add each one to the GOT |
4664 | | given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ |
4665 | | |
4666 | | static int |
4667 | | mips_elf_add_got_page_entry (void **entryp, void *data) |
4668 | 0 | { |
4669 | 0 | struct mips_got_page_entry *entry; |
4670 | 0 | struct mips_elf_traverse_got_arg *arg; |
4671 | 0 | void **slot; |
4672 | |
|
4673 | 0 | entry = (struct mips_got_page_entry *) *entryp; |
4674 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4675 | 0 | slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); |
4676 | 0 | if (!slot) |
4677 | 0 | { |
4678 | 0 | arg->g = NULL; |
4679 | 0 | return 0; |
4680 | 0 | } |
4681 | 0 | if (!*slot) |
4682 | 0 | { |
4683 | 0 | *slot = entry; |
4684 | 0 | arg->g->page_gotno += entry->num_pages; |
4685 | 0 | } |
4686 | 0 | return 1; |
4687 | 0 | } |
4688 | | |
4689 | | /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if |
4690 | | this would lead to overflow, 1 if they were merged successfully, |
4691 | | and 0 if a merge failed due to lack of memory. (These values are chosen |
4692 | | so that nonnegative return values can be returned by a htab_traverse |
4693 | | callback.) */ |
4694 | | |
4695 | | static int |
4696 | | mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, |
4697 | | struct mips_got_info *to, |
4698 | | struct mips_elf_got_per_bfd_arg *arg) |
4699 | 0 | { |
4700 | 0 | struct mips_elf_traverse_got_arg tga; |
4701 | 0 | unsigned int estimate; |
4702 | | |
4703 | | /* Work out how many page entries we would need for the combined GOT. */ |
4704 | 0 | estimate = arg->max_pages; |
4705 | 0 | if (estimate >= from->page_gotno + to->page_gotno) |
4706 | 0 | estimate = from->page_gotno + to->page_gotno; |
4707 | | |
4708 | | /* And conservatively estimate how many local and TLS entries |
4709 | | would be needed. */ |
4710 | 0 | estimate += from->local_gotno + to->local_gotno; |
4711 | 0 | estimate += from->tls_gotno + to->tls_gotno; |
4712 | | |
4713 | | /* If we're merging with the primary got, any TLS relocations will |
4714 | | come after the full set of global entries. Otherwise estimate those |
4715 | | conservatively as well. */ |
4716 | 0 | if (to == arg->primary && from->tls_gotno + to->tls_gotno) |
4717 | 0 | estimate += arg->global_count; |
4718 | 0 | else |
4719 | 0 | estimate += from->global_gotno + to->global_gotno; |
4720 | | |
4721 | | /* Bail out if the combined GOT might be too big. */ |
4722 | 0 | if (estimate > arg->max_count) |
4723 | 0 | return -1; |
4724 | | |
4725 | | /* Transfer the bfd's got information from FROM to TO. */ |
4726 | 0 | tga.info = arg->info; |
4727 | 0 | tga.g = to; |
4728 | 0 | htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); |
4729 | 0 | if (!tga.g) |
4730 | 0 | return 0; |
4731 | | |
4732 | 0 | htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); |
4733 | 0 | if (!tga.g) |
4734 | 0 | return 0; |
4735 | | |
4736 | 0 | mips_elf_replace_bfd_got (abfd, to); |
4737 | 0 | return 1; |
4738 | 0 | } |
4739 | | |
4740 | | /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much |
4741 | | as possible of the primary got, since it doesn't require explicit |
4742 | | dynamic relocations, but don't use bfds that would reference global |
4743 | | symbols out of the addressable range. Failing the primary got, |
4744 | | attempt to merge with the current got, or finish the current got |
4745 | | and then make make the new got current. */ |
4746 | | |
4747 | | static bool |
4748 | | mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, |
4749 | | struct mips_elf_got_per_bfd_arg *arg) |
4750 | 0 | { |
4751 | 0 | unsigned int estimate; |
4752 | 0 | int result; |
4753 | |
|
4754 | 0 | if (!mips_elf_resolve_final_got_entries (arg->info, g)) |
4755 | 0 | return false; |
4756 | | |
4757 | | /* Work out the number of page, local and TLS entries. */ |
4758 | 0 | estimate = arg->max_pages; |
4759 | 0 | if (estimate > g->page_gotno) |
4760 | 0 | estimate = g->page_gotno; |
4761 | 0 | estimate += g->local_gotno + g->tls_gotno; |
4762 | | |
4763 | | /* We place TLS GOT entries after both locals and globals. The globals |
4764 | | for the primary GOT may overflow the normal GOT size limit, so be |
4765 | | sure not to merge a GOT which requires TLS with the primary GOT in that |
4766 | | case. This doesn't affect non-primary GOTs. */ |
4767 | 0 | estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); |
4768 | |
|
4769 | 0 | if (estimate <= arg->max_count) |
4770 | 0 | { |
4771 | | /* If we don't have a primary GOT, use it as |
4772 | | a starting point for the primary GOT. */ |
4773 | 0 | if (!arg->primary) |
4774 | 0 | { |
4775 | 0 | arg->primary = g; |
4776 | 0 | return true; |
4777 | 0 | } |
4778 | | |
4779 | | /* Try merging with the primary GOT. */ |
4780 | 0 | result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); |
4781 | 0 | if (result >= 0) |
4782 | 0 | return result; |
4783 | 0 | } |
4784 | | |
4785 | | /* If we can merge with the last-created got, do it. */ |
4786 | 0 | if (arg->current) |
4787 | 0 | { |
4788 | 0 | result = mips_elf_merge_got_with (abfd, g, arg->current, arg); |
4789 | 0 | if (result >= 0) |
4790 | 0 | return result; |
4791 | 0 | } |
4792 | | |
4793 | | /* Well, we couldn't merge, so create a new GOT. Don't check if it |
4794 | | fits; if it turns out that it doesn't, we'll get relocation |
4795 | | overflows anyway. */ |
4796 | 0 | g->next = arg->current; |
4797 | 0 | arg->current = g; |
4798 | |
|
4799 | 0 | return true; |
4800 | 0 | } |
4801 | | |
4802 | | /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx |
4803 | | to GOTIDX, duplicating the entry if it has already been assigned |
4804 | | an index in a different GOT. */ |
4805 | | |
4806 | | static bool |
4807 | | mips_elf_set_gotidx (void **entryp, long gotidx) |
4808 | 0 | { |
4809 | 0 | struct mips_got_entry *entry; |
4810 | |
|
4811 | 0 | entry = (struct mips_got_entry *) *entryp; |
4812 | 0 | if (entry->gotidx > 0) |
4813 | 0 | { |
4814 | 0 | struct mips_got_entry *new_entry; |
4815 | |
|
4816 | 0 | new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); |
4817 | 0 | if (!new_entry) |
4818 | 0 | return false; |
4819 | | |
4820 | 0 | *new_entry = *entry; |
4821 | 0 | *entryp = new_entry; |
4822 | 0 | entry = new_entry; |
4823 | 0 | } |
4824 | 0 | entry->gotidx = gotidx; |
4825 | 0 | return true; |
4826 | 0 | } |
4827 | | |
4828 | | /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a |
4829 | | mips_elf_traverse_got_arg in which DATA->value is the size of one |
4830 | | GOT entry. Set DATA->g to null on failure. */ |
4831 | | |
4832 | | static int |
4833 | | mips_elf_initialize_tls_index (void **entryp, void *data) |
4834 | 0 | { |
4835 | 0 | struct mips_got_entry *entry; |
4836 | 0 | struct mips_elf_traverse_got_arg *arg; |
4837 | | |
4838 | | /* We're only interested in TLS symbols. */ |
4839 | 0 | entry = (struct mips_got_entry *) *entryp; |
4840 | 0 | if (entry->tls_type == GOT_TLS_NONE) |
4841 | 0 | return 1; |
4842 | | |
4843 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4844 | 0 | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) |
4845 | 0 | { |
4846 | 0 | arg->g = NULL; |
4847 | 0 | return 0; |
4848 | 0 | } |
4849 | | |
4850 | | /* Account for the entries we've just allocated. */ |
4851 | 0 | arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); |
4852 | 0 | return 1; |
4853 | 0 | } |
4854 | | |
4855 | | /* A htab_traverse callback for GOT entries, where DATA points to a |
4856 | | mips_elf_traverse_got_arg. Set the global_got_area of each global |
4857 | | symbol to DATA->value. */ |
4858 | | |
4859 | | static int |
4860 | | mips_elf_set_global_got_area (void **entryp, void *data) |
4861 | 0 | { |
4862 | 0 | struct mips_got_entry *entry; |
4863 | 0 | struct mips_elf_traverse_got_arg *arg; |
4864 | |
|
4865 | 0 | entry = (struct mips_got_entry *) *entryp; |
4866 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4867 | 0 | if (entry->abfd != NULL |
4868 | 0 | && entry->symndx == -1 |
4869 | 0 | && entry->d.h->global_got_area != GGA_NONE) |
4870 | 0 | entry->d.h->global_got_area = arg->value; |
4871 | 0 | return 1; |
4872 | 0 | } |
4873 | | |
4874 | | /* A htab_traverse callback for secondary GOT entries, where DATA points |
4875 | | to a mips_elf_traverse_got_arg. Assign GOT indices to global entries |
4876 | | and record the number of relocations they require. DATA->value is |
4877 | | the size of one GOT entry. Set DATA->g to null on failure. */ |
4878 | | |
4879 | | static int |
4880 | | mips_elf_set_global_gotidx (void **entryp, void *data) |
4881 | 0 | { |
4882 | 0 | struct mips_got_entry *entry; |
4883 | 0 | struct mips_elf_traverse_got_arg *arg; |
4884 | |
|
4885 | 0 | entry = (struct mips_got_entry *) *entryp; |
4886 | 0 | arg = (struct mips_elf_traverse_got_arg *) data; |
4887 | 0 | if (entry->abfd != NULL |
4888 | 0 | && entry->symndx == -1 |
4889 | 0 | && entry->d.h->global_got_area != GGA_NONE) |
4890 | 0 | { |
4891 | 0 | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) |
4892 | 0 | { |
4893 | 0 | arg->g = NULL; |
4894 | 0 | return 0; |
4895 | 0 | } |
4896 | 0 | arg->g->assigned_low_gotno += 1; |
4897 | |
|
4898 | 0 | if (bfd_link_pic (arg->info) |
4899 | 0 | || (elf_hash_table (arg->info)->dynamic_sections_created |
4900 | 0 | && entry->d.h->root.def_dynamic |
4901 | 0 | && !entry->d.h->root.def_regular)) |
4902 | 0 | arg->g->relocs += 1; |
4903 | 0 | } |
4904 | | |
4905 | 0 | return 1; |
4906 | 0 | } |
4907 | | |
4908 | | /* A htab_traverse callback for GOT entries for which DATA is the |
4909 | | bfd_link_info. Forbid any global symbols from having traditional |
4910 | | lazy-binding stubs. */ |
4911 | | |
4912 | | static int |
4913 | | mips_elf_forbid_lazy_stubs (void **entryp, void *data) |
4914 | 0 | { |
4915 | 0 | struct bfd_link_info *info; |
4916 | 0 | struct mips_elf_link_hash_table *htab; |
4917 | 0 | struct mips_got_entry *entry; |
4918 | |
|
4919 | 0 | entry = (struct mips_got_entry *) *entryp; |
4920 | 0 | info = (struct bfd_link_info *) data; |
4921 | 0 | htab = mips_elf_hash_table (info); |
4922 | 0 | BFD_ASSERT (htab != NULL); |
4923 | |
|
4924 | 0 | if (entry->abfd != NULL |
4925 | 0 | && entry->symndx == -1 |
4926 | 0 | && entry->d.h->needs_lazy_stub) |
4927 | 0 | { |
4928 | 0 | entry->d.h->needs_lazy_stub = false; |
4929 | 0 | htab->lazy_stub_count--; |
4930 | 0 | } |
4931 | |
|
4932 | 0 | return 1; |
4933 | 0 | } |
4934 | | |
4935 | | /* Return the offset of an input bfd IBFD's GOT from the beginning of |
4936 | | the primary GOT. */ |
4937 | | static bfd_vma |
4938 | | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
4939 | 0 | { |
4940 | 0 | if (!g->next) |
4941 | 0 | return 0; |
4942 | | |
4943 | 0 | g = mips_elf_bfd_got (ibfd, false); |
4944 | 0 | if (! g) |
4945 | 0 | return 0; |
4946 | | |
4947 | 0 | BFD_ASSERT (g->next); |
4948 | |
|
4949 | 0 | g = g->next; |
4950 | |
|
4951 | 0 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
4952 | 0 | * MIPS_ELF_GOT_SIZE (abfd); |
4953 | 0 | } |
4954 | | |
4955 | | /* Turn a single GOT that is too big for 16-bit addressing into |
4956 | | a sequence of GOTs, each one 16-bit addressable. */ |
4957 | | |
4958 | | static bool |
4959 | | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
4960 | | asection *got, bfd_size_type pages) |
4961 | 0 | { |
4962 | 0 | struct mips_elf_link_hash_table *htab; |
4963 | 0 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
4964 | 0 | struct mips_elf_traverse_got_arg tga; |
4965 | 0 | struct mips_got_info *g, *gg; |
4966 | 0 | unsigned int assign, needed_relocs; |
4967 | 0 | bfd *dynobj, *ibfd; |
4968 | |
|
4969 | 0 | dynobj = elf_hash_table (info)->dynobj; |
4970 | 0 | htab = mips_elf_hash_table (info); |
4971 | 0 | BFD_ASSERT (htab != NULL); |
4972 | |
|
4973 | 0 | g = htab->got_info; |
4974 | |
|
4975 | 0 | got_per_bfd_arg.obfd = abfd; |
4976 | 0 | got_per_bfd_arg.info = info; |
4977 | 0 | got_per_bfd_arg.current = NULL; |
4978 | 0 | got_per_bfd_arg.primary = NULL; |
4979 | 0 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
4980 | 0 | / MIPS_ELF_GOT_SIZE (abfd)) |
4981 | 0 | - htab->reserved_gotno); |
4982 | 0 | got_per_bfd_arg.max_pages = pages; |
4983 | | /* The number of globals that will be included in the primary GOT. |
4984 | | See the calls to mips_elf_set_global_got_area below for more |
4985 | | information. */ |
4986 | 0 | got_per_bfd_arg.global_count = g->global_gotno; |
4987 | | |
4988 | | /* Try to merge the GOTs of input bfds together, as long as they |
4989 | | don't seem to exceed the maximum GOT size, choosing one of them |
4990 | | to be the primary GOT. */ |
4991 | 0 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
4992 | 0 | { |
4993 | 0 | gg = mips_elf_bfd_got (ibfd, false); |
4994 | 0 | if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) |
4995 | 0 | return false; |
4996 | 0 | } |
4997 | | |
4998 | | /* If we do not find any suitable primary GOT, create an empty one. */ |
4999 | 0 | if (got_per_bfd_arg.primary == NULL) |
5000 | 0 | g->next = mips_elf_create_got_info (abfd); |
5001 | 0 | else |
5002 | 0 | g->next = got_per_bfd_arg.primary; |
5003 | 0 | g->next->next = got_per_bfd_arg.current; |
5004 | | |
5005 | | /* GG is now the master GOT, and G is the primary GOT. */ |
5006 | 0 | gg = g; |
5007 | 0 | g = g->next; |
5008 | | |
5009 | | /* Map the output bfd to the primary got. That's what we're going |
5010 | | to use for bfds that use GOT16 or GOT_PAGE relocations that we |
5011 | | didn't mark in check_relocs, and we want a quick way to find it. |
5012 | | We can't just use gg->next because we're going to reverse the |
5013 | | list. */ |
5014 | 0 | mips_elf_replace_bfd_got (abfd, g); |
5015 | | |
5016 | | /* Every symbol that is referenced in a dynamic relocation must be |
5017 | | present in the primary GOT, so arrange for them to appear after |
5018 | | those that are actually referenced. */ |
5019 | 0 | gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; |
5020 | 0 | g->global_gotno = gg->global_gotno; |
5021 | |
|
5022 | 0 | tga.info = info; |
5023 | 0 | tga.value = GGA_RELOC_ONLY; |
5024 | 0 | htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); |
5025 | 0 | tga.value = GGA_NORMAL; |
5026 | 0 | htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); |
5027 | | |
5028 | | /* Now go through the GOTs assigning them offset ranges. |
5029 | | [assigned_low_gotno, local_gotno[ will be set to the range of local |
5030 | | entries in each GOT. We can then compute the end of a GOT by |
5031 | | adding local_gotno to global_gotno. We reverse the list and make |
5032 | | it circular since then we'll be able to quickly compute the |
5033 | | beginning of a GOT, by computing the end of its predecessor. To |
5034 | | avoid special cases for the primary GOT, while still preserving |
5035 | | assertions that are valid for both single- and multi-got links, |
5036 | | we arrange for the main got struct to have the right number of |
5037 | | global entries, but set its local_gotno such that the initial |
5038 | | offset of the primary GOT is zero. Remember that the primary GOT |
5039 | | will become the last item in the circular linked list, so it |
5040 | | points back to the master GOT. */ |
5041 | 0 | gg->local_gotno = -g->global_gotno; |
5042 | 0 | gg->global_gotno = g->global_gotno; |
5043 | 0 | gg->tls_gotno = 0; |
5044 | 0 | assign = 0; |
5045 | 0 | gg->next = gg; |
5046 | |
|
5047 | 0 | do |
5048 | 0 | { |
5049 | 0 | struct mips_got_info *gn; |
5050 | |
|
5051 | 0 | assign += htab->reserved_gotno; |
5052 | 0 | g->assigned_low_gotno = assign; |
5053 | 0 | g->local_gotno += assign; |
5054 | 0 | g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); |
5055 | 0 | g->assigned_high_gotno = g->local_gotno - 1; |
5056 | 0 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
5057 | | |
5058 | | /* Take g out of the direct list, and push it onto the reversed |
5059 | | list that gg points to. g->next is guaranteed to be nonnull after |
5060 | | this operation, as required by mips_elf_initialize_tls_index. */ |
5061 | 0 | gn = g->next; |
5062 | 0 | g->next = gg->next; |
5063 | 0 | gg->next = g; |
5064 | | |
5065 | | /* Set up any TLS entries. We always place the TLS entries after |
5066 | | all non-TLS entries. */ |
5067 | 0 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; |
5068 | 0 | tga.g = g; |
5069 | 0 | tga.value = MIPS_ELF_GOT_SIZE (abfd); |
5070 | 0 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); |
5071 | 0 | if (!tga.g) |
5072 | 0 | return false; |
5073 | 0 | BFD_ASSERT (g->tls_assigned_gotno == assign); |
5074 | | |
5075 | | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
5076 | 0 | g = gn; |
5077 | | |
5078 | | /* Forbid global symbols in every non-primary GOT from having |
5079 | | lazy-binding stubs. */ |
5080 | 0 | if (g) |
5081 | 0 | htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); |
5082 | 0 | } |
5083 | 0 | while (g); |
5084 | | |
5085 | 0 | got->size = assign * MIPS_ELF_GOT_SIZE (abfd); |
5086 | |
|
5087 | 0 | needed_relocs = 0; |
5088 | 0 | for (g = gg->next; g && g->next != gg; g = g->next) |
5089 | 0 | { |
5090 | 0 | unsigned int save_assign; |
5091 | | |
5092 | | /* Assign offsets to global GOT entries and count how many |
5093 | | relocations they need. */ |
5094 | 0 | save_assign = g->assigned_low_gotno; |
5095 | 0 | g->assigned_low_gotno = g->local_gotno; |
5096 | 0 | tga.info = info; |
5097 | 0 | tga.value = MIPS_ELF_GOT_SIZE (abfd); |
5098 | 0 | tga.g = g; |
5099 | 0 | htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); |
5100 | 0 | if (!tga.g) |
5101 | 0 | return false; |
5102 | 0 | BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); |
5103 | 0 | g->assigned_low_gotno = save_assign; |
5104 | |
|
5105 | 0 | if (bfd_link_pic (info)) |
5106 | 0 | { |
5107 | 0 | g->relocs += g->local_gotno - g->assigned_low_gotno; |
5108 | 0 | BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno |
5109 | 0 | + g->next->global_gotno |
5110 | 0 | + g->next->tls_gotno |
5111 | 0 | + htab->reserved_gotno); |
5112 | 0 | } |
5113 | 0 | needed_relocs += g->relocs; |
5114 | 0 | } |
5115 | 0 | needed_relocs += g->relocs; |
5116 | |
|
5117 | 0 | if (needed_relocs) |
5118 | 0 | mips_elf_allocate_dynamic_relocations (dynobj, info, |
5119 | 0 | needed_relocs); |
5120 | |
|
5121 | 0 | return true; |
5122 | 0 | } |
5123 | | |
5124 | | |
5125 | | /* Returns the first relocation of type r_type found, beginning with |
5126 | | RELOCATION. RELEND is one-past-the-end of the relocation table. */ |
5127 | | |
5128 | | static const Elf_Internal_Rela * |
5129 | | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
5130 | | const Elf_Internal_Rela *relocation, |
5131 | | const Elf_Internal_Rela *relend) |
5132 | 0 | { |
5133 | 0 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
5134 | |
|
5135 | 0 | while (relocation < relend) |
5136 | 0 | { |
5137 | 0 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
5138 | 0 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) |
5139 | 0 | return relocation; |
5140 | | |
5141 | 0 | ++relocation; |
5142 | 0 | } |
5143 | | |
5144 | | /* We didn't find it. */ |
5145 | 0 | return NULL; |
5146 | 0 | } |
5147 | | |
5148 | | /* Return whether an input relocation is against a local symbol. */ |
5149 | | |
5150 | | static bool |
5151 | | mips_elf_local_relocation_p (bfd *input_bfd, |
5152 | | const Elf_Internal_Rela *relocation, |
5153 | | asection **local_sections) |
5154 | 0 | { |
5155 | 0 | unsigned long r_symndx; |
5156 | 0 | Elf_Internal_Shdr *symtab_hdr; |
5157 | 0 | size_t extsymoff; |
5158 | |
|
5159 | 0 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
5160 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
5161 | 0 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; |
5162 | |
|
5163 | 0 | if (r_symndx < extsymoff) |
5164 | 0 | return true; |
5165 | 0 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
5166 | 0 | return true; |
5167 | | |
5168 | 0 | return false; |
5169 | 0 | } |
5170 | | |
5171 | | /* Sign-extend VALUE, which has the indicated number of BITS. */ |
5172 | | |
5173 | | bfd_vma |
5174 | | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
5175 | 52 | { |
5176 | 52 | if (value & ((bfd_vma) 1 << (bits - 1))) |
5177 | | /* VALUE is negative. */ |
5178 | 19 | value |= ((bfd_vma) - 1) << bits; |
5179 | | |
5180 | 52 | return value; |
5181 | 52 | } |
5182 | | |
5183 | | /* Return non-zero if the indicated VALUE has overflowed the maximum |
5184 | | range expressible by a signed number with the indicated number of |
5185 | | BITS. */ |
5186 | | |
5187 | | static bool |
5188 | | mips_elf_overflow_p (bfd_vma value, int bits) |
5189 | 0 | { |
5190 | 0 | bfd_signed_vma svalue = (bfd_signed_vma) value; |
5191 | |
|
5192 | 0 | if (svalue > (1 << (bits - 1)) - 1) |
5193 | | /* The value is too big. */ |
5194 | 0 | return true; |
5195 | 0 | else if (svalue < -(1 << (bits - 1))) |
5196 | | /* The value is too small. */ |
5197 | 0 | return true; |
5198 | | |
5199 | | /* All is well. */ |
5200 | 0 | return false; |
5201 | 0 | } |
5202 | | |
5203 | | /* Calculate the %high function. */ |
5204 | | |
5205 | | static bfd_vma |
5206 | | mips_elf_high (bfd_vma value) |
5207 | 0 | { |
5208 | 0 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; |
5209 | 0 | } |
5210 | | |
5211 | | /* Calculate the %higher function. */ |
5212 | | |
5213 | | static bfd_vma |
5214 | | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
5215 | 0 | { |
5216 | 0 | #ifdef BFD64 |
5217 | 0 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; |
5218 | | #else |
5219 | | abort (); |
5220 | | return MINUS_ONE; |
5221 | | #endif |
5222 | 0 | } |
5223 | | |
5224 | | /* Calculate the %highest function. */ |
5225 | | |
5226 | | static bfd_vma |
5227 | | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
5228 | 0 | { |
5229 | 0 | #ifdef BFD64 |
5230 | 0 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
5231 | | #else |
5232 | | abort (); |
5233 | | return MINUS_ONE; |
5234 | | #endif |
5235 | 0 | } |
5236 | | |
5237 | | /* Create the .compact_rel section. */ |
5238 | | |
5239 | | static bool |
5240 | | mips_elf_create_compact_rel_section |
5241 | | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) |
5242 | 0 | { |
5243 | 0 | flagword flags; |
5244 | 0 | register asection *s; |
5245 | |
|
5246 | 0 | if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) |
5247 | 0 | { |
5248 | 0 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED |
5249 | 0 | | SEC_READONLY); |
5250 | |
|
5251 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); |
5252 | 0 | if (s == NULL |
5253 | 0 | || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
5254 | 0 | return false; |
5255 | | |
5256 | 0 | s->size = sizeof (Elf32_External_compact_rel); |
5257 | 0 | } |
5258 | | |
5259 | 0 | return true; |
5260 | 0 | } |
5261 | | |
5262 | | /* Create the .got section to hold the global offset table. */ |
5263 | | |
5264 | | static bool |
5265 | | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
5266 | 0 | { |
5267 | 0 | flagword flags; |
5268 | 0 | register asection *s; |
5269 | 0 | struct elf_link_hash_entry *h; |
5270 | 0 | struct bfd_link_hash_entry *bh; |
5271 | 0 | struct mips_elf_link_hash_table *htab; |
5272 | |
|
5273 | 0 | htab = mips_elf_hash_table (info); |
5274 | 0 | BFD_ASSERT (htab != NULL); |
5275 | | |
5276 | | /* This function may be called more than once. */ |
5277 | 0 | if (htab->root.sgot) |
5278 | 0 | return true; |
5279 | | |
5280 | 0 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
5281 | 0 | | SEC_LINKER_CREATED); |
5282 | | |
5283 | | /* We have to use an alignment of 2**4 here because this is hardcoded |
5284 | | in the function stub generation and in the linker script. */ |
5285 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
5286 | 0 | if (s == NULL |
5287 | 0 | || !bfd_set_section_alignment (s, 4)) |
5288 | 0 | return false; |
5289 | 0 | htab->root.sgot = s; |
5290 | | |
5291 | | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the |
5292 | | linker script because we don't want to define the symbol if we |
5293 | | are not creating a global offset table. */ |
5294 | 0 | bh = NULL; |
5295 | 0 | if (! (_bfd_generic_link_add_one_symbol |
5296 | 0 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, |
5297 | 0 | 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh))) |
5298 | 0 | return false; |
5299 | | |
5300 | 0 | h = (struct elf_link_hash_entry *) bh; |
5301 | 0 | h->non_elf = 0; |
5302 | 0 | h->def_regular = 1; |
5303 | 0 | h->type = STT_OBJECT; |
5304 | 0 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
5305 | 0 | elf_hash_table (info)->hgot = h; |
5306 | |
|
5307 | 0 | if (bfd_link_pic (info) |
5308 | 0 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
5309 | 0 | return false; |
5310 | | |
5311 | 0 | htab->got_info = mips_elf_create_got_info (abfd); |
5312 | 0 | mips_elf_section_data (s)->elf.this_hdr.sh_flags |
5313 | 0 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
5314 | | |
5315 | | /* We also need a .got.plt section when generating PLTs. */ |
5316 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", |
5317 | 0 | SEC_ALLOC | SEC_LOAD |
5318 | 0 | | SEC_HAS_CONTENTS |
5319 | 0 | | SEC_IN_MEMORY |
5320 | 0 | | SEC_LINKER_CREATED); |
5321 | 0 | if (s == NULL) |
5322 | 0 | return false; |
5323 | 0 | htab->root.sgotplt = s; |
5324 | |
|
5325 | 0 | return true; |
5326 | 0 | } |
5327 | | |
5328 | | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
5329 | | __GOTT_INDEX__ symbols. These symbols are only special for |
5330 | | shared objects; they are not used in executables. */ |
5331 | | |
5332 | | static bool |
5333 | | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) |
5334 | 0 | { |
5335 | 0 | return (mips_elf_hash_table (info)->root.target_os == is_vxworks |
5336 | 0 | && bfd_link_pic (info) |
5337 | 0 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 |
5338 | 0 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); |
5339 | 0 | } |
5340 | | |
5341 | | /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might |
5342 | | require an la25 stub. See also mips_elf_local_pic_function_p, |
5343 | | which determines whether the destination function ever requires a |
5344 | | stub. */ |
5345 | | |
5346 | | static bool |
5347 | | mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, |
5348 | | bool target_is_16_bit_code_p) |
5349 | 0 | { |
5350 | | /* We specifically ignore branches and jumps from EF_PIC objects, |
5351 | | where the onus is on the compiler or programmer to perform any |
5352 | | necessary initialization of $25. Sometimes such initialization |
5353 | | is unnecessary; for example, -mno-shared functions do not use |
5354 | | the incoming value of $25, and may therefore be called directly. */ |
5355 | 0 | if (PIC_OBJECT_P (input_bfd)) |
5356 | 0 | return false; |
5357 | | |
5358 | 0 | switch (r_type) |
5359 | 0 | { |
5360 | 0 | case R_MIPS_26: |
5361 | 0 | case R_MIPS_PC16: |
5362 | 0 | case R_MIPS_PC21_S2: |
5363 | 0 | case R_MIPS_PC26_S2: |
5364 | 0 | case R_MICROMIPS_26_S1: |
5365 | 0 | case R_MICROMIPS_PC7_S1: |
5366 | 0 | case R_MICROMIPS_PC10_S1: |
5367 | 0 | case R_MICROMIPS_PC16_S1: |
5368 | 0 | case R_MICROMIPS_PC23_S2: |
5369 | 0 | return true; |
5370 | | |
5371 | 0 | case R_MIPS16_26: |
5372 | 0 | return !target_is_16_bit_code_p; |
5373 | | |
5374 | 0 | default: |
5375 | 0 | return false; |
5376 | 0 | } |
5377 | 0 | } |
5378 | | |
5379 | | /* Obtain the field relocated by RELOCATION. */ |
5380 | | |
5381 | | static bfd_vma |
5382 | | mips_elf_obtain_contents (reloc_howto_type *howto, |
5383 | | const Elf_Internal_Rela *relocation, |
5384 | | bfd *input_bfd, bfd_byte *contents) |
5385 | 0 | { |
5386 | 0 | bfd_vma x = 0; |
5387 | 0 | bfd_byte *location = contents + relocation->r_offset; |
5388 | 0 | unsigned int size = bfd_get_reloc_size (howto); |
5389 | | |
5390 | | /* Obtain the bytes. */ |
5391 | 0 | if (size != 0) |
5392 | 0 | x = bfd_get (8 * size, input_bfd, location); |
5393 | | |
5394 | 0 | return x; |
5395 | 0 | } |
5396 | | |
5397 | | /* Store the field relocated by RELOCATION. */ |
5398 | | |
5399 | | static void |
5400 | | mips_elf_store_contents (reloc_howto_type *howto, |
5401 | | const Elf_Internal_Rela *relocation, |
5402 | | bfd *input_bfd, bfd_byte *contents, bfd_vma x) |
5403 | 0 | { |
5404 | 0 | bfd_byte *location = contents + relocation->r_offset; |
5405 | 0 | unsigned int size = bfd_get_reloc_size (howto); |
5406 | | |
5407 | | /* Put the value into the output. */ |
5408 | 0 | if (size != 0) |
5409 | 0 | bfd_put (8 * size, input_bfd, x, location); |
5410 | 0 | } |
5411 | | |
5412 | | /* Try to patch a load from GOT instruction in CONTENTS pointed to by |
5413 | | RELOCATION described by HOWTO, with a move of 0 to the load target |
5414 | | register, returning TRUE if that is successful and FALSE otherwise. |
5415 | | If DOIT is FALSE, then only determine it patching is possible and |
5416 | | return status without actually changing CONTENTS. |
5417 | | */ |
5418 | | |
5419 | | static bool |
5420 | | mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents, |
5421 | | const Elf_Internal_Rela *relocation, |
5422 | | reloc_howto_type *howto, bool doit) |
5423 | 0 | { |
5424 | 0 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
5425 | 0 | bfd_byte *location = contents + relocation->r_offset; |
5426 | 0 | bool nullified = true; |
5427 | 0 | bfd_vma x; |
5428 | |
|
5429 | 0 | _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); |
5430 | | |
5431 | | /* Obtain the current value. */ |
5432 | 0 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); |
5433 | | |
5434 | | /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19] |
5435 | | while RY is at bits [18:16] of the combined 32-bit instruction word. */ |
5436 | 0 | if (mips16_reloc_p (r_type) |
5437 | 0 | && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */ |
5438 | 0 | || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */ |
5439 | 0 | x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */ |
5440 | 0 | else if (micromips_reloc_p (r_type) |
5441 | 0 | && ((x >> 26) & 0x37) == 0x37) /* LW/LD */ |
5442 | 0 | x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */ |
5443 | 0 | else if (((x >> 26) & 0x3f) == 0x23 /* LW */ |
5444 | 0 | || ((x >> 26) & 0x3f) == 0x37) /* LD */ |
5445 | 0 | x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */ |
5446 | 0 | else |
5447 | 0 | nullified = false; |
5448 | | |
5449 | | /* Put the value into the output. */ |
5450 | 0 | if (doit && nullified) |
5451 | 0 | mips_elf_store_contents (howto, relocation, input_bfd, contents, x); |
5452 | |
|
5453 | 0 | _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location); |
5454 | |
|
5455 | 0 | return nullified; |
5456 | 0 | } |
5457 | | |
5458 | | /* Calculate the value produced by the RELOCATION (which comes from |
5459 | | the INPUT_BFD). The ADDEND is the addend to use for this |
5460 | | RELOCATION; RELOCATION->R_ADDEND is ignored. |
5461 | | |
5462 | | The result of the relocation calculation is stored in VALUEP. |
5463 | | On exit, set *CROSS_MODE_JUMP_P to true if the relocation field |
5464 | | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
5465 | | |
5466 | | This function returns bfd_reloc_continue if the caller need take no |
5467 | | further action regarding this relocation, bfd_reloc_notsupported if |
5468 | | something goes dramatically wrong, bfd_reloc_overflow if an |
5469 | | overflow occurs, and bfd_reloc_ok to indicate success. */ |
5470 | | |
5471 | | static bfd_reloc_status_type |
5472 | | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
5473 | | asection *input_section, bfd_byte *contents, |
5474 | | struct bfd_link_info *info, |
5475 | | const Elf_Internal_Rela *relocation, |
5476 | | bfd_vma addend, reloc_howto_type *howto, |
5477 | | Elf_Internal_Sym *local_syms, |
5478 | | asection **local_sections, bfd_vma *valuep, |
5479 | | const char **namep, |
5480 | | bool *cross_mode_jump_p, |
5481 | | bool save_addend) |
5482 | 0 | { |
5483 | | /* The eventual value we will return. */ |
5484 | 0 | bfd_vma value; |
5485 | | /* The address of the symbol against which the relocation is |
5486 | | occurring. */ |
5487 | 0 | bfd_vma symbol = 0; |
5488 | | /* The final GP value to be used for the relocatable, executable, or |
5489 | | shared object file being produced. */ |
5490 | 0 | bfd_vma gp; |
5491 | | /* The place (section offset or address) of the storage unit being |
5492 | | relocated. */ |
5493 | 0 | bfd_vma p; |
5494 | | /* The value of GP used to create the relocatable object. */ |
5495 | 0 | bfd_vma gp0; |
5496 | | /* The offset into the global offset table at which the address of |
5497 | | the relocation entry symbol, adjusted by the addend, resides |
5498 | | during execution. */ |
5499 | 0 | bfd_vma g = MINUS_ONE; |
5500 | | /* The section in which the symbol referenced by the relocation is |
5501 | | located. */ |
5502 | 0 | asection *sec = NULL; |
5503 | 0 | struct mips_elf_link_hash_entry *h = NULL; |
5504 | | /* TRUE if the symbol referred to by this relocation is a local |
5505 | | symbol. */ |
5506 | 0 | bool local_p, was_local_p; |
5507 | | /* TRUE if the symbol referred to by this relocation is a section |
5508 | | symbol. */ |
5509 | 0 | bool section_p = false; |
5510 | | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ |
5511 | 0 | bool gp_disp_p = false; |
5512 | | /* TRUE if the symbol referred to by this relocation is |
5513 | | "__gnu_local_gp". */ |
5514 | 0 | bool gnu_local_gp_p = false; |
5515 | 0 | Elf_Internal_Shdr *symtab_hdr; |
5516 | 0 | size_t extsymoff; |
5517 | 0 | unsigned long r_symndx; |
5518 | 0 | int r_type; |
5519 | | /* TRUE if overflow occurred during the calculation of the |
5520 | | relocation value. */ |
5521 | 0 | bool overflowed_p; |
5522 | | /* TRUE if this relocation refers to a MIPS16 function. */ |
5523 | 0 | bool target_is_16_bit_code_p = false; |
5524 | 0 | bool target_is_micromips_code_p = false; |
5525 | 0 | struct mips_elf_link_hash_table *htab; |
5526 | 0 | bfd *dynobj; |
5527 | 0 | bool resolved_to_zero; |
5528 | |
|
5529 | 0 | dynobj = elf_hash_table (info)->dynobj; |
5530 | 0 | htab = mips_elf_hash_table (info); |
5531 | 0 | BFD_ASSERT (htab != NULL); |
5532 | | |
5533 | | /* Parse the relocation. */ |
5534 | 0 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
5535 | 0 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
5536 | 0 | p = (input_section->output_section->vma |
5537 | 0 | + input_section->output_offset |
5538 | 0 | + relocation->r_offset); |
5539 | | |
5540 | | /* Assume that there will be no overflow. */ |
5541 | 0 | overflowed_p = false; |
5542 | | |
5543 | | /* Figure out whether or not the symbol is local, and get the offset |
5544 | | used in the array of hash table entries. */ |
5545 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
5546 | 0 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, |
5547 | 0 | local_sections); |
5548 | 0 | was_local_p = local_p; |
5549 | 0 | if (! elf_bad_symtab (input_bfd)) |
5550 | 0 | extsymoff = symtab_hdr->sh_info; |
5551 | 0 | else |
5552 | 0 | { |
5553 | | /* The symbol table does not follow the rule that local symbols |
5554 | | must come before globals. */ |
5555 | 0 | extsymoff = 0; |
5556 | 0 | } |
5557 | | |
5558 | | /* Figure out the value of the symbol. */ |
5559 | 0 | if (local_p) |
5560 | 0 | { |
5561 | 0 | bool micromips_p = MICROMIPS_P (abfd); |
5562 | 0 | Elf_Internal_Sym *sym; |
5563 | |
|
5564 | 0 | sym = local_syms + r_symndx; |
5565 | 0 | sec = local_sections[r_symndx]; |
5566 | |
|
5567 | 0 | section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; |
5568 | |
|
5569 | 0 | symbol = sec->output_section->vma + sec->output_offset; |
5570 | 0 | if (!section_p || (sec->flags & SEC_MERGE)) |
5571 | 0 | symbol += sym->st_value; |
5572 | 0 | if ((sec->flags & SEC_MERGE) && section_p) |
5573 | 0 | { |
5574 | 0 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); |
5575 | 0 | addend -= symbol; |
5576 | 0 | addend += sec->output_section->vma + sec->output_offset; |
5577 | 0 | } |
5578 | | |
5579 | | /* MIPS16/microMIPS text labels should be treated as odd. */ |
5580 | 0 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
5581 | 0 | ++symbol; |
5582 | | |
5583 | | /* Record the name of this symbol, for our caller. */ |
5584 | 0 | *namep = bfd_elf_string_from_elf_section (input_bfd, |
5585 | 0 | symtab_hdr->sh_link, |
5586 | 0 | sym->st_name); |
5587 | 0 | if (*namep == NULL || **namep == '\0') |
5588 | 0 | *namep = bfd_section_name (sec); |
5589 | | |
5590 | | /* For relocations against a section symbol and ones against no |
5591 | | symbol (absolute relocations) infer the ISA mode from the addend. */ |
5592 | 0 | if (section_p || r_symndx == STN_UNDEF) |
5593 | 0 | { |
5594 | 0 | target_is_16_bit_code_p = (addend & 1) && !micromips_p; |
5595 | 0 | target_is_micromips_code_p = (addend & 1) && micromips_p; |
5596 | 0 | } |
5597 | | /* For relocations against an absolute symbol infer the ISA mode |
5598 | | from the value of the symbol plus addend. */ |
5599 | 0 | else if (bfd_is_abs_section (sec)) |
5600 | 0 | { |
5601 | 0 | target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p; |
5602 | 0 | target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p; |
5603 | 0 | } |
5604 | | /* Otherwise just use the regular symbol annotation available. */ |
5605 | 0 | else |
5606 | 0 | { |
5607 | 0 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); |
5608 | 0 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); |
5609 | 0 | } |
5610 | 0 | } |
5611 | 0 | else |
5612 | 0 | { |
5613 | | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
5614 | | |
5615 | | /* For global symbols we look up the symbol in the hash-table. */ |
5616 | 0 | h = ((struct mips_elf_link_hash_entry *) |
5617 | 0 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); |
5618 | | /* Find the real hash-table entry for this symbol. */ |
5619 | 0 | while (h->root.root.type == bfd_link_hash_indirect |
5620 | 0 | || h->root.root.type == bfd_link_hash_warning) |
5621 | 0 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
5622 | | |
5623 | | /* Record the name of this symbol, for our caller. */ |
5624 | 0 | *namep = h->root.root.root.string; |
5625 | | |
5626 | | /* See if this is the special _gp_disp symbol. Note that such a |
5627 | | symbol must always be a global symbol. */ |
5628 | 0 | if (strcmp (*namep, "_gp_disp") == 0 |
5629 | 0 | && ! NEWABI_P (input_bfd)) |
5630 | 0 | { |
5631 | | /* Relocations against _gp_disp are permitted only with |
5632 | | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ |
5633 | 0 | if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) |
5634 | 0 | return bfd_reloc_notsupported; |
5635 | | |
5636 | 0 | gp_disp_p = true; |
5637 | 0 | } |
5638 | | /* See if this is the special _gp symbol. Note that such a |
5639 | | symbol must always be a global symbol. */ |
5640 | 0 | else if (strcmp (*namep, "__gnu_local_gp") == 0) |
5641 | 0 | gnu_local_gp_p = true; |
5642 | | |
5643 | | |
5644 | | /* If this symbol is defined, calculate its address. Note that |
5645 | | _gp_disp is a magic symbol, always implicitly defined by the |
5646 | | linker, so it's inappropriate to check to see whether or not |
5647 | | its defined. */ |
5648 | 0 | else if ((h->root.root.type == bfd_link_hash_defined |
5649 | 0 | || h->root.root.type == bfd_link_hash_defweak) |
5650 | 0 | && h->root.root.u.def.section) |
5651 | 0 | { |
5652 | 0 | sec = h->root.root.u.def.section; |
5653 | 0 | if (sec->output_section) |
5654 | 0 | symbol = (h->root.root.u.def.value |
5655 | 0 | + sec->output_section->vma |
5656 | 0 | + sec->output_offset); |
5657 | 0 | else |
5658 | 0 | symbol = h->root.root.u.def.value; |
5659 | 0 | } |
5660 | 0 | else if (h->root.root.type == bfd_link_hash_undefweak) |
5661 | | /* We allow relocations against undefined weak symbols, giving |
5662 | | it the value zero, so that you can undefined weak functions |
5663 | | and check to see if they exist by looking at their |
5664 | | addresses. */ |
5665 | 0 | symbol = 0; |
5666 | 0 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
5667 | 0 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
5668 | 0 | symbol = 0; |
5669 | 0 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
5670 | 0 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) |
5671 | 0 | { |
5672 | | /* If this is a dynamic link, we should have created a |
5673 | | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol |
5674 | | in _bfd_mips_elf_create_dynamic_sections. |
5675 | | Otherwise, we should define the symbol with a value of 0. |
5676 | | FIXME: It should probably get into the symbol table |
5677 | | somehow as well. */ |
5678 | 0 | BFD_ASSERT (! bfd_link_pic (info)); |
5679 | 0 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); |
5680 | 0 | symbol = 0; |
5681 | 0 | } |
5682 | 0 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
5683 | 0 | { |
5684 | | /* This is an optional symbol - an Irix specific extension to the |
5685 | | ELF spec. Ignore it for now. |
5686 | | XXX - FIXME - there is more to the spec for OPTIONAL symbols |
5687 | | than simply ignoring them, but we do not handle this for now. |
5688 | | For information see the "64-bit ELF Object File Specification" |
5689 | | which is available from here: |
5690 | | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ |
5691 | 0 | symbol = 0; |
5692 | 0 | } |
5693 | 0 | else |
5694 | 0 | { |
5695 | 0 | bool reject_undefined |
5696 | 0 | = ((info->unresolved_syms_in_objects == RM_DIAGNOSE |
5697 | 0 | && !info->warn_unresolved_syms) |
5698 | 0 | || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT); |
5699 | |
|
5700 | 0 | info->callbacks->undefined_symbol |
5701 | 0 | (info, h->root.root.root.string, input_bfd, |
5702 | 0 | input_section, relocation->r_offset, reject_undefined); |
5703 | |
|
5704 | 0 | if (reject_undefined) |
5705 | 0 | return bfd_reloc_undefined; |
5706 | | |
5707 | 0 | symbol = 0; |
5708 | 0 | } |
5709 | | |
5710 | 0 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); |
5711 | 0 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); |
5712 | 0 | } |
5713 | | |
5714 | | /* If this is a reference to a 16-bit function with a stub, we need |
5715 | | to redirect the relocation to the stub unless: |
5716 | | |
5717 | | (a) the relocation is for a MIPS16 JAL; |
5718 | | |
5719 | | (b) the relocation is for a MIPS16 PIC call, and there are no |
5720 | | non-MIPS16 uses of the GOT slot; or |
5721 | | |
5722 | | (c) the section allows direct references to MIPS16 functions. */ |
5723 | 0 | if (r_type != R_MIPS16_26 |
5724 | 0 | && !bfd_link_relocatable (info) |
5725 | 0 | && ((h != NULL |
5726 | 0 | && h->fn_stub != NULL |
5727 | 0 | && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) |
5728 | 0 | || (local_p |
5729 | 0 | && mips_elf_tdata (input_bfd)->local_stubs != NULL |
5730 | 0 | && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) |
5731 | 0 | && !section_allows_mips16_refs_p (input_section)) |
5732 | 0 | { |
5733 | | /* This is a 32- or 64-bit call to a 16-bit function. We should |
5734 | | have already noticed that we were going to need the |
5735 | | stub. */ |
5736 | 0 | if (local_p) |
5737 | 0 | { |
5738 | 0 | sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; |
5739 | 0 | value = 0; |
5740 | 0 | } |
5741 | 0 | else |
5742 | 0 | { |
5743 | 0 | BFD_ASSERT (h->need_fn_stub); |
5744 | 0 | if (h->la25_stub) |
5745 | 0 | { |
5746 | | /* If a LA25 header for the stub itself exists, point to the |
5747 | | prepended LUI/ADDIU sequence. */ |
5748 | 0 | sec = h->la25_stub->stub_section; |
5749 | 0 | value = h->la25_stub->offset; |
5750 | 0 | } |
5751 | 0 | else |
5752 | 0 | { |
5753 | 0 | sec = h->fn_stub; |
5754 | 0 | value = 0; |
5755 | 0 | } |
5756 | 0 | } |
5757 | |
|
5758 | 0 | symbol = sec->output_section->vma + sec->output_offset + value; |
5759 | | /* The target is 16-bit, but the stub isn't. */ |
5760 | 0 | target_is_16_bit_code_p = false; |
5761 | 0 | } |
5762 | | /* If this is a MIPS16 call with a stub, that is made through the PLT or |
5763 | | to a standard MIPS function, we need to redirect the call to the stub. |
5764 | | Note that we specifically exclude R_MIPS16_CALL16 from this behavior; |
5765 | | indirect calls should use an indirect stub instead. */ |
5766 | 0 | else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) |
5767 | 0 | && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) |
5768 | 0 | || (local_p |
5769 | 0 | && mips_elf_tdata (input_bfd)->local_call_stubs != NULL |
5770 | 0 | && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) |
5771 | 0 | && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) |
5772 | 0 | { |
5773 | 0 | if (local_p) |
5774 | 0 | sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; |
5775 | 0 | else |
5776 | 0 | { |
5777 | | /* If both call_stub and call_fp_stub are defined, we can figure |
5778 | | out which one to use by checking which one appears in the input |
5779 | | file. */ |
5780 | 0 | if (h->call_stub != NULL && h->call_fp_stub != NULL) |
5781 | 0 | { |
5782 | 0 | asection *o; |
5783 | |
|
5784 | 0 | sec = NULL; |
5785 | 0 | for (o = input_bfd->sections; o != NULL; o = o->next) |
5786 | 0 | { |
5787 | 0 | if (CALL_FP_STUB_P (bfd_section_name (o))) |
5788 | 0 | { |
5789 | 0 | sec = h->call_fp_stub; |
5790 | 0 | break; |
5791 | 0 | } |
5792 | 0 | } |
5793 | 0 | if (sec == NULL) |
5794 | 0 | sec = h->call_stub; |
5795 | 0 | } |
5796 | 0 | else if (h->call_stub != NULL) |
5797 | 0 | sec = h->call_stub; |
5798 | 0 | else |
5799 | 0 | sec = h->call_fp_stub; |
5800 | 0 | } |
5801 | |
|
5802 | 0 | BFD_ASSERT (sec->size > 0); |
5803 | 0 | symbol = sec->output_section->vma + sec->output_offset; |
5804 | 0 | } |
5805 | | /* If this is a direct call to a PIC function, redirect to the |
5806 | | non-PIC stub. */ |
5807 | 0 | else if (h != NULL && h->la25_stub |
5808 | 0 | && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, |
5809 | 0 | target_is_16_bit_code_p)) |
5810 | 0 | { |
5811 | 0 | symbol = (h->la25_stub->stub_section->output_section->vma |
5812 | 0 | + h->la25_stub->stub_section->output_offset |
5813 | 0 | + h->la25_stub->offset); |
5814 | 0 | if (ELF_ST_IS_MICROMIPS (h->root.other)) |
5815 | 0 | symbol |= 1; |
5816 | 0 | } |
5817 | | /* For direct MIPS16 and microMIPS calls make sure the compressed PLT |
5818 | | entry is used if a standard PLT entry has also been made. In this |
5819 | | case the symbol will have been set by mips_elf_set_plt_sym_value |
5820 | | to point to the standard PLT entry, so redirect to the compressed |
5821 | | one. */ |
5822 | 0 | else if ((mips16_branch_reloc_p (r_type) |
5823 | 0 | || micromips_branch_reloc_p (r_type)) |
5824 | 0 | && !bfd_link_relocatable (info) |
5825 | 0 | && h != NULL |
5826 | 0 | && h->use_plt_entry |
5827 | 0 | && h->root.plt.plist->comp_offset != MINUS_ONE |
5828 | 0 | && h->root.plt.plist->mips_offset != MINUS_ONE) |
5829 | 0 | { |
5830 | 0 | bool micromips_p = MICROMIPS_P (abfd); |
5831 | |
|
5832 | 0 | sec = htab->root.splt; |
5833 | 0 | symbol = (sec->output_section->vma |
5834 | 0 | + sec->output_offset |
5835 | 0 | + htab->plt_header_size |
5836 | 0 | + htab->plt_mips_offset |
5837 | 0 | + h->root.plt.plist->comp_offset |
5838 | 0 | + 1); |
5839 | |
|
5840 | 0 | target_is_16_bit_code_p = !micromips_p; |
5841 | 0 | target_is_micromips_code_p = micromips_p; |
5842 | 0 | } |
5843 | | |
5844 | | /* Make sure MIPS16 and microMIPS are not used together. */ |
5845 | 0 | if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) |
5846 | 0 | || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) |
5847 | 0 | { |
5848 | 0 | _bfd_error_handler |
5849 | 0 | (_("MIPS16 and microMIPS functions cannot call each other")); |
5850 | 0 | return bfd_reloc_notsupported; |
5851 | 0 | } |
5852 | | |
5853 | | /* Calls from 16-bit code to 32-bit code and vice versa require the |
5854 | | mode change. However, we can ignore calls to undefined weak symbols, |
5855 | | which should never be executed at runtime. This exception is important |
5856 | | because the assembly writer may have "known" that any definition of the |
5857 | | symbol would be 16-bit code, and that direct jumps were therefore |
5858 | | acceptable. */ |
5859 | 0 | *cross_mode_jump_p = (!bfd_link_relocatable (info) |
5860 | 0 | && !(h && h->root.root.type == bfd_link_hash_undefweak) |
5861 | 0 | && ((mips16_branch_reloc_p (r_type) |
5862 | 0 | && !target_is_16_bit_code_p) |
5863 | 0 | || (micromips_branch_reloc_p (r_type) |
5864 | 0 | && !target_is_micromips_code_p) |
5865 | 0 | || ((branch_reloc_p (r_type) |
5866 | 0 | || r_type == R_MIPS_JALR) |
5867 | 0 | && (target_is_16_bit_code_p |
5868 | 0 | || target_is_micromips_code_p)))); |
5869 | |
|
5870 | 0 | resolved_to_zero = (h != NULL |
5871 | 0 | && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root)); |
5872 | |
|
5873 | 0 | switch (r_type) |
5874 | 0 | { |
5875 | 0 | case R_MIPS16_CALL16: |
5876 | 0 | case R_MIPS16_GOT16: |
5877 | 0 | case R_MIPS_CALL16: |
5878 | 0 | case R_MIPS_GOT16: |
5879 | 0 | case R_MIPS_GOT_PAGE: |
5880 | 0 | case R_MIPS_GOT_DISP: |
5881 | 0 | case R_MIPS_GOT_LO16: |
5882 | 0 | case R_MIPS_CALL_LO16: |
5883 | 0 | case R_MICROMIPS_CALL16: |
5884 | 0 | case R_MICROMIPS_GOT16: |
5885 | 0 | case R_MICROMIPS_GOT_PAGE: |
5886 | 0 | case R_MICROMIPS_GOT_DISP: |
5887 | 0 | case R_MICROMIPS_GOT_LO16: |
5888 | 0 | case R_MICROMIPS_CALL_LO16: |
5889 | 0 | if (resolved_to_zero |
5890 | 0 | && !bfd_link_relocatable (info) |
5891 | 0 | && bfd_reloc_offset_in_range (howto, input_bfd, input_section, |
5892 | 0 | relocation->r_offset) |
5893 | 0 | && mips_elf_nullify_got_load (input_bfd, contents, |
5894 | 0 | relocation, howto, true)) |
5895 | 0 | return bfd_reloc_continue; |
5896 | | |
5897 | | /* Fall through. */ |
5898 | 0 | case R_MIPS_GOT_HI16: |
5899 | 0 | case R_MIPS_CALL_HI16: |
5900 | 0 | case R_MICROMIPS_GOT_HI16: |
5901 | 0 | case R_MICROMIPS_CALL_HI16: |
5902 | 0 | if (resolved_to_zero |
5903 | 0 | && htab->use_absolute_zero |
5904 | 0 | && bfd_link_pic (info)) |
5905 | 0 | { |
5906 | | /* Redirect to the special `__gnu_absolute_zero' symbol. */ |
5907 | 0 | h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero", |
5908 | 0 | false, false, false); |
5909 | 0 | BFD_ASSERT (h != NULL); |
5910 | 0 | } |
5911 | 0 | break; |
5912 | 0 | } |
5913 | | |
5914 | 0 | local_p = (h == NULL || mips_use_local_got_p (info, h)); |
5915 | |
|
5916 | 0 | gp0 = _bfd_get_gp_value (input_bfd); |
5917 | 0 | gp = _bfd_get_gp_value (abfd); |
5918 | 0 | if (htab->got_info) |
5919 | 0 | gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); |
5920 | |
|
5921 | 0 | if (gnu_local_gp_p) |
5922 | 0 | symbol = gp; |
5923 | | |
5924 | | /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent |
5925 | | to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the |
5926 | | corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ |
5927 | 0 | if (got_page_reloc_p (r_type) && !local_p) |
5928 | 0 | { |
5929 | 0 | r_type = (micromips_reloc_p (r_type) |
5930 | 0 | ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); |
5931 | 0 | addend = 0; |
5932 | 0 | } |
5933 | | |
5934 | | /* If we haven't already determined the GOT offset, and we're going |
5935 | | to need it, get it now. */ |
5936 | 0 | switch (r_type) |
5937 | 0 | { |
5938 | 0 | case R_MIPS16_CALL16: |
5939 | 0 | case R_MIPS16_GOT16: |
5940 | 0 | case R_MIPS_CALL16: |
5941 | 0 | case R_MIPS_GOT16: |
5942 | 0 | case R_MIPS_GOT_DISP: |
5943 | 0 | case R_MIPS_GOT_HI16: |
5944 | 0 | case R_MIPS_CALL_HI16: |
5945 | 0 | case R_MIPS_GOT_LO16: |
5946 | 0 | case R_MIPS_CALL_LO16: |
5947 | 0 | case R_MICROMIPS_CALL16: |
5948 | 0 | case R_MICROMIPS_GOT16: |
5949 | 0 | case R_MICROMIPS_GOT_DISP: |
5950 | 0 | case R_MICROMIPS_GOT_HI16: |
5951 | 0 | case R_MICROMIPS_CALL_HI16: |
5952 | 0 | case R_MICROMIPS_GOT_LO16: |
5953 | 0 | case R_MICROMIPS_CALL_LO16: |
5954 | 0 | case R_MIPS_TLS_GD: |
5955 | 0 | case R_MIPS_TLS_GOTTPREL: |
5956 | 0 | case R_MIPS_TLS_LDM: |
5957 | 0 | case R_MIPS16_TLS_GD: |
5958 | 0 | case R_MIPS16_TLS_GOTTPREL: |
5959 | 0 | case R_MIPS16_TLS_LDM: |
5960 | 0 | case R_MICROMIPS_TLS_GD: |
5961 | 0 | case R_MICROMIPS_TLS_GOTTPREL: |
5962 | 0 | case R_MICROMIPS_TLS_LDM: |
5963 | | /* Find the index into the GOT where this value is located. */ |
5964 | 0 | if (tls_ldm_reloc_p (r_type)) |
5965 | 0 | { |
5966 | 0 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
5967 | 0 | 0, 0, NULL, r_type); |
5968 | 0 | if (g == MINUS_ONE) |
5969 | 0 | return bfd_reloc_outofrange; |
5970 | 0 | } |
5971 | 0 | else if (!local_p) |
5972 | 0 | { |
5973 | | /* On VxWorks, CALL relocations should refer to the .got.plt |
5974 | | entry, which is initialized to point at the PLT stub. */ |
5975 | 0 | if (htab->root.target_os == is_vxworks |
5976 | 0 | && (call_hi16_reloc_p (r_type) |
5977 | 0 | || call_lo16_reloc_p (r_type) |
5978 | 0 | || call16_reloc_p (r_type))) |
5979 | 0 | { |
5980 | 0 | BFD_ASSERT (addend == 0); |
5981 | 0 | BFD_ASSERT (h->root.needs_plt); |
5982 | 0 | g = mips_elf_gotplt_index (info, &h->root); |
5983 | 0 | } |
5984 | 0 | else |
5985 | 0 | { |
5986 | 0 | BFD_ASSERT (addend == 0); |
5987 | 0 | g = mips_elf_global_got_index (abfd, info, input_bfd, |
5988 | 0 | &h->root, r_type); |
5989 | 0 | if (!TLS_RELOC_P (r_type) |
5990 | 0 | && !elf_hash_table (info)->dynamic_sections_created) |
5991 | | /* This is a static link. We must initialize the GOT entry. */ |
5992 | 0 | MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g); |
5993 | 0 | } |
5994 | 0 | } |
5995 | 0 | else if (htab->root.target_os != is_vxworks |
5996 | 0 | && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) |
5997 | | /* The calculation below does not involve "g". */ |
5998 | 0 | break; |
5999 | 0 | else |
6000 | 0 | { |
6001 | 0 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
6002 | 0 | symbol + addend, r_symndx, h, r_type); |
6003 | 0 | if (g == MINUS_ONE) |
6004 | 0 | return bfd_reloc_outofrange; |
6005 | 0 | } |
6006 | | |
6007 | | /* Convert GOT indices to actual offsets. */ |
6008 | 0 | g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); |
6009 | 0 | break; |
6010 | 0 | } |
6011 | | |
6012 | | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
6013 | | symbols are resolved by the loader. Add them to .rela.dyn. */ |
6014 | 0 | if (h != NULL && is_gott_symbol (info, &h->root)) |
6015 | 0 | { |
6016 | 0 | Elf_Internal_Rela outrel; |
6017 | 0 | bfd_byte *loc; |
6018 | 0 | asection *s; |
6019 | |
|
6020 | 0 | s = mips_elf_rel_dyn_section (info, false); |
6021 | 0 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); |
6022 | |
|
6023 | 0 | outrel.r_offset = (input_section->output_section->vma |
6024 | 0 | + input_section->output_offset |
6025 | 0 | + relocation->r_offset); |
6026 | 0 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); |
6027 | 0 | outrel.r_addend = addend; |
6028 | 0 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); |
6029 | | |
6030 | | /* If we've written this relocation for a readonly section, |
6031 | | we need to set DF_TEXTREL again, so that we do not delete the |
6032 | | DT_TEXTREL tag. */ |
6033 | 0 | if (MIPS_ELF_READONLY_SECTION (input_section)) |
6034 | 0 | info->flags |= DF_TEXTREL; |
6035 | |
|
6036 | 0 | *valuep = 0; |
6037 | 0 | return bfd_reloc_ok; |
6038 | 0 | } |
6039 | | |
6040 | | /* Figure out what kind of relocation is being performed. */ |
6041 | 0 | switch (r_type) |
6042 | 0 | { |
6043 | 0 | case R_MIPS_NONE: |
6044 | 0 | return bfd_reloc_continue; |
6045 | | |
6046 | 0 | case R_MIPS_16: |
6047 | 0 | if (howto->partial_inplace) |
6048 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
6049 | 0 | value = symbol + addend; |
6050 | 0 | overflowed_p = mips_elf_overflow_p (value, 16); |
6051 | 0 | break; |
6052 | | |
6053 | 0 | case R_MIPS_32: |
6054 | 0 | case R_MIPS_REL32: |
6055 | 0 | case R_MIPS_64: |
6056 | 0 | if ((bfd_link_pic (info) |
6057 | 0 | || (htab->root.dynamic_sections_created |
6058 | 0 | && h != NULL |
6059 | 0 | && h->root.def_dynamic |
6060 | 0 | && !h->root.def_regular |
6061 | 0 | && !h->has_static_relocs)) |
6062 | 0 | && r_symndx != STN_UNDEF |
6063 | 0 | && (h == NULL |
6064 | 0 | || h->root.root.type != bfd_link_hash_undefweak |
6065 | 0 | || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT |
6066 | 0 | && !resolved_to_zero)) |
6067 | 0 | && (input_section->flags & SEC_ALLOC) != 0) |
6068 | 0 | { |
6069 | | /* If we're creating a shared library, then we can't know |
6070 | | where the symbol will end up. So, we create a relocation |
6071 | | record in the output, and leave the job up to the dynamic |
6072 | | linker. We must do the same for executable references to |
6073 | | shared library symbols, unless we've decided to use copy |
6074 | | relocs or PLTs instead. */ |
6075 | 0 | value = addend; |
6076 | 0 | if (!mips_elf_create_dynamic_relocation (abfd, |
6077 | 0 | info, |
6078 | 0 | relocation, |
6079 | 0 | h, |
6080 | 0 | sec, |
6081 | 0 | symbol, |
6082 | 0 | &value, |
6083 | 0 | input_section)) |
6084 | 0 | return bfd_reloc_undefined; |
6085 | 0 | } |
6086 | 0 | else |
6087 | 0 | { |
6088 | 0 | if (r_type != R_MIPS_REL32) |
6089 | 0 | value = symbol + addend; |
6090 | 0 | else |
6091 | 0 | value = addend; |
6092 | 0 | } |
6093 | 0 | value &= howto->dst_mask; |
6094 | 0 | break; |
6095 | | |
6096 | 0 | case R_MIPS_PC32: |
6097 | 0 | value = symbol + addend - p; |
6098 | 0 | value &= howto->dst_mask; |
6099 | 0 | break; |
6100 | | |
6101 | 0 | case R_MIPS16_26: |
6102 | | /* The calculation for R_MIPS16_26 is just the same as for an |
6103 | | R_MIPS_26. It's only the storage of the relocated field into |
6104 | | the output file that's different. That's handled in |
6105 | | mips_elf_perform_relocation. So, we just fall through to the |
6106 | | R_MIPS_26 case here. */ |
6107 | 0 | case R_MIPS_26: |
6108 | 0 | case R_MICROMIPS_26_S1: |
6109 | 0 | { |
6110 | 0 | unsigned int shift; |
6111 | | |
6112 | | /* Shift is 2, unusually, for microMIPS JALX. */ |
6113 | 0 | shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; |
6114 | |
|
6115 | 0 | if (howto->partial_inplace && !section_p) |
6116 | 0 | value = _bfd_mips_elf_sign_extend (addend, 26 + shift); |
6117 | 0 | else |
6118 | 0 | value = addend; |
6119 | 0 | value += symbol; |
6120 | | |
6121 | | /* Make sure the target of a jump is suitably aligned. Bit 0 must |
6122 | | be the correct ISA mode selector except for weak undefined |
6123 | | symbols. */ |
6124 | 0 | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6125 | 0 | && (*cross_mode_jump_p |
6126 | 0 | ? (value & 3) != (r_type == R_MIPS_26) |
6127 | 0 | : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26))) |
6128 | 0 | return bfd_reloc_outofrange; |
6129 | | |
6130 | 0 | value >>= shift; |
6131 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6132 | 0 | overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); |
6133 | 0 | value &= howto->dst_mask; |
6134 | 0 | } |
6135 | 0 | break; |
6136 | | |
6137 | 0 | case R_MIPS_TLS_DTPREL_HI16: |
6138 | 0 | case R_MIPS16_TLS_DTPREL_HI16: |
6139 | 0 | case R_MICROMIPS_TLS_DTPREL_HI16: |
6140 | 0 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) |
6141 | 0 | & howto->dst_mask); |
6142 | 0 | break; |
6143 | | |
6144 | 0 | case R_MIPS_TLS_DTPREL_LO16: |
6145 | 0 | case R_MIPS_TLS_DTPREL32: |
6146 | 0 | case R_MIPS_TLS_DTPREL64: |
6147 | 0 | case R_MIPS16_TLS_DTPREL_LO16: |
6148 | 0 | case R_MICROMIPS_TLS_DTPREL_LO16: |
6149 | 0 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
6150 | 0 | break; |
6151 | | |
6152 | 0 | case R_MIPS_TLS_TPREL_HI16: |
6153 | 0 | case R_MIPS16_TLS_TPREL_HI16: |
6154 | 0 | case R_MICROMIPS_TLS_TPREL_HI16: |
6155 | 0 | value = (mips_elf_high (addend + symbol - tprel_base (info)) |
6156 | 0 | & howto->dst_mask); |
6157 | 0 | break; |
6158 | | |
6159 | 0 | case R_MIPS_TLS_TPREL_LO16: |
6160 | 0 | case R_MIPS_TLS_TPREL32: |
6161 | 0 | case R_MIPS_TLS_TPREL64: |
6162 | 0 | case R_MIPS16_TLS_TPREL_LO16: |
6163 | 0 | case R_MICROMIPS_TLS_TPREL_LO16: |
6164 | 0 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; |
6165 | 0 | break; |
6166 | | |
6167 | 0 | case R_MIPS_HI16: |
6168 | 0 | case R_MIPS16_HI16: |
6169 | 0 | case R_MICROMIPS_HI16: |
6170 | 0 | if (!gp_disp_p) |
6171 | 0 | { |
6172 | 0 | value = mips_elf_high (addend + symbol); |
6173 | 0 | value &= howto->dst_mask; |
6174 | 0 | } |
6175 | 0 | else |
6176 | 0 | { |
6177 | | /* For MIPS16 ABI code we generate this sequence |
6178 | | 0: li $v0,%hi(_gp_disp) |
6179 | | 4: addiupc $v1,%lo(_gp_disp) |
6180 | | 8: sll $v0,16 |
6181 | | 12: addu $v0,$v1 |
6182 | | 14: move $gp,$v0 |
6183 | | So the offsets of hi and lo relocs are the same, but the |
6184 | | base $pc is that used by the ADDIUPC instruction at $t9 + 4. |
6185 | | ADDIUPC clears the low two bits of the instruction address, |
6186 | | so the base is ($t9 + 4) & ~3. */ |
6187 | 0 | if (r_type == R_MIPS16_HI16) |
6188 | 0 | value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); |
6189 | | /* The microMIPS .cpload sequence uses the same assembly |
6190 | | instructions as the traditional psABI version, but the |
6191 | | incoming $t9 has the low bit set. */ |
6192 | 0 | else if (r_type == R_MICROMIPS_HI16) |
6193 | 0 | value = mips_elf_high (addend + gp - p - 1); |
6194 | 0 | else |
6195 | 0 | value = mips_elf_high (addend + gp - p); |
6196 | 0 | } |
6197 | 0 | break; |
6198 | | |
6199 | 0 | case R_MIPS_LO16: |
6200 | 0 | case R_MIPS16_LO16: |
6201 | 0 | case R_MICROMIPS_LO16: |
6202 | 0 | case R_MICROMIPS_HI0_LO16: |
6203 | 0 | if (!gp_disp_p) |
6204 | 0 | value = (symbol + addend) & howto->dst_mask; |
6205 | 0 | else |
6206 | 0 | { |
6207 | | /* See the comment for R_MIPS16_HI16 above for the reason |
6208 | | for this conditional. */ |
6209 | 0 | if (r_type == R_MIPS16_LO16) |
6210 | 0 | value = addend + gp - (p & ~(bfd_vma) 0x3); |
6211 | 0 | else if (r_type == R_MICROMIPS_LO16 |
6212 | 0 | || r_type == R_MICROMIPS_HI0_LO16) |
6213 | 0 | value = addend + gp - p + 3; |
6214 | 0 | else |
6215 | 0 | value = addend + gp - p + 4; |
6216 | | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
6217 | | for overflow. But, on, say, IRIX5, relocations against |
6218 | | _gp_disp are normally generated from the .cpload |
6219 | | pseudo-op. It generates code that normally looks like |
6220 | | this: |
6221 | | |
6222 | | lui $gp,%hi(_gp_disp) |
6223 | | addiu $gp,$gp,%lo(_gp_disp) |
6224 | | addu $gp,$gp,$t9 |
6225 | | |
6226 | | Here $t9 holds the address of the function being called, |
6227 | | as required by the MIPS ELF ABI. The R_MIPS_LO16 |
6228 | | relocation can easily overflow in this situation, but the |
6229 | | R_MIPS_HI16 relocation will handle the overflow. |
6230 | | Therefore, we consider this a bug in the MIPS ABI, and do |
6231 | | not check for overflow here. */ |
6232 | 0 | } |
6233 | 0 | break; |
6234 | | |
6235 | 0 | case R_MIPS_LITERAL: |
6236 | 0 | case R_MICROMIPS_LITERAL: |
6237 | | /* Because we don't merge literal sections, we can handle this |
6238 | | just like R_MIPS_GPREL16. In the long run, we should merge |
6239 | | shared literals, and then we will need to additional work |
6240 | | here. */ |
6241 | | |
6242 | | /* Fall through. */ |
6243 | |
|
6244 | 0 | case R_MIPS16_GPREL: |
6245 | | /* The R_MIPS16_GPREL performs the same calculation as |
6246 | | R_MIPS_GPREL16, but stores the relocated bits in a different |
6247 | | order. We don't need to do anything special here; the |
6248 | | differences are handled in mips_elf_perform_relocation. */ |
6249 | 0 | case R_MIPS_GPREL16: |
6250 | 0 | case R_MICROMIPS_GPREL7_S2: |
6251 | 0 | case R_MICROMIPS_GPREL16: |
6252 | 0 | { |
6253 | 0 | int bits = howto->bitsize + howto->rightshift; |
6254 | | /* Only sign-extend the addend if it was extracted from the |
6255 | | instruction. If the addend was separate, leave it alone, |
6256 | | otherwise we may lose significant bits. */ |
6257 | 0 | if (howto->partial_inplace) |
6258 | 0 | addend = _bfd_mips_elf_sign_extend (addend, bits); |
6259 | 0 | value = symbol + addend - gp; |
6260 | | /* If the symbol was local, any earlier relocatable links will |
6261 | | have adjusted its addend with the gp offset, so compensate |
6262 | | for that now. Don't do it for symbols forced local in this |
6263 | | link, though, since they won't have had the gp offset applied |
6264 | | to them before. */ |
6265 | 0 | if (was_local_p) |
6266 | 0 | value += gp0; |
6267 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6268 | 0 | overflowed_p = mips_elf_overflow_p (value, bits); |
6269 | 0 | } |
6270 | 0 | break; |
6271 | | |
6272 | 0 | case R_MIPS16_GOT16: |
6273 | 0 | case R_MIPS16_CALL16: |
6274 | 0 | case R_MIPS_GOT16: |
6275 | 0 | case R_MIPS_CALL16: |
6276 | 0 | case R_MICROMIPS_GOT16: |
6277 | 0 | case R_MICROMIPS_CALL16: |
6278 | | /* VxWorks does not have separate local and global semantics for |
6279 | | R_MIPS*_GOT16; every relocation evaluates to "G". */ |
6280 | 0 | if (htab->root.target_os != is_vxworks && local_p) |
6281 | 0 | { |
6282 | 0 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
6283 | 0 | symbol + addend, !was_local_p); |
6284 | 0 | if (value == MINUS_ONE) |
6285 | 0 | return bfd_reloc_outofrange; |
6286 | 0 | value |
6287 | 0 | = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
6288 | 0 | overflowed_p = mips_elf_overflow_p (value, 16); |
6289 | 0 | break; |
6290 | 0 | } |
6291 | | |
6292 | | /* Fall through. */ |
6293 | | |
6294 | 0 | case R_MIPS_TLS_GD: |
6295 | 0 | case R_MIPS_TLS_GOTTPREL: |
6296 | 0 | case R_MIPS_TLS_LDM: |
6297 | 0 | case R_MIPS_GOT_DISP: |
6298 | 0 | case R_MIPS16_TLS_GD: |
6299 | 0 | case R_MIPS16_TLS_GOTTPREL: |
6300 | 0 | case R_MIPS16_TLS_LDM: |
6301 | 0 | case R_MICROMIPS_TLS_GD: |
6302 | 0 | case R_MICROMIPS_TLS_GOTTPREL: |
6303 | 0 | case R_MICROMIPS_TLS_LDM: |
6304 | 0 | case R_MICROMIPS_GOT_DISP: |
6305 | 0 | value = g; |
6306 | 0 | overflowed_p = mips_elf_overflow_p (value, 16); |
6307 | 0 | break; |
6308 | | |
6309 | 0 | case R_MIPS_GPREL32: |
6310 | 0 | value = (addend + symbol + gp0 - gp); |
6311 | 0 | if (!save_addend) |
6312 | 0 | value &= howto->dst_mask; |
6313 | 0 | break; |
6314 | | |
6315 | 0 | case R_MIPS_PC16: |
6316 | 0 | case R_MIPS_GNU_REL16_S2: |
6317 | 0 | if (howto->partial_inplace) |
6318 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 18); |
6319 | | |
6320 | | /* No need to exclude weak undefined symbols here as they resolve |
6321 | | to 0 and never set `*cross_mode_jump_p', so this alignment check |
6322 | | will never trigger for them. */ |
6323 | 0 | if (*cross_mode_jump_p |
6324 | 0 | ? ((symbol + addend) & 3) != 1 |
6325 | 0 | : ((symbol + addend) & 3) != 0) |
6326 | 0 | return bfd_reloc_outofrange; |
6327 | | |
6328 | 0 | value = symbol + addend - p; |
6329 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6330 | 0 | overflowed_p = mips_elf_overflow_p (value, 18); |
6331 | 0 | value >>= howto->rightshift; |
6332 | 0 | value &= howto->dst_mask; |
6333 | 0 | break; |
6334 | | |
6335 | 0 | case R_MIPS16_PC16_S1: |
6336 | 0 | if (howto->partial_inplace) |
6337 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 17); |
6338 | |
|
6339 | 0 | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6340 | 0 | && (*cross_mode_jump_p |
6341 | 0 | ? ((symbol + addend) & 3) != 0 |
6342 | 0 | : ((symbol + addend) & 1) == 0)) |
6343 | 0 | return bfd_reloc_outofrange; |
6344 | | |
6345 | 0 | value = symbol + addend - p; |
6346 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6347 | 0 | overflowed_p = mips_elf_overflow_p (value, 17); |
6348 | 0 | value >>= howto->rightshift; |
6349 | 0 | value &= howto->dst_mask; |
6350 | 0 | break; |
6351 | | |
6352 | 0 | case R_MIPS_PC21_S2: |
6353 | 0 | if (howto->partial_inplace) |
6354 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 23); |
6355 | |
|
6356 | 0 | if ((symbol + addend) & 3) |
6357 | 0 | return bfd_reloc_outofrange; |
6358 | | |
6359 | 0 | value = symbol + addend - p; |
6360 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6361 | 0 | overflowed_p = mips_elf_overflow_p (value, 23); |
6362 | 0 | value >>= howto->rightshift; |
6363 | 0 | value &= howto->dst_mask; |
6364 | 0 | break; |
6365 | | |
6366 | 0 | case R_MIPS_PC26_S2: |
6367 | 0 | if (howto->partial_inplace) |
6368 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 28); |
6369 | |
|
6370 | 0 | if ((symbol + addend) & 3) |
6371 | 0 | return bfd_reloc_outofrange; |
6372 | | |
6373 | 0 | value = symbol + addend - p; |
6374 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6375 | 0 | overflowed_p = mips_elf_overflow_p (value, 28); |
6376 | 0 | value >>= howto->rightshift; |
6377 | 0 | value &= howto->dst_mask; |
6378 | 0 | break; |
6379 | | |
6380 | 0 | case R_MIPS_PC18_S3: |
6381 | 0 | if (howto->partial_inplace) |
6382 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 21); |
6383 | |
|
6384 | 0 | if ((symbol + addend) & 7) |
6385 | 0 | return bfd_reloc_outofrange; |
6386 | | |
6387 | 0 | value = symbol + addend - ((p | 7) ^ 7); |
6388 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6389 | 0 | overflowed_p = mips_elf_overflow_p (value, 21); |
6390 | 0 | value >>= howto->rightshift; |
6391 | 0 | value &= howto->dst_mask; |
6392 | 0 | break; |
6393 | | |
6394 | 0 | case R_MIPS_PC19_S2: |
6395 | 0 | if (howto->partial_inplace) |
6396 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 21); |
6397 | |
|
6398 | 0 | if ((symbol + addend) & 3) |
6399 | 0 | return bfd_reloc_outofrange; |
6400 | | |
6401 | 0 | value = symbol + addend - p; |
6402 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6403 | 0 | overflowed_p = mips_elf_overflow_p (value, 21); |
6404 | 0 | value >>= howto->rightshift; |
6405 | 0 | value &= howto->dst_mask; |
6406 | 0 | break; |
6407 | | |
6408 | 0 | case R_MIPS_PCHI16: |
6409 | 0 | value = mips_elf_high (symbol + addend - p); |
6410 | 0 | value &= howto->dst_mask; |
6411 | 0 | break; |
6412 | | |
6413 | 0 | case R_MIPS_PCLO16: |
6414 | 0 | if (howto->partial_inplace) |
6415 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
6416 | 0 | value = symbol + addend - p; |
6417 | 0 | value &= howto->dst_mask; |
6418 | 0 | break; |
6419 | | |
6420 | 0 | case R_MICROMIPS_PC7_S1: |
6421 | 0 | if (howto->partial_inplace) |
6422 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 8); |
6423 | |
|
6424 | 0 | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6425 | 0 | && (*cross_mode_jump_p |
6426 | 0 | ? ((symbol + addend + 2) & 3) != 0 |
6427 | 0 | : ((symbol + addend + 2) & 1) == 0)) |
6428 | 0 | return bfd_reloc_outofrange; |
6429 | | |
6430 | 0 | value = symbol + addend - p; |
6431 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6432 | 0 | overflowed_p = mips_elf_overflow_p (value, 8); |
6433 | 0 | value >>= howto->rightshift; |
6434 | 0 | value &= howto->dst_mask; |
6435 | 0 | break; |
6436 | | |
6437 | 0 | case R_MICROMIPS_PC10_S1: |
6438 | 0 | if (howto->partial_inplace) |
6439 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 11); |
6440 | |
|
6441 | 0 | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6442 | 0 | && (*cross_mode_jump_p |
6443 | 0 | ? ((symbol + addend + 2) & 3) != 0 |
6444 | 0 | : ((symbol + addend + 2) & 1) == 0)) |
6445 | 0 | return bfd_reloc_outofrange; |
6446 | | |
6447 | 0 | value = symbol + addend - p; |
6448 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6449 | 0 | overflowed_p = mips_elf_overflow_p (value, 11); |
6450 | 0 | value >>= howto->rightshift; |
6451 | 0 | value &= howto->dst_mask; |
6452 | 0 | break; |
6453 | | |
6454 | 0 | case R_MICROMIPS_PC16_S1: |
6455 | 0 | if (howto->partial_inplace) |
6456 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 17); |
6457 | |
|
6458 | 0 | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6459 | 0 | && (*cross_mode_jump_p |
6460 | 0 | ? ((symbol + addend) & 3) != 0 |
6461 | 0 | : ((symbol + addend) & 1) == 0)) |
6462 | 0 | return bfd_reloc_outofrange; |
6463 | | |
6464 | 0 | value = symbol + addend - p; |
6465 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6466 | 0 | overflowed_p = mips_elf_overflow_p (value, 17); |
6467 | 0 | value >>= howto->rightshift; |
6468 | 0 | value &= howto->dst_mask; |
6469 | 0 | break; |
6470 | | |
6471 | 0 | case R_MICROMIPS_PC23_S2: |
6472 | 0 | if (howto->partial_inplace) |
6473 | 0 | addend = _bfd_mips_elf_sign_extend (addend, 25); |
6474 | 0 | value = symbol + addend - ((p | 3) ^ 3); |
6475 | 0 | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
6476 | 0 | overflowed_p = mips_elf_overflow_p (value, 25); |
6477 | 0 | value >>= howto->rightshift; |
6478 | 0 | value &= howto->dst_mask; |
6479 | 0 | break; |
6480 | | |
6481 | 0 | case R_MIPS_GOT_HI16: |
6482 | 0 | case R_MIPS_CALL_HI16: |
6483 | 0 | case R_MICROMIPS_GOT_HI16: |
6484 | 0 | case R_MICROMIPS_CALL_HI16: |
6485 | | /* We're allowed to handle these two relocations identically. |
6486 | | The dynamic linker is allowed to handle the CALL relocations |
6487 | | differently by creating a lazy evaluation stub. */ |
6488 | 0 | value = g; |
6489 | 0 | value = mips_elf_high (value); |
6490 | 0 | value &= howto->dst_mask; |
6491 | 0 | break; |
6492 | | |
6493 | 0 | case R_MIPS_GOT_LO16: |
6494 | 0 | case R_MIPS_CALL_LO16: |
6495 | 0 | case R_MICROMIPS_GOT_LO16: |
6496 | 0 | case R_MICROMIPS_CALL_LO16: |
6497 | 0 | value = g & howto->dst_mask; |
6498 | 0 | break; |
6499 | | |
6500 | 0 | case R_MIPS_GOT_PAGE: |
6501 | 0 | case R_MICROMIPS_GOT_PAGE: |
6502 | 0 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
6503 | 0 | if (value == MINUS_ONE) |
6504 | 0 | return bfd_reloc_outofrange; |
6505 | 0 | value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
6506 | 0 | overflowed_p = mips_elf_overflow_p (value, 16); |
6507 | 0 | break; |
6508 | | |
6509 | 0 | case R_MIPS_GOT_OFST: |
6510 | 0 | case R_MICROMIPS_GOT_OFST: |
6511 | 0 | if (local_p) |
6512 | 0 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
6513 | 0 | else |
6514 | 0 | value = addend; |
6515 | 0 | overflowed_p = mips_elf_overflow_p (value, 16); |
6516 | 0 | break; |
6517 | | |
6518 | 0 | case R_MIPS_SUB: |
6519 | 0 | case R_MICROMIPS_SUB: |
6520 | 0 | value = symbol - addend; |
6521 | 0 | value &= howto->dst_mask; |
6522 | 0 | break; |
6523 | | |
6524 | 0 | case R_MIPS_HIGHER: |
6525 | 0 | case R_MICROMIPS_HIGHER: |
6526 | 0 | value = mips_elf_higher (addend + symbol); |
6527 | 0 | value &= howto->dst_mask; |
6528 | 0 | break; |
6529 | | |
6530 | 0 | case R_MIPS_HIGHEST: |
6531 | 0 | case R_MICROMIPS_HIGHEST: |
6532 | 0 | value = mips_elf_highest (addend + symbol); |
6533 | 0 | value &= howto->dst_mask; |
6534 | 0 | break; |
6535 | | |
6536 | 0 | case R_MIPS_SCN_DISP: |
6537 | 0 | case R_MICROMIPS_SCN_DISP: |
6538 | 0 | value = symbol + addend - sec->output_offset; |
6539 | 0 | value &= howto->dst_mask; |
6540 | 0 | break; |
6541 | | |
6542 | 0 | case R_MIPS_JALR: |
6543 | 0 | case R_MICROMIPS_JALR: |
6544 | | /* This relocation is only a hint. In some cases, we optimize |
6545 | | it into a bal instruction. But we don't try to optimize |
6546 | | when the symbol does not resolve locally. */ |
6547 | 0 | if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) |
6548 | 0 | return bfd_reloc_continue; |
6549 | | /* We can't optimize cross-mode jumps either. */ |
6550 | 0 | if (*cross_mode_jump_p) |
6551 | 0 | return bfd_reloc_continue; |
6552 | 0 | value = symbol + addend; |
6553 | | /* Neither we can non-instruction-aligned targets. */ |
6554 | 0 | if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0) |
6555 | 0 | return bfd_reloc_continue; |
6556 | 0 | break; |
6557 | | |
6558 | 0 | case R_MIPS_PJUMP: |
6559 | 0 | case R_MIPS_GNU_VTINHERIT: |
6560 | 0 | case R_MIPS_GNU_VTENTRY: |
6561 | | /* We don't do anything with these at present. */ |
6562 | 0 | return bfd_reloc_continue; |
6563 | | |
6564 | 0 | default: |
6565 | | /* An unrecognized relocation type. */ |
6566 | 0 | return bfd_reloc_notsupported; |
6567 | 0 | } |
6568 | | |
6569 | | /* Store the VALUE for our caller. */ |
6570 | 0 | *valuep = value; |
6571 | 0 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; |
6572 | 0 | } |
6573 | | |
6574 | | /* It has been determined that the result of the RELOCATION is the |
6575 | | VALUE. Use HOWTO to place VALUE into the output file at the |
6576 | | appropriate position. The SECTION is the section to which the |
6577 | | relocation applies. |
6578 | | CROSS_MODE_JUMP_P is true if the relocation field |
6579 | | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
6580 | | |
6581 | | Returns FALSE if anything goes wrong. */ |
6582 | | |
6583 | | static bool |
6584 | | mips_elf_perform_relocation (struct bfd_link_info *info, |
6585 | | reloc_howto_type *howto, |
6586 | | const Elf_Internal_Rela *relocation, |
6587 | | bfd_vma value, bfd *input_bfd, |
6588 | | asection *input_section, bfd_byte *contents, |
6589 | | bool cross_mode_jump_p) |
6590 | 0 | { |
6591 | 0 | bfd_vma x; |
6592 | 0 | bfd_byte *location; |
6593 | 0 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
6594 | | |
6595 | | /* Figure out where the relocation is occurring. */ |
6596 | 0 | location = contents + relocation->r_offset; |
6597 | |
|
6598 | 0 | _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); |
6599 | | |
6600 | | /* Obtain the current value. */ |
6601 | 0 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); |
6602 | | |
6603 | | /* Clear the field we are setting. */ |
6604 | 0 | x &= ~howto->dst_mask; |
6605 | | |
6606 | | /* Set the field. */ |
6607 | 0 | x |= (value & howto->dst_mask); |
6608 | | |
6609 | | /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */ |
6610 | 0 | if (!cross_mode_jump_p && jal_reloc_p (r_type)) |
6611 | 0 | { |
6612 | 0 | bfd_vma opcode = x >> 26; |
6613 | |
|
6614 | 0 | if (r_type == R_MIPS16_26 ? opcode == 0x7 |
6615 | 0 | : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c |
6616 | 0 | : opcode == 0x1d) |
6617 | 0 | { |
6618 | 0 | info->callbacks->einfo |
6619 | 0 | (_("%X%H: unsupported JALX to the same ISA mode\n"), |
6620 | 0 | input_bfd, input_section, relocation->r_offset); |
6621 | 0 | return true; |
6622 | 0 | } |
6623 | 0 | } |
6624 | 0 | if (cross_mode_jump_p && jal_reloc_p (r_type)) |
6625 | 0 | { |
6626 | 0 | bool ok; |
6627 | 0 | bfd_vma opcode = x >> 26; |
6628 | 0 | bfd_vma jalx_opcode; |
6629 | | |
6630 | | /* Check to see if the opcode is already JAL or JALX. */ |
6631 | 0 | if (r_type == R_MIPS16_26) |
6632 | 0 | { |
6633 | 0 | ok = ((opcode == 0x6) || (opcode == 0x7)); |
6634 | 0 | jalx_opcode = 0x7; |
6635 | 0 | } |
6636 | 0 | else if (r_type == R_MICROMIPS_26_S1) |
6637 | 0 | { |
6638 | 0 | ok = ((opcode == 0x3d) || (opcode == 0x3c)); |
6639 | 0 | jalx_opcode = 0x3c; |
6640 | 0 | } |
6641 | 0 | else |
6642 | 0 | { |
6643 | 0 | ok = ((opcode == 0x3) || (opcode == 0x1d)); |
6644 | 0 | jalx_opcode = 0x1d; |
6645 | 0 | } |
6646 | | |
6647 | | /* If the opcode is not JAL or JALX, there's a problem. We cannot |
6648 | | convert J or JALS to JALX. */ |
6649 | 0 | if (!ok) |
6650 | 0 | { |
6651 | 0 | info->callbacks->einfo |
6652 | 0 | (_("%X%H: unsupported jump between ISA modes; " |
6653 | 0 | "consider recompiling with interlinking enabled\n"), |
6654 | 0 | input_bfd, input_section, relocation->r_offset); |
6655 | 0 | return true; |
6656 | 0 | } |
6657 | | |
6658 | | /* Make this the JALX opcode. */ |
6659 | 0 | x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26); |
6660 | 0 | } |
6661 | 0 | else if (cross_mode_jump_p && b_reloc_p (r_type)) |
6662 | 0 | { |
6663 | 0 | bool ok = false; |
6664 | 0 | bfd_vma opcode = x >> 16; |
6665 | 0 | bfd_vma jalx_opcode = 0; |
6666 | 0 | bfd_vma sign_bit = 0; |
6667 | 0 | bfd_vma addr; |
6668 | 0 | bfd_vma dest; |
6669 | |
|
6670 | 0 | if (r_type == R_MICROMIPS_PC16_S1) |
6671 | 0 | { |
6672 | 0 | ok = opcode == 0x4060; |
6673 | 0 | jalx_opcode = 0x3c; |
6674 | 0 | sign_bit = 0x10000; |
6675 | 0 | value <<= 1; |
6676 | 0 | } |
6677 | 0 | else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2) |
6678 | 0 | { |
6679 | 0 | ok = opcode == 0x411; |
6680 | 0 | jalx_opcode = 0x1d; |
6681 | 0 | sign_bit = 0x20000; |
6682 | 0 | value <<= 2; |
6683 | 0 | } |
6684 | |
|
6685 | 0 | if (ok && !bfd_link_pic (info)) |
6686 | 0 | { |
6687 | 0 | addr = (input_section->output_section->vma |
6688 | 0 | + input_section->output_offset |
6689 | 0 | + relocation->r_offset |
6690 | 0 | + 4); |
6691 | 0 | dest = (addr |
6692 | 0 | + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit)); |
6693 | |
|
6694 | 0 | if ((addr >> 28) << 28 != (dest >> 28) << 28) |
6695 | 0 | { |
6696 | 0 | info->callbacks->einfo |
6697 | 0 | (_("%X%H: cannot convert branch between ISA modes " |
6698 | 0 | "to JALX: relocation out of range\n"), |
6699 | 0 | input_bfd, input_section, relocation->r_offset); |
6700 | 0 | return true; |
6701 | 0 | } |
6702 | | |
6703 | | /* Make this the JALX opcode. */ |
6704 | 0 | x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26; |
6705 | 0 | } |
6706 | 0 | else if (!mips_elf_hash_table (info)->ignore_branch_isa) |
6707 | 0 | { |
6708 | 0 | info->callbacks->einfo |
6709 | 0 | (_("%X%H: unsupported branch between ISA modes\n"), |
6710 | 0 | input_bfd, input_section, relocation->r_offset); |
6711 | 0 | return true; |
6712 | 0 | } |
6713 | 0 | } |
6714 | | |
6715 | | /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in |
6716 | | range. */ |
6717 | 0 | if (!bfd_link_relocatable (info) |
6718 | 0 | && !cross_mode_jump_p |
6719 | 0 | && ((JAL_TO_BAL_P (input_bfd) |
6720 | 0 | && r_type == R_MIPS_26 |
6721 | 0 | && (x >> 26) == 0x3) /* jal addr */ |
6722 | 0 | || (JALR_TO_BAL_P (input_bfd) |
6723 | 0 | && r_type == R_MIPS_JALR |
6724 | 0 | && x == 0x0320f809) /* jalr t9 */ |
6725 | 0 | || (JR_TO_B_P (input_bfd) |
6726 | 0 | && r_type == R_MIPS_JALR |
6727 | 0 | && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */ |
6728 | 0 | { |
6729 | 0 | bfd_vma addr; |
6730 | 0 | bfd_vma dest; |
6731 | 0 | bfd_signed_vma off; |
6732 | |
|
6733 | 0 | addr = (input_section->output_section->vma |
6734 | 0 | + input_section->output_offset |
6735 | 0 | + relocation->r_offset |
6736 | 0 | + 4); |
6737 | 0 | if (r_type == R_MIPS_26) |
6738 | 0 | dest = (value << 2) | ((addr >> 28) << 28); |
6739 | 0 | else |
6740 | 0 | dest = value; |
6741 | 0 | off = dest - addr; |
6742 | 0 | if (off <= 0x1ffff && off >= -0x20000) |
6743 | 0 | { |
6744 | 0 | if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */ |
6745 | 0 | x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ |
6746 | 0 | else |
6747 | 0 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ |
6748 | 0 | } |
6749 | 0 | } |
6750 | | |
6751 | | /* Put the value into the output. */ |
6752 | 0 | mips_elf_store_contents (howto, relocation, input_bfd, contents, x); |
6753 | |
|
6754 | 0 | _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), |
6755 | 0 | location); |
6756 | |
|
6757 | 0 | return true; |
6758 | 0 | } |
6759 | | |
6760 | | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
6761 | | is the original relocation, which is now being transformed into a |
6762 | | dynamic relocation. The ADDENDP is adjusted if necessary; the |
6763 | | caller should store the result in place of the original addend. */ |
6764 | | |
6765 | | static bool |
6766 | | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
6767 | | struct bfd_link_info *info, |
6768 | | const Elf_Internal_Rela *rel, |
6769 | | struct mips_elf_link_hash_entry *h, |
6770 | | asection *sec, bfd_vma symbol, |
6771 | | bfd_vma *addendp, asection *input_section) |
6772 | 0 | { |
6773 | 0 | Elf_Internal_Rela outrel[3]; |
6774 | 0 | asection *sreloc; |
6775 | 0 | bfd *dynobj; |
6776 | 0 | int r_type; |
6777 | 0 | long indx; |
6778 | 0 | bool defined_p; |
6779 | 0 | struct mips_elf_link_hash_table *htab; |
6780 | |
|
6781 | 0 | htab = mips_elf_hash_table (info); |
6782 | 0 | BFD_ASSERT (htab != NULL); |
6783 | |
|
6784 | 0 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
6785 | 0 | dynobj = elf_hash_table (info)->dynobj; |
6786 | 0 | sreloc = mips_elf_rel_dyn_section (info, false); |
6787 | 0 | BFD_ASSERT (sreloc != NULL); |
6788 | 0 | BFD_ASSERT (sreloc->contents != NULL); |
6789 | 0 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) |
6790 | 0 | < sreloc->size); |
6791 | |
|
6792 | 0 | outrel[0].r_offset = |
6793 | 0 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); |
6794 | 0 | if (ABI_64_P (output_bfd)) |
6795 | 0 | { |
6796 | 0 | outrel[1].r_offset = |
6797 | 0 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); |
6798 | 0 | outrel[2].r_offset = |
6799 | 0 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); |
6800 | 0 | } |
6801 | |
|
6802 | 0 | if (outrel[0].r_offset == MINUS_ONE) |
6803 | | /* The relocation field has been deleted. */ |
6804 | 0 | return true; |
6805 | | |
6806 | 0 | if (outrel[0].r_offset == MINUS_TWO) |
6807 | 0 | { |
6808 | | /* The relocation field has been converted into a relative value of |
6809 | | some sort. Functions like _bfd_elf_write_section_eh_frame expect |
6810 | | the field to be fully relocated, so add in the symbol's value. */ |
6811 | 0 | *addendp += symbol; |
6812 | 0 | return true; |
6813 | 0 | } |
6814 | | |
6815 | | /* We must now calculate the dynamic symbol table index to use |
6816 | | in the relocation. */ |
6817 | 0 | if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) |
6818 | 0 | { |
6819 | 0 | BFD_ASSERT (htab->root.target_os == is_vxworks |
6820 | 0 | || h->global_got_area != GGA_NONE); |
6821 | 0 | indx = h->root.dynindx; |
6822 | 0 | if (SGI_COMPAT (output_bfd)) |
6823 | 0 | defined_p = h->root.def_regular; |
6824 | 0 | else |
6825 | | /* ??? glibc's ld.so just adds the final GOT entry to the |
6826 | | relocation field. It therefore treats relocs against |
6827 | | defined symbols in the same way as relocs against |
6828 | | undefined symbols. */ |
6829 | 0 | defined_p = false; |
6830 | 0 | } |
6831 | 0 | else |
6832 | 0 | { |
6833 | 0 | if (sec != NULL && bfd_is_abs_section (sec)) |
6834 | 0 | indx = 0; |
6835 | 0 | else if (sec == NULL || sec->owner == NULL) |
6836 | 0 | { |
6837 | 0 | BFD_ASSERT (0); |
6838 | 0 | bfd_set_error (bfd_error_bad_value); |
6839 | 0 | return false; |
6840 | 0 | } |
6841 | 0 | else |
6842 | 0 | { |
6843 | 0 | indx = elf_section_data (sec->output_section)->dynindx; |
6844 | 0 | if (indx == 0) |
6845 | 0 | { |
6846 | 0 | asection *osec = htab->root.text_index_section; |
6847 | 0 | indx = elf_section_data (osec)->dynindx; |
6848 | 0 | } |
6849 | 0 | if (indx == 0) |
6850 | 0 | abort (); |
6851 | 0 | } |
6852 | | |
6853 | | /* Instead of generating a relocation using the section |
6854 | | symbol, we may as well make it a fully relative |
6855 | | relocation. We want to avoid generating relocations to |
6856 | | local symbols because we used to generate them |
6857 | | incorrectly, without adding the original symbol value, |
6858 | | which is mandated by the ABI for section symbols. In |
6859 | | order to give dynamic loaders and applications time to |
6860 | | phase out the incorrect use, we refrain from emitting |
6861 | | section-relative relocations. It's not like they're |
6862 | | useful, after all. This should be a bit more efficient |
6863 | | as well. */ |
6864 | | /* ??? Although this behavior is compatible with glibc's ld.so, |
6865 | | the ABI says that relocations against STN_UNDEF should have |
6866 | | a symbol value of 0. Irix rld honors this, so relocations |
6867 | | against STN_UNDEF have no effect. */ |
6868 | 0 | if (!SGI_COMPAT (output_bfd)) |
6869 | 0 | indx = 0; |
6870 | 0 | defined_p = true; |
6871 | 0 | } |
6872 | | |
6873 | | /* If the relocation was previously an absolute relocation and |
6874 | | this symbol will not be referred to by the relocation, we must |
6875 | | adjust it by the value we give it in the dynamic symbol table. |
6876 | | Otherwise leave the job up to the dynamic linker. */ |
6877 | 0 | if (defined_p && r_type != R_MIPS_REL32) |
6878 | 0 | *addendp += symbol; |
6879 | |
|
6880 | 0 | if (htab->root.target_os == is_vxworks) |
6881 | | /* VxWorks uses non-relative relocations for this. */ |
6882 | 0 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); |
6883 | 0 | else |
6884 | | /* The relocation is always an REL32 relocation because we don't |
6885 | | know where the shared library will wind up at load-time. */ |
6886 | 0 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
6887 | 0 | R_MIPS_REL32); |
6888 | | |
6889 | | /* For strict adherence to the ABI specification, we should |
6890 | | generate a R_MIPS_64 relocation record by itself before the |
6891 | | _REL32/_64 record as well, such that the addend is read in as |
6892 | | a 64-bit value (REL32 is a 32-bit relocation, after all). |
6893 | | However, since none of the existing ELF64 MIPS dynamic |
6894 | | loaders seems to care, we don't waste space with these |
6895 | | artificial relocations. If this turns out to not be true, |
6896 | | mips_elf_allocate_dynamic_relocation() should be tweaked so |
6897 | | as to make room for a pair of dynamic relocations per |
6898 | | invocation if ABI_64_P, and here we should generate an |
6899 | | additional relocation record with R_MIPS_64 by itself for a |
6900 | | NULL symbol before this relocation record. */ |
6901 | 0 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, |
6902 | 0 | ABI_64_P (output_bfd) |
6903 | 0 | ? R_MIPS_64 |
6904 | 0 | : R_MIPS_NONE); |
6905 | 0 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); |
6906 | | |
6907 | | /* Adjust the output offset of the relocation to reference the |
6908 | | correct location in the output file. */ |
6909 | 0 | outrel[0].r_offset += (input_section->output_section->vma |
6910 | 0 | + input_section->output_offset); |
6911 | 0 | outrel[1].r_offset += (input_section->output_section->vma |
6912 | 0 | + input_section->output_offset); |
6913 | 0 | outrel[2].r_offset += (input_section->output_section->vma |
6914 | 0 | + input_section->output_offset); |
6915 | | |
6916 | | /* Put the relocation back out. We have to use the special |
6917 | | relocation outputter in the 64-bit case since the 64-bit |
6918 | | relocation format is non-standard. */ |
6919 | 0 | if (ABI_64_P (output_bfd)) |
6920 | 0 | { |
6921 | 0 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
6922 | 0 | (output_bfd, &outrel[0], |
6923 | 0 | (sreloc->contents |
6924 | 0 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); |
6925 | 0 | } |
6926 | 0 | else if (htab->root.target_os == is_vxworks) |
6927 | 0 | { |
6928 | | /* VxWorks uses RELA rather than REL dynamic relocations. */ |
6929 | 0 | outrel[0].r_addend = *addendp; |
6930 | 0 | bfd_elf32_swap_reloca_out |
6931 | 0 | (output_bfd, &outrel[0], |
6932 | 0 | (sreloc->contents |
6933 | 0 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); |
6934 | 0 | } |
6935 | 0 | else |
6936 | 0 | bfd_elf32_swap_reloc_out |
6937 | 0 | (output_bfd, &outrel[0], |
6938 | 0 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); |
6939 | | |
6940 | | /* We've now added another relocation. */ |
6941 | 0 | ++sreloc->reloc_count; |
6942 | | |
6943 | | /* Make sure the output section is writable. The dynamic linker |
6944 | | will be writing to it. */ |
6945 | 0 | elf_section_data (input_section->output_section)->this_hdr.sh_flags |
6946 | 0 | |= SHF_WRITE; |
6947 | | |
6948 | | /* On IRIX5, make an entry of compact relocation info. */ |
6949 | 0 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
6950 | 0 | { |
6951 | 0 | asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); |
6952 | 0 | bfd_byte *cr; |
6953 | |
|
6954 | 0 | if (scpt) |
6955 | 0 | { |
6956 | 0 | Elf32_crinfo cptrel; |
6957 | |
|
6958 | 0 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); |
6959 | 0 | cptrel.vaddr = (rel->r_offset |
6960 | 0 | + input_section->output_section->vma |
6961 | 0 | + input_section->output_offset); |
6962 | 0 | if (r_type == R_MIPS_REL32) |
6963 | 0 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); |
6964 | 0 | else |
6965 | 0 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); |
6966 | 0 | mips_elf_set_cr_dist2to (cptrel, 0); |
6967 | 0 | cptrel.konst = *addendp; |
6968 | |
|
6969 | 0 | cr = (scpt->contents |
6970 | 0 | + sizeof (Elf32_External_compact_rel)); |
6971 | 0 | mips_elf_set_cr_relvaddr (cptrel, 0); |
6972 | 0 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
6973 | 0 | ((Elf32_External_crinfo *) cr |
6974 | 0 | + scpt->reloc_count)); |
6975 | 0 | ++scpt->reloc_count; |
6976 | 0 | } |
6977 | 0 | } |
6978 | | |
6979 | | /* If we've written this relocation for a readonly section, |
6980 | | we need to set DF_TEXTREL again, so that we do not delete the |
6981 | | DT_TEXTREL tag. */ |
6982 | 0 | if (MIPS_ELF_READONLY_SECTION (input_section)) |
6983 | 0 | info->flags |= DF_TEXTREL; |
6984 | |
|
6985 | 0 | return true; |
6986 | 0 | } |
6987 | | |
6988 | | /* Return the MACH for a MIPS e_flags value. */ |
6989 | | |
6990 | | unsigned long |
6991 | | _bfd_elf_mips_mach (flagword flags) |
6992 | 170k | { |
6993 | 170k | switch (flags & EF_MIPS_MACH) |
6994 | 170k | { |
6995 | 6 | case EF_MIPS_MACH_3900: |
6996 | 6 | return bfd_mach_mips3900; |
6997 | | |
6998 | 0 | case EF_MIPS_MACH_4010: |
6999 | 0 | return bfd_mach_mips4010; |
7000 | | |
7001 | 313 | case EF_MIPS_MACH_ALLEGREX: |
7002 | 313 | return bfd_mach_mips_allegrex; |
7003 | | |
7004 | 12 | case EF_MIPS_MACH_4100: |
7005 | 12 | return bfd_mach_mips4100; |
7006 | | |
7007 | 7 | case EF_MIPS_MACH_4111: |
7008 | 7 | return bfd_mach_mips4111; |
7009 | | |
7010 | 5 | case EF_MIPS_MACH_4120: |
7011 | 5 | return bfd_mach_mips4120; |
7012 | | |
7013 | 14 | case EF_MIPS_MACH_4650: |
7014 | 14 | return bfd_mach_mips4650; |
7015 | | |
7016 | 3 | case EF_MIPS_MACH_5400: |
7017 | 3 | return bfd_mach_mips5400; |
7018 | | |
7019 | 7 | case EF_MIPS_MACH_5500: |
7020 | 7 | return bfd_mach_mips5500; |
7021 | | |
7022 | 806 | case EF_MIPS_MACH_5900: |
7023 | 806 | return bfd_mach_mips5900; |
7024 | | |
7025 | 2.24k | case EF_MIPS_MACH_9000: |
7026 | 2.24k | return bfd_mach_mips9000; |
7027 | | |
7028 | 7 | case EF_MIPS_MACH_SB1: |
7029 | 7 | return bfd_mach_mips_sb1; |
7030 | | |
7031 | 12 | case EF_MIPS_MACH_LS2E: |
7032 | 12 | return bfd_mach_mips_loongson_2e; |
7033 | | |
7034 | 1.22k | case EF_MIPS_MACH_LS2F: |
7035 | 1.22k | return bfd_mach_mips_loongson_2f; |
7036 | | |
7037 | 6 | case EF_MIPS_MACH_GS464: |
7038 | 6 | return bfd_mach_mips_gs464; |
7039 | | |
7040 | 10 | case EF_MIPS_MACH_GS464E: |
7041 | 10 | return bfd_mach_mips_gs464e; |
7042 | | |
7043 | 70 | case EF_MIPS_MACH_GS264E: |
7044 | 70 | return bfd_mach_mips_gs264e; |
7045 | | |
7046 | 692 | case EF_MIPS_MACH_OCTEON3: |
7047 | 692 | return bfd_mach_mips_octeon3; |
7048 | | |
7049 | 303 | case EF_MIPS_MACH_OCTEON2: |
7050 | 303 | return bfd_mach_mips_octeon2; |
7051 | | |
7052 | 977 | case EF_MIPS_MACH_OCTEON: |
7053 | 977 | return bfd_mach_mips_octeon; |
7054 | | |
7055 | 4 | case EF_MIPS_MACH_XLR: |
7056 | 4 | return bfd_mach_mips_xlr; |
7057 | | |
7058 | 6 | case EF_MIPS_MACH_IAMR2: |
7059 | 6 | return bfd_mach_mips_interaptiv_mr2; |
7060 | | |
7061 | 163k | default: |
7062 | 163k | switch (flags & EF_MIPS_ARCH) |
7063 | 163k | { |
7064 | 20.5k | default: |
7065 | 141k | case EF_MIPS_ARCH_1: |
7066 | 141k | return bfd_mach_mips3000; |
7067 | | |
7068 | 1.01k | case EF_MIPS_ARCH_2: |
7069 | 1.01k | return bfd_mach_mips6000; |
7070 | | |
7071 | 8.27k | case EF_MIPS_ARCH_3: |
7072 | 8.27k | return bfd_mach_mips4000; |
7073 | | |
7074 | 4.75k | case EF_MIPS_ARCH_4: |
7075 | 4.75k | return bfd_mach_mips8000; |
7076 | | |
7077 | 718 | case EF_MIPS_ARCH_5: |
7078 | 718 | return bfd_mach_mips5; |
7079 | | |
7080 | 46 | case EF_MIPS_ARCH_32: |
7081 | 46 | return bfd_mach_mipsisa32; |
7082 | | |
7083 | 1.07k | case EF_MIPS_ARCH_64: |
7084 | 1.07k | return bfd_mach_mipsisa64; |
7085 | | |
7086 | 1.40k | case EF_MIPS_ARCH_32R2: |
7087 | 1.40k | return bfd_mach_mipsisa32r2; |
7088 | | |
7089 | 2.81k | case EF_MIPS_ARCH_64R2: |
7090 | 2.81k | return bfd_mach_mipsisa64r2; |
7091 | | |
7092 | 1.49k | case EF_MIPS_ARCH_32R6: |
7093 | 1.49k | return bfd_mach_mipsisa32r6; |
7094 | | |
7095 | 373 | case EF_MIPS_ARCH_64R6: |
7096 | 373 | return bfd_mach_mipsisa64r6; |
7097 | 163k | } |
7098 | 170k | } |
7099 | | |
7100 | 0 | return 0; |
7101 | 170k | } |
7102 | | |
7103 | | /* Return printable name for ABI. */ |
7104 | | |
7105 | | static inline char * |
7106 | | elf_mips_abi_name (bfd *abfd) |
7107 | 0 | { |
7108 | 0 | flagword flags; |
7109 | |
|
7110 | 0 | flags = elf_elfheader (abfd)->e_flags; |
7111 | 0 | switch (flags & EF_MIPS_ABI) |
7112 | 0 | { |
7113 | 0 | case 0: |
7114 | 0 | if (ABI_N32_P (abfd)) |
7115 | 0 | return "N32"; |
7116 | 0 | else if (ABI_64_P (abfd)) |
7117 | 0 | return "64"; |
7118 | 0 | else |
7119 | 0 | return "none"; |
7120 | 0 | case EF_MIPS_ABI_O32: |
7121 | 0 | return "O32"; |
7122 | 0 | case EF_MIPS_ABI_O64: |
7123 | 0 | return "O64"; |
7124 | 0 | case EF_MIPS_ABI_EABI32: |
7125 | 0 | return "EABI32"; |
7126 | 0 | case EF_MIPS_ABI_EABI64: |
7127 | 0 | return "EABI64"; |
7128 | 0 | default: |
7129 | 0 | return "unknown abi"; |
7130 | 0 | } |
7131 | 0 | } |
7132 | | |
7133 | | /* MIPS ELF uses two common sections. One is the usual one, and the |
7134 | | other is for small objects. All the small objects are kept |
7135 | | together, and then referenced via the gp pointer, which yields |
7136 | | faster assembler code. This is what we use for the small common |
7137 | | section. This approach is copied from ecoff.c. */ |
7138 | | static asection mips_elf_scom_section; |
7139 | | static const asymbol mips_elf_scom_symbol = |
7140 | | GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section); |
7141 | | static asection mips_elf_scom_section = |
7142 | | BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol, |
7143 | | ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA); |
7144 | | |
7145 | | /* MIPS ELF also uses an acommon section, which represents an |
7146 | | allocated common symbol which may be overridden by a |
7147 | | definition in a shared library. */ |
7148 | | static asection mips_elf_acom_section; |
7149 | | static const asymbol mips_elf_acom_symbol = |
7150 | | GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section); |
7151 | | static asection mips_elf_acom_section = |
7152 | | BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol, |
7153 | | ".acommon", 0, SEC_ALLOC); |
7154 | | |
7155 | | /* This is used for both the 32-bit and the 64-bit ABI. */ |
7156 | | |
7157 | | void |
7158 | | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
7159 | 13.7k | { |
7160 | 13.7k | elf_symbol_type *elfsym; |
7161 | | |
7162 | | /* Handle the special MIPS section numbers that a symbol may use. */ |
7163 | 13.7k | elfsym = (elf_symbol_type *) asym; |
7164 | 13.7k | switch (elfsym->internal_elf_sym.st_shndx) |
7165 | 13.7k | { |
7166 | 11 | case SHN_MIPS_ACOMMON: |
7167 | | /* This section is used in a dynamically linked executable file. |
7168 | | It is an allocated common section. The dynamic linker can |
7169 | | either resolve these symbols to something in a shared |
7170 | | library, or it can just leave them here. For our purposes, |
7171 | | we can consider these symbols to be in a new section. */ |
7172 | 11 | asym->section = &mips_elf_acom_section; |
7173 | 11 | break; |
7174 | | |
7175 | 12 | case SHN_COMMON: |
7176 | | /* Common symbols less than the GP size are automatically |
7177 | | treated as SHN_MIPS_SCOMMON symbols, with some exceptions. */ |
7178 | 12 | if (asym->value > elf_gp_size (abfd) |
7179 | 12 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
7180 | 12 | || IRIX_COMPAT (abfd) == ict_irix6 |
7181 | 12 | || strcmp (asym->name, "__gnu_lto_slim") == 0) |
7182 | 12 | break; |
7183 | | /* Fall through. */ |
7184 | 3 | case SHN_MIPS_SCOMMON: |
7185 | 3 | asym->section = &mips_elf_scom_section; |
7186 | 3 | asym->value = elfsym->internal_elf_sym.st_size; |
7187 | 3 | break; |
7188 | | |
7189 | 5 | case SHN_MIPS_SUNDEFINED: |
7190 | 5 | asym->section = bfd_und_section_ptr; |
7191 | 5 | break; |
7192 | | |
7193 | 3 | case SHN_MIPS_TEXT: |
7194 | 3 | { |
7195 | 3 | asection *section = bfd_get_section_by_name (abfd, ".text"); |
7196 | | |
7197 | 3 | if (section != NULL) |
7198 | 1 | { |
7199 | 1 | asym->section = section; |
7200 | | /* MIPS_TEXT is a bit special, the address is not an offset |
7201 | | to the base of the .text section. So subtract the section |
7202 | | base address to make it an offset. */ |
7203 | 1 | asym->value -= section->vma; |
7204 | 1 | } |
7205 | 3 | } |
7206 | 3 | break; |
7207 | | |
7208 | 16 | case SHN_MIPS_DATA: |
7209 | 16 | { |
7210 | 16 | asection *section = bfd_get_section_by_name (abfd, ".data"); |
7211 | | |
7212 | 16 | if (section != NULL) |
7213 | 2 | { |
7214 | 2 | asym->section = section; |
7215 | | /* MIPS_DATA is a bit special, the address is not an offset |
7216 | | to the base of the .data section. So subtract the section |
7217 | | base address to make it an offset. */ |
7218 | 2 | asym->value -= section->vma; |
7219 | 2 | } |
7220 | 16 | } |
7221 | 16 | break; |
7222 | 13.7k | } |
7223 | | |
7224 | | /* If this is an odd-valued function symbol, assume it's a MIPS16 |
7225 | | or microMIPS one. */ |
7226 | 13.7k | if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC |
7227 | 13.7k | && (asym->value & 1) != 0) |
7228 | 19 | { |
7229 | 19 | asym->value--; |
7230 | 19 | if (MICROMIPS_P (abfd)) |
7231 | 3 | elfsym->internal_elf_sym.st_other |
7232 | 3 | = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); |
7233 | 16 | else |
7234 | 16 | elfsym->internal_elf_sym.st_other |
7235 | 16 | = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); |
7236 | 19 | } |
7237 | 13.7k | } |
7238 | | |
7239 | | /* Implement elf_backend_eh_frame_address_size. This differs from |
7240 | | the default in the way it handles EABI64. |
7241 | | |
7242 | | EABI64 was originally specified as an LP64 ABI, and that is what |
7243 | | -mabi=eabi normally gives on a 64-bit target. However, gcc has |
7244 | | historically accepted the combination of -mabi=eabi and -mlong32, |
7245 | | and this ILP32 variation has become semi-official over time. |
7246 | | Both forms use elf32 and have pointer-sized FDE addresses. |
7247 | | |
7248 | | If an EABI object was generated by GCC 4.0 or above, it will have |
7249 | | an empty .gcc_compiled_longXX section, where XX is the size of longs |
7250 | | in bits. Unfortunately, ILP32 objects generated by earlier compilers |
7251 | | have no special marking to distinguish them from LP64 objects. |
7252 | | |
7253 | | We don't want users of the official LP64 ABI to be punished for the |
7254 | | existence of the ILP32 variant, but at the same time, we don't want |
7255 | | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. |
7256 | | We therefore take the following approach: |
7257 | | |
7258 | | - If ABFD contains a .gcc_compiled_longXX section, use it to |
7259 | | determine the pointer size. |
7260 | | |
7261 | | - Otherwise check the type of the first relocation. Assume that |
7262 | | the LP64 ABI is being used if the relocation is of type R_MIPS_64. |
7263 | | |
7264 | | - Otherwise punt. |
7265 | | |
7266 | | The second check is enough to detect LP64 objects generated by pre-4.0 |
7267 | | compilers because, in the kind of output generated by those compilers, |
7268 | | the first relocation will be associated with either a CIE personality |
7269 | | routine or an FDE start address. Furthermore, the compilers never |
7270 | | used a special (non-pointer) encoding for this ABI. |
7271 | | |
7272 | | Checking the relocation type should also be safe because there is no |
7273 | | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never |
7274 | | did so. */ |
7275 | | |
7276 | | unsigned int |
7277 | | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec) |
7278 | 0 | { |
7279 | 0 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) |
7280 | 0 | return 8; |
7281 | 0 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI64) |
7282 | 0 | { |
7283 | 0 | bool long32_p, long64_p; |
7284 | |
|
7285 | 0 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; |
7286 | 0 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; |
7287 | 0 | if (long32_p && long64_p) |
7288 | 0 | return 0; |
7289 | 0 | if (long32_p) |
7290 | 0 | return 4; |
7291 | 0 | if (long64_p) |
7292 | 0 | return 8; |
7293 | | |
7294 | 0 | if (sec->reloc_count > 0) |
7295 | 0 | { |
7296 | | /* Load the relocations for this section. */ |
7297 | 0 | Elf_Internal_Rela *internal_relocs = |
7298 | 0 | _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, true); |
7299 | 0 | if (internal_relocs == NULL) |
7300 | 0 | return 0; |
7301 | | |
7302 | 0 | unsigned int size = 0; |
7303 | 0 | if (ELF32_R_TYPE (internal_relocs[0].r_info) == R_MIPS_64) |
7304 | 0 | size = 8; |
7305 | |
|
7306 | 0 | if (elf_section_data (sec)->relocs != internal_relocs) |
7307 | 0 | free (internal_relocs); |
7308 | |
|
7309 | 0 | return size; |
7310 | 0 | } |
7311 | | |
7312 | 0 | return 0; |
7313 | 0 | } |
7314 | 0 | return 4; |
7315 | 0 | } |
7316 | | |
7317 | | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
7318 | | relocations against two unnamed section symbols to resolve to the |
7319 | | same address. For example, if we have code like: |
7320 | | |
7321 | | lw $4,%got_disp(.data)($gp) |
7322 | | lw $25,%got_disp(.text)($gp) |
7323 | | jalr $25 |
7324 | | |
7325 | | then the linker will resolve both relocations to .data and the program |
7326 | | will jump there rather than to .text. |
7327 | | |
7328 | | We can work around this problem by giving names to local section symbols. |
7329 | | This is also what the MIPSpro tools do. */ |
7330 | | |
7331 | | bool |
7332 | | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) |
7333 | 0 | { |
7334 | 0 | return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd); |
7335 | 0 | } |
7336 | | |
7337 | | /* Work over a section just before writing it out. This routine is |
7338 | | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize |
7339 | | sections that need the SHF_MIPS_GPREL flag by name; there has to be |
7340 | | a better way. */ |
7341 | | |
7342 | | bool |
7343 | | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
7344 | 2 | { |
7345 | 2 | if (hdr->sh_type == SHT_MIPS_REGINFO |
7346 | 2 | && hdr->sh_size > 0) |
7347 | 0 | { |
7348 | 0 | bfd_byte buf[4]; |
7349 | |
|
7350 | 0 | BFD_ASSERT (hdr->contents == NULL); |
7351 | |
|
7352 | 0 | if (hdr->sh_size != sizeof (Elf32_External_RegInfo)) |
7353 | 0 | { |
7354 | 0 | _bfd_error_handler |
7355 | 0 | (_("%pB: incorrect `.reginfo' section size; " |
7356 | 0 | "expected %" PRIu64 ", got %" PRIu64), |
7357 | 0 | abfd, (uint64_t) sizeof (Elf32_External_RegInfo), |
7358 | 0 | (uint64_t) hdr->sh_size); |
7359 | 0 | bfd_set_error (bfd_error_bad_value); |
7360 | 0 | return false; |
7361 | 0 | } |
7362 | | |
7363 | 0 | if (bfd_seek (abfd, |
7364 | 0 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, |
7365 | 0 | SEEK_SET) != 0) |
7366 | 0 | return false; |
7367 | 0 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
7368 | 0 | if (bfd_write (buf, 4, abfd) != 4) |
7369 | 0 | return false; |
7370 | 0 | } |
7371 | | |
7372 | 2 | if (hdr->sh_type == SHT_MIPS_OPTIONS |
7373 | 2 | && hdr->bfd_section != NULL |
7374 | 2 | && mips_elf_section_data (hdr->bfd_section) != NULL |
7375 | 2 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) |
7376 | 0 | { |
7377 | 0 | bfd_byte *contents, *l, *lend; |
7378 | | |
7379 | | /* We stored the section contents in the tdata field in the |
7380 | | set_section_contents routine. We save the section contents |
7381 | | so that we don't have to read them again. |
7382 | | At this point we know that elf_gp is set, so we can look |
7383 | | through the section contents to see if there is an |
7384 | | ODK_REGINFO structure. */ |
7385 | |
|
7386 | 0 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
7387 | 0 | l = contents; |
7388 | 0 | lend = contents + hdr->sh_size; |
7389 | 0 | while (l + sizeof (Elf_External_Options) <= lend) |
7390 | 0 | { |
7391 | 0 | Elf_Internal_Options intopt; |
7392 | |
|
7393 | 0 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
7394 | 0 | &intopt); |
7395 | 0 | if (intopt.size < sizeof (Elf_External_Options)) |
7396 | 0 | { |
7397 | 0 | _bfd_error_handler |
7398 | | /* xgettext:c-format */ |
7399 | 0 | (_("%pB: warning: bad `%s' option size %u smaller than" |
7400 | 0 | " its header"), |
7401 | 0 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); |
7402 | 0 | break; |
7403 | 0 | } |
7404 | 0 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
7405 | 0 | { |
7406 | 0 | bfd_byte buf[8]; |
7407 | |
|
7408 | 0 | if (bfd_seek (abfd, |
7409 | 0 | (hdr->sh_offset |
7410 | 0 | + (l - contents) |
7411 | 0 | + sizeof (Elf_External_Options) |
7412 | 0 | + (sizeof (Elf64_External_RegInfo) - 8)), |
7413 | 0 | SEEK_SET) != 0) |
7414 | 0 | return false; |
7415 | 0 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
7416 | 0 | if (bfd_write (buf, 8, abfd) != 8) |
7417 | 0 | return false; |
7418 | 0 | } |
7419 | 0 | else if (intopt.kind == ODK_REGINFO) |
7420 | 0 | { |
7421 | 0 | bfd_byte buf[4]; |
7422 | |
|
7423 | 0 | if (bfd_seek (abfd, |
7424 | 0 | (hdr->sh_offset |
7425 | 0 | + (l - contents) |
7426 | 0 | + sizeof (Elf_External_Options) |
7427 | 0 | + (sizeof (Elf32_External_RegInfo) - 4)), |
7428 | 0 | SEEK_SET) != 0) |
7429 | 0 | return false; |
7430 | 0 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
7431 | 0 | if (bfd_write (buf, 4, abfd) != 4) |
7432 | 0 | return false; |
7433 | 0 | } |
7434 | 0 | l += intopt.size; |
7435 | 0 | } |
7436 | 0 | } |
7437 | | |
7438 | 2 | if (hdr->bfd_section != NULL) |
7439 | 0 | { |
7440 | 0 | const char *name = bfd_section_name (hdr->bfd_section); |
7441 | | |
7442 | | /* .sbss is not handled specially here because the GNU/Linux |
7443 | | prelinker can convert .sbss from NOBITS to PROGBITS and |
7444 | | changing it back to NOBITS breaks the binary. The entry in |
7445 | | _bfd_mips_elf_special_sections will ensure the correct flags |
7446 | | are set on .sbss if BFD creates it without reading it from an |
7447 | | input file, and without special handling here the flags set |
7448 | | on it in an input file will be followed. */ |
7449 | 0 | if (strcmp (name, ".sdata") == 0 |
7450 | 0 | || strcmp (name, ".lit8") == 0 |
7451 | 0 | || strcmp (name, ".lit4") == 0) |
7452 | 0 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
7453 | 0 | else if (strcmp (name, ".srdata") == 0) |
7454 | 0 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; |
7455 | 0 | else if (strcmp (name, ".compact_rel") == 0) |
7456 | 0 | hdr->sh_flags = 0; |
7457 | 0 | else if (strcmp (name, ".rtproc") == 0) |
7458 | 0 | { |
7459 | 0 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) |
7460 | 0 | { |
7461 | 0 | unsigned int adjust; |
7462 | |
|
7463 | 0 | adjust = hdr->sh_size % hdr->sh_addralign; |
7464 | 0 | if (adjust != 0) |
7465 | 0 | hdr->sh_size += hdr->sh_addralign - adjust; |
7466 | 0 | } |
7467 | 0 | } |
7468 | 0 | } |
7469 | | |
7470 | 2 | return true; |
7471 | 2 | } |
7472 | | |
7473 | | /* Handle a MIPS specific section when reading an object file. This |
7474 | | is called when elfcode.h finds a section with an unknown type. |
7475 | | This routine supports both the 32-bit and 64-bit ELF ABI. */ |
7476 | | |
7477 | | bool |
7478 | | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
7479 | | Elf_Internal_Shdr *hdr, |
7480 | | const char *name, |
7481 | | int shindex) |
7482 | 591k | { |
7483 | 591k | flagword flags = 0; |
7484 | | |
7485 | | /* There ought to be a place to keep ELF backend specific flags, but |
7486 | | at the moment there isn't one. We just keep track of the |
7487 | | sections by their name, instead. Fortunately, the ABI gives |
7488 | | suggested names for all the MIPS specific sections, so we will |
7489 | | probably get away with this. */ |
7490 | 591k | switch (hdr->sh_type) |
7491 | 591k | { |
7492 | 8.39k | case SHT_MIPS_LIBLIST: |
7493 | 8.39k | if (strcmp (name, ".liblist") != 0) |
7494 | 8.39k | return false; |
7495 | 0 | break; |
7496 | 491 | case SHT_MIPS_MSYM: |
7497 | 491 | if (strcmp (name, ".msym") != 0) |
7498 | 491 | return false; |
7499 | 0 | break; |
7500 | 482 | case SHT_MIPS_CONFLICT: |
7501 | 482 | if (strcmp (name, ".conflict") != 0) |
7502 | 482 | return false; |
7503 | 0 | break; |
7504 | 476 | case SHT_MIPS_GPTAB: |
7505 | 476 | if (! startswith (name, ".gptab.")) |
7506 | 471 | return false; |
7507 | 5 | break; |
7508 | 484 | case SHT_MIPS_UCODE: |
7509 | 484 | if (strcmp (name, ".ucode") != 0) |
7510 | 484 | return false; |
7511 | 0 | break; |
7512 | 489 | case SHT_MIPS_DEBUG: |
7513 | 489 | if (strcmp (name, ".mdebug") != 0) |
7514 | 484 | return false; |
7515 | 5 | flags = SEC_DEBUGGING; |
7516 | 5 | break; |
7517 | 71 | case SHT_MIPS_REGINFO: |
7518 | 71 | if (strcmp (name, ".reginfo") != 0 |
7519 | 71 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) |
7520 | 23 | return false; |
7521 | 48 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
7522 | 48 | break; |
7523 | 1.79k | case SHT_MIPS_IFACE: |
7524 | 1.79k | if (strcmp (name, ".MIPS.interfaces") != 0) |
7525 | 1.79k | return false; |
7526 | 0 | break; |
7527 | 1.88k | case SHT_MIPS_CONTENT: |
7528 | 1.88k | if (! startswith (name, ".MIPS.content")) |
7529 | 1.18k | return false; |
7530 | 701 | break; |
7531 | 9.94k | case SHT_MIPS_OPTIONS: |
7532 | 9.94k | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
7533 | 4.73k | return false; |
7534 | 5.21k | break; |
7535 | 5.21k | case SHT_MIPS_ABIFLAGS: |
7536 | 489 | if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) |
7537 | 489 | return false; |
7538 | 0 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
7539 | 0 | break; |
7540 | 6.54k | case SHT_MIPS_DWARF: |
7541 | 6.54k | if (! startswith (name, ".debug_") |
7542 | 6.54k | && ! startswith (name, ".gnu.debuglto_.debug_") |
7543 | 6.54k | && ! startswith (name, ".zdebug_") |
7544 | 6.54k | && ! startswith (name, ".gnu.debuglto_.zdebug_")) |
7545 | 3.73k | return false; |
7546 | 2.80k | break; |
7547 | 2.80k | case SHT_MIPS_SYMBOL_LIB: |
7548 | 472 | if (strcmp (name, ".MIPS.symlib") != 0) |
7549 | 472 | return false; |
7550 | 0 | break; |
7551 | 980 | case SHT_MIPS_EVENTS: |
7552 | 980 | if (! startswith (name, ".MIPS.events") |
7553 | 980 | && ! startswith (name, ".MIPS.post_rel")) |
7554 | 676 | return false; |
7555 | 304 | break; |
7556 | 473 | case SHT_MIPS_XHASH: |
7557 | 473 | if (strcmp (name, ".MIPS.xhash") != 0) |
7558 | 473 | return false; |
7559 | 558k | default: |
7560 | 558k | break; |
7561 | 591k | } |
7562 | | |
7563 | 567k | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
7564 | 52 | return false; |
7565 | | |
7566 | 567k | if (hdr->sh_flags & SHF_MIPS_GPREL) |
7567 | 98.9k | flags |= SEC_SMALL_DATA; |
7568 | | |
7569 | 567k | if (flags) |
7570 | 99.0k | { |
7571 | 99.0k | if (!bfd_set_section_flags (hdr->bfd_section, |
7572 | 99.0k | (bfd_section_flags (hdr->bfd_section) |
7573 | 99.0k | | flags))) |
7574 | 0 | return false; |
7575 | 99.0k | } |
7576 | | |
7577 | 567k | if (hdr->sh_type == SHT_MIPS_ABIFLAGS) |
7578 | 0 | { |
7579 | 0 | Elf_External_ABIFlags_v0 ext; |
7580 | |
|
7581 | 0 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
7582 | 0 | &ext, 0, sizeof ext)) |
7583 | 0 | return false; |
7584 | 0 | bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, |
7585 | 0 | &mips_elf_tdata (abfd)->abiflags); |
7586 | 0 | if (mips_elf_tdata (abfd)->abiflags.version != 0) |
7587 | 0 | return false; |
7588 | 0 | mips_elf_tdata (abfd)->abiflags_valid = true; |
7589 | 0 | } |
7590 | | |
7591 | | /* FIXME: We should record sh_info for a .gptab section. */ |
7592 | | |
7593 | | /* For a .reginfo section, set the gp value in the tdata information |
7594 | | from the contents of this section. We need the gp value while |
7595 | | processing relocs, so we just get it now. The .reginfo section |
7596 | | is not used in the 64-bit MIPS ELF ABI. */ |
7597 | 567k | if (hdr->sh_type == SHT_MIPS_REGINFO) |
7598 | 48 | { |
7599 | 48 | Elf32_External_RegInfo ext; |
7600 | 48 | Elf32_RegInfo s; |
7601 | | |
7602 | 48 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
7603 | 48 | &ext, 0, sizeof ext)) |
7604 | 0 | return false; |
7605 | 48 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
7606 | 48 | elf_gp (abfd) = s.ri_gp_value; |
7607 | 48 | } |
7608 | | |
7609 | | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and |
7610 | | set the gp value based on what we find. We may see both |
7611 | | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, |
7612 | | they should agree. */ |
7613 | 567k | if (hdr->sh_type == SHT_MIPS_OPTIONS) |
7614 | 5.21k | { |
7615 | 5.21k | bfd_byte *contents, *l, *lend; |
7616 | | |
7617 | 5.21k | if (!bfd_malloc_and_get_section (abfd, hdr->bfd_section, &contents)) |
7618 | 680 | { |
7619 | 680 | free (contents); |
7620 | 680 | return false; |
7621 | 680 | } |
7622 | 4.53k | l = contents; |
7623 | 4.53k | lend = contents + hdr->sh_size; |
7624 | 10.1k | while (l + sizeof (Elf_External_Options) <= lend) |
7625 | 7.75k | { |
7626 | 7.75k | Elf_Internal_Options intopt; |
7627 | | |
7628 | 7.75k | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
7629 | 7.75k | &intopt); |
7630 | 7.75k | if (intopt.size < sizeof (Elf_External_Options)) |
7631 | 1.42k | { |
7632 | 2.13k | bad_opt: |
7633 | 2.13k | _bfd_error_handler |
7634 | | /* xgettext:c-format */ |
7635 | 2.13k | (_("%pB: warning: truncated `%s' option"), |
7636 | 2.13k | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)); |
7637 | 2.13k | break; |
7638 | 1.42k | } |
7639 | 6.33k | if (intopt.kind == ODK_REGINFO) |
7640 | 2.79k | { |
7641 | 2.79k | if (ABI_64_P (abfd)) |
7642 | 2.79k | { |
7643 | 2.79k | Elf64_Internal_RegInfo intreg; |
7644 | 2.79k | size_t needed = (sizeof (Elf_External_Options) |
7645 | 2.79k | + sizeof (Elf64_External_RegInfo)); |
7646 | 2.79k | if (intopt.size < needed || (size_t) (lend - l) < needed) |
7647 | 710 | goto bad_opt; |
7648 | 2.08k | bfd_mips_elf64_swap_reginfo_in |
7649 | 2.08k | (abfd, |
7650 | 2.08k | ((Elf64_External_RegInfo *) |
7651 | 2.08k | (l + sizeof (Elf_External_Options))), |
7652 | 2.08k | &intreg); |
7653 | 2.08k | elf_gp (abfd) = intreg.ri_gp_value; |
7654 | 2.08k | } |
7655 | 0 | else |
7656 | 0 | { |
7657 | 0 | Elf32_RegInfo intreg; |
7658 | 0 | size_t needed = (sizeof (Elf_External_Options) |
7659 | 0 | + sizeof (Elf32_External_RegInfo)); |
7660 | 0 | if (intopt.size < needed || (size_t) (lend - l) < needed) |
7661 | 0 | goto bad_opt; |
7662 | 0 | bfd_mips_elf32_swap_reginfo_in |
7663 | 0 | (abfd, |
7664 | 0 | ((Elf32_External_RegInfo *) |
7665 | 0 | (l + sizeof (Elf_External_Options))), |
7666 | 0 | &intreg); |
7667 | 0 | elf_gp (abfd) = intreg.ri_gp_value; |
7668 | 0 | } |
7669 | 2.79k | } |
7670 | 5.62k | l += intopt.size; |
7671 | 5.62k | } |
7672 | 4.53k | free (contents); |
7673 | 4.53k | } |
7674 | | |
7675 | 566k | return true; |
7676 | 567k | } |
7677 | | |
7678 | | /* Set the correct type for a MIPS ELF section. We do this by the |
7679 | | section name, which is a hack, but ought to work. This routine is |
7680 | | used by both the 32-bit and the 64-bit ABI. */ |
7681 | | |
7682 | | bool |
7683 | | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
7684 | 0 | { |
7685 | 0 | const char *name = bfd_section_name (sec); |
7686 | |
|
7687 | 0 | if (strcmp (name, ".liblist") == 0) |
7688 | 0 | { |
7689 | 0 | hdr->sh_type = SHT_MIPS_LIBLIST; |
7690 | 0 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
7691 | | /* The sh_link field is set in final_write_processing. */ |
7692 | 0 | } |
7693 | 0 | else if (strcmp (name, ".conflict") == 0) |
7694 | 0 | hdr->sh_type = SHT_MIPS_CONFLICT; |
7695 | 0 | else if (startswith (name, ".gptab.")) |
7696 | 0 | { |
7697 | 0 | hdr->sh_type = SHT_MIPS_GPTAB; |
7698 | 0 | hdr->sh_entsize = sizeof (Elf32_External_gptab); |
7699 | | /* The sh_info field is set in final_write_processing. */ |
7700 | 0 | } |
7701 | 0 | else if (strcmp (name, ".ucode") == 0) |
7702 | 0 | hdr->sh_type = SHT_MIPS_UCODE; |
7703 | 0 | else if (strcmp (name, ".mdebug") == 0) |
7704 | 0 | { |
7705 | 0 | hdr->sh_type = SHT_MIPS_DEBUG; |
7706 | | /* In a shared object on IRIX 5.3, the .mdebug section has an |
7707 | | entsize of 0. FIXME: Does this matter? */ |
7708 | 0 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) |
7709 | 0 | hdr->sh_entsize = 0; |
7710 | 0 | else |
7711 | 0 | hdr->sh_entsize = 1; |
7712 | 0 | } |
7713 | 0 | else if (strcmp (name, ".reginfo") == 0) |
7714 | 0 | { |
7715 | 0 | hdr->sh_type = SHT_MIPS_REGINFO; |
7716 | | /* In a shared object on IRIX 5.3, the .reginfo section has an |
7717 | | entsize of 0x18. FIXME: Does this matter? */ |
7718 | 0 | if (SGI_COMPAT (abfd)) |
7719 | 0 | { |
7720 | 0 | if ((abfd->flags & DYNAMIC) != 0) |
7721 | 0 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
7722 | 0 | else |
7723 | 0 | hdr->sh_entsize = 1; |
7724 | 0 | } |
7725 | 0 | else |
7726 | 0 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
7727 | 0 | } |
7728 | 0 | else if (SGI_COMPAT (abfd) |
7729 | 0 | && (strcmp (name, ".hash") == 0 |
7730 | 0 | || strcmp (name, ".dynamic") == 0 |
7731 | 0 | || strcmp (name, ".dynstr") == 0)) |
7732 | 0 | { |
7733 | 0 | if (SGI_COMPAT (abfd)) |
7734 | 0 | hdr->sh_entsize = 0; |
7735 | | #if 0 |
7736 | | /* This isn't how the IRIX6 linker behaves. */ |
7737 | | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
7738 | | #endif |
7739 | 0 | } |
7740 | 0 | else if (strcmp (name, ".got") == 0 |
7741 | 0 | || strcmp (name, ".srdata") == 0 |
7742 | 0 | || strcmp (name, ".sdata") == 0 |
7743 | 0 | || strcmp (name, ".sbss") == 0 |
7744 | 0 | || strcmp (name, ".lit4") == 0 |
7745 | 0 | || strcmp (name, ".lit8") == 0) |
7746 | 0 | hdr->sh_flags |= SHF_MIPS_GPREL; |
7747 | 0 | else if (strcmp (name, ".MIPS.interfaces") == 0) |
7748 | 0 | { |
7749 | 0 | hdr->sh_type = SHT_MIPS_IFACE; |
7750 | 0 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
7751 | 0 | } |
7752 | 0 | else if (startswith (name, ".MIPS.content")) |
7753 | 0 | { |
7754 | 0 | hdr->sh_type = SHT_MIPS_CONTENT; |
7755 | 0 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
7756 | | /* The sh_info field is set in final_write_processing. */ |
7757 | 0 | } |
7758 | 0 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
7759 | 0 | { |
7760 | 0 | hdr->sh_type = SHT_MIPS_OPTIONS; |
7761 | 0 | hdr->sh_entsize = 1; |
7762 | 0 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
7763 | 0 | } |
7764 | 0 | else if (startswith (name, ".MIPS.abiflags")) |
7765 | 0 | { |
7766 | 0 | hdr->sh_type = SHT_MIPS_ABIFLAGS; |
7767 | 0 | hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); |
7768 | 0 | } |
7769 | 0 | else if (startswith (name, ".debug_") |
7770 | 0 | || startswith (name, ".gnu.debuglto_.debug_") |
7771 | 0 | || startswith (name, ".zdebug_") |
7772 | 0 | || startswith (name, ".gnu.debuglto_.zdebug_")) |
7773 | 0 | { |
7774 | 0 | hdr->sh_type = SHT_MIPS_DWARF; |
7775 | | |
7776 | | /* Irix facilities such as libexc expect a single .debug_frame |
7777 | | per executable, the system ones have NOSTRIP set and the linker |
7778 | | doesn't merge sections with different flags so ... */ |
7779 | 0 | if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame")) |
7780 | 0 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
7781 | 0 | } |
7782 | 0 | else if (strcmp (name, ".MIPS.symlib") == 0) |
7783 | 0 | { |
7784 | 0 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; |
7785 | | /* The sh_link and sh_info fields are set in |
7786 | | final_write_processing. */ |
7787 | 0 | } |
7788 | 0 | else if (startswith (name, ".MIPS.events") |
7789 | 0 | || startswith (name, ".MIPS.post_rel")) |
7790 | 0 | { |
7791 | 0 | hdr->sh_type = SHT_MIPS_EVENTS; |
7792 | 0 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
7793 | | /* The sh_link field is set in final_write_processing. */ |
7794 | 0 | } |
7795 | 0 | else if (strcmp (name, ".msym") == 0) |
7796 | 0 | { |
7797 | 0 | hdr->sh_type = SHT_MIPS_MSYM; |
7798 | 0 | hdr->sh_flags |= SHF_ALLOC; |
7799 | 0 | hdr->sh_entsize = 8; |
7800 | 0 | } |
7801 | 0 | else if (strcmp (name, ".MIPS.xhash") == 0) |
7802 | 0 | { |
7803 | 0 | hdr->sh_type = SHT_MIPS_XHASH; |
7804 | 0 | hdr->sh_flags |= SHF_ALLOC; |
7805 | 0 | hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4; |
7806 | 0 | } |
7807 | | |
7808 | | /* The generic elf_fake_sections will set up REL_HDR using the default |
7809 | | kind of relocations. We used to set up a second header for the |
7810 | | non-default kind of relocations here, but only NewABI would use |
7811 | | these, and the IRIX ld doesn't like resulting empty RELA sections. |
7812 | | Thus we create those header only on demand now. */ |
7813 | |
|
7814 | 0 | return true; |
7815 | 0 | } |
7816 | | |
7817 | | /* Given a BFD section, try to locate the corresponding ELF section |
7818 | | index. This is used by both the 32-bit and the 64-bit ABI. |
7819 | | Actually, it's not clear to me that the 64-bit ABI supports these, |
7820 | | but for non-PIC objects we will certainly want support for at least |
7821 | | the .scommon section. */ |
7822 | | |
7823 | | bool |
7824 | | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
7825 | | asection *sec, int *retval) |
7826 | 0 | { |
7827 | 0 | if (strcmp (bfd_section_name (sec), ".scommon") == 0) |
7828 | 0 | { |
7829 | 0 | *retval = SHN_MIPS_SCOMMON; |
7830 | 0 | return true; |
7831 | 0 | } |
7832 | 0 | if (strcmp (bfd_section_name (sec), ".acommon") == 0) |
7833 | 0 | { |
7834 | 0 | *retval = SHN_MIPS_ACOMMON; |
7835 | 0 | return true; |
7836 | 0 | } |
7837 | 0 | return false; |
7838 | 0 | } |
7839 | | |
7840 | | /* Hook called by the linker routine which adds symbols from an object |
7841 | | file. We must handle the special MIPS section numbers here. */ |
7842 | | |
7843 | | bool |
7844 | | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
7845 | | Elf_Internal_Sym *sym, const char **namep, |
7846 | | flagword *flagsp ATTRIBUTE_UNUSED, |
7847 | | asection **secp, bfd_vma *valp) |
7848 | 0 | { |
7849 | 0 | if (SGI_COMPAT (abfd) |
7850 | 0 | && (abfd->flags & DYNAMIC) != 0 |
7851 | 0 | && strcmp (*namep, "_rld_new_interface") == 0) |
7852 | 0 | { |
7853 | | /* Skip IRIX5 rld entry name. */ |
7854 | 0 | *namep = NULL; |
7855 | 0 | return true; |
7856 | 0 | } |
7857 | | |
7858 | | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
7859 | | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp |
7860 | | by setting a DT_NEEDED for the shared object. Since _gp_disp is |
7861 | | a magic symbol resolved by the linker, we ignore this bogus definition |
7862 | | of _gp_disp. New ABI objects do not suffer from this problem so this |
7863 | | is not done for them. */ |
7864 | 0 | if (!NEWABI_P(abfd) |
7865 | 0 | && (sym->st_shndx == SHN_ABS) |
7866 | 0 | && (strcmp (*namep, "_gp_disp") == 0)) |
7867 | 0 | { |
7868 | 0 | *namep = NULL; |
7869 | 0 | return true; |
7870 | 0 | } |
7871 | | |
7872 | 0 | switch (sym->st_shndx) |
7873 | 0 | { |
7874 | 0 | case SHN_COMMON: |
7875 | | /* Common symbols less than the GP size are automatically |
7876 | | treated as SHN_MIPS_SCOMMON symbols, with some exceptions. */ |
7877 | 0 | if (sym->st_size > elf_gp_size (abfd) |
7878 | 0 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
7879 | 0 | || IRIX_COMPAT (abfd) == ict_irix6 |
7880 | 0 | || strcmp (*namep, "__gnu_lto_slim") == 0) |
7881 | 0 | break; |
7882 | | /* Fall through. */ |
7883 | 0 | case SHN_MIPS_SCOMMON: |
7884 | 0 | *secp = bfd_make_section_old_way (abfd, ".scommon"); |
7885 | 0 | (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA; |
7886 | 0 | *valp = sym->st_size; |
7887 | 0 | break; |
7888 | | |
7889 | 0 | case SHN_MIPS_TEXT: |
7890 | | /* This section is used in a shared object. */ |
7891 | 0 | if (mips_elf_tdata (abfd)->elf_text_section == NULL) |
7892 | 0 | { |
7893 | 0 | asymbol *elf_text_symbol; |
7894 | 0 | asection *elf_text_section; |
7895 | 0 | size_t amt = sizeof (asection); |
7896 | |
|
7897 | 0 | elf_text_section = bfd_zalloc (abfd, amt); |
7898 | 0 | if (elf_text_section == NULL) |
7899 | 0 | return false; |
7900 | | |
7901 | 0 | amt = sizeof (asymbol); |
7902 | 0 | elf_text_symbol = bfd_zalloc (abfd, amt); |
7903 | 0 | if (elf_text_symbol == NULL) |
7904 | 0 | return false; |
7905 | | |
7906 | | /* Initialize the section. */ |
7907 | | |
7908 | 0 | mips_elf_tdata (abfd)->elf_text_section = elf_text_section; |
7909 | |
|
7910 | 0 | elf_text_section->symbol = elf_text_symbol; |
7911 | 0 | elf_text_section->name = ".text"; |
7912 | 0 | elf_text_section->flags = SEC_NO_FLAGS; |
7913 | 0 | elf_text_section->output_section = NULL; |
7914 | 0 | elf_text_section->owner = abfd; |
7915 | 0 | elf_text_symbol->name = ".text"; |
7916 | 0 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
7917 | 0 | elf_text_symbol->section = elf_text_section; |
7918 | 0 | } |
7919 | | /* This code used to do *secp = bfd_und_section_ptr if |
7920 | | bfd_link_pic (info). I don't know why, and that doesn't make sense, |
7921 | | so I took it out. */ |
7922 | 0 | *secp = mips_elf_tdata (abfd)->elf_text_section; |
7923 | 0 | break; |
7924 | | |
7925 | 0 | case SHN_MIPS_ACOMMON: |
7926 | | /* Fall through. XXX Can we treat this as allocated data? */ |
7927 | 0 | case SHN_MIPS_DATA: |
7928 | | /* This section is used in a shared object. */ |
7929 | 0 | if (mips_elf_tdata (abfd)->elf_data_section == NULL) |
7930 | 0 | { |
7931 | 0 | asymbol *elf_data_symbol; |
7932 | 0 | asection *elf_data_section; |
7933 | 0 | size_t amt = sizeof (asection); |
7934 | |
|
7935 | 0 | elf_data_section = bfd_zalloc (abfd, amt); |
7936 | 0 | if (elf_data_section == NULL) |
7937 | 0 | return false; |
7938 | | |
7939 | 0 | amt = sizeof (asymbol); |
7940 | 0 | elf_data_symbol = bfd_zalloc (abfd, amt); |
7941 | 0 | if (elf_data_symbol == NULL) |
7942 | 0 | return false; |
7943 | | |
7944 | | /* Initialize the section. */ |
7945 | | |
7946 | 0 | mips_elf_tdata (abfd)->elf_data_section = elf_data_section; |
7947 | |
|
7948 | 0 | elf_data_section->symbol = elf_data_symbol; |
7949 | 0 | elf_data_section->name = ".data"; |
7950 | 0 | elf_data_section->flags = SEC_NO_FLAGS; |
7951 | 0 | elf_data_section->output_section = NULL; |
7952 | 0 | elf_data_section->owner = abfd; |
7953 | 0 | elf_data_symbol->name = ".data"; |
7954 | 0 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
7955 | 0 | elf_data_symbol->section = elf_data_section; |
7956 | 0 | } |
7957 | | /* This code used to do *secp = bfd_und_section_ptr if |
7958 | | bfd_link_pic (info). I don't know why, and that doesn't make sense, |
7959 | | so I took it out. */ |
7960 | 0 | *secp = mips_elf_tdata (abfd)->elf_data_section; |
7961 | 0 | break; |
7962 | | |
7963 | 0 | case SHN_MIPS_SUNDEFINED: |
7964 | 0 | *secp = bfd_und_section_ptr; |
7965 | 0 | break; |
7966 | 0 | } |
7967 | | |
7968 | 0 | if (SGI_COMPAT (abfd) |
7969 | 0 | && ! bfd_link_pic (info) |
7970 | 0 | && info->output_bfd->xvec == abfd->xvec |
7971 | 0 | && strcmp (*namep, "__rld_obj_head") == 0) |
7972 | 0 | { |
7973 | 0 | struct elf_link_hash_entry *h; |
7974 | 0 | struct bfd_link_hash_entry *bh; |
7975 | | |
7976 | | /* Mark __rld_obj_head as dynamic. */ |
7977 | 0 | bh = NULL; |
7978 | 0 | if (! (_bfd_generic_link_add_one_symbol |
7979 | 0 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false, |
7980 | 0 | get_elf_backend_data (abfd)->collect, &bh))) |
7981 | 0 | return false; |
7982 | | |
7983 | 0 | h = (struct elf_link_hash_entry *) bh; |
7984 | 0 | h->non_elf = 0; |
7985 | 0 | h->def_regular = 1; |
7986 | 0 | h->type = STT_OBJECT; |
7987 | |
|
7988 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
7989 | 0 | return false; |
7990 | | |
7991 | 0 | mips_elf_hash_table (info)->use_rld_obj_head = true; |
7992 | 0 | mips_elf_hash_table (info)->rld_symbol = h; |
7993 | 0 | } |
7994 | | |
7995 | | /* If this is a mips16 text symbol, add 1 to the value to make it |
7996 | | odd. This will cause something like .word SYM to come up with |
7997 | | the right value when it is loaded into the PC. */ |
7998 | 0 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
7999 | 0 | ++*valp; |
8000 | |
|
8001 | 0 | return true; |
8002 | 0 | } |
8003 | | |
8004 | | /* This hook function is called before the linker writes out a global |
8005 | | symbol. We mark symbols as small common if appropriate. This is |
8006 | | also where we undo the increment of the value for a mips16 symbol. */ |
8007 | | |
8008 | | int |
8009 | | _bfd_mips_elf_link_output_symbol_hook |
8010 | | (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
8011 | | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, |
8012 | | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) |
8013 | 0 | { |
8014 | | /* If we see a common symbol, which implies a relocatable link, then |
8015 | | if a symbol was small common in an input file, mark it as small |
8016 | | common in the output file. */ |
8017 | 0 | if (sym->st_shndx == SHN_COMMON |
8018 | 0 | && strcmp (input_sec->name, ".scommon") == 0) |
8019 | 0 | sym->st_shndx = SHN_MIPS_SCOMMON; |
8020 | |
|
8021 | 0 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
8022 | 0 | sym->st_value &= ~1; |
8023 | |
|
8024 | 0 | return 1; |
8025 | 0 | } |
8026 | | |
8027 | | /* Functions for the dynamic linker. */ |
8028 | | |
8029 | | /* Create dynamic sections when linking against a dynamic object. */ |
8030 | | |
8031 | | bool |
8032 | | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
8033 | 0 | { |
8034 | 0 | struct elf_link_hash_entry *h; |
8035 | 0 | struct bfd_link_hash_entry *bh; |
8036 | 0 | flagword flags; |
8037 | 0 | register asection *s; |
8038 | 0 | const char * const *namep; |
8039 | 0 | struct mips_elf_link_hash_table *htab; |
8040 | |
|
8041 | 0 | htab = mips_elf_hash_table (info); |
8042 | 0 | BFD_ASSERT (htab != NULL); |
8043 | |
|
8044 | 0 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
8045 | 0 | | SEC_LINKER_CREATED | SEC_READONLY); |
8046 | | |
8047 | | /* The psABI requires a read-only .dynamic section, but the VxWorks |
8048 | | EABI doesn't. */ |
8049 | 0 | if (htab->root.target_os != is_vxworks) |
8050 | 0 | { |
8051 | 0 | s = bfd_get_linker_section (abfd, ".dynamic"); |
8052 | 0 | if (s != NULL) |
8053 | 0 | { |
8054 | 0 | if (!bfd_set_section_flags (s, flags)) |
8055 | 0 | return false; |
8056 | 0 | } |
8057 | 0 | } |
8058 | | |
8059 | | /* We need to create .got section. */ |
8060 | 0 | if (!mips_elf_create_got_section (abfd, info)) |
8061 | 0 | return false; |
8062 | | |
8063 | 0 | if (! mips_elf_rel_dyn_section (info, true)) |
8064 | 0 | return false; |
8065 | | |
8066 | | /* Create .stub section. */ |
8067 | 0 | s = bfd_make_section_anyway_with_flags (abfd, |
8068 | 0 | MIPS_ELF_STUB_SECTION_NAME (abfd), |
8069 | 0 | flags | SEC_CODE); |
8070 | 0 | if (s == NULL |
8071 | 0 | || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
8072 | 0 | return false; |
8073 | 0 | htab->sstubs = s; |
8074 | |
|
8075 | 0 | if (!mips_elf_hash_table (info)->use_rld_obj_head |
8076 | 0 | && bfd_link_executable (info) |
8077 | 0 | && bfd_get_linker_section (abfd, ".rld_map") == NULL) |
8078 | 0 | { |
8079 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", |
8080 | 0 | flags &~ (flagword) SEC_READONLY); |
8081 | 0 | if (s == NULL |
8082 | 0 | || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
8083 | 0 | return false; |
8084 | 0 | } |
8085 | | |
8086 | | /* Create .MIPS.xhash section. */ |
8087 | 0 | if (info->emit_gnu_hash) |
8088 | 0 | s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash", |
8089 | 0 | flags | SEC_READONLY); |
8090 | | |
8091 | | /* On IRIX5, we adjust add some additional symbols and change the |
8092 | | alignments of several sections. There is no ABI documentation |
8093 | | indicating that this is necessary on IRIX6, nor any evidence that |
8094 | | the linker takes such action. */ |
8095 | 0 | if (IRIX_COMPAT (abfd) == ict_irix5) |
8096 | 0 | { |
8097 | 0 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) |
8098 | 0 | { |
8099 | 0 | bh = NULL; |
8100 | 0 | if (! (_bfd_generic_link_add_one_symbol |
8101 | 0 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
8102 | 0 | NULL, false, get_elf_backend_data (abfd)->collect, &bh))) |
8103 | 0 | return false; |
8104 | | |
8105 | 0 | h = (struct elf_link_hash_entry *) bh; |
8106 | 0 | h->mark = 1; |
8107 | 0 | h->non_elf = 0; |
8108 | 0 | h->def_regular = 1; |
8109 | 0 | h->type = STT_SECTION; |
8110 | |
|
8111 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
8112 | 0 | return false; |
8113 | 0 | } |
8114 | | |
8115 | | /* We need to create a .compact_rel section. */ |
8116 | 0 | if (SGI_COMPAT (abfd)) |
8117 | 0 | { |
8118 | 0 | if (!mips_elf_create_compact_rel_section (abfd, info)) |
8119 | 0 | return false; |
8120 | 0 | } |
8121 | | |
8122 | | /* Change alignments of some sections. */ |
8123 | 0 | s = bfd_get_linker_section (abfd, ".hash"); |
8124 | 0 | if (s != NULL) |
8125 | 0 | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
8126 | |
|
8127 | 0 | s = bfd_get_linker_section (abfd, ".dynsym"); |
8128 | 0 | if (s != NULL) |
8129 | 0 | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
8130 | |
|
8131 | 0 | s = bfd_get_linker_section (abfd, ".dynstr"); |
8132 | 0 | if (s != NULL) |
8133 | 0 | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
8134 | | |
8135 | | /* ??? */ |
8136 | 0 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
8137 | 0 | if (s != NULL) |
8138 | 0 | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
8139 | |
|
8140 | 0 | s = bfd_get_linker_section (abfd, ".dynamic"); |
8141 | 0 | if (s != NULL) |
8142 | 0 | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
8143 | 0 | } |
8144 | | |
8145 | 0 | if (bfd_link_executable (info)) |
8146 | 0 | { |
8147 | 0 | const char *name; |
8148 | |
|
8149 | 0 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; |
8150 | 0 | bh = NULL; |
8151 | 0 | if (!(_bfd_generic_link_add_one_symbol |
8152 | 0 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
8153 | 0 | NULL, false, get_elf_backend_data (abfd)->collect, &bh))) |
8154 | 0 | return false; |
8155 | | |
8156 | 0 | h = (struct elf_link_hash_entry *) bh; |
8157 | 0 | h->non_elf = 0; |
8158 | 0 | h->def_regular = 1; |
8159 | 0 | h->type = STT_SECTION; |
8160 | |
|
8161 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
8162 | 0 | return false; |
8163 | | |
8164 | 0 | if (! mips_elf_hash_table (info)->use_rld_obj_head) |
8165 | 0 | { |
8166 | | /* __rld_map is a four byte word located in the .data section |
8167 | | and is filled in by the rtld to contain a pointer to |
8168 | | the _r_debug structure. Its symbol value will be set in |
8169 | | _bfd_mips_elf_finish_dynamic_symbol. */ |
8170 | 0 | s = bfd_get_linker_section (abfd, ".rld_map"); |
8171 | 0 | BFD_ASSERT (s != NULL); |
8172 | |
|
8173 | 0 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
8174 | 0 | bh = NULL; |
8175 | 0 | if (!(_bfd_generic_link_add_one_symbol |
8176 | 0 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false, |
8177 | 0 | get_elf_backend_data (abfd)->collect, &bh))) |
8178 | 0 | return false; |
8179 | | |
8180 | 0 | h = (struct elf_link_hash_entry *) bh; |
8181 | 0 | h->non_elf = 0; |
8182 | 0 | h->def_regular = 1; |
8183 | 0 | h->type = STT_OBJECT; |
8184 | |
|
8185 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
8186 | 0 | return false; |
8187 | 0 | mips_elf_hash_table (info)->rld_symbol = h; |
8188 | 0 | } |
8189 | 0 | } |
8190 | | |
8191 | | /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. |
8192 | | Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ |
8193 | 0 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) |
8194 | 0 | return false; |
8195 | | |
8196 | | /* Do the usual VxWorks handling. */ |
8197 | 0 | if (htab->root.target_os == is_vxworks |
8198 | 0 | && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) |
8199 | 0 | return false; |
8200 | | |
8201 | 0 | return true; |
8202 | 0 | } |
8203 | | |
8204 | | /* Return true if relocation REL against section SEC is a REL rather than |
8205 | | RELA relocation. RELOCS is the first relocation in the section and |
8206 | | ABFD is the bfd that contains SEC. */ |
8207 | | |
8208 | | static bool |
8209 | | mips_elf_rel_relocation_p (bfd *abfd, asection *sec, |
8210 | | const Elf_Internal_Rela *relocs, |
8211 | | const Elf_Internal_Rela *rel) |
8212 | 0 | { |
8213 | 0 | Elf_Internal_Shdr *rel_hdr; |
8214 | 0 | const struct elf_backend_data *bed; |
8215 | | |
8216 | | /* To determine which flavor of relocation this is, we depend on the |
8217 | | fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ |
8218 | 0 | rel_hdr = elf_section_data (sec)->rel.hdr; |
8219 | 0 | if (rel_hdr == NULL) |
8220 | 0 | return false; |
8221 | 0 | bed = get_elf_backend_data (abfd); |
8222 | 0 | return ((size_t) (rel - relocs) |
8223 | 0 | < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); |
8224 | 0 | } |
8225 | | |
8226 | | /* Read the addend for REL relocation REL, which belongs to bfd ABFD. |
8227 | | HOWTO is the relocation's howto and CONTENTS points to the contents |
8228 | | of the section that REL is against. */ |
8229 | | |
8230 | | static bfd_vma |
8231 | | mips_elf_read_rel_addend (bfd *abfd, asection *sec, |
8232 | | const Elf_Internal_Rela *rel, |
8233 | | reloc_howto_type *howto, bfd_byte *contents) |
8234 | 0 | { |
8235 | 0 | bfd_byte *location; |
8236 | 0 | unsigned int r_type; |
8237 | 0 | bfd_vma addend; |
8238 | 0 | bfd_vma bytes; |
8239 | |
|
8240 | 0 | if (!bfd_reloc_offset_in_range (howto, abfd, sec, rel->r_offset)) |
8241 | 0 | return 0; |
8242 | | |
8243 | 0 | r_type = ELF_R_TYPE (abfd, rel->r_info); |
8244 | 0 | location = contents + rel->r_offset; |
8245 | | |
8246 | | /* Get the addend, which is stored in the input file. */ |
8247 | 0 | _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location); |
8248 | 0 | bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); |
8249 | 0 | _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location); |
8250 | |
|
8251 | 0 | addend = bytes & howto->src_mask; |
8252 | | |
8253 | | /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend |
8254 | | accordingly. */ |
8255 | 0 | if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) |
8256 | 0 | addend <<= 1; |
8257 | |
|
8258 | 0 | return addend; |
8259 | 0 | } |
8260 | | |
8261 | | /* REL is a relocation in ABFD that needs a partnering LO16 relocation |
8262 | | and *ADDEND is the addend for REL itself. Look for the LO16 relocation |
8263 | | and update *ADDEND with the final addend. Return true on success |
8264 | | or false if the LO16 could not be found. RELEND is the exclusive |
8265 | | upper bound on the relocations for REL's section. */ |
8266 | | |
8267 | | static bool |
8268 | | mips_elf_add_lo16_rel_addend (bfd *abfd, |
8269 | | asection *sec, |
8270 | | const Elf_Internal_Rela *rel, |
8271 | | const Elf_Internal_Rela *relend, |
8272 | | bfd_byte *contents, bfd_vma *addend) |
8273 | 0 | { |
8274 | 0 | unsigned int r_type, lo16_type; |
8275 | 0 | const Elf_Internal_Rela *lo16_relocation; |
8276 | 0 | reloc_howto_type *lo16_howto; |
8277 | 0 | bfd_vma l; |
8278 | |
|
8279 | 0 | r_type = ELF_R_TYPE (abfd, rel->r_info); |
8280 | 0 | if (mips16_reloc_p (r_type)) |
8281 | 0 | lo16_type = R_MIPS16_LO16; |
8282 | 0 | else if (micromips_reloc_p (r_type)) |
8283 | 0 | lo16_type = R_MICROMIPS_LO16; |
8284 | 0 | else if (r_type == R_MIPS_PCHI16) |
8285 | 0 | lo16_type = R_MIPS_PCLO16; |
8286 | 0 | else |
8287 | 0 | lo16_type = R_MIPS_LO16; |
8288 | | |
8289 | | /* The combined value is the sum of the HI16 addend, left-shifted by |
8290 | | sixteen bits, and the LO16 addend, sign extended. (Usually, the |
8291 | | code does a `lui' of the HI16 value, and then an `addiu' of the |
8292 | | LO16 value.) |
8293 | | |
8294 | | Scan ahead to find a matching LO16 relocation. |
8295 | | |
8296 | | According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must |
8297 | | be immediately following. However, for the IRIX6 ABI, the next |
8298 | | relocation may be a composed relocation consisting of several |
8299 | | relocations for the same address. In that case, the R_MIPS_LO16 |
8300 | | relocation may occur as one of these. We permit a similar |
8301 | | extension in general, as that is useful for GCC. |
8302 | | |
8303 | | In some cases GCC dead code elimination removes the LO16 but keeps |
8304 | | the corresponding HI16. This is strictly speaking a violation of |
8305 | | the ABI but not immediately harmful. */ |
8306 | 0 | lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); |
8307 | 0 | if (lo16_relocation == NULL) |
8308 | 0 | return false; |
8309 | | |
8310 | | /* Obtain the addend kept there. */ |
8311 | 0 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false); |
8312 | 0 | l = mips_elf_read_rel_addend (abfd, sec, lo16_relocation, lo16_howto, |
8313 | 0 | contents); |
8314 | |
|
8315 | 0 | l <<= lo16_howto->rightshift; |
8316 | 0 | l = _bfd_mips_elf_sign_extend (l, 16); |
8317 | |
|
8318 | 0 | *addend <<= 16; |
8319 | 0 | *addend += l; |
8320 | 0 | return true; |
8321 | 0 | } |
8322 | | |
8323 | | /* Try to read the contents of section SEC in bfd ABFD. Return true and |
8324 | | store the contents in *CONTENTS on success. Assume that *CONTENTS |
8325 | | already holds the contents if it is nonull on entry. */ |
8326 | | |
8327 | | static bool |
8328 | | mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) |
8329 | 0 | { |
8330 | 0 | if (*contents) |
8331 | 0 | return true; |
8332 | | |
8333 | | /* Get cached copy if it exists. */ |
8334 | 0 | if (elf_section_data (sec)->this_hdr.contents != NULL) |
8335 | 0 | { |
8336 | 0 | *contents = elf_section_data (sec)->this_hdr.contents; |
8337 | 0 | return true; |
8338 | 0 | } |
8339 | | |
8340 | 0 | return bfd_malloc_and_get_section (abfd, sec, contents); |
8341 | 0 | } |
8342 | | |
8343 | | /* Make a new PLT record to keep internal data. */ |
8344 | | |
8345 | | static struct plt_entry * |
8346 | | mips_elf_make_plt_record (bfd *abfd) |
8347 | 0 | { |
8348 | 0 | struct plt_entry *entry; |
8349 | |
|
8350 | 0 | entry = bfd_zalloc (abfd, sizeof (*entry)); |
8351 | 0 | if (entry == NULL) |
8352 | 0 | return NULL; |
8353 | | |
8354 | 0 | entry->stub_offset = MINUS_ONE; |
8355 | 0 | entry->mips_offset = MINUS_ONE; |
8356 | 0 | entry->comp_offset = MINUS_ONE; |
8357 | 0 | entry->gotplt_index = MINUS_ONE; |
8358 | 0 | return entry; |
8359 | 0 | } |
8360 | | |
8361 | | /* Define the special `__gnu_absolute_zero' symbol. We only need this |
8362 | | for PIC code, as otherwise there is no load-time relocation involved |
8363 | | and local GOT entries whose value is zero at static link time will |
8364 | | retain their value at load time. */ |
8365 | | |
8366 | | static bool |
8367 | | mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info, |
8368 | | struct mips_elf_link_hash_table *htab, |
8369 | | unsigned int r_type) |
8370 | 0 | { |
8371 | 0 | union |
8372 | 0 | { |
8373 | 0 | struct elf_link_hash_entry *eh; |
8374 | 0 | struct bfd_link_hash_entry *bh; |
8375 | 0 | } |
8376 | 0 | hzero; |
8377 | |
|
8378 | 0 | BFD_ASSERT (!htab->use_absolute_zero); |
8379 | 0 | BFD_ASSERT (bfd_link_pic (info)); |
8380 | |
|
8381 | 0 | hzero.bh = NULL; |
8382 | 0 | if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero", |
8383 | 0 | BSF_GLOBAL, bfd_abs_section_ptr, 0, |
8384 | 0 | NULL, false, false, &hzero.bh)) |
8385 | 0 | return false; |
8386 | | |
8387 | 0 | BFD_ASSERT (hzero.bh != NULL); |
8388 | 0 | hzero.eh->size = 0; |
8389 | 0 | hzero.eh->type = STT_NOTYPE; |
8390 | 0 | hzero.eh->other = STV_PROTECTED; |
8391 | 0 | hzero.eh->def_regular = 1; |
8392 | 0 | hzero.eh->non_elf = 0; |
8393 | |
|
8394 | 0 | if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type)) |
8395 | 0 | return false; |
8396 | | |
8397 | 0 | htab->use_absolute_zero = true; |
8398 | |
|
8399 | 0 | return true; |
8400 | 0 | } |
8401 | | |
8402 | | /* Look through the relocs for a section during the first phase, and |
8403 | | allocate space in the global offset table and record the need for |
8404 | | standard MIPS and compressed procedure linkage table entries. */ |
8405 | | |
8406 | | bool |
8407 | | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
8408 | | asection *sec, const Elf_Internal_Rela *relocs) |
8409 | 0 | { |
8410 | 0 | const char *name; |
8411 | 0 | bfd *dynobj; |
8412 | 0 | Elf_Internal_Shdr *symtab_hdr; |
8413 | 0 | struct elf_link_hash_entry **sym_hashes; |
8414 | 0 | size_t extsymoff; |
8415 | 0 | const Elf_Internal_Rela *rel; |
8416 | 0 | const Elf_Internal_Rela *rel_end; |
8417 | 0 | asection *sreloc; |
8418 | 0 | const struct elf_backend_data *bed; |
8419 | 0 | struct mips_elf_link_hash_table *htab; |
8420 | 0 | bfd_byte *contents; |
8421 | 0 | bfd_vma addend; |
8422 | 0 | reloc_howto_type *howto; |
8423 | |
|
8424 | 0 | if (bfd_link_relocatable (info)) |
8425 | 0 | return true; |
8426 | | |
8427 | 0 | htab = mips_elf_hash_table (info); |
8428 | 0 | BFD_ASSERT (htab != NULL); |
8429 | |
|
8430 | 0 | dynobj = elf_hash_table (info)->dynobj; |
8431 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
8432 | 0 | sym_hashes = elf_sym_hashes (abfd); |
8433 | 0 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; |
8434 | |
|
8435 | 0 | bed = get_elf_backend_data (abfd); |
8436 | 0 | rel_end = relocs + sec->reloc_count; |
8437 | | |
8438 | | /* Check for the mips16 stub sections. */ |
8439 | |
|
8440 | 0 | name = bfd_section_name (sec); |
8441 | 0 | if (FN_STUB_P (name)) |
8442 | 0 | { |
8443 | 0 | unsigned long r_symndx; |
8444 | | |
8445 | | /* Look at the relocation information to figure out which symbol |
8446 | | this is for. */ |
8447 | |
|
8448 | 0 | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
8449 | 0 | if (r_symndx == 0) |
8450 | 0 | { |
8451 | 0 | _bfd_error_handler |
8452 | | /* xgettext:c-format */ |
8453 | 0 | (_("%pB: warning: cannot determine the target function for" |
8454 | 0 | " stub section `%s'"), |
8455 | 0 | abfd, name); |
8456 | 0 | bfd_set_error (bfd_error_bad_value); |
8457 | 0 | return false; |
8458 | 0 | } |
8459 | | |
8460 | 0 | if (r_symndx < extsymoff |
8461 | 0 | || sym_hashes[r_symndx - extsymoff] == NULL) |
8462 | 0 | { |
8463 | 0 | asection *o; |
8464 | | |
8465 | | /* This stub is for a local symbol. This stub will only be |
8466 | | needed if there is some relocation in this BFD, other |
8467 | | than a 16 bit function call, which refers to this symbol. */ |
8468 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
8469 | 0 | { |
8470 | 0 | Elf_Internal_Rela *sec_relocs; |
8471 | 0 | const Elf_Internal_Rela *r, *rend; |
8472 | | |
8473 | | /* We can ignore stub sections when looking for relocs. */ |
8474 | 0 | if ((o->flags & SEC_RELOC) == 0 |
8475 | 0 | || o->reloc_count == 0 |
8476 | 0 | || section_allows_mips16_refs_p (o)) |
8477 | 0 | continue; |
8478 | | |
8479 | 0 | sec_relocs |
8480 | 0 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
8481 | 0 | info->keep_memory); |
8482 | 0 | if (sec_relocs == NULL) |
8483 | 0 | return false; |
8484 | | |
8485 | 0 | rend = sec_relocs + o->reloc_count; |
8486 | 0 | for (r = sec_relocs; r < rend; r++) |
8487 | 0 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
8488 | 0 | && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) |
8489 | 0 | break; |
8490 | |
|
8491 | 0 | if (elf_section_data (o)->relocs != sec_relocs) |
8492 | 0 | free (sec_relocs); |
8493 | |
|
8494 | 0 | if (r < rend) |
8495 | 0 | break; |
8496 | 0 | } |
8497 | | |
8498 | 0 | if (o == NULL) |
8499 | 0 | { |
8500 | | /* There is no non-call reloc for this stub, so we do |
8501 | | not need it. Since this function is called before |
8502 | | the linker maps input sections to output sections, we |
8503 | | can easily discard it by setting the SEC_EXCLUDE |
8504 | | flag. */ |
8505 | 0 | sec->flags |= SEC_EXCLUDE; |
8506 | 0 | return true; |
8507 | 0 | } |
8508 | | |
8509 | | /* Record this stub in an array of local symbol stubs for |
8510 | | this BFD. */ |
8511 | 0 | if (mips_elf_tdata (abfd)->local_stubs == NULL) |
8512 | 0 | { |
8513 | 0 | unsigned long symcount; |
8514 | 0 | asection **n; |
8515 | 0 | bfd_size_type amt; |
8516 | |
|
8517 | 0 | if (elf_bad_symtab (abfd)) |
8518 | 0 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
8519 | 0 | else |
8520 | 0 | symcount = symtab_hdr->sh_info; |
8521 | 0 | amt = symcount * sizeof (asection *); |
8522 | 0 | n = bfd_zalloc (abfd, amt); |
8523 | 0 | if (n == NULL) |
8524 | 0 | return false; |
8525 | 0 | mips_elf_tdata (abfd)->local_stubs = n; |
8526 | 0 | } |
8527 | | |
8528 | 0 | sec->flags |= SEC_KEEP; |
8529 | 0 | mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
8530 | | |
8531 | | /* We don't need to set mips16_stubs_seen in this case. |
8532 | | That flag is used to see whether we need to look through |
8533 | | the global symbol table for stubs. We don't need to set |
8534 | | it here, because we just have a local stub. */ |
8535 | 0 | } |
8536 | 0 | else |
8537 | 0 | { |
8538 | 0 | struct mips_elf_link_hash_entry *h; |
8539 | |
|
8540 | 0 | h = ((struct mips_elf_link_hash_entry *) |
8541 | 0 | sym_hashes[r_symndx - extsymoff]); |
8542 | |
|
8543 | 0 | while (h->root.root.type == bfd_link_hash_indirect |
8544 | 0 | || h->root.root.type == bfd_link_hash_warning) |
8545 | 0 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
8546 | | |
8547 | | /* H is the symbol this stub is for. */ |
8548 | | |
8549 | | /* If we already have an appropriate stub for this function, we |
8550 | | don't need another one, so we can discard this one. Since |
8551 | | this function is called before the linker maps input sections |
8552 | | to output sections, we can easily discard it by setting the |
8553 | | SEC_EXCLUDE flag. */ |
8554 | 0 | if (h->fn_stub != NULL) |
8555 | 0 | { |
8556 | 0 | sec->flags |= SEC_EXCLUDE; |
8557 | 0 | return true; |
8558 | 0 | } |
8559 | | |
8560 | 0 | sec->flags |= SEC_KEEP; |
8561 | 0 | h->fn_stub = sec; |
8562 | 0 | mips_elf_hash_table (info)->mips16_stubs_seen = true; |
8563 | 0 | } |
8564 | 0 | } |
8565 | 0 | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
8566 | 0 | { |
8567 | 0 | unsigned long r_symndx; |
8568 | 0 | struct mips_elf_link_hash_entry *h; |
8569 | 0 | asection **loc; |
8570 | | |
8571 | | /* Look at the relocation information to figure out which symbol |
8572 | | this is for. */ |
8573 | |
|
8574 | 0 | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
8575 | 0 | if (r_symndx == 0) |
8576 | 0 | { |
8577 | 0 | _bfd_error_handler |
8578 | | /* xgettext:c-format */ |
8579 | 0 | (_("%pB: warning: cannot determine the target function for" |
8580 | 0 | " stub section `%s'"), |
8581 | 0 | abfd, name); |
8582 | 0 | bfd_set_error (bfd_error_bad_value); |
8583 | 0 | return false; |
8584 | 0 | } |
8585 | | |
8586 | 0 | if (r_symndx < extsymoff |
8587 | 0 | || sym_hashes[r_symndx - extsymoff] == NULL) |
8588 | 0 | { |
8589 | 0 | asection *o; |
8590 | | |
8591 | | /* This stub is for a local symbol. This stub will only be |
8592 | | needed if there is some relocation (R_MIPS16_26) in this BFD |
8593 | | that refers to this symbol. */ |
8594 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
8595 | 0 | { |
8596 | 0 | Elf_Internal_Rela *sec_relocs; |
8597 | 0 | const Elf_Internal_Rela *r, *rend; |
8598 | | |
8599 | | /* We can ignore stub sections when looking for relocs. */ |
8600 | 0 | if ((o->flags & SEC_RELOC) == 0 |
8601 | 0 | || o->reloc_count == 0 |
8602 | 0 | || section_allows_mips16_refs_p (o)) |
8603 | 0 | continue; |
8604 | | |
8605 | 0 | sec_relocs |
8606 | 0 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
8607 | 0 | info->keep_memory); |
8608 | 0 | if (sec_relocs == NULL) |
8609 | 0 | return false; |
8610 | | |
8611 | 0 | rend = sec_relocs + o->reloc_count; |
8612 | 0 | for (r = sec_relocs; r < rend; r++) |
8613 | 0 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
8614 | 0 | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) |
8615 | 0 | break; |
8616 | |
|
8617 | 0 | if (elf_section_data (o)->relocs != sec_relocs) |
8618 | 0 | free (sec_relocs); |
8619 | |
|
8620 | 0 | if (r < rend) |
8621 | 0 | break; |
8622 | 0 | } |
8623 | | |
8624 | 0 | if (o == NULL) |
8625 | 0 | { |
8626 | | /* There is no non-call reloc for this stub, so we do |
8627 | | not need it. Since this function is called before |
8628 | | the linker maps input sections to output sections, we |
8629 | | can easily discard it by setting the SEC_EXCLUDE |
8630 | | flag. */ |
8631 | 0 | sec->flags |= SEC_EXCLUDE; |
8632 | 0 | return true; |
8633 | 0 | } |
8634 | | |
8635 | | /* Record this stub in an array of local symbol call_stubs for |
8636 | | this BFD. */ |
8637 | 0 | if (mips_elf_tdata (abfd)->local_call_stubs == NULL) |
8638 | 0 | { |
8639 | 0 | unsigned long symcount; |
8640 | 0 | asection **n; |
8641 | 0 | bfd_size_type amt; |
8642 | |
|
8643 | 0 | if (elf_bad_symtab (abfd)) |
8644 | 0 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
8645 | 0 | else |
8646 | 0 | symcount = symtab_hdr->sh_info; |
8647 | 0 | amt = symcount * sizeof (asection *); |
8648 | 0 | n = bfd_zalloc (abfd, amt); |
8649 | 0 | if (n == NULL) |
8650 | 0 | return false; |
8651 | 0 | mips_elf_tdata (abfd)->local_call_stubs = n; |
8652 | 0 | } |
8653 | | |
8654 | 0 | sec->flags |= SEC_KEEP; |
8655 | 0 | mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; |
8656 | | |
8657 | | /* We don't need to set mips16_stubs_seen in this case. |
8658 | | That flag is used to see whether we need to look through |
8659 | | the global symbol table for stubs. We don't need to set |
8660 | | it here, because we just have a local stub. */ |
8661 | 0 | } |
8662 | 0 | else |
8663 | 0 | { |
8664 | 0 | h = ((struct mips_elf_link_hash_entry *) |
8665 | 0 | sym_hashes[r_symndx - extsymoff]); |
8666 | | |
8667 | | /* H is the symbol this stub is for. */ |
8668 | |
|
8669 | 0 | if (CALL_FP_STUB_P (name)) |
8670 | 0 | loc = &h->call_fp_stub; |
8671 | 0 | else |
8672 | 0 | loc = &h->call_stub; |
8673 | | |
8674 | | /* If we already have an appropriate stub for this function, we |
8675 | | don't need another one, so we can discard this one. Since |
8676 | | this function is called before the linker maps input sections |
8677 | | to output sections, we can easily discard it by setting the |
8678 | | SEC_EXCLUDE flag. */ |
8679 | 0 | if (*loc != NULL) |
8680 | 0 | { |
8681 | 0 | sec->flags |= SEC_EXCLUDE; |
8682 | 0 | return true; |
8683 | 0 | } |
8684 | | |
8685 | 0 | sec->flags |= SEC_KEEP; |
8686 | 0 | *loc = sec; |
8687 | 0 | mips_elf_hash_table (info)->mips16_stubs_seen = true; |
8688 | 0 | } |
8689 | 0 | } |
8690 | | |
8691 | 0 | sreloc = NULL; |
8692 | 0 | contents = NULL; |
8693 | 0 | for (rel = relocs; rel < rel_end; ++rel) |
8694 | 0 | { |
8695 | 0 | unsigned long r_symndx; |
8696 | 0 | unsigned int r_type; |
8697 | 0 | struct elf_link_hash_entry *h; |
8698 | 0 | bool can_make_dynamic_p; |
8699 | 0 | bool call_reloc_p; |
8700 | 0 | bool constrain_symbol_p; |
8701 | |
|
8702 | 0 | r_symndx = ELF_R_SYM (abfd, rel->r_info); |
8703 | 0 | r_type = ELF_R_TYPE (abfd, rel->r_info); |
8704 | |
|
8705 | 0 | if (r_symndx < extsymoff) |
8706 | 0 | h = NULL; |
8707 | 0 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) |
8708 | 0 | { |
8709 | 0 | _bfd_error_handler |
8710 | | /* xgettext:c-format */ |
8711 | 0 | (_("%pB: malformed reloc detected for section %s"), |
8712 | 0 | abfd, name); |
8713 | 0 | bfd_set_error (bfd_error_bad_value); |
8714 | 0 | return false; |
8715 | 0 | } |
8716 | 0 | else |
8717 | 0 | { |
8718 | 0 | h = sym_hashes[r_symndx - extsymoff]; |
8719 | 0 | if (h != NULL) |
8720 | 0 | { |
8721 | 0 | while (h->root.type == bfd_link_hash_indirect |
8722 | 0 | || h->root.type == bfd_link_hash_warning) |
8723 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
8724 | 0 | } |
8725 | 0 | } |
8726 | | |
8727 | | /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this |
8728 | | relocation into a dynamic one. */ |
8729 | 0 | can_make_dynamic_p = false; |
8730 | | |
8731 | | /* Set CALL_RELOC_P to true if the relocation is for a call, |
8732 | | and if pointer equality therefore doesn't matter. */ |
8733 | 0 | call_reloc_p = false; |
8734 | | |
8735 | | /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation |
8736 | | into account when deciding how to define the symbol. */ |
8737 | 0 | constrain_symbol_p = true; |
8738 | |
|
8739 | 0 | switch (r_type) |
8740 | 0 | { |
8741 | 0 | case R_MIPS_CALL16: |
8742 | 0 | case R_MIPS_CALL_HI16: |
8743 | 0 | case R_MIPS_CALL_LO16: |
8744 | 0 | case R_MIPS16_CALL16: |
8745 | 0 | case R_MICROMIPS_CALL16: |
8746 | 0 | case R_MICROMIPS_CALL_HI16: |
8747 | 0 | case R_MICROMIPS_CALL_LO16: |
8748 | 0 | call_reloc_p = true; |
8749 | | /* Fall through. */ |
8750 | |
|
8751 | 0 | case R_MIPS_GOT16: |
8752 | 0 | case R_MIPS_GOT_LO16: |
8753 | 0 | case R_MIPS_GOT_PAGE: |
8754 | 0 | case R_MIPS_GOT_DISP: |
8755 | 0 | case R_MIPS16_GOT16: |
8756 | 0 | case R_MICROMIPS_GOT16: |
8757 | 0 | case R_MICROMIPS_GOT_LO16: |
8758 | 0 | case R_MICROMIPS_GOT_PAGE: |
8759 | 0 | case R_MICROMIPS_GOT_DISP: |
8760 | | /* If we have a symbol that will resolve to zero at static link |
8761 | | time and it is used by a GOT relocation applied to code we |
8762 | | cannot relax to an immediate zero load, then we will be using |
8763 | | the special `__gnu_absolute_zero' symbol whose value is zero |
8764 | | at dynamic load time. We ignore HI16-type GOT relocations at |
8765 | | this stage, because their handling will depend entirely on |
8766 | | the corresponding LO16-type GOT relocation. */ |
8767 | 0 | if (!call_hi16_reloc_p (r_type) |
8768 | 0 | && h != NULL |
8769 | 0 | && bfd_link_pic (info) |
8770 | 0 | && !htab->use_absolute_zero |
8771 | 0 | && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
8772 | 0 | { |
8773 | 0 | bool rel_reloc; |
8774 | |
|
8775 | 0 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
8776 | 0 | return false; |
8777 | | |
8778 | 0 | rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel); |
8779 | 0 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc); |
8780 | 0 | if (bfd_reloc_offset_in_range (howto, abfd, sec, rel->r_offset)) |
8781 | 0 | if (!mips_elf_nullify_got_load (abfd, contents, rel, howto, |
8782 | 0 | false)) |
8783 | 0 | if (!mips_elf_define_absolute_zero (abfd, info, htab, |
8784 | 0 | r_type)) |
8785 | 0 | return false; |
8786 | 0 | } |
8787 | | |
8788 | | /* Fall through. */ |
8789 | 0 | case R_MIPS_GOT_HI16: |
8790 | 0 | case R_MIPS_GOT_OFST: |
8791 | 0 | case R_MIPS_TLS_GOTTPREL: |
8792 | 0 | case R_MIPS_TLS_GD: |
8793 | 0 | case R_MIPS_TLS_LDM: |
8794 | 0 | case R_MIPS16_TLS_GOTTPREL: |
8795 | 0 | case R_MIPS16_TLS_GD: |
8796 | 0 | case R_MIPS16_TLS_LDM: |
8797 | 0 | case R_MICROMIPS_GOT_HI16: |
8798 | 0 | case R_MICROMIPS_GOT_OFST: |
8799 | 0 | case R_MICROMIPS_TLS_GOTTPREL: |
8800 | 0 | case R_MICROMIPS_TLS_GD: |
8801 | 0 | case R_MICROMIPS_TLS_LDM: |
8802 | 0 | if (dynobj == NULL) |
8803 | 0 | elf_hash_table (info)->dynobj = dynobj = abfd; |
8804 | 0 | if (!mips_elf_create_got_section (dynobj, info)) |
8805 | 0 | return false; |
8806 | 0 | if (htab->root.target_os == is_vxworks |
8807 | 0 | && !bfd_link_pic (info)) |
8808 | 0 | { |
8809 | 0 | _bfd_error_handler |
8810 | | /* xgettext:c-format */ |
8811 | 0 | (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"), |
8812 | 0 | abfd, (uint64_t) rel->r_offset); |
8813 | 0 | bfd_set_error (bfd_error_bad_value); |
8814 | 0 | return false; |
8815 | 0 | } |
8816 | 0 | can_make_dynamic_p = true; |
8817 | 0 | break; |
8818 | | |
8819 | 0 | case R_MIPS_NONE: |
8820 | 0 | case R_MIPS_JALR: |
8821 | 0 | case R_MICROMIPS_JALR: |
8822 | | /* These relocations have empty fields and are purely there to |
8823 | | provide link information. The symbol value doesn't matter. */ |
8824 | 0 | constrain_symbol_p = false; |
8825 | 0 | break; |
8826 | | |
8827 | 0 | case R_MIPS_GPREL16: |
8828 | 0 | case R_MIPS_GPREL32: |
8829 | 0 | case R_MIPS16_GPREL: |
8830 | 0 | case R_MICROMIPS_GPREL16: |
8831 | | /* GP-relative relocations always resolve to a definition in a |
8832 | | regular input file, ignoring the one-definition rule. This is |
8833 | | important for the GP setup sequence in NewABI code, which |
8834 | | always resolves to a local function even if other relocations |
8835 | | against the symbol wouldn't. */ |
8836 | 0 | constrain_symbol_p = false; |
8837 | 0 | break; |
8838 | | |
8839 | 0 | case R_MIPS_32: |
8840 | 0 | case R_MIPS_REL32: |
8841 | 0 | case R_MIPS_64: |
8842 | | /* In VxWorks executables, references to external symbols |
8843 | | must be handled using copy relocs or PLT entries; it is not |
8844 | | possible to convert this relocation into a dynamic one. |
8845 | | |
8846 | | For executables that use PLTs and copy-relocs, we have a |
8847 | | choice between converting the relocation into a dynamic |
8848 | | one or using copy relocations or PLT entries. It is |
8849 | | usually better to do the former, unless the relocation is |
8850 | | against a read-only section. */ |
8851 | 0 | if ((bfd_link_pic (info) |
8852 | 0 | || (h != NULL |
8853 | 0 | && htab->root.target_os != is_vxworks |
8854 | 0 | && strcmp (h->root.root.string, "__gnu_local_gp") != 0 |
8855 | 0 | && !(!info->nocopyreloc |
8856 | 0 | && !PIC_OBJECT_P (abfd) |
8857 | 0 | && MIPS_ELF_READONLY_SECTION (sec)))) |
8858 | 0 | && (sec->flags & SEC_ALLOC) != 0) |
8859 | 0 | { |
8860 | 0 | can_make_dynamic_p = true; |
8861 | 0 | if (dynobj == NULL) |
8862 | 0 | elf_hash_table (info)->dynobj = dynobj = abfd; |
8863 | 0 | } |
8864 | 0 | break; |
8865 | | |
8866 | 0 | case R_MIPS_26: |
8867 | 0 | case R_MIPS_PC16: |
8868 | 0 | case R_MIPS_PC21_S2: |
8869 | 0 | case R_MIPS_PC26_S2: |
8870 | 0 | case R_MIPS16_26: |
8871 | 0 | case R_MIPS16_PC16_S1: |
8872 | 0 | case R_MICROMIPS_26_S1: |
8873 | 0 | case R_MICROMIPS_PC7_S1: |
8874 | 0 | case R_MICROMIPS_PC10_S1: |
8875 | 0 | case R_MICROMIPS_PC16_S1: |
8876 | 0 | case R_MICROMIPS_PC23_S2: |
8877 | 0 | call_reloc_p = true; |
8878 | 0 | break; |
8879 | 0 | } |
8880 | | |
8881 | 0 | if (h) |
8882 | 0 | { |
8883 | 0 | if (constrain_symbol_p) |
8884 | 0 | { |
8885 | 0 | if (!can_make_dynamic_p) |
8886 | 0 | ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; |
8887 | |
|
8888 | 0 | if (!call_reloc_p) |
8889 | 0 | h->pointer_equality_needed = 1; |
8890 | | |
8891 | | /* We must not create a stub for a symbol that has |
8892 | | relocations related to taking the function's address. |
8893 | | This doesn't apply to VxWorks, where CALL relocs refer |
8894 | | to a .got.plt entry instead of a normal .got entry. */ |
8895 | 0 | if (htab->root.target_os != is_vxworks |
8896 | 0 | && (!can_make_dynamic_p || !call_reloc_p)) |
8897 | 0 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true; |
8898 | 0 | } |
8899 | | |
8900 | | /* Relocations against the special VxWorks __GOTT_BASE__ and |
8901 | | __GOTT_INDEX__ symbols must be left to the loader. Allocate |
8902 | | room for them in .rela.dyn. */ |
8903 | 0 | if (is_gott_symbol (info, h)) |
8904 | 0 | { |
8905 | 0 | if (sreloc == NULL) |
8906 | 0 | { |
8907 | 0 | sreloc = mips_elf_rel_dyn_section (info, true); |
8908 | 0 | if (sreloc == NULL) |
8909 | 0 | return false; |
8910 | 0 | } |
8911 | 0 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
8912 | 0 | if (MIPS_ELF_READONLY_SECTION (sec)) |
8913 | | /* We tell the dynamic linker that there are |
8914 | | relocations against the text segment. */ |
8915 | 0 | info->flags |= DF_TEXTREL; |
8916 | 0 | } |
8917 | 0 | } |
8918 | 0 | else if (call_lo16_reloc_p (r_type) |
8919 | 0 | || got_lo16_reloc_p (r_type) |
8920 | 0 | || got_disp_reloc_p (r_type) |
8921 | 0 | || (got16_reloc_p (r_type) |
8922 | 0 | && htab->root.target_os == is_vxworks)) |
8923 | 0 | { |
8924 | | /* We may need a local GOT entry for this relocation. We |
8925 | | don't count R_MIPS_GOT_PAGE because we can estimate the |
8926 | | maximum number of pages needed by looking at the size of |
8927 | | the segment. Similar comments apply to R_MIPS*_GOT16 and |
8928 | | R_MIPS*_CALL16, except on VxWorks, where GOT relocations |
8929 | | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or |
8930 | | R_MIPS_CALL_HI16 because these are always followed by an |
8931 | | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
8932 | 0 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
8933 | 0 | rel->r_addend, info, r_type)) |
8934 | 0 | return false; |
8935 | 0 | } |
8936 | | |
8937 | 0 | if (h != NULL |
8938 | 0 | && mips_elf_relocation_needs_la25_stub (abfd, r_type, |
8939 | 0 | ELF_ST_IS_MIPS16 (h->other))) |
8940 | 0 | ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true; |
8941 | |
|
8942 | 0 | switch (r_type) |
8943 | 0 | { |
8944 | 0 | case R_MIPS_CALL16: |
8945 | 0 | case R_MIPS16_CALL16: |
8946 | 0 | case R_MICROMIPS_CALL16: |
8947 | 0 | if (h == NULL) |
8948 | 0 | { |
8949 | 0 | _bfd_error_handler |
8950 | | /* xgettext:c-format */ |
8951 | 0 | (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"), |
8952 | 0 | abfd, (uint64_t) rel->r_offset); |
8953 | 0 | bfd_set_error (bfd_error_bad_value); |
8954 | 0 | return false; |
8955 | 0 | } |
8956 | | /* Fall through. */ |
8957 | | |
8958 | 0 | case R_MIPS_CALL_HI16: |
8959 | 0 | case R_MIPS_CALL_LO16: |
8960 | 0 | case R_MICROMIPS_CALL_HI16: |
8961 | 0 | case R_MICROMIPS_CALL_LO16: |
8962 | 0 | if (h != NULL) |
8963 | 0 | { |
8964 | | /* Make sure there is room in the regular GOT to hold the |
8965 | | function's address. We may eliminate it in favour of |
8966 | | a .got.plt entry later; see mips_elf_count_got_symbols. */ |
8967 | 0 | if (!mips_elf_record_global_got_symbol (h, abfd, info, true, |
8968 | 0 | r_type)) |
8969 | 0 | return false; |
8970 | | |
8971 | | /* We need a stub, not a plt entry for the undefined |
8972 | | function. But we record it as if it needs plt. See |
8973 | | _bfd_elf_adjust_dynamic_symbol. */ |
8974 | 0 | h->needs_plt = 1; |
8975 | 0 | h->type = STT_FUNC; |
8976 | 0 | } |
8977 | 0 | break; |
8978 | | |
8979 | 0 | case R_MIPS_GOT_PAGE: |
8980 | 0 | case R_MICROMIPS_GOT_PAGE: |
8981 | 0 | case R_MIPS16_GOT16: |
8982 | 0 | case R_MIPS_GOT16: |
8983 | 0 | case R_MIPS_GOT_HI16: |
8984 | 0 | case R_MIPS_GOT_LO16: |
8985 | 0 | case R_MICROMIPS_GOT16: |
8986 | 0 | case R_MICROMIPS_GOT_HI16: |
8987 | 0 | case R_MICROMIPS_GOT_LO16: |
8988 | 0 | if (!h || got_page_reloc_p (r_type)) |
8989 | 0 | { |
8990 | | /* This relocation needs (or may need, if h != NULL) a |
8991 | | page entry in the GOT. For R_MIPS_GOT_PAGE we do not |
8992 | | know for sure until we know whether the symbol is |
8993 | | preemptible. */ |
8994 | 0 | if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) |
8995 | 0 | { |
8996 | 0 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
8997 | 0 | return false; |
8998 | 0 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false); |
8999 | 0 | addend = mips_elf_read_rel_addend (abfd, sec, rel, |
9000 | 0 | howto, contents); |
9001 | 0 | if (got16_reloc_p (r_type)) |
9002 | 0 | mips_elf_add_lo16_rel_addend (abfd, sec, rel, rel_end, |
9003 | 0 | contents, &addend); |
9004 | 0 | else |
9005 | 0 | addend <<= howto->rightshift; |
9006 | 0 | } |
9007 | 0 | else |
9008 | 0 | addend = rel->r_addend; |
9009 | 0 | if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, |
9010 | 0 | h, addend)) |
9011 | 0 | return false; |
9012 | | |
9013 | 0 | if (h) |
9014 | 0 | { |
9015 | 0 | struct mips_elf_link_hash_entry *hmips = |
9016 | 0 | (struct mips_elf_link_hash_entry *) h; |
9017 | | |
9018 | | /* This symbol is definitely not overridable. */ |
9019 | 0 | if (hmips->root.def_regular |
9020 | 0 | && ! (bfd_link_pic (info) && ! info->symbolic |
9021 | 0 | && ! hmips->root.forced_local)) |
9022 | 0 | h = NULL; |
9023 | 0 | } |
9024 | 0 | } |
9025 | | /* If this is a global, overridable symbol, GOT_PAGE will |
9026 | | decay to GOT_DISP, so we'll need a GOT entry for it. */ |
9027 | | /* Fall through. */ |
9028 | | |
9029 | 0 | case R_MIPS_GOT_DISP: |
9030 | 0 | case R_MICROMIPS_GOT_DISP: |
9031 | 0 | if (h && !mips_elf_record_global_got_symbol (h, abfd, info, |
9032 | 0 | false, r_type)) |
9033 | 0 | return false; |
9034 | 0 | break; |
9035 | | |
9036 | 0 | case R_MIPS_TLS_GOTTPREL: |
9037 | 0 | case R_MIPS16_TLS_GOTTPREL: |
9038 | 0 | case R_MICROMIPS_TLS_GOTTPREL: |
9039 | 0 | if (bfd_link_pic (info)) |
9040 | 0 | info->flags |= DF_STATIC_TLS; |
9041 | | /* Fall through */ |
9042 | |
|
9043 | 0 | case R_MIPS_TLS_LDM: |
9044 | 0 | case R_MIPS16_TLS_LDM: |
9045 | 0 | case R_MICROMIPS_TLS_LDM: |
9046 | 0 | if (tls_ldm_reloc_p (r_type)) |
9047 | 0 | { |
9048 | 0 | r_symndx = STN_UNDEF; |
9049 | 0 | h = NULL; |
9050 | 0 | } |
9051 | | /* Fall through */ |
9052 | |
|
9053 | 0 | case R_MIPS_TLS_GD: |
9054 | 0 | case R_MIPS16_TLS_GD: |
9055 | 0 | case R_MICROMIPS_TLS_GD: |
9056 | | /* This symbol requires a global offset table entry, or two |
9057 | | for TLS GD relocations. */ |
9058 | 0 | if (h != NULL) |
9059 | 0 | { |
9060 | 0 | if (!mips_elf_record_global_got_symbol (h, abfd, info, |
9061 | 0 | false, r_type)) |
9062 | 0 | return false; |
9063 | 0 | } |
9064 | 0 | else |
9065 | 0 | { |
9066 | 0 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
9067 | 0 | rel->r_addend, |
9068 | 0 | info, r_type)) |
9069 | 0 | return false; |
9070 | 0 | } |
9071 | 0 | break; |
9072 | | |
9073 | 0 | case R_MIPS_32: |
9074 | 0 | case R_MIPS_REL32: |
9075 | 0 | case R_MIPS_64: |
9076 | | /* In VxWorks executables, references to external symbols |
9077 | | are handled using copy relocs or PLT stubs, so there's |
9078 | | no need to add a .rela.dyn entry for this relocation. */ |
9079 | 0 | if (can_make_dynamic_p) |
9080 | 0 | { |
9081 | 0 | if (sreloc == NULL) |
9082 | 0 | { |
9083 | 0 | sreloc = mips_elf_rel_dyn_section (info, true); |
9084 | 0 | if (sreloc == NULL) |
9085 | 0 | return false; |
9086 | 0 | } |
9087 | 0 | if (bfd_link_pic (info) && h == NULL) |
9088 | 0 | { |
9089 | | /* When creating a shared object, we must copy these |
9090 | | reloc types into the output file as R_MIPS_REL32 |
9091 | | relocs. Make room for this reloc in .rel(a).dyn. */ |
9092 | 0 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
9093 | 0 | if (MIPS_ELF_READONLY_SECTION (sec)) |
9094 | | /* We tell the dynamic linker that there are |
9095 | | relocations against the text segment. */ |
9096 | 0 | info->flags |= DF_TEXTREL; |
9097 | 0 | } |
9098 | 0 | else |
9099 | 0 | { |
9100 | 0 | struct mips_elf_link_hash_entry *hmips; |
9101 | | |
9102 | | /* For a shared object, we must copy this relocation |
9103 | | unless the symbol turns out to be undefined and |
9104 | | weak with non-default visibility, in which case |
9105 | | it will be left as zero. |
9106 | | |
9107 | | We could elide R_MIPS_REL32 for locally binding symbols |
9108 | | in shared libraries, but do not yet do so. |
9109 | | |
9110 | | For an executable, we only need to copy this |
9111 | | reloc if the symbol is defined in a dynamic |
9112 | | object. */ |
9113 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
9114 | 0 | ++hmips->possibly_dynamic_relocs; |
9115 | 0 | if (MIPS_ELF_READONLY_SECTION (sec)) |
9116 | | /* We need it to tell the dynamic linker if there |
9117 | | are relocations against the text segment. */ |
9118 | 0 | hmips->readonly_reloc = true; |
9119 | 0 | } |
9120 | 0 | } |
9121 | | |
9122 | 0 | if (SGI_COMPAT (abfd)) |
9123 | 0 | mips_elf_hash_table (info)->compact_rel_size += |
9124 | 0 | sizeof (Elf32_External_crinfo); |
9125 | 0 | break; |
9126 | | |
9127 | 0 | case R_MIPS_26: |
9128 | 0 | case R_MIPS_GPREL16: |
9129 | 0 | case R_MIPS_LITERAL: |
9130 | 0 | case R_MIPS_GPREL32: |
9131 | 0 | case R_MICROMIPS_26_S1: |
9132 | 0 | case R_MICROMIPS_GPREL16: |
9133 | 0 | case R_MICROMIPS_LITERAL: |
9134 | 0 | case R_MICROMIPS_GPREL7_S2: |
9135 | 0 | if (SGI_COMPAT (abfd)) |
9136 | 0 | mips_elf_hash_table (info)->compact_rel_size += |
9137 | 0 | sizeof (Elf32_External_crinfo); |
9138 | 0 | break; |
9139 | | |
9140 | | /* This relocation describes the C++ object vtable hierarchy. |
9141 | | Reconstruct it for later use during GC. */ |
9142 | 0 | case R_MIPS_GNU_VTINHERIT: |
9143 | 0 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
9144 | 0 | return false; |
9145 | 0 | break; |
9146 | | |
9147 | | /* This relocation describes which C++ vtable entries are actually |
9148 | | used. Record for later use during GC. */ |
9149 | 0 | case R_MIPS_GNU_VTENTRY: |
9150 | 0 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
9151 | 0 | return false; |
9152 | 0 | break; |
9153 | | |
9154 | 0 | default: |
9155 | 0 | break; |
9156 | 0 | } |
9157 | | |
9158 | | /* Record the need for a PLT entry. At this point we don't know |
9159 | | yet if we are going to create a PLT in the first place, but |
9160 | | we only record whether the relocation requires a standard MIPS |
9161 | | or a compressed code entry anyway. If we don't make a PLT after |
9162 | | all, then we'll just ignore these arrangements. Likewise if |
9163 | | a PLT entry is not created because the symbol is satisfied |
9164 | | locally. */ |
9165 | 0 | if (h != NULL |
9166 | 0 | && (branch_reloc_p (r_type) |
9167 | 0 | || mips16_branch_reloc_p (r_type) |
9168 | 0 | || micromips_branch_reloc_p (r_type)) |
9169 | 0 | && !SYMBOL_CALLS_LOCAL (info, h)) |
9170 | 0 | { |
9171 | 0 | if (h->plt.plist == NULL) |
9172 | 0 | h->plt.plist = mips_elf_make_plt_record (abfd); |
9173 | 0 | if (h->plt.plist == NULL) |
9174 | 0 | return false; |
9175 | | |
9176 | 0 | if (branch_reloc_p (r_type)) |
9177 | 0 | h->plt.plist->need_mips = true; |
9178 | 0 | else |
9179 | 0 | h->plt.plist->need_comp = true; |
9180 | 0 | } |
9181 | | |
9182 | | /* See if this reloc would need to refer to a MIPS16 hard-float stub, |
9183 | | if there is one. We only need to handle global symbols here; |
9184 | | we decide whether to keep or delete stubs for local symbols |
9185 | | when processing the stub's relocations. */ |
9186 | 0 | if (h != NULL |
9187 | 0 | && !mips16_call_reloc_p (r_type) |
9188 | 0 | && !section_allows_mips16_refs_p (sec)) |
9189 | 0 | { |
9190 | 0 | struct mips_elf_link_hash_entry *mh; |
9191 | |
|
9192 | 0 | mh = (struct mips_elf_link_hash_entry *) h; |
9193 | 0 | mh->need_fn_stub = true; |
9194 | 0 | } |
9195 | | |
9196 | | /* Refuse some position-dependent relocations when creating a |
9197 | | shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're |
9198 | | not PIC, but we can create dynamic relocations and the result |
9199 | | will be fine. Also do not refuse R_MIPS_LO16, which can be |
9200 | | combined with R_MIPS_GOT16. */ |
9201 | 0 | if (bfd_link_pic (info)) |
9202 | 0 | { |
9203 | 0 | switch (r_type) |
9204 | 0 | { |
9205 | 0 | case R_MIPS_TLS_TPREL_HI16: |
9206 | 0 | case R_MIPS16_TLS_TPREL_HI16: |
9207 | 0 | case R_MICROMIPS_TLS_TPREL_HI16: |
9208 | 0 | case R_MIPS_TLS_TPREL_LO16: |
9209 | 0 | case R_MIPS16_TLS_TPREL_LO16: |
9210 | 0 | case R_MICROMIPS_TLS_TPREL_LO16: |
9211 | | /* These are okay in PIE, but not in a shared library. */ |
9212 | 0 | if (bfd_link_executable (info)) |
9213 | 0 | break; |
9214 | | |
9215 | | /* FALLTHROUGH */ |
9216 | | |
9217 | 0 | case R_MIPS16_HI16: |
9218 | 0 | case R_MIPS_HI16: |
9219 | 0 | case R_MIPS_HIGHER: |
9220 | 0 | case R_MIPS_HIGHEST: |
9221 | 0 | case R_MICROMIPS_HI16: |
9222 | 0 | case R_MICROMIPS_HIGHER: |
9223 | 0 | case R_MICROMIPS_HIGHEST: |
9224 | | /* Don't refuse a high part relocation if it's against |
9225 | | no symbol (e.g. part of a compound relocation). */ |
9226 | 0 | if (r_symndx == STN_UNDEF) |
9227 | 0 | break; |
9228 | | |
9229 | | /* Likewise an absolute symbol. */ |
9230 | 0 | if (h != NULL && bfd_is_abs_symbol (&h->root)) |
9231 | 0 | break; |
9232 | | |
9233 | | /* R_MIPS_HI16 against _gp_disp is used for $gp setup, |
9234 | | and has a special meaning. */ |
9235 | 0 | if (!NEWABI_P (abfd) && h != NULL |
9236 | 0 | && strcmp (h->root.root.string, "_gp_disp") == 0) |
9237 | 0 | break; |
9238 | | |
9239 | | /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ |
9240 | 0 | if (is_gott_symbol (info, h)) |
9241 | 0 | break; |
9242 | | |
9243 | | /* FALLTHROUGH */ |
9244 | | |
9245 | 0 | case R_MIPS16_26: |
9246 | 0 | case R_MIPS_26: |
9247 | 0 | case R_MICROMIPS_26_S1: |
9248 | 0 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd)); |
9249 | | /* An error for unsupported relocations is raised as part |
9250 | | of the above search, so we can skip the following. */ |
9251 | 0 | if (howto != NULL) |
9252 | 0 | info->callbacks->einfo |
9253 | | /* xgettext:c-format */ |
9254 | 0 | (_("%X%H: relocation %s against `%s' cannot be used" |
9255 | 0 | " when making a shared object; recompile with -fPIC\n"), |
9256 | 0 | abfd, sec, rel->r_offset, howto->name, |
9257 | 0 | (h) ? h->root.root.string : "a local symbol"); |
9258 | 0 | break; |
9259 | 0 | default: |
9260 | 0 | break; |
9261 | 0 | } |
9262 | 0 | } |
9263 | 0 | } |
9264 | | |
9265 | 0 | return true; |
9266 | 0 | } |
9267 | | |
9268 | | /* Allocate space for global sym dynamic relocs. */ |
9269 | | |
9270 | | static bool |
9271 | | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
9272 | 0 | { |
9273 | 0 | struct bfd_link_info *info = inf; |
9274 | 0 | bfd *dynobj; |
9275 | 0 | struct mips_elf_link_hash_entry *hmips; |
9276 | 0 | struct mips_elf_link_hash_table *htab; |
9277 | |
|
9278 | 0 | htab = mips_elf_hash_table (info); |
9279 | 0 | BFD_ASSERT (htab != NULL); |
9280 | |
|
9281 | 0 | dynobj = elf_hash_table (info)->dynobj; |
9282 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
9283 | | |
9284 | | /* VxWorks executables are handled elsewhere; we only need to |
9285 | | allocate relocations in shared objects. */ |
9286 | 0 | if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) |
9287 | 0 | return true; |
9288 | | |
9289 | | /* Ignore indirect symbols. All relocations against such symbols |
9290 | | will be redirected to the target symbol. */ |
9291 | 0 | if (h->root.type == bfd_link_hash_indirect) |
9292 | 0 | return true; |
9293 | | |
9294 | | /* If this symbol is defined in a dynamic object, or we are creating |
9295 | | a shared library, we will need to copy any R_MIPS_32 or |
9296 | | R_MIPS_REL32 relocs against it into the output file. */ |
9297 | 0 | if (! bfd_link_relocatable (info) |
9298 | 0 | && hmips->possibly_dynamic_relocs != 0 |
9299 | 0 | && (h->root.type == bfd_link_hash_defweak |
9300 | 0 | || (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
9301 | 0 | || bfd_link_pic (info))) |
9302 | 0 | { |
9303 | 0 | bool do_copy = true; |
9304 | |
|
9305 | 0 | if (h->root.type == bfd_link_hash_undefweak) |
9306 | 0 | { |
9307 | | /* Do not copy relocations for undefined weak symbols that |
9308 | | we are not going to export. */ |
9309 | 0 | if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
9310 | 0 | do_copy = false; |
9311 | | |
9312 | | /* Make sure undefined weak symbols are output as a dynamic |
9313 | | symbol in PIEs. */ |
9314 | 0 | else if (h->dynindx == -1 && !h->forced_local) |
9315 | 0 | { |
9316 | 0 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
9317 | 0 | return false; |
9318 | 0 | } |
9319 | 0 | } |
9320 | | |
9321 | 0 | if (do_copy) |
9322 | 0 | { |
9323 | | /* Even though we don't directly need a GOT entry for this symbol, |
9324 | | the SVR4 psABI requires it to have a dynamic symbol table |
9325 | | index greater that DT_MIPS_GOTSYM if there are dynamic |
9326 | | relocations against it. |
9327 | | |
9328 | | VxWorks does not enforce the same mapping between the GOT |
9329 | | and the symbol table, so the same requirement does not |
9330 | | apply there. */ |
9331 | 0 | if (htab->root.target_os != is_vxworks) |
9332 | 0 | { |
9333 | 0 | if (hmips->global_got_area > GGA_RELOC_ONLY) |
9334 | 0 | hmips->global_got_area = GGA_RELOC_ONLY; |
9335 | 0 | hmips->got_only_for_calls = false; |
9336 | 0 | } |
9337 | |
|
9338 | 0 | mips_elf_allocate_dynamic_relocations |
9339 | 0 | (dynobj, info, hmips->possibly_dynamic_relocs); |
9340 | 0 | if (hmips->readonly_reloc) |
9341 | | /* We tell the dynamic linker that there are relocations |
9342 | | against the text segment. */ |
9343 | 0 | info->flags |= DF_TEXTREL; |
9344 | 0 | } |
9345 | 0 | } |
9346 | | |
9347 | 0 | return true; |
9348 | 0 | } |
9349 | | |
9350 | | /* Adjust a symbol defined by a dynamic object and referenced by a |
9351 | | regular object. The current definition is in some section of the |
9352 | | dynamic object, but we're not including those sections. We have to |
9353 | | change the definition to something the rest of the link can |
9354 | | understand. */ |
9355 | | |
9356 | | bool |
9357 | | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
9358 | | struct elf_link_hash_entry *h) |
9359 | 0 | { |
9360 | 0 | bfd *dynobj; |
9361 | 0 | struct mips_elf_link_hash_entry *hmips; |
9362 | 0 | struct mips_elf_link_hash_table *htab; |
9363 | 0 | asection *s, *srel; |
9364 | |
|
9365 | 0 | htab = mips_elf_hash_table (info); |
9366 | 0 | BFD_ASSERT (htab != NULL); |
9367 | |
|
9368 | 0 | dynobj = elf_hash_table (info)->dynobj; |
9369 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
9370 | | |
9371 | | /* Make sure we know what is going on here. */ |
9372 | 0 | if (dynobj == NULL |
9373 | 0 | || (! h->needs_plt |
9374 | 0 | && ! h->is_weakalias |
9375 | 0 | && (! h->def_dynamic |
9376 | 0 | || ! h->ref_regular |
9377 | 0 | || h->def_regular))) |
9378 | 0 | { |
9379 | 0 | if (h->type == STT_GNU_IFUNC) |
9380 | 0 | _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"), |
9381 | 0 | h->root.root.string); |
9382 | 0 | else |
9383 | 0 | _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"), |
9384 | 0 | h->root.root.string); |
9385 | 0 | return true; |
9386 | 0 | } |
9387 | | |
9388 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
9389 | | |
9390 | | /* If there are call relocations against an externally-defined symbol, |
9391 | | see whether we can create a MIPS lazy-binding stub for it. We can |
9392 | | only do this if all references to the function are through call |
9393 | | relocations, and in that case, the traditional lazy-binding stubs |
9394 | | are much more efficient than PLT entries. |
9395 | | |
9396 | | Traditional stubs are only available on SVR4 psABI-based systems; |
9397 | | VxWorks always uses PLTs instead. */ |
9398 | 0 | if (htab->root.target_os != is_vxworks |
9399 | 0 | && h->needs_plt |
9400 | 0 | && !hmips->no_fn_stub) |
9401 | 0 | { |
9402 | 0 | if (! elf_hash_table (info)->dynamic_sections_created) |
9403 | 0 | return true; |
9404 | | |
9405 | | /* If this symbol is not defined in a regular file, then set |
9406 | | the symbol to the stub location. This is required to make |
9407 | | function pointers compare as equal between the normal |
9408 | | executable and the shared library. */ |
9409 | 0 | if (!h->def_regular |
9410 | 0 | && !bfd_is_abs_section (htab->sstubs->output_section)) |
9411 | 0 | { |
9412 | 0 | hmips->needs_lazy_stub = true; |
9413 | 0 | htab->lazy_stub_count++; |
9414 | 0 | return true; |
9415 | 0 | } |
9416 | 0 | } |
9417 | | /* As above, VxWorks requires PLT entries for externally-defined |
9418 | | functions that are only accessed through call relocations. |
9419 | | |
9420 | | Both VxWorks and non-VxWorks targets also need PLT entries if there |
9421 | | are static-only relocations against an externally-defined function. |
9422 | | This can technically occur for shared libraries if there are |
9423 | | branches to the symbol, although it is unlikely that this will be |
9424 | | used in practice due to the short ranges involved. It can occur |
9425 | | for any relative or absolute relocation in executables; in that |
9426 | | case, the PLT entry becomes the function's canonical address. */ |
9427 | 0 | else if (((h->needs_plt && !hmips->no_fn_stub) |
9428 | 0 | || (h->type == STT_FUNC && hmips->has_static_relocs)) |
9429 | 0 | && htab->use_plts_and_copy_relocs |
9430 | 0 | && !SYMBOL_CALLS_LOCAL (info, h) |
9431 | 0 | && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
9432 | 0 | && h->root.type == bfd_link_hash_undefweak)) |
9433 | 0 | { |
9434 | 0 | bool micromips_p = MICROMIPS_P (info->output_bfd); |
9435 | 0 | bool newabi_p = NEWABI_P (info->output_bfd); |
9436 | | |
9437 | | /* If this is the first symbol to need a PLT entry, then make some |
9438 | | basic setup. Also work out PLT entry sizes. We'll need them |
9439 | | for PLT offset calculations. */ |
9440 | 0 | if (htab->plt_mips_offset + htab->plt_comp_offset == 0) |
9441 | 0 | { |
9442 | 0 | BFD_ASSERT (htab->root.sgotplt->size == 0); |
9443 | 0 | BFD_ASSERT (htab->plt_got_index == 0); |
9444 | | |
9445 | | /* If we're using the PLT additions to the psABI, each PLT |
9446 | | entry is 16 bytes and the PLT0 entry is 32 bytes. |
9447 | | Encourage better cache usage by aligning. We do this |
9448 | | lazily to avoid pessimizing traditional objects. */ |
9449 | 0 | if (htab->root.target_os != is_vxworks |
9450 | 0 | && !bfd_link_align_section (htab->root.splt, 5)) |
9451 | 0 | return false; |
9452 | | |
9453 | | /* Make sure that .got.plt is word-aligned. We do this lazily |
9454 | | for the same reason as above. */ |
9455 | 0 | if (!bfd_link_align_section (htab->root.sgotplt, |
9456 | 0 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
9457 | 0 | return false; |
9458 | | |
9459 | | /* On non-VxWorks targets, the first two entries in .got.plt |
9460 | | are reserved. */ |
9461 | 0 | if (htab->root.target_os != is_vxworks) |
9462 | 0 | htab->plt_got_index |
9463 | 0 | += (get_elf_backend_data (dynobj)->got_header_size |
9464 | 0 | / MIPS_ELF_GOT_SIZE (dynobj)); |
9465 | | |
9466 | | /* On VxWorks, also allocate room for the header's |
9467 | | .rela.plt.unloaded entries. */ |
9468 | 0 | if (htab->root.target_os == is_vxworks |
9469 | 0 | && !bfd_link_pic (info)) |
9470 | 0 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); |
9471 | | |
9472 | | /* Now work out the sizes of individual PLT entries. */ |
9473 | 0 | if (htab->root.target_os == is_vxworks |
9474 | 0 | && bfd_link_pic (info)) |
9475 | 0 | htab->plt_mips_entry_size |
9476 | 0 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); |
9477 | 0 | else if (htab->root.target_os == is_vxworks) |
9478 | 0 | htab->plt_mips_entry_size |
9479 | 0 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); |
9480 | 0 | else if (newabi_p) |
9481 | 0 | htab->plt_mips_entry_size |
9482 | 0 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
9483 | 0 | else if (!micromips_p) |
9484 | 0 | { |
9485 | 0 | htab->plt_mips_entry_size |
9486 | 0 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
9487 | 0 | htab->plt_comp_entry_size |
9488 | 0 | = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); |
9489 | 0 | } |
9490 | 0 | else if (htab->insn32) |
9491 | 0 | { |
9492 | 0 | htab->plt_mips_entry_size |
9493 | 0 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
9494 | 0 | htab->plt_comp_entry_size |
9495 | 0 | = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); |
9496 | 0 | } |
9497 | 0 | else |
9498 | 0 | { |
9499 | 0 | htab->plt_mips_entry_size |
9500 | 0 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
9501 | 0 | htab->plt_comp_entry_size |
9502 | 0 | = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); |
9503 | 0 | } |
9504 | 0 | } |
9505 | | |
9506 | 0 | if (h->plt.plist == NULL) |
9507 | 0 | h->plt.plist = mips_elf_make_plt_record (dynobj); |
9508 | 0 | if (h->plt.plist == NULL) |
9509 | 0 | return false; |
9510 | | |
9511 | | /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, |
9512 | | n32 or n64, so always use a standard entry there. |
9513 | | |
9514 | | If the symbol has a MIPS16 call stub and gets a PLT entry, then |
9515 | | all MIPS16 calls will go via that stub, and there is no benefit |
9516 | | to having a MIPS16 entry. And in the case of call_stub a |
9517 | | standard entry actually has to be used as the stub ends with a J |
9518 | | instruction. */ |
9519 | 0 | if (newabi_p |
9520 | 0 | || htab->root.target_os == is_vxworks |
9521 | 0 | || hmips->call_stub |
9522 | 0 | || hmips->call_fp_stub) |
9523 | 0 | { |
9524 | 0 | h->plt.plist->need_mips = true; |
9525 | 0 | h->plt.plist->need_comp = false; |
9526 | 0 | } |
9527 | | |
9528 | | /* Otherwise, if there are no direct calls to the function, we |
9529 | | have a free choice of whether to use standard or compressed |
9530 | | entries. Prefer microMIPS entries if the object is known to |
9531 | | contain microMIPS code, so that it becomes possible to create |
9532 | | pure microMIPS binaries. Prefer standard entries otherwise, |
9533 | | because MIPS16 ones are no smaller and are usually slower. */ |
9534 | 0 | if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) |
9535 | 0 | { |
9536 | 0 | if (micromips_p) |
9537 | 0 | h->plt.plist->need_comp = true; |
9538 | 0 | else |
9539 | 0 | h->plt.plist->need_mips = true; |
9540 | 0 | } |
9541 | |
|
9542 | 0 | if (h->plt.plist->need_mips) |
9543 | 0 | { |
9544 | 0 | h->plt.plist->mips_offset = htab->plt_mips_offset; |
9545 | 0 | htab->plt_mips_offset += htab->plt_mips_entry_size; |
9546 | 0 | } |
9547 | 0 | if (h->plt.plist->need_comp) |
9548 | 0 | { |
9549 | 0 | h->plt.plist->comp_offset = htab->plt_comp_offset; |
9550 | 0 | htab->plt_comp_offset += htab->plt_comp_entry_size; |
9551 | 0 | } |
9552 | | |
9553 | | /* Reserve the corresponding .got.plt entry now too. */ |
9554 | 0 | h->plt.plist->gotplt_index = htab->plt_got_index++; |
9555 | | |
9556 | | /* If the output file has no definition of the symbol, set the |
9557 | | symbol's value to the address of the stub. */ |
9558 | 0 | if (!bfd_link_pic (info) && !h->def_regular) |
9559 | 0 | hmips->use_plt_entry = true; |
9560 | | |
9561 | | /* Make room for the R_MIPS_JUMP_SLOT relocation. */ |
9562 | 0 | htab->root.srelplt->size += (htab->root.target_os == is_vxworks |
9563 | 0 | ? MIPS_ELF_RELA_SIZE (dynobj) |
9564 | 0 | : MIPS_ELF_REL_SIZE (dynobj)); |
9565 | | |
9566 | | /* Make room for the .rela.plt.unloaded relocations. */ |
9567 | 0 | if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) |
9568 | 0 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); |
9569 | | |
9570 | | /* All relocations against this symbol that could have been made |
9571 | | dynamic will now refer to the PLT entry instead. */ |
9572 | 0 | hmips->possibly_dynamic_relocs = 0; |
9573 | |
|
9574 | 0 | return true; |
9575 | 0 | } |
9576 | | |
9577 | | /* If this is a weak symbol, and there is a real definition, the |
9578 | | processor independent code will have arranged for us to see the |
9579 | | real definition first, and we can just use the same value. */ |
9580 | 0 | if (h->is_weakalias) |
9581 | 0 | { |
9582 | 0 | struct elf_link_hash_entry *def = weakdef (h); |
9583 | 0 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
9584 | 0 | h->root.u.def.section = def->root.u.def.section; |
9585 | 0 | h->root.u.def.value = def->root.u.def.value; |
9586 | 0 | return true; |
9587 | 0 | } |
9588 | | |
9589 | | /* Otherwise, there is nothing further to do for symbols defined |
9590 | | in regular objects. */ |
9591 | 0 | if (h->def_regular) |
9592 | 0 | return true; |
9593 | | |
9594 | | /* There's also nothing more to do if we'll convert all relocations |
9595 | | against this symbol into dynamic relocations. */ |
9596 | 0 | if (!hmips->has_static_relocs) |
9597 | 0 | return true; |
9598 | | |
9599 | | /* We're now relying on copy relocations. Complain if we have |
9600 | | some that we can't convert. */ |
9601 | 0 | if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) |
9602 | 0 | { |
9603 | 0 | _bfd_error_handler (_("non-dynamic relocations refer to " |
9604 | 0 | "dynamic symbol %s"), |
9605 | 0 | h->root.root.string); |
9606 | 0 | bfd_set_error (bfd_error_bad_value); |
9607 | 0 | return false; |
9608 | 0 | } |
9609 | | |
9610 | | /* We must allocate the symbol in our .dynbss section, which will |
9611 | | become part of the .bss section of the executable. There will be |
9612 | | an entry for this symbol in the .dynsym section. The dynamic |
9613 | | object will contain position independent code, so all references |
9614 | | from the dynamic object to this symbol will go through the global |
9615 | | offset table. The dynamic linker will use the .dynsym entry to |
9616 | | determine the address it must put in the global offset table, so |
9617 | | both the dynamic object and the regular object will refer to the |
9618 | | same memory location for the variable. */ |
9619 | | |
9620 | 0 | if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
9621 | 0 | { |
9622 | 0 | s = htab->root.sdynrelro; |
9623 | 0 | srel = htab->root.sreldynrelro; |
9624 | 0 | } |
9625 | 0 | else |
9626 | 0 | { |
9627 | 0 | s = htab->root.sdynbss; |
9628 | 0 | srel = htab->root.srelbss; |
9629 | 0 | } |
9630 | 0 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
9631 | 0 | { |
9632 | 0 | if (htab->root.target_os == is_vxworks) |
9633 | 0 | srel->size += sizeof (Elf32_External_Rela); |
9634 | 0 | else |
9635 | 0 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
9636 | 0 | h->needs_copy = 1; |
9637 | 0 | } |
9638 | | |
9639 | | /* All relocations against this symbol that could have been made |
9640 | | dynamic will now refer to the local copy instead. */ |
9641 | 0 | hmips->possibly_dynamic_relocs = 0; |
9642 | |
|
9643 | 0 | return _bfd_elf_adjust_dynamic_copy (info, h, s); |
9644 | 0 | } |
9645 | | |
9646 | | /* If the link uses a GOT, lay it out and work out its size. */ |
9647 | | |
9648 | | static bool |
9649 | | mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) |
9650 | 0 | { |
9651 | 0 | bfd *dynobj; |
9652 | 0 | asection *s; |
9653 | 0 | struct mips_got_info *g; |
9654 | 0 | bfd_size_type loadable_size = 0; |
9655 | 0 | bfd_size_type page_gotno; |
9656 | 0 | bfd *ibfd; |
9657 | 0 | struct mips_elf_traverse_got_arg tga; |
9658 | 0 | struct mips_elf_link_hash_table *htab; |
9659 | |
|
9660 | 0 | htab = mips_elf_hash_table (info); |
9661 | 0 | BFD_ASSERT (htab != NULL); |
9662 | |
|
9663 | 0 | s = htab->root.sgot; |
9664 | 0 | if (s == NULL) |
9665 | 0 | return true; |
9666 | | |
9667 | 0 | dynobj = elf_hash_table (info)->dynobj; |
9668 | 0 | g = htab->got_info; |
9669 | | |
9670 | | /* Allocate room for the reserved entries. VxWorks always reserves |
9671 | | 3 entries; other objects only reserve 2 entries. */ |
9672 | 0 | BFD_ASSERT (g->assigned_low_gotno == 0); |
9673 | 0 | if (htab->root.target_os == is_vxworks) |
9674 | 0 | htab->reserved_gotno = 3; |
9675 | 0 | else |
9676 | 0 | htab->reserved_gotno = 2; |
9677 | 0 | g->local_gotno += htab->reserved_gotno; |
9678 | 0 | g->assigned_low_gotno = htab->reserved_gotno; |
9679 | | |
9680 | | /* Decide which symbols need to go in the global part of the GOT and |
9681 | | count the number of reloc-only GOT symbols. */ |
9682 | 0 | mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); |
9683 | |
|
9684 | 0 | if (!mips_elf_resolve_final_got_entries (info, g)) |
9685 | 0 | return false; |
9686 | | |
9687 | | /* Calculate the total loadable size of the output. That |
9688 | | will give us the maximum number of GOT_PAGE entries |
9689 | | required. */ |
9690 | 0 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
9691 | 0 | { |
9692 | 0 | asection *subsection; |
9693 | |
|
9694 | 0 | for (subsection = ibfd->sections; |
9695 | 0 | subsection; |
9696 | 0 | subsection = subsection->next) |
9697 | 0 | { |
9698 | 0 | if ((subsection->flags & SEC_ALLOC) == 0) |
9699 | 0 | continue; |
9700 | 0 | loadable_size += ((subsection->size + 0xf) |
9701 | 0 | &~ (bfd_size_type) 0xf); |
9702 | 0 | } |
9703 | 0 | } |
9704 | |
|
9705 | 0 | if (htab->root.target_os == is_vxworks) |
9706 | | /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 |
9707 | | relocations against local symbols evaluate to "G", and the EABI does |
9708 | | not include R_MIPS_GOT_PAGE. */ |
9709 | 0 | page_gotno = 0; |
9710 | 0 | else |
9711 | | /* Assume there are two loadable segments consisting of contiguous |
9712 | | sections. Is 5 enough? */ |
9713 | 0 | page_gotno = (loadable_size >> 16) + 5; |
9714 | | |
9715 | | /* Choose the smaller of the two page estimates; both are intended to be |
9716 | | conservative. */ |
9717 | 0 | if (page_gotno > g->page_gotno) |
9718 | 0 | page_gotno = g->page_gotno; |
9719 | |
|
9720 | 0 | g->local_gotno += page_gotno; |
9721 | 0 | g->assigned_high_gotno = g->local_gotno - 1; |
9722 | |
|
9723 | 0 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9724 | 0 | s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9725 | 0 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9726 | | |
9727 | | /* VxWorks does not support multiple GOTs. It initializes $gp to |
9728 | | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the |
9729 | | dynamic loader. */ |
9730 | 0 | if (htab->root.target_os != is_vxworks |
9731 | 0 | && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) |
9732 | 0 | { |
9733 | 0 | if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) |
9734 | 0 | return false; |
9735 | 0 | } |
9736 | 0 | else |
9737 | 0 | { |
9738 | | /* Record that all bfds use G. This also has the effect of freeing |
9739 | | the per-bfd GOTs, which we no longer need. */ |
9740 | 0 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
9741 | 0 | if (mips_elf_bfd_got (ibfd, false)) |
9742 | 0 | mips_elf_replace_bfd_got (ibfd, g); |
9743 | 0 | mips_elf_replace_bfd_got (output_bfd, g); |
9744 | | |
9745 | | /* Set up TLS entries. */ |
9746 | 0 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; |
9747 | 0 | tga.info = info; |
9748 | 0 | tga.g = g; |
9749 | 0 | tga.value = MIPS_ELF_GOT_SIZE (output_bfd); |
9750 | 0 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); |
9751 | 0 | if (!tga.g) |
9752 | 0 | return false; |
9753 | 0 | BFD_ASSERT (g->tls_assigned_gotno |
9754 | 0 | == g->global_gotno + g->local_gotno + g->tls_gotno); |
9755 | | |
9756 | | /* Each VxWorks GOT entry needs an explicit relocation. */ |
9757 | 0 | if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) |
9758 | 0 | g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; |
9759 | | |
9760 | | /* Allocate room for the TLS relocations. */ |
9761 | 0 | if (g->relocs) |
9762 | 0 | mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); |
9763 | 0 | } |
9764 | | |
9765 | 0 | return true; |
9766 | 0 | } |
9767 | | |
9768 | | /* Estimate the size of the .MIPS.stubs section. */ |
9769 | | |
9770 | | static void |
9771 | | mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) |
9772 | 0 | { |
9773 | 0 | struct mips_elf_link_hash_table *htab; |
9774 | 0 | bfd_size_type dynsymcount; |
9775 | |
|
9776 | 0 | htab = mips_elf_hash_table (info); |
9777 | 0 | BFD_ASSERT (htab != NULL); |
9778 | |
|
9779 | 0 | if (htab->lazy_stub_count == 0) |
9780 | 0 | return; |
9781 | | |
9782 | | /* IRIX rld assumes that a function stub isn't at the end of the .text |
9783 | | section, so add a dummy entry to the end. */ |
9784 | 0 | htab->lazy_stub_count++; |
9785 | | |
9786 | | /* Get a worst-case estimate of the number of dynamic symbols needed. |
9787 | | At this point, dynsymcount does not account for section symbols |
9788 | | and count_section_dynsyms may overestimate the number that will |
9789 | | be needed. */ |
9790 | 0 | dynsymcount = (elf_hash_table (info)->dynsymcount |
9791 | 0 | + count_section_dynsyms (output_bfd, info)); |
9792 | | |
9793 | | /* Determine the size of one stub entry. There's no disadvantage |
9794 | | from using microMIPS code here, so for the sake of pure-microMIPS |
9795 | | binaries we prefer it whenever there's any microMIPS code in |
9796 | | output produced at all. This has a benefit of stubs being |
9797 | | shorter by 4 bytes each too, unless in the insn32 mode. */ |
9798 | 0 | if (!MICROMIPS_P (output_bfd)) |
9799 | 0 | htab->function_stub_size = (dynsymcount > 0x10000 |
9800 | 0 | ? MIPS_FUNCTION_STUB_BIG_SIZE |
9801 | 0 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); |
9802 | 0 | else if (htab->insn32) |
9803 | 0 | htab->function_stub_size = (dynsymcount > 0x10000 |
9804 | 0 | ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE |
9805 | 0 | : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); |
9806 | 0 | else |
9807 | 0 | htab->function_stub_size = (dynsymcount > 0x10000 |
9808 | 0 | ? MICROMIPS_FUNCTION_STUB_BIG_SIZE |
9809 | 0 | : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); |
9810 | |
|
9811 | 0 | htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; |
9812 | 0 | } |
9813 | | |
9814 | | /* A mips_elf_link_hash_traverse callback for which DATA points to a |
9815 | | mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding |
9816 | | stub, allocate an entry in the stubs section. */ |
9817 | | |
9818 | | static bool |
9819 | | mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) |
9820 | 0 | { |
9821 | 0 | struct mips_htab_traverse_info *hti = data; |
9822 | 0 | struct mips_elf_link_hash_table *htab; |
9823 | 0 | struct bfd_link_info *info; |
9824 | 0 | bfd *output_bfd; |
9825 | |
|
9826 | 0 | info = hti->info; |
9827 | 0 | output_bfd = hti->output_bfd; |
9828 | 0 | htab = mips_elf_hash_table (info); |
9829 | 0 | BFD_ASSERT (htab != NULL); |
9830 | |
|
9831 | 0 | if (h->needs_lazy_stub) |
9832 | 0 | { |
9833 | 0 | bool micromips_p = MICROMIPS_P (output_bfd); |
9834 | 0 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
9835 | 0 | bfd_vma isa_bit = micromips_p; |
9836 | |
|
9837 | 0 | BFD_ASSERT (htab->root.dynobj != NULL); |
9838 | 0 | if (h->root.plt.plist == NULL) |
9839 | 0 | h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); |
9840 | 0 | if (h->root.plt.plist == NULL) |
9841 | 0 | { |
9842 | 0 | hti->error = true; |
9843 | 0 | return false; |
9844 | 0 | } |
9845 | 0 | h->root.root.u.def.section = htab->sstubs; |
9846 | 0 | h->root.root.u.def.value = htab->sstubs->size + isa_bit; |
9847 | 0 | h->root.plt.plist->stub_offset = htab->sstubs->size; |
9848 | 0 | h->root.other = other; |
9849 | 0 | htab->sstubs->size += htab->function_stub_size; |
9850 | 0 | } |
9851 | 0 | return true; |
9852 | 0 | } |
9853 | | |
9854 | | /* Allocate offsets in the stubs section to each symbol that needs one. |
9855 | | Set the final size of the .MIPS.stub section. */ |
9856 | | |
9857 | | static bool |
9858 | | mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) |
9859 | 0 | { |
9860 | 0 | bfd *output_bfd = info->output_bfd; |
9861 | 0 | bool micromips_p = MICROMIPS_P (output_bfd); |
9862 | 0 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
9863 | 0 | bfd_vma isa_bit = micromips_p; |
9864 | 0 | struct mips_elf_link_hash_table *htab; |
9865 | 0 | struct mips_htab_traverse_info hti; |
9866 | 0 | struct elf_link_hash_entry *h; |
9867 | 0 | bfd *dynobj; |
9868 | |
|
9869 | 0 | htab = mips_elf_hash_table (info); |
9870 | 0 | BFD_ASSERT (htab != NULL); |
9871 | |
|
9872 | 0 | if (htab->lazy_stub_count == 0) |
9873 | 0 | return true; |
9874 | | |
9875 | 0 | htab->sstubs->size = 0; |
9876 | 0 | hti.info = info; |
9877 | 0 | hti.output_bfd = output_bfd; |
9878 | 0 | hti.error = false; |
9879 | 0 | mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); |
9880 | 0 | if (hti.error) |
9881 | 0 | return false; |
9882 | 0 | htab->sstubs->size += htab->function_stub_size; |
9883 | 0 | BFD_ASSERT (htab->sstubs->size |
9884 | 0 | == htab->lazy_stub_count * htab->function_stub_size); |
9885 | |
|
9886 | 0 | dynobj = elf_hash_table (info)->dynobj; |
9887 | 0 | BFD_ASSERT (dynobj != NULL); |
9888 | 0 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); |
9889 | 0 | if (h == NULL) |
9890 | 0 | return false; |
9891 | 0 | h->root.u.def.value = isa_bit; |
9892 | 0 | h->other = other; |
9893 | 0 | h->type = STT_FUNC; |
9894 | |
|
9895 | 0 | return true; |
9896 | 0 | } |
9897 | | |
9898 | | /* A mips_elf_link_hash_traverse callback for which DATA points to a |
9899 | | bfd_link_info. If H uses the address of a PLT entry as the value |
9900 | | of the symbol, then set the entry in the symbol table now. Prefer |
9901 | | a standard MIPS PLT entry. */ |
9902 | | |
9903 | | static bool |
9904 | | mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) |
9905 | 0 | { |
9906 | 0 | struct bfd_link_info *info = data; |
9907 | 0 | bool micromips_p = MICROMIPS_P (info->output_bfd); |
9908 | 0 | struct mips_elf_link_hash_table *htab; |
9909 | 0 | unsigned int other; |
9910 | 0 | bfd_vma isa_bit; |
9911 | 0 | bfd_vma val; |
9912 | |
|
9913 | 0 | htab = mips_elf_hash_table (info); |
9914 | 0 | BFD_ASSERT (htab != NULL); |
9915 | |
|
9916 | 0 | if (h->use_plt_entry) |
9917 | 0 | { |
9918 | 0 | BFD_ASSERT (h->root.plt.plist != NULL); |
9919 | 0 | BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE |
9920 | 0 | || h->root.plt.plist->comp_offset != MINUS_ONE); |
9921 | |
|
9922 | 0 | val = htab->plt_header_size; |
9923 | 0 | if (h->root.plt.plist->mips_offset != MINUS_ONE) |
9924 | 0 | { |
9925 | 0 | isa_bit = 0; |
9926 | 0 | val += h->root.plt.plist->mips_offset; |
9927 | 0 | other = 0; |
9928 | 0 | } |
9929 | 0 | else |
9930 | 0 | { |
9931 | 0 | isa_bit = 1; |
9932 | 0 | val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; |
9933 | 0 | other = micromips_p ? STO_MICROMIPS : STO_MIPS16; |
9934 | 0 | } |
9935 | 0 | val += isa_bit; |
9936 | | /* For VxWorks, point at the PLT load stub rather than the lazy |
9937 | | resolution stub; this stub will become the canonical function |
9938 | | address. */ |
9939 | 0 | if (htab->root.target_os == is_vxworks) |
9940 | 0 | val += 8; |
9941 | |
|
9942 | 0 | h->root.root.u.def.section = htab->root.splt; |
9943 | 0 | h->root.root.u.def.value = val; |
9944 | 0 | h->root.other = other; |
9945 | 0 | } |
9946 | |
|
9947 | 0 | return true; |
9948 | 0 | } |
9949 | | |
9950 | | /* Set the sizes of the dynamic sections, some mips non-dynamic sections, |
9951 | | and check for any mips16 stub sections that we can discard. */ |
9952 | | |
9953 | | bool |
9954 | | _bfd_mips_elf_late_size_sections (bfd *output_bfd, |
9955 | | struct bfd_link_info *info) |
9956 | 0 | { |
9957 | 0 | bfd *dynobj; |
9958 | 0 | asection *s, *sreldyn; |
9959 | 0 | bool reltext; |
9960 | 0 | struct mips_elf_link_hash_table *htab; |
9961 | 0 | struct mips_htab_traverse_info hti; |
9962 | |
|
9963 | 0 | htab = mips_elf_hash_table (info); |
9964 | 0 | BFD_ASSERT (htab != NULL); |
9965 | | |
9966 | | /* The .reginfo section has a fixed size. */ |
9967 | 0 | s = bfd_get_section_by_name (output_bfd, ".reginfo"); |
9968 | 0 | if (s != NULL) |
9969 | 0 | { |
9970 | 0 | bfd_set_section_size (s, sizeof (Elf32_External_RegInfo)); |
9971 | 0 | s->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; |
9972 | 0 | } |
9973 | | |
9974 | | /* The .MIPS.abiflags section has a fixed size. */ |
9975 | 0 | s = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); |
9976 | 0 | if (s != NULL) |
9977 | 0 | { |
9978 | 0 | bfd_set_section_size (s, sizeof (Elf_External_ABIFlags_v0)); |
9979 | 0 | s->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; |
9980 | 0 | } |
9981 | |
|
9982 | 0 | hti.info = info; |
9983 | 0 | hti.output_bfd = output_bfd; |
9984 | 0 | hti.error = false; |
9985 | 0 | mips_elf_link_hash_traverse (htab, mips_elf_check_symbols, &hti); |
9986 | 0 | if (hti.error) |
9987 | 0 | return false; |
9988 | | |
9989 | 0 | dynobj = htab->root.dynobj; |
9990 | 0 | if (dynobj == NULL) |
9991 | 0 | return true; |
9992 | | |
9993 | 0 | if (htab->root.dynamic_sections_created) |
9994 | 0 | { |
9995 | | /* Set the contents of the .interp section to the interpreter. */ |
9996 | 0 | if (bfd_link_executable (info) && !info->nointerp) |
9997 | 0 | { |
9998 | 0 | s = bfd_get_linker_section (dynobj, ".interp"); |
9999 | 0 | BFD_ASSERT (s != NULL); |
10000 | 0 | s->size |
10001 | 0 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
10002 | 0 | s->contents |
10003 | 0 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); |
10004 | 0 | s->alloced = 1; |
10005 | 0 | } |
10006 | | |
10007 | | /* Figure out the size of the PLT header if we know that we |
10008 | | are using it. For the sake of cache alignment always use |
10009 | | a standard header whenever any standard entries are present |
10010 | | even if microMIPS entries are present as well. This also |
10011 | | lets the microMIPS header rely on the value of $v0 only set |
10012 | | by microMIPS entries, for a small size reduction. |
10013 | | |
10014 | | Set symbol table entry values for symbols that use the |
10015 | | address of their PLT entry now that we can calculate it. |
10016 | | |
10017 | | Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we |
10018 | | haven't already in _bfd_elf_create_dynamic_sections. */ |
10019 | 0 | if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) |
10020 | 0 | { |
10021 | 0 | bool micromips_p = (MICROMIPS_P (output_bfd) |
10022 | 0 | && !htab->plt_mips_offset); |
10023 | 0 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
10024 | 0 | bfd_vma isa_bit = micromips_p; |
10025 | 0 | struct elf_link_hash_entry *h; |
10026 | 0 | bfd_vma size; |
10027 | |
|
10028 | 0 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
10029 | 0 | BFD_ASSERT (htab->root.sgotplt->size == 0); |
10030 | 0 | BFD_ASSERT (htab->root.splt->size == 0); |
10031 | |
|
10032 | 0 | if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) |
10033 | 0 | size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); |
10034 | 0 | else if (htab->root.target_os == is_vxworks) |
10035 | 0 | size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); |
10036 | 0 | else if (ABI_64_P (output_bfd)) |
10037 | 0 | size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); |
10038 | 0 | else if (ABI_N32_P (output_bfd)) |
10039 | 0 | size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); |
10040 | 0 | else if (!micromips_p) |
10041 | 0 | size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); |
10042 | 0 | else if (htab->insn32) |
10043 | 0 | size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); |
10044 | 0 | else |
10045 | 0 | size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); |
10046 | |
|
10047 | 0 | htab->plt_header_is_comp = micromips_p; |
10048 | 0 | htab->plt_header_size = size; |
10049 | 0 | htab->root.splt->size = (size |
10050 | 0 | + htab->plt_mips_offset |
10051 | 0 | + htab->plt_comp_offset); |
10052 | 0 | htab->root.sgotplt->size = (htab->plt_got_index |
10053 | 0 | * MIPS_ELF_GOT_SIZE (dynobj)); |
10054 | |
|
10055 | 0 | mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); |
10056 | |
|
10057 | 0 | if (htab->root.hplt == NULL) |
10058 | 0 | { |
10059 | 0 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt, |
10060 | 0 | "_PROCEDURE_LINKAGE_TABLE_"); |
10061 | 0 | htab->root.hplt = h; |
10062 | 0 | if (h == NULL) |
10063 | 0 | return false; |
10064 | 0 | } |
10065 | | |
10066 | 0 | h = htab->root.hplt; |
10067 | 0 | h->root.u.def.value = isa_bit; |
10068 | 0 | h->other = other; |
10069 | 0 | h->type = STT_FUNC; |
10070 | 0 | } |
10071 | 0 | } |
10072 | | |
10073 | | /* Allocate space for global sym dynamic relocs. */ |
10074 | 0 | elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); |
10075 | |
|
10076 | 0 | mips_elf_estimate_stub_size (output_bfd, info); |
10077 | |
|
10078 | 0 | if (!mips_elf_lay_out_got (output_bfd, info)) |
10079 | 0 | return false; |
10080 | | |
10081 | 0 | mips_elf_lay_out_lazy_stubs (info); |
10082 | | |
10083 | | /* The check_relocs and adjust_dynamic_symbol entry points have |
10084 | | determined the sizes of the various dynamic sections. Allocate |
10085 | | memory for them. */ |
10086 | 0 | reltext = false; |
10087 | 0 | for (s = dynobj->sections; s != NULL; s = s->next) |
10088 | 0 | { |
10089 | 0 | const char *name; |
10090 | | |
10091 | | /* It's OK to base decisions on the section name, because none |
10092 | | of the dynobj section names depend upon the input files. */ |
10093 | 0 | name = bfd_section_name (s); |
10094 | |
|
10095 | 0 | if ((s->flags & SEC_LINKER_CREATED) == 0) |
10096 | 0 | continue; |
10097 | | |
10098 | 0 | if (startswith (name, ".rel")) |
10099 | 0 | { |
10100 | 0 | if (s->size != 0) |
10101 | 0 | { |
10102 | 0 | const char *outname; |
10103 | 0 | asection *target; |
10104 | | |
10105 | | /* If this relocation section applies to a read only |
10106 | | section, then we probably need a DT_TEXTREL entry. |
10107 | | If the relocation section is .rel(a).dyn, we always |
10108 | | assert a DT_TEXTREL entry rather than testing whether |
10109 | | there exists a relocation to a read only section or |
10110 | | not. */ |
10111 | 0 | outname = bfd_section_name (s->output_section); |
10112 | 0 | target = bfd_get_section_by_name (output_bfd, outname + 4); |
10113 | 0 | if ((target != NULL |
10114 | 0 | && (target->flags & SEC_READONLY) != 0 |
10115 | 0 | && (target->flags & SEC_ALLOC) != 0) |
10116 | 0 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
10117 | 0 | reltext = true; |
10118 | | |
10119 | | /* We use the reloc_count field as a counter if we need |
10120 | | to copy relocs into the output file. */ |
10121 | 0 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
10122 | 0 | s->reloc_count = 0; |
10123 | | |
10124 | | /* If combreloc is enabled, elf_link_sort_relocs() will |
10125 | | sort relocations, but in a different way than we do, |
10126 | | and before we're done creating relocations. Also, it |
10127 | | will move them around between input sections' |
10128 | | relocation's contents, so our sorting would be |
10129 | | broken, so don't let it run. */ |
10130 | 0 | info->combreloc = 0; |
10131 | 0 | } |
10132 | 0 | } |
10133 | 0 | else if (bfd_link_executable (info) |
10134 | 0 | && !htab->use_rld_obj_head |
10135 | 0 | && startswith (name, ".rld_map")) |
10136 | 0 | { |
10137 | | /* We add a room for __rld_map. It will be filled in by the |
10138 | | rtld to contain a pointer to the _r_debug structure. */ |
10139 | 0 | s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); |
10140 | 0 | } |
10141 | 0 | else if (SGI_COMPAT (output_bfd) |
10142 | 0 | && startswith (name, ".compact_rel")) |
10143 | 0 | s->size += htab->compact_rel_size; |
10144 | 0 | else if (s == htab->root.splt) |
10145 | 0 | { |
10146 | | /* If the last PLT entry has a branch delay slot, allocate |
10147 | | room for an extra nop to fill the delay slot. This is |
10148 | | for CPUs without load interlocking. */ |
10149 | 0 | if (! LOAD_INTERLOCKS_P (output_bfd) |
10150 | 0 | && htab->root.target_os != is_vxworks |
10151 | 0 | && s->size > 0) |
10152 | 0 | s->size += 4; |
10153 | 0 | } |
10154 | 0 | else if (! startswith (name, ".init") |
10155 | 0 | && s != htab->root.sgot |
10156 | 0 | && s != htab->root.sgotplt |
10157 | 0 | && s != htab->sstubs |
10158 | 0 | && s != htab->root.sdynbss |
10159 | 0 | && s != htab->root.sdynrelro) |
10160 | 0 | { |
10161 | | /* It's not one of our sections, so don't allocate space. */ |
10162 | 0 | continue; |
10163 | 0 | } |
10164 | | |
10165 | 0 | if (s->size == 0) |
10166 | 0 | { |
10167 | 0 | s->flags |= SEC_EXCLUDE; |
10168 | 0 | continue; |
10169 | 0 | } |
10170 | | |
10171 | 0 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
10172 | 0 | continue; |
10173 | | |
10174 | | /* Allocate memory for the section contents. */ |
10175 | 0 | s->contents = bfd_zalloc (dynobj, s->size); |
10176 | 0 | if (s->contents == NULL) |
10177 | 0 | { |
10178 | 0 | bfd_set_error (bfd_error_no_memory); |
10179 | 0 | return false; |
10180 | 0 | } |
10181 | 0 | s->alloced = 1; |
10182 | 0 | } |
10183 | | |
10184 | 0 | if (htab->root.dynamic_sections_created) |
10185 | 0 | { |
10186 | | /* Add some entries to the .dynamic section. We fill in the |
10187 | | values later, in _bfd_mips_elf_finish_dynamic_sections, but we |
10188 | | must add the entries now so that we get the correct size for |
10189 | | the .dynamic section. */ |
10190 | | |
10191 | | /* SGI object has the equivalence of DT_DEBUG in the |
10192 | | DT_MIPS_RLD_MAP entry. This must come first because glibc |
10193 | | only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools |
10194 | | may only look at the first one they see. */ |
10195 | 0 | if (!bfd_link_pic (info) |
10196 | 0 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) |
10197 | 0 | return false; |
10198 | | |
10199 | 0 | if (bfd_link_executable (info) |
10200 | 0 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) |
10201 | 0 | return false; |
10202 | | |
10203 | | /* The DT_DEBUG entry may be filled in by the dynamic linker and |
10204 | | used by the debugger. */ |
10205 | 0 | if (bfd_link_executable (info) |
10206 | 0 | && !SGI_COMPAT (output_bfd) |
10207 | 0 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) |
10208 | 0 | return false; |
10209 | | |
10210 | 0 | if (reltext |
10211 | 0 | && (SGI_COMPAT (output_bfd) |
10212 | 0 | || htab->root.target_os == is_vxworks)) |
10213 | 0 | info->flags |= DF_TEXTREL; |
10214 | |
|
10215 | 0 | if ((info->flags & DF_TEXTREL) != 0) |
10216 | 0 | { |
10217 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) |
10218 | 0 | return false; |
10219 | | |
10220 | | /* Clear the DF_TEXTREL flag. It will be set again if we |
10221 | | write out an actual text relocation; we may not, because |
10222 | | at this point we do not know whether e.g. any .eh_frame |
10223 | | absolute relocations have been converted to PC-relative. */ |
10224 | 0 | info->flags &= ~DF_TEXTREL; |
10225 | 0 | } |
10226 | | |
10227 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) |
10228 | 0 | return false; |
10229 | | |
10230 | 0 | sreldyn = mips_elf_rel_dyn_section (info, false); |
10231 | 0 | if (htab->root.target_os == is_vxworks) |
10232 | 0 | { |
10233 | | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
10234 | | use any of the DT_MIPS_* tags. */ |
10235 | 0 | if (sreldyn && sreldyn->size > 0) |
10236 | 0 | { |
10237 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) |
10238 | 0 | return false; |
10239 | | |
10240 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
10241 | 0 | return false; |
10242 | | |
10243 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
10244 | 0 | return false; |
10245 | 0 | } |
10246 | 0 | } |
10247 | 0 | else |
10248 | 0 | { |
10249 | 0 | if (sreldyn && sreldyn->size > 0 |
10250 | 0 | && !bfd_is_abs_section (sreldyn->output_section)) |
10251 | 0 | { |
10252 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) |
10253 | 0 | return false; |
10254 | | |
10255 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
10256 | 0 | return false; |
10257 | | |
10258 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
10259 | 0 | return false; |
10260 | 0 | } |
10261 | | |
10262 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
10263 | 0 | return false; |
10264 | | |
10265 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
10266 | 0 | return false; |
10267 | | |
10268 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
10269 | 0 | return false; |
10270 | | |
10271 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
10272 | 0 | return false; |
10273 | | |
10274 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
10275 | 0 | return false; |
10276 | | |
10277 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
10278 | 0 | return false; |
10279 | | |
10280 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
10281 | 0 | return false; |
10282 | | |
10283 | 0 | if (info->emit_gnu_hash |
10284 | 0 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0)) |
10285 | 0 | return false; |
10286 | | |
10287 | 0 | if (IRIX_COMPAT (dynobj) == ict_irix5 |
10288 | 0 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) |
10289 | 0 | return false; |
10290 | | |
10291 | 0 | if (IRIX_COMPAT (dynobj) == ict_irix6 |
10292 | 0 | && (bfd_get_section_by_name |
10293 | 0 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) |
10294 | 0 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) |
10295 | 0 | return false; |
10296 | 0 | } |
10297 | 0 | if (htab->root.splt->size > 0) |
10298 | 0 | { |
10299 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) |
10300 | 0 | return false; |
10301 | | |
10302 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) |
10303 | 0 | return false; |
10304 | | |
10305 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) |
10306 | 0 | return false; |
10307 | | |
10308 | 0 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) |
10309 | 0 | return false; |
10310 | 0 | } |
10311 | 0 | if (htab->root.target_os == is_vxworks |
10312 | 0 | && !elf_vxworks_add_dynamic_entries (output_bfd, info)) |
10313 | 0 | return false; |
10314 | 0 | } |
10315 | | |
10316 | 0 | return true; |
10317 | 0 | } |
10318 | | |
10319 | | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
10320 | | Adjust its R_ADDEND field so that it is correct for the output file. |
10321 | | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols |
10322 | | and sections respectively; both use symbol indexes. */ |
10323 | | |
10324 | | static void |
10325 | | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, |
10326 | | bfd *input_bfd, Elf_Internal_Sym *local_syms, |
10327 | | asection **local_sections, Elf_Internal_Rela *rel) |
10328 | 0 | { |
10329 | 0 | unsigned int r_type, r_symndx; |
10330 | 0 | Elf_Internal_Sym *sym; |
10331 | 0 | asection *sec; |
10332 | |
|
10333 | 0 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
10334 | 0 | { |
10335 | 0 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
10336 | 0 | if (gprel16_reloc_p (r_type) |
10337 | 0 | || r_type == R_MIPS_GPREL32 |
10338 | 0 | || literal_reloc_p (r_type)) |
10339 | 0 | { |
10340 | 0 | rel->r_addend += _bfd_get_gp_value (input_bfd); |
10341 | 0 | rel->r_addend -= _bfd_get_gp_value (output_bfd); |
10342 | 0 | } |
10343 | |
|
10344 | 0 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); |
10345 | 0 | sym = local_syms + r_symndx; |
10346 | | |
10347 | | /* Adjust REL's addend to account for section merging. */ |
10348 | 0 | if (!bfd_link_relocatable (info)) |
10349 | 0 | { |
10350 | 0 | sec = local_sections[r_symndx]; |
10351 | 0 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
10352 | 0 | } |
10353 | | |
10354 | | /* This would normally be done by the rela_normal code in elflink.c. */ |
10355 | 0 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
10356 | 0 | rel->r_addend += local_sections[r_symndx]->output_offset; |
10357 | 0 | } |
10358 | 0 | } |
10359 | | |
10360 | | /* Handle relocations against symbols from removed linkonce sections, |
10361 | | or sections discarded by a linker script. We use this wrapper around |
10362 | | RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs |
10363 | | on 64-bit ELF targets. In this case for any relocation handled, which |
10364 | | always be the first in a triplet, the remaining two have to be processed |
10365 | | together with the first, even if they are R_MIPS_NONE. It is the symbol |
10366 | | index referred by the first reloc that applies to all the three and the |
10367 | | remaining two never refer to an object symbol. And it is the final |
10368 | | relocation (the last non-null one) that determines the output field of |
10369 | | the whole relocation so retrieve the corresponding howto structure for |
10370 | | the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. |
10371 | | |
10372 | | Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" |
10373 | | and therefore requires to be pasted in a loop. It also defines a block |
10374 | | and does not protect any of its arguments, hence the extra brackets. */ |
10375 | | |
10376 | | static void |
10377 | | mips_reloc_against_discarded_section (bfd *output_bfd, |
10378 | | struct bfd_link_info *info, |
10379 | | bfd *input_bfd, asection *input_section, |
10380 | | Elf_Internal_Rela **rel, |
10381 | | const Elf_Internal_Rela **relend, |
10382 | | bool rel_reloc, |
10383 | | reloc_howto_type *howto, |
10384 | | bfd_byte *contents) |
10385 | 0 | { |
10386 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
10387 | 0 | int count = bed->s->int_rels_per_ext_rel; |
10388 | 0 | unsigned int r_type; |
10389 | 0 | int i; |
10390 | |
|
10391 | 0 | for (i = count - 1; i > 0; i--) |
10392 | 0 | { |
10393 | 0 | r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); |
10394 | 0 | if (r_type != R_MIPS_NONE) |
10395 | 0 | { |
10396 | 0 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); |
10397 | 0 | break; |
10398 | 0 | } |
10399 | 0 | } |
10400 | 0 | do |
10401 | 0 | { |
10402 | 0 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
10403 | 0 | (*rel), count, (*relend), |
10404 | 0 | howto, i, contents); |
10405 | 0 | } |
10406 | 0 | while (0); |
10407 | 0 | } |
10408 | | |
10409 | | /* Relocate a MIPS ELF section. */ |
10410 | | |
10411 | | int |
10412 | | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
10413 | | bfd *input_bfd, asection *input_section, |
10414 | | bfd_byte *contents, Elf_Internal_Rela *relocs, |
10415 | | Elf_Internal_Sym *local_syms, |
10416 | | asection **local_sections) |
10417 | 0 | { |
10418 | 0 | Elf_Internal_Rela *rel; |
10419 | 0 | const Elf_Internal_Rela *relend; |
10420 | 0 | bfd_vma addend = 0; |
10421 | 0 | bool use_saved_addend_p = false; |
10422 | |
|
10423 | 0 | relend = relocs + input_section->reloc_count; |
10424 | 0 | for (rel = relocs; rel < relend; ++rel) |
10425 | 0 | { |
10426 | 0 | const char *name; |
10427 | 0 | bfd_vma value = 0; |
10428 | 0 | reloc_howto_type *howto; |
10429 | 0 | bool cross_mode_jump_p = false; |
10430 | | /* TRUE if the relocation is a RELA relocation, rather than a |
10431 | | REL relocation. */ |
10432 | 0 | bool rela_relocation_p = true; |
10433 | 0 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
10434 | 0 | const char *msg; |
10435 | 0 | unsigned long r_symndx; |
10436 | 0 | asection *sec; |
10437 | 0 | Elf_Internal_Shdr *symtab_hdr; |
10438 | 0 | struct elf_link_hash_entry *h; |
10439 | 0 | bool rel_reloc; |
10440 | |
|
10441 | 0 | rel_reloc = (NEWABI_P (input_bfd) |
10442 | 0 | && mips_elf_rel_relocation_p (input_bfd, input_section, |
10443 | 0 | relocs, rel)); |
10444 | | /* Find the relocation howto for this relocation. */ |
10445 | 0 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); |
10446 | |
|
10447 | 0 | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); |
10448 | 0 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
10449 | 0 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
10450 | 0 | { |
10451 | 0 | sec = local_sections[r_symndx]; |
10452 | 0 | h = NULL; |
10453 | 0 | } |
10454 | 0 | else |
10455 | 0 | { |
10456 | 0 | unsigned long extsymoff; |
10457 | |
|
10458 | 0 | extsymoff = 0; |
10459 | 0 | if (!elf_bad_symtab (input_bfd)) |
10460 | 0 | extsymoff = symtab_hdr->sh_info; |
10461 | 0 | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; |
10462 | 0 | while (h->root.type == bfd_link_hash_indirect |
10463 | 0 | || h->root.type == bfd_link_hash_warning) |
10464 | 0 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
10465 | |
|
10466 | 0 | sec = NULL; |
10467 | 0 | if (h->root.type == bfd_link_hash_defined |
10468 | 0 | || h->root.type == bfd_link_hash_defweak) |
10469 | 0 | sec = h->root.u.def.section; |
10470 | 0 | } |
10471 | |
|
10472 | 0 | if (sec != NULL && discarded_section (sec)) |
10473 | 0 | { |
10474 | 0 | mips_reloc_against_discarded_section (output_bfd, info, input_bfd, |
10475 | 0 | input_section, &rel, &relend, |
10476 | 0 | rel_reloc, howto, contents); |
10477 | 0 | continue; |
10478 | 0 | } |
10479 | | |
10480 | 0 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
10481 | 0 | { |
10482 | | /* Some 32-bit code uses R_MIPS_64. In particular, people use |
10483 | | 64-bit code, but make sure all their addresses are in the |
10484 | | lowermost or uppermost 32-bit section of the 64-bit address |
10485 | | space. Thus, when they use an R_MIPS_64 they mean what is |
10486 | | usually meant by R_MIPS_32, with the exception that the |
10487 | | stored value is sign-extended to 64 bits. */ |
10488 | 0 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false); |
10489 | | |
10490 | | /* On big-endian systems, we need to lie about the position |
10491 | | of the reloc. */ |
10492 | 0 | if (bfd_big_endian (input_bfd)) |
10493 | 0 | rel->r_offset += 4; |
10494 | 0 | } |
10495 | |
|
10496 | 0 | if (!use_saved_addend_p) |
10497 | 0 | { |
10498 | | /* If these relocations were originally of the REL variety, |
10499 | | we must pull the addend out of the field that will be |
10500 | | relocated. Otherwise, we simply use the contents of the |
10501 | | RELA relocation. */ |
10502 | 0 | if (mips_elf_rel_relocation_p (input_bfd, input_section, |
10503 | 0 | relocs, rel)) |
10504 | 0 | { |
10505 | 0 | rela_relocation_p = false; |
10506 | 0 | addend = mips_elf_read_rel_addend (input_bfd, input_section, |
10507 | 0 | rel, howto, contents); |
10508 | 0 | if (hi16_reloc_p (r_type) |
10509 | 0 | || (got16_reloc_p (r_type) |
10510 | 0 | && mips_elf_local_relocation_p (input_bfd, rel, |
10511 | 0 | local_sections))) |
10512 | 0 | { |
10513 | 0 | if (!mips_elf_add_lo16_rel_addend (input_bfd, input_section, |
10514 | 0 | rel, relend, |
10515 | 0 | contents, &addend)) |
10516 | 0 | { |
10517 | 0 | if (h) |
10518 | 0 | name = h->root.root.string; |
10519 | 0 | else |
10520 | 0 | name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
10521 | 0 | local_syms + r_symndx, |
10522 | 0 | sec); |
10523 | 0 | _bfd_error_handler |
10524 | | /* xgettext:c-format */ |
10525 | 0 | (_("%pB: can't find matching LO16 reloc against `%s'" |
10526 | 0 | " for %s at %#" PRIx64 " in section `%pA'"), |
10527 | 0 | input_bfd, name, |
10528 | 0 | howto->name, (uint64_t) rel->r_offset, input_section); |
10529 | 0 | } |
10530 | 0 | } |
10531 | 0 | else |
10532 | 0 | addend <<= howto->rightshift; |
10533 | 0 | } |
10534 | 0 | else |
10535 | 0 | addend = rel->r_addend; |
10536 | 0 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
10537 | 0 | local_syms, local_sections, rel); |
10538 | 0 | } |
10539 | |
|
10540 | 0 | if (bfd_link_relocatable (info)) |
10541 | 0 | { |
10542 | 0 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
10543 | 0 | && bfd_big_endian (input_bfd)) |
10544 | 0 | rel->r_offset -= 4; |
10545 | |
|
10546 | 0 | if (!rela_relocation_p && rel->r_addend) |
10547 | 0 | { |
10548 | 0 | addend += rel->r_addend; |
10549 | 0 | if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) |
10550 | 0 | addend = mips_elf_high (addend); |
10551 | 0 | else if (r_type == R_MIPS_HIGHER) |
10552 | 0 | addend = mips_elf_higher (addend); |
10553 | 0 | else if (r_type == R_MIPS_HIGHEST) |
10554 | 0 | addend = mips_elf_highest (addend); |
10555 | 0 | else |
10556 | 0 | addend >>= howto->rightshift; |
10557 | | |
10558 | | /* We use the source mask, rather than the destination |
10559 | | mask because the place to which we are writing will be |
10560 | | source of the addend in the final link. */ |
10561 | 0 | addend &= howto->src_mask; |
10562 | |
|
10563 | 0 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
10564 | | /* See the comment above about using R_MIPS_64 in the 32-bit |
10565 | | ABI. Here, we need to update the addend. It would be |
10566 | | possible to get away with just using the R_MIPS_32 reloc |
10567 | | but for endianness. */ |
10568 | 0 | { |
10569 | 0 | bfd_vma sign_bits; |
10570 | 0 | bfd_vma low_bits; |
10571 | 0 | bfd_vma high_bits; |
10572 | |
|
10573 | 0 | if (addend & ((bfd_vma) 1 << 31)) |
10574 | 0 | #ifdef BFD64 |
10575 | 0 | sign_bits = ((bfd_vma) 1 << 32) - 1; |
10576 | | #else |
10577 | | sign_bits = -1; |
10578 | | #endif |
10579 | 0 | else |
10580 | 0 | sign_bits = 0; |
10581 | | |
10582 | | /* If we don't know that we have a 64-bit type, |
10583 | | do two separate stores. */ |
10584 | 0 | if (bfd_big_endian (input_bfd)) |
10585 | 0 | { |
10586 | | /* Store the sign-bits (which are most significant) |
10587 | | first. */ |
10588 | 0 | low_bits = sign_bits; |
10589 | 0 | high_bits = addend; |
10590 | 0 | } |
10591 | 0 | else |
10592 | 0 | { |
10593 | 0 | low_bits = addend; |
10594 | 0 | high_bits = sign_bits; |
10595 | 0 | } |
10596 | 0 | bfd_put_32 (input_bfd, low_bits, |
10597 | 0 | contents + rel->r_offset); |
10598 | 0 | bfd_put_32 (input_bfd, high_bits, |
10599 | 0 | contents + rel->r_offset + 4); |
10600 | 0 | continue; |
10601 | 0 | } |
10602 | | |
10603 | 0 | if (! mips_elf_perform_relocation (info, howto, rel, addend, |
10604 | 0 | input_bfd, input_section, |
10605 | 0 | contents, false)) |
10606 | 0 | return false; |
10607 | 0 | } |
10608 | | |
10609 | | /* Go on to the next relocation. */ |
10610 | 0 | continue; |
10611 | 0 | } |
10612 | | |
10613 | | /* In the N32 and 64-bit ABIs there may be multiple consecutive |
10614 | | relocations for the same offset. In that case we are |
10615 | | supposed to treat the output of each relocation as the addend |
10616 | | for the next. */ |
10617 | 0 | if (rel + 1 < relend |
10618 | 0 | && rel->r_offset == rel[1].r_offset |
10619 | 0 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) |
10620 | 0 | use_saved_addend_p = true; |
10621 | 0 | else |
10622 | 0 | use_saved_addend_p = false; |
10623 | | |
10624 | | /* Figure out what value we are supposed to relocate. */ |
10625 | 0 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, |
10626 | 0 | input_section, contents, |
10627 | 0 | info, rel, addend, howto, |
10628 | 0 | local_syms, local_sections, |
10629 | 0 | &value, &name, &cross_mode_jump_p, |
10630 | 0 | use_saved_addend_p)) |
10631 | 0 | { |
10632 | 0 | case bfd_reloc_continue: |
10633 | | /* There's nothing to do. */ |
10634 | 0 | continue; |
10635 | | |
10636 | 0 | case bfd_reloc_undefined: |
10637 | | /* mips_elf_calculate_relocation already called the |
10638 | | undefined_symbol callback. There's no real point in |
10639 | | trying to perform the relocation at this point, so we |
10640 | | just skip ahead to the next relocation. */ |
10641 | 0 | continue; |
10642 | | |
10643 | 0 | case bfd_reloc_notsupported: |
10644 | 0 | msg = _("internal error: unsupported relocation error"); |
10645 | 0 | info->callbacks->warning |
10646 | 0 | (info, msg, name, input_bfd, input_section, rel->r_offset); |
10647 | 0 | return false; |
10648 | | |
10649 | 0 | case bfd_reloc_overflow: |
10650 | 0 | if (use_saved_addend_p) |
10651 | | /* Ignore overflow until we reach the last relocation for |
10652 | | a given location. */ |
10653 | 0 | ; |
10654 | 0 | else |
10655 | 0 | { |
10656 | 0 | struct mips_elf_link_hash_table *htab; |
10657 | |
|
10658 | 0 | htab = mips_elf_hash_table (info); |
10659 | 0 | BFD_ASSERT (htab != NULL); |
10660 | 0 | BFD_ASSERT (name != NULL); |
10661 | 0 | if (!htab->small_data_overflow_reported |
10662 | 0 | && (gprel16_reloc_p (howto->type) |
10663 | 0 | || literal_reloc_p (howto->type))) |
10664 | 0 | { |
10665 | 0 | msg = _("small-data section too large;" |
10666 | 0 | " lower small-data size limit (see option -G)"); |
10667 | |
|
10668 | 0 | htab->small_data_overflow_reported = true; |
10669 | 0 | (*info->callbacks->einfo) ("%P: %s\n", msg); |
10670 | 0 | } |
10671 | 0 | (*info->callbacks->reloc_overflow) |
10672 | 0 | (info, NULL, name, howto->name, (bfd_vma) 0, |
10673 | 0 | input_bfd, input_section, rel->r_offset); |
10674 | 0 | } |
10675 | 0 | break; |
10676 | | |
10677 | 0 | case bfd_reloc_ok: |
10678 | 0 | break; |
10679 | | |
10680 | 0 | case bfd_reloc_outofrange: |
10681 | 0 | msg = NULL; |
10682 | 0 | if (jal_reloc_p (howto->type)) |
10683 | 0 | msg = (cross_mode_jump_p |
10684 | 0 | ? _("cannot convert a jump to JALX " |
10685 | 0 | "for a non-word-aligned address") |
10686 | 0 | : (howto->type == R_MIPS16_26 |
10687 | 0 | ? _("jump to a non-word-aligned address") |
10688 | 0 | : _("jump to a non-instruction-aligned address"))); |
10689 | 0 | else if (b_reloc_p (howto->type)) |
10690 | 0 | msg = (cross_mode_jump_p |
10691 | 0 | ? _("cannot convert a branch to JALX " |
10692 | 0 | "for a non-word-aligned address") |
10693 | 0 | : _("branch to a non-instruction-aligned address")); |
10694 | 0 | else if (aligned_pcrel_reloc_p (howto->type)) |
10695 | 0 | msg = _("PC-relative load from unaligned address"); |
10696 | 0 | if (msg) |
10697 | 0 | { |
10698 | 0 | info->callbacks->einfo |
10699 | 0 | ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); |
10700 | 0 | break; |
10701 | 0 | } |
10702 | | /* Fall through. */ |
10703 | | |
10704 | 0 | default: |
10705 | 0 | abort (); |
10706 | 0 | break; |
10707 | 0 | } |
10708 | | |
10709 | | /* If we've got another relocation for the address, keep going |
10710 | | until we reach the last one. */ |
10711 | 0 | if (use_saved_addend_p) |
10712 | 0 | { |
10713 | 0 | addend = value; |
10714 | 0 | continue; |
10715 | 0 | } |
10716 | | |
10717 | 0 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
10718 | | /* See the comment above about using R_MIPS_64 in the 32-bit |
10719 | | ABI. Until now, we've been using the HOWTO for R_MIPS_32; |
10720 | | that calculated the right value. Now, however, we |
10721 | | sign-extend the 32-bit result to 64-bits, and store it as a |
10722 | | 64-bit value. We are especially generous here in that we |
10723 | | go to extreme lengths to support this usage on systems with |
10724 | | only a 32-bit VMA. */ |
10725 | 0 | { |
10726 | 0 | bfd_vma sign_bits; |
10727 | 0 | bfd_vma low_bits; |
10728 | 0 | bfd_vma high_bits; |
10729 | |
|
10730 | 0 | if (value & ((bfd_vma) 1 << 31)) |
10731 | 0 | #ifdef BFD64 |
10732 | 0 | sign_bits = ((bfd_vma) 1 << 32) - 1; |
10733 | | #else |
10734 | | sign_bits = -1; |
10735 | | #endif |
10736 | 0 | else |
10737 | 0 | sign_bits = 0; |
10738 | | |
10739 | | /* If we don't know that we have a 64-bit type, |
10740 | | do two separate stores. */ |
10741 | 0 | if (bfd_big_endian (input_bfd)) |
10742 | 0 | { |
10743 | | /* Undo what we did above. */ |
10744 | 0 | rel->r_offset -= 4; |
10745 | | /* Store the sign-bits (which are most significant) |
10746 | | first. */ |
10747 | 0 | low_bits = sign_bits; |
10748 | 0 | high_bits = value; |
10749 | 0 | } |
10750 | 0 | else |
10751 | 0 | { |
10752 | 0 | low_bits = value; |
10753 | 0 | high_bits = sign_bits; |
10754 | 0 | } |
10755 | 0 | bfd_put_32 (input_bfd, low_bits, |
10756 | 0 | contents + rel->r_offset); |
10757 | 0 | bfd_put_32 (input_bfd, high_bits, |
10758 | 0 | contents + rel->r_offset + 4); |
10759 | 0 | continue; |
10760 | 0 | } |
10761 | | |
10762 | | /* Actually perform the relocation. */ |
10763 | 0 | if (! mips_elf_perform_relocation (info, howto, rel, value, |
10764 | 0 | input_bfd, input_section, |
10765 | 0 | contents, cross_mode_jump_p)) |
10766 | 0 | return false; |
10767 | 0 | } |
10768 | | |
10769 | 0 | return true; |
10770 | 0 | } |
10771 | | |
10772 | | /* A function that iterates over each entry in la25_stubs and fills |
10773 | | in the code for each one. DATA points to a mips_htab_traverse_info. */ |
10774 | | |
10775 | | static int |
10776 | | mips_elf_create_la25_stub (void **slot, void *data) |
10777 | 0 | { |
10778 | 0 | struct mips_htab_traverse_info *hti; |
10779 | 0 | struct mips_elf_link_hash_table *htab; |
10780 | 0 | struct mips_elf_la25_stub *stub; |
10781 | 0 | asection *s; |
10782 | 0 | bfd_byte *loc; |
10783 | 0 | bfd_vma offset, target, target_high, target_low; |
10784 | 0 | bfd_vma branch_pc; |
10785 | 0 | bfd_signed_vma pcrel_offset = 0; |
10786 | |
|
10787 | 0 | stub = (struct mips_elf_la25_stub *) *slot; |
10788 | 0 | hti = (struct mips_htab_traverse_info *) data; |
10789 | 0 | htab = mips_elf_hash_table (hti->info); |
10790 | 0 | BFD_ASSERT (htab != NULL); |
10791 | | |
10792 | | /* Create the section contents, if we haven't already. */ |
10793 | 0 | s = stub->stub_section; |
10794 | 0 | loc = s->contents; |
10795 | 0 | if (loc == NULL) |
10796 | 0 | { |
10797 | 0 | loc = bfd_malloc (s->size); |
10798 | 0 | if (loc == NULL) |
10799 | 0 | { |
10800 | 0 | hti->error = true; |
10801 | 0 | return false; |
10802 | 0 | } |
10803 | 0 | s->contents = loc; |
10804 | 0 | } |
10805 | | |
10806 | | /* Work out where in the section this stub should go. */ |
10807 | 0 | offset = stub->offset; |
10808 | | |
10809 | | /* We add 8 here to account for the LUI/ADDIU instructions |
10810 | | before the branch instruction. This cannot be moved down to |
10811 | | where pcrel_offset is calculated as 's' is updated in |
10812 | | mips_elf_get_la25_target. */ |
10813 | 0 | branch_pc = s->output_section->vma + s->output_offset + offset + 8; |
10814 | | |
10815 | | /* Work out the target address. */ |
10816 | 0 | target = mips_elf_get_la25_target (stub, &s); |
10817 | 0 | target += s->output_section->vma + s->output_offset; |
10818 | |
|
10819 | 0 | target_high = ((target + 0x8000) >> 16) & 0xffff; |
10820 | 0 | target_low = (target & 0xffff); |
10821 | | |
10822 | | /* Calculate the PC of the compact branch instruction (for the case where |
10823 | | compact branches are used for either microMIPSR6 or MIPSR6 with |
10824 | | compact branches. Add 4-bytes to account for BC using the PC of the |
10825 | | next instruction as the base. */ |
10826 | 0 | pcrel_offset = target - (branch_pc + 4); |
10827 | |
|
10828 | 0 | if (stub->stub_section != htab->strampoline) |
10829 | 0 | { |
10830 | | /* This is a simple LUI/ADDIU stub. Zero out the beginning |
10831 | | of the section and write the two instructions at the end. */ |
10832 | 0 | memset (loc, 0, offset); |
10833 | 0 | loc += offset; |
10834 | 0 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
10835 | 0 | { |
10836 | 0 | bfd_put_micromips_32 (hti->output_bfd, |
10837 | 0 | LA25_LUI_MICROMIPS (target_high), |
10838 | 0 | loc); |
10839 | 0 | bfd_put_micromips_32 (hti->output_bfd, |
10840 | 0 | LA25_ADDIU_MICROMIPS (target_low), |
10841 | 0 | loc + 4); |
10842 | 0 | } |
10843 | 0 | else |
10844 | 0 | { |
10845 | 0 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); |
10846 | 0 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); |
10847 | 0 | } |
10848 | 0 | } |
10849 | 0 | else |
10850 | 0 | { |
10851 | | /* This is trampoline. */ |
10852 | 0 | loc += offset; |
10853 | 0 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
10854 | 0 | { |
10855 | 0 | bfd_put_micromips_32 (hti->output_bfd, |
10856 | 0 | LA25_LUI_MICROMIPS (target_high), loc); |
10857 | 0 | bfd_put_micromips_32 (hti->output_bfd, |
10858 | 0 | LA25_J_MICROMIPS (target), loc + 4); |
10859 | 0 | bfd_put_micromips_32 (hti->output_bfd, |
10860 | 0 | LA25_ADDIU_MICROMIPS (target_low), loc + 8); |
10861 | 0 | bfd_put_32 (hti->output_bfd, 0, loc + 12); |
10862 | 0 | } |
10863 | 0 | else |
10864 | 0 | { |
10865 | 0 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); |
10866 | 0 | if (MIPSR6_P (hti->output_bfd) && htab->compact_branches) |
10867 | 0 | { |
10868 | 0 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); |
10869 | 0 | bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8); |
10870 | 0 | } |
10871 | 0 | else |
10872 | 0 | { |
10873 | 0 | bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); |
10874 | 0 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); |
10875 | 0 | } |
10876 | 0 | bfd_put_32 (hti->output_bfd, 0, loc + 12); |
10877 | 0 | } |
10878 | 0 | } |
10879 | 0 | return true; |
10880 | 0 | } |
10881 | | |
10882 | | /* If NAME is one of the special IRIX6 symbols defined by the linker, |
10883 | | adjust it appropriately now. */ |
10884 | | |
10885 | | static void |
10886 | | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
10887 | | const char *name, Elf_Internal_Sym *sym) |
10888 | 0 | { |
10889 | | /* The linker script takes care of providing names and values for |
10890 | | these, but we must place them into the right sections. */ |
10891 | 0 | static const char* const text_section_symbols[] = { |
10892 | 0 | "_ftext", |
10893 | 0 | "_etext", |
10894 | 0 | "__dso_displacement", |
10895 | 0 | "__elf_header", |
10896 | 0 | "__program_header_table", |
10897 | 0 | NULL |
10898 | 0 | }; |
10899 | |
|
10900 | 0 | static const char* const data_section_symbols[] = { |
10901 | 0 | "_fdata", |
10902 | 0 | "_edata", |
10903 | 0 | "_end", |
10904 | 0 | "_fbss", |
10905 | 0 | NULL |
10906 | 0 | }; |
10907 | |
|
10908 | 0 | const char* const *p; |
10909 | 0 | int i; |
10910 | |
|
10911 | 0 | for (i = 0; i < 2; ++i) |
10912 | 0 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; |
10913 | 0 | *p; |
10914 | 0 | ++p) |
10915 | 0 | if (strcmp (*p, name) == 0) |
10916 | 0 | { |
10917 | | /* All of these symbols are given type STT_SECTION by the |
10918 | | IRIX6 linker. */ |
10919 | 0 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
10920 | 0 | sym->st_other = STO_PROTECTED; |
10921 | | |
10922 | | /* The IRIX linker puts these symbols in special sections. */ |
10923 | 0 | if (i == 0) |
10924 | 0 | sym->st_shndx = SHN_MIPS_TEXT; |
10925 | 0 | else |
10926 | 0 | sym->st_shndx = SHN_MIPS_DATA; |
10927 | |
|
10928 | 0 | break; |
10929 | 0 | } |
10930 | 0 | } |
10931 | | |
10932 | | /* Finish up dynamic symbol handling. We set the contents of various |
10933 | | dynamic sections here. */ |
10934 | | |
10935 | | bool |
10936 | | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
10937 | | struct bfd_link_info *info, |
10938 | | struct elf_link_hash_entry *h, |
10939 | | Elf_Internal_Sym *sym) |
10940 | 0 | { |
10941 | 0 | bfd *dynobj; |
10942 | 0 | asection *sgot; |
10943 | 0 | struct mips_got_info *g, *gg; |
10944 | 0 | const char *name; |
10945 | 0 | int idx; |
10946 | 0 | struct mips_elf_link_hash_table *htab; |
10947 | 0 | struct mips_elf_link_hash_entry *hmips; |
10948 | |
|
10949 | 0 | htab = mips_elf_hash_table (info); |
10950 | 0 | BFD_ASSERT (htab != NULL); |
10951 | 0 | dynobj = elf_hash_table (info)->dynobj; |
10952 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
10953 | |
|
10954 | 0 | BFD_ASSERT (htab->root.target_os != is_vxworks); |
10955 | |
|
10956 | 0 | if (h->plt.plist != NULL |
10957 | 0 | && (h->plt.plist->mips_offset != MINUS_ONE |
10958 | 0 | || h->plt.plist->comp_offset != MINUS_ONE)) |
10959 | 0 | { |
10960 | | /* We've decided to create a PLT entry for this symbol. */ |
10961 | 0 | bfd_byte *loc; |
10962 | 0 | bfd_vma header_address, got_address; |
10963 | 0 | bfd_vma got_address_high, got_address_low, load; |
10964 | 0 | bfd_vma got_index; |
10965 | 0 | bfd_vma isa_bit; |
10966 | |
|
10967 | 0 | got_index = h->plt.plist->gotplt_index; |
10968 | |
|
10969 | 0 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
10970 | 0 | BFD_ASSERT (h->dynindx != -1); |
10971 | 0 | BFD_ASSERT (htab->root.splt != NULL); |
10972 | 0 | BFD_ASSERT (got_index != MINUS_ONE); |
10973 | 0 | BFD_ASSERT (!h->def_regular); |
10974 | | |
10975 | | /* Calculate the address of the PLT header. */ |
10976 | 0 | isa_bit = htab->plt_header_is_comp; |
10977 | 0 | header_address = (htab->root.splt->output_section->vma |
10978 | 0 | + htab->root.splt->output_offset + isa_bit); |
10979 | | |
10980 | | /* Calculate the address of the .got.plt entry. */ |
10981 | 0 | got_address = (htab->root.sgotplt->output_section->vma |
10982 | 0 | + htab->root.sgotplt->output_offset |
10983 | 0 | + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
10984 | |
|
10985 | 0 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
10986 | 0 | got_address_low = got_address & 0xffff; |
10987 | | |
10988 | | /* The PLT sequence is not safe for N64 if .got.plt entry's address |
10989 | | cannot be loaded in two instructions. */ |
10990 | 0 | if (ABI_64_P (output_bfd) |
10991 | 0 | && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) |
10992 | 0 | { |
10993 | 0 | _bfd_error_handler |
10994 | | /* xgettext:c-format */ |
10995 | 0 | (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range " |
10996 | 0 | "supported; consider using `-Ttext-segment=...'"), |
10997 | 0 | output_bfd, |
10998 | 0 | htab->root.sgotplt->output_section, |
10999 | 0 | (int64_t) got_address); |
11000 | 0 | bfd_set_error (bfd_error_no_error); |
11001 | 0 | return false; |
11002 | 0 | } |
11003 | | |
11004 | | /* Initially point the .got.plt entry at the PLT header. */ |
11005 | 0 | loc = (htab->root.sgotplt->contents |
11006 | 0 | + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
11007 | 0 | if (ABI_64_P (output_bfd)) |
11008 | 0 | bfd_put_64 (output_bfd, header_address, loc); |
11009 | 0 | else |
11010 | 0 | bfd_put_32 (output_bfd, header_address, loc); |
11011 | | |
11012 | | /* Now handle the PLT itself. First the standard entry (the order |
11013 | | does not matter, we just have to pick one). */ |
11014 | 0 | if (h->plt.plist->mips_offset != MINUS_ONE) |
11015 | 0 | { |
11016 | 0 | const bfd_vma *plt_entry; |
11017 | 0 | bfd_vma plt_offset; |
11018 | |
|
11019 | 0 | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; |
11020 | |
|
11021 | 0 | BFD_ASSERT (plt_offset <= htab->root.splt->size); |
11022 | | |
11023 | | /* Find out where the .plt entry should go. */ |
11024 | 0 | loc = htab->root.splt->contents + plt_offset; |
11025 | | |
11026 | | /* Pick the load opcode. */ |
11027 | 0 | load = MIPS_ELF_LOAD_WORD (output_bfd); |
11028 | | |
11029 | | /* Fill in the PLT entry itself. */ |
11030 | |
|
11031 | 0 | if (MIPSR6_P (output_bfd)) |
11032 | 0 | plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact |
11033 | 0 | : mipsr6_exec_plt_entry; |
11034 | 0 | else |
11035 | 0 | plt_entry = mips_exec_plt_entry; |
11036 | 0 | bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); |
11037 | 0 | bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, |
11038 | 0 | loc + 4); |
11039 | |
|
11040 | 0 | if (! LOAD_INTERLOCKS_P (output_bfd) |
11041 | 0 | || (MIPSR6_P (output_bfd) && htab->compact_branches)) |
11042 | 0 | { |
11043 | 0 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); |
11044 | 0 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
11045 | 0 | } |
11046 | 0 | else |
11047 | 0 | { |
11048 | 0 | bfd_put_32 (output_bfd, plt_entry[3], loc + 8); |
11049 | 0 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, |
11050 | 0 | loc + 12); |
11051 | 0 | } |
11052 | 0 | } |
11053 | | |
11054 | | /* Now the compressed entry. They come after any standard ones. */ |
11055 | 0 | if (h->plt.plist->comp_offset != MINUS_ONE) |
11056 | 0 | { |
11057 | 0 | bfd_vma plt_offset; |
11058 | |
|
11059 | 0 | plt_offset = (htab->plt_header_size + htab->plt_mips_offset |
11060 | 0 | + h->plt.plist->comp_offset); |
11061 | |
|
11062 | 0 | BFD_ASSERT (plt_offset <= htab->root.splt->size); |
11063 | | |
11064 | | /* Find out where the .plt entry should go. */ |
11065 | 0 | loc = htab->root.splt->contents + plt_offset; |
11066 | | |
11067 | | /* Fill in the PLT entry itself. */ |
11068 | 0 | if (!MICROMIPS_P (output_bfd)) |
11069 | 0 | { |
11070 | 0 | const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; |
11071 | |
|
11072 | 0 | bfd_put_16 (output_bfd, plt_entry[0], loc); |
11073 | 0 | bfd_put_16 (output_bfd, plt_entry[1], loc + 2); |
11074 | 0 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
11075 | 0 | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); |
11076 | 0 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
11077 | 0 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); |
11078 | 0 | bfd_put_32 (output_bfd, got_address, loc + 12); |
11079 | 0 | } |
11080 | 0 | else if (htab->insn32) |
11081 | 0 | { |
11082 | 0 | const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; |
11083 | |
|
11084 | 0 | bfd_put_16 (output_bfd, plt_entry[0], loc); |
11085 | 0 | bfd_put_16 (output_bfd, got_address_high, loc + 2); |
11086 | 0 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
11087 | 0 | bfd_put_16 (output_bfd, got_address_low, loc + 6); |
11088 | 0 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
11089 | 0 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); |
11090 | 0 | bfd_put_16 (output_bfd, plt_entry[6], loc + 12); |
11091 | 0 | bfd_put_16 (output_bfd, got_address_low, loc + 14); |
11092 | 0 | } |
11093 | 0 | else |
11094 | 0 | { |
11095 | 0 | const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; |
11096 | 0 | bfd_signed_vma gotpc_offset; |
11097 | 0 | bfd_vma loc_address; |
11098 | |
|
11099 | 0 | BFD_ASSERT (got_address % 4 == 0); |
11100 | |
|
11101 | 0 | loc_address = (htab->root.splt->output_section->vma |
11102 | 0 | + htab->root.splt->output_offset + plt_offset); |
11103 | 0 | gotpc_offset = got_address - ((loc_address | 3) ^ 3); |
11104 | | |
11105 | | /* ADDIUPC has a span of +/-16MB, check we're in range. */ |
11106 | 0 | if (gotpc_offset + 0x1000000 >= 0x2000000) |
11107 | 0 | { |
11108 | 0 | _bfd_error_handler |
11109 | | /* xgettext:c-format */ |
11110 | 0 | (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " |
11111 | 0 | "beyond the range of ADDIUPC"), |
11112 | 0 | output_bfd, |
11113 | 0 | htab->root.sgotplt->output_section, |
11114 | 0 | (int64_t) gotpc_offset, |
11115 | 0 | htab->root.splt->output_section); |
11116 | 0 | bfd_set_error (bfd_error_no_error); |
11117 | 0 | return false; |
11118 | 0 | } |
11119 | 0 | bfd_put_16 (output_bfd, |
11120 | 0 | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); |
11121 | 0 | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); |
11122 | 0 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
11123 | 0 | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); |
11124 | 0 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
11125 | 0 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); |
11126 | 0 | } |
11127 | 0 | } |
11128 | | |
11129 | | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ |
11130 | 0 | mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt, |
11131 | 0 | got_index - 2, h->dynindx, |
11132 | 0 | R_MIPS_JUMP_SLOT, got_address); |
11133 | | |
11134 | | /* We distinguish between PLT entries and lazy-binding stubs by |
11135 | | giving the former an st_other value of STO_MIPS_PLT. Set the |
11136 | | flag and leave the value if there are any relocations in the |
11137 | | binary where pointer equality matters. */ |
11138 | 0 | sym->st_shndx = SHN_UNDEF; |
11139 | 0 | if (h->pointer_equality_needed) |
11140 | 0 | sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); |
11141 | 0 | else |
11142 | 0 | { |
11143 | 0 | sym->st_value = 0; |
11144 | 0 | sym->st_other = 0; |
11145 | 0 | } |
11146 | 0 | } |
11147 | | |
11148 | 0 | if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) |
11149 | 0 | { |
11150 | | /* We've decided to create a lazy-binding stub. */ |
11151 | 0 | bool micromips_p = MICROMIPS_P (output_bfd); |
11152 | 0 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
11153 | 0 | bfd_vma stub_size = htab->function_stub_size; |
11154 | 0 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
11155 | 0 | bfd_vma isa_bit = micromips_p; |
11156 | 0 | bfd_vma stub_big_size; |
11157 | |
|
11158 | 0 | if (!micromips_p) |
11159 | 0 | stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; |
11160 | 0 | else if (htab->insn32) |
11161 | 0 | stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; |
11162 | 0 | else |
11163 | 0 | stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; |
11164 | | |
11165 | | /* This symbol has a stub. Set it up. */ |
11166 | |
|
11167 | 0 | BFD_ASSERT (h->dynindx != -1); |
11168 | |
|
11169 | 0 | BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); |
11170 | | |
11171 | | /* Values up to 2^31 - 1 are allowed. Larger values would cause |
11172 | | sign extension at runtime in the stub, resulting in a negative |
11173 | | index value. */ |
11174 | 0 | if (h->dynindx & ~0x7fffffff) |
11175 | 0 | { |
11176 | 0 | _bfd_error_handler |
11177 | 0 | (_("%pB: cannot handle more than %d dynamic symbols"), |
11178 | 0 | output_bfd, 0x7fffffff); |
11179 | 0 | bfd_set_error (bfd_error_bad_value); |
11180 | 0 | return false; |
11181 | 0 | } |
11182 | | |
11183 | | /* Fill the stub. */ |
11184 | 0 | if (micromips_p) |
11185 | 0 | { |
11186 | 0 | idx = 0; |
11187 | 0 | bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), |
11188 | 0 | stub + idx); |
11189 | 0 | idx += 4; |
11190 | 0 | if (htab->insn32) |
11191 | 0 | { |
11192 | 0 | bfd_put_micromips_32 (output_bfd, |
11193 | 0 | STUB_MOVE32_MICROMIPS, stub + idx); |
11194 | 0 | idx += 4; |
11195 | 0 | } |
11196 | 0 | else |
11197 | 0 | { |
11198 | 0 | bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); |
11199 | 0 | idx += 2; |
11200 | 0 | } |
11201 | 0 | if (stub_size == stub_big_size) |
11202 | 0 | { |
11203 | 0 | long dynindx_hi = (h->dynindx >> 16) & 0x7fff; |
11204 | |
|
11205 | 0 | bfd_put_micromips_32 (output_bfd, |
11206 | 0 | STUB_LUI_MICROMIPS (dynindx_hi), |
11207 | 0 | stub + idx); |
11208 | 0 | idx += 4; |
11209 | 0 | } |
11210 | 0 | if (htab->insn32) |
11211 | 0 | { |
11212 | 0 | bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, |
11213 | 0 | stub + idx); |
11214 | 0 | idx += 4; |
11215 | 0 | } |
11216 | 0 | else |
11217 | 0 | { |
11218 | 0 | bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); |
11219 | 0 | idx += 2; |
11220 | 0 | } |
11221 | | |
11222 | | /* If a large stub is not required and sign extension is not a |
11223 | | problem, then use legacy code in the stub. */ |
11224 | 0 | if (stub_size == stub_big_size) |
11225 | 0 | bfd_put_micromips_32 (output_bfd, |
11226 | 0 | STUB_ORI_MICROMIPS (h->dynindx & 0xffff), |
11227 | 0 | stub + idx); |
11228 | 0 | else if (h->dynindx & ~0x7fff) |
11229 | 0 | bfd_put_micromips_32 (output_bfd, |
11230 | 0 | STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), |
11231 | 0 | stub + idx); |
11232 | 0 | else |
11233 | 0 | bfd_put_micromips_32 (output_bfd, |
11234 | 0 | STUB_LI16S_MICROMIPS (output_bfd, |
11235 | 0 | h->dynindx), |
11236 | 0 | stub + idx); |
11237 | 0 | } |
11238 | 0 | else |
11239 | 0 | { |
11240 | 0 | idx = 0; |
11241 | 0 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); |
11242 | 0 | idx += 4; |
11243 | 0 | bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); |
11244 | 0 | idx += 4; |
11245 | 0 | if (stub_size == stub_big_size) |
11246 | 0 | { |
11247 | 0 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), |
11248 | 0 | stub + idx); |
11249 | 0 | idx += 4; |
11250 | 0 | } |
11251 | |
|
11252 | 0 | if (!(MIPSR6_P (output_bfd) && htab->compact_branches)) |
11253 | 0 | { |
11254 | 0 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); |
11255 | 0 | idx += 4; |
11256 | 0 | } |
11257 | | |
11258 | | /* If a large stub is not required and sign extension is not a |
11259 | | problem, then use legacy code in the stub. */ |
11260 | 0 | if (stub_size == stub_big_size) |
11261 | 0 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), |
11262 | 0 | stub + idx); |
11263 | 0 | else if (h->dynindx & ~0x7fff) |
11264 | 0 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), |
11265 | 0 | stub + idx); |
11266 | 0 | else |
11267 | 0 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), |
11268 | 0 | stub + idx); |
11269 | 0 | idx += 4; |
11270 | |
|
11271 | 0 | if (MIPSR6_P (output_bfd) && htab->compact_branches) |
11272 | 0 | bfd_put_32 (output_bfd, STUB_JALRC, stub + idx); |
11273 | 0 | } |
11274 | |
|
11275 | 0 | BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); |
11276 | 0 | memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, |
11277 | 0 | stub, stub_size); |
11278 | | |
11279 | | /* Mark the symbol as undefined. stub_offset != -1 occurs |
11280 | | only for the referenced symbol. */ |
11281 | 0 | sym->st_shndx = SHN_UNDEF; |
11282 | | |
11283 | | /* The run-time linker uses the st_value field of the symbol |
11284 | | to reset the global offset table entry for this external |
11285 | | to its stub address when unlinking a shared object. */ |
11286 | 0 | sym->st_value = (htab->sstubs->output_section->vma |
11287 | 0 | + htab->sstubs->output_offset |
11288 | 0 | + h->plt.plist->stub_offset |
11289 | 0 | + isa_bit); |
11290 | 0 | sym->st_other = other; |
11291 | 0 | } |
11292 | | |
11293 | | /* If we have a MIPS16 function with a stub, the dynamic symbol must |
11294 | | refer to the stub, since only the stub uses the standard calling |
11295 | | conventions. */ |
11296 | 0 | if (h->dynindx != -1 && hmips->fn_stub != NULL) |
11297 | 0 | { |
11298 | 0 | BFD_ASSERT (hmips->need_fn_stub); |
11299 | 0 | sym->st_value = (hmips->fn_stub->output_section->vma |
11300 | 0 | + hmips->fn_stub->output_offset); |
11301 | 0 | sym->st_size = hmips->fn_stub->size; |
11302 | 0 | sym->st_other = ELF_ST_VISIBILITY (sym->st_other); |
11303 | 0 | } |
11304 | |
|
11305 | 0 | BFD_ASSERT (h->dynindx != -1 |
11306 | 0 | || h->forced_local); |
11307 | |
|
11308 | 0 | sgot = htab->root.sgot; |
11309 | 0 | g = htab->got_info; |
11310 | 0 | BFD_ASSERT (g != NULL); |
11311 | | |
11312 | | /* Run through the global symbol table, creating GOT entries for all |
11313 | | the symbols that need them. */ |
11314 | 0 | if (hmips->global_got_area != GGA_NONE) |
11315 | 0 | { |
11316 | 0 | bfd_vma offset; |
11317 | 0 | bfd_vma value; |
11318 | |
|
11319 | 0 | value = sym->st_value; |
11320 | 0 | offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
11321 | 0 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
11322 | 0 | } |
11323 | |
|
11324 | 0 | if (hmips->global_got_area != GGA_NONE && g->next) |
11325 | 0 | { |
11326 | 0 | struct mips_got_entry e, *p; |
11327 | 0 | bfd_vma entry; |
11328 | 0 | bfd_vma offset; |
11329 | |
|
11330 | 0 | gg = g; |
11331 | |
|
11332 | 0 | e.abfd = output_bfd; |
11333 | 0 | e.symndx = -1; |
11334 | 0 | e.d.h = hmips; |
11335 | 0 | e.tls_type = GOT_TLS_NONE; |
11336 | |
|
11337 | 0 | for (g = g->next; g->next != gg; g = g->next) |
11338 | 0 | { |
11339 | 0 | if (g->got_entries |
11340 | 0 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, |
11341 | 0 | &e))) |
11342 | 0 | { |
11343 | 0 | offset = p->gotidx; |
11344 | 0 | BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size); |
11345 | 0 | if (bfd_link_pic (info) |
11346 | 0 | || (elf_hash_table (info)->dynamic_sections_created |
11347 | 0 | && p->d.h != NULL |
11348 | 0 | && p->d.h->root.def_dynamic |
11349 | 0 | && !p->d.h->root.def_regular)) |
11350 | 0 | { |
11351 | | /* Create an R_MIPS_REL32 relocation for this entry. Due to |
11352 | | the various compatibility problems, it's easier to mock |
11353 | | up an R_MIPS_32 or R_MIPS_64 relocation and leave |
11354 | | mips_elf_create_dynamic_relocation to calculate the |
11355 | | appropriate addend. */ |
11356 | 0 | Elf_Internal_Rela rel[3]; |
11357 | |
|
11358 | 0 | memset (rel, 0, sizeof (rel)); |
11359 | 0 | if (ABI_64_P (output_bfd)) |
11360 | 0 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); |
11361 | 0 | else |
11362 | 0 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); |
11363 | 0 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
11364 | |
|
11365 | 0 | entry = 0; |
11366 | 0 | if (! (mips_elf_create_dynamic_relocation |
11367 | 0 | (output_bfd, info, rel, |
11368 | 0 | e.d.h, NULL, sym->st_value, &entry, sgot))) |
11369 | 0 | return false; |
11370 | 0 | } |
11371 | 0 | else |
11372 | 0 | entry = sym->st_value; |
11373 | 0 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); |
11374 | 0 | } |
11375 | 0 | } |
11376 | 0 | } |
11377 | | |
11378 | | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
11379 | 0 | name = h->root.root.string; |
11380 | 0 | if (h == elf_hash_table (info)->hdynamic |
11381 | 0 | || h == elf_hash_table (info)->hgot) |
11382 | 0 | sym->st_shndx = SHN_ABS; |
11383 | 0 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 |
11384 | 0 | || strcmp (name, "_DYNAMIC_LINKING") == 0) |
11385 | 0 | { |
11386 | 0 | sym->st_shndx = SHN_ABS; |
11387 | 0 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
11388 | 0 | sym->st_value = 1; |
11389 | 0 | } |
11390 | 0 | else if (SGI_COMPAT (output_bfd)) |
11391 | 0 | { |
11392 | 0 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
11393 | 0 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
11394 | 0 | { |
11395 | 0 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
11396 | 0 | sym->st_other = STO_PROTECTED; |
11397 | 0 | sym->st_value = 0; |
11398 | 0 | sym->st_shndx = SHN_MIPS_DATA; |
11399 | 0 | } |
11400 | 0 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
11401 | 0 | { |
11402 | 0 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
11403 | 0 | sym->st_other = STO_PROTECTED; |
11404 | 0 | sym->st_value = mips_elf_hash_table (info)->procedure_count; |
11405 | 0 | sym->st_shndx = SHN_ABS; |
11406 | 0 | } |
11407 | 0 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) |
11408 | 0 | { |
11409 | 0 | if (h->type == STT_FUNC) |
11410 | 0 | sym->st_shndx = SHN_MIPS_TEXT; |
11411 | 0 | else if (h->type == STT_OBJECT) |
11412 | 0 | sym->st_shndx = SHN_MIPS_DATA; |
11413 | 0 | } |
11414 | 0 | } |
11415 | | |
11416 | | /* Emit a copy reloc, if needed. */ |
11417 | 0 | if (h->needs_copy) |
11418 | 0 | { |
11419 | 0 | asection *s; |
11420 | 0 | bfd_vma symval; |
11421 | |
|
11422 | 0 | BFD_ASSERT (h->dynindx != -1); |
11423 | 0 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
11424 | |
|
11425 | 0 | s = mips_elf_rel_dyn_section (info, false); |
11426 | 0 | symval = (h->root.u.def.section->output_section->vma |
11427 | 0 | + h->root.u.def.section->output_offset |
11428 | 0 | + h->root.u.def.value); |
11429 | 0 | mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, |
11430 | 0 | h->dynindx, R_MIPS_COPY, symval); |
11431 | 0 | } |
11432 | | |
11433 | | /* Handle the IRIX6-specific symbols. */ |
11434 | 0 | if (IRIX_COMPAT (output_bfd) == ict_irix6) |
11435 | 0 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); |
11436 | | |
11437 | | /* Keep dynamic compressed symbols odd. This allows the dynamic linker |
11438 | | to treat compressed symbols like any other. */ |
11439 | 0 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
11440 | 0 | { |
11441 | 0 | BFD_ASSERT (sym->st_value & 1); |
11442 | 0 | sym->st_other -= STO_MIPS16; |
11443 | 0 | } |
11444 | 0 | else if (ELF_ST_IS_MICROMIPS (sym->st_other)) |
11445 | 0 | { |
11446 | 0 | BFD_ASSERT (sym->st_value & 1); |
11447 | 0 | sym->st_other -= STO_MICROMIPS; |
11448 | 0 | } |
11449 | |
|
11450 | 0 | return true; |
11451 | 0 | } |
11452 | | |
11453 | | /* Likewise, for VxWorks. */ |
11454 | | |
11455 | | bool |
11456 | | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, |
11457 | | struct bfd_link_info *info, |
11458 | | struct elf_link_hash_entry *h, |
11459 | | Elf_Internal_Sym *sym) |
11460 | 0 | { |
11461 | 0 | bfd *dynobj; |
11462 | 0 | asection *sgot; |
11463 | 0 | struct mips_got_info *g; |
11464 | 0 | struct mips_elf_link_hash_table *htab; |
11465 | 0 | struct mips_elf_link_hash_entry *hmips; |
11466 | |
|
11467 | 0 | htab = mips_elf_hash_table (info); |
11468 | 0 | BFD_ASSERT (htab != NULL); |
11469 | 0 | dynobj = elf_hash_table (info)->dynobj; |
11470 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
11471 | |
|
11472 | 0 | if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) |
11473 | 0 | { |
11474 | 0 | bfd_byte *loc; |
11475 | 0 | bfd_vma plt_address, got_address, got_offset, branch_offset; |
11476 | 0 | Elf_Internal_Rela rel; |
11477 | 0 | static const bfd_vma *plt_entry; |
11478 | 0 | bfd_vma gotplt_index; |
11479 | 0 | bfd_vma plt_offset; |
11480 | |
|
11481 | 0 | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; |
11482 | 0 | gotplt_index = h->plt.plist->gotplt_index; |
11483 | |
|
11484 | 0 | BFD_ASSERT (h->dynindx != -1); |
11485 | 0 | BFD_ASSERT (htab->root.splt != NULL); |
11486 | 0 | BFD_ASSERT (gotplt_index != MINUS_ONE); |
11487 | 0 | BFD_ASSERT (plt_offset <= htab->root.splt->size); |
11488 | | |
11489 | | /* Calculate the address of the .plt entry. */ |
11490 | 0 | plt_address = (htab->root.splt->output_section->vma |
11491 | 0 | + htab->root.splt->output_offset |
11492 | 0 | + plt_offset); |
11493 | | |
11494 | | /* Calculate the address of the .got.plt entry. */ |
11495 | 0 | got_address = (htab->root.sgotplt->output_section->vma |
11496 | 0 | + htab->root.sgotplt->output_offset |
11497 | 0 | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); |
11498 | | |
11499 | | /* Calculate the offset of the .got.plt entry from |
11500 | | _GLOBAL_OFFSET_TABLE_. */ |
11501 | 0 | got_offset = mips_elf_gotplt_index (info, h); |
11502 | | |
11503 | | /* Calculate the offset for the branch at the start of the PLT |
11504 | | entry. The branch jumps to the beginning of .plt. */ |
11505 | 0 | branch_offset = -(plt_offset / 4 + 1) & 0xffff; |
11506 | | |
11507 | | /* Fill in the initial value of the .got.plt entry. */ |
11508 | 0 | bfd_put_32 (output_bfd, plt_address, |
11509 | 0 | (htab->root.sgotplt->contents |
11510 | 0 | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); |
11511 | | |
11512 | | /* Find out where the .plt entry should go. */ |
11513 | 0 | loc = htab->root.splt->contents + plt_offset; |
11514 | |
|
11515 | 0 | if (bfd_link_pic (info)) |
11516 | 0 | { |
11517 | 0 | plt_entry = mips_vxworks_shared_plt_entry; |
11518 | 0 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); |
11519 | 0 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
11520 | 0 | } |
11521 | 0 | else |
11522 | 0 | { |
11523 | 0 | bfd_vma got_address_high, got_address_low; |
11524 | |
|
11525 | 0 | plt_entry = mips_vxworks_exec_plt_entry; |
11526 | 0 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
11527 | 0 | got_address_low = got_address & 0xffff; |
11528 | |
|
11529 | 0 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); |
11530 | 0 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
11531 | 0 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); |
11532 | 0 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); |
11533 | 0 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
11534 | 0 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
11535 | 0 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); |
11536 | 0 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); |
11537 | |
|
11538 | 0 | loc = (htab->srelplt2->contents |
11539 | 0 | + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); |
11540 | | |
11541 | | /* Emit a relocation for the .got.plt entry. */ |
11542 | 0 | rel.r_offset = got_address; |
11543 | 0 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); |
11544 | 0 | rel.r_addend = plt_offset; |
11545 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11546 | | |
11547 | | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ |
11548 | 0 | loc += sizeof (Elf32_External_Rela); |
11549 | 0 | rel.r_offset = plt_address + 8; |
11550 | 0 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
11551 | 0 | rel.r_addend = got_offset; |
11552 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11553 | | |
11554 | | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ |
11555 | 0 | loc += sizeof (Elf32_External_Rela); |
11556 | 0 | rel.r_offset += 4; |
11557 | 0 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
11558 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11559 | 0 | } |
11560 | | |
11561 | | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ |
11562 | 0 | loc = (htab->root.srelplt->contents |
11563 | 0 | + gotplt_index * sizeof (Elf32_External_Rela)); |
11564 | 0 | rel.r_offset = got_address; |
11565 | 0 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); |
11566 | 0 | rel.r_addend = 0; |
11567 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11568 | |
|
11569 | 0 | if (!h->def_regular) |
11570 | 0 | sym->st_shndx = SHN_UNDEF; |
11571 | 0 | } |
11572 | |
|
11573 | 0 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); |
11574 | |
|
11575 | 0 | sgot = htab->root.sgot; |
11576 | 0 | g = htab->got_info; |
11577 | 0 | BFD_ASSERT (g != NULL); |
11578 | | |
11579 | | /* See if this symbol has an entry in the GOT. */ |
11580 | 0 | if (hmips->global_got_area != GGA_NONE) |
11581 | 0 | { |
11582 | 0 | bfd_vma offset; |
11583 | 0 | Elf_Internal_Rela outrel; |
11584 | 0 | bfd_byte *loc; |
11585 | 0 | asection *s; |
11586 | | |
11587 | | /* Install the symbol value in the GOT. */ |
11588 | 0 | offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
11589 | 0 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); |
11590 | | |
11591 | | /* Add a dynamic relocation for it. */ |
11592 | 0 | s = mips_elf_rel_dyn_section (info, false); |
11593 | 0 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
11594 | 0 | outrel.r_offset = (sgot->output_section->vma |
11595 | 0 | + sgot->output_offset |
11596 | 0 | + offset); |
11597 | 0 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); |
11598 | 0 | outrel.r_addend = 0; |
11599 | 0 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); |
11600 | 0 | } |
11601 | | |
11602 | | /* Emit a copy reloc, if needed. */ |
11603 | 0 | if (h->needs_copy) |
11604 | 0 | { |
11605 | 0 | Elf_Internal_Rela rel; |
11606 | 0 | asection *srel; |
11607 | 0 | bfd_byte *loc; |
11608 | |
|
11609 | 0 | BFD_ASSERT (h->dynindx != -1); |
11610 | |
|
11611 | 0 | rel.r_offset = (h->root.u.def.section->output_section->vma |
11612 | 0 | + h->root.u.def.section->output_offset |
11613 | 0 | + h->root.u.def.value); |
11614 | 0 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); |
11615 | 0 | rel.r_addend = 0; |
11616 | 0 | if (h->root.u.def.section == htab->root.sdynrelro) |
11617 | 0 | srel = htab->root.sreldynrelro; |
11618 | 0 | else |
11619 | 0 | srel = htab->root.srelbss; |
11620 | 0 | loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela); |
11621 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11622 | 0 | ++srel->reloc_count; |
11623 | 0 | } |
11624 | | |
11625 | | /* If this is a mips16/microMIPS symbol, force the value to be even. */ |
11626 | 0 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
11627 | 0 | sym->st_value &= ~1; |
11628 | |
|
11629 | 0 | return true; |
11630 | 0 | } |
11631 | | |
11632 | | /* Write out a plt0 entry to the beginning of .plt. */ |
11633 | | |
11634 | | static bool |
11635 | | mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
11636 | 0 | { |
11637 | 0 | bfd_byte *loc; |
11638 | 0 | bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; |
11639 | 0 | static const bfd_vma *plt_entry; |
11640 | 0 | struct mips_elf_link_hash_table *htab; |
11641 | |
|
11642 | 0 | htab = mips_elf_hash_table (info); |
11643 | 0 | BFD_ASSERT (htab != NULL); |
11644 | |
|
11645 | 0 | if (ABI_64_P (output_bfd)) |
11646 | 0 | plt_entry = (htab->compact_branches |
11647 | 0 | ? mipsr6_n64_exec_plt0_entry_compact |
11648 | 0 | : mips_n64_exec_plt0_entry); |
11649 | 0 | else if (ABI_N32_P (output_bfd)) |
11650 | 0 | plt_entry = (htab->compact_branches |
11651 | 0 | ? mipsr6_n32_exec_plt0_entry_compact |
11652 | 0 | : mips_n32_exec_plt0_entry); |
11653 | 0 | else if (!htab->plt_header_is_comp) |
11654 | 0 | plt_entry = (htab->compact_branches |
11655 | 0 | ? mipsr6_o32_exec_plt0_entry_compact |
11656 | 0 | : mips_o32_exec_plt0_entry); |
11657 | 0 | else if (htab->insn32) |
11658 | 0 | plt_entry = micromips_insn32_o32_exec_plt0_entry; |
11659 | 0 | else |
11660 | 0 | plt_entry = micromips_o32_exec_plt0_entry; |
11661 | | |
11662 | | /* Calculate the value of .got.plt. */ |
11663 | 0 | gotplt_value = (htab->root.sgotplt->output_section->vma |
11664 | 0 | + htab->root.sgotplt->output_offset); |
11665 | 0 | gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; |
11666 | 0 | gotplt_value_low = gotplt_value & 0xffff; |
11667 | | |
11668 | | /* The PLT sequence is not safe for N64 if .got.plt's address can |
11669 | | not be loaded in two instructions. */ |
11670 | 0 | if (ABI_64_P (output_bfd) |
11671 | 0 | && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) |
11672 | 0 | { |
11673 | 0 | _bfd_error_handler |
11674 | | /* xgettext:c-format */ |
11675 | 0 | (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range " |
11676 | 0 | "supported; consider using `-Ttext-segment=...'"), |
11677 | 0 | output_bfd, |
11678 | 0 | htab->root.sgotplt->output_section, |
11679 | 0 | (int64_t) gotplt_value); |
11680 | 0 | bfd_set_error (bfd_error_no_error); |
11681 | 0 | return false; |
11682 | 0 | } |
11683 | | |
11684 | | /* Install the PLT header. */ |
11685 | 0 | loc = htab->root.splt->contents; |
11686 | 0 | if (plt_entry == micromips_o32_exec_plt0_entry) |
11687 | 0 | { |
11688 | 0 | bfd_vma gotpc_offset; |
11689 | 0 | bfd_vma loc_address; |
11690 | 0 | size_t i; |
11691 | |
|
11692 | 0 | BFD_ASSERT (gotplt_value % 4 == 0); |
11693 | |
|
11694 | 0 | loc_address = (htab->root.splt->output_section->vma |
11695 | 0 | + htab->root.splt->output_offset); |
11696 | 0 | gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); |
11697 | | |
11698 | | /* ADDIUPC has a span of +/-16MB, check we're in range. */ |
11699 | 0 | if (gotpc_offset + 0x1000000 >= 0x2000000) |
11700 | 0 | { |
11701 | 0 | _bfd_error_handler |
11702 | | /* xgettext:c-format */ |
11703 | 0 | (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " |
11704 | 0 | "beyond the range of ADDIUPC"), |
11705 | 0 | output_bfd, |
11706 | 0 | htab->root.sgotplt->output_section, |
11707 | 0 | (int64_t) gotpc_offset, |
11708 | 0 | htab->root.splt->output_section); |
11709 | 0 | bfd_set_error (bfd_error_no_error); |
11710 | 0 | return false; |
11711 | 0 | } |
11712 | 0 | bfd_put_16 (output_bfd, |
11713 | 0 | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); |
11714 | 0 | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); |
11715 | 0 | for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) |
11716 | 0 | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); |
11717 | 0 | } |
11718 | 0 | else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) |
11719 | 0 | { |
11720 | 0 | size_t i; |
11721 | |
|
11722 | 0 | bfd_put_16 (output_bfd, plt_entry[0], loc); |
11723 | 0 | bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); |
11724 | 0 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
11725 | 0 | bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); |
11726 | 0 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
11727 | 0 | bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); |
11728 | 0 | for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) |
11729 | 0 | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); |
11730 | 0 | } |
11731 | 0 | else |
11732 | 0 | { |
11733 | 0 | bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); |
11734 | 0 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); |
11735 | 0 | bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); |
11736 | 0 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
11737 | 0 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
11738 | 0 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
11739 | 0 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); |
11740 | 0 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); |
11741 | 0 | } |
11742 | | |
11743 | 0 | return true; |
11744 | 0 | } |
11745 | | |
11746 | | /* Install the PLT header for a VxWorks executable and finalize the |
11747 | | contents of .rela.plt.unloaded. */ |
11748 | | |
11749 | | static void |
11750 | | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
11751 | 0 | { |
11752 | 0 | Elf_Internal_Rela rela; |
11753 | 0 | bfd_byte *loc; |
11754 | 0 | bfd_vma got_value, got_value_high, got_value_low, plt_address; |
11755 | 0 | static const bfd_vma *plt_entry; |
11756 | 0 | struct mips_elf_link_hash_table *htab; |
11757 | |
|
11758 | 0 | htab = mips_elf_hash_table (info); |
11759 | 0 | BFD_ASSERT (htab != NULL); |
11760 | |
|
11761 | 0 | plt_entry = mips_vxworks_exec_plt0_entry; |
11762 | | |
11763 | | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ |
11764 | 0 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma |
11765 | 0 | + htab->root.hgot->root.u.def.section->output_offset |
11766 | 0 | + htab->root.hgot->root.u.def.value); |
11767 | |
|
11768 | 0 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; |
11769 | 0 | got_value_low = got_value & 0xffff; |
11770 | | |
11771 | | /* Calculate the address of the PLT header. */ |
11772 | 0 | plt_address = (htab->root.splt->output_section->vma |
11773 | 0 | + htab->root.splt->output_offset); |
11774 | | |
11775 | | /* Install the PLT header. */ |
11776 | 0 | loc = htab->root.splt->contents; |
11777 | 0 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); |
11778 | 0 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); |
11779 | 0 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); |
11780 | 0 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
11781 | 0 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
11782 | 0 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
11783 | | |
11784 | | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ |
11785 | 0 | loc = htab->srelplt2->contents; |
11786 | 0 | rela.r_offset = plt_address; |
11787 | 0 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
11788 | 0 | rela.r_addend = 0; |
11789 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
11790 | 0 | loc += sizeof (Elf32_External_Rela); |
11791 | | |
11792 | | /* Output the relocation for the following addiu of |
11793 | | %lo(_GLOBAL_OFFSET_TABLE_). */ |
11794 | 0 | rela.r_offset += 4; |
11795 | 0 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
11796 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
11797 | 0 | loc += sizeof (Elf32_External_Rela); |
11798 | | |
11799 | | /* Fix up the remaining relocations. They may have the wrong |
11800 | | symbol index for _G_O_T_ or _P_L_T_ depending on the order |
11801 | | in which symbols were output. */ |
11802 | 0 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) |
11803 | 0 | { |
11804 | 0 | Elf_Internal_Rela rel; |
11805 | |
|
11806 | 0 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
11807 | 0 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); |
11808 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11809 | 0 | loc += sizeof (Elf32_External_Rela); |
11810 | |
|
11811 | 0 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
11812 | 0 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
11813 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11814 | 0 | loc += sizeof (Elf32_External_Rela); |
11815 | |
|
11816 | 0 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
11817 | 0 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
11818 | 0 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11819 | 0 | loc += sizeof (Elf32_External_Rela); |
11820 | 0 | } |
11821 | 0 | } |
11822 | | |
11823 | | /* Install the PLT header for a VxWorks shared library. */ |
11824 | | |
11825 | | static void |
11826 | | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) |
11827 | 0 | { |
11828 | 0 | unsigned int i; |
11829 | 0 | struct mips_elf_link_hash_table *htab; |
11830 | |
|
11831 | 0 | htab = mips_elf_hash_table (info); |
11832 | 0 | BFD_ASSERT (htab != NULL); |
11833 | | |
11834 | | /* We just need to copy the entry byte-by-byte. */ |
11835 | 0 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) |
11836 | 0 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], |
11837 | 0 | htab->root.splt->contents + i * 4); |
11838 | 0 | } |
11839 | | |
11840 | | /* Finish up the dynamic sections. */ |
11841 | | |
11842 | | bool |
11843 | | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
11844 | | struct bfd_link_info *info) |
11845 | 0 | { |
11846 | 0 | bfd *dynobj; |
11847 | 0 | asection *sdyn; |
11848 | 0 | asection *sgot; |
11849 | 0 | struct mips_got_info *gg, *g; |
11850 | 0 | struct mips_elf_link_hash_table *htab; |
11851 | |
|
11852 | 0 | htab = mips_elf_hash_table (info); |
11853 | 0 | BFD_ASSERT (htab != NULL); |
11854 | |
|
11855 | 0 | dynobj = elf_hash_table (info)->dynobj; |
11856 | |
|
11857 | 0 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
11858 | |
|
11859 | 0 | sgot = htab->root.sgot; |
11860 | 0 | gg = htab->got_info; |
11861 | |
|
11862 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
11863 | 0 | { |
11864 | 0 | bfd_byte *b; |
11865 | 0 | int dyn_to_skip = 0, dyn_skipped = 0; |
11866 | |
|
11867 | 0 | BFD_ASSERT (sdyn != NULL); |
11868 | 0 | BFD_ASSERT (gg != NULL); |
11869 | |
|
11870 | 0 | g = mips_elf_bfd_got (output_bfd, false); |
11871 | 0 | BFD_ASSERT (g != NULL); |
11872 | |
|
11873 | 0 | for (b = sdyn->contents; |
11874 | 0 | b < sdyn->contents + sdyn->size; |
11875 | 0 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
11876 | 0 | { |
11877 | 0 | Elf_Internal_Dyn dyn; |
11878 | 0 | const char *name; |
11879 | 0 | size_t elemsize; |
11880 | 0 | asection *s; |
11881 | 0 | bool swap_out_p; |
11882 | | |
11883 | | /* Read in the current dynamic entry. */ |
11884 | 0 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
11885 | | |
11886 | | /* Assume that we're going to modify it and write it out. */ |
11887 | 0 | swap_out_p = true; |
11888 | |
|
11889 | 0 | switch (dyn.d_tag) |
11890 | 0 | { |
11891 | 0 | case DT_RELENT: |
11892 | 0 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
11893 | 0 | break; |
11894 | | |
11895 | 0 | case DT_RELAENT: |
11896 | 0 | BFD_ASSERT (htab->root.target_os == is_vxworks); |
11897 | 0 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); |
11898 | 0 | break; |
11899 | | |
11900 | 0 | case DT_STRSZ: |
11901 | | /* Rewrite DT_STRSZ. */ |
11902 | 0 | dyn.d_un.d_val = |
11903 | 0 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
11904 | 0 | break; |
11905 | | |
11906 | 0 | case DT_PLTGOT: |
11907 | 0 | s = htab->root.sgot; |
11908 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
11909 | 0 | break; |
11910 | | |
11911 | 0 | case DT_MIPS_PLTGOT: |
11912 | 0 | s = htab->root.sgotplt; |
11913 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
11914 | 0 | break; |
11915 | | |
11916 | 0 | case DT_MIPS_RLD_VERSION: |
11917 | 0 | dyn.d_un.d_val = 1; /* XXX */ |
11918 | 0 | break; |
11919 | | |
11920 | 0 | case DT_MIPS_FLAGS: |
11921 | 0 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ |
11922 | 0 | break; |
11923 | | |
11924 | 0 | case DT_MIPS_TIME_STAMP: |
11925 | 0 | { |
11926 | 0 | time_t t; |
11927 | 0 | time (&t); |
11928 | 0 | dyn.d_un.d_val = t; |
11929 | 0 | } |
11930 | 0 | break; |
11931 | | |
11932 | 0 | case DT_MIPS_ICHECKSUM: |
11933 | | /* XXX FIXME: */ |
11934 | 0 | swap_out_p = false; |
11935 | 0 | break; |
11936 | | |
11937 | 0 | case DT_MIPS_IVERSION: |
11938 | | /* XXX FIXME: */ |
11939 | 0 | swap_out_p = false; |
11940 | 0 | break; |
11941 | | |
11942 | 0 | case DT_MIPS_BASE_ADDRESS: |
11943 | 0 | s = output_bfd->sections; |
11944 | 0 | BFD_ASSERT (s != NULL); |
11945 | 0 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; |
11946 | 0 | break; |
11947 | | |
11948 | 0 | case DT_MIPS_LOCAL_GOTNO: |
11949 | 0 | dyn.d_un.d_val = g->local_gotno; |
11950 | 0 | break; |
11951 | | |
11952 | 0 | case DT_MIPS_UNREFEXTNO: |
11953 | | /* The index into the dynamic symbol table which is the |
11954 | | entry of the first external symbol that is not |
11955 | | referenced within the same object. */ |
11956 | 0 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; |
11957 | 0 | break; |
11958 | | |
11959 | 0 | case DT_MIPS_GOTSYM: |
11960 | 0 | if (htab->global_gotsym) |
11961 | 0 | { |
11962 | 0 | dyn.d_un.d_val = htab->global_gotsym->dynindx; |
11963 | 0 | break; |
11964 | 0 | } |
11965 | | /* In case if we don't have global got symbols we default |
11966 | | to setting DT_MIPS_GOTSYM to the same value as |
11967 | | DT_MIPS_SYMTABNO. */ |
11968 | | /* Fall through. */ |
11969 | | |
11970 | 0 | case DT_MIPS_SYMTABNO: |
11971 | 0 | name = ".dynsym"; |
11972 | 0 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); |
11973 | 0 | s = bfd_get_linker_section (dynobj, name); |
11974 | |
|
11975 | 0 | if (s != NULL) |
11976 | 0 | dyn.d_un.d_val = s->size / elemsize; |
11977 | 0 | else |
11978 | 0 | dyn.d_un.d_val = 0; |
11979 | 0 | break; |
11980 | | |
11981 | 0 | case DT_MIPS_HIPAGENO: |
11982 | 0 | dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; |
11983 | 0 | break; |
11984 | | |
11985 | 0 | case DT_MIPS_RLD_MAP: |
11986 | 0 | { |
11987 | 0 | struct elf_link_hash_entry *h; |
11988 | 0 | h = mips_elf_hash_table (info)->rld_symbol; |
11989 | 0 | if (!h) |
11990 | 0 | { |
11991 | 0 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
11992 | 0 | swap_out_p = false; |
11993 | 0 | break; |
11994 | 0 | } |
11995 | 0 | s = h->root.u.def.section; |
11996 | | |
11997 | | /* The MIPS_RLD_MAP tag stores the absolute address of the |
11998 | | debug pointer. */ |
11999 | 0 | dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset |
12000 | 0 | + h->root.u.def.value); |
12001 | 0 | } |
12002 | 0 | break; |
12003 | | |
12004 | 0 | case DT_MIPS_RLD_MAP_REL: |
12005 | 0 | { |
12006 | 0 | struct elf_link_hash_entry *h; |
12007 | 0 | bfd_vma dt_addr, rld_addr; |
12008 | 0 | h = mips_elf_hash_table (info)->rld_symbol; |
12009 | 0 | if (!h) |
12010 | 0 | { |
12011 | 0 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
12012 | 0 | swap_out_p = false; |
12013 | 0 | break; |
12014 | 0 | } |
12015 | 0 | s = h->root.u.def.section; |
12016 | | |
12017 | | /* The MIPS_RLD_MAP_REL tag stores the offset to the debug |
12018 | | pointer, relative to the address of the tag. */ |
12019 | 0 | dt_addr = (sdyn->output_section->vma + sdyn->output_offset |
12020 | 0 | + (b - sdyn->contents)); |
12021 | 0 | rld_addr = (s->output_section->vma + s->output_offset |
12022 | 0 | + h->root.u.def.value); |
12023 | 0 | dyn.d_un.d_ptr = rld_addr - dt_addr; |
12024 | 0 | } |
12025 | 0 | break; |
12026 | | |
12027 | 0 | case DT_MIPS_OPTIONS: |
12028 | 0 | s = (bfd_get_section_by_name |
12029 | 0 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); |
12030 | 0 | dyn.d_un.d_ptr = s->vma; |
12031 | 0 | break; |
12032 | | |
12033 | 0 | case DT_PLTREL: |
12034 | 0 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
12035 | 0 | if (htab->root.target_os == is_vxworks) |
12036 | 0 | dyn.d_un.d_val = DT_RELA; |
12037 | 0 | else |
12038 | 0 | dyn.d_un.d_val = DT_REL; |
12039 | 0 | break; |
12040 | | |
12041 | 0 | case DT_PLTRELSZ: |
12042 | 0 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
12043 | 0 | dyn.d_un.d_val = htab->root.srelplt->size; |
12044 | 0 | break; |
12045 | | |
12046 | 0 | case DT_JMPREL: |
12047 | 0 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
12048 | 0 | dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma |
12049 | 0 | + htab->root.srelplt->output_offset); |
12050 | 0 | break; |
12051 | | |
12052 | 0 | case DT_TEXTREL: |
12053 | | /* If we didn't need any text relocations after all, delete |
12054 | | the dynamic tag. */ |
12055 | 0 | if (!(info->flags & DF_TEXTREL)) |
12056 | 0 | { |
12057 | 0 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
12058 | 0 | swap_out_p = false; |
12059 | 0 | } |
12060 | 0 | break; |
12061 | | |
12062 | 0 | case DT_FLAGS: |
12063 | | /* If we didn't need any text relocations after all, clear |
12064 | | DF_TEXTREL from DT_FLAGS. */ |
12065 | 0 | if (!(info->flags & DF_TEXTREL)) |
12066 | 0 | dyn.d_un.d_val &= ~DF_TEXTREL; |
12067 | 0 | else |
12068 | 0 | swap_out_p = false; |
12069 | 0 | break; |
12070 | | |
12071 | 0 | case DT_MIPS_XHASH: |
12072 | 0 | name = ".MIPS.xhash"; |
12073 | 0 | s = bfd_get_linker_section (dynobj, name); |
12074 | 0 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
12075 | 0 | break; |
12076 | | |
12077 | 0 | default: |
12078 | 0 | swap_out_p = false; |
12079 | 0 | if (htab->root.target_os == is_vxworks |
12080 | 0 | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) |
12081 | 0 | swap_out_p = true; |
12082 | 0 | break; |
12083 | 0 | } |
12084 | | |
12085 | 0 | if (swap_out_p || dyn_skipped) |
12086 | 0 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
12087 | 0 | (dynobj, &dyn, b - dyn_skipped); |
12088 | |
|
12089 | 0 | if (dyn_to_skip) |
12090 | 0 | { |
12091 | 0 | dyn_skipped += dyn_to_skip; |
12092 | 0 | dyn_to_skip = 0; |
12093 | 0 | } |
12094 | 0 | } |
12095 | | |
12096 | | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ |
12097 | 0 | if (dyn_skipped > 0) |
12098 | 0 | memset (b - dyn_skipped, 0, dyn_skipped); |
12099 | 0 | } |
12100 | | |
12101 | 0 | if (sgot != NULL && sgot->size > 0 |
12102 | 0 | && !bfd_is_abs_section (sgot->output_section)) |
12103 | 0 | { |
12104 | 0 | if (htab->root.target_os == is_vxworks) |
12105 | 0 | { |
12106 | | /* The first entry of the global offset table points to the |
12107 | | ".dynamic" section. The second is initialized by the |
12108 | | loader and contains the shared library identifier. |
12109 | | The third is also initialized by the loader and points |
12110 | | to the lazy resolution stub. */ |
12111 | 0 | MIPS_ELF_PUT_WORD (output_bfd, |
12112 | 0 | sdyn->output_offset + sdyn->output_section->vma, |
12113 | 0 | sgot->contents); |
12114 | 0 | MIPS_ELF_PUT_WORD (output_bfd, 0, |
12115 | 0 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
12116 | 0 | MIPS_ELF_PUT_WORD (output_bfd, 0, |
12117 | 0 | sgot->contents |
12118 | 0 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); |
12119 | 0 | } |
12120 | 0 | else |
12121 | 0 | { |
12122 | | /* The first entry of the global offset table will be filled at |
12123 | | runtime. The second entry will be used by some runtime loaders. |
12124 | | This isn't the case of IRIX rld. */ |
12125 | 0 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); |
12126 | 0 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
12127 | 0 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
12128 | 0 | } |
12129 | |
|
12130 | 0 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
12131 | 0 | = MIPS_ELF_GOT_SIZE (output_bfd); |
12132 | 0 | } |
12133 | | |
12134 | | /* Generate dynamic relocations for the non-primary gots. */ |
12135 | 0 | if (gg != NULL && gg->next) |
12136 | 0 | { |
12137 | 0 | Elf_Internal_Rela rel[3]; |
12138 | 0 | bfd_vma addend = 0; |
12139 | |
|
12140 | 0 | memset (rel, 0, sizeof (rel)); |
12141 | 0 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); |
12142 | |
|
12143 | 0 | for (g = gg->next; g->next != gg; g = g->next) |
12144 | 0 | { |
12145 | 0 | bfd_vma got_index = g->next->local_gotno + g->next->global_gotno |
12146 | 0 | + g->next->tls_gotno; |
12147 | |
|
12148 | 0 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
12149 | 0 | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
12150 | 0 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
12151 | 0 | sgot->contents |
12152 | 0 | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
12153 | |
|
12154 | 0 | if (! bfd_link_pic (info)) |
12155 | 0 | continue; |
12156 | | |
12157 | 0 | for (; got_index < g->local_gotno; got_index++) |
12158 | 0 | { |
12159 | 0 | if (got_index >= g->assigned_low_gotno |
12160 | 0 | && got_index <= g->assigned_high_gotno) |
12161 | 0 | continue; |
12162 | | |
12163 | 0 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset |
12164 | 0 | = got_index * MIPS_ELF_GOT_SIZE (output_bfd); |
12165 | 0 | if (!(mips_elf_create_dynamic_relocation |
12166 | 0 | (output_bfd, info, rel, NULL, |
12167 | 0 | bfd_abs_section_ptr, |
12168 | 0 | 0, &addend, sgot))) |
12169 | 0 | return false; |
12170 | 0 | BFD_ASSERT (addend == 0); |
12171 | 0 | } |
12172 | 0 | } |
12173 | 0 | } |
12174 | | |
12175 | | /* The generation of dynamic relocations for the non-primary gots |
12176 | | adds more dynamic relocations. We cannot count them until |
12177 | | here. */ |
12178 | | |
12179 | 0 | if (elf_hash_table (info)->dynamic_sections_created) |
12180 | 0 | { |
12181 | 0 | bfd_byte *b; |
12182 | 0 | bool swap_out_p; |
12183 | |
|
12184 | 0 | BFD_ASSERT (sdyn != NULL); |
12185 | |
|
12186 | 0 | for (b = sdyn->contents; |
12187 | 0 | b < sdyn->contents + sdyn->size; |
12188 | 0 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
12189 | 0 | { |
12190 | 0 | Elf_Internal_Dyn dyn; |
12191 | 0 | asection *s; |
12192 | | |
12193 | | /* Read in the current dynamic entry. */ |
12194 | 0 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
12195 | | |
12196 | | /* Assume that we're going to modify it and write it out. */ |
12197 | 0 | swap_out_p = true; |
12198 | |
|
12199 | 0 | switch (dyn.d_tag) |
12200 | 0 | { |
12201 | 0 | case DT_RELSZ: |
12202 | | /* Reduce DT_RELSZ to account for any relocations we |
12203 | | decided not to make. This is for the n64 irix rld, |
12204 | | which doesn't seem to apply any relocations if there |
12205 | | are trailing null entries. */ |
12206 | 0 | s = mips_elf_rel_dyn_section (info, false); |
12207 | 0 | dyn.d_un.d_val = (s->reloc_count |
12208 | 0 | * (ABI_64_P (output_bfd) |
12209 | 0 | ? sizeof (Elf64_Mips_External_Rel) |
12210 | 0 | : sizeof (Elf32_External_Rel))); |
12211 | | /* Adjust the section size too. Tools like the prelinker |
12212 | | can reasonably expect the values to the same. */ |
12213 | 0 | BFD_ASSERT (!bfd_is_abs_section (s->output_section)); |
12214 | 0 | elf_section_data (s->output_section)->this_hdr.sh_size |
12215 | 0 | = dyn.d_un.d_val; |
12216 | 0 | break; |
12217 | | |
12218 | 0 | default: |
12219 | 0 | swap_out_p = false; |
12220 | 0 | break; |
12221 | 0 | } |
12222 | | |
12223 | 0 | if (swap_out_p) |
12224 | 0 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
12225 | 0 | (dynobj, &dyn, b); |
12226 | 0 | } |
12227 | 0 | } |
12228 | | |
12229 | 0 | { |
12230 | 0 | asection *s; |
12231 | 0 | Elf32_compact_rel cpt; |
12232 | |
|
12233 | 0 | if (SGI_COMPAT (output_bfd)) |
12234 | 0 | { |
12235 | | /* Write .compact_rel section out. */ |
12236 | 0 | s = bfd_get_linker_section (dynobj, ".compact_rel"); |
12237 | 0 | if (s != NULL) |
12238 | 0 | { |
12239 | 0 | cpt.id1 = 1; |
12240 | 0 | cpt.num = s->reloc_count; |
12241 | 0 | cpt.id2 = 2; |
12242 | 0 | cpt.offset = (s->output_section->filepos |
12243 | 0 | + sizeof (Elf32_External_compact_rel)); |
12244 | 0 | cpt.reserved0 = 0; |
12245 | 0 | cpt.reserved1 = 0; |
12246 | 0 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, |
12247 | 0 | ((Elf32_External_compact_rel *) |
12248 | 0 | s->contents)); |
12249 | | |
12250 | | /* Clean up a dummy stub function entry in .text. */ |
12251 | 0 | if (htab->sstubs != NULL |
12252 | 0 | && htab->sstubs->contents != NULL) |
12253 | 0 | { |
12254 | 0 | file_ptr dummy_offset; |
12255 | |
|
12256 | 0 | BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); |
12257 | 0 | dummy_offset = htab->sstubs->size - htab->function_stub_size; |
12258 | 0 | memset (htab->sstubs->contents + dummy_offset, 0, |
12259 | 0 | htab->function_stub_size); |
12260 | 0 | } |
12261 | 0 | } |
12262 | 0 | } |
12263 | | |
12264 | | /* The psABI says that the dynamic relocations must be sorted in |
12265 | | increasing order of r_symndx. The VxWorks EABI doesn't require |
12266 | | this, and because the code below handles REL rather than RELA |
12267 | | relocations, using it for VxWorks would be outright harmful. */ |
12268 | 0 | if (htab->root.target_os != is_vxworks) |
12269 | 0 | { |
12270 | 0 | s = mips_elf_rel_dyn_section (info, false); |
12271 | 0 | if (s != NULL |
12272 | 0 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) |
12273 | 0 | { |
12274 | 0 | reldyn_sorting_bfd = output_bfd; |
12275 | |
|
12276 | 0 | if (ABI_64_P (output_bfd)) |
12277 | 0 | qsort ((Elf64_External_Rel *) s->contents + 1, |
12278 | 0 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), |
12279 | 0 | sort_dynamic_relocs_64); |
12280 | 0 | else |
12281 | 0 | qsort ((Elf32_External_Rel *) s->contents + 1, |
12282 | 0 | s->reloc_count - 1, sizeof (Elf32_External_Rel), |
12283 | 0 | sort_dynamic_relocs); |
12284 | 0 | } |
12285 | 0 | } |
12286 | 0 | } |
12287 | |
|
12288 | 0 | if (htab->root.splt && htab->root.splt->size > 0) |
12289 | 0 | { |
12290 | 0 | if (htab->root.target_os == is_vxworks) |
12291 | 0 | { |
12292 | 0 | if (bfd_link_pic (info)) |
12293 | 0 | mips_vxworks_finish_shared_plt (output_bfd, info); |
12294 | 0 | else |
12295 | 0 | mips_vxworks_finish_exec_plt (output_bfd, info); |
12296 | 0 | } |
12297 | 0 | else |
12298 | 0 | { |
12299 | 0 | BFD_ASSERT (!bfd_link_pic (info)); |
12300 | 0 | if (!mips_finish_exec_plt (output_bfd, info)) |
12301 | 0 | return false; |
12302 | 0 | } |
12303 | 0 | } |
12304 | 0 | return true; |
12305 | 0 | } |
12306 | | |
12307 | | |
12308 | | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
12309 | | |
12310 | | static void |
12311 | | mips_set_isa_flags (bfd *abfd) |
12312 | 2 | { |
12313 | 2 | flagword val; |
12314 | | |
12315 | 2 | switch (bfd_get_mach (abfd)) |
12316 | 2 | { |
12317 | 0 | default: |
12318 | 0 | if (ABI_N32_P (abfd) || ABI_64_P (abfd)) |
12319 | 0 | val = MIPS_DEFAULT_R6 ? EF_MIPS_ARCH_64R6 : EF_MIPS_ARCH_3; |
12320 | 0 | else |
12321 | 0 | val = MIPS_DEFAULT_R6 ? EF_MIPS_ARCH_32R6 : EF_MIPS_ARCH_1; |
12322 | 0 | break; |
12323 | | |
12324 | 1 | case bfd_mach_mips3000: |
12325 | 1 | val = EF_MIPS_ARCH_1; |
12326 | 1 | break; |
12327 | | |
12328 | 0 | case bfd_mach_mips3900: |
12329 | 0 | val = EF_MIPS_ARCH_1 | EF_MIPS_MACH_3900; |
12330 | 0 | break; |
12331 | | |
12332 | 0 | case bfd_mach_mips6000: |
12333 | 0 | val = EF_MIPS_ARCH_2; |
12334 | 0 | break; |
12335 | | |
12336 | 0 | case bfd_mach_mips4010: |
12337 | 0 | val = EF_MIPS_ARCH_2 | EF_MIPS_MACH_4010; |
12338 | 0 | break; |
12339 | | |
12340 | 0 | case bfd_mach_mips_allegrex: |
12341 | 0 | val = EF_MIPS_ARCH_2 | EF_MIPS_MACH_ALLEGREX; |
12342 | 0 | break; |
12343 | | |
12344 | 0 | case bfd_mach_mips4000: |
12345 | 0 | case bfd_mach_mips4300: |
12346 | 0 | case bfd_mach_mips4400: |
12347 | 0 | case bfd_mach_mips4600: |
12348 | 0 | val = EF_MIPS_ARCH_3; |
12349 | 0 | break; |
12350 | | |
12351 | 0 | case bfd_mach_mips4100: |
12352 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4100; |
12353 | 0 | break; |
12354 | | |
12355 | 0 | case bfd_mach_mips4111: |
12356 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4111; |
12357 | 0 | break; |
12358 | | |
12359 | 0 | case bfd_mach_mips4120: |
12360 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4120; |
12361 | 0 | break; |
12362 | | |
12363 | 0 | case bfd_mach_mips4650: |
12364 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4650; |
12365 | 0 | break; |
12366 | | |
12367 | 0 | case bfd_mach_mips5400: |
12368 | 0 | val = EF_MIPS_ARCH_4 | EF_MIPS_MACH_5400; |
12369 | 0 | break; |
12370 | | |
12371 | 0 | case bfd_mach_mips5500: |
12372 | 0 | val = EF_MIPS_ARCH_4 | EF_MIPS_MACH_5500; |
12373 | 0 | break; |
12374 | | |
12375 | 0 | case bfd_mach_mips5900: |
12376 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_5900; |
12377 | 0 | break; |
12378 | | |
12379 | 0 | case bfd_mach_mips9000: |
12380 | 0 | val = EF_MIPS_ARCH_4 | EF_MIPS_MACH_9000; |
12381 | 0 | break; |
12382 | | |
12383 | 0 | case bfd_mach_mips5000: |
12384 | 0 | case bfd_mach_mips7000: |
12385 | 1 | case bfd_mach_mips8000: |
12386 | 1 | case bfd_mach_mips10000: |
12387 | 1 | case bfd_mach_mips12000: |
12388 | 1 | case bfd_mach_mips14000: |
12389 | 1 | case bfd_mach_mips16000: |
12390 | 1 | val = EF_MIPS_ARCH_4; |
12391 | 1 | break; |
12392 | | |
12393 | 0 | case bfd_mach_mips5: |
12394 | 0 | val = EF_MIPS_ARCH_5; |
12395 | 0 | break; |
12396 | | |
12397 | 0 | case bfd_mach_mips_loongson_2e: |
12398 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_LS2E; |
12399 | 0 | break; |
12400 | | |
12401 | 0 | case bfd_mach_mips_loongson_2f: |
12402 | 0 | val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_LS2F; |
12403 | 0 | break; |
12404 | | |
12405 | 0 | case bfd_mach_mips_sb1: |
12406 | 0 | val = EF_MIPS_ARCH_64 | EF_MIPS_MACH_SB1; |
12407 | 0 | break; |
12408 | | |
12409 | 0 | case bfd_mach_mips_gs464: |
12410 | 0 | val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_GS464; |
12411 | 0 | break; |
12412 | | |
12413 | 0 | case bfd_mach_mips_gs464e: |
12414 | 0 | val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_GS464E; |
12415 | 0 | break; |
12416 | | |
12417 | 0 | case bfd_mach_mips_gs264e: |
12418 | 0 | val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_GS264E; |
12419 | 0 | break; |
12420 | | |
12421 | 0 | case bfd_mach_mips_octeon: |
12422 | 0 | case bfd_mach_mips_octeonp: |
12423 | 0 | val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_OCTEON; |
12424 | 0 | break; |
12425 | | |
12426 | 0 | case bfd_mach_mips_octeon3: |
12427 | 0 | val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_OCTEON3; |
12428 | 0 | break; |
12429 | | |
12430 | 0 | case bfd_mach_mips_xlr: |
12431 | 0 | val = EF_MIPS_ARCH_64 | EF_MIPS_MACH_XLR; |
12432 | 0 | break; |
12433 | | |
12434 | 0 | case bfd_mach_mips_octeon2: |
12435 | 0 | val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_OCTEON2; |
12436 | 0 | break; |
12437 | | |
12438 | 0 | case bfd_mach_mipsisa32: |
12439 | 0 | val = EF_MIPS_ARCH_32; |
12440 | 0 | break; |
12441 | | |
12442 | 0 | case bfd_mach_mipsisa64: |
12443 | 0 | val = EF_MIPS_ARCH_64; |
12444 | 0 | break; |
12445 | | |
12446 | 0 | case bfd_mach_mipsisa32r2: |
12447 | 0 | case bfd_mach_mipsisa32r3: |
12448 | 0 | case bfd_mach_mipsisa32r5: |
12449 | 0 | val = EF_MIPS_ARCH_32R2; |
12450 | 0 | break; |
12451 | | |
12452 | 0 | case bfd_mach_mips_interaptiv_mr2: |
12453 | 0 | val = EF_MIPS_ARCH_32R2 | EF_MIPS_MACH_IAMR2; |
12454 | 0 | break; |
12455 | | |
12456 | 0 | case bfd_mach_mipsisa64r2: |
12457 | 0 | case bfd_mach_mipsisa64r3: |
12458 | 0 | case bfd_mach_mipsisa64r5: |
12459 | 0 | val = EF_MIPS_ARCH_64R2; |
12460 | 0 | break; |
12461 | | |
12462 | 0 | case bfd_mach_mipsisa32r6: |
12463 | 0 | val = EF_MIPS_ARCH_32R6; |
12464 | 0 | break; |
12465 | | |
12466 | 0 | case bfd_mach_mipsisa64r6: |
12467 | 0 | val = EF_MIPS_ARCH_64R6; |
12468 | 0 | break; |
12469 | 2 | } |
12470 | 2 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
12471 | 2 | elf_elfheader (abfd)->e_flags |= val; |
12472 | | |
12473 | 2 | } |
12474 | | |
12475 | | |
12476 | | /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. |
12477 | | Don't do so for code sections. We want to keep ordering of HI16/LO16 |
12478 | | as is. On the other hand, elf-eh-frame.c processing requires .eh_frame |
12479 | | relocs to be sorted. */ |
12480 | | |
12481 | | bool |
12482 | | _bfd_mips_elf_sort_relocs_p (asection *sec) |
12483 | 0 | { |
12484 | 0 | return (sec->flags & SEC_CODE) == 0; |
12485 | 0 | } |
12486 | | |
12487 | | |
12488 | | /* The final processing done just before writing out a MIPS ELF object |
12489 | | file. This gets the MIPS architecture right based on the machine |
12490 | | number. This is used by both the 32-bit and the 64-bit ABI. */ |
12491 | | |
12492 | | void |
12493 | | _bfd_mips_final_write_processing (bfd *abfd) |
12494 | 2 | { |
12495 | 2 | unsigned int i; |
12496 | 2 | Elf_Internal_Shdr **hdrpp; |
12497 | 2 | const char *name; |
12498 | 2 | asection *sec; |
12499 | | |
12500 | | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former |
12501 | | is nonzero. This is for compatibility with old objects, which used |
12502 | | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ |
12503 | 2 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) |
12504 | 2 | mips_set_isa_flags (abfd); |
12505 | | |
12506 | | /* Set the sh_info field for .gptab sections and other appropriate |
12507 | | info for each special section. */ |
12508 | 2 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; |
12509 | 4 | i < elf_numsections (abfd); |
12510 | 2 | i++, hdrpp++) |
12511 | 2 | { |
12512 | 2 | switch ((*hdrpp)->sh_type) |
12513 | 2 | { |
12514 | 0 | case SHT_MIPS_MSYM: |
12515 | 0 | case SHT_MIPS_LIBLIST: |
12516 | 0 | sec = bfd_get_section_by_name (abfd, ".dynstr"); |
12517 | 0 | if (sec != NULL) |
12518 | 0 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
12519 | 0 | break; |
12520 | | |
12521 | 0 | case SHT_MIPS_GPTAB: |
12522 | 0 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
12523 | 0 | name = bfd_section_name ((*hdrpp)->bfd_section); |
12524 | 0 | if (startswith (name, ".gptab.")) |
12525 | 0 | { |
12526 | 0 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
12527 | 0 | if (sec != NULL) |
12528 | 0 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
12529 | 0 | } |
12530 | 0 | break; |
12531 | | |
12532 | 0 | case SHT_MIPS_CONTENT: |
12533 | 0 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
12534 | 0 | name = bfd_section_name ((*hdrpp)->bfd_section); |
12535 | 0 | if (startswith (name, ".MIPS.content")) |
12536 | 0 | { |
12537 | 0 | sec = bfd_get_section_by_name (abfd, |
12538 | 0 | name + sizeof ".MIPS.content" - 1); |
12539 | 0 | if (sec != NULL) |
12540 | 0 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
12541 | 0 | } |
12542 | 0 | break; |
12543 | | |
12544 | 0 | case SHT_MIPS_SYMBOL_LIB: |
12545 | 0 | sec = bfd_get_section_by_name (abfd, ".dynsym"); |
12546 | 0 | if (sec != NULL) |
12547 | 0 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
12548 | 0 | sec = bfd_get_section_by_name (abfd, ".liblist"); |
12549 | 0 | if (sec != NULL) |
12550 | 0 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
12551 | 0 | break; |
12552 | | |
12553 | 0 | case SHT_MIPS_EVENTS: |
12554 | 0 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
12555 | 0 | name = bfd_section_name ((*hdrpp)->bfd_section); |
12556 | 0 | if (startswith (name, ".MIPS.events")) |
12557 | 0 | sec = bfd_get_section_by_name (abfd, |
12558 | 0 | name + sizeof ".MIPS.events" - 1); |
12559 | 0 | else if (startswith (name, ".MIPS.post_rel")) |
12560 | 0 | sec = bfd_get_section_by_name (abfd, |
12561 | 0 | name + sizeof ".MIPS.post_rel" - 1); |
12562 | 0 | else |
12563 | 0 | sec = NULL; |
12564 | 0 | if (sec != NULL) |
12565 | 0 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
12566 | 0 | break; |
12567 | | |
12568 | 0 | case SHT_MIPS_XHASH: |
12569 | 0 | sec = bfd_get_section_by_name (abfd, ".dynsym"); |
12570 | 0 | if (sec != NULL) |
12571 | 0 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
12572 | 2 | } |
12573 | 2 | } |
12574 | 2 | } |
12575 | | |
12576 | | bool |
12577 | | _bfd_mips_elf_final_write_processing (bfd *abfd) |
12578 | 2 | { |
12579 | 2 | _bfd_mips_final_write_processing (abfd); |
12580 | 2 | return _bfd_elf_final_write_processing (abfd); |
12581 | 2 | } |
12582 | | |
12583 | | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
12584 | | segments. */ |
12585 | | |
12586 | | int |
12587 | | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
12588 | | struct bfd_link_info *info ATTRIBUTE_UNUSED) |
12589 | 0 | { |
12590 | 0 | asection *s; |
12591 | 0 | int ret = 0; |
12592 | | |
12593 | | /* See if we need a PT_MIPS_REGINFO segment. */ |
12594 | 0 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
12595 | 0 | if (s && (s->flags & SEC_LOAD)) |
12596 | 0 | ++ret; |
12597 | | |
12598 | | /* See if we need a PT_MIPS_ABIFLAGS segment. */ |
12599 | 0 | if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) |
12600 | 0 | ++ret; |
12601 | | |
12602 | | /* See if we need a PT_MIPS_OPTIONS segment. */ |
12603 | 0 | if (IRIX_COMPAT (abfd) == ict_irix6 |
12604 | 0 | && bfd_get_section_by_name (abfd, |
12605 | 0 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) |
12606 | 0 | ++ret; |
12607 | | |
12608 | | /* See if we need a PT_MIPS_RTPROC segment. */ |
12609 | 0 | if (IRIX_COMPAT (abfd) == ict_irix5 |
12610 | 0 | && bfd_get_section_by_name (abfd, ".dynamic") |
12611 | 0 | && bfd_get_section_by_name (abfd, ".mdebug")) |
12612 | 0 | ++ret; |
12613 | | |
12614 | | /* Allocate a PT_NULL header in dynamic objects. See |
12615 | | _bfd_mips_elf_modify_segment_map for details. */ |
12616 | 0 | if (!SGI_COMPAT (abfd) |
12617 | 0 | && bfd_get_section_by_name (abfd, ".dynamic")) |
12618 | 0 | ++ret; |
12619 | |
|
12620 | 0 | return ret; |
12621 | 0 | } |
12622 | | |
12623 | | /* Modify the segment map for an IRIX5 executable. */ |
12624 | | |
12625 | | bool |
12626 | | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
12627 | | struct bfd_link_info *info) |
12628 | 2 | { |
12629 | 2 | asection *s; |
12630 | 2 | struct elf_segment_map *m, **pm; |
12631 | 2 | size_t amt; |
12632 | | |
12633 | | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO |
12634 | | segment. */ |
12635 | 2 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
12636 | 2 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
12637 | 0 | { |
12638 | 0 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
12639 | 0 | if (m->p_type == PT_MIPS_REGINFO) |
12640 | 0 | break; |
12641 | 0 | if (m == NULL) |
12642 | 0 | { |
12643 | 0 | amt = sizeof *m; |
12644 | 0 | m = bfd_zalloc (abfd, amt); |
12645 | 0 | if (m == NULL) |
12646 | 0 | return false; |
12647 | | |
12648 | 0 | m->p_type = PT_MIPS_REGINFO; |
12649 | 0 | m->count = 1; |
12650 | 0 | m->sections[0] = s; |
12651 | | |
12652 | | /* We want to put it after the PHDR and INTERP segments. */ |
12653 | 0 | pm = &elf_seg_map (abfd); |
12654 | 0 | while (*pm != NULL |
12655 | 0 | && ((*pm)->p_type == PT_PHDR |
12656 | 0 | || (*pm)->p_type == PT_INTERP)) |
12657 | 0 | pm = &(*pm)->next; |
12658 | |
|
12659 | 0 | m->next = *pm; |
12660 | 0 | *pm = m; |
12661 | 0 | } |
12662 | 0 | } |
12663 | | |
12664 | | /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS |
12665 | | segment. */ |
12666 | 2 | s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); |
12667 | 2 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
12668 | 0 | { |
12669 | 0 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
12670 | 0 | if (m->p_type == PT_MIPS_ABIFLAGS) |
12671 | 0 | break; |
12672 | 0 | if (m == NULL) |
12673 | 0 | { |
12674 | 0 | amt = sizeof *m; |
12675 | 0 | m = bfd_zalloc (abfd, amt); |
12676 | 0 | if (m == NULL) |
12677 | 0 | return false; |
12678 | | |
12679 | 0 | m->p_type = PT_MIPS_ABIFLAGS; |
12680 | 0 | m->count = 1; |
12681 | 0 | m->sections[0] = s; |
12682 | | |
12683 | | /* We want to put it after the PHDR and INTERP segments. */ |
12684 | 0 | pm = &elf_seg_map (abfd); |
12685 | 0 | while (*pm != NULL |
12686 | 0 | && ((*pm)->p_type == PT_PHDR |
12687 | 0 | || (*pm)->p_type == PT_INTERP)) |
12688 | 0 | pm = &(*pm)->next; |
12689 | |
|
12690 | 0 | m->next = *pm; |
12691 | 0 | *pm = m; |
12692 | 0 | } |
12693 | 0 | } |
12694 | | |
12695 | | /* For IRIX 6, we don't have .mdebug sections, nor does anything but |
12696 | | .dynamic end up in PT_DYNAMIC. However, we do have to insert a |
12697 | | PT_MIPS_OPTIONS segment immediately following the program header |
12698 | | table. */ |
12699 | 2 | if (NEWABI_P (abfd) |
12700 | | /* On non-IRIX6 new abi, we'll have already created a segment |
12701 | | for this section, so don't create another. I'm not sure this |
12702 | | is not also the case for IRIX 6, but I can't test it right |
12703 | | now. */ |
12704 | 2 | && IRIX_COMPAT (abfd) == ict_irix6) |
12705 | 0 | { |
12706 | 0 | for (s = abfd->sections; s; s = s->next) |
12707 | 0 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) |
12708 | 0 | break; |
12709 | |
|
12710 | 0 | if (s) |
12711 | 0 | { |
12712 | 0 | struct elf_segment_map *options_segment; |
12713 | |
|
12714 | 0 | pm = &elf_seg_map (abfd); |
12715 | 0 | while (*pm != NULL |
12716 | 0 | && ((*pm)->p_type == PT_PHDR |
12717 | 0 | || (*pm)->p_type == PT_INTERP)) |
12718 | 0 | pm = &(*pm)->next; |
12719 | |
|
12720 | 0 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
12721 | 0 | { |
12722 | 0 | amt = sizeof (struct elf_segment_map); |
12723 | 0 | options_segment = bfd_zalloc (abfd, amt); |
12724 | 0 | options_segment->next = *pm; |
12725 | 0 | options_segment->p_type = PT_MIPS_OPTIONS; |
12726 | 0 | options_segment->p_flags = PF_R; |
12727 | 0 | options_segment->p_flags_valid = true; |
12728 | 0 | options_segment->count = 1; |
12729 | 0 | options_segment->sections[0] = s; |
12730 | 0 | *pm = options_segment; |
12731 | 0 | } |
12732 | 0 | } |
12733 | 0 | } |
12734 | 2 | else |
12735 | 2 | { |
12736 | 2 | if (IRIX_COMPAT (abfd) == ict_irix5) |
12737 | 2 | { |
12738 | | /* If there are .dynamic and .mdebug sections, we make a room |
12739 | | for the RTPROC header. FIXME: Rewrite without section names. */ |
12740 | 2 | if (bfd_get_section_by_name (abfd, ".interp") == NULL |
12741 | 2 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL |
12742 | 2 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) |
12743 | 0 | { |
12744 | 0 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
12745 | 0 | if (m->p_type == PT_MIPS_RTPROC) |
12746 | 0 | break; |
12747 | 0 | if (m == NULL) |
12748 | 0 | { |
12749 | 0 | amt = sizeof *m; |
12750 | 0 | m = bfd_zalloc (abfd, amt); |
12751 | 0 | if (m == NULL) |
12752 | 0 | return false; |
12753 | | |
12754 | 0 | m->p_type = PT_MIPS_RTPROC; |
12755 | |
|
12756 | 0 | s = bfd_get_section_by_name (abfd, ".rtproc"); |
12757 | 0 | if (s == NULL) |
12758 | 0 | { |
12759 | 0 | m->count = 0; |
12760 | 0 | m->p_flags = 0; |
12761 | 0 | m->p_flags_valid = 1; |
12762 | 0 | } |
12763 | 0 | else |
12764 | 0 | { |
12765 | 0 | m->count = 1; |
12766 | 0 | m->sections[0] = s; |
12767 | 0 | } |
12768 | | |
12769 | | /* We want to put it after the DYNAMIC segment. */ |
12770 | 0 | pm = &elf_seg_map (abfd); |
12771 | 0 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) |
12772 | 0 | pm = &(*pm)->next; |
12773 | 0 | if (*pm != NULL) |
12774 | 0 | pm = &(*pm)->next; |
12775 | |
|
12776 | 0 | m->next = *pm; |
12777 | 0 | *pm = m; |
12778 | 0 | } |
12779 | 0 | } |
12780 | 2 | } |
12781 | | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
12782 | | .dynstr, .dynsym, and .hash sections, and everything in |
12783 | | between. */ |
12784 | 2 | for (pm = &elf_seg_map (abfd); *pm != NULL; |
12785 | 2 | pm = &(*pm)->next) |
12786 | 0 | if ((*pm)->p_type == PT_DYNAMIC) |
12787 | 0 | break; |
12788 | 2 | m = *pm; |
12789 | | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
12790 | | glibc's dynamic linker has traditionally derived the number of |
12791 | | tags from the p_filesz field, and sometimes allocates stack |
12792 | | arrays of that size. An overly-big PT_DYNAMIC segment can |
12793 | | be actively harmful in such cases. Making PT_DYNAMIC contain |
12794 | | other sections can also make life hard for the prelinker, |
12795 | | which might move one of the other sections to a different |
12796 | | PT_LOAD segment. */ |
12797 | 2 | if (SGI_COMPAT (abfd) |
12798 | 2 | && m != NULL |
12799 | 2 | && m->count == 1 |
12800 | 2 | && strcmp (m->sections[0]->name, ".dynamic") == 0) |
12801 | 0 | { |
12802 | 0 | static const char *sec_names[] = |
12803 | 0 | { |
12804 | 0 | ".dynamic", ".dynstr", ".dynsym", ".hash" |
12805 | 0 | }; |
12806 | 0 | bfd_vma low, high; |
12807 | 0 | unsigned int i, c; |
12808 | 0 | struct elf_segment_map *n; |
12809 | |
|
12810 | 0 | low = ~(bfd_vma) 0; |
12811 | 0 | high = 0; |
12812 | 0 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) |
12813 | 0 | { |
12814 | 0 | s = bfd_get_section_by_name (abfd, sec_names[i]); |
12815 | 0 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
12816 | 0 | { |
12817 | 0 | bfd_size_type sz; |
12818 | |
|
12819 | 0 | if (low > s->vma) |
12820 | 0 | low = s->vma; |
12821 | 0 | sz = s->size; |
12822 | 0 | if (high < s->vma + sz) |
12823 | 0 | high = s->vma + sz; |
12824 | 0 | } |
12825 | 0 | } |
12826 | |
|
12827 | 0 | c = 0; |
12828 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
12829 | 0 | if ((s->flags & SEC_LOAD) != 0 |
12830 | 0 | && s->vma >= low |
12831 | 0 | && s->vma + s->size <= high) |
12832 | 0 | ++c; |
12833 | |
|
12834 | 0 | amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *); |
12835 | 0 | n = bfd_zalloc (abfd, amt); |
12836 | 0 | if (n == NULL) |
12837 | 0 | return false; |
12838 | 0 | *n = *m; |
12839 | 0 | n->count = c; |
12840 | |
|
12841 | 0 | i = 0; |
12842 | 0 | for (s = abfd->sections; s != NULL; s = s->next) |
12843 | 0 | { |
12844 | 0 | if ((s->flags & SEC_LOAD) != 0 |
12845 | 0 | && s->vma >= low |
12846 | 0 | && s->vma + s->size <= high) |
12847 | 0 | { |
12848 | 0 | n->sections[i] = s; |
12849 | 0 | ++i; |
12850 | 0 | } |
12851 | 0 | } |
12852 | |
|
12853 | 0 | *pm = n; |
12854 | 0 | } |
12855 | 2 | } |
12856 | | |
12857 | | /* Allocate a spare program header in dynamic objects so that tools |
12858 | | like the prelinker can add an extra PT_LOAD entry. |
12859 | | |
12860 | | If the prelinker needs to make room for a new PT_LOAD entry, its |
12861 | | standard procedure is to move the first (read-only) sections into |
12862 | | the new (writable) segment. However, the MIPS ABI requires |
12863 | | .dynamic to be in a read-only segment, and the section will often |
12864 | | start within sizeof (ElfNN_Phdr) bytes of the last program header. |
12865 | | |
12866 | | Although the prelinker could in principle move .dynamic to a |
12867 | | writable segment, it seems better to allocate a spare program |
12868 | | header instead, and avoid the need to move any sections. |
12869 | | There is a long tradition of allocating spare dynamic tags, |
12870 | | so allocating a spare program header seems like a natural |
12871 | | extension. |
12872 | | |
12873 | | If INFO is NULL, we may be copying an already prelinked binary |
12874 | | with objcopy or strip, so do not add this header. */ |
12875 | 2 | if (info != NULL |
12876 | 2 | && !SGI_COMPAT (abfd) |
12877 | 2 | && bfd_get_section_by_name (abfd, ".dynamic")) |
12878 | 0 | { |
12879 | 0 | for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) |
12880 | 0 | if ((*pm)->p_type == PT_NULL) |
12881 | 0 | break; |
12882 | 0 | if (*pm == NULL) |
12883 | 0 | { |
12884 | 0 | m = bfd_zalloc (abfd, sizeof (*m)); |
12885 | 0 | if (m == NULL) |
12886 | 0 | return false; |
12887 | | |
12888 | 0 | m->p_type = PT_NULL; |
12889 | 0 | *pm = m; |
12890 | 0 | } |
12891 | 0 | } |
12892 | | |
12893 | 2 | return true; |
12894 | 2 | } |
12895 | | |
12896 | | /* Return the section that should be marked against GC for a given |
12897 | | relocation. */ |
12898 | | |
12899 | | asection * |
12900 | | _bfd_mips_elf_gc_mark_hook (asection *sec, |
12901 | | struct bfd_link_info *info, |
12902 | | Elf_Internal_Rela *rel, |
12903 | | struct elf_link_hash_entry *h, |
12904 | | Elf_Internal_Sym *sym) |
12905 | 0 | { |
12906 | | /* ??? Do mips16 stub sections need to be handled special? */ |
12907 | |
|
12908 | 0 | if (h != NULL) |
12909 | 0 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
12910 | 0 | { |
12911 | 0 | case R_MIPS_GNU_VTINHERIT: |
12912 | 0 | case R_MIPS_GNU_VTENTRY: |
12913 | 0 | return NULL; |
12914 | 0 | } |
12915 | | |
12916 | 0 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
12917 | 0 | } |
12918 | | |
12919 | | /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ |
12920 | | |
12921 | | bool |
12922 | | _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, |
12923 | | elf_gc_mark_hook_fn gc_mark_hook) |
12924 | 0 | { |
12925 | 0 | bfd *sub; |
12926 | |
|
12927 | 0 | _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); |
12928 | |
|
12929 | 0 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
12930 | 0 | { |
12931 | 0 | asection *o; |
12932 | |
|
12933 | 0 | if (! is_mips_elf (sub)) |
12934 | 0 | continue; |
12935 | | |
12936 | 0 | for (o = sub->sections; o != NULL; o = o->next) |
12937 | 0 | if (!o->gc_mark |
12938 | 0 | && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o))) |
12939 | 0 | { |
12940 | 0 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) |
12941 | 0 | return false; |
12942 | 0 | } |
12943 | 0 | } |
12944 | | |
12945 | 0 | return true; |
12946 | 0 | } |
12947 | | |
12948 | | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, |
12949 | | hiding the old indirect symbol. Process additional relocation |
12950 | | information. Also called for weakdefs, in which case we just let |
12951 | | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ |
12952 | | |
12953 | | void |
12954 | | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
12955 | | struct elf_link_hash_entry *dir, |
12956 | | struct elf_link_hash_entry *ind) |
12957 | 0 | { |
12958 | 0 | struct mips_elf_link_hash_entry *dirmips, *indmips; |
12959 | |
|
12960 | 0 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
12961 | |
|
12962 | 0 | dirmips = (struct mips_elf_link_hash_entry *) dir; |
12963 | 0 | indmips = (struct mips_elf_link_hash_entry *) ind; |
12964 | | /* Any absolute non-dynamic relocations against an indirect or weak |
12965 | | definition will be against the target symbol. */ |
12966 | 0 | if (indmips->has_static_relocs) |
12967 | 0 | dirmips->has_static_relocs = true; |
12968 | |
|
12969 | 0 | if (ind->root.type != bfd_link_hash_indirect) |
12970 | 0 | return; |
12971 | | |
12972 | 0 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
12973 | 0 | if (indmips->readonly_reloc) |
12974 | 0 | dirmips->readonly_reloc = true; |
12975 | 0 | if (indmips->no_fn_stub) |
12976 | 0 | dirmips->no_fn_stub = true; |
12977 | 0 | if (indmips->fn_stub) |
12978 | 0 | { |
12979 | 0 | dirmips->fn_stub = indmips->fn_stub; |
12980 | 0 | indmips->fn_stub = NULL; |
12981 | 0 | } |
12982 | 0 | if (indmips->need_fn_stub) |
12983 | 0 | { |
12984 | 0 | dirmips->need_fn_stub = true; |
12985 | 0 | indmips->need_fn_stub = false; |
12986 | 0 | } |
12987 | 0 | if (indmips->call_stub) |
12988 | 0 | { |
12989 | 0 | dirmips->call_stub = indmips->call_stub; |
12990 | 0 | indmips->call_stub = NULL; |
12991 | 0 | } |
12992 | 0 | if (indmips->call_fp_stub) |
12993 | 0 | { |
12994 | 0 | dirmips->call_fp_stub = indmips->call_fp_stub; |
12995 | 0 | indmips->call_fp_stub = NULL; |
12996 | 0 | } |
12997 | 0 | if (indmips->global_got_area < dirmips->global_got_area) |
12998 | 0 | dirmips->global_got_area = indmips->global_got_area; |
12999 | 0 | if (indmips->global_got_area < GGA_NONE) |
13000 | 0 | indmips->global_got_area = GGA_NONE; |
13001 | 0 | if (indmips->has_nonpic_branches) |
13002 | 0 | dirmips->has_nonpic_branches = true; |
13003 | 0 | } |
13004 | | |
13005 | | /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts |
13006 | | to hide it. It has to remain global (it will also be protected) so as to |
13007 | | be assigned a global GOT entry, which will then remain unchanged at load |
13008 | | time. */ |
13009 | | |
13010 | | void |
13011 | | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
13012 | | struct elf_link_hash_entry *entry, |
13013 | | bool force_local) |
13014 | 0 | { |
13015 | 0 | struct mips_elf_link_hash_table *htab; |
13016 | |
|
13017 | 0 | htab = mips_elf_hash_table (info); |
13018 | 0 | BFD_ASSERT (htab != NULL); |
13019 | 0 | if (htab->use_absolute_zero |
13020 | 0 | && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0) |
13021 | 0 | return; |
13022 | | |
13023 | 0 | _bfd_elf_link_hash_hide_symbol (info, entry, force_local); |
13024 | 0 | } |
13025 | | |
13026 | 0 | #define PDR_SIZE 32 |
13027 | | |
13028 | | bool |
13029 | | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
13030 | | struct bfd_link_info *info) |
13031 | 0 | { |
13032 | 0 | asection *o; |
13033 | 0 | bool ret = false; |
13034 | 0 | unsigned char *tdata; |
13035 | 0 | size_t i, skip; |
13036 | |
|
13037 | 0 | o = bfd_get_section_by_name (abfd, ".pdr"); |
13038 | 0 | if (! o) |
13039 | 0 | return false; |
13040 | 0 | if (o->size == 0) |
13041 | 0 | return false; |
13042 | 0 | if (o->size % PDR_SIZE != 0) |
13043 | 0 | return false; |
13044 | 0 | if (o->output_section != NULL |
13045 | 0 | && bfd_is_abs_section (o->output_section)) |
13046 | 0 | return false; |
13047 | | |
13048 | 0 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
13049 | 0 | if (! tdata) |
13050 | 0 | return false; |
13051 | | |
13052 | 0 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
13053 | 0 | info->keep_memory); |
13054 | 0 | if (!cookie->rels) |
13055 | 0 | { |
13056 | 0 | free (tdata); |
13057 | 0 | return false; |
13058 | 0 | } |
13059 | | |
13060 | 0 | cookie->rel = cookie->rels; |
13061 | 0 | cookie->relend = cookie->rels + o->reloc_count; |
13062 | |
|
13063 | 0 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
13064 | 0 | { |
13065 | 0 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
13066 | 0 | { |
13067 | 0 | tdata[i] = 1; |
13068 | 0 | skip ++; |
13069 | 0 | } |
13070 | 0 | } |
13071 | |
|
13072 | 0 | if (skip != 0) |
13073 | 0 | { |
13074 | 0 | mips_elf_section_data (o)->u.tdata = tdata; |
13075 | 0 | if (o->rawsize == 0) |
13076 | 0 | o->rawsize = o->size; |
13077 | 0 | o->size -= skip * PDR_SIZE; |
13078 | 0 | ret = true; |
13079 | 0 | } |
13080 | 0 | else |
13081 | 0 | free (tdata); |
13082 | |
|
13083 | 0 | if (! info->keep_memory) |
13084 | 0 | free (cookie->rels); |
13085 | |
|
13086 | 0 | return ret; |
13087 | 0 | } |
13088 | | |
13089 | | bool |
13090 | | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
13091 | 0 | { |
13092 | 0 | if (strcmp (sec->name, ".pdr") == 0) |
13093 | 0 | return true; |
13094 | 0 | return false; |
13095 | 0 | } |
13096 | | |
13097 | | bool |
13098 | | _bfd_mips_elf_write_section (bfd *output_bfd, |
13099 | | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, |
13100 | | asection *sec, bfd_byte *contents) |
13101 | 0 | { |
13102 | 0 | bfd_byte *to, *from, *end; |
13103 | 0 | int i; |
13104 | |
|
13105 | 0 | if (strcmp (sec->name, ".pdr") != 0) |
13106 | 0 | return false; |
13107 | | |
13108 | 0 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
13109 | 0 | return false; |
13110 | | |
13111 | 0 | to = contents; |
13112 | 0 | end = contents + sec->size; |
13113 | 0 | for (from = contents, i = 0; |
13114 | 0 | from < end; |
13115 | 0 | from += PDR_SIZE, i++) |
13116 | 0 | { |
13117 | 0 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
13118 | 0 | continue; |
13119 | 0 | if (to != from) |
13120 | 0 | memcpy (to, from, PDR_SIZE); |
13121 | 0 | to += PDR_SIZE; |
13122 | 0 | } |
13123 | 0 | bfd_set_section_contents (output_bfd, sec->output_section, contents, |
13124 | 0 | sec->output_offset, sec->size); |
13125 | 0 | return true; |
13126 | 0 | } |
13127 | | |
13128 | | /* microMIPS code retains local labels for linker relaxation. Omit them |
13129 | | from output by default for clarity. */ |
13130 | | |
13131 | | bool |
13132 | | _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) |
13133 | 591 | { |
13134 | 591 | return _bfd_elf_is_local_label_name (abfd, sym->name); |
13135 | 591 | } |
13136 | | |
13137 | | bool |
13138 | | _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, |
13139 | | asection *section, bfd_vma offset, |
13140 | | const char **filename_ptr, |
13141 | | const char **functionname_ptr, |
13142 | | unsigned int *line_ptr, |
13143 | | unsigned int *discriminator_ptr) |
13144 | 7.14k | { |
13145 | 7.14k | asection *msec; |
13146 | | |
13147 | 7.14k | if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, |
13148 | 7.14k | filename_ptr, functionname_ptr, |
13149 | 7.14k | line_ptr, discriminator_ptr, |
13150 | 7.14k | dwarf_debug_sections, |
13151 | 7.14k | &elf_tdata (abfd)->dwarf2_find_line_info) |
13152 | 7.14k | == 1) |
13153 | 0 | return true; |
13154 | | |
13155 | 7.14k | if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, |
13156 | 7.14k | filename_ptr, functionname_ptr, |
13157 | 7.14k | line_ptr)) |
13158 | 0 | { |
13159 | 0 | if (!*functionname_ptr) |
13160 | 0 | _bfd_elf_find_function (abfd, symbols, section, offset, |
13161 | 0 | *filename_ptr ? NULL : filename_ptr, |
13162 | 0 | functionname_ptr); |
13163 | 0 | return true; |
13164 | 0 | } |
13165 | | |
13166 | 7.14k | msec = bfd_get_section_by_name (abfd, ".mdebug"); |
13167 | 7.14k | if (msec != NULL) |
13168 | 5.44k | { |
13169 | 5.44k | flagword origflags; |
13170 | 5.44k | struct mips_elf_find_line *fi; |
13171 | 5.44k | const struct ecoff_debug_swap * const swap = |
13172 | 5.44k | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
13173 | | |
13174 | | /* If we are called during a link, mips_elf_final_link may have |
13175 | | cleared the SEC_HAS_CONTENTS field. We force it back on here |
13176 | | if appropriate (which it normally will be). */ |
13177 | 5.44k | origflags = msec->flags; |
13178 | 5.44k | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) |
13179 | 5.42k | msec->flags |= SEC_HAS_CONTENTS; |
13180 | | |
13181 | 5.44k | fi = mips_elf_tdata (abfd)->find_line_info; |
13182 | 5.44k | if (fi == NULL) |
13183 | 3.90k | { |
13184 | 3.90k | bfd_size_type external_fdr_size; |
13185 | 3.90k | char *fraw_src; |
13186 | 3.90k | char *fraw_end; |
13187 | 3.90k | struct fdr *fdr_ptr; |
13188 | 3.90k | bfd_size_type amt = sizeof (struct mips_elf_find_line); |
13189 | | |
13190 | 3.90k | fi = bfd_zalloc (abfd, amt); |
13191 | 3.90k | if (fi == NULL) |
13192 | 0 | { |
13193 | 0 | msec->flags = origflags; |
13194 | 0 | return false; |
13195 | 0 | } |
13196 | | |
13197 | 3.90k | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) |
13198 | 3.56k | { |
13199 | 3.56k | msec->flags = origflags; |
13200 | 3.56k | return false; |
13201 | 3.56k | } |
13202 | | |
13203 | | /* Swap in the FDR information. */ |
13204 | 337 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); |
13205 | 337 | fi->d.fdr = bfd_alloc (abfd, amt); |
13206 | 337 | if (fi->d.fdr == NULL) |
13207 | 0 | { |
13208 | 0 | _bfd_ecoff_free_ecoff_debug_info (&fi->d); |
13209 | 0 | msec->flags = origflags; |
13210 | 0 | return false; |
13211 | 0 | } |
13212 | 337 | external_fdr_size = swap->external_fdr_size; |
13213 | 337 | fdr_ptr = fi->d.fdr; |
13214 | 337 | fraw_src = (char *) fi->d.external_fdr; |
13215 | 337 | fraw_end = (fraw_src |
13216 | 337 | + fi->d.symbolic_header.ifdMax * external_fdr_size); |
13217 | 51.1k | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) |
13218 | 50.8k | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
13219 | | |
13220 | 337 | mips_elf_tdata (abfd)->find_line_info = fi; |
13221 | 337 | } |
13222 | | |
13223 | 1.88k | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, |
13224 | 1.88k | &fi->i, filename_ptr, functionname_ptr, |
13225 | 1.88k | line_ptr)) |
13226 | 1.17k | { |
13227 | 1.17k | msec->flags = origflags; |
13228 | 1.17k | return true; |
13229 | 1.17k | } |
13230 | | |
13231 | 714 | msec->flags = origflags; |
13232 | 714 | } |
13233 | | |
13234 | | /* Fall back on the generic ELF find_nearest_line routine. */ |
13235 | | |
13236 | 2.40k | return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, |
13237 | 2.40k | filename_ptr, functionname_ptr, |
13238 | 2.40k | line_ptr, discriminator_ptr); |
13239 | 7.14k | } |
13240 | | |
13241 | | bool |
13242 | | _bfd_mips_elf_find_inliner_info (bfd *abfd, |
13243 | | const char **filename_ptr, |
13244 | | const char **functionname_ptr, |
13245 | | unsigned int *line_ptr) |
13246 | 0 | { |
13247 | 0 | bool found; |
13248 | 0 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, |
13249 | 0 | functionname_ptr, line_ptr, |
13250 | 0 | & elf_tdata (abfd)->dwarf2_find_line_info); |
13251 | 0 | return found; |
13252 | 0 | } |
13253 | | |
13254 | | |
13255 | | /* When are writing out the .options or .MIPS.options section, |
13256 | | remember the bytes we are writing out, so that we can install the |
13257 | | GP value in the section_processing routine. */ |
13258 | | |
13259 | | bool |
13260 | | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
13261 | | const void *location, |
13262 | | file_ptr offset, bfd_size_type count) |
13263 | 0 | { |
13264 | 0 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
13265 | 0 | { |
13266 | 0 | bfd_byte *c; |
13267 | |
|
13268 | 0 | if (elf_section_data (section) == NULL) |
13269 | 0 | { |
13270 | 0 | size_t amt = sizeof (struct bfd_elf_section_data); |
13271 | 0 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
13272 | 0 | if (elf_section_data (section) == NULL) |
13273 | 0 | return false; |
13274 | 0 | } |
13275 | 0 | c = mips_elf_section_data (section)->u.tdata; |
13276 | 0 | if (c == NULL) |
13277 | 0 | { |
13278 | 0 | c = bfd_zalloc (abfd, section->size); |
13279 | 0 | if (c == NULL) |
13280 | 0 | return false; |
13281 | 0 | mips_elf_section_data (section)->u.tdata = c; |
13282 | 0 | } |
13283 | | |
13284 | 0 | memcpy (c + offset, location, count); |
13285 | 0 | } |
13286 | | |
13287 | 0 | return _bfd_elf_set_section_contents (abfd, section, location, offset, |
13288 | 0 | count); |
13289 | 0 | } |
13290 | | |
13291 | | /* This is almost identical to bfd_generic_get_... except that some |
13292 | | MIPS relocations need to be handled specially. Sigh. */ |
13293 | | |
13294 | | bfd_byte * |
13295 | | _bfd_elf_mips_get_relocated_section_contents |
13296 | | (bfd *abfd, |
13297 | | struct bfd_link_info *link_info, |
13298 | | struct bfd_link_order *link_order, |
13299 | | bfd_byte *data, |
13300 | | bool relocatable, |
13301 | | asymbol **symbols) |
13302 | 245 | { |
13303 | 245 | bfd *input_bfd = link_order->u.indirect.section->owner; |
13304 | 245 | asection *input_section = link_order->u.indirect.section; |
13305 | 245 | long reloc_size; |
13306 | 245 | arelent **reloc_vector; |
13307 | 245 | long reloc_count; |
13308 | | |
13309 | 245 | reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); |
13310 | 245 | if (reloc_size < 0) |
13311 | 1 | return NULL; |
13312 | | |
13313 | | /* Read in the section. */ |
13314 | 244 | bfd_byte *orig_data = data; |
13315 | 244 | if (!bfd_get_full_section_contents (input_bfd, input_section, &data)) |
13316 | 2 | return NULL; |
13317 | | |
13318 | 242 | if (data == NULL) |
13319 | 2 | return NULL; |
13320 | | |
13321 | 240 | if (reloc_size == 0) |
13322 | 0 | return data; |
13323 | | |
13324 | 240 | reloc_vector = (arelent **) bfd_malloc (reloc_size); |
13325 | 240 | if (reloc_vector == NULL) |
13326 | 0 | { |
13327 | 0 | struct mips_elf_obj_tdata *tdata; |
13328 | 0 | struct mips_hi16 **hip, *hi; |
13329 | 194 | error_return: |
13330 | | /* If we are going to return an error, remove entries on |
13331 | | mips_hi16_list that point into this section's data. Data |
13332 | | will typically be freed on return from this function. */ |
13333 | 194 | tdata = mips_elf_tdata (abfd); |
13334 | 194 | hip = &tdata->mips_hi16_list; |
13335 | 215 | while ((hi = *hip) != NULL) |
13336 | 21 | { |
13337 | 21 | if (hi->input_section == input_section) |
13338 | 13 | { |
13339 | 13 | *hip = hi->next; |
13340 | 13 | free (hi); |
13341 | 13 | } |
13342 | 8 | else |
13343 | 8 | hip = &hi->next; |
13344 | 21 | } |
13345 | 194 | if (orig_data == NULL) |
13346 | 15 | free (data); |
13347 | 194 | data = NULL; |
13348 | 194 | goto out; |
13349 | 0 | } |
13350 | | |
13351 | 240 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
13352 | 240 | input_section, |
13353 | 240 | reloc_vector, |
13354 | 240 | symbols); |
13355 | 240 | if (reloc_count < 0) |
13356 | 94 | goto error_return; |
13357 | | |
13358 | 146 | if (reloc_count > 0) |
13359 | 128 | { |
13360 | 128 | arelent **parent; |
13361 | | /* for mips */ |
13362 | 128 | int gp_found; |
13363 | 128 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ |
13364 | | |
13365 | 128 | { |
13366 | 128 | struct bfd_hash_entry *h; |
13367 | 128 | struct bfd_link_hash_entry *lh; |
13368 | | /* Skip all this stuff if we aren't mixing formats. */ |
13369 | 128 | if (abfd && input_bfd |
13370 | 128 | && abfd->xvec == input_bfd->xvec) |
13371 | 128 | lh = 0; |
13372 | 0 | else |
13373 | 0 | { |
13374 | 0 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); |
13375 | 0 | lh = (struct bfd_link_hash_entry *) h; |
13376 | 0 | } |
13377 | 128 | lookup: |
13378 | 128 | if (lh) |
13379 | 0 | { |
13380 | 0 | switch (lh->type) |
13381 | 0 | { |
13382 | 0 | case bfd_link_hash_undefined: |
13383 | 0 | case bfd_link_hash_undefweak: |
13384 | 0 | case bfd_link_hash_common: |
13385 | 0 | gp_found = 0; |
13386 | 0 | break; |
13387 | 0 | case bfd_link_hash_defined: |
13388 | 0 | case bfd_link_hash_defweak: |
13389 | 0 | gp_found = 1; |
13390 | 0 | gp = lh->u.def.value; |
13391 | 0 | break; |
13392 | 0 | case bfd_link_hash_indirect: |
13393 | 0 | case bfd_link_hash_warning: |
13394 | 0 | lh = lh->u.i.link; |
13395 | | /* @@FIXME ignoring warning for now */ |
13396 | 0 | goto lookup; |
13397 | 0 | case bfd_link_hash_new: |
13398 | 0 | default: |
13399 | 0 | abort (); |
13400 | 0 | } |
13401 | 0 | } |
13402 | 128 | else |
13403 | 128 | gp_found = 0; |
13404 | 128 | } |
13405 | | /* end mips */ |
13406 | | |
13407 | 1.01k | for (parent = reloc_vector; *parent != NULL; parent++) |
13408 | 990 | { |
13409 | 990 | char *error_message = NULL; |
13410 | 990 | asymbol *symbol; |
13411 | 990 | bfd_reloc_status_type r; |
13412 | | |
13413 | 990 | symbol = *(*parent)->sym_ptr_ptr; |
13414 | | /* PR ld/19628: A specially crafted input file |
13415 | | can result in a NULL symbol pointer here. */ |
13416 | 990 | if (symbol == NULL) |
13417 | 0 | { |
13418 | 0 | link_info->callbacks->einfo |
13419 | | /* xgettext:c-format */ |
13420 | 0 | (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"), |
13421 | 0 | abfd, input_section, (* parent)->address); |
13422 | 0 | goto error_return; |
13423 | 0 | } |
13424 | | |
13425 | | /* Zap reloc field when the symbol is from a discarded |
13426 | | section, ignoring any addend. Do the same when called |
13427 | | from bfd_simple_get_relocated_section_contents for |
13428 | | undefined symbols in debug sections. This is to keep |
13429 | | debug info reasonably sane, in particular so that |
13430 | | DW_FORM_ref_addr to another file's .debug_info isn't |
13431 | | confused with an offset into the current file's |
13432 | | .debug_info. */ |
13433 | 990 | if ((symbol->section != NULL && discarded_section (symbol->section)) |
13434 | 990 | || (symbol->section == bfd_und_section_ptr |
13435 | 990 | && (input_section->flags & SEC_DEBUGGING) != 0 |
13436 | 990 | && link_info->input_bfds == link_info->output_bfd)) |
13437 | 34 | { |
13438 | 34 | bfd_vma off; |
13439 | 34 | static reloc_howto_type none_howto |
13440 | 34 | = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL, |
13441 | 34 | "unused", false, 0, 0, false); |
13442 | | |
13443 | 34 | off = ((*parent)->address |
13444 | 34 | * bfd_octets_per_byte (input_bfd, input_section)); |
13445 | 34 | _bfd_clear_contents ((*parent)->howto, input_bfd, |
13446 | 34 | input_section, data, off); |
13447 | 34 | (*parent)->sym_ptr_ptr = &bfd_abs_section_ptr->symbol; |
13448 | 34 | (*parent)->addend = 0; |
13449 | 34 | (*parent)->howto = &none_howto; |
13450 | 34 | r = bfd_reloc_ok; |
13451 | 34 | } |
13452 | | |
13453 | | /* Specific to MIPS: Deal with relocation types that require |
13454 | | knowing the gp of the output bfd. */ |
13455 | | |
13456 | | /* If we've managed to find the gp and have a special |
13457 | | function for the relocation then go ahead, else default |
13458 | | to the generic handling. */ |
13459 | 956 | else if (gp_found |
13460 | 956 | && ((*parent)->howto->special_function |
13461 | 0 | == _bfd_mips_elf32_gprel16_reloc)) |
13462 | 0 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent, |
13463 | 0 | input_section, relocatable, |
13464 | 0 | data, gp); |
13465 | 956 | else |
13466 | 956 | r = bfd_perform_relocation (input_bfd, |
13467 | 956 | *parent, |
13468 | 956 | data, |
13469 | 956 | input_section, |
13470 | 956 | relocatable ? abfd : NULL, |
13471 | 956 | &error_message); |
13472 | | |
13473 | 990 | if (relocatable) |
13474 | 0 | { |
13475 | 0 | asection *os = input_section->output_section; |
13476 | | |
13477 | | /* A partial link, so keep the relocs. */ |
13478 | 0 | os->orelocation[os->reloc_count] = *parent; |
13479 | 0 | os->reloc_count++; |
13480 | 0 | } |
13481 | | |
13482 | 990 | if (r != bfd_reloc_ok) |
13483 | 256 | { |
13484 | 256 | switch (r) |
13485 | 256 | { |
13486 | 59 | case bfd_reloc_undefined: |
13487 | 59 | (*link_info->callbacks->undefined_symbol) |
13488 | 59 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
13489 | 59 | input_bfd, input_section, (*parent)->address, true); |
13490 | 59 | break; |
13491 | 51 | case bfd_reloc_dangerous: |
13492 | 51 | BFD_ASSERT (error_message != NULL); |
13493 | 51 | (*link_info->callbacks->reloc_dangerous) |
13494 | 51 | (link_info, error_message, |
13495 | 51 | input_bfd, input_section, (*parent)->address); |
13496 | 51 | break; |
13497 | 46 | case bfd_reloc_overflow: |
13498 | 46 | (*link_info->callbacks->reloc_overflow) |
13499 | 46 | (link_info, NULL, |
13500 | 46 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
13501 | 46 | (*parent)->howto->name, (*parent)->addend, |
13502 | 46 | input_bfd, input_section, (*parent)->address); |
13503 | 46 | break; |
13504 | 100 | case bfd_reloc_outofrange: |
13505 | | /* PR ld/13730: |
13506 | | This error can result when processing some partially |
13507 | | complete binaries. Do not abort, but issue an error |
13508 | | message instead. */ |
13509 | 100 | link_info->callbacks->einfo |
13510 | | /* xgettext:c-format */ |
13511 | 100 | (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"), |
13512 | 100 | abfd, input_section, * parent); |
13513 | 100 | goto error_return; |
13514 | | |
13515 | 0 | case bfd_reloc_notsupported: |
13516 | | /* PR ld/17512 |
13517 | | This error can result when processing a corrupt binary. |
13518 | | Do not abort. Issue an error message instead. */ |
13519 | 0 | link_info->callbacks->einfo |
13520 | | /* xgettext:c-format */ |
13521 | 0 | (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"), |
13522 | 0 | abfd, input_section, * parent); |
13523 | 0 | goto error_return; |
13524 | | |
13525 | 0 | default: |
13526 | | /* PR 17512; file: 90c2a92e. |
13527 | | Report unexpected results, without aborting. */ |
13528 | 0 | link_info->callbacks->einfo |
13529 | | /* xgettext:c-format */ |
13530 | 0 | (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"), |
13531 | 0 | abfd, input_section, * parent, r); |
13532 | 0 | break; |
13533 | 256 | } |
13534 | | |
13535 | 256 | } |
13536 | 990 | } |
13537 | 128 | } |
13538 | | |
13539 | 240 | out: |
13540 | 240 | free (reloc_vector); |
13541 | 240 | return data; |
13542 | 146 | } |
13543 | | |
13544 | | static bool |
13545 | | mips_elf_relax_delete_bytes (bfd *abfd, |
13546 | | asection *sec, bfd_vma addr, int count) |
13547 | 0 | { |
13548 | 0 | Elf_Internal_Shdr *symtab_hdr; |
13549 | 0 | unsigned int sec_shndx; |
13550 | 0 | bfd_byte *contents; |
13551 | 0 | Elf_Internal_Rela *irel, *irelend; |
13552 | 0 | Elf_Internal_Sym *isym; |
13553 | 0 | Elf_Internal_Sym *isymend; |
13554 | 0 | struct elf_link_hash_entry **sym_hashes; |
13555 | 0 | struct elf_link_hash_entry **end_hashes; |
13556 | 0 | struct elf_link_hash_entry **start_hashes; |
13557 | 0 | unsigned int symcount; |
13558 | |
|
13559 | 0 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
13560 | 0 | contents = elf_section_data (sec)->this_hdr.contents; |
13561 | |
|
13562 | 0 | irel = elf_section_data (sec)->relocs; |
13563 | 0 | irelend = irel + sec->reloc_count; |
13564 | | |
13565 | | /* Actually delete the bytes. */ |
13566 | 0 | memmove (contents + addr, contents + addr + count, |
13567 | 0 | (size_t) (sec->size - addr - count)); |
13568 | 0 | sec->size -= count; |
13569 | | |
13570 | | /* Adjust all the relocs. */ |
13571 | 0 | for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
13572 | 0 | { |
13573 | | /* Get the new reloc address. */ |
13574 | 0 | if (irel->r_offset > addr) |
13575 | 0 | irel->r_offset -= count; |
13576 | 0 | } |
13577 | |
|
13578 | 0 | BFD_ASSERT (addr % 2 == 0); |
13579 | 0 | BFD_ASSERT (count % 2 == 0); |
13580 | | |
13581 | | /* Adjust the local symbols defined in this section. */ |
13582 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
13583 | 0 | isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
13584 | 0 | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
13585 | 0 | if (isym->st_shndx == sec_shndx && isym->st_value > addr) |
13586 | 0 | isym->st_value -= count; |
13587 | | |
13588 | | /* Now adjust the global symbols defined in this section. */ |
13589 | 0 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
13590 | 0 | - symtab_hdr->sh_info); |
13591 | 0 | sym_hashes = start_hashes = elf_sym_hashes (abfd); |
13592 | 0 | end_hashes = sym_hashes + symcount; |
13593 | |
|
13594 | 0 | for (; sym_hashes < end_hashes; sym_hashes++) |
13595 | 0 | { |
13596 | 0 | struct elf_link_hash_entry *sym_hash = *sym_hashes; |
13597 | |
|
13598 | 0 | if ((sym_hash->root.type == bfd_link_hash_defined |
13599 | 0 | || sym_hash->root.type == bfd_link_hash_defweak) |
13600 | 0 | && sym_hash->root.u.def.section == sec) |
13601 | 0 | { |
13602 | 0 | bfd_vma value = sym_hash->root.u.def.value; |
13603 | |
|
13604 | 0 | if (ELF_ST_IS_MICROMIPS (sym_hash->other)) |
13605 | 0 | value &= MINUS_TWO; |
13606 | 0 | if (value > addr) |
13607 | 0 | sym_hash->root.u.def.value -= count; |
13608 | 0 | } |
13609 | 0 | } |
13610 | |
|
13611 | 0 | return true; |
13612 | 0 | } |
13613 | | |
13614 | | |
13615 | | /* Opcodes needed for microMIPS relaxation as found in |
13616 | | opcodes/micromips-opc.c. */ |
13617 | | |
13618 | | struct opcode_descriptor { |
13619 | | unsigned long match; |
13620 | | unsigned long mask; |
13621 | | }; |
13622 | | |
13623 | | /* The $ra register aka $31. */ |
13624 | | |
13625 | 0 | #define RA 31 |
13626 | | |
13627 | | /* 32-bit instruction format register fields. */ |
13628 | | |
13629 | 0 | #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) |
13630 | 0 | #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) |
13631 | | |
13632 | | /* Check if a 5-bit register index can be abbreviated to 3 bits. */ |
13633 | | |
13634 | | #define OP16_VALID_REG(r) \ |
13635 | 0 | ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) |
13636 | | |
13637 | | |
13638 | | /* 32-bit and 16-bit branches. */ |
13639 | | |
13640 | | static const struct opcode_descriptor b_insns_32[] = { |
13641 | | { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ |
13642 | | { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ |
13643 | | { 0, 0 } /* End marker for find_match(). */ |
13644 | | }; |
13645 | | |
13646 | | static const struct opcode_descriptor bc_insn_32 = |
13647 | | { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; |
13648 | | |
13649 | | static const struct opcode_descriptor bz_insn_32 = |
13650 | | { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; |
13651 | | |
13652 | | static const struct opcode_descriptor bzal_insn_32 = |
13653 | | { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; |
13654 | | |
13655 | | static const struct opcode_descriptor beq_insn_32 = |
13656 | | { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; |
13657 | | |
13658 | | static const struct opcode_descriptor b_insn_16 = |
13659 | | { /* "b", "mD", */ 0xcc00, 0xfc00 }; |
13660 | | |
13661 | | static const struct opcode_descriptor bz_insn_16 = |
13662 | | { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; |
13663 | | |
13664 | | |
13665 | | /* 32-bit and 16-bit branch EQ and NE zero. */ |
13666 | | |
13667 | | /* NOTE: All opcode tables have BEQ/BNE in the same order: first the |
13668 | | eq and second the ne. This convention is used when replacing a |
13669 | | 32-bit BEQ/BNE with the 16-bit version. */ |
13670 | | |
13671 | 0 | #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) |
13672 | | |
13673 | | static const struct opcode_descriptor bz_rs_insns_32[] = { |
13674 | | { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, |
13675 | | { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, |
13676 | | { 0, 0 } /* End marker for find_match(). */ |
13677 | | }; |
13678 | | |
13679 | | static const struct opcode_descriptor bz_rt_insns_32[] = { |
13680 | | { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, |
13681 | | { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, |
13682 | | { 0, 0 } /* End marker for find_match(). */ |
13683 | | }; |
13684 | | |
13685 | | static const struct opcode_descriptor bzc_insns_32[] = { |
13686 | | { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, |
13687 | | { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, |
13688 | | { 0, 0 } /* End marker for find_match(). */ |
13689 | | }; |
13690 | | |
13691 | | static const struct opcode_descriptor bz_insns_16[] = { |
13692 | | { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, |
13693 | | { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, |
13694 | | { 0, 0 } /* End marker for find_match(). */ |
13695 | | }; |
13696 | | |
13697 | | /* Switch between a 5-bit register index and its 3-bit shorthand. */ |
13698 | | |
13699 | 0 | #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) |
13700 | | #define BZ16_REG_FIELD(r) (((r) & 7) << 7) |
13701 | | |
13702 | | |
13703 | | /* 32-bit instructions with a delay slot. */ |
13704 | | |
13705 | | static const struct opcode_descriptor jal_insn_32_bd16 = |
13706 | | { /* "jals", "a", */ 0x74000000, 0xfc000000 }; |
13707 | | |
13708 | | static const struct opcode_descriptor jal_insn_32_bd32 = |
13709 | | { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; |
13710 | | |
13711 | | static const struct opcode_descriptor jal_x_insn_32_bd32 = |
13712 | | { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; |
13713 | | |
13714 | | static const struct opcode_descriptor j_insn_32 = |
13715 | | { /* "j", "a", */ 0xd4000000, 0xfc000000 }; |
13716 | | |
13717 | | static const struct opcode_descriptor jalr_insn_32 = |
13718 | | { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; |
13719 | | |
13720 | | /* This table can be compacted, because no opcode replacement is made. */ |
13721 | | |
13722 | | static const struct opcode_descriptor ds_insns_32_bd16[] = { |
13723 | | { /* "jals", "a", */ 0x74000000, 0xfc000000 }, |
13724 | | |
13725 | | { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, |
13726 | | { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, |
13727 | | |
13728 | | { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, |
13729 | | { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, |
13730 | | { /* "j", "a", */ 0xd4000000, 0xfc000000 }, |
13731 | | { 0, 0 } /* End marker for find_match(). */ |
13732 | | }; |
13733 | | |
13734 | | /* This table can be compacted, because no opcode replacement is made. */ |
13735 | | |
13736 | | static const struct opcode_descriptor ds_insns_32_bd32[] = { |
13737 | | { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, |
13738 | | |
13739 | | { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, |
13740 | | { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, |
13741 | | { 0, 0 } /* End marker for find_match(). */ |
13742 | | }; |
13743 | | |
13744 | | |
13745 | | /* 16-bit instructions with a delay slot. */ |
13746 | | |
13747 | | static const struct opcode_descriptor jalr_insn_16_bd16 = |
13748 | | { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; |
13749 | | |
13750 | | static const struct opcode_descriptor jalr_insn_16_bd32 = |
13751 | | { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; |
13752 | | |
13753 | | static const struct opcode_descriptor jr_insn_16 = |
13754 | | { /* "jr", "mj", */ 0x4580, 0xffe0 }; |
13755 | | |
13756 | 0 | #define JR16_REG(opcode) ((opcode) & 0x1f) |
13757 | | |
13758 | | /* This table can be compacted, because no opcode replacement is made. */ |
13759 | | |
13760 | | static const struct opcode_descriptor ds_insns_16_bd16[] = { |
13761 | | { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, |
13762 | | |
13763 | | { /* "b", "mD", */ 0xcc00, 0xfc00 }, |
13764 | | { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, |
13765 | | { /* "jr", "mj", */ 0x4580, 0xffe0 }, |
13766 | | { 0, 0 } /* End marker for find_match(). */ |
13767 | | }; |
13768 | | |
13769 | | |
13770 | | /* LUI instruction. */ |
13771 | | |
13772 | | static const struct opcode_descriptor lui_insn = |
13773 | | { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; |
13774 | | |
13775 | | |
13776 | | /* ADDIU instruction. */ |
13777 | | |
13778 | | static const struct opcode_descriptor addiu_insn = |
13779 | | { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; |
13780 | | |
13781 | | static const struct opcode_descriptor addiupc_insn = |
13782 | | { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; |
13783 | | |
13784 | | #define ADDIUPC_REG_FIELD(r) \ |
13785 | 0 | (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) |
13786 | | |
13787 | | |
13788 | | /* Relaxable instructions in a JAL delay slot: MOVE. */ |
13789 | | |
13790 | | /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves |
13791 | | (ADDU, OR) have rd in 15:11 and rs in 10:16. */ |
13792 | | #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) |
13793 | | #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) |
13794 | | |
13795 | | #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) |
13796 | | #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) |
13797 | | |
13798 | | static const struct opcode_descriptor move_insns_32[] = { |
13799 | | { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ |
13800 | | { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ |
13801 | | { 0, 0 } /* End marker for find_match(). */ |
13802 | | }; |
13803 | | |
13804 | | static const struct opcode_descriptor move_insn_16 = |
13805 | | { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; |
13806 | | |
13807 | | |
13808 | | /* NOP instructions. */ |
13809 | | |
13810 | | static const struct opcode_descriptor nop_insn_32 = |
13811 | | { /* "nop", "", */ 0x00000000, 0xffffffff }; |
13812 | | |
13813 | | static const struct opcode_descriptor nop_insn_16 = |
13814 | | { /* "nop", "", */ 0x0c00, 0xffff }; |
13815 | | |
13816 | | |
13817 | | /* Instruction match support. */ |
13818 | | |
13819 | 0 | #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) |
13820 | | |
13821 | | static int |
13822 | | find_match (unsigned long opcode, const struct opcode_descriptor insn[]) |
13823 | 0 | { |
13824 | 0 | unsigned long indx; |
13825 | |
|
13826 | 0 | for (indx = 0; insn[indx].mask != 0; indx++) |
13827 | 0 | if (MATCH (opcode, insn[indx])) |
13828 | 0 | return indx; |
13829 | | |
13830 | 0 | return -1; |
13831 | 0 | } |
13832 | | |
13833 | | |
13834 | | /* Branch and delay slot decoding support. */ |
13835 | | |
13836 | | /* If PTR points to what *might* be a 16-bit branch or jump, then |
13837 | | return the minimum length of its delay slot, otherwise return 0. |
13838 | | Non-zero results are not definitive as we might be checking against |
13839 | | the second half of another instruction. */ |
13840 | | |
13841 | | static int |
13842 | | check_br16_dslot (bfd *abfd, bfd_byte *ptr) |
13843 | 0 | { |
13844 | 0 | unsigned long opcode; |
13845 | 0 | int bdsize; |
13846 | |
|
13847 | 0 | opcode = bfd_get_16 (abfd, ptr); |
13848 | 0 | if (MATCH (opcode, jalr_insn_16_bd32) != 0) |
13849 | | /* 16-bit branch/jump with a 32-bit delay slot. */ |
13850 | 0 | bdsize = 4; |
13851 | 0 | else if (MATCH (opcode, jalr_insn_16_bd16) != 0 |
13852 | 0 | || find_match (opcode, ds_insns_16_bd16) >= 0) |
13853 | | /* 16-bit branch/jump with a 16-bit delay slot. */ |
13854 | 0 | bdsize = 2; |
13855 | 0 | else |
13856 | | /* No delay slot. */ |
13857 | 0 | bdsize = 0; |
13858 | |
|
13859 | 0 | return bdsize; |
13860 | 0 | } |
13861 | | |
13862 | | /* If PTR points to what *might* be a 32-bit branch or jump, then |
13863 | | return the minimum length of its delay slot, otherwise return 0. |
13864 | | Non-zero results are not definitive as we might be checking against |
13865 | | the second half of another instruction. */ |
13866 | | |
13867 | | static int |
13868 | | check_br32_dslot (bfd *abfd, bfd_byte *ptr) |
13869 | 0 | { |
13870 | 0 | unsigned long opcode; |
13871 | 0 | int bdsize; |
13872 | |
|
13873 | 0 | opcode = bfd_get_micromips_32 (abfd, ptr); |
13874 | 0 | if (find_match (opcode, ds_insns_32_bd32) >= 0) |
13875 | | /* 32-bit branch/jump with a 32-bit delay slot. */ |
13876 | 0 | bdsize = 4; |
13877 | 0 | else if (find_match (opcode, ds_insns_32_bd16) >= 0) |
13878 | | /* 32-bit branch/jump with a 16-bit delay slot. */ |
13879 | 0 | bdsize = 2; |
13880 | 0 | else |
13881 | | /* No delay slot. */ |
13882 | 0 | bdsize = 0; |
13883 | |
|
13884 | 0 | return bdsize; |
13885 | 0 | } |
13886 | | |
13887 | | /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot |
13888 | | that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ |
13889 | | |
13890 | | static bool |
13891 | | check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) |
13892 | 0 | { |
13893 | 0 | unsigned long opcode; |
13894 | |
|
13895 | 0 | opcode = bfd_get_16 (abfd, ptr); |
13896 | 0 | if (MATCH (opcode, b_insn_16) |
13897 | | /* B16 */ |
13898 | 0 | || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) |
13899 | | /* JR16 */ |
13900 | 0 | || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) |
13901 | | /* BEQZ16, BNEZ16 */ |
13902 | 0 | || (MATCH (opcode, jalr_insn_16_bd32) |
13903 | | /* JALR16 */ |
13904 | 0 | && reg != JR16_REG (opcode) && reg != RA)) |
13905 | 0 | return true; |
13906 | | |
13907 | 0 | return false; |
13908 | 0 | } |
13909 | | |
13910 | | /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, |
13911 | | then return TRUE, otherwise FALSE. */ |
13912 | | |
13913 | | static bool |
13914 | | check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) |
13915 | 0 | { |
13916 | 0 | unsigned long opcode; |
13917 | |
|
13918 | 0 | opcode = bfd_get_micromips_32 (abfd, ptr); |
13919 | 0 | if (MATCH (opcode, j_insn_32) |
13920 | | /* J */ |
13921 | 0 | || MATCH (opcode, bc_insn_32) |
13922 | | /* BC1F, BC1T, BC2F, BC2T */ |
13923 | 0 | || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) |
13924 | | /* JAL, JALX */ |
13925 | 0 | || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) |
13926 | | /* BGEZ, BGTZ, BLEZ, BLTZ */ |
13927 | 0 | || (MATCH (opcode, bzal_insn_32) |
13928 | | /* BGEZAL, BLTZAL */ |
13929 | 0 | && reg != OP32_SREG (opcode) && reg != RA) |
13930 | 0 | || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) |
13931 | | /* JALR, JALR.HB, BEQ, BNE */ |
13932 | 0 | && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) |
13933 | 0 | return true; |
13934 | | |
13935 | 0 | return false; |
13936 | 0 | } |
13937 | | |
13938 | | /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, |
13939 | | IRELEND) at OFFSET indicate that there must be a compact branch there, |
13940 | | then return TRUE, otherwise FALSE. */ |
13941 | | |
13942 | | static bool |
13943 | | check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, |
13944 | | const Elf_Internal_Rela *internal_relocs, |
13945 | | const Elf_Internal_Rela *irelend) |
13946 | 0 | { |
13947 | 0 | const Elf_Internal_Rela *irel; |
13948 | 0 | unsigned long opcode; |
13949 | |
|
13950 | 0 | opcode = bfd_get_micromips_32 (abfd, ptr); |
13951 | 0 | if (find_match (opcode, bzc_insns_32) < 0) |
13952 | 0 | return false; |
13953 | | |
13954 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
13955 | 0 | if (irel->r_offset == offset |
13956 | 0 | && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) |
13957 | 0 | return true; |
13958 | | |
13959 | 0 | return false; |
13960 | 0 | } |
13961 | | |
13962 | | /* Bitsize checking. */ |
13963 | | #define IS_BITSIZE(val, N) \ |
13964 | 0 | (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ |
13965 | 0 | - (1ULL << ((N) - 1))) == (val)) |
13966 | | |
13967 | | |
13968 | | bool |
13969 | | _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, |
13970 | | struct bfd_link_info *link_info, |
13971 | | bool *again) |
13972 | 0 | { |
13973 | 0 | bool insn32 = mips_elf_hash_table (link_info)->insn32; |
13974 | 0 | Elf_Internal_Shdr *symtab_hdr; |
13975 | 0 | Elf_Internal_Rela *internal_relocs; |
13976 | 0 | Elf_Internal_Rela *irel, *irelend; |
13977 | 0 | bfd_byte *contents = NULL; |
13978 | 0 | Elf_Internal_Sym *isymbuf = NULL; |
13979 | | |
13980 | | /* Assume nothing changes. */ |
13981 | 0 | *again = false; |
13982 | | |
13983 | | /* We don't have to do anything for a relocatable link, if |
13984 | | this section does not have relocs, or if this is not a |
13985 | | code section. */ |
13986 | |
|
13987 | 0 | if (bfd_link_relocatable (link_info) |
13988 | 0 | || sec->reloc_count == 0 |
13989 | 0 | || (sec->flags & SEC_RELOC) == 0 |
13990 | 0 | || (sec->flags & SEC_HAS_CONTENTS) == 0 |
13991 | 0 | || (sec->flags & SEC_CODE) == 0) |
13992 | 0 | return true; |
13993 | | |
13994 | 0 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
13995 | | |
13996 | | /* Get a copy of the native relocations. */ |
13997 | 0 | internal_relocs = (_bfd_elf_link_read_relocs |
13998 | 0 | (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
13999 | 0 | link_info->keep_memory)); |
14000 | 0 | if (internal_relocs == NULL) |
14001 | 0 | goto error_return; |
14002 | | |
14003 | | /* Walk through them looking for relaxing opportunities. */ |
14004 | 0 | irelend = internal_relocs + sec->reloc_count; |
14005 | 0 | for (irel = internal_relocs; irel < irelend; irel++) |
14006 | 0 | { |
14007 | 0 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); |
14008 | 0 | unsigned int r_type = ELF32_R_TYPE (irel->r_info); |
14009 | 0 | bool target_is_micromips_code_p; |
14010 | 0 | unsigned long opcode; |
14011 | 0 | bfd_vma symval; |
14012 | 0 | bfd_vma pcrval; |
14013 | 0 | bfd_byte *ptr; |
14014 | 0 | int fndopc; |
14015 | | |
14016 | | /* The number of bytes to delete for relaxation and from where |
14017 | | to delete these bytes starting at irel->r_offset. */ |
14018 | 0 | int delcnt = 0; |
14019 | 0 | int deloff = 0; |
14020 | | |
14021 | | /* If this isn't something that can be relaxed, then ignore |
14022 | | this reloc. */ |
14023 | 0 | if (r_type != R_MICROMIPS_HI16 |
14024 | 0 | && r_type != R_MICROMIPS_PC16_S1 |
14025 | 0 | && r_type != R_MICROMIPS_26_S1) |
14026 | 0 | continue; |
14027 | | |
14028 | | /* Get the section contents if we haven't done so already. */ |
14029 | 0 | if (contents == NULL) |
14030 | 0 | { |
14031 | | /* Get cached copy if it exists. */ |
14032 | 0 | if (elf_section_data (sec)->this_hdr.contents != NULL) |
14033 | 0 | contents = elf_section_data (sec)->this_hdr.contents; |
14034 | | /* Go get them off disk. */ |
14035 | 0 | else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
14036 | 0 | goto error_return; |
14037 | 0 | } |
14038 | 0 | ptr = contents + irel->r_offset; |
14039 | | |
14040 | | /* Read this BFD's local symbols if we haven't done so already. */ |
14041 | 0 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
14042 | 0 | { |
14043 | 0 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
14044 | 0 | if (isymbuf == NULL) |
14045 | 0 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
14046 | 0 | symtab_hdr->sh_info, 0, |
14047 | 0 | NULL, NULL, NULL); |
14048 | 0 | if (isymbuf == NULL) |
14049 | 0 | goto error_return; |
14050 | 0 | } |
14051 | | |
14052 | | /* Get the value of the symbol referred to by the reloc. */ |
14053 | 0 | if (r_symndx < symtab_hdr->sh_info) |
14054 | 0 | { |
14055 | | /* A local symbol. */ |
14056 | 0 | Elf_Internal_Sym *isym; |
14057 | 0 | asection *sym_sec; |
14058 | |
|
14059 | 0 | isym = isymbuf + r_symndx; |
14060 | 0 | if (isym->st_shndx == SHN_UNDEF) |
14061 | 0 | sym_sec = bfd_und_section_ptr; |
14062 | 0 | else if (isym->st_shndx == SHN_ABS) |
14063 | 0 | sym_sec = bfd_abs_section_ptr; |
14064 | 0 | else if (isym->st_shndx == SHN_COMMON) |
14065 | 0 | sym_sec = bfd_com_section_ptr; |
14066 | 0 | else |
14067 | 0 | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
14068 | 0 | symval = (isym->st_value |
14069 | 0 | + sym_sec->output_section->vma |
14070 | 0 | + sym_sec->output_offset); |
14071 | 0 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); |
14072 | 0 | } |
14073 | 0 | else |
14074 | 0 | { |
14075 | 0 | unsigned long indx; |
14076 | 0 | struct elf_link_hash_entry *h; |
14077 | | |
14078 | | /* An external symbol. */ |
14079 | 0 | indx = r_symndx - symtab_hdr->sh_info; |
14080 | 0 | h = elf_sym_hashes (abfd)[indx]; |
14081 | 0 | BFD_ASSERT (h != NULL); |
14082 | |
|
14083 | 0 | if (h->root.type != bfd_link_hash_defined |
14084 | 0 | && h->root.type != bfd_link_hash_defweak) |
14085 | | /* This appears to be a reference to an undefined |
14086 | | symbol. Just ignore it -- it will be caught by the |
14087 | | regular reloc processing. */ |
14088 | 0 | continue; |
14089 | | |
14090 | 0 | symval = (h->root.u.def.value |
14091 | 0 | + h->root.u.def.section->output_section->vma |
14092 | 0 | + h->root.u.def.section->output_offset); |
14093 | 0 | target_is_micromips_code_p = (!h->needs_plt |
14094 | 0 | && ELF_ST_IS_MICROMIPS (h->other)); |
14095 | 0 | } |
14096 | | |
14097 | | |
14098 | | /* For simplicity of coding, we are going to modify the |
14099 | | section contents, the section relocs, and the BFD symbol |
14100 | | table. We must tell the rest of the code not to free up this |
14101 | | information. It would be possible to instead create a table |
14102 | | of changes which have to be made, as is done in coff-mips.c; |
14103 | | that would be more work, but would require less memory when |
14104 | | the linker is run. */ |
14105 | | |
14106 | | /* Only 32-bit instructions relaxed. */ |
14107 | 0 | if (irel->r_offset + 4 > sec->size) |
14108 | 0 | continue; |
14109 | | |
14110 | 0 | opcode = bfd_get_micromips_32 (abfd, ptr); |
14111 | | |
14112 | | /* This is the pc-relative distance from the instruction the |
14113 | | relocation is applied to, to the symbol referred. */ |
14114 | 0 | pcrval = (symval |
14115 | 0 | - (sec->output_section->vma + sec->output_offset) |
14116 | 0 | - irel->r_offset); |
14117 | | |
14118 | | /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation |
14119 | | of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or |
14120 | | R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is |
14121 | | |
14122 | | (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) |
14123 | | |
14124 | | where pcrval has first to be adjusted to apply against the LO16 |
14125 | | location (we make the adjustment later on, when we have figured |
14126 | | out the offset). */ |
14127 | 0 | if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) |
14128 | 0 | { |
14129 | 0 | bool bzc = false; |
14130 | 0 | unsigned long nextopc; |
14131 | 0 | unsigned long reg; |
14132 | 0 | bfd_vma offset; |
14133 | | |
14134 | | /* Give up if the previous reloc was a HI16 against this symbol |
14135 | | too. */ |
14136 | 0 | if (irel > internal_relocs |
14137 | 0 | && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 |
14138 | 0 | && ELF32_R_SYM (irel[-1].r_info) == r_symndx) |
14139 | 0 | continue; |
14140 | | |
14141 | | /* Or if the next reloc is not a LO16 against this symbol. */ |
14142 | 0 | if (irel + 1 >= irelend |
14143 | 0 | || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 |
14144 | 0 | || ELF32_R_SYM (irel[1].r_info) != r_symndx) |
14145 | 0 | continue; |
14146 | | |
14147 | | /* Or if the second next reloc is a LO16 against this symbol too. */ |
14148 | 0 | if (irel + 2 >= irelend |
14149 | 0 | && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 |
14150 | 0 | && ELF32_R_SYM (irel[2].r_info) == r_symndx) |
14151 | 0 | continue; |
14152 | | |
14153 | | /* See if the LUI instruction *might* be in a branch delay slot. |
14154 | | We check whether what looks like a 16-bit branch or jump is |
14155 | | actually an immediate argument to a compact branch, and let |
14156 | | it through if so. */ |
14157 | 0 | if (irel->r_offset >= 2 |
14158 | 0 | && check_br16_dslot (abfd, ptr - 2) |
14159 | 0 | && !(irel->r_offset >= 4 |
14160 | 0 | && (bzc = check_relocated_bzc (abfd, |
14161 | 0 | ptr - 4, irel->r_offset - 4, |
14162 | 0 | internal_relocs, irelend)))) |
14163 | 0 | continue; |
14164 | 0 | if (irel->r_offset >= 4 |
14165 | 0 | && !bzc |
14166 | 0 | && check_br32_dslot (abfd, ptr - 4)) |
14167 | 0 | continue; |
14168 | | |
14169 | 0 | reg = OP32_SREG (opcode); |
14170 | | |
14171 | | /* We only relax adjacent instructions or ones separated with |
14172 | | a branch or jump that has a delay slot. The branch or jump |
14173 | | must not fiddle with the register used to hold the address. |
14174 | | Subtract 4 for the LUI itself. */ |
14175 | 0 | offset = irel[1].r_offset - irel[0].r_offset; |
14176 | 0 | switch (offset - 4) |
14177 | 0 | { |
14178 | 0 | case 0: |
14179 | 0 | break; |
14180 | 0 | case 2: |
14181 | 0 | if (check_br16 (abfd, ptr + 4, reg)) |
14182 | 0 | break; |
14183 | 0 | continue; |
14184 | 0 | case 4: |
14185 | 0 | if (check_br32 (abfd, ptr + 4, reg)) |
14186 | 0 | break; |
14187 | 0 | continue; |
14188 | 0 | default: |
14189 | 0 | continue; |
14190 | 0 | } |
14191 | | |
14192 | 0 | nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); |
14193 | | |
14194 | | /* Give up unless the same register is used with both |
14195 | | relocations. */ |
14196 | 0 | if (OP32_SREG (nextopc) != reg) |
14197 | 0 | continue; |
14198 | | |
14199 | | /* Now adjust pcrval, subtracting the offset to the LO16 reloc |
14200 | | and rounding up to take masking of the two LSBs into account. */ |
14201 | 0 | pcrval = ((pcrval - offset + 3) | 3) ^ 3; |
14202 | | |
14203 | | /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ |
14204 | 0 | if (IS_BITSIZE (symval, 16)) |
14205 | 0 | { |
14206 | | /* Fix the relocation's type. */ |
14207 | 0 | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); |
14208 | | |
14209 | | /* Instructions using R_MICROMIPS_LO16 have the base or |
14210 | | source register in bits 20:16. This register becomes $0 |
14211 | | (zero) as the result of the R_MICROMIPS_HI16 being 0. */ |
14212 | 0 | nextopc &= ~0x001f0000; |
14213 | 0 | bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, |
14214 | 0 | contents + irel[1].r_offset); |
14215 | 0 | } |
14216 | | |
14217 | | /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. |
14218 | | We add 4 to take LUI deletion into account while checking |
14219 | | the PC-relative distance. */ |
14220 | 0 | else if (symval % 4 == 0 |
14221 | 0 | && IS_BITSIZE (pcrval + 4, 25) |
14222 | 0 | && MATCH (nextopc, addiu_insn) |
14223 | 0 | && OP32_TREG (nextopc) == OP32_SREG (nextopc) |
14224 | 0 | && OP16_VALID_REG (OP32_TREG (nextopc))) |
14225 | 0 | { |
14226 | | /* Fix the relocation's type. */ |
14227 | 0 | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); |
14228 | | |
14229 | | /* Replace ADDIU with the ADDIUPC version. */ |
14230 | 0 | nextopc = (addiupc_insn.match |
14231 | 0 | | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); |
14232 | |
|
14233 | 0 | bfd_put_micromips_32 (abfd, nextopc, |
14234 | 0 | contents + irel[1].r_offset); |
14235 | 0 | } |
14236 | | |
14237 | | /* Can't do anything, give up, sigh... */ |
14238 | 0 | else |
14239 | 0 | continue; |
14240 | | |
14241 | | /* Fix the relocation's type. */ |
14242 | 0 | irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); |
14243 | | |
14244 | | /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ |
14245 | 0 | delcnt = 4; |
14246 | 0 | deloff = 0; |
14247 | 0 | } |
14248 | | |
14249 | | /* Compact branch relaxation -- due to the multitude of macros |
14250 | | employed by the compiler/assembler, compact branches are not |
14251 | | always generated. Obviously, this can/will be fixed elsewhere, |
14252 | | but there is no drawback in double checking it here. */ |
14253 | 0 | else if (r_type == R_MICROMIPS_PC16_S1 |
14254 | 0 | && irel->r_offset + 5 < sec->size |
14255 | 0 | && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 |
14256 | 0 | || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) |
14257 | 0 | && ((!insn32 |
14258 | 0 | && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), |
14259 | 0 | nop_insn_16) ? 2 : 0)) |
14260 | 0 | || (irel->r_offset + 7 < sec->size |
14261 | 0 | && (delcnt = MATCH (bfd_get_micromips_32 (abfd, |
14262 | 0 | ptr + 4), |
14263 | 0 | nop_insn_32) ? 4 : 0)))) |
14264 | 0 | { |
14265 | 0 | unsigned long reg; |
14266 | |
|
14267 | 0 | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); |
14268 | | |
14269 | | /* Replace BEQZ/BNEZ with the compact version. */ |
14270 | 0 | opcode = (bzc_insns_32[fndopc].match |
14271 | 0 | | BZC32_REG_FIELD (reg) |
14272 | 0 | | (opcode & 0xffff)); /* Addend value. */ |
14273 | |
|
14274 | 0 | bfd_put_micromips_32 (abfd, opcode, ptr); |
14275 | | |
14276 | | /* Delete the delay slot NOP: two or four bytes from |
14277 | | irel->offset + 4; delcnt has already been set above. */ |
14278 | 0 | deloff = 4; |
14279 | 0 | } |
14280 | | |
14281 | | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need |
14282 | | to check the distance from the next instruction, so subtract 2. */ |
14283 | 0 | else if (!insn32 |
14284 | 0 | && r_type == R_MICROMIPS_PC16_S1 |
14285 | 0 | && IS_BITSIZE (pcrval - 2, 11) |
14286 | 0 | && find_match (opcode, b_insns_32) >= 0) |
14287 | 0 | { |
14288 | | /* Fix the relocation's type. */ |
14289 | 0 | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); |
14290 | | |
14291 | | /* Replace the 32-bit opcode with a 16-bit opcode. */ |
14292 | 0 | bfd_put_16 (abfd, |
14293 | 0 | (b_insn_16.match |
14294 | 0 | | (opcode & 0x3ff)), /* Addend value. */ |
14295 | 0 | ptr); |
14296 | | |
14297 | | /* Delete 2 bytes from irel->r_offset + 2. */ |
14298 | 0 | delcnt = 2; |
14299 | 0 | deloff = 2; |
14300 | 0 | } |
14301 | | |
14302 | | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need |
14303 | | to check the distance from the next instruction, so subtract 2. */ |
14304 | 0 | else if (!insn32 |
14305 | 0 | && r_type == R_MICROMIPS_PC16_S1 |
14306 | 0 | && IS_BITSIZE (pcrval - 2, 8) |
14307 | 0 | && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 |
14308 | 0 | && OP16_VALID_REG (OP32_SREG (opcode))) |
14309 | 0 | || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 |
14310 | 0 | && OP16_VALID_REG (OP32_TREG (opcode))))) |
14311 | 0 | { |
14312 | 0 | unsigned long reg; |
14313 | |
|
14314 | 0 | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); |
14315 | | |
14316 | | /* Fix the relocation's type. */ |
14317 | 0 | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); |
14318 | | |
14319 | | /* Replace the 32-bit opcode with a 16-bit opcode. */ |
14320 | 0 | bfd_put_16 (abfd, |
14321 | 0 | (bz_insns_16[fndopc].match |
14322 | 0 | | BZ16_REG_FIELD (reg) |
14323 | 0 | | (opcode & 0x7f)), /* Addend value. */ |
14324 | 0 | ptr); |
14325 | | |
14326 | | /* Delete 2 bytes from irel->r_offset + 2. */ |
14327 | 0 | delcnt = 2; |
14328 | 0 | deloff = 2; |
14329 | 0 | } |
14330 | | |
14331 | | /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ |
14332 | 0 | else if (!insn32 |
14333 | 0 | && r_type == R_MICROMIPS_26_S1 |
14334 | 0 | && target_is_micromips_code_p |
14335 | 0 | && irel->r_offset + 7 < sec->size |
14336 | 0 | && MATCH (opcode, jal_insn_32_bd32)) |
14337 | 0 | { |
14338 | 0 | unsigned long n32opc; |
14339 | 0 | bool relaxed = false; |
14340 | |
|
14341 | 0 | n32opc = bfd_get_micromips_32 (abfd, ptr + 4); |
14342 | |
|
14343 | 0 | if (MATCH (n32opc, nop_insn_32)) |
14344 | 0 | { |
14345 | | /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ |
14346 | 0 | bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); |
14347 | |
|
14348 | 0 | relaxed = true; |
14349 | 0 | } |
14350 | 0 | else if (find_match (n32opc, move_insns_32) >= 0) |
14351 | 0 | { |
14352 | | /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ |
14353 | 0 | bfd_put_16 (abfd, |
14354 | 0 | (move_insn_16.match |
14355 | 0 | | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) |
14356 | 0 | | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), |
14357 | 0 | ptr + 4); |
14358 | |
|
14359 | 0 | relaxed = true; |
14360 | 0 | } |
14361 | | /* Other 32-bit instructions relaxable to 16-bit |
14362 | | instructions will be handled here later. */ |
14363 | |
|
14364 | 0 | if (relaxed) |
14365 | 0 | { |
14366 | | /* JAL with 32-bit delay slot that is changed to a JALS |
14367 | | with 16-bit delay slot. */ |
14368 | 0 | bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); |
14369 | | |
14370 | | /* Delete 2 bytes from irel->r_offset + 6. */ |
14371 | 0 | delcnt = 2; |
14372 | 0 | deloff = 6; |
14373 | 0 | } |
14374 | 0 | } |
14375 | | |
14376 | 0 | if (delcnt != 0) |
14377 | 0 | { |
14378 | | /* Note that we've changed the relocs, section contents, etc. */ |
14379 | 0 | elf_section_data (sec)->relocs = internal_relocs; |
14380 | 0 | elf_section_data (sec)->this_hdr.contents = contents; |
14381 | 0 | symtab_hdr->contents = (unsigned char *) isymbuf; |
14382 | | |
14383 | | /* Delete bytes depending on the delcnt and deloff. */ |
14384 | 0 | if (!mips_elf_relax_delete_bytes (abfd, sec, |
14385 | 0 | irel->r_offset + deloff, delcnt)) |
14386 | 0 | goto error_return; |
14387 | | |
14388 | | /* That will change things, so we should relax again. |
14389 | | Note that this is not required, and it may be slow. */ |
14390 | 0 | *again = true; |
14391 | 0 | } |
14392 | 0 | } |
14393 | | |
14394 | 0 | if (isymbuf != NULL |
14395 | 0 | && symtab_hdr->contents != (unsigned char *) isymbuf) |
14396 | 0 | { |
14397 | 0 | if (! link_info->keep_memory) |
14398 | 0 | free (isymbuf); |
14399 | 0 | else |
14400 | 0 | { |
14401 | | /* Cache the symbols for elf_link_input_bfd. */ |
14402 | 0 | symtab_hdr->contents = (unsigned char *) isymbuf; |
14403 | 0 | } |
14404 | 0 | } |
14405 | |
|
14406 | 0 | if (contents != NULL |
14407 | 0 | && elf_section_data (sec)->this_hdr.contents != contents) |
14408 | 0 | { |
14409 | 0 | if (! link_info->keep_memory) |
14410 | 0 | free (contents); |
14411 | 0 | else |
14412 | 0 | { |
14413 | | /* Cache the section contents for elf_link_input_bfd. */ |
14414 | 0 | elf_section_data (sec)->this_hdr.contents = contents; |
14415 | 0 | } |
14416 | 0 | } |
14417 | |
|
14418 | 0 | if (elf_section_data (sec)->relocs != internal_relocs) |
14419 | 0 | free (internal_relocs); |
14420 | |
|
14421 | 0 | return true; |
14422 | | |
14423 | 0 | error_return: |
14424 | 0 | if (symtab_hdr->contents != (unsigned char *) isymbuf) |
14425 | 0 | free (isymbuf); |
14426 | 0 | if (elf_section_data (sec)->this_hdr.contents != contents) |
14427 | 0 | free (contents); |
14428 | 0 | if (elf_section_data (sec)->relocs != internal_relocs) |
14429 | 0 | free (internal_relocs); |
14430 | |
|
14431 | 0 | return false; |
14432 | 0 | } |
14433 | | |
14434 | | /* Create a MIPS ELF linker hash table. */ |
14435 | | |
14436 | | struct bfd_link_hash_table * |
14437 | | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
14438 | 0 | { |
14439 | 0 | struct mips_elf_link_hash_table *ret; |
14440 | 0 | size_t amt = sizeof (struct mips_elf_link_hash_table); |
14441 | |
|
14442 | 0 | ret = bfd_zmalloc (amt); |
14443 | 0 | if (ret == NULL) |
14444 | 0 | return NULL; |
14445 | | |
14446 | 0 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
14447 | 0 | mips_elf_link_hash_newfunc, |
14448 | 0 | sizeof (struct mips_elf_link_hash_entry))) |
14449 | 0 | { |
14450 | 0 | free (ret); |
14451 | 0 | return NULL; |
14452 | 0 | } |
14453 | 0 | ret->root.init_plt_refcount.plist = NULL; |
14454 | 0 | ret->root.init_plt_offset.plist = NULL; |
14455 | |
|
14456 | 0 | return &ret->root.root; |
14457 | 0 | } |
14458 | | |
14459 | | /* Likewise, but indicate that the target is VxWorks. */ |
14460 | | |
14461 | | struct bfd_link_hash_table * |
14462 | | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) |
14463 | 0 | { |
14464 | 0 | struct bfd_link_hash_table *ret; |
14465 | |
|
14466 | 0 | ret = _bfd_mips_elf_link_hash_table_create (abfd); |
14467 | 0 | if (ret) |
14468 | 0 | { |
14469 | 0 | struct mips_elf_link_hash_table *htab; |
14470 | |
|
14471 | 0 | htab = (struct mips_elf_link_hash_table *) ret; |
14472 | 0 | htab->use_plts_and_copy_relocs = true; |
14473 | 0 | } |
14474 | 0 | return ret; |
14475 | 0 | } |
14476 | | |
14477 | | /* A function that the linker calls if we are allowed to use PLTs |
14478 | | and copy relocs. */ |
14479 | | |
14480 | | void |
14481 | | _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) |
14482 | 0 | { |
14483 | 0 | mips_elf_hash_table (info)->use_plts_and_copy_relocs = true; |
14484 | 0 | } |
14485 | | |
14486 | | /* A function that the linker calls to select between all or only |
14487 | | 32-bit microMIPS instructions, and between making or ignoring |
14488 | | branch relocation checks for invalid transitions between ISA modes. |
14489 | | Also record whether we have been configured for a GNU target. */ |
14490 | | |
14491 | | void |
14492 | | _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32, |
14493 | | bool ignore_branch_isa, |
14494 | | bool gnu_target) |
14495 | 0 | { |
14496 | 0 | mips_elf_hash_table (info)->insn32 = insn32; |
14497 | 0 | mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa; |
14498 | 0 | mips_elf_hash_table (info)->gnu_target = gnu_target; |
14499 | 0 | } |
14500 | | |
14501 | | /* A function that the linker calls to enable use of compact branches in |
14502 | | linker generated code for MIPSR6. */ |
14503 | | |
14504 | | void |
14505 | | _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on) |
14506 | 0 | { |
14507 | 0 | mips_elf_hash_table (info)->compact_branches = on; |
14508 | 0 | } |
14509 | | |
14510 | | |
14511 | | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
14512 | | |
14513 | | struct mips_mach_extension |
14514 | | { |
14515 | | unsigned long extension, base; |
14516 | | }; |
14517 | | |
14518 | | /* An array that maps 64-bit architectures to the corresponding 32-bit |
14519 | | architectures. */ |
14520 | | static const struct mips_mach_extension mips_mach_32_64[] = |
14521 | | { |
14522 | | { bfd_mach_mipsisa64r6, bfd_mach_mipsisa32r6 }, |
14523 | | { bfd_mach_mipsisa64r5, bfd_mach_mipsisa32r5 }, |
14524 | | { bfd_mach_mipsisa64r3, bfd_mach_mipsisa32r3 }, |
14525 | | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa32r2 }, |
14526 | | { bfd_mach_mipsisa64, bfd_mach_mipsisa32 } |
14527 | | }; |
14528 | | |
14529 | | /* An array describing how BFD machines relate to one another. The entries |
14530 | | are ordered topologically with MIPS I extensions listed last. */ |
14531 | | |
14532 | | static const struct mips_mach_extension mips_mach_extensions[] = |
14533 | | { |
14534 | | /* MIPS64r2 extensions. */ |
14535 | | { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, |
14536 | | { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, |
14537 | | { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, |
14538 | | { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, |
14539 | | { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e }, |
14540 | | { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 }, |
14541 | | { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 }, |
14542 | | |
14543 | | /* MIPS64 extensions. */ |
14544 | | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
14545 | | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
14546 | | { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, |
14547 | | |
14548 | | /* MIPS V extensions. */ |
14549 | | { bfd_mach_mipsisa64, bfd_mach_mips5 }, |
14550 | | |
14551 | | /* R10000 extensions. */ |
14552 | | { bfd_mach_mips12000, bfd_mach_mips10000 }, |
14553 | | { bfd_mach_mips14000, bfd_mach_mips10000 }, |
14554 | | { bfd_mach_mips16000, bfd_mach_mips10000 }, |
14555 | | |
14556 | | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core |
14557 | | vr5400 ISA, but doesn't include the multimedia stuff. It seems |
14558 | | better to allow vr5400 and vr5500 code to be merged anyway, since |
14559 | | many libraries will just use the core ISA. Perhaps we could add |
14560 | | some sort of ASE flag if this ever proves a problem. */ |
14561 | | { bfd_mach_mips5500, bfd_mach_mips5400 }, |
14562 | | { bfd_mach_mips5400, bfd_mach_mips5000 }, |
14563 | | |
14564 | | /* MIPS IV extensions. */ |
14565 | | { bfd_mach_mips5, bfd_mach_mips8000 }, |
14566 | | { bfd_mach_mips10000, bfd_mach_mips8000 }, |
14567 | | { bfd_mach_mips5000, bfd_mach_mips8000 }, |
14568 | | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
14569 | | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
14570 | | |
14571 | | /* VR4100 extensions. */ |
14572 | | { bfd_mach_mips4120, bfd_mach_mips4100 }, |
14573 | | { bfd_mach_mips4111, bfd_mach_mips4100 }, |
14574 | | |
14575 | | /* MIPS III extensions. */ |
14576 | | { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, |
14577 | | { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, |
14578 | | { bfd_mach_mips8000, bfd_mach_mips4000 }, |
14579 | | { bfd_mach_mips4650, bfd_mach_mips4000 }, |
14580 | | { bfd_mach_mips4600, bfd_mach_mips4000 }, |
14581 | | { bfd_mach_mips4400, bfd_mach_mips4000 }, |
14582 | | { bfd_mach_mips4300, bfd_mach_mips4000 }, |
14583 | | { bfd_mach_mips4100, bfd_mach_mips4000 }, |
14584 | | { bfd_mach_mips5900, bfd_mach_mips4000 }, |
14585 | | |
14586 | | /* MIPS32r3 extensions. */ |
14587 | | { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 }, |
14588 | | |
14589 | | /* MIPS32r2 extensions. */ |
14590 | | { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 }, |
14591 | | |
14592 | | /* MIPS32 extensions. */ |
14593 | | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, |
14594 | | |
14595 | | /* MIPS II extensions. */ |
14596 | | { bfd_mach_mips4000, bfd_mach_mips6000 }, |
14597 | | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, |
14598 | | { bfd_mach_mips4010, bfd_mach_mips6000 }, |
14599 | | { bfd_mach_mips_allegrex, bfd_mach_mips6000 }, |
14600 | | |
14601 | | /* MIPS I extensions. */ |
14602 | | { bfd_mach_mips6000, bfd_mach_mips3000 }, |
14603 | | { bfd_mach_mips3900, bfd_mach_mips3000 } |
14604 | | }; |
14605 | | |
14606 | | /* Return true if bfd machine EXTENSION is the same as BASE, or if |
14607 | | EXTENSION is the 64-bit equivalent of a 32-bit BASE. */ |
14608 | | |
14609 | | static bool |
14610 | | mips_mach_extends_32_64 (unsigned long base, unsigned long extension) |
14611 | 0 | { |
14612 | 0 | size_t i; |
14613 | |
|
14614 | 0 | if (extension == base) |
14615 | 0 | return true; |
14616 | | |
14617 | 0 | for (i = 0; i < ARRAY_SIZE (mips_mach_32_64); i++) |
14618 | 0 | if (extension == mips_mach_32_64[i].extension) |
14619 | 0 | return base == mips_mach_32_64[i].base; |
14620 | | |
14621 | 0 | return false; |
14622 | 0 | } |
14623 | | |
14624 | | static bool |
14625 | | mips_mach_extends_p (unsigned long base, unsigned long extension) |
14626 | 0 | { |
14627 | 0 | size_t i; |
14628 | |
|
14629 | 0 | if (mips_mach_extends_32_64 (base, extension)) |
14630 | 0 | return true; |
14631 | | |
14632 | 0 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) |
14633 | 0 | if (extension == mips_mach_extensions[i].extension) |
14634 | 0 | { |
14635 | 0 | extension = mips_mach_extensions[i].base; |
14636 | 0 | if (mips_mach_extends_32_64 (base, extension)) |
14637 | 0 | return true; |
14638 | 0 | } |
14639 | | |
14640 | 0 | return false; |
14641 | 0 | } |
14642 | | |
14643 | | /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ |
14644 | | |
14645 | | static unsigned long |
14646 | | bfd_mips_isa_ext_mach (unsigned int isa_ext) |
14647 | 0 | { |
14648 | 0 | switch (isa_ext) |
14649 | 0 | { |
14650 | 0 | case AFL_EXT_3900: return bfd_mach_mips3900; |
14651 | 0 | case AFL_EXT_4010: return bfd_mach_mips4010; |
14652 | 0 | case AFL_EXT_4100: return bfd_mach_mips4100; |
14653 | 0 | case AFL_EXT_4111: return bfd_mach_mips4111; |
14654 | 0 | case AFL_EXT_4120: return bfd_mach_mips4120; |
14655 | 0 | case AFL_EXT_4650: return bfd_mach_mips4650; |
14656 | 0 | case AFL_EXT_5400: return bfd_mach_mips5400; |
14657 | 0 | case AFL_EXT_5500: return bfd_mach_mips5500; |
14658 | 0 | case AFL_EXT_5900: return bfd_mach_mips5900; |
14659 | 0 | case AFL_EXT_10000: return bfd_mach_mips10000; |
14660 | 0 | case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; |
14661 | 0 | case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; |
14662 | 0 | case AFL_EXT_SB1: return bfd_mach_mips_sb1; |
14663 | 0 | case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; |
14664 | 0 | case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; |
14665 | 0 | case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; |
14666 | 0 | case AFL_EXT_XLR: return bfd_mach_mips_xlr; |
14667 | 0 | default: return bfd_mach_mips3000; |
14668 | 0 | } |
14669 | 0 | } |
14670 | | |
14671 | | /* Return the .MIPS.abiflags value representing each ISA Extension. */ |
14672 | | |
14673 | | unsigned int |
14674 | | bfd_mips_isa_ext (bfd *abfd) |
14675 | 0 | { |
14676 | 0 | switch (bfd_get_mach (abfd)) |
14677 | 0 | { |
14678 | 0 | case bfd_mach_mips3900: return AFL_EXT_3900; |
14679 | 0 | case bfd_mach_mips4010: return AFL_EXT_4010; |
14680 | 0 | case bfd_mach_mips4100: return AFL_EXT_4100; |
14681 | 0 | case bfd_mach_mips4111: return AFL_EXT_4111; |
14682 | 0 | case bfd_mach_mips4120: return AFL_EXT_4120; |
14683 | 0 | case bfd_mach_mips4650: return AFL_EXT_4650; |
14684 | 0 | case bfd_mach_mips5400: return AFL_EXT_5400; |
14685 | 0 | case bfd_mach_mips5500: return AFL_EXT_5500; |
14686 | 0 | case bfd_mach_mips5900: return AFL_EXT_5900; |
14687 | 0 | case bfd_mach_mips10000: return AFL_EXT_10000; |
14688 | 0 | case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; |
14689 | 0 | case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; |
14690 | 0 | case bfd_mach_mips_sb1: return AFL_EXT_SB1; |
14691 | 0 | case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; |
14692 | 0 | case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; |
14693 | 0 | case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; |
14694 | 0 | case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; |
14695 | 0 | case bfd_mach_mips_xlr: return AFL_EXT_XLR; |
14696 | 0 | case bfd_mach_mips_interaptiv_mr2: |
14697 | 0 | return AFL_EXT_INTERAPTIV_MR2; |
14698 | 0 | default: return 0; |
14699 | 0 | } |
14700 | 0 | } |
14701 | | |
14702 | | /* Encode ISA level and revision as a single value. */ |
14703 | 0 | #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) |
14704 | | |
14705 | | /* Decode a single value into level and revision. */ |
14706 | 0 | #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) |
14707 | 0 | #define ISA_REV(LEVREV) ((LEVREV) & 0x7) |
14708 | | |
14709 | | /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ |
14710 | | |
14711 | | static void |
14712 | | update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) |
14713 | 0 | { |
14714 | 0 | int new_isa = 0; |
14715 | 0 | switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) |
14716 | 0 | { |
14717 | 0 | case EF_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; |
14718 | 0 | case EF_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; |
14719 | 0 | case EF_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; |
14720 | 0 | case EF_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; |
14721 | 0 | case EF_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; |
14722 | 0 | case EF_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; |
14723 | 0 | case EF_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; |
14724 | 0 | case EF_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; |
14725 | 0 | case EF_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; |
14726 | 0 | case EF_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; |
14727 | 0 | case EF_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; |
14728 | 0 | default: |
14729 | 0 | _bfd_error_handler |
14730 | | /* xgettext:c-format */ |
14731 | 0 | (_("%pB: unknown architecture %s"), |
14732 | 0 | abfd, bfd_printable_name (abfd)); |
14733 | 0 | } |
14734 | | |
14735 | 0 | if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) |
14736 | 0 | { |
14737 | 0 | abiflags->isa_level = ISA_LEVEL (new_isa); |
14738 | 0 | abiflags->isa_rev = ISA_REV (new_isa); |
14739 | 0 | } |
14740 | | |
14741 | | /* Update the isa_ext if ABFD describes a further extension. */ |
14742 | 0 | if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), |
14743 | 0 | bfd_get_mach (abfd))) |
14744 | 0 | abiflags->isa_ext = bfd_mips_isa_ext (abfd); |
14745 | 0 | } |
14746 | | |
14747 | | /* Return true if the given ELF header flags describe a 32-bit binary. */ |
14748 | | |
14749 | | static bool |
14750 | | mips_32bit_flags_p (flagword flags) |
14751 | 0 | { |
14752 | 0 | return ((flags & EF_MIPS_32BITMODE) != 0 |
14753 | 0 | || (flags & EF_MIPS_ABI) == EF_MIPS_ABI_O32 |
14754 | 0 | || (flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI32 |
14755 | 0 | || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_1 |
14756 | 0 | || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_2 |
14757 | 0 | || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32 |
14758 | 0 | || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R2 |
14759 | 0 | || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R6); |
14760 | 0 | } |
14761 | | |
14762 | | /* Infer the content of the ABI flags based on the elf header. */ |
14763 | | |
14764 | | static void |
14765 | | infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) |
14766 | 0 | { |
14767 | 0 | obj_attribute *in_attr; |
14768 | |
|
14769 | 0 | memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); |
14770 | 0 | update_mips_abiflags_isa (abfd, abiflags); |
14771 | |
|
14772 | 0 | if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) |
14773 | 0 | abiflags->gpr_size = AFL_REG_32; |
14774 | 0 | else |
14775 | 0 | abiflags->gpr_size = AFL_REG_64; |
14776 | |
|
14777 | 0 | abiflags->cpr1_size = AFL_REG_NONE; |
14778 | |
|
14779 | 0 | in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; |
14780 | 0 | abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
14781 | |
|
14782 | 0 | if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE |
14783 | 0 | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX |
14784 | 0 | || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE |
14785 | 0 | && abiflags->gpr_size == AFL_REG_32)) |
14786 | 0 | abiflags->cpr1_size = AFL_REG_32; |
14787 | 0 | else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE |
14788 | 0 | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 |
14789 | 0 | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) |
14790 | 0 | abiflags->cpr1_size = AFL_REG_64; |
14791 | |
|
14792 | 0 | abiflags->cpr2_size = AFL_REG_NONE; |
14793 | |
|
14794 | 0 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
14795 | 0 | abiflags->ases |= AFL_ASE_MDMX; |
14796 | 0 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) |
14797 | 0 | abiflags->ases |= AFL_ASE_MIPS16; |
14798 | 0 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) |
14799 | 0 | abiflags->ases |= AFL_ASE_MICROMIPS; |
14800 | |
|
14801 | 0 | if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY |
14802 | 0 | && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT |
14803 | 0 | && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A |
14804 | 0 | && abiflags->isa_level >= 32 |
14805 | 0 | && abiflags->ases != AFL_ASE_LOONGSON_EXT) |
14806 | 0 | abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; |
14807 | 0 | } |
14808 | | |
14809 | | /* We need to use a special link routine to handle the .reginfo and |
14810 | | the .mdebug sections. We need to merge all instances of these |
14811 | | sections together, not write them all out sequentially. */ |
14812 | | |
14813 | | bool |
14814 | | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
14815 | 0 | { |
14816 | 0 | asection *o; |
14817 | 0 | struct bfd_link_order *p; |
14818 | 0 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; |
14819 | 0 | asection *rtproc_sec, *abiflags_sec; |
14820 | 0 | Elf32_RegInfo reginfo; |
14821 | 0 | struct ecoff_debug_info debug; |
14822 | 0 | struct mips_htab_traverse_info hti; |
14823 | 0 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
14824 | 0 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; |
14825 | 0 | HDRR *symhdr = &debug.symbolic_header; |
14826 | 0 | void *mdebug_handle = NULL; |
14827 | 0 | asection *s; |
14828 | 0 | EXTR esym; |
14829 | 0 | unsigned int i; |
14830 | 0 | bfd_size_type amt; |
14831 | 0 | struct mips_elf_link_hash_table *htab; |
14832 | |
|
14833 | 0 | static const char * const secname[] = |
14834 | 0 | { |
14835 | 0 | ".text", ".init", ".fini", ".data", |
14836 | 0 | ".rodata", ".sdata", ".sbss", ".bss" |
14837 | 0 | }; |
14838 | 0 | static const int sc[] = |
14839 | 0 | { |
14840 | 0 | scText, scInit, scFini, scData, |
14841 | 0 | scRData, scSData, scSBss, scBss |
14842 | 0 | }; |
14843 | |
|
14844 | 0 | htab = mips_elf_hash_table (info); |
14845 | 0 | BFD_ASSERT (htab != NULL); |
14846 | | |
14847 | | /* Sort the dynamic symbols so that those with GOT entries come after |
14848 | | those without. */ |
14849 | 0 | if (!mips_elf_sort_hash_table (abfd, info)) |
14850 | 0 | return false; |
14851 | | |
14852 | | /* Create any scheduled LA25 stubs. */ |
14853 | 0 | hti.info = info; |
14854 | 0 | hti.output_bfd = abfd; |
14855 | 0 | hti.error = false; |
14856 | 0 | htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); |
14857 | 0 | if (hti.error) |
14858 | 0 | return false; |
14859 | | |
14860 | | /* Get a value for the GP register. */ |
14861 | 0 | if (elf_gp (abfd) == 0) |
14862 | 0 | { |
14863 | 0 | struct bfd_link_hash_entry *h; |
14864 | |
|
14865 | 0 | h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); |
14866 | 0 | if (h != NULL && h->type == bfd_link_hash_defined) |
14867 | 0 | elf_gp (abfd) = (h->u.def.value |
14868 | 0 | + h->u.def.section->output_section->vma |
14869 | 0 | + h->u.def.section->output_offset); |
14870 | 0 | else if (htab->root.target_os == is_vxworks |
14871 | 0 | && (h = bfd_link_hash_lookup (info->hash, |
14872 | 0 | "_GLOBAL_OFFSET_TABLE_", |
14873 | 0 | false, false, true)) |
14874 | 0 | && h->type == bfd_link_hash_defined) |
14875 | 0 | elf_gp (abfd) = (h->u.def.section->output_section->vma |
14876 | 0 | + h->u.def.section->output_offset |
14877 | 0 | + h->u.def.value); |
14878 | 0 | else if (bfd_link_relocatable (info)) |
14879 | 0 | { |
14880 | 0 | bfd_vma lo = MINUS_ONE; |
14881 | | |
14882 | | /* Find the GP-relative section with the lowest offset. */ |
14883 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
14884 | 0 | if (o->vma < lo |
14885 | 0 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) |
14886 | 0 | lo = o->vma; |
14887 | | |
14888 | | /* And calculate GP relative to that. */ |
14889 | 0 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
14890 | 0 | } |
14891 | 0 | else |
14892 | 0 | { |
14893 | | /* If the relocate_section function needs to do a reloc |
14894 | | involving the GP value, it should make a reloc_dangerous |
14895 | | callback to warn that GP is not defined. */ |
14896 | 0 | } |
14897 | 0 | } |
14898 | | |
14899 | | /* Go through the sections and collect the .reginfo and .mdebug |
14900 | | information. */ |
14901 | 0 | abiflags_sec = NULL; |
14902 | 0 | reginfo_sec = NULL; |
14903 | 0 | mdebug_sec = NULL; |
14904 | 0 | gptab_data_sec = NULL; |
14905 | 0 | gptab_bss_sec = NULL; |
14906 | 0 | for (o = abfd->sections; o != NULL; o = o->next) |
14907 | 0 | { |
14908 | 0 | if (strcmp (o->name, ".MIPS.abiflags") == 0) |
14909 | 0 | { |
14910 | | /* We have found the .MIPS.abiflags section in the output file. |
14911 | | Look through all the link_orders comprising it and remove them. |
14912 | | The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ |
14913 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
14914 | 0 | { |
14915 | 0 | asection *input_section; |
14916 | |
|
14917 | 0 | if (p->type != bfd_indirect_link_order) |
14918 | 0 | { |
14919 | 0 | if (p->type == bfd_data_link_order) |
14920 | 0 | continue; |
14921 | 0 | abort (); |
14922 | 0 | } |
14923 | | |
14924 | 0 | input_section = p->u.indirect.section; |
14925 | | |
14926 | | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
14927 | | elf_link_input_bfd ignores this section. */ |
14928 | 0 | input_section->flags &= ~SEC_HAS_CONTENTS; |
14929 | 0 | } |
14930 | | |
14931 | | /* Size has been set in _bfd_mips_elf_late_size_sections. */ |
14932 | 0 | BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); |
14933 | | |
14934 | | /* Skip this section later on (I don't think this currently |
14935 | | matters, but someday it might). */ |
14936 | 0 | o->map_head.link_order = NULL; |
14937 | |
|
14938 | 0 | abiflags_sec = o; |
14939 | 0 | } |
14940 | | |
14941 | 0 | if (strcmp (o->name, ".reginfo") == 0) |
14942 | 0 | { |
14943 | 0 | memset (®info, 0, sizeof reginfo); |
14944 | | |
14945 | | /* We have found the .reginfo section in the output file. |
14946 | | Look through all the link_orders comprising it and merge |
14947 | | the information together. */ |
14948 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
14949 | 0 | { |
14950 | 0 | asection *input_section; |
14951 | 0 | bfd *input_bfd; |
14952 | 0 | Elf32_External_RegInfo ext; |
14953 | 0 | Elf32_RegInfo sub; |
14954 | 0 | bfd_size_type sz; |
14955 | |
|
14956 | 0 | if (p->type != bfd_indirect_link_order) |
14957 | 0 | { |
14958 | 0 | if (p->type == bfd_data_link_order) |
14959 | 0 | continue; |
14960 | 0 | abort (); |
14961 | 0 | } |
14962 | | |
14963 | 0 | input_section = p->u.indirect.section; |
14964 | 0 | input_bfd = input_section->owner; |
14965 | |
|
14966 | 0 | sz = (input_section->size < sizeof (ext) |
14967 | 0 | ? input_section->size : sizeof (ext)); |
14968 | 0 | memset (&ext, 0, sizeof (ext)); |
14969 | 0 | if (! bfd_get_section_contents (input_bfd, input_section, |
14970 | 0 | &ext, 0, sz)) |
14971 | 0 | return false; |
14972 | | |
14973 | 0 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); |
14974 | |
|
14975 | 0 | reginfo.ri_gprmask |= sub.ri_gprmask; |
14976 | 0 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; |
14977 | 0 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; |
14978 | 0 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; |
14979 | 0 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; |
14980 | | |
14981 | | /* ri_gp_value is set by the function |
14982 | | `_bfd_mips_elf_section_processing' when the section is |
14983 | | finally written out. */ |
14984 | | |
14985 | | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
14986 | | elf_link_input_bfd ignores this section. */ |
14987 | 0 | input_section->flags &= ~SEC_HAS_CONTENTS; |
14988 | 0 | } |
14989 | | |
14990 | | /* Size has been set in _bfd_mips_elf_late_size_sections. */ |
14991 | 0 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
14992 | | |
14993 | | /* Skip this section later on (I don't think this currently |
14994 | | matters, but someday it might). */ |
14995 | 0 | o->map_head.link_order = NULL; |
14996 | |
|
14997 | 0 | reginfo_sec = o; |
14998 | 0 | } |
14999 | | |
15000 | 0 | if (strcmp (o->name, ".mdebug") == 0) |
15001 | 0 | { |
15002 | 0 | struct extsym_info einfo; |
15003 | 0 | bfd_vma last; |
15004 | | |
15005 | | /* We have found the .mdebug section in the output file. |
15006 | | Look through all the link_orders comprising it and merge |
15007 | | the information together. */ |
15008 | 0 | symhdr->magic = swap->sym_magic; |
15009 | | /* FIXME: What should the version stamp be? */ |
15010 | 0 | symhdr->vstamp = 0; |
15011 | 0 | symhdr->ilineMax = 0; |
15012 | 0 | symhdr->cbLine = 0; |
15013 | 0 | symhdr->idnMax = 0; |
15014 | 0 | symhdr->ipdMax = 0; |
15015 | 0 | symhdr->isymMax = 0; |
15016 | 0 | symhdr->ioptMax = 0; |
15017 | 0 | symhdr->iauxMax = 0; |
15018 | 0 | symhdr->issMax = 0; |
15019 | 0 | symhdr->issExtMax = 0; |
15020 | 0 | symhdr->ifdMax = 0; |
15021 | 0 | symhdr->crfd = 0; |
15022 | 0 | symhdr->iextMax = 0; |
15023 | | |
15024 | | /* We accumulate the debugging information itself in the |
15025 | | debug_info structure. */ |
15026 | 0 | debug.alloc_syments = false; |
15027 | 0 | debug.line = NULL; |
15028 | 0 | debug.external_dnr = NULL; |
15029 | 0 | debug.external_pdr = NULL; |
15030 | 0 | debug.external_sym = NULL; |
15031 | 0 | debug.external_opt = NULL; |
15032 | 0 | debug.external_aux = NULL; |
15033 | 0 | debug.ss = NULL; |
15034 | 0 | debug.ssext = debug.ssext_end = NULL; |
15035 | 0 | debug.external_fdr = NULL; |
15036 | 0 | debug.external_rfd = NULL; |
15037 | 0 | debug.external_ext = debug.external_ext_end = NULL; |
15038 | |
|
15039 | 0 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); |
15040 | 0 | if (mdebug_handle == NULL) |
15041 | 0 | return false; |
15042 | | |
15043 | 0 | esym.jmptbl = 0; |
15044 | 0 | esym.cobol_main = 0; |
15045 | 0 | esym.weakext = 0; |
15046 | 0 | esym.reserved = 0; |
15047 | 0 | esym.ifd = ifdNil; |
15048 | 0 | esym.asym.iss = issNil; |
15049 | 0 | esym.asym.st = stLocal; |
15050 | 0 | esym.asym.reserved = 0; |
15051 | 0 | esym.asym.index = indexNil; |
15052 | 0 | last = 0; |
15053 | 0 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) |
15054 | 0 | { |
15055 | 0 | esym.asym.sc = sc[i]; |
15056 | 0 | s = bfd_get_section_by_name (abfd, secname[i]); |
15057 | 0 | if (s != NULL) |
15058 | 0 | { |
15059 | 0 | esym.asym.value = s->vma; |
15060 | 0 | last = s->vma + s->size; |
15061 | 0 | } |
15062 | 0 | else |
15063 | 0 | esym.asym.value = last; |
15064 | 0 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, |
15065 | 0 | secname[i], &esym)) |
15066 | 0 | return false; |
15067 | 0 | } |
15068 | | |
15069 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
15070 | 0 | { |
15071 | 0 | asection *input_section; |
15072 | 0 | bfd *input_bfd; |
15073 | 0 | const struct ecoff_debug_swap *input_swap; |
15074 | 0 | struct ecoff_debug_info input_debug; |
15075 | 0 | char *eraw_src; |
15076 | 0 | char *eraw_end; |
15077 | |
|
15078 | 0 | if (p->type != bfd_indirect_link_order) |
15079 | 0 | { |
15080 | 0 | if (p->type == bfd_data_link_order) |
15081 | 0 | continue; |
15082 | 0 | abort (); |
15083 | 0 | } |
15084 | | |
15085 | 0 | input_section = p->u.indirect.section; |
15086 | 0 | input_bfd = input_section->owner; |
15087 | |
|
15088 | 0 | if (!is_mips_elf (input_bfd)) |
15089 | 0 | { |
15090 | | /* I don't know what a non MIPS ELF bfd would be |
15091 | | doing with a .mdebug section, but I don't really |
15092 | | want to deal with it. */ |
15093 | 0 | continue; |
15094 | 0 | } |
15095 | | |
15096 | 0 | input_swap = (get_elf_backend_data (input_bfd) |
15097 | 0 | ->elf_backend_ecoff_debug_swap); |
15098 | |
|
15099 | 0 | BFD_ASSERT (p->size == input_section->size); |
15100 | | |
15101 | | /* The ECOFF linking code expects that we have already |
15102 | | read in the debugging information and set up an |
15103 | | ecoff_debug_info structure, so we do that now. */ |
15104 | 0 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, |
15105 | 0 | &input_debug)) |
15106 | 0 | return false; |
15107 | | |
15108 | 0 | if (! (bfd_ecoff_debug_accumulate |
15109 | 0 | (mdebug_handle, abfd, &debug, swap, input_bfd, |
15110 | 0 | &input_debug, input_swap, info))) |
15111 | 0 | { |
15112 | 0 | _bfd_ecoff_free_ecoff_debug_info (&input_debug); |
15113 | 0 | return false; |
15114 | 0 | } |
15115 | | |
15116 | | /* Loop through the external symbols. For each one with |
15117 | | interesting information, try to find the symbol in |
15118 | | the linker global hash table and save the information |
15119 | | for the output external symbols. */ |
15120 | 0 | eraw_src = input_debug.external_ext; |
15121 | 0 | eraw_end = (eraw_src |
15122 | 0 | + (input_debug.symbolic_header.iextMax |
15123 | 0 | * input_swap->external_ext_size)); |
15124 | 0 | for (; |
15125 | 0 | eraw_src < eraw_end; |
15126 | 0 | eraw_src += input_swap->external_ext_size) |
15127 | 0 | { |
15128 | 0 | EXTR ext; |
15129 | 0 | const char *name; |
15130 | 0 | struct mips_elf_link_hash_entry *h; |
15131 | |
|
15132 | 0 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
15133 | 0 | if (ext.asym.sc == scNil |
15134 | 0 | || ext.asym.sc == scUndefined |
15135 | 0 | || ext.asym.sc == scSUndefined) |
15136 | 0 | continue; |
15137 | | |
15138 | 0 | name = input_debug.ssext + ext.asym.iss; |
15139 | 0 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), |
15140 | 0 | name, false, false, true); |
15141 | 0 | if (h == NULL || h->esym.ifd != -2) |
15142 | 0 | continue; |
15143 | | |
15144 | 0 | if (ext.ifd != -1) |
15145 | 0 | { |
15146 | 0 | BFD_ASSERT (ext.ifd |
15147 | 0 | < input_debug.symbolic_header.ifdMax); |
15148 | 0 | ext.ifd = input_debug.ifdmap[ext.ifd]; |
15149 | 0 | } |
15150 | |
|
15151 | 0 | h->esym = ext; |
15152 | 0 | } |
15153 | | |
15154 | | /* Free up the information we just read. */ |
15155 | 0 | _bfd_ecoff_free_ecoff_debug_info (&input_debug); |
15156 | | |
15157 | | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
15158 | | elf_link_input_bfd ignores this section. */ |
15159 | 0 | input_section->flags &= ~SEC_HAS_CONTENTS; |
15160 | 0 | } |
15161 | | |
15162 | 0 | if (SGI_COMPAT (abfd) && bfd_link_pic (info)) |
15163 | 0 | { |
15164 | | /* Create .rtproc section. */ |
15165 | 0 | rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); |
15166 | 0 | if (rtproc_sec == NULL) |
15167 | 0 | { |
15168 | 0 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
15169 | 0 | | SEC_LINKER_CREATED | SEC_READONLY); |
15170 | |
|
15171 | 0 | rtproc_sec = bfd_make_section_anyway_with_flags (abfd, |
15172 | 0 | ".rtproc", |
15173 | 0 | flags); |
15174 | 0 | if (rtproc_sec == NULL |
15175 | 0 | || !bfd_set_section_alignment (rtproc_sec, 4)) |
15176 | 0 | return false; |
15177 | 0 | } |
15178 | | |
15179 | 0 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, |
15180 | 0 | info, rtproc_sec, |
15181 | 0 | &debug)) |
15182 | 0 | return false; |
15183 | 0 | } |
15184 | | |
15185 | | /* Build the external symbol information. */ |
15186 | 0 | einfo.abfd = abfd; |
15187 | 0 | einfo.info = info; |
15188 | 0 | einfo.debug = &debug; |
15189 | 0 | einfo.swap = swap; |
15190 | 0 | einfo.failed = false; |
15191 | 0 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
15192 | 0 | mips_elf_output_extsym, &einfo); |
15193 | 0 | if (einfo.failed) |
15194 | 0 | return false; |
15195 | | |
15196 | | /* Set the size of the .mdebug section. */ |
15197 | 0 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
15198 | | |
15199 | | /* Skip this section later on (I don't think this currently |
15200 | | matters, but someday it might). */ |
15201 | 0 | o->map_head.link_order = NULL; |
15202 | |
|
15203 | 0 | mdebug_sec = o; |
15204 | 0 | } |
15205 | | |
15206 | 0 | if (startswith (o->name, ".gptab.")) |
15207 | 0 | { |
15208 | 0 | const char *subname; |
15209 | 0 | unsigned int c; |
15210 | 0 | Elf32_gptab *tab; |
15211 | 0 | Elf32_External_gptab *ext_tab; |
15212 | 0 | unsigned int j; |
15213 | | |
15214 | | /* The .gptab.sdata and .gptab.sbss sections hold |
15215 | | information describing how the small data area would |
15216 | | change depending upon the -G switch. These sections |
15217 | | not used in executables files. */ |
15218 | 0 | if (! bfd_link_relocatable (info)) |
15219 | 0 | { |
15220 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
15221 | 0 | { |
15222 | 0 | asection *input_section; |
15223 | |
|
15224 | 0 | if (p->type != bfd_indirect_link_order) |
15225 | 0 | { |
15226 | 0 | if (p->type == bfd_data_link_order) |
15227 | 0 | continue; |
15228 | 0 | abort (); |
15229 | 0 | } |
15230 | | |
15231 | 0 | input_section = p->u.indirect.section; |
15232 | | |
15233 | | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
15234 | | elf_link_input_bfd ignores this section. */ |
15235 | 0 | input_section->flags &= ~SEC_HAS_CONTENTS; |
15236 | 0 | } |
15237 | | |
15238 | | /* Skip this section later on (I don't think this |
15239 | | currently matters, but someday it might). */ |
15240 | 0 | o->map_head.link_order = NULL; |
15241 | | |
15242 | | /* Really remove the section. */ |
15243 | 0 | bfd_section_list_remove (abfd, o); |
15244 | 0 | --abfd->section_count; |
15245 | |
|
15246 | 0 | continue; |
15247 | 0 | } |
15248 | | |
15249 | | /* There is one gptab for initialized data, and one for |
15250 | | uninitialized data. */ |
15251 | 0 | if (strcmp (o->name, ".gptab.sdata") == 0) |
15252 | 0 | gptab_data_sec = o; |
15253 | 0 | else if (strcmp (o->name, ".gptab.sbss") == 0) |
15254 | 0 | gptab_bss_sec = o; |
15255 | 0 | else |
15256 | 0 | { |
15257 | 0 | _bfd_error_handler |
15258 | | /* xgettext:c-format */ |
15259 | 0 | (_("%pB: illegal section name `%pA'"), abfd, o); |
15260 | 0 | bfd_set_error (bfd_error_nonrepresentable_section); |
15261 | 0 | return false; |
15262 | 0 | } |
15263 | | |
15264 | | /* The linker script always combines .gptab.data and |
15265 | | .gptab.sdata into .gptab.sdata, and likewise for |
15266 | | .gptab.bss and .gptab.sbss. It is possible that there is |
15267 | | no .sdata or .sbss section in the output file, in which |
15268 | | case we must change the name of the output section. */ |
15269 | 0 | subname = o->name + sizeof ".gptab" - 1; |
15270 | 0 | if (bfd_get_section_by_name (abfd, subname) == NULL) |
15271 | 0 | { |
15272 | 0 | if (o == gptab_data_sec) |
15273 | 0 | o->name = ".gptab.data"; |
15274 | 0 | else |
15275 | 0 | o->name = ".gptab.bss"; |
15276 | 0 | subname = o->name + sizeof ".gptab" - 1; |
15277 | 0 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); |
15278 | 0 | } |
15279 | | |
15280 | | /* Set up the first entry. */ |
15281 | 0 | c = 1; |
15282 | 0 | amt = c * sizeof (Elf32_gptab); |
15283 | 0 | tab = bfd_malloc (amt); |
15284 | 0 | if (tab == NULL) |
15285 | 0 | return false; |
15286 | 0 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
15287 | 0 | tab[0].gt_header.gt_unused = 0; |
15288 | | |
15289 | | /* Combine the input sections. */ |
15290 | 0 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
15291 | 0 | { |
15292 | 0 | asection *input_section; |
15293 | 0 | bfd *input_bfd; |
15294 | 0 | bfd_size_type size; |
15295 | 0 | unsigned long last; |
15296 | 0 | bfd_size_type gpentry; |
15297 | |
|
15298 | 0 | if (p->type != bfd_indirect_link_order) |
15299 | 0 | { |
15300 | 0 | if (p->type == bfd_data_link_order) |
15301 | 0 | continue; |
15302 | 0 | abort (); |
15303 | 0 | } |
15304 | | |
15305 | 0 | input_section = p->u.indirect.section; |
15306 | 0 | input_bfd = input_section->owner; |
15307 | | |
15308 | | /* Combine the gptab entries for this input section one |
15309 | | by one. We know that the input gptab entries are |
15310 | | sorted by ascending -G value. */ |
15311 | 0 | size = input_section->size; |
15312 | 0 | last = 0; |
15313 | 0 | for (gpentry = sizeof (Elf32_External_gptab); |
15314 | 0 | gpentry < size; |
15315 | 0 | gpentry += sizeof (Elf32_External_gptab)) |
15316 | 0 | { |
15317 | 0 | Elf32_External_gptab ext_gptab; |
15318 | 0 | Elf32_gptab int_gptab; |
15319 | 0 | unsigned long val; |
15320 | 0 | unsigned long add; |
15321 | 0 | bool exact; |
15322 | 0 | unsigned int look; |
15323 | |
|
15324 | 0 | if (! (bfd_get_section_contents |
15325 | 0 | (input_bfd, input_section, &ext_gptab, gpentry, |
15326 | 0 | sizeof (Elf32_External_gptab)))) |
15327 | 0 | { |
15328 | 0 | free (tab); |
15329 | 0 | return false; |
15330 | 0 | } |
15331 | | |
15332 | 0 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, |
15333 | 0 | &int_gptab); |
15334 | 0 | val = int_gptab.gt_entry.gt_g_value; |
15335 | 0 | add = int_gptab.gt_entry.gt_bytes - last; |
15336 | |
|
15337 | 0 | exact = false; |
15338 | 0 | for (look = 1; look < c; look++) |
15339 | 0 | { |
15340 | 0 | if (tab[look].gt_entry.gt_g_value >= val) |
15341 | 0 | tab[look].gt_entry.gt_bytes += add; |
15342 | |
|
15343 | 0 | if (tab[look].gt_entry.gt_g_value == val) |
15344 | 0 | exact = true; |
15345 | 0 | } |
15346 | |
|
15347 | 0 | if (! exact) |
15348 | 0 | { |
15349 | 0 | Elf32_gptab *new_tab; |
15350 | 0 | unsigned int max; |
15351 | | |
15352 | | /* We need a new table entry. */ |
15353 | 0 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); |
15354 | 0 | new_tab = bfd_realloc (tab, amt); |
15355 | 0 | if (new_tab == NULL) |
15356 | 0 | { |
15357 | 0 | free (tab); |
15358 | 0 | return false; |
15359 | 0 | } |
15360 | 0 | tab = new_tab; |
15361 | 0 | tab[c].gt_entry.gt_g_value = val; |
15362 | 0 | tab[c].gt_entry.gt_bytes = add; |
15363 | | |
15364 | | /* Merge in the size for the next smallest -G |
15365 | | value, since that will be implied by this new |
15366 | | value. */ |
15367 | 0 | max = 0; |
15368 | 0 | for (look = 1; look < c; look++) |
15369 | 0 | { |
15370 | 0 | if (tab[look].gt_entry.gt_g_value < val |
15371 | 0 | && (max == 0 |
15372 | 0 | || (tab[look].gt_entry.gt_g_value |
15373 | 0 | > tab[max].gt_entry.gt_g_value))) |
15374 | 0 | max = look; |
15375 | 0 | } |
15376 | 0 | if (max != 0) |
15377 | 0 | tab[c].gt_entry.gt_bytes += |
15378 | 0 | tab[max].gt_entry.gt_bytes; |
15379 | |
|
15380 | 0 | ++c; |
15381 | 0 | } |
15382 | | |
15383 | 0 | last = int_gptab.gt_entry.gt_bytes; |
15384 | 0 | } |
15385 | | |
15386 | | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
15387 | | elf_link_input_bfd ignores this section. */ |
15388 | 0 | input_section->flags &= ~SEC_HAS_CONTENTS; |
15389 | 0 | } |
15390 | | |
15391 | | /* The table must be sorted by -G value. */ |
15392 | 0 | if (c > 2) |
15393 | 0 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); |
15394 | | |
15395 | | /* Swap out the table. */ |
15396 | 0 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); |
15397 | 0 | ext_tab = bfd_alloc (abfd, amt); |
15398 | 0 | if (ext_tab == NULL) |
15399 | 0 | { |
15400 | 0 | free (tab); |
15401 | 0 | return false; |
15402 | 0 | } |
15403 | | |
15404 | 0 | for (j = 0; j < c; j++) |
15405 | 0 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); |
15406 | 0 | free (tab); |
15407 | |
|
15408 | 0 | o->size = c * sizeof (Elf32_External_gptab); |
15409 | 0 | o->contents = (bfd_byte *) ext_tab; |
15410 | 0 | o->alloced = 1; |
15411 | | |
15412 | | /* Skip this section later on (I don't think this currently |
15413 | | matters, but someday it might). */ |
15414 | 0 | o->map_head.link_order = NULL; |
15415 | 0 | } |
15416 | 0 | } |
15417 | | |
15418 | | /* Invoke the regular ELF backend linker to do all the work. */ |
15419 | 0 | if (!bfd_elf_final_link (abfd, info)) |
15420 | 0 | return false; |
15421 | | |
15422 | | /* Now write out the computed sections. */ |
15423 | | |
15424 | 0 | if (abiflags_sec != NULL) |
15425 | 0 | { |
15426 | 0 | Elf_External_ABIFlags_v0 ext; |
15427 | 0 | Elf_Internal_ABIFlags_v0 *abiflags; |
15428 | |
|
15429 | 0 | abiflags = &mips_elf_tdata (abfd)->abiflags; |
15430 | | |
15431 | | /* Set up the abiflags if no valid input sections were found. */ |
15432 | 0 | if (!mips_elf_tdata (abfd)->abiflags_valid) |
15433 | 0 | { |
15434 | 0 | infer_mips_abiflags (abfd, abiflags); |
15435 | 0 | mips_elf_tdata (abfd)->abiflags_valid = true; |
15436 | 0 | } |
15437 | 0 | bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); |
15438 | 0 | if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) |
15439 | 0 | return false; |
15440 | 0 | } |
15441 | | |
15442 | 0 | if (reginfo_sec != NULL) |
15443 | 0 | { |
15444 | 0 | Elf32_External_RegInfo ext; |
15445 | |
|
15446 | 0 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); |
15447 | 0 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
15448 | 0 | return false; |
15449 | 0 | } |
15450 | | |
15451 | 0 | if (mdebug_sec != NULL) |
15452 | 0 | { |
15453 | 0 | BFD_ASSERT (abfd->output_has_begun); |
15454 | 0 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, |
15455 | 0 | swap, info, |
15456 | 0 | mdebug_sec->filepos)) |
15457 | 0 | return false; |
15458 | | |
15459 | 0 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); |
15460 | 0 | } |
15461 | | |
15462 | 0 | if (gptab_data_sec != NULL) |
15463 | 0 | { |
15464 | 0 | if (! bfd_set_section_contents (abfd, gptab_data_sec, |
15465 | 0 | gptab_data_sec->contents, |
15466 | 0 | 0, gptab_data_sec->size)) |
15467 | 0 | return false; |
15468 | 0 | } |
15469 | | |
15470 | 0 | if (gptab_bss_sec != NULL) |
15471 | 0 | { |
15472 | 0 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, |
15473 | 0 | gptab_bss_sec->contents, |
15474 | 0 | 0, gptab_bss_sec->size)) |
15475 | 0 | return false; |
15476 | 0 | } |
15477 | | |
15478 | 0 | if (SGI_COMPAT (abfd)) |
15479 | 0 | { |
15480 | 0 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); |
15481 | 0 | if (rtproc_sec != NULL) |
15482 | 0 | { |
15483 | 0 | if (! bfd_set_section_contents (abfd, rtproc_sec, |
15484 | 0 | rtproc_sec->contents, |
15485 | 0 | 0, rtproc_sec->size)) |
15486 | 0 | return false; |
15487 | 0 | } |
15488 | 0 | } |
15489 | | |
15490 | 0 | return true; |
15491 | 0 | } |
15492 | | |
15493 | | /* Merge object file header flags from IBFD into OBFD. Raise an error |
15494 | | if there are conflicting settings. */ |
15495 | | |
15496 | | static bool |
15497 | | mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info) |
15498 | 0 | { |
15499 | 0 | bfd *obfd = info->output_bfd; |
15500 | 0 | struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); |
15501 | 0 | flagword old_flags; |
15502 | 0 | flagword new_flags; |
15503 | 0 | bool ok; |
15504 | |
|
15505 | 0 | new_flags = elf_elfheader (ibfd)->e_flags; |
15506 | 0 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; |
15507 | 0 | old_flags = elf_elfheader (obfd)->e_flags; |
15508 | | |
15509 | | /* Check flag compatibility. */ |
15510 | |
|
15511 | 0 | new_flags &= ~EF_MIPS_NOREORDER; |
15512 | 0 | old_flags &= ~EF_MIPS_NOREORDER; |
15513 | | |
15514 | | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
15515 | | doesn't seem to matter. */ |
15516 | 0 | new_flags &= ~EF_MIPS_XGOT; |
15517 | 0 | old_flags &= ~EF_MIPS_XGOT; |
15518 | | |
15519 | | /* MIPSpro generates ucode info in n64 objects. Again, we should |
15520 | | just be able to ignore this. */ |
15521 | 0 | new_flags &= ~EF_MIPS_UCODE; |
15522 | 0 | old_flags &= ~EF_MIPS_UCODE; |
15523 | | |
15524 | | /* DSOs should only be linked with CPIC code. */ |
15525 | 0 | if ((ibfd->flags & DYNAMIC) != 0) |
15526 | 0 | new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; |
15527 | |
|
15528 | 0 | if (new_flags == old_flags) |
15529 | 0 | return true; |
15530 | | |
15531 | 0 | ok = true; |
15532 | |
|
15533 | 0 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
15534 | 0 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) |
15535 | 0 | { |
15536 | 0 | _bfd_error_handler |
15537 | 0 | (_("%pB: warning: linking abicalls files with non-abicalls files"), |
15538 | 0 | ibfd); |
15539 | 0 | ok = true; |
15540 | 0 | } |
15541 | |
|
15542 | 0 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
15543 | 0 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; |
15544 | 0 | if (! (new_flags & EF_MIPS_PIC)) |
15545 | 0 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; |
15546 | |
|
15547 | 0 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
15548 | 0 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
15549 | | |
15550 | | /* Compare the ISAs. */ |
15551 | 0 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) |
15552 | 0 | { |
15553 | 0 | _bfd_error_handler |
15554 | 0 | (_("%pB: linking 32-bit code with 64-bit code"), |
15555 | 0 | ibfd); |
15556 | 0 | ok = false; |
15557 | 0 | } |
15558 | 0 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) |
15559 | 0 | { |
15560 | | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ |
15561 | 0 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) |
15562 | 0 | { |
15563 | | /* Copy the architecture info from IBFD to OBFD. Also copy |
15564 | | the 32-bit flag (if set) so that we continue to recognise |
15565 | | OBFD as a 32-bit binary. */ |
15566 | 0 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); |
15567 | 0 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
15568 | 0 | elf_elfheader (obfd)->e_flags |
15569 | 0 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
15570 | | |
15571 | | /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ |
15572 | 0 | update_mips_abiflags_isa (obfd, &out_tdata->abiflags); |
15573 | | |
15574 | | /* Copy across the ABI flags if OBFD doesn't use them |
15575 | | and if that was what caused us to treat IBFD as 32-bit. */ |
15576 | 0 | if ((old_flags & EF_MIPS_ABI) == 0 |
15577 | 0 | && mips_32bit_flags_p (new_flags) |
15578 | 0 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) |
15579 | 0 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; |
15580 | 0 | } |
15581 | 0 | else |
15582 | 0 | { |
15583 | | /* The ISAs aren't compatible. */ |
15584 | 0 | _bfd_error_handler |
15585 | | /* xgettext:c-format */ |
15586 | 0 | (_("%pB: linking %s module with previous %s modules"), |
15587 | 0 | ibfd, |
15588 | 0 | bfd_printable_name (ibfd), |
15589 | 0 | bfd_printable_name (obfd)); |
15590 | 0 | ok = false; |
15591 | 0 | } |
15592 | 0 | } |
15593 | |
|
15594 | 0 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
15595 | 0 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
15596 | | |
15597 | | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it |
15598 | | does set EI_CLASS differently from any 32-bit ABI. */ |
15599 | 0 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) |
15600 | 0 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
15601 | 0 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
15602 | 0 | { |
15603 | | /* Only error if both are set (to different values). */ |
15604 | 0 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) |
15605 | 0 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
15606 | 0 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
15607 | 0 | { |
15608 | 0 | _bfd_error_handler |
15609 | | /* xgettext:c-format */ |
15610 | 0 | (_("%pB: ABI mismatch: linking %s module with previous %s modules"), |
15611 | 0 | ibfd, |
15612 | 0 | elf_mips_abi_name (ibfd), |
15613 | 0 | elf_mips_abi_name (obfd)); |
15614 | 0 | ok = false; |
15615 | 0 | } |
15616 | 0 | new_flags &= ~EF_MIPS_ABI; |
15617 | 0 | old_flags &= ~EF_MIPS_ABI; |
15618 | 0 | } |
15619 | | |
15620 | | /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together |
15621 | | and allow arbitrary mixing of the remaining ASEs (retain the union). */ |
15622 | 0 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) |
15623 | 0 | { |
15624 | 0 | int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; |
15625 | 0 | int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; |
15626 | 0 | int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; |
15627 | 0 | int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; |
15628 | 0 | int micro_mis = old_m16 && new_micro; |
15629 | 0 | int m16_mis = old_micro && new_m16; |
15630 | |
|
15631 | 0 | if (m16_mis || micro_mis) |
15632 | 0 | { |
15633 | 0 | _bfd_error_handler |
15634 | | /* xgettext:c-format */ |
15635 | 0 | (_("%pB: ASE mismatch: linking %s module with previous %s modules"), |
15636 | 0 | ibfd, |
15637 | 0 | m16_mis ? "MIPS16" : "microMIPS", |
15638 | 0 | m16_mis ? "microMIPS" : "MIPS16"); |
15639 | 0 | ok = false; |
15640 | 0 | } |
15641 | |
|
15642 | 0 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; |
15643 | |
|
15644 | 0 | new_flags &= ~ EF_MIPS_ARCH_ASE; |
15645 | 0 | old_flags &= ~ EF_MIPS_ARCH_ASE; |
15646 | 0 | } |
15647 | | |
15648 | | /* Compare NaN encodings. */ |
15649 | 0 | if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) |
15650 | 0 | { |
15651 | | /* xgettext:c-format */ |
15652 | 0 | _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), |
15653 | 0 | ibfd, |
15654 | 0 | (new_flags & EF_MIPS_NAN2008 |
15655 | 0 | ? "-mnan=2008" : "-mnan=legacy"), |
15656 | 0 | (old_flags & EF_MIPS_NAN2008 |
15657 | 0 | ? "-mnan=2008" : "-mnan=legacy")); |
15658 | 0 | ok = false; |
15659 | 0 | new_flags &= ~EF_MIPS_NAN2008; |
15660 | 0 | old_flags &= ~EF_MIPS_NAN2008; |
15661 | 0 | } |
15662 | | |
15663 | | /* Compare FP64 state. */ |
15664 | 0 | if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) |
15665 | 0 | { |
15666 | | /* xgettext:c-format */ |
15667 | 0 | _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), |
15668 | 0 | ibfd, |
15669 | 0 | (new_flags & EF_MIPS_FP64 |
15670 | 0 | ? "-mfp64" : "-mfp32"), |
15671 | 0 | (old_flags & EF_MIPS_FP64 |
15672 | 0 | ? "-mfp64" : "-mfp32")); |
15673 | 0 | ok = false; |
15674 | 0 | new_flags &= ~EF_MIPS_FP64; |
15675 | 0 | old_flags &= ~EF_MIPS_FP64; |
15676 | 0 | } |
15677 | | |
15678 | | /* Warn about any other mismatches */ |
15679 | 0 | if (new_flags != old_flags) |
15680 | 0 | { |
15681 | | /* xgettext:c-format */ |
15682 | 0 | _bfd_error_handler |
15683 | 0 | (_("%pB: uses different e_flags (%#x) fields than previous modules " |
15684 | 0 | "(%#x)"), |
15685 | 0 | ibfd, new_flags, old_flags); |
15686 | 0 | ok = false; |
15687 | 0 | } |
15688 | |
|
15689 | 0 | return ok; |
15690 | 0 | } |
15691 | | |
15692 | | /* Merge object attributes from IBFD into OBFD. Raise an error if |
15693 | | there are conflicting attributes. */ |
15694 | | static bool |
15695 | | mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info) |
15696 | 0 | { |
15697 | 0 | bfd *obfd = info->output_bfd; |
15698 | 0 | obj_attribute *in_attr; |
15699 | 0 | obj_attribute *out_attr; |
15700 | 0 | bfd *abi_fp_bfd; |
15701 | 0 | bfd *abi_msa_bfd; |
15702 | |
|
15703 | 0 | abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; |
15704 | 0 | in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; |
15705 | 0 | if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) |
15706 | 0 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
15707 | |
|
15708 | 0 | abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; |
15709 | 0 | if (!abi_msa_bfd |
15710 | 0 | && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) |
15711 | 0 | mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; |
15712 | |
|
15713 | 0 | if (!elf_known_obj_attributes_proc (obfd)[0].i) |
15714 | 0 | { |
15715 | | /* This is the first object. Copy the attributes. */ |
15716 | 0 | _bfd_elf_copy_obj_attributes (ibfd, obfd); |
15717 | | |
15718 | | /* Use the Tag_null value to indicate the attributes have been |
15719 | | initialized. */ |
15720 | 0 | elf_known_obj_attributes_proc (obfd)[0].i = 1; |
15721 | |
|
15722 | 0 | return true; |
15723 | 0 | } |
15724 | | |
15725 | | /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge |
15726 | | non-conflicting ones. */ |
15727 | 0 | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; |
15728 | 0 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) |
15729 | 0 | { |
15730 | 0 | int out_fp, in_fp; |
15731 | |
|
15732 | 0 | out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; |
15733 | 0 | in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
15734 | 0 | out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; |
15735 | 0 | if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) |
15736 | 0 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; |
15737 | 0 | else if (out_fp == Val_GNU_MIPS_ABI_FP_XX |
15738 | 0 | && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE |
15739 | 0 | || in_fp == Val_GNU_MIPS_ABI_FP_64 |
15740 | 0 | || in_fp == Val_GNU_MIPS_ABI_FP_64A)) |
15741 | 0 | { |
15742 | 0 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
15743 | 0 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
15744 | 0 | } |
15745 | 0 | else if (in_fp == Val_GNU_MIPS_ABI_FP_XX |
15746 | 0 | && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE |
15747 | 0 | || out_fp == Val_GNU_MIPS_ABI_FP_64 |
15748 | 0 | || out_fp == Val_GNU_MIPS_ABI_FP_64A)) |
15749 | 0 | /* Keep the current setting. */; |
15750 | 0 | else if (out_fp == Val_GNU_MIPS_ABI_FP_64A |
15751 | 0 | && in_fp == Val_GNU_MIPS_ABI_FP_64) |
15752 | 0 | { |
15753 | 0 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
15754 | 0 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
15755 | 0 | } |
15756 | 0 | else if (in_fp == Val_GNU_MIPS_ABI_FP_64A |
15757 | 0 | && out_fp == Val_GNU_MIPS_ABI_FP_64) |
15758 | 0 | /* Keep the current setting. */; |
15759 | 0 | else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) |
15760 | 0 | { |
15761 | 0 | const char *out_string, *in_string; |
15762 | |
|
15763 | 0 | out_string = _bfd_mips_fp_abi_string (out_fp); |
15764 | 0 | in_string = _bfd_mips_fp_abi_string (in_fp); |
15765 | | /* First warn about cases involving unrecognised ABIs. */ |
15766 | 0 | if (!out_string && !in_string) |
15767 | | /* xgettext:c-format */ |
15768 | 0 | _bfd_error_handler |
15769 | 0 | (_("warning: %pB uses unknown floating point ABI %d " |
15770 | 0 | "(set by %pB), %pB uses unknown floating point ABI %d"), |
15771 | 0 | obfd, out_fp, abi_fp_bfd, ibfd, in_fp); |
15772 | 0 | else if (!out_string) |
15773 | 0 | _bfd_error_handler |
15774 | | /* xgettext:c-format */ |
15775 | 0 | (_("warning: %pB uses unknown floating point ABI %d " |
15776 | 0 | "(set by %pB), %pB uses %s"), |
15777 | 0 | obfd, out_fp, abi_fp_bfd, ibfd, in_string); |
15778 | 0 | else if (!in_string) |
15779 | 0 | _bfd_error_handler |
15780 | | /* xgettext:c-format */ |
15781 | 0 | (_("warning: %pB uses %s (set by %pB), " |
15782 | 0 | "%pB uses unknown floating point ABI %d"), |
15783 | 0 | obfd, out_string, abi_fp_bfd, ibfd, in_fp); |
15784 | 0 | else |
15785 | 0 | { |
15786 | | /* If one of the bfds is soft-float, the other must be |
15787 | | hard-float. The exact choice of hard-float ABI isn't |
15788 | | really relevant to the error message. */ |
15789 | 0 | if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) |
15790 | 0 | out_string = "-mhard-float"; |
15791 | 0 | else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) |
15792 | 0 | in_string = "-mhard-float"; |
15793 | 0 | _bfd_error_handler |
15794 | | /* xgettext:c-format */ |
15795 | 0 | (_("warning: %pB uses %s (set by %pB), %pB uses %s"), |
15796 | 0 | obfd, out_string, abi_fp_bfd, ibfd, in_string); |
15797 | 0 | } |
15798 | 0 | } |
15799 | 0 | } |
15800 | | |
15801 | | /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge |
15802 | | non-conflicting ones. */ |
15803 | 0 | if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) |
15804 | 0 | { |
15805 | 0 | out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; |
15806 | 0 | if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) |
15807 | 0 | out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; |
15808 | 0 | else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) |
15809 | 0 | switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) |
15810 | 0 | { |
15811 | 0 | case Val_GNU_MIPS_ABI_MSA_128: |
15812 | 0 | _bfd_error_handler |
15813 | | /* xgettext:c-format */ |
15814 | 0 | (_("warning: %pB uses %s (set by %pB), " |
15815 | 0 | "%pB uses unknown MSA ABI %d"), |
15816 | 0 | obfd, "-mmsa", abi_msa_bfd, |
15817 | 0 | ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); |
15818 | 0 | break; |
15819 | | |
15820 | 0 | default: |
15821 | 0 | switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) |
15822 | 0 | { |
15823 | 0 | case Val_GNU_MIPS_ABI_MSA_128: |
15824 | 0 | _bfd_error_handler |
15825 | | /* xgettext:c-format */ |
15826 | 0 | (_("warning: %pB uses unknown MSA ABI %d " |
15827 | 0 | "(set by %pB), %pB uses %s"), |
15828 | 0 | obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, |
15829 | 0 | abi_msa_bfd, ibfd, "-mmsa"); |
15830 | 0 | break; |
15831 | | |
15832 | 0 | default: |
15833 | 0 | _bfd_error_handler |
15834 | | /* xgettext:c-format */ |
15835 | 0 | (_("warning: %pB uses unknown MSA ABI %d " |
15836 | 0 | "(set by %pB), %pB uses unknown MSA ABI %d"), |
15837 | 0 | obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, |
15838 | 0 | abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); |
15839 | 0 | break; |
15840 | 0 | } |
15841 | 0 | } |
15842 | 0 | } |
15843 | | |
15844 | | /* Merge Tag_compatibility attributes and any common GNU ones. */ |
15845 | 0 | return _bfd_elf_merge_object_attributes (ibfd, info); |
15846 | 0 | } |
15847 | | |
15848 | | /* Merge object ABI flags from IBFD into OBFD. Raise an error if |
15849 | | there are conflicting settings. */ |
15850 | | |
15851 | | static bool |
15852 | | mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) |
15853 | 0 | { |
15854 | 0 | obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; |
15855 | 0 | struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); |
15856 | 0 | struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); |
15857 | | |
15858 | | /* Update the output abiflags fp_abi using the computed fp_abi. */ |
15859 | 0 | out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; |
15860 | |
|
15861 | 0 | #define max(a, b) ((a) > (b) ? (a) : (b)) |
15862 | | /* Merge abiflags. */ |
15863 | 0 | out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, |
15864 | 0 | in_tdata->abiflags.isa_level); |
15865 | 0 | out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, |
15866 | 0 | in_tdata->abiflags.isa_rev); |
15867 | 0 | out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, |
15868 | 0 | in_tdata->abiflags.gpr_size); |
15869 | 0 | out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, |
15870 | 0 | in_tdata->abiflags.cpr1_size); |
15871 | 0 | out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, |
15872 | 0 | in_tdata->abiflags.cpr2_size); |
15873 | 0 | #undef max |
15874 | 0 | out_tdata->abiflags.ases |= in_tdata->abiflags.ases; |
15875 | 0 | out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; |
15876 | |
|
15877 | 0 | return true; |
15878 | 0 | } |
15879 | | |
15880 | | /* Merge backend specific data from an object file to the output |
15881 | | object file when linking. */ |
15882 | | |
15883 | | bool |
15884 | | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
15885 | 0 | { |
15886 | 0 | bfd *obfd = info->output_bfd; |
15887 | 0 | struct mips_elf_obj_tdata *out_tdata; |
15888 | 0 | struct mips_elf_obj_tdata *in_tdata; |
15889 | 0 | bool null_input_bfd = true; |
15890 | 0 | asection *sec; |
15891 | 0 | bool ok; |
15892 | | |
15893 | | /* Check if we have the same endianness. */ |
15894 | 0 | if (! _bfd_generic_verify_endian_match (ibfd, info)) |
15895 | 0 | { |
15896 | 0 | _bfd_error_handler |
15897 | 0 | (_("%pB: endianness incompatible with that of the selected emulation"), |
15898 | 0 | ibfd); |
15899 | 0 | return false; |
15900 | 0 | } |
15901 | | |
15902 | 0 | if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) |
15903 | 0 | return true; |
15904 | | |
15905 | 0 | in_tdata = mips_elf_tdata (ibfd); |
15906 | 0 | out_tdata = mips_elf_tdata (obfd); |
15907 | |
|
15908 | 0 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
15909 | 0 | { |
15910 | 0 | _bfd_error_handler |
15911 | 0 | (_("%pB: ABI is incompatible with that of the selected emulation"), |
15912 | 0 | ibfd); |
15913 | 0 | return false; |
15914 | 0 | } |
15915 | | |
15916 | | /* Check to see if the input BFD actually contains any sections. If not, |
15917 | | then it has no attributes, and its flags may not have been initialized |
15918 | | either, but it cannot actually cause any incompatibility. */ |
15919 | | /* FIXME: This excludes any input shared library from consideration. */ |
15920 | 0 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
15921 | 0 | { |
15922 | | /* Ignore synthetic sections and empty .text, .data and .bss sections |
15923 | | which are automatically generated by gas. Also ignore fake |
15924 | | (s)common sections, since merely defining a common symbol does |
15925 | | not affect compatibility. */ |
15926 | 0 | if ((sec->flags & SEC_IS_COMMON) == 0 |
15927 | 0 | && strcmp (sec->name, ".reginfo") |
15928 | 0 | && strcmp (sec->name, ".mdebug") |
15929 | 0 | && (sec->size != 0 |
15930 | 0 | || (strcmp (sec->name, ".text") |
15931 | 0 | && strcmp (sec->name, ".data") |
15932 | 0 | && strcmp (sec->name, ".bss")))) |
15933 | 0 | { |
15934 | 0 | null_input_bfd = false; |
15935 | 0 | break; |
15936 | 0 | } |
15937 | 0 | } |
15938 | 0 | if (null_input_bfd) |
15939 | 0 | return true; |
15940 | | |
15941 | | /* Populate abiflags using existing information. */ |
15942 | 0 | if (in_tdata->abiflags_valid) |
15943 | 0 | { |
15944 | 0 | obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; |
15945 | 0 | Elf_Internal_ABIFlags_v0 in_abiflags; |
15946 | 0 | Elf_Internal_ABIFlags_v0 abiflags; |
15947 | | |
15948 | | /* Set up the FP ABI attribute from the abiflags if it is not already |
15949 | | set. */ |
15950 | 0 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) |
15951 | 0 | in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; |
15952 | |
|
15953 | 0 | infer_mips_abiflags (ibfd, &abiflags); |
15954 | 0 | in_abiflags = in_tdata->abiflags; |
15955 | | |
15956 | | /* It is not possible to infer the correct ISA revision |
15957 | | for R3 or R5 so drop down to R2 for the checks. */ |
15958 | 0 | if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) |
15959 | 0 | in_abiflags.isa_rev = 2; |
15960 | |
|
15961 | 0 | if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) |
15962 | 0 | < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) |
15963 | 0 | _bfd_error_handler |
15964 | 0 | (_("%pB: warning: inconsistent ISA between e_flags and " |
15965 | 0 | ".MIPS.abiflags"), ibfd); |
15966 | 0 | if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY |
15967 | 0 | && in_abiflags.fp_abi != abiflags.fp_abi) |
15968 | 0 | _bfd_error_handler |
15969 | 0 | (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and " |
15970 | 0 | ".MIPS.abiflags"), ibfd); |
15971 | 0 | if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) |
15972 | 0 | _bfd_error_handler |
15973 | 0 | (_("%pB: warning: inconsistent ASEs between e_flags and " |
15974 | 0 | ".MIPS.abiflags"), ibfd); |
15975 | | /* The isa_ext is allowed to be an extension of what can be inferred |
15976 | | from e_flags. */ |
15977 | 0 | if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), |
15978 | 0 | bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) |
15979 | 0 | _bfd_error_handler |
15980 | 0 | (_("%pB: warning: inconsistent ISA extensions between e_flags and " |
15981 | 0 | ".MIPS.abiflags"), ibfd); |
15982 | 0 | if (in_abiflags.flags2 != 0) |
15983 | 0 | _bfd_error_handler |
15984 | 0 | (_("%pB: warning: unexpected flag in the flags2 field of " |
15985 | 0 | ".MIPS.abiflags (0x%lx)"), ibfd, |
15986 | 0 | in_abiflags.flags2); |
15987 | 0 | } |
15988 | 0 | else |
15989 | 0 | { |
15990 | 0 | infer_mips_abiflags (ibfd, &in_tdata->abiflags); |
15991 | 0 | in_tdata->abiflags_valid = true; |
15992 | 0 | } |
15993 | |
|
15994 | 0 | if (!out_tdata->abiflags_valid) |
15995 | 0 | { |
15996 | | /* Copy input abiflags if output abiflags are not already valid. */ |
15997 | 0 | out_tdata->abiflags = in_tdata->abiflags; |
15998 | 0 | out_tdata->abiflags_valid = true; |
15999 | 0 | } |
16000 | |
|
16001 | 0 | if (! elf_flags_init (obfd)) |
16002 | 0 | { |
16003 | 0 | elf_flags_init (obfd) = true; |
16004 | 0 | elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; |
16005 | 0 | elf_elfheader (obfd)->e_ident[EI_CLASS] |
16006 | 0 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; |
16007 | |
|
16008 | 0 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
16009 | 0 | && (bfd_get_arch_info (obfd)->the_default |
16010 | 0 | || mips_mach_extends_p (bfd_get_mach (obfd), |
16011 | 0 | bfd_get_mach (ibfd)))) |
16012 | 0 | { |
16013 | 0 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
16014 | 0 | bfd_get_mach (ibfd))) |
16015 | 0 | return false; |
16016 | | |
16017 | | /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ |
16018 | 0 | update_mips_abiflags_isa (obfd, &out_tdata->abiflags); |
16019 | 0 | } |
16020 | | |
16021 | 0 | ok = true; |
16022 | 0 | } |
16023 | 0 | else |
16024 | 0 | ok = mips_elf_merge_obj_e_flags (ibfd, info); |
16025 | | |
16026 | 0 | ok = mips_elf_merge_obj_attributes (ibfd, info) && ok; |
16027 | |
|
16028 | 0 | ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; |
16029 | |
|
16030 | 0 | if (!ok) |
16031 | 0 | { |
16032 | 0 | bfd_set_error (bfd_error_bad_value); |
16033 | 0 | return false; |
16034 | 0 | } |
16035 | | |
16036 | 0 | return true; |
16037 | 0 | } |
16038 | | |
16039 | | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ |
16040 | | |
16041 | | bool |
16042 | | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
16043 | 0 | { |
16044 | 0 | BFD_ASSERT (!elf_flags_init (abfd) |
16045 | 0 | || elf_elfheader (abfd)->e_flags == flags); |
16046 | |
|
16047 | 0 | elf_elfheader (abfd)->e_flags = flags; |
16048 | 0 | elf_flags_init (abfd) = true; |
16049 | 0 | return true; |
16050 | 0 | } |
16051 | | |
16052 | | char * |
16053 | | _bfd_mips_elf_get_target_dtag (bfd_vma dtag) |
16054 | 32 | { |
16055 | 32 | switch (dtag) |
16056 | 32 | { |
16057 | 0 | default: return ""; |
16058 | 4 | case DT_MIPS_RLD_VERSION: |
16059 | 4 | return "MIPS_RLD_VERSION"; |
16060 | 0 | case DT_MIPS_TIME_STAMP: |
16061 | 0 | return "MIPS_TIME_STAMP"; |
16062 | 0 | case DT_MIPS_ICHECKSUM: |
16063 | 0 | return "MIPS_ICHECKSUM"; |
16064 | 0 | case DT_MIPS_IVERSION: |
16065 | 0 | return "MIPS_IVERSION"; |
16066 | 4 | case DT_MIPS_FLAGS: |
16067 | 4 | return "MIPS_FLAGS"; |
16068 | 4 | case DT_MIPS_BASE_ADDRESS: |
16069 | 4 | return "MIPS_BASE_ADDRESS"; |
16070 | 0 | case DT_MIPS_MSYM: |
16071 | 0 | return "MIPS_MSYM"; |
16072 | 0 | case DT_MIPS_CONFLICT: |
16073 | 0 | return "MIPS_CONFLICT"; |
16074 | 0 | case DT_MIPS_LIBLIST: |
16075 | 0 | return "MIPS_LIBLIST"; |
16076 | 4 | case DT_MIPS_LOCAL_GOTNO: |
16077 | 4 | return "MIPS_LOCAL_GOTNO"; |
16078 | 0 | case DT_MIPS_CONFLICTNO: |
16079 | 0 | return "MIPS_CONFLICTNO"; |
16080 | 0 | case DT_MIPS_LIBLISTNO: |
16081 | 0 | return "MIPS_LIBLISTNO"; |
16082 | 4 | case DT_MIPS_SYMTABNO: |
16083 | 4 | return "MIPS_SYMTABNO"; |
16084 | 4 | case DT_MIPS_UNREFEXTNO: |
16085 | 4 | return "MIPS_UNREFEXTNO"; |
16086 | 4 | case DT_MIPS_GOTSYM: |
16087 | 4 | return "MIPS_GOTSYM"; |
16088 | 0 | case DT_MIPS_HIPAGENO: |
16089 | 0 | return "MIPS_HIPAGENO"; |
16090 | 4 | case DT_MIPS_RLD_MAP: |
16091 | 4 | return "MIPS_RLD_MAP"; |
16092 | 0 | case DT_MIPS_RLD_MAP_REL: |
16093 | 0 | return "MIPS_RLD_MAP_REL"; |
16094 | 0 | case DT_MIPS_DELTA_CLASS: |
16095 | 0 | return "MIPS_DELTA_CLASS"; |
16096 | 0 | case DT_MIPS_DELTA_CLASS_NO: |
16097 | 0 | return "MIPS_DELTA_CLASS_NO"; |
16098 | 0 | case DT_MIPS_DELTA_INSTANCE: |
16099 | 0 | return "MIPS_DELTA_INSTANCE"; |
16100 | 0 | case DT_MIPS_DELTA_INSTANCE_NO: |
16101 | 0 | return "MIPS_DELTA_INSTANCE_NO"; |
16102 | 0 | case DT_MIPS_DELTA_RELOC: |
16103 | 0 | return "MIPS_DELTA_RELOC"; |
16104 | 0 | case DT_MIPS_DELTA_RELOC_NO: |
16105 | 0 | return "MIPS_DELTA_RELOC_NO"; |
16106 | 0 | case DT_MIPS_DELTA_SYM: |
16107 | 0 | return "MIPS_DELTA_SYM"; |
16108 | 0 | case DT_MIPS_DELTA_SYM_NO: |
16109 | 0 | return "MIPS_DELTA_SYM_NO"; |
16110 | 0 | case DT_MIPS_DELTA_CLASSSYM: |
16111 | 0 | return "MIPS_DELTA_CLASSSYM"; |
16112 | 0 | case DT_MIPS_DELTA_CLASSSYM_NO: |
16113 | 0 | return "MIPS_DELTA_CLASSSYM_NO"; |
16114 | 0 | case DT_MIPS_CXX_FLAGS: |
16115 | 0 | return "MIPS_CXX_FLAGS"; |
16116 | 0 | case DT_MIPS_PIXIE_INIT: |
16117 | 0 | return "MIPS_PIXIE_INIT"; |
16118 | 0 | case DT_MIPS_SYMBOL_LIB: |
16119 | 0 | return "MIPS_SYMBOL_LIB"; |
16120 | 0 | case DT_MIPS_LOCALPAGE_GOTIDX: |
16121 | 0 | return "MIPS_LOCALPAGE_GOTIDX"; |
16122 | 0 | case DT_MIPS_LOCAL_GOTIDX: |
16123 | 0 | return "MIPS_LOCAL_GOTIDX"; |
16124 | 0 | case DT_MIPS_HIDDEN_GOTIDX: |
16125 | 0 | return "MIPS_HIDDEN_GOTIDX"; |
16126 | 0 | case DT_MIPS_PROTECTED_GOTIDX: |
16127 | 0 | return "MIPS_PROTECTED_GOT_IDX"; |
16128 | 0 | case DT_MIPS_OPTIONS: |
16129 | 0 | return "MIPS_OPTIONS"; |
16130 | 0 | case DT_MIPS_INTERFACE: |
16131 | 0 | return "MIPS_INTERFACE"; |
16132 | 0 | case DT_MIPS_DYNSTR_ALIGN: |
16133 | 0 | return "DT_MIPS_DYNSTR_ALIGN"; |
16134 | 0 | case DT_MIPS_INTERFACE_SIZE: |
16135 | 0 | return "DT_MIPS_INTERFACE_SIZE"; |
16136 | 0 | case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: |
16137 | 0 | return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; |
16138 | 0 | case DT_MIPS_PERF_SUFFIX: |
16139 | 0 | return "DT_MIPS_PERF_SUFFIX"; |
16140 | 0 | case DT_MIPS_COMPACT_SIZE: |
16141 | 0 | return "DT_MIPS_COMPACT_SIZE"; |
16142 | 0 | case DT_MIPS_GP_VALUE: |
16143 | 0 | return "DT_MIPS_GP_VALUE"; |
16144 | 0 | case DT_MIPS_AUX_DYNAMIC: |
16145 | 0 | return "DT_MIPS_AUX_DYNAMIC"; |
16146 | 0 | case DT_MIPS_PLTGOT: |
16147 | 0 | return "DT_MIPS_PLTGOT"; |
16148 | 0 | case DT_MIPS_RWPLT: |
16149 | 0 | return "DT_MIPS_RWPLT"; |
16150 | 0 | case DT_MIPS_XHASH: |
16151 | 0 | return "DT_MIPS_XHASH"; |
16152 | 32 | } |
16153 | 32 | } |
16154 | | |
16155 | | /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if |
16156 | | not known. */ |
16157 | | |
16158 | | const char * |
16159 | | _bfd_mips_fp_abi_string (int fp) |
16160 | 0 | { |
16161 | 0 | switch (fp) |
16162 | 0 | { |
16163 | | /* These strings aren't translated because they're simply |
16164 | | option lists. */ |
16165 | 0 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
16166 | 0 | return "-mdouble-float"; |
16167 | | |
16168 | 0 | case Val_GNU_MIPS_ABI_FP_SINGLE: |
16169 | 0 | return "-msingle-float"; |
16170 | | |
16171 | 0 | case Val_GNU_MIPS_ABI_FP_SOFT: |
16172 | 0 | return "-msoft-float"; |
16173 | | |
16174 | 0 | case Val_GNU_MIPS_ABI_FP_OLD_64: |
16175 | 0 | return _("-mips32r2 -mfp64 (12 callee-saved)"); |
16176 | | |
16177 | 0 | case Val_GNU_MIPS_ABI_FP_XX: |
16178 | 0 | return "-mfpxx"; |
16179 | | |
16180 | 0 | case Val_GNU_MIPS_ABI_FP_64: |
16181 | 0 | return "-mgp32 -mfp64"; |
16182 | | |
16183 | 0 | case Val_GNU_MIPS_ABI_FP_64A: |
16184 | 0 | return "-mgp32 -mfp64 -mno-odd-spreg"; |
16185 | | |
16186 | 0 | default: |
16187 | 0 | return 0; |
16188 | 0 | } |
16189 | 0 | } |
16190 | | |
16191 | | static void |
16192 | | print_mips_ases (FILE *file, unsigned int mask) |
16193 | 0 | { |
16194 | 0 | if (mask & AFL_ASE_DSP) |
16195 | 0 | fputs ("\n\tDSP ASE", file); |
16196 | 0 | if (mask & AFL_ASE_DSPR2) |
16197 | 0 | fputs ("\n\tDSP R2 ASE", file); |
16198 | 0 | if (mask & AFL_ASE_DSPR3) |
16199 | 0 | fputs ("\n\tDSP R3 ASE", file); |
16200 | 0 | if (mask & AFL_ASE_EVA) |
16201 | 0 | fputs ("\n\tEnhanced VA Scheme", file); |
16202 | 0 | if (mask & AFL_ASE_MCU) |
16203 | 0 | fputs ("\n\tMCU (MicroController) ASE", file); |
16204 | 0 | if (mask & AFL_ASE_MDMX) |
16205 | 0 | fputs ("\n\tMDMX ASE", file); |
16206 | 0 | if (mask & AFL_ASE_MIPS3D) |
16207 | 0 | fputs ("\n\tMIPS-3D ASE", file); |
16208 | 0 | if (mask & AFL_ASE_MT) |
16209 | 0 | fputs ("\n\tMT ASE", file); |
16210 | 0 | if (mask & AFL_ASE_SMARTMIPS) |
16211 | 0 | fputs ("\n\tSmartMIPS ASE", file); |
16212 | 0 | if (mask & AFL_ASE_VIRT) |
16213 | 0 | fputs ("\n\tVZ ASE", file); |
16214 | 0 | if (mask & AFL_ASE_MSA) |
16215 | 0 | fputs ("\n\tMSA ASE", file); |
16216 | 0 | if (mask & AFL_ASE_MIPS16) |
16217 | 0 | fputs ("\n\tMIPS16 ASE", file); |
16218 | 0 | if (mask & AFL_ASE_MICROMIPS) |
16219 | 0 | fputs ("\n\tMICROMIPS ASE", file); |
16220 | 0 | if (mask & AFL_ASE_XPA) |
16221 | 0 | fputs ("\n\tXPA ASE", file); |
16222 | 0 | if (mask & AFL_ASE_MIPS16E2) |
16223 | 0 | fputs ("\n\tMIPS16e2 ASE", file); |
16224 | 0 | if (mask & AFL_ASE_CRC) |
16225 | 0 | fputs ("\n\tCRC ASE", file); |
16226 | 0 | if (mask & AFL_ASE_GINV) |
16227 | 0 | fputs ("\n\tGINV ASE", file); |
16228 | 0 | if (mask & AFL_ASE_LOONGSON_MMI) |
16229 | 0 | fputs ("\n\tLoongson MMI ASE", file); |
16230 | 0 | if (mask & AFL_ASE_LOONGSON_CAM) |
16231 | 0 | fputs ("\n\tLoongson CAM ASE", file); |
16232 | 0 | if (mask & AFL_ASE_LOONGSON_EXT) |
16233 | 0 | fputs ("\n\tLoongson EXT ASE", file); |
16234 | 0 | if (mask & AFL_ASE_LOONGSON_EXT2) |
16235 | 0 | fputs ("\n\tLoongson EXT2 ASE", file); |
16236 | 0 | if (mask == 0) |
16237 | 0 | fprintf (file, "\n\t%s", _("None")); |
16238 | 0 | else if ((mask & ~AFL_ASE_MASK) != 0) |
16239 | 0 | fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); |
16240 | 0 | } |
16241 | | |
16242 | | static void |
16243 | | print_mips_isa_ext (FILE *file, unsigned int isa_ext) |
16244 | 0 | { |
16245 | 0 | switch (isa_ext) |
16246 | 0 | { |
16247 | 0 | case 0: |
16248 | 0 | fputs (_("None"), file); |
16249 | 0 | break; |
16250 | 0 | case AFL_EXT_XLR: |
16251 | 0 | fputs ("RMI XLR", file); |
16252 | 0 | break; |
16253 | 0 | case AFL_EXT_OCTEON3: |
16254 | 0 | fputs ("Cavium Networks Octeon3", file); |
16255 | 0 | break; |
16256 | 0 | case AFL_EXT_OCTEON2: |
16257 | 0 | fputs ("Cavium Networks Octeon2", file); |
16258 | 0 | break; |
16259 | 0 | case AFL_EXT_OCTEONP: |
16260 | 0 | fputs ("Cavium Networks OcteonP", file); |
16261 | 0 | break; |
16262 | 0 | case AFL_EXT_OCTEON: |
16263 | 0 | fputs ("Cavium Networks Octeon", file); |
16264 | 0 | break; |
16265 | 0 | case AFL_EXT_5900: |
16266 | 0 | fputs ("Toshiba R5900", file); |
16267 | 0 | break; |
16268 | 0 | case AFL_EXT_4650: |
16269 | 0 | fputs ("MIPS R4650", file); |
16270 | 0 | break; |
16271 | 0 | case AFL_EXT_4010: |
16272 | 0 | fputs ("LSI R4010", file); |
16273 | 0 | break; |
16274 | 0 | case AFL_EXT_4100: |
16275 | 0 | fputs ("NEC VR4100", file); |
16276 | 0 | break; |
16277 | 0 | case AFL_EXT_3900: |
16278 | 0 | fputs ("Toshiba R3900", file); |
16279 | 0 | break; |
16280 | 0 | case AFL_EXT_10000: |
16281 | 0 | fputs ("MIPS R10000", file); |
16282 | 0 | break; |
16283 | 0 | case AFL_EXT_SB1: |
16284 | 0 | fputs ("Broadcom SB-1", file); |
16285 | 0 | break; |
16286 | 0 | case AFL_EXT_4111: |
16287 | 0 | fputs ("NEC VR4111/VR4181", file); |
16288 | 0 | break; |
16289 | 0 | case AFL_EXT_4120: |
16290 | 0 | fputs ("NEC VR4120", file); |
16291 | 0 | break; |
16292 | 0 | case AFL_EXT_5400: |
16293 | 0 | fputs ("NEC VR5400", file); |
16294 | 0 | break; |
16295 | 0 | case AFL_EXT_5500: |
16296 | 0 | fputs ("NEC VR5500", file); |
16297 | 0 | break; |
16298 | 0 | case AFL_EXT_LOONGSON_2E: |
16299 | 0 | fputs ("ST Microelectronics Loongson 2E", file); |
16300 | 0 | break; |
16301 | 0 | case AFL_EXT_LOONGSON_2F: |
16302 | 0 | fputs ("ST Microelectronics Loongson 2F", file); |
16303 | 0 | break; |
16304 | 0 | case AFL_EXT_INTERAPTIV_MR2: |
16305 | 0 | fputs ("Imagination interAptiv MR2", file); |
16306 | 0 | break; |
16307 | 0 | default: |
16308 | 0 | fprintf (file, "%s (%d)", _("Unknown"), isa_ext); |
16309 | 0 | break; |
16310 | 0 | } |
16311 | 0 | } |
16312 | | |
16313 | | static void |
16314 | | print_mips_fp_abi_value (FILE *file, int val) |
16315 | 0 | { |
16316 | 0 | switch (val) |
16317 | 0 | { |
16318 | 0 | case Val_GNU_MIPS_ABI_FP_ANY: |
16319 | 0 | fprintf (file, _("Hard or soft float\n")); |
16320 | 0 | break; |
16321 | 0 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
16322 | 0 | fprintf (file, _("Hard float (double precision)\n")); |
16323 | 0 | break; |
16324 | 0 | case Val_GNU_MIPS_ABI_FP_SINGLE: |
16325 | 0 | fprintf (file, _("Hard float (single precision)\n")); |
16326 | 0 | break; |
16327 | 0 | case Val_GNU_MIPS_ABI_FP_SOFT: |
16328 | 0 | fprintf (file, _("Soft float\n")); |
16329 | 0 | break; |
16330 | 0 | case Val_GNU_MIPS_ABI_FP_OLD_64: |
16331 | 0 | fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); |
16332 | 0 | break; |
16333 | 0 | case Val_GNU_MIPS_ABI_FP_XX: |
16334 | 0 | fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); |
16335 | 0 | break; |
16336 | 0 | case Val_GNU_MIPS_ABI_FP_64: |
16337 | 0 | fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); |
16338 | 0 | break; |
16339 | 0 | case Val_GNU_MIPS_ABI_FP_64A: |
16340 | 0 | fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); |
16341 | 0 | break; |
16342 | 0 | default: |
16343 | 0 | fprintf (file, "??? (%d)\n", val); |
16344 | 0 | break; |
16345 | 0 | } |
16346 | 0 | } |
16347 | | |
16348 | | static int |
16349 | | get_mips_reg_size (int reg_size) |
16350 | 0 | { |
16351 | 0 | return (reg_size == AFL_REG_NONE) ? 0 |
16352 | 0 | : (reg_size == AFL_REG_32) ? 32 |
16353 | 0 | : (reg_size == AFL_REG_64) ? 64 |
16354 | 0 | : (reg_size == AFL_REG_128) ? 128 |
16355 | 0 | : -1; |
16356 | 0 | } |
16357 | | |
16358 | | bool |
16359 | | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
16360 | 368 | { |
16361 | 368 | FILE *file = ptr; |
16362 | | |
16363 | 368 | BFD_ASSERT (abfd != NULL && ptr != NULL); |
16364 | | |
16365 | | /* Print normal ELF private data. */ |
16366 | 368 | _bfd_elf_print_private_bfd_data (abfd, ptr); |
16367 | | |
16368 | | /* xgettext:c-format */ |
16369 | 368 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
16370 | | |
16371 | 368 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_O32) |
16372 | 8 | fprintf (file, _(" [abi=O32]")); |
16373 | 360 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_O64) |
16374 | 4 | fprintf (file, _(" [abi=O64]")); |
16375 | 356 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI32) |
16376 | 3 | fprintf (file, _(" [abi=EABI32]")); |
16377 | 353 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI64) |
16378 | 1 | fprintf (file, _(" [abi=EABI64]")); |
16379 | 352 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) |
16380 | 154 | fprintf (file, _(" [abi unknown]")); |
16381 | 198 | else if (ABI_N32_P (abfd)) |
16382 | 52 | fprintf (file, _(" [abi=N32]")); |
16383 | 146 | else if (ABI_64_P (abfd)) |
16384 | 48 | fprintf (file, _(" [abi=64]")); |
16385 | 98 | else |
16386 | 98 | fprintf (file, _(" [no abi set]")); |
16387 | | |
16388 | 368 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_1) |
16389 | 190 | fprintf (file, " [mips1]"); |
16390 | 178 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_2) |
16391 | 5 | fprintf (file, " [mips2]"); |
16392 | 173 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_3) |
16393 | 6 | fprintf (file, " [mips3]"); |
16394 | 167 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_4) |
16395 | 9 | fprintf (file, " [mips4]"); |
16396 | 158 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_5) |
16397 | 3 | fprintf (file, " [mips5]"); |
16398 | 155 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32) |
16399 | 13 | fprintf (file, " [mips32]"); |
16400 | 142 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64) |
16401 | 3 | fprintf (file, " [mips64]"); |
16402 | 139 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R2) |
16403 | 49 | fprintf (file, " [mips32r2]"); |
16404 | 90 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64R2) |
16405 | 6 | fprintf (file, " [mips64r2]"); |
16406 | 84 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R6) |
16407 | 52 | fprintf (file, " [mips32r6]"); |
16408 | 32 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64R6) |
16409 | 16 | fprintf (file, " [mips64r6]"); |
16410 | 16 | else |
16411 | 16 | fprintf (file, _(" [unknown ISA]")); |
16412 | | |
16413 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
16414 | 126 | fprintf (file, " [mdmx]"); |
16415 | | |
16416 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) |
16417 | 57 | fprintf (file, " [mips16]"); |
16418 | | |
16419 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) |
16420 | 178 | fprintf (file, " [micromips]"); |
16421 | | |
16422 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) |
16423 | 151 | fprintf (file, " [nan2008]"); |
16424 | | |
16425 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) |
16426 | 148 | fprintf (file, " [old fp64]"); |
16427 | | |
16428 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
16429 | 120 | fprintf (file, " [32bitmode]"); |
16430 | 248 | else |
16431 | 248 | fprintf (file, _(" [not 32bitmode]")); |
16432 | | |
16433 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
16434 | 143 | fprintf (file, " [noreorder]"); |
16435 | | |
16436 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) |
16437 | 66 | fprintf (file, " [PIC]"); |
16438 | | |
16439 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) |
16440 | 165 | fprintf (file, " [CPIC]"); |
16441 | | |
16442 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) |
16443 | 63 | fprintf (file, " [XGOT]"); |
16444 | | |
16445 | 368 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) |
16446 | 154 | fprintf (file, " [UCODE]"); |
16447 | | |
16448 | 368 | fputc ('\n', file); |
16449 | | |
16450 | 368 | if (mips_elf_tdata (abfd)->abiflags_valid) |
16451 | 0 | { |
16452 | 0 | Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; |
16453 | 0 | fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); |
16454 | 0 | fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); |
16455 | 0 | if (abiflags->isa_rev > 1) |
16456 | 0 | fprintf (file, "r%d", abiflags->isa_rev); |
16457 | 0 | fprintf (file, "\nGPR size: %d", |
16458 | 0 | get_mips_reg_size (abiflags->gpr_size)); |
16459 | 0 | fprintf (file, "\nCPR1 size: %d", |
16460 | 0 | get_mips_reg_size (abiflags->cpr1_size)); |
16461 | 0 | fprintf (file, "\nCPR2 size: %d", |
16462 | 0 | get_mips_reg_size (abiflags->cpr2_size)); |
16463 | 0 | fputs ("\nFP ABI: ", file); |
16464 | 0 | print_mips_fp_abi_value (file, abiflags->fp_abi); |
16465 | 0 | fputs ("ISA Extension: ", file); |
16466 | 0 | print_mips_isa_ext (file, abiflags->isa_ext); |
16467 | 0 | fputs ("\nASEs:", file); |
16468 | 0 | print_mips_ases (file, abiflags->ases); |
16469 | 0 | fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); |
16470 | 0 | fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); |
16471 | 0 | fputc ('\n', file); |
16472 | 0 | } |
16473 | | |
16474 | 368 | return true; |
16475 | 368 | } |
16476 | | |
16477 | | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
16478 | | { |
16479 | | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
16480 | | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
16481 | | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, |
16482 | | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
16483 | | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
16484 | | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, |
16485 | | { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC }, |
16486 | | { NULL, 0, 0, 0, 0 } |
16487 | | }; |
16488 | | |
16489 | | /* Merge non visibility st_other attributes. Ensure that the |
16490 | | STO_OPTIONAL flag is copied into h->other, even if this is not a |
16491 | | definiton of the symbol. */ |
16492 | | void |
16493 | | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, |
16494 | | unsigned int st_other, |
16495 | | bool definition, |
16496 | | bool dynamic ATTRIBUTE_UNUSED) |
16497 | 0 | { |
16498 | 0 | if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
16499 | 0 | { |
16500 | 0 | unsigned char other; |
16501 | |
|
16502 | 0 | other = (definition ? st_other : h->other); |
16503 | 0 | other &= ~ELF_ST_VISIBILITY (-1); |
16504 | 0 | h->other = other | ELF_ST_VISIBILITY (h->other); |
16505 | 0 | } |
16506 | |
|
16507 | 0 | if (!definition |
16508 | 0 | && ELF_MIPS_IS_OPTIONAL (st_other)) |
16509 | 0 | h->other |= STO_OPTIONAL; |
16510 | 0 | } |
16511 | | |
16512 | | /* Decide whether an undefined symbol is special and can be ignored. |
16513 | | This is the case for OPTIONAL symbols on IRIX. */ |
16514 | | bool |
16515 | | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) |
16516 | 0 | { |
16517 | 0 | return ELF_MIPS_IS_OPTIONAL (h->other) != 0; |
16518 | 0 | } |
16519 | | |
16520 | | bool |
16521 | | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) |
16522 | 0 | { |
16523 | 0 | return (sym->st_shndx == SHN_COMMON |
16524 | 0 | || sym->st_shndx == SHN_MIPS_ACOMMON |
16525 | 0 | || sym->st_shndx == SHN_MIPS_SCOMMON); |
16526 | 0 | } |
16527 | | |
16528 | | /* Return address for Ith PLT stub in section PLT, for relocation REL |
16529 | | or (bfd_vma) -1 if it should not be included. */ |
16530 | | |
16531 | | bfd_vma |
16532 | | _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, |
16533 | | const arelent *rel ATTRIBUTE_UNUSED) |
16534 | 0 | { |
16535 | 0 | return (plt->vma |
16536 | 0 | + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) |
16537 | 0 | + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); |
16538 | 0 | } |
16539 | | |
16540 | | /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 |
16541 | | and microMIPS PLT slots we may have a many-to-one mapping between .plt |
16542 | | and .got.plt and also the slots may be of a different size each we walk |
16543 | | the PLT manually fetching instructions and matching them against known |
16544 | | patterns. To make things easier standard MIPS slots, if any, always come |
16545 | | first. As we don't create proper ELF symbols we use the UDATA.I member |
16546 | | of ASYMBOL to carry ISA annotation. The encoding used is the same as |
16547 | | with the ST_OTHER member of the ELF symbol. */ |
16548 | | |
16549 | | long |
16550 | | _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, |
16551 | | long symcount ATTRIBUTE_UNUSED, |
16552 | | asymbol **syms ATTRIBUTE_UNUSED, |
16553 | | long dynsymcount, asymbol **dynsyms, |
16554 | | asymbol **ret) |
16555 | 51 | { |
16556 | 51 | static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; |
16557 | 51 | static const char microsuffix[] = "@micromipsplt"; |
16558 | 51 | static const char m16suffix[] = "@mips16plt"; |
16559 | 51 | static const char mipssuffix[] = "@plt"; |
16560 | | |
16561 | 51 | bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); |
16562 | 51 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
16563 | 51 | bool micromips_p = MICROMIPS_P (abfd); |
16564 | 51 | Elf_Internal_Shdr *hdr; |
16565 | 51 | bfd_byte *plt_data; |
16566 | 51 | bfd_vma plt_offset; |
16567 | 51 | unsigned int other; |
16568 | 51 | bfd_vma entry_size; |
16569 | 51 | bfd_vma plt0_size; |
16570 | 51 | asection *relplt; |
16571 | 51 | bfd_vma opcode; |
16572 | 51 | asection *plt; |
16573 | 51 | asymbol *send; |
16574 | 51 | size_t size; |
16575 | 51 | char *names; |
16576 | 51 | long counti; |
16577 | 51 | arelent *p; |
16578 | 51 | asymbol *s; |
16579 | 51 | char *nend; |
16580 | 51 | long count; |
16581 | 51 | long pi; |
16582 | 51 | long i; |
16583 | 51 | long n; |
16584 | | |
16585 | 51 | *ret = NULL; |
16586 | | |
16587 | 51 | if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) |
16588 | 48 | return 0; |
16589 | | |
16590 | 3 | relplt = bfd_get_section_by_name (abfd, ".rel.plt"); |
16591 | 3 | if (relplt == NULL) |
16592 | 3 | return 0; |
16593 | | |
16594 | 0 | hdr = &elf_section_data (relplt)->this_hdr; |
16595 | 0 | if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) |
16596 | 0 | return 0; |
16597 | | |
16598 | 0 | plt = bfd_get_section_by_name (abfd, ".plt"); |
16599 | 0 | if (plt == NULL || (plt->flags & SEC_HAS_CONTENTS) == 0) |
16600 | 0 | return 0; |
16601 | | |
16602 | 0 | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; |
16603 | 0 | if (!(*slurp_relocs) (abfd, relplt, dynsyms, true)) |
16604 | 0 | return -1; |
16605 | 0 | p = relplt->relocation; |
16606 | | |
16607 | | /* Calculating the exact amount of space required for symbols would |
16608 | | require two passes over the PLT, so just pessimise assuming two |
16609 | | PLT slots per relocation. */ |
16610 | 0 | count = NUM_SHDR_ENTRIES (hdr); |
16611 | 0 | counti = count * bed->s->int_rels_per_ext_rel; |
16612 | 0 | size = 2 * count * sizeof (asymbol); |
16613 | 0 | size += count * (sizeof (mipssuffix) + |
16614 | 0 | (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); |
16615 | 0 | for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) |
16616 | 0 | size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); |
16617 | | |
16618 | | /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ |
16619 | 0 | size += sizeof (asymbol) + sizeof (pltname); |
16620 | |
|
16621 | 0 | if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) |
16622 | 0 | return -1; |
16623 | | |
16624 | 0 | if (plt->size < 16) |
16625 | 0 | return -1; |
16626 | | |
16627 | 0 | s = *ret = bfd_malloc (size); |
16628 | 0 | if (s == NULL) |
16629 | 0 | return -1; |
16630 | 0 | send = s + 2 * count + 1; |
16631 | |
|
16632 | 0 | names = (char *) send; |
16633 | 0 | nend = (char *) s + size; |
16634 | 0 | n = 0; |
16635 | |
|
16636 | 0 | opcode = bfd_get_micromips_32 (abfd, plt_data + 12); |
16637 | 0 | if (opcode == 0x3302fffe) |
16638 | 0 | { |
16639 | 0 | if (!micromips_p) |
16640 | 0 | return -1; |
16641 | 0 | plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); |
16642 | 0 | other = STO_MICROMIPS; |
16643 | 0 | } |
16644 | 0 | else if (opcode == 0x0398c1d0) |
16645 | 0 | { |
16646 | 0 | if (!micromips_p) |
16647 | 0 | return -1; |
16648 | 0 | plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); |
16649 | 0 | other = STO_MICROMIPS; |
16650 | 0 | } |
16651 | 0 | else |
16652 | 0 | { |
16653 | 0 | plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); |
16654 | 0 | other = 0; |
16655 | 0 | } |
16656 | | |
16657 | 0 | s->the_bfd = abfd; |
16658 | 0 | s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; |
16659 | 0 | s->section = plt; |
16660 | 0 | s->value = 0; |
16661 | 0 | s->name = names; |
16662 | 0 | s->udata.i = other; |
16663 | 0 | memcpy (names, pltname, sizeof (pltname)); |
16664 | 0 | names += sizeof (pltname); |
16665 | 0 | ++s, ++n; |
16666 | |
|
16667 | 0 | pi = 0; |
16668 | 0 | for (plt_offset = plt0_size; |
16669 | 0 | plt_offset + 8 <= plt->size && s < send; |
16670 | 0 | plt_offset += entry_size) |
16671 | 0 | { |
16672 | 0 | bfd_vma gotplt_addr; |
16673 | 0 | const char *suffix; |
16674 | 0 | bfd_vma gotplt_hi; |
16675 | 0 | bfd_vma gotplt_lo; |
16676 | 0 | size_t suffixlen; |
16677 | |
|
16678 | 0 | opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); |
16679 | | |
16680 | | /* Check if the second word matches the expected MIPS16 instruction. */ |
16681 | 0 | if (opcode == 0x651aeb00) |
16682 | 0 | { |
16683 | 0 | if (micromips_p) |
16684 | 0 | return -1; |
16685 | | /* Truncated table??? */ |
16686 | 0 | if (plt_offset + 16 > plt->size) |
16687 | 0 | break; |
16688 | 0 | gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); |
16689 | 0 | entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); |
16690 | 0 | suffixlen = sizeof (m16suffix); |
16691 | 0 | suffix = m16suffix; |
16692 | 0 | other = STO_MIPS16; |
16693 | 0 | } |
16694 | | /* Likewise the expected microMIPS instruction (no insn32 mode). */ |
16695 | 0 | else if (opcode == 0xff220000) |
16696 | 0 | { |
16697 | 0 | if (!micromips_p) |
16698 | 0 | return -1; |
16699 | 0 | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; |
16700 | 0 | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; |
16701 | 0 | gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; |
16702 | 0 | gotplt_lo <<= 2; |
16703 | 0 | gotplt_addr = gotplt_hi + gotplt_lo; |
16704 | 0 | gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; |
16705 | 0 | entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); |
16706 | 0 | suffixlen = sizeof (microsuffix); |
16707 | 0 | suffix = microsuffix; |
16708 | 0 | other = STO_MICROMIPS; |
16709 | 0 | } |
16710 | | /* Likewise the expected microMIPS instruction (insn32 mode). */ |
16711 | 0 | else if ((opcode & 0xffff0000) == 0xff2f0000) |
16712 | 0 | { |
16713 | 0 | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; |
16714 | 0 | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; |
16715 | 0 | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; |
16716 | 0 | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; |
16717 | 0 | gotplt_addr = gotplt_hi + gotplt_lo; |
16718 | 0 | entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); |
16719 | 0 | suffixlen = sizeof (microsuffix); |
16720 | 0 | suffix = microsuffix; |
16721 | 0 | other = STO_MICROMIPS; |
16722 | 0 | } |
16723 | | /* Otherwise assume standard MIPS code. */ |
16724 | 0 | else |
16725 | 0 | { |
16726 | 0 | gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; |
16727 | 0 | gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; |
16728 | 0 | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; |
16729 | 0 | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; |
16730 | 0 | gotplt_addr = gotplt_hi + gotplt_lo; |
16731 | 0 | entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
16732 | 0 | suffixlen = sizeof (mipssuffix); |
16733 | 0 | suffix = mipssuffix; |
16734 | 0 | other = 0; |
16735 | 0 | } |
16736 | | /* Truncated table??? */ |
16737 | 0 | if (plt_offset + entry_size > plt->size) |
16738 | 0 | break; |
16739 | | |
16740 | 0 | for (i = 0; |
16741 | 0 | i < count && p[pi].address != gotplt_addr; |
16742 | 0 | i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); |
16743 | |
|
16744 | 0 | if (i < count) |
16745 | 0 | { |
16746 | 0 | size_t namelen; |
16747 | 0 | size_t len; |
16748 | |
|
16749 | 0 | *s = **p[pi].sym_ptr_ptr; |
16750 | | /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since |
16751 | | we are defining a symbol, ensure one of them is set. */ |
16752 | 0 | if ((s->flags & BSF_LOCAL) == 0) |
16753 | 0 | s->flags |= BSF_GLOBAL; |
16754 | 0 | s->flags |= BSF_SYNTHETIC; |
16755 | 0 | s->section = plt; |
16756 | 0 | s->value = plt_offset; |
16757 | 0 | s->name = names; |
16758 | 0 | s->udata.i = other; |
16759 | |
|
16760 | 0 | len = strlen ((*p[pi].sym_ptr_ptr)->name); |
16761 | 0 | namelen = len + suffixlen; |
16762 | 0 | if (names + namelen > nend) |
16763 | 0 | break; |
16764 | | |
16765 | 0 | memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); |
16766 | 0 | names += len; |
16767 | 0 | memcpy (names, suffix, suffixlen); |
16768 | 0 | names += suffixlen; |
16769 | |
|
16770 | 0 | ++s, ++n; |
16771 | 0 | pi = (pi + bed->s->int_rels_per_ext_rel) % counti; |
16772 | 0 | } |
16773 | 0 | } |
16774 | | |
16775 | 0 | free (plt_data); |
16776 | |
|
16777 | 0 | return n; |
16778 | 0 | } |
16779 | | |
16780 | | /* Return the ABI flags associated with ABFD if available. */ |
16781 | | |
16782 | | Elf_Internal_ABIFlags_v0 * |
16783 | | bfd_mips_elf_get_abiflags (bfd *abfd) |
16784 | 1.91M | { |
16785 | 1.91M | struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd); |
16786 | | |
16787 | 1.91M | return tdata->abiflags_valid ? &tdata->abiflags : NULL; |
16788 | 1.91M | } |
16789 | | |
16790 | | /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header |
16791 | | field. Taken from `libc-abis.h' generated at GNU libc build time. |
16792 | | Using a MIPS_ prefix as other libc targets use different values. */ |
16793 | | enum |
16794 | | { |
16795 | | MIPS_LIBC_ABI_DEFAULT = 0, |
16796 | | MIPS_LIBC_ABI_MIPS_PLT, |
16797 | | MIPS_LIBC_ABI_UNIQUE, |
16798 | | MIPS_LIBC_ABI_MIPS_O32_FP64, |
16799 | | MIPS_LIBC_ABI_ABSOLUTE, |
16800 | | MIPS_LIBC_ABI_XHASH, |
16801 | | MIPS_LIBC_ABI_MAX |
16802 | | }; |
16803 | | |
16804 | | bool |
16805 | | _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info) |
16806 | 2 | { |
16807 | 2 | struct mips_elf_link_hash_table *htab = NULL; |
16808 | 2 | Elf_Internal_Ehdr *i_ehdrp; |
16809 | | |
16810 | 2 | if (!_bfd_elf_init_file_header (abfd, link_info)) |
16811 | 0 | return false; |
16812 | | |
16813 | 2 | i_ehdrp = elf_elfheader (abfd); |
16814 | 2 | if (link_info) |
16815 | 0 | { |
16816 | 0 | htab = mips_elf_hash_table (link_info); |
16817 | 0 | BFD_ASSERT (htab != NULL); |
16818 | 0 | } |
16819 | | |
16820 | 2 | if (htab != NULL |
16821 | 2 | && htab->use_plts_and_copy_relocs |
16822 | 2 | && htab->root.target_os != is_vxworks) |
16823 | 0 | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT; |
16824 | | |
16825 | 2 | if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 |
16826 | 2 | || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) |
16827 | 0 | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64; |
16828 | | |
16829 | | /* Mark that we need support for absolute symbols in the dynamic loader. */ |
16830 | 2 | if (htab != NULL && htab->use_absolute_zero && htab->gnu_target) |
16831 | 0 | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE; |
16832 | | |
16833 | | /* Mark that we need support for .MIPS.xhash in the dynamic linker, |
16834 | | if it is the only hash section that will be created. */ |
16835 | 2 | if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash) |
16836 | 0 | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH; |
16837 | 2 | return true; |
16838 | 2 | } |
16839 | | |
16840 | | int |
16841 | | _bfd_mips_elf_compact_eh_encoding |
16842 | | (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) |
16843 | 0 | { |
16844 | 0 | return DW_EH_PE_pcrel | DW_EH_PE_sdata4; |
16845 | 0 | } |
16846 | | |
16847 | | /* Return the opcode for can't unwind. */ |
16848 | | |
16849 | | int |
16850 | | _bfd_mips_elf_cant_unwind_opcode |
16851 | | (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) |
16852 | 0 | { |
16853 | 0 | return COMPACT_EH_CANT_UNWIND_OPCODE; |
16854 | 0 | } |
16855 | | |
16856 | | /* Record a position XLAT_LOC in the xlat translation table, associated with |
16857 | | the hash entry H. The entry in the translation table will later be |
16858 | | populated with the real symbol dynindx. */ |
16859 | | |
16860 | | void |
16861 | | _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h, |
16862 | | bfd_vma xlat_loc) |
16863 | 0 | { |
16864 | 0 | struct mips_elf_link_hash_entry *hmips; |
16865 | |
|
16866 | 0 | hmips = (struct mips_elf_link_hash_entry *) h; |
16867 | 0 | hmips->mipsxhash_loc = xlat_loc; |
16868 | 0 | } |